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Abstract

The individualized treatment recommendation (ITR) is an important analytic framework
for precision medicine. The goal of ITR is to assign the best treatments to patients based
on their individual characteristics. From the machine learning perspective, the solution
to the ITR problem can be formulated as a weighted classification problem to maximize
the mean benefit from the recommended treatments given patients’ characteristics. Sev-
eral ITR methods have been proposed in both the binary setting and the multicategory
setting. In practice, one may prefer a more flexible recommendation that includes multiple
treatment options. This motivates us to develop methods to obtain a set of near-optimal
individualized treatment recommendations alternative to each other, called alternative in-
dividualized treatment recommendations (A-ITR). We propose two methods to estimate
the optimal A-ITR within the outcome weighted learning (OWL) framework. Simulation
studies and a real data analysis for Type 2 diabetic patients with injectable antidiabetic
treatments are conducted to show the usefulness of the proposed A-ITR framework. We
also show the consistency of these methods and obtain an upper bound for the risk between
the theoretically optimal recommendation and the estimated one. An R package aitr has
been developed, found at https://github.com/menghaomiao/aitr.

Keywords: individualized treatment recommendation, set-valued classification, angle-
based classification, reproducing kernel Hilbert space, statistical learning theory

1. Introduction

The individualized treatment recommendation (ITR) has drawn increasing attention in re-
cent years. Because patients may respond differently to the same treatment (Lesko, 2007;
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Insel, 2009), it is desirable to individualize the treatment according to patients’ characteris-
tics. Mathematically, an ITR is a map from such characteristics (the covariates, or features)
to a treatment. The goal is to find the optimal treatment so that the average benefit that
patients will receive by following such a recommendation is maximized.

In the literature, many statistical approaches have been proposed for solving the ITR
problem. In indirect modeling-based methods, one first builds a parametric or semi-
parametric model to estimate the expected outcome conditional on the covariates, then
recommends the single treatment that renders the optimal outcome to the given patient
(Robins, 2004; Qian and Murphy, 2011; Schulte et al., 2014). However, these methods re-
quire a correct model specification and an accurate estimation to perform well in practice.
One may also obtain the optimal ITR directly. Zhao et al. (2012) proposed a classification-
based method, coined as the outcome weighted learning (OWL), to estimate the optimal
ITR. They transformed the ITR problem into a weighted classification problem and used
support vector machine (SVM), a classification method, to solve it. Built on top of the
OWL framework, there has been a rapidly growing literature on different aspects of the
ITR problem. Zhao et al. (2014) and Cui et al. (2017) extended the OWL framework to
accommodate survival outcomes. Zhou et al. (2017) and Liu et al. (2018) proposed residual
weighted learning (RWL) and augmented outcome-weighted learning (AOL) respectively to
reduce the variability of the weights in OWL to enhance its performance. Chen et al. (2018)
proposed generalized OWL (GOWL) to solve an ITR with ordinal treatments. Zhang et al.
(2018a) proposed angle-based approach for the multicategory case (in which there are more
than two treatments available to choose from). Recently, Zhao et al. (2019) and Huang
et al. (2019) considered replacing the weights in OWL with a doubly robust estimator to
further improve the robustness of OWL. Methods based on other learning algorithms such
as trees (Laber and Zhao, 2015; Kallus, 2016; Doubleday et al., 2018; Zhu et al., 2017) and
nearest neighbors (Zhou and Kosorok, 2017; Wu et al., 2019) have also been studied. An-
other example of direct methods is the work by Zhang et al. (2012), which searched for the
ITR among a pre-specified class of decision rules that optimized a doubly robust augmented
inverse probability weighted estimator of the overall population mean outcome.

Despite the success of these methods in recommending a single “optimal” treatment
to patients, a method that can suggest multiple “near-optimal” treatment options to a
patient is not fully studied. Such options could be desirable when several treatments have
comparable effects. Laber et al. (2014) and Lizotte and Laber (2016) proposed a set-valued
dynamic treatment regime. In particular, if there are two treatments available (1 and −1),
their set-valued rule may report {1}, {−1}, or {1,−1}. However, this approach is applicable
only to cases with two competing outcomes. They would recommend the set {1,−1} if any
treatment cannot be proven to be inferior to the other based on both outcomes. On the
other hand, they used a regression-based method to estimate the optimal set-valued rule,
which may suffer an inconsistency issue if the model is misspecified. Yuan (2015) considered
a framework to allow a reject option in ITR estimation based on OWL. However, the method
is restricted to the binary case with only two possible treatments.

In this paper, we propose to study the ITR problem in the setting with only one clinical
outcome from a new perspective. Different from the previous ITR work, it provides a set
of treatment options that are near the optimality and are alternative to each other, which
we called alternative individualized treatment recommendations (A-ITR). Specifically, if
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multiple treatments are expected to result in similar and near-optimal clinical outcomes
for the patient, then they are all recommended to the patient (or the physician), who can
choose any one of them to use after incorporating other considerations. There are several
reasons this approach may be more desirable than a single treatment recommendation.
First, since multiple treatments may yield the same or similar outcomes for some patients,
the ranking among the near-optimal treatment options may vary randomly. If only the top
treatment is reported, such a seemingly “random” recommendation may severely undermine
the trust of the physicians and the patients toward the treatment recommendation system.
Second, when the expected outcomes for multiple treatments are indistinguishable, it may
be both legally and morally inappropriate to withhold such important information from
the patients. Third, A-ITRs allow physicians and patients to incorporate other factors
into their decision-making process regarding the treatment. These other factors include the
healthcare expense, the painfulness of the treatment, the side-effect of the treatment, the
life quality and lifestyle, and so on. For example, when two treatments are expected to
have similar outcomes, it is reasonable to choose an option that is covered by the insurance,
that is less painful, that has less side-effect, and that does not significantly compromise the
quality of life. In this sense, conventional ITR methods that only recommend one treatment
may prevent patients from making informed decisions about their lives.

We will propose two methods to estimate A-ITR. Parallel to the development of the
conventional ITR methods, we first introduce a regression-based plug-in method to estimate
the optimal A-ITR, which will serve as the baseline. Within the OWL framework, we
propose two classification-based methods. The technical tool we will use is multicategory
classification with reject and refine options (Zhang et al., 2018b).

The rest of the paper is organized as follows. In Section 2, we review the background
of the ITR and the classification with reject and refine options problems. We then intro-
duce the proposed A-ITR framework and discuss several estimation methods in Section 3.
Detailed algorithm and the tuning procedure can be found in Section 4. We demonstrate
the empirical performance through simulation studies in Section 5 and a real-world applica-
tion using Type 2 diabetes mellitus data in Section 6. Theoretical studies of the proposed
method can be found in Section 7. Some concluding remarks are given in Section 8. All
technical proofs are provided in the supplementary materials.

2. Background

In this section, we briefly review the background information of both the ITR problem and
the problem of classification with reject and refine options.

2.1 Individualized Treatment Recommendation

Denote the covariates of a patient by X ∈ X . Each treatment is denoted by a random
variable A, where A ∈ A = {1, 2, . . . , k} (k treatments available.) After assigning treatment
to a patient, we observe an outcome Y ∈ R+. Here we assume Y is bounded. Unlike
many other ITR methods, we assume smaller Y is preferred due to a small technicality
that can allow some computational savings. An individualized treatment recommendation,
previously often referred to as an individualized treatment rule, is a map d : X → A.
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Let Y ∗(j) denote the potential outcome that would have been observed when treatment
j is assigned to the patient with covariates X. The actual observed outcome Y is related
to the potential outcomes by Y =

∑
j∈A Y

∗(j)1[A = j]. Define p(A = j | X) as the
conditional probability of treatment j given X. We assume the following assumption.

Assumption 1 For any j, Y ∗(j) is independent of A given X and p(A = j | X) > 0
almost everywhere.

Under Assumption 1, it was shown by Qian and Murphy (2011) and Kallus (2016) that
the expected outcome under ITR d is

Ed(Y ) = E(Y ∗(d(X))) = E[E(Y ∗(A)|A = d(X),X))] = E
[
1[A = d(X)]

p(A|X)
Y

]
, (1)

where Ed is the expectation under ITR d. Note that p(A|X) is usually known in a random-
ized trial, while in an observational study it is unknown and needs to be estimated.

Denote µj = E(Y |X, A = j), for j = 1, . . . , k. Then the optimal ITR d∗ is

d∗ = argmin
d

Ed(Y ) = argmin
j

µj , (2)

that is, the optimal treatment for a patient has the smallest (the best) expected outcome.
Many methods have been proposed for estimating the optimal ITR. One method is often

called “regression and comparison” or Q-learning (Robins, 2004; Qian and Murphy, 2011).
One first estimates the conditional mean µj(x) = E(Y | X = x, A = j) for each treatment
j, then the optimal treatment is obtained by plugging the estimators in (2). However, this
method relies on the accuracy of the regression model. If the model is mis-specified, the error
could be fairly substantial. Another group of methods treat the problem as a classification
problem. One example is called outcome weighted learning (OWL) or O-learning (Zhao
et al., 2012, 2014, 2019; Zhou et al., 2017; Zhang et al., 2018a). In the OWL framework,
by noting (1), we rewrite the ITR solution as

d∗ = argmin
d

E
[

Y

p(A|X)
1[A = d(X)]

]
, (3)

which is closely related to a weighted classification problem with weight Y/p(A|X). To
overcome the non-continuity and non-convexity of the 0-1 loss, we can replace 1[A = d(X)]
by a convex surrogate loss L(A,f(X)) in the empirical counterpart of (3) and solve instead

f̂ = argmin
f

En
[

Y

p(A|X)
L(A,f(X))

]
, (4)

where En denotes the empirical expectation, and f is a vector-valued function defined on
X . The estimated ITR d̂ is then obtained from f̂ .

The relationship between d̂ and f̂ depends on the choice of the loss function L and
how f is defined. Zhao et al. (2012) proposed to replace the 0-1 loss by hinge loss in the
binary case (k = 2, A ∈ {1,−1}), that is, L(A, f) = (1 − Af)+, where x+ = max(x, 0),
and f is a scalar-valued function. In the current setting that a smaller Y is preferred,
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they could have used L(A, f) = (1 + Af)+. They showed that the optimal ITR can be
estimated by d̂ = sign (f̂). Zhang et al. (2018a) then extended to the multicategory case
using a large-margin loss under the angle-based learning framework (Zhang and Liu, 2014).
Specifically, define f(x) = (f1, . . . , fk−1)

T (x) ∈ Rk−1 and W1, . . . ,Wk are vertices of a
(k − 1)-dimensional simplex with equal pair-wise distances, defined as

Wj =

{
(k − 1)−1/21k−1, j = 1

−(1 + k1/2)(k − 1)−3/21k−1 + [k/(k − 1)]1/2 ej−1, 2 ≤ j ≤ k,

where 1k−1 is a (k−1)-dimensional vector with all 1 and ej−1 ∈ Rk−1 is a vector with the (j−
1)th element 1 and 0 elsewhere. They let L(A,f(x)) = `(〈WA,f(x)〉), where ` is a typical
large-margin surrogate loss for binary classification (except that it is increasing instead of
decreasing), and 〈WA,f(x)〉 denotes the inner product of the vectors WA and f(x). From
the geometry point of view, treatment j is represented by vertex j of the simplex, and
the angle between f(x) and Wj , ∠(Wj ,f(x)), indicates how far away f(x) is from each

of these treatments. The resulting ITR was estimated by d̂(x) = argminj ∠(Wj , f̂(x)) =

argmaxj〈Wj , f̂(x)〉, that is, the best treatment is the one whose corresponding vertex is

closest to f̂(x) in terms of the angle.

Remark 2 In the ITR literature, one typically assumes that larger values of the outcome
Y are preferred, so that instead of minimization, d∗ maximizes the objective (3), or equiva-

lently, argmind E
[

Y
p(A|X)1[A 6= d(X)]

]
, which was indeed a weighted classification problem.

In this article, recall that we assume smaller values of Y are preferred. As a consequence,
1[A 6= d(X)] is replaced by 1[A = d(X)] in (3); additionally, the surrogate loss function is
flipped with respect to the origin so that it is an increasing function instead of a decreasing
function.

2.2 Classification with Reject and Refine Options

We aim to provide set-valued recommendations that are near the optimality and are alter-
native to each other. To this end, we borrow the idea of multicategory classification with
reject and refine options as a technical tool. Classification with a reject option has been
widely studied. Herbei and Wegkamp (2006) formulated the problem as a minimization
problem under the 0-d-1 loss. That is, the loss of a misclassified instance is 1 and the loss
of a rejected instance is d, where 0 ≤ d ≤ 1/2. Bartlett and Wegkamp (2008) proposed
an estimation procedure under the hinge loss. Yuan and Wegkamp (2010) extended this
framework to a broad class of surrogate loss functions. Zhang et al. (2018b) generalized it
to the multicategory case.

We first introduce binary classification with reject option. Let (X, A) be a pair of
random variable with X ∈ X and class label A ∈ {1,−1}∗, and denote pj(x) = p(A =
j | X = x) as the conditional class probability given X. The goal is to train a classifier
φ(x) that produces three possible outputs: 1, −1, and 0. Here 0 stands for a “reject”
option, meaning that the classifier refuses to make a prediction based on the information

∗. Although class labels are traditionally denoted as Y in the classification literature, the class labels are
analogous to the treatment options in the ITR problem. Hence we denote the class label as A here.
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available. Note that the decision “0” can be viewed as a set-valued decision of {1,−1}. Chow
(1970) proposed the 0-d0-1 loss with corresponding risk function P (φ(X) 6= A, φ(X) 6=
0) + d0P (φ(X) = 0) and it was shown that the Bayes rule under this risk is

φ∗(x) =


1, p1(x) > 1− d0
−1, p1(x) < d0

0, d0 ≤ p1(x) ≤ 1− d0.

Here d0 ∈ [0, 1/2] controls the cost for refusing to make a classification. Intuitively, we
produce the reject option “0” only when both p1(x) and p2(x) are close to 1/2. Bartlett
and Wegkamp (2008) proposed a bent hinge loss to estimate the optimal rule φ∗. The bent
hinge loss is defined as `(u) = max(0, 1− u, 1− (1− d0)u/d0), i.e., the common hinge loss
with a bent slope at 0. The effect of such bent slope is to shrink f(x) to 0 when p1(x) and
p2(x) are close. For f∗(x) = argminf(x) E(`(Af) |X = x), we have φ∗ = sign(f∗).

The situation is much more complicated for multicategory classification. Suppose there
are 3 classes, that is, A = {1, 2, 3}, then the possible values for the classifier φ(x) are {1},
{2}, {3}, {1, 2}, {1, 3}, {2, 3}, and {1, 2, 3}. In general, assuming there are k classes, φ(x)
can be any element in the power set of {1, . . . , k} (except the empty set). In addition to
the reject option, which can be understood as the full set {1, . . . , k}, Zhang et al. (2018b)
introduced the so-called refine option, which is a set-valued decision with cardinality strictly
greater than 1 and less than k. It contains all those class labels which are nearly as plausible
as the most plausible class. Zhang et al. (2018b) proposed to use a class of loss functions
in conjunction with the angle-based learning framework (Zhang and Liu, 2014) to train a
set-valued classifier that can render these different options. We note that both the reject
option and the refine option are set-valued decisions, and they are analogous to the set-
valued recommendations in this work.

3. Methodology

In this section, we introduce the framework of alternative individualized treatment recom-
mendations (A-ITR) and propose two methods to estimate the optimal A-ITR.

3.1 A-ITR Framework

There are several situations in which ITRs with additional alternative options are desirable.
Even with small errors, when several treatments are near the optimality, the ranking of these
treatments based on their estimated outcomes may differ from their true ranking. In this
case, reporting only one treatment based on the estimated value is problematic. Secondly,
when the error in the learning problem is substantially large, the so-called optimal treatment
reported by conventional ITRs may lead to an outcome that is much worse than some of
the other treatment options. In these situations, recommending a single treatment only
adds to the distrust that patients may already have towards such black-box algorithms that
they know little about. On the other hand, A-ITR provides a safety net, preventing from
committing to a single treatment that is only one out of multiple treatments with similar
or indistinguishable outcomes. Morally, as patients are more mindful about their financial
responsibility and their quality of life, it is more appropriate to present these alternative
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options and have the patients themselves to make an informed decision, especially when
many of these decisions are life-changing.

An A-ITR is a set-valued map φ : X → 2A\∅. Inspired by the idea of classification with
reject and refine options, given a user-predefined number c ≥ 1 that defines the scope of
the near-optimal treatments, we formally define the optimal A-ITR as,

φ∗(x) = {j | µj(x)/µ(1)(x) ≤ c}, (5)

where µ(1) is the smallest conditional mean outcomes. This optimal A-ITR set contains all
the treatment options with µj close enough to that of the optimal one, up to a multiplicative
constant c. Recall that we assume smaller Y is preferred. Note that for certain c and
x, φ∗(x) may contain only one element, that is, the treatment with the smallest mean
outcome, which corresponds to the conventional ITR. If it includes all the treatments, it is a
non-informative recommendation, analogous to the reject option in set-valued classification
problem. Here we call c the near-optimality constant.

When c = 1, the optimal A-ITR reduces to the optimal ITR defined in (2) for all x
since φ∗ = {j | µj/µ(1) ≤ 1} = {j | µj = µ(1)} = argminj∈{1,...,k} µj . This means that the
proposed optimal A-ITR generalizes the conventional optimal ITR.

Remark 3 The choice of the near-optimality constant c is made in consultation with the
physicians by taking into account meaningful domain knowledge in the clinical context. Note
c is not a tuning parameter and is not meant to be selected in a way to minimize some risk
or obtain some optimal model (whatever it means). The value of c reflects the physician’s
judgment about how close is “indistinguishable” and may vary a lot depending on the appli-
cation. One value of c (say 10) may be appropriate for one clinical outcome but can be too
big for another. In practice, c is chosen according to the physician’s experience, or by em-
pirical data if available. A possible candidate for c is an estimate to exp[SD(log(Y ∗) | x)].
Moreover, the physician may also try two or three different c values which may lead to rec-
ommendations with varying cardinalities. These recommendations may then be presented
to the patient in the order of increasing cardinality. Caution should be exercised when com-
municating about these new alternative options and the corresponding possible sacrifice to
the outcome.

Remark 4 The optimal A-ITR φ∗ defined in (5) is not invariant to addition but is invari-
ant to multiplication. If it were invariant to addition, then the assumption of non-negativity
of Y would be moot. In practice, many clinical outcome are positive (i.e., year of survival,
blood count, etc.). A negative clinical outcome Ỹ (i.e., a decrease of blood pressure) may be
transformed to be positive, for example, by Y = exp(Ỹ ). In any case, a transformation of
the original clinical outcome may be needed to adapt the definition (5) to the specific clinical
context. For example, in certain clinical contexts, it could make more sense to define the
optimal treatment options as those with expected outcomes less than µ̃(1)+b where µ̃(1) is the
smallest mean outcome (in the original, untransformed scale). In this case, we may define
Y = exp(Ỹ ) so that the optimal treatment options are those with expected (transformed)
outcome less than µ(1) × c with c = exp(b). See Section 6 for a real data example in which
some data transformation is done.
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3.2 Estimation

We consider two types of methods to estimate the optimal A-ITR: the regression-based
methods and the classification-based methods. For regression-based methods, we can use
Q-learning to first estimate the conditional mean µj(x) = E(Y | X = x, A = j) for each

treatment j, then plug into (5), i.e., φ̂(x) = {j | µ̂j(x)/µ̂(1)(x) ≤ c}. The success of this
regression-based plug-in method relies on accurate estimation of µj .

In contrast, the classification-based method targets on estimating the true boundary
between different decision regions, bypassing the need to estimate µj directly. In the rest of
the section, we propose two classification-based methods within the OWL framework, both
of which are based on the angle-based learning approach (Zhang and Liu, 2014).

Zhang et al. (2018a) first made use of the angle-based learning approach to solve the
ITR problem, in which they denoted W1 . . . ,Wk as the vertices of a (k − 1)-dimensional
simplex and they chose the loss L(A,f(x)) in (4) to be a function that only depends on
the inner product 〈WA,f(x)〉, namely, L(A,f(x)) = `(〈WA,f(x)〉). Define f∗ to be the
population minimizer under such loss, that is

f∗ = argmin
f∈{X→Rk−1}

E
[

Y

p(A|X)
`(〈WA,f(X)〉)

]
. (6)

The end product of Zhang et al. (2018a) was a single-treatment ITR. In the ideal case that
f∗ can be obtained, their ITR was defined as df∗(x) = argmaxj∈{1,...,k}〈Wj ,f

∗(x)〉, and it
can be shown that as long as ` is convex and strictly increasing, Fisher consistency holds,
i.e., df∗ = d∗. In practice, given the training data set {(xi, ai, yi)}ni=1, f̂ , the estimate of
f∗, is obtained by,

f̂ = argmin
f∈F

1

n

n∑
i=1

yi
p(ai|xi)

`(〈Wai ,f(xi)〉), subject to J(f) ≤ s, (7)

where F ⊆ {f | X → Rk−1} is a class of functions, and J(f) is a penalty term to prevent
overfitting.

Both our proposed A-ITR methods are derived from the empirical minimizer f̂ in (7)
with an aim to estimate the population minimizer f∗ in (6). The difference lies in the loss
function ` they use, and how they convert f̂ or f∗ to the final set-valued recommendations.

3.2.1 Two-step OWL Method

For the two-step method, we use a convex, differentiable, and increasing loss function `D.
Given any f (which may be f∗ or f̂), to obtain the A-ITR, it is instrumental to first order
the vertices Wj ’s, j = 1, . . . , k, which represent the k treatments, in the manner of reversed
order statistics, 〈W(1),f〉 > · · · > 〈W(k),f〉. It turns out (see Proposition 5 below) that
when f = f∗, the jth reversed order statistic (i.e., the jth largest) 〈W(j),f〉 corresponds
to the jth order statistic (the jth smallest) µ(j) where µ(1) < · · · < µ(k).

The resultant two-step estimator of the optimal A-ITR is then defined as

φDf (x) =

{
j |

`′D(〈W(1),f(x)〉)
`′D(〈Wj ,f(x)〉)

≤ c
}
. (8)

8
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Here `′D is the first derivative of `D, and the superscript “D” indicates that f is the solution
based on a differentiable loss function. Our estimator is motivated by the following result.

Proposition 5 (Zhang et al., 2018a) Let f∗ be the population minimizer in (6) in which
` is a convex and differentiable function `D with `′D(u) > 0 for all u. For any i 6= j ∈
{1, . . . , k}, we have

µj
µi

=
`′D(〈Wi,f

∗〉)
`′D(〈Wj ,f∗〉)

.

Proposition 5 implies the following Fisher-consistent-like result for our proposed A-ITR
estimator (8).

Proposition 6 Let f∗ be the population minimizer in (6) in which ` is a convex and
differentiable function `D with `′D(u) > 0 for all u. The A-ITR φDf∗ defined in (8) based on
f∗ coincides with the optimal A-ITR φ∗ in (5).

This method is a two-step procedure because it first estimates f∗ using f̂ , then esti-
mates the ratios of conditional means µj/µi using `′D(〈Wi, f̂〉)/`′D(〈Wj , f̂〉) which is then
plugged into (5) to obtain the A-ITR. Note that it does not estimate each conditional mean
individually, but their ratios. The issue remains that if f∗ is not accurately estimated, then
the ratio µj/µi cannot be accurately estimated.

3.2.2 One-step OWL Method

The one-step method aims to directly obtain a set-valued recommendation without calculat-
ing `′D(〈Wi, f̂〉)/`′D(〈Wj , f̂〉). The crucial difference here is the use of a bent loss function,
defined as

`B(〈Wj ,f〉) = `1(〈Wj ,f〉) + `2(〈Wj ,f〉),

where `1 > 0 is a convex and increasing function with `′1(u) = 1 for all u ≥ 0, and
`2(u) = (c − 1)u+ with c ≥ 1. Such a loss function is bent at 0, since `′B(0−) = 1 and
`′B(0+) = c. Note that the slope c is the same as the near-optimality constant as defined
in (5). An example of bent loss is the bent hinge loss, `B(u) = (1 + u)+ + (c − 1)u+ (see
Figure 1.) The bent loss has been a critical tool that helps to achieve reject (and refine)
options in the classification literature (Bartlett and Wegkamp, 2008; Zhang et al., 2018b).

The main effect of the bent loss is to shrink the angle margin for class j (or treatment j
here), defined as 〈Wj ,f(x)〉, towards 0, similar to the shrinkage effect of the lasso penalty.
Likewise, the additional slope c− 1 for u > 0 is analogous to a penalty parameter in lasso
regression, which would encourage a sparse model. Note that here such a shrinkage effect is
applied to the classes/treatments with positive angle margins only. Specifically, Proposition
7 below, derived from Proposition 1 in Zhang et al. (2018b), gives the precise values of the
angle margins 〈Wj ,f

∗(x)〉’s with respect to f∗, the population minimizer of (6) with the
bent loss `B.

Proposition 7 For the sequence µ(1) < · · · < µ(k), suppose there exists an integer r ∈
{1, . . . , k− 1} such that µ(j)/µ(1) < c for j = 1, . . . , r and µ(j)/µ(1) > c for j = r+ 1, . . . , k.
Let f∗ be the population minimizer to (6) in which ` is a convex and increasing function
`B with `′B(0−) = 1 and `′B(0+) = c ≥ 1. Then we have 〈W(1),f

∗〉 > 0, 〈W(2),f
∗〉 = · · · =

9
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〈W(r),f
∗〉 = 0, and 〈W(r+1),f

∗〉 = · · · = 〈W(k),f
∗〉 < 0. If such an integer r does not

exist, then 〈W(j),f
∗〉 = 0 for j = 1, . . . , k.
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Figure 1: Hinge loss (left panel) and bent hinge loss with c = 1.5 (right panel). Note the additional
slope at u = 0 for the bent hinge loss.

A direct consequence of Proposition 7 is that all the near-optimal treatments (defined as
µ(j)/µ(1) ≤ c) have non-negative angle margins, while the rest have negative angle margins.
This naturally leads to the following set-valued recommendation,

φBf (x) = {j | 〈Wj ,f(x)〉 ≥ 0}. (9)

Here f can be the population minimizer f∗ (6) or the empirical minimizer f̂ (7) and the
superscript “B” indicates that the loss ` is a bent loss `B, as opposed to a differentiable loss
function in the two-step method.

Proposition 7 implies that {j | µj(x)/µ(1)(x) < c} ⊆ φBf∗(x) ⊆ {j | µj(x)/µ(1)(x) ≤ c}.
The following assumption is necessary to resolve the identifiable issue of (9) and to show
its optimality.

Assumption 8 For any positive c0, p (µj(X) = c0µi(X)) = 0 for ∀i 6= j ∈ {1, . . . , k} in
which µj(X) = E(Y |X, A = j) is the conditional mean outcome for treatment j.

Assumption 8 guarantees the two sets, {x ∈ X | µj(x)/µi(x) = 1} and {x ∈ X |
µj(x)/µi(x) = c}, where c is the near-optimality constant in (5), have measure 0 for any
i 6= j so that f∗ is identifiable almost everywhere. Under Assumption 8, we have the
following proposition, analogous to Fisher consistency in classification.

Proposition 9 Suppose Assumption 8 holds. Let f∗ be the population minimizer in (6) in
which ` is a convex and increasing function `B with `′B(0−) = 1 and `′B(0+) = c ≥ 1. The
A-ITR φBf∗ defined in (9) based on f∗ coincides with the optimal A-ITR φ∗ (5) with the
near-optimality constant c.

10



Near-optimal Individualized Treatment Recommendations

While Assumption 8 is useful as a technical assumption, it may not hold in certain
practical situations. For example, when two treatments have the same conditional mean
outcomes for a group of patients, Assumption 8 does not hold for c = 1. Another case that
it is more likely to fail is when the outcome Y can only take finite and discrete values. Even
if it does not hold, the proposed methods could still be useful. See Example 3 in Section 5
in which Assumption 8 is violated.

Note that for both classification-based methods, a single-valued ITR can be easily
defined by recommending the treatment option with the largest angle margin, that is,
argmaxj∈{1,...,k}〈Wj ,f(x)〉.
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Figure 2: ITR (top) and A-ITR (bottom) for a toy example given by Bayes rule, the two-step
estimator, and one-step estimator. Yellow triangles indicate recommendations with two
options, and black squares indicate three options. Both estimators give similar results to
the Bayes rule in terms of the single-valued ITR. The two-step method does not provide
as good A-ITR results as the one-step method.

Unlike the regression-based method, the two classification-based methods do not esti-
mate the conditional mean outcome. The success of the regression-based method relies
on an accurate estimation of µj at every x of interest, while reasonable performance is
expected for the classification-based methods as long as the estimation is accurate around
the “boundaries”. However, the two-step method and the one-step method seem to have
different focuses. Both methods start with finding a discriminant function to minimize the
outcome-weighted misclassification rate for the purpose of minimizing the expected out-
come. As a consequence, both methods have “good” performances near boundaries that
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distinguish the optimal treatment from the non-optimal treatments for each patient. The
one-step method, additionally, uses a bent loss with a shrinkage effect that is capable of
determining whether a treatment is close enough to, not whether it is equal to, the optimal
treatment. More precisely speaking, the one-step method calibrates the boundary defined
by µj(x)/µ(1)(x) = c. This is theoretically justified by Proposition 7. Hence, the one-step
method also has “good” performance near such new notions of boundaries.

To illustrate the additional strength of the one-step method, we show the boundaries
between recommendations for a toy example (the details of which will be revisited in the
numerical studies) in Figure 2, in which the top row shows the single-valued ITR and the
second row the set-valued A-ITR, by the Bayes rule, the two-step method, and the one-step
method respectively. Both classification-based methods give good approximations to the
Bayes ITR boundaries, shown in the top row. However, the two-step method seems to
include more treatments into the near-optimal set when compared to the Bayes rule (shown
in the bottom row), than the one-step method does. For example, the two-step estimator
displays much more recommendations with 2 or 3 treatment options. This is probably due
to the fact that the optimization for the two-step method is not designed to capture this
subtle pattern, at least not with a finite sample.

4. Implementations

In this section, we discuss various aspects of the implementations for the proposed methods,
including the optimization, the normalization of the predictive function, and the parameter
tuning.

4.1 Algorithm

In this section, we introduce the optimization procedure to estimate f∗ defined in (6).
Instead of the constrained problem (7), we solve the regularized problem:

min
f∈F

1

n

n∑
i=1

yi
p(ai|xi)

`(〈Wai ,f(xi)〉) + λJ(f), (10)

where λ is a tuning parameter. It is a weighted classification problem with weight wi =
yi/p(ai|xi).

In terms of the function class F , there are linear learning and kernel learning (Steinwart
et al., 2007; Hofmann et al., 2008; Hastie et al., 2009). Let f = (f1, . . . , fk−1)

T ∈ F , and for
simplicity, we add a constant term to x. Then for linear learning, we have fj(x) = xTβj ,

and the corresponding penalty J(f) =
∑k−1

j=1 ‖βj‖2 =
∑k−1

j=1 β
T
j βj . For kernel learning,

fj(x) =
∑n

i=1K(xi,x)αij + α0j , where K(·, ·) is a kernel function. The penalty term

becomes J(f) =
∑k−1

j=1 α
T
j Kαj +

∑k−1
j=1 α

2
0j , where K is the gram matrix. Note that we

include the intercept term into J(f) and a benefit by doing this is the reduction of the
complexity of the algorithm. Zhang et al. (2016) shows theoretically that it can achieve the
same convergence rate as the case without the intercept term.

We proposed the two-step method and the one-step method. The two-step method
is based on a differentiable loss `D, while the one-step method is based on a bent loss
`B(u) = `1(u) + `2(u), where `1 is convex and `2(u) = (c − 1)u+. Since `D is similar to
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a special case of `B with c = 1, here we only need to focus on the algorithm for the bent
loss `B. In the rest of this section, we use linear learning to demonstrate our algorithm and
have deferred the details about kernel learning to the supplementary materials.

We first consider the case when `1 is differentiable. In this case, we use the ADMM (Boyd
et al., 2011) algorithm to solve (10). The ADMM algorithm is used when the objective
function can be written as a sum of two convex functions, which, in our case, are `1 and `2.

We denote the coefficient matrix as Bp×(k−1) = [β1, . . . ,βk−1]. Then we create another
copy of the coefficients Gp×(k−1) = [γ1, . . . ,γk−1], and let Zp×(k−1) = [z1, . . . ,zk−1]. Recall
that wi = yi/p(ai|xi), then we minimize the augmented Lagrangian

Lρ(B,G,Z) =

n∑
i=1

wi`1(〈Wai , B
Txi〉) +

n∑
i=1

wi`2(〈Wai , G
Txi〉) +

nλ

2

k−1∑
j=1

βTj βj

+
k−1∑
j=1

zTj (βj − γj) +
ρ

2

k−1∑
j=1

(βj − γj)T (βj − γj),

where ρ > 0 controls the step size.

At step t, for each j = 1, . . . , k − 1 we can update Bt, Gt and Zt as

βtj = argmin
βj

Lρ([β
t
1, . . . ,βj , . . . ,β

t−1
k−1], G

t−1, Zt−1),

γtj = argmin
γj

Lρ(B
t, [γt1, . . . ,γj , . . . ,γ

t−1
k−1], Z

t−1),

ztj = zt−1j + ρ(βtj − γtj)

until matrix B converges. Note that in the two-step method where c = 1, we have `2(u) = 0.
In this case, we can force B = G and only update βtj ’s until they converge.

Next we consider the case when `1 is not differentiable. In the literature of classification,
a non-differentiable loss that has been commonly used is hinge loss. Note that in our case,
since we prefer smaller outcomes, we define the hinge loss as `1(u) = (1 + u)+ (see Figure
1). That is, we flip the traditional hinge loss with respect to the y-axis to make it an
increasing function. A typical approach to an optimization problem with the hinge loss
is to transform it into a quadratic programming (QP) problem in its duality (Fung and
Mangasarian, 2005; Hastie et al., 2009; Zhang et al., 2018b). Specifically, the dual problem
of (10) can be written as

min
αj ,γj

nλ

2

k−1∑
j=1

βTj βj −
n∑
i=1

αi

s.t. 0 ≤ αi ≤ wi, 0 ≤ γi ≤ wi, i = 1, . . . , n,

where βj = − 1
nλ

∑n
i=1(αi + (c− 1)γi)Wai,jxi, and Wai,j is the jth component of Wai . Note

that the weight wi = yi/p(ai|xi) serves as the upper bound of the box constraints. Because
the objective function is quadratic in αi and γi, it has explicit solution at each iteration.
Thus it converges very fast by using algorithms such as coordinate decent (Zhang et al.,
2018b).

13



Meng, Zhao, Fu, and Qiao

In practice, there may be numerical errors to the solution. Moreover, due to different
choices of the tuning parameter λ, the scale of the resulting angle margins may vary much
between different tuning trials. We propose the following normalization procedure for the
one-step A-ITR φBf (9) to boost the empirical performance. The idea is that instead of
recommending all treatments with angle margins greater than or equal to 0, we change
the threshold to a small number varying around 0. Such a threshold is a fixed constant
δ multiplied by a measure of the scale, chosen to be the magnitude of the smallest angle
margin. The normalized one-step A-ITR is then

φB
f̂

(x) = {j | 〈Wj , f̂(x)〉 ≥ δM(x)}, (11)

where δ is a tuning parameter around 0 and M(x) = |〈W(k), f̂(x)〉| is the magnitude of the

smallest angle margin (note that 〈W(k), f̂(x)〉 is negative).

4.2 Tuning Procedure

In this paper, the estimation procedure involves two tuning parameters. The first one is
the regularization parameter λ in (10) which appears in both the two-step and one-step
methods. The second one is the normalization parameter δ in (11) for the one-step method
only. We will tune these two parameters differently in two steps.

The first step is to tune λ. For each λ, the estimated solution is f̂ . Then we define the
corresponding single-treatment ITR as df̂ = argmaxj〈Wj , f̂〉 and calculate its empirical

average of the expected outcome (1), which is given by∑n
i=1

(
1

[
ai = df̂ (xi)

]
yi/p(ai|xi)

)
∑n

i=1

(
1

[
ai = df̂ (xi)

]
/p(ai|xi)

)
(Zhao et al., 2012; Zhang et al., 2018a). We choose the λ that yields the smallest empirical
risk for the resulting ITR, even if our ultimate goal is to obtain a set-valued A-ITR. This
can substantially simplify the tuning process. We found that other more complicated tuning
procedures have led to a similar performance.

For the one-step method, we need to continue to tune δ. For the same λ (same resulting
ITR), because different δ’s may lead to slightly different set-valued A-ITRs and recommen-
dations with different carnalities, we must actually compare the resulting A-ITRs to choose
the best δ, instead of using the ITR as a proxy. However, there are some difficulties in eval-
uating the performance of the estimated A-ITR. Compared to the conventional ITR, the
challenge here is that when the recommendation includes two or more treatment options,
there are multiple potential outcomes and it is difficult to quantify the “overall” benefit for
such a recommendation.

Although the proposed optimal A-ITR φ∗ defined in (5) is not a Bayes rule under any
loss function, we can consider a closely related loss function, whose risk function is given by

E
[

Y 1[A ∈ φ(X)]

p(A|X)(1 + (|φ(X)| − 1)c)

]
, (12)

where φ : X → 2A\∅ is a set-valued predictor and | · | denotes the cardinality of a set.
Compared to the expected outcome Ed(Y ) defined in (1), this quantity is a weighted outcome
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with weight 1/(1 + (|φ| − 1)c) under φ. If we force |φ| ≡ 1, it reduces to Ed(Y ). More
importantly, it can be shown that the minimizer of (12), denoted by φ+, is

φ+(x) = argmin
φ(x)∈2A

µφ(x), where µφ(x) ,
1

1 + (|φ(x)| − 1)c

∑
j∈φ(x)

µj(x).

Here µφ defines a new criterion that generalizes the expected outcomes under a set-valued
treatment recommendation φ. To see that, note that for φ(x) = {1}, µφ(x) = µ1(x),
while for φ(x) = {1, 2}, µφ(x) = (µ1(x) + µ2(x))/(1 + c), which is smaller than the simple
average (µ1(x) + µ2(x))/2 when c > 1. Suppose treatment 1 is better than treatment 2
(µ1(x) < µ2(x)). We can show that φ2(x) , {1, 2} is as good as φ1(x) , {1} under this new
criterion if and only if µ2(x)/µ1(x) ≤ c, which is exactly the near-optimal recommendation
set defined in (5).

Intuitively, φ+(x) is an optimal set of treatments selected to minimize the “average”
clinical outcome with a penalty on the cardinality of the recommendation set. Note that
when c = 1, φ+ is the same as the optimal ITR d∗. Moreover, when k = 2, φ+ is the same
as the optimal A-ITR φ∗, as shown above. When k ≥ 3, φ+ and φ∗ are different but are
nested within each other in the following way: if we let S∗t = {x ∈ X | |φ∗(x)| ≤ t} and
S+
t = {x ∈ X | |φ+(x)| ≤ t}, then we have S∗1 = S+

1 , and S∗t ⊆ S+
t for t = 2, . . . , k − 1.

Figure 3 demonstrates their relationship when k = 3.

Figure 3: Comparison between φ∗ and φ+ (left: φ∗ or φ+ with c = 1; middle: φ∗ with c = 1.2; right:
φ+ with c = 1.2). Any point in the plot represents (µ1, µ2, µ3) (suppose Y ∗(j) ∈ (0, 1))
with the recommendation illustrated by colors. Points in the red, green, and blue regions
contain only one treatment; the yellow region contains two treatments; and the purple
region includes all three treatments. S∗

1 = S+
1 (unions of red, blue and green regions),

and S∗
2 ⊆ S+

2 (all but the purple regions).

From Figure 3, we observe that the regions with only one treatment are the same
(S∗1 = S+

1 ), while the regions containing two or three treatments are slightly different. In
general, the boundaries between the size-1 decisions and their complements are the same
for the two rules φ+ and φ∗. They only differ in the boundaries between recommendations
with different cardinalities (for example, the boundary between size-2 decisions and size-3
decisions). Although φ∗ does not directly minimize the weighted outcome defined in (12),
the similarity between φ+ and φ∗ justifies the use of the weighted outcome (12) as a new
criterion for the tuning parameter selection. Specifically, we choose the δ value that can
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yield the smallest value of the following empirical counterpart of (12),∑n
i=1

(
1

[
ai ∈ φf̂ (xi)

]
yi/
[
p(ai|xi)(1 + (|φf̂ (xi)| − 1)c)

])
∑n

i=1

(
1

[
ai ∈ φf̂ (xi)

]
/
[
p(ai|xi)|φf̂ (xi)|

]) . (13)

In addition to the tuning parameter selection, we may also use this criterion to select
different methods for conducting A-ITRs. In the real data analysis, we will use this criterion
to select between the two proposed classification-based methods.

5. Simulation Studies

In this section, we study the numerical performance of the proposed methods.

5.1 Comparing Set-valued Recommendations

For two ITRs d1 and d2, we can compare them by evaluating the expected outcome defined
in (1). However, for two A-ITRs φ1 and φ2, it is difficult to quantify which one is better
due to the fact that a measure for the overall benefit is not well defined when multiple
treatments are recommended. Although in Section 4.2 we have proposed the weighted
expected outcome (12) for evaluating two A-ITRs, the optimal A-ITR φ+ under this new
criterion is still different from the desired near-optimal recommendation set φ∗. So in
the simulation studies, in addition to the empirical weighted outcome (13), we consider
another means to compare different A-ITRs, using the expected outcome of the best and
the worst treatments among the treatments that are recommended, averaged over a set
of observations. We conduct such an evaluation for different types of recommendations
separately to see how the A-ITR performs differently on them. Based on the size of the
true optimal A-ITR φ∗, we split the covariate space X into three regions corresponding to
three kinds of recommendations:

R1 = {only one treatment is suggested} = {x ∈ X | |φ∗(x)| = 1},
R2 = {more than one treatment but not all of them are suggested}

= {x ∈ X | 1 < |φ∗(x)| < k},
R3 = {all treatments are suggested} = {x ∈ X | |φ∗(x)| = k}.

Note that R1, R2 and R3 are disjoint and X = R1∪R2∪R3. When c = 1, φ∗ is the optimal
ITR d∗ and X = R1. When c > 1, we may have non-empty regions R2 and R3.

For two A-ITRs φ1 and φ2, we will compare them separately on R1, R2 and R3. In
each region, since multiple treatments may be suggested, we can compare the expected
minimal outcome and the expected maximal outcome that they may lead to. Recall Y ∗(j)
is the potential outcome by taking treatment j. Mathematically, we consider a performance
interval, (

E
[
E
(

min
j∈φ(X)

Y ∗(j)
∣∣∣X)] ,E [E( max

j∈φ(X)
Y ∗(j)

∣∣∣X)]) ,
where the first quantity indicates the expected outcome if one can always use the best
treatment within the recommended set φ(x) and the second quantity represents the worst
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situation, i.e., how bad it can be if one always chooses the worst treatment among the
recommended options. Note that on R1, the two quantities are the same under φ∗ since
only one treatment is recommended. As we increase c, we expect that this interval becomes
wider on R2 and R3 since the diversity of the recommended options increases. From the
definition of this interval, we claim that φ1 is better than φ2 if both the lower and the upper
limits of this interval under φ1 are smaller than their counterparts under φ2, on each region.

5.2 Results

We consider three simulation examples. For each example, we let X be uniformly sampled
from X = [0, 1]5 and X = [0, 1]10 respectively. For simplicity, we assume A ⊥ X and
p(A|X) = 1/k, and let Y = µA(X)+ε where ε ∼ N(0, 1/2). In each case, we let the training
sample size to be n = 500, 1000, 2000, and use a test set with sample size 1000 to evaluate
the performance. We compare three methods, namely, the regression-based method, the
two-step classification-based method with squared loss, and the one-step classification-based
method with the bent hinge loss. For each method, we output both ITR and A-ITR with
c = 1.2. Finally, we repeat each simulation 100 times and report the averages.

Example 1: This is an example with three treatments, where two conditional mean
outcome functions are polynomial and the other is linear. Specifically, we have µ1(X) =
1 + 3X2

1 + 3X2
2 , µ2(X) = 3− 0.5X2

1 + 0.5X2
2 , and µ3(X) = 3 +X1 +X2. The upper panel

in Figure 4 shows the true boundaries for the three treatments. We use polynomial kernel
for both the two-step and one-step methods. The tuning parameter λ is chosen from 5−6

to 52.

Example 2: This is an example with four treatments, where all the conditional mean
outcome functions are non-linear, µA(X) = 2 + sign(A − 2.5) cos

(
0.5π(X1 + (−1)AX2)

)
.

Specifically, treatment 2 and 4 are dominated by treatments 1 and 3 and the optimal ITR
should only output either 1 or 3. However, in certain regions treatment 2 and 4 still produce
fairly good outcomes which can only be captured by A-ITR. The lower panel in Figure 4
shows the true boundaries. For the two-step method, we report the results using Gaussian
kernel. For the one-step method, we report the results with polynomial kernel. The tuning
parameter λ is chosen from 5−9 to 5−1.

Example 3: This is an example where Assumption 8 is violated. Specifically, µ1(X) =
max(2.5, 2.3 +X2

1 +X2
2 ), µ2(X) = 2.7− 2 ∗X1 + exp(X2

3 )−X3
4 , and µ3(X) = min(3, 3.2−

X2
1 −X2

2 ). Note that when c = 1.2, p(µ3(X) = cµ1(X)) > 0 so Assumption 8 is violated.
Similar to Example 1, we report the results using polynomial kernel for both the two-step
and one-step methods. The tuning parameter λ is chosen from 5−7 to 1.

Table 1 collects the results of the three examples with n = 1000 with dimension p = 5
and 10. The results with n = 500 and 2000 are provided in the supplementary material.
In Table 1, the results of A-ITR are in the form of intervals while the results of ITR are
single numbers. We also compute the empirical weighted outcome (“All” column in Table
1) defined in (13) as an indicator for the overall performance for each method.

We note that the performance intervals for A-ITR always cover the expected outcomes
of the single-valued ITR. This implies that by applying our proposed A-ITR framework,
patients will potentially get a much better outcome as long as they are willing to consider
other equally effective options identified by the A-ITR. Even if the patient does not choose
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the best option within the recommendation set, the worst case is not too bad and the ratio
of its outcome to that of the best option is about c if the A-ITR is accurately estimated.
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Figure 4: The true ITR and A-ITR for observations in Examples 1 and 2 with recommendation
types shown in colors. The orange, blue and green dots indicate that only one single
treatment is suggested, which by definition is R1, while the yellow triangles indicate
R2, and the black squares indicate R3. The upper panel is Example 1, the lower panel
Example 2. The left panel is ITR, and the right panel is A-ITR (c = 1.2).

We compare different methods by inspecting the length and location of the A-ITR
performance interval. Recall that the A-ITR with the shortest interval, the smallest lower
limit, and the smallest upper limit on each region is the best A-ITR. However, since R3

is the region where all treatments are near the optimality, different recommendations are
expected to perform similarly. Hence we focus on regions R1 and R2 for the purpose of
comparison.
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From Table 1, we note that the regression-based A-ITR, though has the smallest lower
limit in some cases, also has a longer interval in most cases, suggesting that the treatment
could either go really well or really badly. This implies that the regression-based A-ITR
method tends to include ineffective treatments into the near-optimal set. Part of the reason
may be that the regression-based method has not accurately estimated each of the three or
four potential outcome functions.

Example 1
p = 5 p = 10

R1(70.02%) R2(24.71%) R3(5.27%) All R1(70.02%) R2(24.71%) R3(5.27%) All

Reg.
ITR 2.49 2.55 2.61 2.51 2.49 2.55 2.61 2.51
A-ITR (1.99, 3.07) (2.42, 3.00) (2.47, 2.95) 2.37 (2.03, 3.00) (2.42, 2.97) (2.48, 2.94) 2.37

2-step
ITR 2.34 2.70 2.69 2.45 2.74 2.86 2.71 2.77
A-ITR (2.17, 2.66) (2.58, 2.87) (2.6, 2.79) 2.41 (2.47, 3.11) (2.69, 3.07) (2.64, 2.79) 2.69

1-step
ITR 2.15 2.62 2.68 2.30 2.43 2.72 2.70 2.51
A-ITR (2.04, 2.36) (2.53, 2.73) (2.61, 2.75) 2.26 (2.21, 2.74) (2.6, 2.88) (2.62, 2.78) 2.45

Bayes
ITR 1.92 2.44 2.55 2.08
A-ITR 1.92 (2.38, 2.75) (2.45, 2.99) 2.05

Example 2
p = 5 p = 10

R1(56.78%) R2(41.84%) R3(1.38%) All R1(56.78%) R2(41.84%) R3(1.38%) All

Reg.
ITR 1.56 1.61 1.93 1.59 1.57 1.62 1.94 1.59
A-ITR (1.15, 1.99) (1.24, 2.02) (1.80, 2.07) 1.46 (1.19, 1.95) (1.27, 1.98) (1.81, 2.08) 1.47

2-step
ITR 1.29 1.32 1.93 1.32 1.47 1.45 1.95 1.47
A-ITR (1.18, 1.52) (1.23, 1.50) (1.85, 2.04) 1.30 (1.29, 1.79) (1.31, 1.75) (1.86, 2.06) 1.46

1-step
ITR 1.29 1.32 1.93 1.31 1.42 1.42 1.95 1.43
A-ITR (1.18, 1.48) (1.24, 1.44) (1.85, 2.00) 1.28 (1.25, 1.67) (1.29, 1.62) (1.86, 2.03) 1.39

Bayes
ITR 1.13 1.25 1.87 1.19
A-ITR 1.13 (1.15, 1.45) (1.71, 2.28) 1.16

Example 3
p = 5 p = 10

R1(38.63%) R2(54.13%) R3(7.24%) All R1(38.63%) R2(54.13%) R3(7.24%) All

Reg.
ITR 2.17 2.74 2.78 2.52 2.17 2.75 2.76 2.53
A-ITR (2.12, 2.92) (2.54, 2.89) (2.58, 2.92) 2.46 (2.12, 2.87) (2.57, 2.89) (2.59, 2.91) 2.47

2-step
ITR 2.37 2.72 2.75 2.59 2.70 2.87 2.76 2.80
A-ITR (2.21, 2.87) (2.53, 3.12) (2.55, 2.95) 2.51 (2.42, 3.23) (2.66, 3.24) (2.62, 2.90) 2.71

1-step
ITR 2.31 2.67 2.73 2.54 2.46 2.74 2.74 2.63
A-ITR (2.18, 2.67) (2.54, 2.84) (2.62, 2.83) 2.45 (2.24, 2.93) (2.58, 2.95) (2.64, 2.86) 2.54

Bayes
ITR 2.11 2.51 2.60 2.36
A-ITR 2.11 (2.46, 2.88) (2.50, 3.04) 2.30

Table 1: Results of the simulation studies with n = 1000. In each region, the expected outcome for
ITR and the outcome interval for A-ITR (c = 1.2) are reported. The empirical weighted
outcome defined in (13) is shown in the “All” column. Each number is averaged over 100
replications. In each case, the best performing method is marked in bold.

For the classification-based A-ITRs, the lower limits are roughly the same between the
one-step method and the two-step method; however, the one-step method has shorter inter-
vals in most cases. This means that the one-step method is better at excluding ineffective
treatment options from the recommendation than the two-step method. This is true even
when Assumption 8 is violated (Example 3). In addition, the one-step method also has the
smallest expected weighted outcome (shown in the “All” column). However, the perfor-
mance of both the one-step method and the two-step method becomes worse as the sample
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size decreases (see supplementary material), or the number of covariates increases. This may
be due to the inefficiency of using the inverse probability weighting in the OWL framework.

6. Real Data Analysis

In this section, we apply our proposed A-ITR framework to a Type 2 diabetes mellitus
(T2DM) observational study. The data set contains 1139 patients. Every patient was
assigned one out of four diabetes treatments, which are GLP-1 receptor agonists alone,
long-acting insulin alone, intermediate-acting insulin alone, and insulin regimens including
short-acting insulin. The endpoint is the change of hemoglobin A1c level before and after
the treatment, which is denoted by ∆HbA1c. In practice, if the treatment works, this
value is usually negative (meaning that the hemoglobin A1c level decreases). The smaller
∆HbA1c is, the more effective the treatment is.

We first preprocess the original data set. Among the 19 covariates, we exclude those
with a large proportion of missing values and with extremely imbalanced categories. We
then impute the rest of them using the predictive mean matching method (Van Buuren,
2018). There are 10 covariates left after the preprocessing: gender, diabetic retinopathy,
diabetic neuropathy, age, weight, body mass index (BMI), baseline hemoglobin A1c level,
baseline high-density lipoprotein cholesterol (HDL), baseline low-density lipoprotein choles-
terol (LDL), and heart disease.

ITR A-ITR

Regression
1.071 0.988

(0.010) (0.006)

Two-step: Linear
0.995 0.975

(0.007) (0.006)

Two-step: Gaussian
0.959 0.947

(0.006) (0.005)

One-step: Linear
1.150 1.033

(0.008) (0.006)

One-step: Gaussian
0.939 0.935
(0.006) (0.007)

Table 2: The mean 5-fold cross validated weighted outcome and its standard error (in the paren-
thesis) over 100 replications for T2DM data. The method that yields the best result is
marked in bold.

For the outcome variable ∆HbA1c, we can reduce its variability by subtracting an
estimate of its conditional mean E(∆HbA1c|x) to make the estimation of f̂ more robust (Liu
et al., 2018; Zhou et al., 2017). Here we use the ordinary least square regression to estimate
E(∆HbA1c|x). Denote the estimated mean function fitted by regression as m̂(x), we then
observe that ∆HbA1c − m̂(x) can be positive or negative. We perform an exponential
transformation to make it positive, which also justifies the use of ratio µj/µ(1) to determine
the near-optimal recommendation set. Specifically, we let Y = exp ((∆HbA1c− m̂(x))/5).
If we further assume conditional normality for ∆HbA1c given X and treatment j, with
mean νj(x) ≡ E(∆HbA1c | X = x, A = j) and equal variance across treatments, then
Y | (x, j) follows a log-normal distribution with mean proportional to exp(νj(x)/5). Then
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the optimal A-ITR is,

φ∗(x) =

{
j | µj(x)

µ(1)(x)
=

E (Y |X = x, A = j)

mini E (Y |X = x, A = i)
=

exp(νj(x)/5)

exp(ν(1)(x)/5)
≤ c
}

= {j | νj(x)− ν(1)(x) ≤ 5 log c}.

In this study, we choose the near-optimality constant c = 1.2, so that 5 log c ≈ 0.9. This
implies that the near-optimal recommendation set is constructed by including all treatments
with conditional means ∆HbA1c within 0.9 of the optimal treatment.

We compare the performance of the regression-based method, the two-step method, and
the one-step method. For both classification-based methods, we estimate the propensity
score p(A|X) using logistic regression. Each method leads to a single-valued ITR and a
set-valued A-ITR. In Table 2, we compare the different recommendations using the 5-fold
cross-validated empirical weighted outcome defined in (13).

−2 0 2 4

−
4

−
3

−
2

−
1

0
1

2
3

PC1

P
C

2

●

●

●
●

●●

●

●● ●
●

●

●

●●
●

●●

●

●

●

●

●

●●

●

●

●
●

●

● ●●

●

●

●
●

●●

●
●●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●
●

●

●●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●
●
●

Treatment

GLP−1
long
intermediate
short

20 30 40 50

30
40

50
60

70
80

90

BMI

A
ge

● ●

●

●●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

● ●

●

● ●
● ●●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

Treatment

GLP−1
long
intermediate
short

Figure 5: Predicted treatment(s) for patients with recommendations given by different colors. The
data set is projected on the first two principal components (left panel), and two particular
covariates, age and BMI (right panel). Concentric circles indicate multiple treatments
recommended to the same patient.

From Table 2, we observe that the one-step method with Gaussian kernel has the best
weighted outcome. To illustrate the resultant A-ITR, we split the data into a training
set (70%) and a test set (30%). We fit the training set using the one-step method with
Gaussian kernel and then construct the recommendation set for patients in the test set.
In our analysis, no patient is recommended to take the intermediate-acting insulin and
the majority of patients are recommended to choose between the short-acting insulin and
GLP-1. Specifically, 55% of patients are recommended the short-acting insulin only, 8% are
recommended GLP-1 only, and 24% are recommended to take either one of the two. For
the remaining 13% of patients, they are all recommended to take the long-acting insulin,
including 1% who are suggested to take either the long-acting insulin or GLP-1, 5% who are

21



Meng, Zhao, Fu, and Qiao

suggested to take either the long-acting insulin or the short-acting insulin, and 7% whose
only option is the long-acting insulin. We visualize the predicted treatments in Figure 5.

From Figure 5, we can see that age and BMI are two useful biomarkers in constructing
the near-optimal recommendation set. In fact, by comparing the left panel and the right
panel of Figure 5, we observe that BMI behaves like the first principal component (PC1)
while age behaves like the second principal component (PC2). Figure 5 suggests that for
patients without obesity (BMI less than 30), younger patients should take the long-acting
insulin while older patients should take GLP-1. The short-acting insulin, on the other hand,
serves as an “universal” treatment that many patients can take as an alternative, and is
especially effective for overweighted patients.

7. Statistical Learning Theory

In this section, we study the convergence rate of the excess `-risk in both linear learning
and kernel learning settings. We assume the random vector Z = (X, A, Y ) follows a certain
distribution P that satisfies Assumption 1. Furthermore, we make an additional assumption.

Assumption 10 There is a constant C > 0 such that |Y/p(A|X)| ≤ C holds. For simplic-
ity, we set C = 1 through out this section.

For f and f ′, two (k − 1)-dimensional functions, and `, an increasing, convex and
Lipchitz loss function, denote

e`(f ,f
′) = E

[
Y

p(A|X)
`(〈WA,f〉)

]
− E

[
Y

p(A|X)
`(〈WA,f

′〉)
]
.

We call e`(f ,f
∗) the excess `-risk of f if f∗ is optimal within a certain function space F .

7.1 Linear Learning

We first consider the linear function space, that is, we assume f = (f1, . . . , fk−1)
T with

fj(x) = xTβj for j = 1, . . . , k − 1. For simplicity, we assume each covariate is bounded by
[0, 1].

Assumption 11 X ∈ X = [0, 1]p.

Now consider the following function space,

F(p, s) = {f = (f1, . . . , fk−1)
T ; fj(x) = xTβj , j = 1, . . . , k − 1, J(f) ≤ s},

where J(f) =
∑k−1

j=1 ‖βj‖22 =
∑k−1

j=1

∑p
l=1 β

2
lj . Let F(p) = ∪0≤s<∞F(p, s). Define

f (p) = argmin
f∈F(p)

E
[

Y

p(A|X)
`(〈WA,f(X)〉)

]
,

f (p,s) = argmin
f∈F(p,s)

E
[

Y

p(A|X)
`(〈WA,f(X)〉)

]
, and

f̂ = argmin
f∈F(p,s)

1

n

n∑
i=1

yi
p(ai|xi)

`(〈Wai ,f(xi)〉).
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Theorem 12 gives the convergence rate for the excess `-risk e`(f̂ ,f
(p)), where p = pn, s = sn

can grow with n as n→∞.

Theorem 12 Let τn = (n−1 log pn)1/2 → 0 as n → ∞. For linear learning, suppose
Assumptions 1, 8, 10, and 11 hold. We have

e`(f̂ ,f
(pn)) = O

(
max(c(pnsn)1/2τn log τ−1n , δn)

)
,

almost surely under P , where δn = e`(f
(pn,sn),f (pn)).

In Theorem 12, δn stands for the approximation error between the optimal f in F(pn, sn)
and the optimal f in F(pn). So if sn → ∞, δn converges to 0. On the other hand, the
first term O

(
c(pnsn)1/2τn log τ−1n

)
is the estimation error between f̂ and f (pn,sn), and as

we increase sn, it becomes larger. The optimal tuning parameter sn is then chosen such
that c(pnsn)1/2τn log τ−1n ∼ δn.

In Theorem 12 we may allow sn → ∞ with an appropriately chosen rate. The reason
is that when we include diverging number of covariates, i.e., p → ∞, f (p) can become
more complicated, and thus we need a larger sn to accommodate this change. However, in
practice it may not be necessary since the true model usually depends on a finite number of
covariates. So we could simplify Theorem 12 if we make the assumption that there is a finite

s∗ such that f (p) ∈ F(p, s∗) for all p. For example, suppose f∗j (x) = f
(p)
j (x) =

∑m
l=1 xlβ

∗
lj

for j = 1, . . . , k − 1 and all p = m, . . . ,∞. Then we can choose s∗ =
∑k−1

j=1

∑m
l=1 |β∗lj |2.

Corollary 13 Suppose f∗ defined in (6) only depends on finite many covariates, and that
Assumptions 1, 8, 10, and 11 hold. We have

e`(f̂ ,f
∗) = O

(
cp1/2n τn log τ−1n

)
= O

(
c(n−1pn log pn)1/2 log(n(log pn)−1)

)
,

almost surely under P .

The convergence of excess `-risk e`(f̂ ,f
∗) in Corollary 13 requires that pn = o(n).

Particularly, when pn grows no faster than n1−r, where 0 < r < 1, it can be verified that
the error rate is at an order of no greater than n−r/2(log n)3/2. This result is consistent
with most of the classical asymptotic theory that the dimension of covariates should not be
greater than the number of observations. Furthermore, we observe that if pn = O(1), then
e`(f̂ ,f

∗) = O(n−1/2 log n), which is almost O(n−1/2).

7.2 Kernel Learning

Next we discuss the convergence rate of excess `-risk for kernel learning. We denote f =
(f1, . . . , fk−1)

T to be a function in a reproducing kernel Hilbert space (RKHS) H with kernel
function K(·, ·). Then by the RKHS theory, we can write fj(x) =

∑n
i=1K(xi,x)αij + α0j

for j = 1, . . . , k − 1. To develop the theory for the proposed methods, we still need one
more assumption.

Assumption 14 Suppose H is a separable RKHS equipped with kernel function K(·, ·).
There exists a positive number B, such that K(x,x′) ≤ B for any x, x′ ∈ X .
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Assumption 14 states that the RKHS is separable and the kernel function is bounded.
This is true for many commonly used kernel functions. For example, for the Gaussian
kernel, we may take B = 1. We define the function space as

F(n, s) = {f = (f1, . . . , fk−1)
T | fj(x) =

n∑
i=1

K(xi,x)αij + α0j , j = 1, . . . , k − 1, J(f) ≤ s},

where J(f) =
∑k−1

j=1 α
T
j Kαj+

∑k−1
j=1 α

2
0j and K is the gram matrix. Recall we have included

intercepts in the penalty for simplicity. Let F(∞) = limn→∞ ∪0≤s<∞F(n, s), and define

f (∞) = argmin
f∈F(∞)

E
[

Y

p(A|X)
`(〈WA,f(X)〉)

]
,

f (n,s) = argmin
f∈F(n,s)

E
[

Y

p(A|X)
`(〈WA,f(X)〉)

]
, and

f̂ = argmin
f∈F(n,s)

1

n

n∑
i=1

yi
p(ai|xi)

`(〈Wai ,f(xi)〉),

The following theorem gives the convergence rate of e`(f̂ ,f
(∞)) when s = sn grows with n.

Theorem 15 For RKHS learning, suppose Assumptions 1, 8, 10, and 14 hold. We have

e`(f̂ ,f
(∞)) = O

(
max(cB(sn/n)1/2 log n, δn)

)
,

almost surely under P , where δn = e`(f
(n,sn),f (∞)).

Similar to the linear case, there is a trade-off between the approximation error δn and
the estimation error O(cB(sn/n)1/2 log n) in Theorem 15, and the optimal tuning parameter
sn is determined roughly when cB(sn/n)1/2 log n ∼ δn.

Compared to Theorem 12, the excess `-risk for RKHS learning seems to yield a faster
rate. However, this is not always truly the case due to Assumption 14, which requires
a bounded kernel function, and implies a restriction on the number of covariates p. For
example, for linear kernel we have K(x,x′) = xTx′ ≤ p under Assumption 11. For As-
sumption 14 to be true, we have to let p = O(1). In this case both convergence rates are
e`(f̂ ,f

(p)) = O((sn/n)1/2 log n); that of the kernel learning is no faster than that of the
linear learning. In general, to obtain a faster rate than that of the linear learning, we need
a kernel function that does not increase in p, such as the Gaussian kernel.

Note that the approximation error δn converges to 0 as n increases, and both the con-
vergence rate of δn and that of the resulting e`(f̂ ,f

∗) depend on the choice of the ker-
nel. To illustrate the magnitude of δn and its impact on the excess risk, consider a bi-
nary example where X ∼ Unif(0, 1) and f∗(x) = (1 + x)2. With the polynomial kernel
of degree 2 we have f (∞) = f∗ and B = maxx,x′(1 + xx′)2 = 2. Given a training set

{x1, . . . , xn}, let x(n) be the largest order statistic and define f(n)(x) =
(
1 + xx(n)

)2
. It can

be shown that for any sn ≥ 1, f(n) ⊆ F(n, sn) thus δn = e`(f
(n,sn), f (∞)) ≤ e`(f(n), f (∞)) ≤

cE‖f(n) − f (∞)‖2. Note that the difference between f(n) and f (∞) is maximized at 1, so
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δn ≤ cE|f(n)(1)− f (∞)(1)| = cE
(

3− 2x(n) − x2(n)
)

. Because the density function of x(n) is

nxn−11(0,1), we have δn ≤ c
∫ 1
0 (3 − 2x − x2)nxn−1dx = 2c(2n+3)

(n+1)(n+2) . Hence in this example,

the order of δn is at most O(n−1), thus e`(f̂ , f
∗) = e`(f̂ , f

(∞)) = O(n−1/2 log n).

8. Conclusion and Discussions

In this work, we propose a new individualized treatment recommendation framework, named
A-ITR, that has the capacity to recommend to patients near-optimal treatment options in
terms of their clinical outcomes. By adopting the A-ITR, patients have the opportunity to
choose the treatment options tailored for their different financial situations, personal prefer-
ences, and lifestyle choices. To estimate the optimal A-ITR, we proposed two classification-
based methods based on the OWL framework. We also provide a new evaluation criterion
suitable for A-ITRs, namely the weighted expected outcome, defined in (12). The sim-
ulation study shows the usefulness of this new criterion in parameter tuning and model
selection.

The proposed methods may be subject to misuse when caution is not exercised with
regard to the choice of the near-optimality constant c. Typically, c is chosen based on the
physicians’ experience on what defines near optimality for a particular outcome. When
possible, the choice could be made more objective by using a measure of the variability of
the outcomes for the top treatments. Lastly, recommendations from a variety of c values
could be presented to the patients for a final selection, as long as any possible sacrifice of
the outcome can be clearly explained to the patients.

There are several possible directions for future works. Firstly, the current A-ITR estima-
tion is based on the OWL framework, which may be sensitive to the estimated propensity
score. In particular, the OWL estimator is known to suffer a large variance in practice
(Zhou et al., 2017). To address this issue, one may consider applying the recently proposed
augmented OWL framework (Zhao et al., 2019; Huang et al., 2019) to improve the finite
sample performance. These methods typically have a double robustness property so that
the efficiency of the estimator can be further improved. Secondly, when applying the A-ITR
framework in practice, it may be desirable to adjust c for different needs or preferences. A
natural generalization of the method is to incorporate the patients’ preferences on multiple
outcomes into the framework. For example, we can consider A-ITRs with an additional
competing outcome as a secondary endpoint (Laber et al., 2014), or A-ITR with additional
safety endpoints formulated as constraints (Wang et al., 2018). Thirdly, besides the kernel
method, we can consider other learning algorithms to estimate f̂ within the A-ITR frame-
work. Finally, the current method assumes the outcome Y is continuous. We can consider
nontrivial extensions to other types of outcome such as count outcomes, survival outcomes
(Zhao et al., 2014; Qi et al., 2019) or dichotomous outcomes (Qi et al., 2019; Klausch et al.,
2018).
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