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Abstract

Quantile regression is an indispensable tool for statistical learning. Traditional quantile
regression methods consider vector-valued covariates and estimate the corresponding co-
efficient vector. Many modern applications involve data with a tensor structure. In this
paper, we propose a quantile regression model which takes tensors as covariates, and present
an estimation approach based on Tucker decomposition. It effectively reduces the num-
ber of parameters, leading to efficient estimation and feasible computation. We also use
a sparse Tucker decomposition, which is a popular approach in the literature, to further
reduce the number of parameters when the dimension of the tensor is large. We propose
an alternating update algorithm combined with alternating direction method of multipliers
(ADMM). The asymptotic properties of the estimators are established under suitable con-
ditions. The numerical performances are demonstrated via simulations and an application
to a crowd density estimation problem.

Keywords: Multidimensional array, Quantile regression, Sparsity principle, Tensor re-
gression, Tucker decomposition

1. Introduction

Quantile regression (Koenker and Bassett, 1978) provides a useful approach to analyse the
heterogeneous impact of regressors on different parts of the conditional distribution of the
response, exhibits robustness to outliers, comes with well-developed computational algo-
rithms, and thus is widely used in applications (Koenker, 2005). There is a large literature
on the computational aspects and the asymptotic theories of quantile regression in both
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low-dimensional and high-dimensional settings, see, for example, Koenker (2005); Belloni
and Chernozhukov (2011); Yu et al. (2017); Yi and Huang (2017). Most of the existing
works focused on scenarios in which the covariates and parameters of interest are vectors.
However, in fields like image/video analysis or recommendation systems (Zhou et al., 2018;
Rendle and Schmidt-Thieme, 2010; Liu et al., 2013), data often take the form of multidimen-
sional arrays, also known as tensors. For example, in the real data application part, we take
a 136× 186× 3 tensor extracted from surveillance video image in crowd dataset PETS2009
(Ferryman and Shahrokni, 2009) as the covariate. Using it as the predictor in a regression,
the number of parameters is 136×186×3 = 75888. Moreover, vectorizing procedure, which
destroys the spatial structure of an image, would result in a loss of information.

In statistical models involving tensors, different types of tensor decomposition techniques
are almost always used to treat tensor variables with a reduced number of parameters (Kolda
and Bader, 2009; Chi and Kolda, 2012; Liu et al., 2012; Anandkumar et al., 2014a,b; Sun
et al., 2017). Tensor methods can also be applied to deep learning models, aiming to reduce
the number of parameters by imposing low-dimensional structures on tensors. For example,
by applying tensor decomposition to neural network layers, it can be used for network model
compression (Novikov et al., 2015; Kolbeinsson et al., 2019). Castellana and Bacciu (2020)
used tensor methods in constructing the aggregation functions in LSTM (long short-term
memory). Su et al. (2020) proposed a convolutional tensor-train LSTM for spatio-temporal
learning. In some other works, converting input vectors in traditional machine learning and
statistical models to tensors leads to new tensor-based methods, such as tensor clustering
(Sun and Li, 2019) and vector autoregressive time series (Wang et al., 2019).

Coming to the regression problems, there have been a sequence of developments con-
cerning mean regression with tensor predictors, tensor responses and/or tensor parameters.
Several papers have studied regression with tensor response, see for example Rabusseau and
Kadri (2016); Li and Zhang (2017); Sun and Li (2017). For scalar on tensor regression, there
are considerably more works, some dealing with high-dimensional cases, based on different
decomposition methods. Guo et al. (2012) proposed tensor ridge regression and support
tensor regression based on CANDECOMP/PARAFAC (CP) decomposition. Zhou et al.
(2013) proposed an estimation procedure for general linear tensor regression model which
also used CP decomposition and studied its asymptotic properties. Li et al. (2018) applied
a more flexible decomposition, called Tucker decomposition (Kolda and Bader, 2009), to
the same regression model as Zhou et al. (2013). Tucker decomposition decomposes the
coefficient tensor into a core tensor multiplied by a factor matrix along each mode. It in-
cludes CP as a special case where the core tensor is diagonal and the ranks in different
modes are equal. As pointed out in Li et al. (2018), it has advantages in accommodating
tensors with skewed dimensions and allows explicit modelling of interactions compared to
CP decomposition. Apart from CP and Tucker decomposition, Liu et al. (2020) applied
Tensor-Train (TT) decomposition (Oseledets, 2011) to a tensor on tensor regression model.
TT decomposition was chosen because it has advantages in high order tensors. Alternative
to using tensor decompositions which typically results in non-convex optimization prob-
lems, Raskutti et al. (2019) considered convex regularization techniques to exploit low-rank
and sparse properties in tensor regression. Tensor regression can also be incorporated as
trainable layers in deep neural networks (Cao and Rabusseau, 2017; Kossaifi et al., 2020).
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While all the literature mentioned above tackle mean regression, quantile regression
with tensor covariates is rarely studied. Since quantile regression has advantages over mean
regression when there are outliers or the distribution of response is skewed, and it can be used
to build prediction intervals, many classical machine learning tools have been generalized
to conditional quantiles, for example neural networks and random forests (Taylor, 2000;
Meinshausen, 2006). Our goal is to fill the void in quantile tensor regression and provide
estimation methods for this problem.

In this paper, we propose methodologies to estimate the tensor coefficient in quantile
regression. We assume the regression coefficient tensor has a low-rank structure, adopting
Tucker decomposition to reduce the dimensionality to a manageable level, resulting in a par-
simonious model. Moreover, we develop an alternating update algorithm for the proposed
estimator and establish its asymptotic normality under some conditions.

Furthermore, we introduce a sparse Tucker decomposition for the coefficient tensor.
Sparsity assumption is commonly used in high-dimensional statistical problems. When the
dimensions are large, it is reasonable to incorporate sparsity to further reduce the number
of parameters. For instance, Raskutti et al. (2019) discussed several scenarios in which
sparsity occurs at entry-wise, fiber-wise or slice-wise level of a tensor, and presented a
general convex regularized optimization approach. Here we assume there exists a Tucker
decomposition such that the factor matrices are sparse orthogonal matrices. We induce
sparsity by penalizing the Kronecker product of factor matrices using `1 penalty. For
the sparse tensor quantile regression, we use alternating update combined with ADMM
algorithm to deal with the `1 penalty and orthogonality constraints, and derive an upper
bound of statistical estimation error.

Although conceptually straightforward, we make some important contributions which
are summarized below.

• We extend the use of Tucker decomposition to quantile regression, which is an impor-
tant tool in statistical analysis as demonstrated in the large literature.

• We establish the rates of convergence of both non-sparse and sparse quantile tensor
regression estimator. Development of theoretical results for quantile regression using
tensor decomposition is challenging, especially in high dimensions. Our proof indeed
shows that it contains a lot more technical details compared to, say, quantile linear
regression using lasso, or various least squares regression models.

• Computationally, for the case with sparse penalty, we propose an ADMM based al-
gorithm, which is not needed in Li et al. (2018). Compared with prior works which
applied ADMM to tensor decomposition (Zhang et al., 2014; Xie et al., 2018; Huang
et al., 2016; Smith et al., 2017) and tensor regression (Wang et al., 2019), our algo-
rithm is more complex due to the simultaneous use of quantile loss, sparsity penalty,
and the orthogonality constraint, which requires introducing more auxiliary variables.

The rest of the paper is organized as follows. In Section 2, we introduce the tensor
quantile regression model based on Tucker decomposition, and present the estimation and
implementation details for both nonsparse and sparse scenarios. Section 3 establishes the
theoretical properties. In Section 4, we investigate the finite sample properties via simula-
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tion studies, and Section 5 presents an application of the proposed method in crowd density
estimation problem.

2. Models and estimation

2.1 Preliminaries

Tensors, or multidimensional arrays, are the fundamental constructs in our study. We start
with a brief introduction to tensors and their decomposition. We refer readers to Kolda
and Bader (2009) for a more detailed review.

Throughout this paper, we denote tensors by boldface script capital letters such as X ,Y ,
matrices by boldface capital letters X,Y , and vectors by small boldface letters x,y. For a
vector x, let ‖x‖1, ‖x‖ and ‖x‖∞ denote its `1, `2 and `∞ norms. For a matrixX, its Frobe-
nius norm, spectral norm, vectorization and jth largest singular value are denoted by ‖X‖F ,
‖X‖op, vec(X) and σj(X), respectively. The `1 norm ofX is ‖X‖1 = ‖vec(X)‖1. The Kro-
necker product of two matricesX and Y is denoted byX⊗Y . For a tensor X ∈ Rp1×···×pK ,

its Frobenius norm and inner product are ‖X‖F =
√∑p1

i1=1

∑p2
i2=1 · · ·

∑pK
iK=1 x

2
i1i2...ik

and

〈X ,Y〉 =
∑p1

i1=1

∑p2
i2=1 · · ·

∑pK
iK=1 xi1i2...ikyi1i2...ik , respectively.

The order of a tensor is the number of dimensions, a.k.a modes— a multidimensional
array A ∈ Rp1×...,pK is called a Kth-order tensor. The matricization of a tensor links
the concepts and properties of matrices to tensors. Mode-k matricization of a tensor A ∈
Rp1×···×pK , denoted by A(k), arranges the mode-k fibers (all pk-dimensional vectors obtained
by fixing all indices of the tensor A except for the k-th index) to be the columns of the
resulting matrix. For example, the mode-1 matricization of A ∈ Rp1×p2×p3 is the p1×(p2p3)
matrix A(1) such that

{A(1)}i,(j−1)p3+k = Aijk, ∀1 ≤ i ≤ p1, 1 ≤ j ≤ p2, 1 ≤ k ≤ p3.

Then, we can define the vectorization of A by vec(A) = vec(A(1)). Tensors can be multi-
plied by matrices. The mode-k multiplication of tensor A ∈ Rp1×p2×···×pK with a matrix
U ∈ Rrk×pk is defined as

(
A×k U

)
i1···ik−1jik+1···iK

=

pk∑
ik=1

Ai1i2···iKUjik .

The definition of rank for a tensor A ∈ Rp1×...,pK is not universal and many definitions of
rank have been proposed in the literature. In this paper, we consider the multilinear ranks
(r1, r2, . . . , rK), where rk is the dimension of vector space spanned by the mode-k fibers.
This rank is related to Tucker decomposition. For a given tensor A of rank (r1, r2, . . . , rK),
there exists a Tucker decomposition

A = G ×1 U1 ×2 U2 · · · ×K UK ,

where Uk ∈ Rpk×rk , k = 1, . . . ,K are factor matrices which can be assumed to be orthogonal
if so desired, and G ∈ Rr1×···×rK is the core tensor, whose entries are related to the level of
interactions between factors. A special Tucker decomposition called higher-order singular
value decomposition (HOSVD, Lathauwer et al., 2000) is often adopted. The factor matrix
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Uk of HOSVD can be computed by the leading rk left singular vectors of A(k) for each k =

1, . . . ,K, and the core tensor G = A×1U
T
1 ×2U

T
2 · · ·×KUT

K . In this way, matrices Uk, k =
1, . . . ,K are orthogonal, and G is all orthogonal, meaning the rows of each G(k), k =
1, . . . ,K are mutually orthogonal.

2.2 Tucker tensor quantile regression

In this paper, we consider quantile regression models with a scalar response y, and tensor
covariate X ∈ Rp1×···×pK . The τth conditional quantile of response given covariate X
is defined as Qτ (y|X ) = inf

{
t;Fy|X (t) ≥ τ

}
, where Fy|X (t) is the condition distribution

function of y given X . We consider a linear quantile regression model

Qτ (y|X ) = µ+ 〈A,X 〉,

where A is a coefficient tensor of the same size as X which captures the effect of each
element in X . Since the intercept µ can be more easily dealt with both computationally
and theoretically, in the following we will suppress the intercept µ for convenience of notation
and explain briefly the minor modifications required in the algorithm and proofs at several
places below. In this model, the number of parameters is

∏K
k=1 pk, which is often large

compared to the sample size. In order to reduce the number of parameters by exploiting
the tensor structure, we impose a low-rank assumption on A. As mentioned before, if A
has multilinear rank (r1, r2, . . . , rK), then there exists a Tucker decomposition

A = G ×1 U1 ×2 U2 · · · ×K UK ,

where G ∈ Rr1×···×rK is the core tensor, and Uk ∈ Rpk×rk , k = 1, . . . ,K are called factor
matrices. Based on the decomposition, we obtain the Tucker tensor quantile regression
model

Qτ (y|X ) = 〈G ×1 U1 ×2 U2 · · · ×K UK ,X 〉. (1)

As a result of decomposition, the number of parameters in model (1) reduces to
∏K
k=1 rk +∑K

k=1(pk − rk)rk according to Zhang (2019), which is substantially smaller than
∏K
k=1 pk.

Besides the Tucker decomposition, the CP decomposition and Tensor-Train (TT) de-
composition (Oseledets, 2011) are also frequently used, see for example Guo et al. (2012);
Zhou et al. (2013); Liu et al. (2020). In general it is hard to compare the dimension reduction
ability of CP decomposition and Tucker decomposition. We choose Tucker decomposition
partially due to that it is unique under mild assumptions and given the tensor the multilin-
ear rank is easy to find while it is an NP hard problem to determine the CP rank (H̊astad,
1990). TT decomposition is an efficient way to tackle tensor with large tensor order K.
Furthermore, it may result in different TT format after permuting the modes of a tensor
which may cause additional difficulty. For specificity, we only consider Tucker decomposi-
tion in the current work, while we acknowledge that investigations of other decompositions
may also lead to fruitful results.

To estimate the coefficient of quantile regression model, Koenker and Bassett (1978)
proposed to replace the `2 loss in mean regression by the check loss function, defined by

ρτ (u) =

{
τu, if u ≥ 0,

(τ − 1)u, if u < 0,
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or equivalently ρτ (u) = u(τ − I(u ≤ 0)) where I(.) is the indicator function that takes
value 1 if the statement inside the bracket is true and 0 otherwise. For a given quan-
tile τ , the estimate of model (1) with ranks (r1, r2, . . . , rK) is obtained by minimizing∑n

i=1 ρτ (yi − 〈G ×1 U1 ×2 U2 · · · ×K UK ,X i〉). Thus the estimator of A can be defined as

Â =Ĝ ×1 Û1 ×2 Û2 · · · ×K ÛK

∈ arg min
G,Uk,k=1,...,K

n∑
i=1

ρτ (yi − 〈G ×1 U1 ×2 U2 · · · ×K UK ,X i〉) .
(2)

Therefore, the problem of estimating A is transformed to estimating the core tensor G and
factor matrices Uk, k = 1, . . . ,K. Note that the core tensor and factor matrices are not
identified since the decomposition is not unique (unless we put more stringent conditions
on the tensor). Therefore, the minimizer is not unique. Our theoretical results hold for any
minimizer in the set of minimizers.

By the fact that A(k) = UkG(k)(UK ⊗ · · · ⊗Uk+1 ⊗Uk−1 ⊗ · · · ⊗U1)
T , we can rewrite

〈G ×1 U1 ×2 U2 · · · ×K UK ,X 〉 as

vec(X )T (UK ⊗UK−1 ⊗ · · · ⊗U1)vec(G) (3)

and

vec(X (k))
T

([
(UK ⊗ · · · ⊗Uk+1 ⊗Uk−1 ⊗ · · · ⊗U1)GT(k)

]
⊗ Ipk

)
vec(Uk), (4)

where Ipk is the pk×pk identity matrix. This implies that the objective function (2) is linear
with respect to vec(G) and vec(Uk), k = 1, . . . ,K, when the others are fixed. Equations
(3) and (4) involve computation of Kronecker products which results in large and unwieldy
matrices when the dimension is high. (3) and (4) are used mainly due to their elegant
mathematical presentation. In practice, one can organize the computation in other ways.
For example, for K = 3, since

〈G ×1 U1 ×2 U2 ×3 U3,X 〉 =

p1∑
d1=1

p2∑
d2=1

p3∑
d3=1

r1∑
s1=1

r2∑
s2=1

r3∑
s3=1

xd1d2d3u1,d1s1u2,d2s2u3,d3s3gs1s2s3 ,

where xd1d2d3 , u1,d1s1 , u2,d2s2 , u3,d3s3 , gs1s2s3 denotes the entries of X ,U1,U2,U3,G, respec-
tively, then it is easy to see that vec(X )T (U3 ⊗ U2 ⊗ U1) in (3) can be computed via
the vectorization of X ×1 UT

1 ×2 UT
2 ×3 UT

3 , for example, to avoid directly computing the
Kronecker product. Similarly, (4) can be dealt with using appropriate matrix products.

The following alternating update algorithm is used to find Â. We note that we do not
require G,Uk to be identified since we are only interested in the tensor A. In particular,
in this part, we do not require Uk to be orthogonal which makes the optimization problem
simpler. Such a choice for similar low-rank matrix/tensor models are often adopted in the
literature (Liu et al., 2013; Udell et al., 2016). The alternating update algorithm obviously
can decrease the objective function value in each step and the function value is guaranteed
to converge.
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Algorithm 1 Alternating update algorithm for low dimensional quantile regression

Initialized: A(0) = arg min
∑n

i=1 ρτ (yi − vec(X i)
Tvec(A))

Perform HOSVD: A(0) = G(0) ×1 U
(0)
1 ×2 U

(0)
2 · · · ×K U

(0)
K with predetermined ranks (r1, . . . , rK)

Repeat ` = 0, 1, 2, . . .
For k = 1, . . . ,K

U
(`+1)
k = arg minUk

∑n
i=1 ρτ

(
yi − vec(X i,(k))

T

([
(U

(`)
K ⊗ · · · ⊗U

(`)
k+1 ⊗U

(`+1)
k−1 ⊗ · · · ⊗U

(`+1)
1 )

G(`+1)T
(k)

]
⊗ Ipk

)
vec(Uk)

)
End for

G(`+1) = arg minG
∑n

i=1 ρτ

(
yi − vec(X i,(1))

T (U
(`+1)
K ⊗U (`+1)

K−1 ⊗ · · · ⊗U
(`+1)
1 )vec(G(1))

)
A(`+1) = G(`+1) ×1 U

(`+1)
1 ×2 U

(`+1)
2 · · · ×K U (`+1)

K

Until convergence

Remark 1 Note that we omit the intercept in most parts of the paper for simplicity of
exposition. When an intercept is added, its estimation can be combined with the G-update

step. In this way, the G-update step becomes (µ(`+1),G(`+1)) = arg minµ,G
∑n

i=1 ρτ

(
yi−µ−

vec(X i,(1))
T (U

(`)
K ⊗U

(`)
K−1 ⊗ · · · ⊗U

(`)
1 )vec(G(1))

)
, and the yi in U -update step is replaced

by yi − µ`. The same modification is used in the sparse case in the following section.

2.3 Sparse Tucker tensor quantile regression

When the number of variables p1p2 · · · pK is large, it is desirable to incorporate sparsity.
In our case study later, sparsity is mainly used for dimension reduction without much
interpretability.

Assume that there exists a Tucker decomposition for A such that the factor matrices
U1, . . . ,UK are sparse orthogonal matrices. We impose `1 penalty for variable selection and
hence the estimator is

Â =Ĝ ×1 Û1 ×2 Û2 · · · ×K ÛK

= arg min
1

n

n∑
i=1

ρτ

(
yi − 〈G ×1 U1 ×2 U2 · · · ×K UK ,X i〉

)
+ λ‖UK ⊗ · · · ⊗U1‖1,

(5)

subject to UT
k Uk = Irk , k = 1, . . . ,K.

By the definition of the `1 norm, we have

‖UK ⊗ · · · ⊗U1‖1

=

pK∑
iK=1

pK−1∑
iK−1=1

· · ·
p1∑
i1=1

rK∑
jK=1

rK−1∑
jK−1=1

· · ·
r1∑
j1

|uK,iKjKuK−1,iK−1jK−1
· · ·u1,i1j1 |

=

 p1∑
i1=1

r1∑
j1=1

|u1,i1j1 |

× · · · ×
 pK∑
iK=1

rK∑
jK=1

|uK,iKjK |


= ‖U1‖1‖U2‖1 · · · ‖UK‖1.

7



Lu, Zhu and Lian

Algorithm 2 Alternating update algorithm for high dimensional quantile regression

Initialized: A(0) = arg min
∑n

i=1 ρτ (yi − vec(X i)
Tvec(A))

Perform HOSVD: A(0) = G(0) ×1 U
(0)
1 ×2 U

(0)
2 · · · ×K U

(0)
K with predetermined ranks (r1, . . . , rK)

Repeat ` = 0, 1, 2, . . .
For k = 1, . . . ,K

U
(`+1)
k = arg minUT

k Uk=Irk

1
n

∑n
i=1 ρτ

(
yi − vec(X i,(k))

T

([
(U

(`)
K ⊗ · · · ⊗U

(`)
k+1 ⊗U

(`+1)
k−1 ⊗ · · · ⊗U

(`+1)
1 )

G(`+1)T
(k)

]
⊗ Ipk

)
vec(Uk)

)
+ λ‖U (`+1)

1 ‖1 · · · ‖U (`+1)
k−1 ‖1‖U

(`)
k+1‖1 · · · ‖U

(`)
K ‖1‖Uk‖1

End for

G(`+1) = arg minG
1
n

∑n
i=1 ρτ

(
yi − vec(X i)

T (U
(`+1)
K ⊗U (`+1)

K−1 ⊗ · · · ⊗U
(`+1)
1 )vec(G)

)
A(`+1) = G(`+1) ×1 U

(`+1)
1 ×2 U

(`+1)
2 · · · ×K U (`+1)

K

Until convergence

Therefore, the `1 penalty is imposed jointly on the `1 norm of all the factor matrices.
Several remarks are in order. First, we do not penalize the core tensor matrix since usually
r1, r2, r3 are small. If one really wants, one can also add a penalty on G. Entries of G
represents interactions between latent dimensions and selection of nonzero entries may be
of interest in some cases. However, in our application, we simply use sparsity as a way
to reduce dimension and the size of G is already very small and thus we do not impose
sparsity on the core tensor. Second, putting a penalty on the product ‖UK ⊗ · · ·⊗U1‖1 =
‖U1‖1‖U2‖1 · · · ‖UK‖1 is somewhat unusual, but is motivated by the form (3) in which the
product of factor matrices appears. Using such a penalty makes it much more convenient,
to say the least, to perform our theoretical analysis later. In practice, we find it performs
very similar to using the more conventional penalty λ(‖U1‖1 + ‖U2‖1 + · · · + ‖UK‖1).
Third, we only use one tuning parameter λ, which is only suitable if all factor matrices are
believed to have similar degrees of sparsity. For greater flexibility, one should instead use
λ1‖U1‖1 + λ2‖U2‖1 + · · · + λK‖UK‖1. In our current numerical examples, we find there
is no need to use the more flexible penalty which leads to the computational burden of
having to tune multiple parameters. Finally, unlike the non-sparse case, here we would
require the orthogonality constraint. The reason is that without the constraint, due to
scale indeterminacy (multiplying G by any constant while dividing the same constant on
Uk will result in the same A), the penalty will make all Uk arbitrarily close to zero while
making G very large. This is in stark contrast with Algorithm 1, where we do not need
to use any constraints when there is no penalty and the algorithm is much simpler there.
Alternatively, a ridge penalty on G can also be used with an additional tuning parameter.
However, in the high-dimensional case, when there is no orthogonal constraint, we often
find such estimators are more unstable with larger variances.

The estimate Â can be computed by an alternating update algorithm similar to that
in Section 2.2, see Algorithm 2. However, the update of Uk, k = 1, . . . ,K, is a nonconvex
optimization problem due to the orthogonality constraint, thus it can not be solved by ordi-
nary quantile regression as in Section 2.2. In order to separate the orthogonality constraint
and `1 regularization, we propose to use an ADMM algorithm motived by Yu et al. (2017).
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More specifically, the update of Uk, k = 1, . . . ,K takes the common form

min
B

1

n
ρτ
(
y −Zvec(B)

)
+ λ‖B‖1, s.t. BTB = I, (6)

where ρτ
(
y−Zvec(B)

)
=
∑n

i=1 ρτ
(
yi− zivec(B)

)
. Rewriting (6) in an equivalent form by

introducing auxiliary variables βb, r and P , we have

arg min
r,βb,β,P

1

n
ρτ (r) + λ‖β‖1 (7)

subject to y −Zβb = r, βb = β,

Bb = P , P TP = I,

where β = vec(B) and βb = vec(Bb). Using augmented Lagrangian, the ADMM algorithm
consists of the following steps,

β(j+1) = arg min
β

λ‖β‖1 +
γ

2
‖β(j)

b − β +
1

γ
η(j)‖2

r(j+1) = arg min
r

1

n
ρτ (r) +

γ

2
‖y −Zβ(j)

b − r +
1

γ
u(j)‖2

P (j+1) = arg min
P

γ

2
‖B(j)

b − P +
1

γ
E(j)‖2F , subject to P TP = I

β
(j+1)
b = arg min

βb

γ

2
‖y −Zβb − r(j+1) +

1

γ
u(j)‖2 +

γ

2
‖βb − β(j+1) +

1

γ
η(j)‖2

+
γ

2
‖Bb − P (j+1) +

1

γ
E(j)‖2F

E(j+1) = E(j)+γ(B
(j+1)
b − P (j+1))

u(j+1) = u(j)+γ(y −Zβ(j+1)
b − r(j+1))

η(j+1) = η(j)+γ(β
(j+1)
b − β(j+1)).

All updates for β, βb, r, P above can be obtained in closed form, as detailed in Algorithm
3. We note that for general nonconvex problems the ADMM algorithm does not have
satisfying theoretical convergence guarantee, but in our numerical studies we observe good
convergence behavior for the algorithm although the results are not presented here. In
particular, we always observe that Bb and B are very close to being orthogonal.

3. Theoretical properties

In this section, we investigate the statistical properties of the proposed quantile tensor
regression method. In particular, we establish the asymptotic normality for the estimate of
nonsparse quantile tensor regression under mild general conditions, in particular showing
that the estimator is

√
n-consistent. Then we derive an upper bound for the estimation error

under the sparse setting, which shows that the estimate converges to the true value at a
rate depending on sample size, number of nonzero parameters and logarithm of dimension

9
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Algorithm 3 ADMM for sparse and orthogonal regression

Initialize: B
(0)
b = U

(`)
k , P (0) = U

(`)
k , E(0) = 0, η(0) = u

(0)
b = 0

Repeat j = 0, 1, 2, . . .

β(j+1) = [β
(j)
b + η(j)/γ − λ/γ]+ − [−β(j)

b − η
(j)/γ − λ/γ]+

r(j+1) = [y −Zβ(j)
b + u(j)/γ − τ

nγ1n]+ − [−y +Zβ
(j)
b − u

(j)/γ + τ−1
nγ 1n]+

Compute SVD B
(j)
b +E(j)/γ = V1DV

T
2

P (j+1) = V1V
T
2

β
(j+1)
b = (ZTZ + 2I)−1

[
ZT (y − r(j+1) + u(j)/γ)− η(j)/γ + β(j+1) + vec(P (j+1))− vec(E(j))/γ

]
E(j+1) = E(j) + γ(B

(j+1)
b − P (j+1))

u(j+1) = u(j) + γ(y −Zβ(j+1)
b − r(j+1))

η(j+1) = η(j) + γ(β
(j+1)
b − β(j+1))

Until convergence

p. The logarithmic dependence on p means the procedure can be applied to very large
tensors, although limited by computational efficiency in implementation.

We first consider the asymptotic distribution of the estimator for the nonsparse Tucker
tensor quantile regression discussed in Section 2.2, assuming the dimensions p1, . . . , pK are
fixed. Let φ = (vec(G)T , vec(U1)

T , . . . , vec(UK)T )T be the true parameters (the “true”
φ is not unique but any that corresponds to the true A will do). Let h(φ) = vec(A) =
vec
(
G×1U1×2U2 · · ·×KUK

)
considered as a function of φ. Define the

∏K
k=1 pk×

(∏K
k=1 rk+∑K

k=1 pkrk
)

Jacobian matrix H as

H =
∂h

∂φ
=

(
UK ⊗ · · · ⊗U1,

[
(UK ⊗ · · · ⊗U2)GT(1)

]
⊗ Ip1 ,

T21{
[
(UK ⊗ · · · ⊗U3 ⊗U1)GT(2)

]
⊗ Ip2}, . . . ,

TK1{
[
(UK−1 ⊗ · · · ⊗U1)GT(K)

]
⊗ IpK}

)
,

where Tij is the permutation matrix such that vec(A(j)) = Tijvec(A(i)). Let Fε|x(t)
and fε|x(t) be the conditional distribution function and conditional density function of

random errors ε := y − 〈X ,A〉. In addition, let xi = vec(X i,(1)), D0 = E(xix
T
i ),

D1 = E(xix
T
i fε|x(0)) and denote the smallest eigenvalue of a symmetric matrix D by

δmin(D). Finally we define Γ = τ(1− τ)D−11 D0D
−1
1 . In order to establish the asymptotic

properties of the estimator (2), we assume the following conditions.

C1. fε|x(0) is bounded away from zero uniformly over the support of x, and both fε|x(.)
and its derivative are uniformly bounded.

C2. E‖x‖3 <∞. The matrix D0 is positive definite.

C3. The parameter space for h is bounded.

Conditions C1 and C2 are mild regularity assumptions commonly used in quantile re-
gression models (Wang et al., 2009; Belloni and Chernozhukov, 2011). Condition C1 imposes
smoothness assumptions on the conditional density of random errors, which is satisfied by

10
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most distributions such as Gaussian and exponential distribution. Condition C2 is an as-
sumption on existence of moments to ensure asymptotic normality of the estimator. It
is trivially satisfied if x is bounded. The boundedness of parameter space in Condition
C3 is often necessary in nonconvex models in order to apply empirical process theory. In
practice, one usually searches within a large but bounded region and thus this assumption
is not overly stringent. We establish the asymptotic distribution of h(φ̂) in the following
theorem, with proofs relegated to the appendix.

Theorem 1 Suppose conditions C1-C3 hold, then as n→∞,

√
n
(
h(φ̂)− h(φ)

) d→ N(0,Σ), (8)

where Σ = PΓP T , and P = H(HTD1H)−HTD1. Here (.)− denotes the pseudo-inverse.

Note that Γ is the asymptotic variance of conventional quantile regression. This theo-
rem in particular shows that the estimator is

√
n-consistent. Such asymptotic results can

potentially lead to interval estimates which however is not our focus in this paper (we are
mainly interested in its prediction performance especially in high dimensions).

Next we derive the error bound for the estimation error of sparse Tucker tensor quantile
regression (5) in high dimensions. Let r =

∏K
k=1 rk, p =

∏K
k=1 pk, U = UK ⊗ · · · ⊗ U1

and g = vec(G). To obtain the upper bound of estimation error, we assume the following
conditions.

C4. The factor matrices are sparse and satisfy ‖Uk‖0 ≤ sk for 1 ≤ k ≤ K.

C5. The parameter space for G is Ωg = {G : ‖vec(G)‖∞ ≤ ḡ < ∞} for some ḡ > 0.
The parameter space for Uk is Ωk = {Uk : Uk ∈ Rpk×rk ,UT

k Uk = I}. We let
ΩU = {U = UK ⊗ · · · ⊗U1 ∈ Rp×r : Uk ∈ Ωk}.

C6. x = vec(X ) is sub-Gaussian in the sense that E exp{aTx} ≤ C exp{C‖a‖2} for any
vector a where C > 0 is a constant. The eigenvalues of D0 are bounded away from
zero and infinity.

C7. The maximum and the minimum non-zero singular values of the rank-rk matrix A(k)

is given by σmax,k and σmin,k respectively.

C8. Let Ω = {∆ ∈ Rp : ∆ = (U + ∆U)(g + ∆g) − Ug,U + ∆U ∈ ΩU,g + ∆g ∈
Ωg, ‖(∆U )Sc‖1 ≤ 3‖(∆U )S‖1 + ‖∆g‖1}, where S is the indices of the nonzero entries
of U with Sc its complement, (∆U)S , for example, denotes the vector containing the
entries of ∆U indexed in S. We assume that there exists some positive constant c1
such that for any ∆ ∈ Ω with ‖∆‖ = t,

Q(Ug + ∆) ≥ c1(t2 ∧ t),∀t > 0,

where Q(δ) = E[ρτ (y − xTδ)− ρτ (y − xTUg)].

Condition C4 constrains the sparsity of factor matrices. The condition ‖Uk‖0 ≤ sk
implies ‖U‖0 ≤

∏K
k=1 sk =: s where U = UK ⊗ · · · ⊗U1. Note that we do not require an

11
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upper bound for sk. Thus, the following Theorem 2 holds for any s, but the upper bound
will increase as s goes up. The algorithm can always be applied whether the true matrix is
sparse or not. Condition C5 restricts the parameter space for G and Uk, which is related
to C3 in the fixed-dimensional case. We use the upper bound ḡ for technical reasons in the
proof. In the high-dimensional setting, we require a stronger distribution assumption on
the predictors as in C6. It is satisfied if the components of x are bounded and independent,
although sub-Gaussianity is much more general than boundedness. C7 assumes A is low-
rank. The bounds will be simplified if we assume σmax,k, σmin,k are bounded away from
zero and infinity. C8 is a high-level assumption on local strong convexity of the expected
loss at the minimizer. Lemma 4 in Belloni and Chernozhukov (2011) showed that C8 holds

if the quantity inf∆∈Ω,∆ 6=0
(E|xT ∆|2)3/2
E|xT ∆|3 is bounded away from zero. This quantity is indeed

bounded away from zero when, for example, x is Gaussian.

Theorem 2 Suppose conditions C1 and C4-C8 hold. Assume λ ≥ c2ḡ
√

log(p ∨ n)/n for
some sufficiently large constant c2, Then with probability 1 − (p ∨ n)−c3 for some constant
c3 > 0,

‖Â−A‖F ≤ Cbnλ/ḡ, for some constant C > 0

if dnλ/ḡ = o(1). Here bn, dn are defined as

bn = Cḡ
√
s

(∑
k

√
r

rk

σmax,k
σ2min,k

)
+ C(ḡ + 1)

√
r

(
1 +

∑
k

‖A‖Fσmax,k
σ2min,k

)
,

and

dn = Cḡ
√
s

(∑
k

√
r

rk

1

σ2min,k

)
+ C(ḡ + 1)

√
r

(∑
k

‖A‖F
σ2min,k

)
.

The bound can be simplified significantly if we assume ‖A‖F , σmax,k, ḡ, r are all bounded,

and σmin,k are bounded away from zero. In this case, we obtain ‖Â−A‖F ≤ C
√
s log(p ∨ n)/n

when we set λ �
√

log(p ∨ n)/n. This result gives the rate of convergence of the sparse
quantile tensor regression estimator. The upper bound depends on the sample size n and
the number of non-zero parameters s, and the dimension p only has a logarithmic effect. It
also shows that the low-rank structure (smaller rk) leads to better risk bounds.

4. Simulations

In this section, we carry out simulation studies to investigate the finite sample performances
of the proposed methods.

4.1 Low-dimensional tensor quantile regression

We first consider the low-dimensional non-sparse estimator presented in Section 2.2. We
examine the performances of the proposed algorithm under a variety of dimensions, sample
sizes and signal strengths. Specifically, the response is generated by yi = 〈A,X i〉 + εi,
where X i is a p1 × p2 × p3 tensor with standard normal entries, and random errors εi
are generated independently from normal distribution N(−qτ , σ2) with qτ being the τth

12
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quantile of N(0, 1). Coefficient A is generated by G ×1 U1 ×2 U2 ×3 U3. The entries of
the core tensor G are standard normal values. The factor matrix Uk is obtained from a
QR decomposition of a pk × rk matrix with independent standard normal entries. We use
dimensions (p1, p2, p3) = (5, 5, 5) and (10, 10, 10). Rank (r1, r2, r3) is chosen to be either
(2, 2, 2) or (3, 3, 3). In addition, we choose the sample size n = 1000 and 2000, and noise
level σ = 0.5 and 1.

To select the ranks in the proposed method, we use the following BIC

BIC = log

(
1

n

n∑
i=1

ρτ (yi − 〈Â,X 〉)
)

+
df

2n
log n,

where the degrees of freedom (df) is defined as df = r1r2 · · · rK +
∑K

k=1 rk(pk − rk). We
compare the performances of the proposed method with lasso quantile regression (using
the hqreg package in R, Yi and Huang, 2017). Table 1 presents the estimation errors (EE)
measured by ‖Â −A‖F , and the percentage that the true rank is selected, based on 200
replications. It can be seen that the estimation error of the proposed method is smaller
than the lasso method in all settings (nothing unexpected here since the true model involves
a low-rank tensor), and the percentage of choosing the true rank by BIC is always close to
1.

4.2 High-dimensional sparse tensor quantile regression

For this experiment, we take ranks (r1, r2, r3) = (2, 2, 2), and consider larger dimensions
(p1, p2, p3) = (10, 10, 10), (20, 20, 20) and (100, 100, 3) and smaller sample sizes n = 200, 400, 800.
A is still generated by G ×1 U1 ×2 U2 ×3 U3. A sparse factor matrix U is generated as
follows. First let

U∗ =

(
a3×1 03×1
02×1 b2×1

)
∈ R5×2

where a, b are vectors of independent standard normal random numbers. When p = 10,
we obtain Uk ∈ R5×2 by stacking two copies of independently generated U∗’s, one on top
of the other. For other dimensions p = 20, 100 similar procedure is followed to generate
Uk. Finally, we standardize these constructed matrices into orthonormal matrices (dividing
each column by its length).

When (p1, p2, p3) = (10, 10, 10) and (20, 20, 20), all Uk’s are set to be sparse (and gen-
erated independently as described above). When (p1, p2, p3) = (100, 100, 3), U1 and U2 are
sparse, while U3 is non-sparse (due to that its size is small) and generated as in Section 4.1.
Accordingly, we use the penalty on ‖U1‖1‖U2‖1. The core tensors, the covariates and the
random errors are generated in the same way as before. We again compare the performances
with lasso. Since the number of free parameters is not straightforward to define for a sparse
and orthogonal matrix, we select the ranks by minimizing the out of sample prediction
error on independently generated data. Table 2 reports the estimation error and Table 3
reports the average selected ranks when n = 400. As in the nonsparse case, the proposed
method outperforms lasso. In particular, lasso fails when (p1, p2, p3) = (20, 20, 20), with the
estimation errors almost the same as the Frobenius norm of the true coefficients, but our
approach still works. These results demonstrate that for a given finite sample with limited
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τ = 0.25

(p1, p2, p3) rank n
σ = 0.5 σ = 1

LASSO Proposed LASSO Proposed
EE EE rank EE EE rank

(5,5,5)

(2,2,2)
1000 0.23(0.02) 0.11(0.02) 1.00 0.47(0.04) 0.22(0.04) 1.00
2000 0.15(0.01) 0.07(0.01) 1.00 0.32(0.02) 0.16(0.02) 1.00

(3,3,3)
1000 0.24(0.02) 0.14(0.02) 1.00 0.43(0.03) 0.29(0.03) 1.00
2000 0.19(0.01) 0.10(0.01) 1.00 0.29(0.02) 0.20(0.02) 1.00

(10,10,10)

(2,2,2)
1000 1.70(0.13) 0.16(0.02) 0.97 3.38(0.27) 0.33(0.03) 0.96
2000 0.55(0.02) 0.11(0.01) 1.00 1.18(0.05) 0.23(0.02) 1.00

(3,3,3)
1000 1.93(0.16) 0.21(0.02) 1.00 3.36(0.23) 0.42(0.03) 1.00
2000 0.52(0.02) 0.14(0.01) 1.00 1.11(0.04) 0.29(0.02) 1.00

τ = 0.5

(p1, p2, p3) rank n
σ = 0.5 σ = 1

LASSO Proposed LASSO Proposed
EE EE rank EE EE rank

(5,5,5)

(2,2,2)
1000 0.21(0.02) 0.10(0.02) 1.00 0.42(0.03) 0.20(0.03) 1.00
2000 0.14(0.01) 0.07(0.01) 1.00 0.30(0.02) 0.14(0.02) 1.00

(3,3,3)
1000 0.19(0.01) 0.13(0.01) 1.00 0.47(0.03) 0.27(0.03) 1.00
2000 0.13(0.09) 0.09(0.01) 1.00 0.33(0.02) 0.19(0.02) 1.00

(10,10,10)

(2,2,2)
1000 0.94(0.15) 0.15(0.01) 1.00 1.45(0.18) 0.30(0.03) 1.00
2000 0.53(0.02) 0.10(0.01) 1.00 1.11(0.04) 0.21(0.02) 1.00

(3,3,3)
1000 1.88(0.15) 0.19(0.01) 1.00 3.37(0.23) 0.39(0.03) 1.00
2000 0.51(0.02) 0.13(0.01) 1.00 1.06(0.03) 0.27(0.02) 1.00

τ = 0.75

(p1, p2, p3) rank n
σ = 0.5 σ = 1

LASSO Proposed LASSO Proposed
EE EE rank EE EE rank

(5,5,5)

(2,2,2)
1000 0.21(0.01) 0.11(0.01) 1.00 0.46(0.03) 0.22(0.04) 1.00
2000 0.15(0.01) 0.08(0.01) 1.00 0.31(0.02) 0.16(0.02) 1.00

(3,3,3)
1000 0.20(0.01) 0.14(0.02) 1.00 0.43(0.03) 0.29(0.03) 1.00
2000 0.14(0.01) 0.10(0.01) 1.00 0.30(0.02) 0.21(0.02) 1.00

(10,10,10)

(2,2,2)
1000 1.70(0.13) 0.17(0.02) 0.99 3.40(0.28) 0.33(0.03) 0.99
2000 0.55(0.02) 0.11(0.01) 1.00 1.18(0.04) 0.23(0.02) 1.00

(3,3,3)
1000 1.94(0.17) 0.21(0.02) 1.00 3.40(0.24) 0.41(0.03) 1.00
2000 0.52(0.02) 0.14(0.01) 1.00 1.11(0.04) 0.29(0.02) 1.00

Table 1: Estimation errors and the percentage of times selecting the true ranks for tensor
quantile regression. Numbers in the parentheses denote the standard errors.
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τ = 0.25

(p1, p2, p3) n
σ = 0.5 σ = 1

LASSO Proposed LASSO Proposed

(10,10,10)
200 2.40(0.72) 0.56(0.07) 2.52(0.67) 0.93(0.39)
400 1.82(0.56) 0.36(0.04) 2.05(0.55) 0.51(0.06)
800 1.44(0.57) 0.26(0.03) 1.70(0.48) 0.37(0.04)

(20,20,20)
200 2.97(0.63) 1.99(0.70) 3.01(0.62) 2.30(0.68)
400 2.88(0.61) 0.62(0.11) 2.93(0.59) 0.94(0.20)
800 2.66(0.54) 0.38(0.03) 2.73(0.54) 0.57(0.10)

(100,100,3)
200 3.02(0.73) 3.01(0.73) 3.04(0.73) 3.05(0.72)
400 3.02(0.72) 2.16(0.64) 3.05(0.71) 2.38(0.63)
800 2.98(0.71) 1.80(0.85) 3.01(0.69) 2.15(0.77)

τ = 0.5

(p1, p2, p3) n
σ = 0.5 σ = 1

LASSO Proposed LASSO Proposed

(10,10,10)
200 2.82(0.90) 0.38(0.07) 2.91(0.84) 0.84(0.37)
400 2.10(0.71) 0.24(0.02) 2.32(0.70) 0.48(0.06)
800 1.36(0.44) 0.17(0.02) 1.63(0.41) 0.35(0.04)

(20,20,20)
200 3.42(0.70) 1.61(0.70) 3.55(0.74) 2.08(0.66)
400 3.20(0.86) 0.44(0.27) 3.25(0.66) 0.84(0.23)
800 2.89(0.64) 0.25(0.02) 2.78(0.81) 0.52(0.07)

(100,100,3)
200 3.52(0.87) 3.03(0.70) 3.58(0.88) 3.10(0.74)
400 3.32(0.87) 2.06(0.68) 3.45(0.86) 2.30(0.65)
800 3.14(0.81) 1.56(0.89) 3.20(0.81) 2.01(0.76)

τ = 0.75

(p1, p2, p3) n
σ = 0.5 σ = 1

LASSO Proposed LASSO Proposed

(10,10,10)
200 2.41(0.69) 0.59(0.10) 2.54(0.66) 0.85(0.17)
400 1.87(0.63) 0.36(0.04) 2.02(0.51) 0.54(0.07)
800 1.54(0.63) 0.26(0.02) 1.70(0.53) 0.37(0.03)

(20,20,20)
200 2.97(0.63) 1.88(0.66) 3.00(0.62) 2.21(0.64)
400 2.88(0.61) 0.65(0.22) 2.94(0.59) 0.93(0.20)
800 2.66(0.55) 0.38(0.03) 2.73(0.54) 0.57(0.12)

(100,100,3)
200 3.02(0.73) 3.00(0.72) 3.04(0.71) 3.05(0.73)
400 3.02(0.72) 2.17(0.67) 3.04(0.71) 2.40(0.66)
800 2.98(0.70) 1.83(0.83) 3.02(0.70) 2.14(0.80)

Table 2: Estimation errors for sparse tensor quantile regression. Numbers in the parentheses
denote the standard errors.

data, further dimension reduction mechanism brought about by tensor decomposition can
further improve estimation efficiency compared to using sparsity alone.
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τ = 0.25

(p1, p2, p3) (r1, r2, r3)
σ = 0.5 σ = 1

r1 r2 r3 r1 r2 r3
(10,10,10) (2,2,2) 2.02(0.14) 2.02(0.14) 2.06(0.24) 2.00(0.29) 2.00(0.29) 2.04(0.35)
(20,20,20) (2,2,2) 1.98(0.38) 2.00(0.35) 2.12(0.39) 1.78(0.42) 1.82(0.39) 1.98(0.51)
(100,100,3) (2,2,2) 1.40(0.61) 1.56(0.61) 2.62(0.60) 1.44(0.64) 1.68(0.62) 2.62(0.53)

τ = 0.5

(p1, p2, p3) (r1, r2, r3)
σ = 0.5 σ = 1

r1 r2 r3 r1 r2 r3
(10,10,10) (2,2,2) 2.02(0.14) 2.02(0.14) 2.08(0.27) 2.02(0.25) 2.02(0.25) 2.10(0.36)
(20,20,20) (2,2,2) 1.94(0.24) 1.94(0.24) 2.04(0.28) 1.80(0.40) 1.84(0.37) 2.02(0.47)
(100,100,3) (2,2,2) 1.42(0.70) 1.60(0.70) 2.70(0.54) 1.60(0.83) 1.84(0.77) 2.70(0.46)

τ = 0.75

(p1, p2, p3) (r1, r2, r3)
σ = 0.5 σ = 1

r1 r2 r3 r1 r2 r3
(10,10,10) (2,2,2) 1.98(0.14) 1.98(0.14) 2.12(0.33) 1.94(0.31) 1.94(0.31) 2.02(0.32)
(20,20,20) (2,2,2) 1.94(0.31) 1.94(0.31) 2.00(0.40) 1.82(0.48) 1.82(0.48) 1.92(0.49)
(100,100,3) (2,2,2) 1.30(0.61) 1.54(0.65) 2.72(0.54) 1.60(0.78) 1.82(0.72) 2.76(0.52)

Table 3: Mean and standard error of the estimated ranks for sparse Tucker tensor quantile
regression when n = 400. The true rank is (2, 2, 2).

Then we consider the situation with unequal ranks for different modes of the tensor,
which is set to be (2, 3, 4). The factor matrices U1 ∈ Rp1×2, U2 ∈ Rp2×3 and U3 ∈ Rp3×4
are respectively generated by stacking U∗ (as defined before) and

U∗2 =

(
a3×2 03×1
02×2 b2×1

)
∈ R5×3 , U∗3 =

(
a3×2 03×2
02×2 b2×2

)
∈ R5×4.

The orthogonal matrices a3×2 and b2×2 are obtained by QR decomposition as before. Figure
1 and Figure 2 compare the proposed method and lasso quantile regression under different
choice of sample sizes and dimensions. As expected, the estimation errors increase as
dimensions increases, and as the sample size n decreases, and the errors are smaller than
lasso quantile regression.

Moreover, as suggested by a reviewer, we consider the alternative approach of simply
imposing convex regularizations on the coefficient tensor A to encourage low-dimensional
structure. To be specific, we impose the nuclear norm regularization on the matricized
coefficient tensors to encourage low-rankness. The objective function is

1

n

n∑
i=1

ρτ (yi − 〈A,X i〉) +
λ1
K

K∑
k=1

‖A(k)‖∗, (9)

where λ1 is the tuning parameter, and ‖ · ‖∗ stands for the matrix nuclear norm. We can
also add an entry-wise `1 penalty on A to encourage sparsity, resulting in

1

n

n∑
i=1

ρτ (yi − 〈A,X i〉) +
λ1
K

K∑
k=1

‖A(k)‖∗ + λ2

p1∑
j1=1

p2∑
j2=1

· · ·
pK∑
jK=1

|Aj1j2...jK |. (10)
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Figure 1: Estimation errors based on 50 replications under quantile level τ = 0.25, 0.5 and
0.75, when true ranks are (2, 3, 4) and dimension p1 = p2 = p3 = 10. The error
bars represent ± one standard deviation.

Figure 2: Estimation error based on 50 replications under quantile levels τ = 0.25, 0.5 and
0.75, when the true rank is (2, 3, 4) and sample size n = 400. The dimension of the
coefficient tensor is (p, p, p). The error bars represent ± one standard deviation.
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Figure 3: Mean of estimation error based on 50 replications under quantile level τ = 0.25,
0.5 and 0.75, when the dimension p1 = p2 = p3 = 10, ranks (r1, r2, r3) = (2, 2, 2)
and noise level σ = 0.5. The error bars represent ± one standard deviation.

Note that the sparsity regularization in (10) is not on the factor matrices Uk and thus
represents a different model of sparsity. The minimizer of (9) and (10) are computed
by the proximal gradient method. For this experiment, we still generated datasets as
before and take ranks (r1, r2, r3) = (2, 2, 2), dimensions (p1, p2, p3) = (10, 10, 10), sample
size n = 200, 400, 800 and noise level σ = 0.5. Figure 3 shows the error of the estimate
computed by (9), (10), lasso and the proposed method. Although in this experiment, our
method performs better than convex regularization, which is certainly as expected, we
are not saying the convex penalization approach is always worse. Convex approach as an
alternative approach also deserves careful theoretical and computational study in the convex
of quantile tensor regression, but a detailed investigation is outside the scope of the current
paper.

5. Application to PETS 2009 dataset

In this section, we show the effectiveness of the proposed method by performing experiments
on PETS 2009 dataset (http://www.cvg.reading.ac.uk/PETS2009). The dataset contains
crowd images recorded at Whiteknights Campus, University of Reading, UK. Our goal is
to estimate the number of people by fitting a model that takes the color images as tensor
covariates (136× 186× 3 tensor). Several views of the same scene are available and we only
use View 1 in this analysis. Figure 4 shows two example images of View 1 in the dataset.
The ground-truth count is obtained from Chan et al. (2009).

We fit a quantile regression model using 662 images from timestamps 13-57, 13-59 and
the first 200 images with timestamp 14-03. The remaining 213 images of 14-03 are used as
the test set. The raw count is taken as the response. We also tried some transformations on
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τ = 0.25
Training error Prediction error

Lasso Proposed Lasso Proposed

Raw 0.18 0.09 2.49 2.18
Square root 0.47 0.07 1.26 0.89

τ = 0.5
Training error Prediction error

Lasso Proposed Lasso Proposed

Raw 0.21 0.11 1.96 1.09
Square root 0.35 0.19 1.25 0.78

τ = 0.75
Training error Prediction error

Lasso Proposed Lasso Proposed

Raw 0.39 0.10 1.04 0.91
Square root 0.58 0.15 0.98 0.72

Table 4: Training and prediction error for lasso and the proposed method on the test set,
either directly using the count as the response, or using square-root transformation.

the response from the Box-Cox family and found that the square-root transformation works
well. We examine the performances of the proposed sparse tensor regression approach
on predicting the 0.25, 0.5 and 0.75 quantile of the counts on the test set. Ranks are
chosen from all combinations of ranks up to 4 (except r3 is of course bounded by 3). Since
the dimension of mode-3 is small, we only impose penalty on factor matrices U1 and U2.
The tuning parameter and ranks were set by 10-fold cross-validation, resulting in low-rank
estimators with rank (3, 3, 3). Using the low-rank structure, the number of parameters is
reduced by about 98.7%. Table 4 shows the training errors and prediction errors in terms
of quantile loss (for prediction, responses are transformed back to the original scale after
model fitting on the transformed response). As in simulations, we compared the proposed
method with lasso quantile regression which vectorizes the image. It can be seen that the
proposed method leads to smaller errors. Figure 4 shows two examples with the predicted
quantile values calculated by the proposed method (with square-root transformation).

6. Conclusion

In this paper, we propose a Tucker decomposition-based estimation approach for quantile
regression with tensor covariates. The motivation of our work is the increasing demand for
analysing tensor valued data such as images, and the lack of studies on quantile regression
for this data type. The high dimensionality which often emerges in tensor regression is
reduced by imposing a low-rank approximation and then applying Tucker decomposition.
In addition, when the dimension is very large, we introduce a sparse Tucker decomposition
to further reduce the number of parameters. We establish the asymptotic distribution for
the nonsparse scenario and the bound on estimation error for the sparse scenario.
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(a) The true count in this image is 17. The
predicted 0.25, 0.5 and 0.75 quantiles are 14.97,
17.15 and 19.90, respectively.

(b) The true count in this image is 11. The pre-
dicted 0.25, 0.5 and 0.75 quantiles are 9.07, 10.70
and 12.88, respectively.

Figure 4: Examples in the test set with predicted quantiles calculated by the proposed
method.

In the quantile regression setting, it is typical to consider a scalar response. However,
one can also consider the case where the response is a tensor. In this case, the intercept is
a tensor of the same size as the response. Our results can be easily extended to this case in
a straightforward way to predict each response’s quantile.

For both nonsparse and sparse Tucker quantile regression, we develop alternating algo-
rithms to estimate the coefficient tensor. The convergence result for the nonconvex problem
is generally an open problem with success only in some special problems. Developing effi-
cient and provably convergent algorithms for the model is a challenging issue which can be
investigated in the future. Our implementation of the algorithm based on R can be obtained
from https://github.com/WenqiLu/QuantileTensorReg. We note that for probably more
efficient implementation in Python for example, the library TensorLy (Kossaifi et al., 2019)
provides a high-level API, and allows the model to be run on multiple CPU and GPU
machines.
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Appendix A.

In the proofs C denotes a generic constant whose value may change even on the same line.

A.1 Proof of Theorem 1

In the main text, the true parameters are simply denoted by A,U,g, etc. For this proof
only, we will use subscript 0 to denote the true parameters which will make the presentation
more clear. Using our notations,

Â = arg min
n∑
i=1

ρτ (yi − 〈G ×1 U1 ×2 U2 · · · ×K UK ,X i〉)

can be rewritten as

ĥ = h(φ̂) = arg min
h=h(φ)

n∑
i=1

ρτ
(
yi − xTi h

)
. (11)

We first establish consistency. Let h0 = h(φ0) be the true value of h. Define

Qn(h) =
1

n

n∑
i=1

[
ρτ (yi − xTi h)− ρτ (yi − xTi h0)

]
,

Q(h) = E
{
ρτ (y − xTh)− ρτ (y − xTh0)

}
.

Since |ρτ (y−xTh)−ρτ (y−xTh′)| ≤ max(τ, 1−τ)‖x‖‖h−h′‖ for all h,h′, by Example 19.7
in van der Vaart (1998), the class

{
ρτ (y−xTh)−ρτ (y−xTh0) : h ∈ H

}
is Glibenko-Cantelli.

Then the first condition of Theorem 5.7 in van der Vaart (1998), that is suph∈H |Qn(h) −
Q(h)| = op(1), is verified, where H denotes the parameter space for h which is assumed to
be bounded by condition C3.

Using Knight’s identity, we have

Q(h)−Q(h0) = E

∫ xT (h−h0)

0
(Fε|x(t)− Fε|x(0)) dt

≥ 1

2
fδmin(D0)‖h− h0‖2 −

1

6
f ′E[‖x‖3]‖h− h0‖3,

where f denotes the lower bound for fε|x(0) and f ′ denotes the upper bound for f ′ε|x(.).

Let c =
3δmin(D0)f

2f ′E‖x‖3 , it follows that when ‖h− h0‖ ≤ c,

Q(h)−Q(h0) ≥
1

4
fδmin(D0)‖h− h0‖2. (12)

When ‖h−h0‖ > c, let h′ = c′h + (1− c′)h0 with c′ = c
‖h−h0‖ , then ‖h′ −h0‖ = c, and by

the convexity of Q, we have

Q(h)−Q(h0) ≥
‖h− h0‖

c

(
Q(h′)−Q(h0)

)
≥ c

4
fδmin(D0)‖h− h0‖.
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Therefore, the second condition in Theorem 5.7 in van der Vaart (1998) inf‖h−h0‖≥ε
{
Q(h)−

Q(h0)
}
> 0 is verified. By Theorem 5.7 in van der Vaart (1998), we have the sequence h(φ̂)

converges in probability to h0.
Next we establish the convergence rate. The first condition of Theorem 5.52 in van der

Vaart (1998) is verified in (12). For every sufficiently small δ > 0, let F = {ρτ (y −
xTh) − ρτ (y − xTh0); ‖h − h0‖ < δ}. This class has an envelop function δm where m =
max(τ, 1− τ)‖x‖. By Corollary 19.35 and Example 19.7 in van der Vaart (1998), we get

E sup
f∈F
|
√
n(Pn(f)− Pf)| . J[ ]

(
‖mδ‖p,2,F , L2(P )

)
.
∫ ‖m‖p,2δ
0

‖m‖p,2

√
log(

δ

ε
)p dε,

where ‖m‖p,2 = (E|m|2)1/2, and p =
∏K
k=1 pk. Change the variables in the integral to

see that this is a multiple of δ. Then by Theorem 5.52 in van der Vaart (1998), we have
‖h(φ̂)− h0‖ = Op(n

−1/2).
Furthermore, we can prove the following uniform convergence

sup
‖h−h0‖≤C/

√
n

|
n∑
i=1

ρτ (yi − xTi h)−
n∑
i=1

ρτ (yi − xTi ĥQR)

−n
2

(h− ĥQR)TD1(h− ĥQR)| = op(1),

(13)

where ĥQR is the vectorized quantile regression estimate vec(ÂQR) with ÂQR =
arg min

∑n
i=1 ρτ

(
yi − xTi vec(A)

)
(without the rank constraint).

In fact, by Lemma 19.31 of van der Vaart (1998), we have

sup
‖h−h0‖=C/

√
n

∣∣∣∣ n∑
i=1

ρτ (yi − xTi h)−
n∑
i=1

ρτ (yi − xTi h0)

−(h− h0)
T

n∑
i=1

xi
(
τ − I(yi − xTi h0)

)
−nE

[
ρτ (Y − xTh)− ρτ (Y − xTh0)

]∣∣∣∣ = op(1),

(14)

and∣∣∣∣ n∑
i=1

ρτ (yi − xTi ĥQR)−
n∑
i=1

ρτ (yi − xTi h0)− (ĥQR − h0)
T

n∑
i=1

xi
(
τ − I(yi − xTi h0)

)
−nE

[
ρτ (Y − xT ĥQR)− ρτ (Y − xTh0)

]∣∣∣∣ = op(1).

(15)

By Knight’s identity, we have

E
[
ρτ (Y − xTh)− ρτ (Y − xTh0)

]
= E

∫ xT (h−h0)

0
(Fε|x(t)− Fε|x(0)) dt

=
1

2
(h− h0)

TD1(h− h0) + op(‖h− h0‖2).
(16)
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It follows that

sup
‖h−h0‖=C/

√
n

∣∣nE[ρτ (Y − xTh)− ρτ (Y − xTh0)
]
− n

2
(h− h0)

TD1(h− h0)
∣∣ = op(1), (17)

and∣∣nE[ρτ (Y − xT ĥQR)− ρτ (Y − xTh0)
]
− n

2
(ĥQR − h0)

TD1(ĥQR − h0)
∣∣ = op(1), (18)

Combining (14) - (18), we have

sup
‖h−h0‖=C/

√
n

∣∣∣∣ n∑
i=1

ρτ (yi − xTi h)−
n∑
i=1

ρτ (yi − xTi ĥQR)

−(h− ĥQR)T
n∑
i=1

xi
(
τ − I(yi − xTi h0)

)
−n

2
(h− h0)

TD1(h− h0) +
n

2
(ĥQR − h0)

TD1(ĥQR − h0)

∣∣∣∣ = op(1).

(19)

Then equation (13) can be obtained from (19) by applying the Bahadur representation for
the classical linear quantile estimator

√
n(ĥQR−h0) = −D−11

1√
n

∑n
i=1 xi

(
τ−I(yi−xTi h0 <

0)
)

+ op(1).

Define

F (ĥQR,h) =
n

2
(h− ĥQR)TD1(h− ĥQR),

and denote by h̃ = h(φ̃) as the minimizer of F (ĥQR,h), then by Proposition 4.1 in Shapiro
(1986), it has asymptotic normality

√
n(h̃− h0)

D→ N(0,PΓP T ).

To complete the proof, we note (13) implies h̃ and ĥ are asymptotically equivalent.

Remark 2 It is trivial to incorporate the intercept for this fixed-dimensional result. All
derivations up to equation (19) has nothing to do with the tensor structure. We only need
to add µ to h and add 1 to xi, and we still define D0 = E(xix

T
i ), D1 = E(xix

T
i fε|x(0))

and the asymptotic normality result remains the same.

A.2 Proof of Theorem 2

Define Û = (ÛKÔK)⊗· · ·⊗ (Û1Ô1) and ĝ = vec(Ĝ×1 ÔT
1 · · ·×K ÔT

K), where the matrices

Ôk are defined in the statement of Lemma 2. Write vec(Â) = Ûĝ. Let ∆̂ = Û ĝ − Ug,
∆̂U = Û −U and ∆̂g = ĝ − g. Then ∆̂ = ∆̂U ĝ +U∆̂g and ‖Â −A‖F = ‖∆̂‖. By the

optimality of Û and ĝ, we have

1

n

n∑
i=1

ρτ
(
yi − xTi Û ĝ

)
+ λ‖Û‖1 ≤

1

n

n∑
i=1

ρτ
(
yi − xTi Ug

)
+ λ‖U‖1. (20)
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We first show that ∆̂ ∈ Ω := {∆ : ‖(∆U)Sc‖1 ≤ 3‖(∆U)S‖1 + ‖∆g‖1}, where S is
the support of U with size bounded by

√
s1s2 · · · sK =: s. Let ei = τ − I(yi − xTi Ug ≤

0). By convexity of ρτ , we have Qn(Ûĝ) := 1
n(
∑

i ρτ (yi − xiÛĝ) −
∑

i ρτ (yi − xiUg)) ≥
− 1
n(
∑n

i=1 xiei)
T ∆̂. Combining this with (20) we get,

− 1

n
(
∑
i

xiei)(∆̂Uĝ)− 1

n
(
∑
i

xiei)U∆̂g ≤ Qn(Ûĝ) ≤ λ‖U‖1 − λ‖Û‖1.

By Theorem 1 of Belloni and Chernozhukov (2011), we have λ/2 ≥ ḡ‖ 1n
∑

i xiei‖∞ and

λ/2 ≥ ‖ 1nUTxiei‖∞. Using
∣∣∣ 1n(
∑

i xiei)(∆̂Uĝ)
∣∣∣ ≤ ‖ 1n∑i xiei‖∞‖∆̂Uĝ‖1 ≤ ḡ‖ 1n

∑
i xiei‖∞‖∆̂U‖1 ≤

(λ/2)‖∆̂U‖1 and
∣∣∣ 1n(
∑

i xiei)U∆̂g

∣∣∣ ≤ ‖ 1nUTxiei‖∞‖∆̂g‖1 ≤ (λ/2)‖∆̂g‖1, we get

−(λ/2)‖∆̂U‖1 − (λ/2)‖∆̂g‖1 ≤ λ‖U‖1 − λ‖Û‖1. (21)

Using ‖U‖1 = ‖US‖1 and ‖Û‖1 = ‖∆̂U + U‖1 = ‖(∆̂U + U)S‖1 + ‖(∆̂U)Sc‖1 ≥ ‖US‖1 −
‖(∆̂U)S‖1 + ‖(∆̂U)Sc‖1, the above implies

−(λ/2)‖∆̂U‖1 − (λ/2)‖∆̂g‖1 ≤ λ‖(∆̂U)S‖1 − λ‖(∆̂U)Sc‖1. (22)

Using ‖∆̂U‖1 = ‖(∆̂U)S‖1 + ‖(∆̂U)Sc‖1, the above is seen to be equivalent to ∆̂ ∈ Ω.
Furthermore, due to ∆̂ ∈ Ω, we have

‖∆̂‖1 ≤ ḡ‖∆̂U‖1 + ‖U∆̂g‖1
≤ Cḡ‖(∆̂U)S‖1 + Cḡ‖∆̂g‖1 +

√
r‖∆̂g‖

≤ Cḡ
√
s‖∆̂U‖F + C(ḡ + 1)

√
r‖∆̂g‖

≤ bn‖∆̂‖+ dn‖∆̂‖2, (23)

by Lemma 2, where

bn = Cḡ
√
s

(∑
k

√
r

rk

σmax,k
σ2min,k

)
+ C(ḡ + 1)

√
r

(
1 +

∑
k

‖A‖Fσmax,k
σ2min,k

)
,

and

dn = Cḡ
√
s

(∑
k

√
r

rk

1

σ2min,k

)
+ C(ḡ + 1)

√
r

(∑
k

‖A‖F
σ2min,k

)
.

Let Ω2 = {∆ : ‖∆‖1 ≤ bn‖∆‖+ dn‖∆‖2}. Assume ‖∆̂‖ = t. This means

inf
∆∈Ω2

‖∆‖=t

Qn(Ug + ∆) + λ‖U + ∆U‖1 − λ‖U‖1 < 0. (24)

Lemma 1 shows that with probability at least 1− (p ∨ n)−C ,

sup
∆∈Ω2

‖∆‖=t

|Qn(Ug + ∆)− EQn(Ug + ∆)| ≤ C(bnt+ dnt
2)

√
log(p ∨ n)

n
. (25)
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(24) and (25) together means that there exists ∆ with‖∆‖ = t such that

EQn(Ug + ∆) ≤ λ‖U‖1 − λ‖U + ∆U‖1 + C(bnt+ dnt
2)

√
log(p ∨ n)

n

≤ λ‖(∆̂U)S‖1 − λ‖(∆̂U)Sc‖1 + C(bnt+ dnt
2)

√
log(p ∨ n)

n

≤ λ‖(∆̂U)S‖1 + C
bnt+ dnt

2

√
n

≤ Cλ
ḡ

(bnt+ dnt
2) + C(bnt+ dnt

2)

√
log(p ∨ n)

n
,

where the second inequality uses the same arguments that leads to (22) starting from (21),
and the last step used (23).

Using assumption C8, we then have

c1(t
2 ∧ t) ≤ Cλ

ḡ
(bnt+ dnt

2) + C(bnt+ dnt
2)

√
log(p ∨ n)

n
,

which implies t ≤ Cbnλ/ḡ if dnλ/ḡ = o(1). �

Remark 3 To incorporate the intercept µ, let δ̂µ = µ̂ − µ. Then using similar arguments

with minor modifications, we have (δ̂µ, ∆̂) ∈ Ω := {(δµ,∆) : ‖(∆U)Sc‖1 ≤ 3‖(∆U)S‖1 +

‖∆g‖1+|δµ|}}, and (23) is replaced by ‖∆̂‖1 ≤ bn‖∆̂‖+dn‖∆̂‖2+ḡ|δ̂µ|. The rest of the proof
still can proceed as before using (δµ,∆) ∈ Ω2 := {(δµ,∆) : ‖∆‖1 ≤ bn‖∆‖+dn‖∆‖2+ḡ|δµ|}
and ‖∆‖+ |δµ| = t instead of ‖∆‖ = t. Then we can see that the bound ‖∆̂‖+ |δ̂µ| ≤ bnλ/ḡ
holds.

Regarding the roles of the following lemmas, Lemmas 1 and 2 are used in the proof of
Theorem 2 while Lemma 3 is used in the proof of Lemma 1.

Lemma 1 Let Ω2 = {∆ : ‖∆‖1 ≤ bn‖∆‖ + dn‖∆‖2} as defined in the proof of Theorem
2. With probability at least 1− (p ∨ n)−C for some constant C > 0,

sup
‖∆‖∈Ω2,‖∆‖≤t

∣∣∣∣ 1n
n∑
i=1

ρτ
(
yi − xTi (Ug + ∆)

)
− 1

n

n∑
i=1

ρτ
(
yi − xTi Ug

)
−Eρτ

(
yi − xTi (Ug + ∆)

)
+ Eρτ

(
yi − xTi Ug

)∣∣∣∣
≤ C(bnt+ dnt

2)
√

log(p ∨ n)/n.

Proof. Let

A(t) = sup
∆∈Ω2,‖∆‖≤t

n−1/2
∣∣∣∣Gn

[
ρτ
(
y − xT (Ug + ∆)

)
− ρτ

(
y − xTUg

)]∣∣∣∣,
where Gnf(xi) =

√
n(Pnf−Pf) is the empirical process. Note that for any ∆ with ‖∆‖ ≤ t,

by the Lipschitz property of ρτ , we have

V ar
(
Gn

[
ρτ
(
y − xT (Ug + ∆)

)
− ρτ

(
y − xTUg

)])
≤ E(xT∆)2 ≤ t2/f.
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Then an application of Lemma 2.3.7 of van der Vaart and Wellner (1996) yields

P (A(t) ≥M) ≤
2P (B(t) ≥ M

4 )

1− t2/(nM2f)
, (26)

if the denominator above is positive, where

B(t) = sup
∆∈Ω2,‖∆‖≤t

n−1/2
∣∣∣∣Gs

n

[
ρτ
(
y − xT (Ug + ∆)

)
− ρτ

(
y − xTUg

)]∣∣∣∣,
Gs
nf(x, y) = n−1/2

∑
i δif(xi, yi), and δi ∈ {−1, 1} are independent Rademacher variables.

We also have

P (B(t) ≥M) ≤ e−γMEeγB(t)

≤ e−γME

[
exp

{
2γ sup

∆∈Ω2,‖∆‖≤t
(1/n)|

∑
i

δix
T
i ∆|

}]

≤ e−γME

[
exp

{
2γ sup

∆∈Ω2,‖∆‖≤t
‖ 1

n

∑
i

xiδi‖∞‖∆‖1

}]
≤ Cpe−γM exp{Cγ2(bnt+ dnt

2)2/n}

≤ p exp

{
−C nM2

(bnt+ dnt2)2

}
,

where the 1st line uses Markov’s inequality, the 2nd uses the contraction property of the
Rademacher process (see Theorem 2.3 of Koltchinskii, 2011), the 3rd uses the simple in-
equality |aTb| ≤ ‖a‖∞‖b‖1 for two vectors a and b, the 4th uses Lemma 3 together with the
fact that ‖∆‖1 ≤ bnt+ dnt

2, and the last line is obtained by setting γ � nM/(bnt+ dnt
2)2.

Finally, taking M � (bnt+ dnt
2)
√

log(p ∨ n)/n proves the lemma.

Lemma 2 There exists rk × rk orthogonal matrix Ôk, k = 1, . . . ,K, such that

‖(ÛKÔK)⊗ · · · ⊗ (Û1Ô1)−UK ⊗ · · · ⊗U1‖F

≤ C

(∑
k

√
r

rk

σmax,k
σ2min,k

)
‖Â−A‖F + C

(∑
k

√
r

rk

1

σ2min,k

)
‖Â−A‖2F ,

and

‖Ĝ ×1 ÔT
1 · · · ×K ÔT

K − G‖F ≤ C

(
1 +

∑
k

‖A‖Fσmax,k
σ2min,k

)
‖Â−A‖F + C

(∑
k

‖A‖F
σ2min,k

)
‖Â−A‖2F .

Proof. Since Ûk and Uk are the left singular vectors of Â(k) and A(k), respectively, by the
Davis-Kahn theorem as stated in Theorem 3 of Yu et al. (2015), we have

‖ÛkÔk −Uk‖F ≤ C
(σmax,k + ‖Â−A‖F )‖Â−A‖F

σ2min,k
,
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for some orthogonal matrix Ôk. Note that Â = Ĝ ×1 Û1 · · · ×K ÛK = (Ĝ ×1 ÔT
1 · · · ×K

ÔT
K)×1 Û1Ô1 · · · ×K ÛKÔK . For simplicity of notation, in the following we denote ÛkÔk

simply by Ûk and Ĝ ×1 ÔT
1 · · · ×K ÔT

K by Ĝ. Then

‖ÛK ⊗ · · · ⊗ Û1 −UK ⊗ · · · ⊗U1‖F
≤ ‖ÛK ⊗ · · · ⊗ Û1 − ÛK ⊗ · · · Û2 ⊗U1‖F + · · ·+ ‖ÛK ⊗UK−1 · · · ⊗U1 −UK ⊗ · · ·U2 ⊗U1‖F

=
∑
k

√
r

rk
‖Ûk −Uk‖F

≤ C

(∑
k

√
r

rk

σmax,k
σ2min,k

)
‖Â−A‖F + C

(∑
k

√
r

rk

1

σ2min,k

)
‖Â−A‖2F , (27)

where the equality is due to ‖A⊗B‖F = ‖A‖F ‖B‖F .
Furthermore,

‖Ĝ − G‖F = ‖(ÛK ⊗ · · · ⊗ Û1)
Tvec(Â)−UK ⊗ · · · ⊗U1)

Tvec(A)‖F
≤ ‖(ÛK ⊗ · · · ⊗ Û1)

T (vec(Â)− vec(A))‖F + ‖(ÛK ⊗ · · · ⊗ Û1 −UK ⊗ · · · ⊗U1)
Tvec(A)‖F

≤ ‖ÛK ⊗ · · · ⊗ Û1‖op‖Â−A‖F + ‖ÛK ⊗ · · · ⊗ Û1 −UK ⊗ · · · ⊗U1‖op‖A‖F

≤ C

(
1 +

∑
k

‖A‖Fσmax,k
σ2min,k

)
‖Â−A‖F + C

(∑
k

‖A‖F
σ2min,k

)
‖Â−A‖2F , (28)

using that

‖ÛK ⊗ · · · ⊗ Û1 −UK ⊗ · · · ⊗U1‖op
≤ ‖ÛK ⊗ · · · ⊗ Û1 − ÛK ⊗ · · · Û2 ⊗U1‖op + · · ·+ ‖ÛK ⊗UK−1 · · · ⊗U1 −UK ⊗ · · ·U2 ⊗U1‖op
=

∑
k

‖Ûk −Uk‖op

≤ C

(∑
k

σmax,k
σ2min,k

)
‖Â−A‖F + C

(∑
k

1

σ2min,k

)
‖Â−A‖2F .

Lemma 3 For any constant γ > 0,

E[exp{γ max
1≤j≤p

|
∑
i

xijδi|}] ≤ 2peCnγ
2
,

where δi ∈ {−1, 1} are independent Rademacher variables.

Proof. We have

E[exp{γmax
j
|
∑
i

xijδi|}]

= E[max
j

exp{γ|
∑
i

xijδi|}]

≤ pmax
j
E[exp{γ|

∑
i

xijδi|}]

≤ 2pmax
j
E[exp{γ(

∑
i

xijδi)}],
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where the last step used the fact that for any symmetric random variable z, E[e|z|] ≤
e[ez + e−z] = 2E[ez]. Using xij is sub-Gaussian and thus xijδi is also sub-Gaussian, we get

E[exp{γ(
∑

i xijδi)}] = (eCγ
2
)n which proved the lemma.
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