
Journal of Machine Learning Research 21 (2020) 1-6 Submitted 7/20; Revised 10/20; Published 10/20

scikit-survival: A Library for Time-to-Event Analysis Built on
Top of scikit-learn

Sebastian Pölsterl sebastian.poelsterl@med.uni-muenchen.de
Artificial Intelligence in Medical Imaging (AI-Med),
Department of Child and Adolescent Psychiatry,
Ludwig-Maximilians-Universität, Munich, Germany

Editor: Andreas Mueller

Abstract
scikit-survival is an open-source Python package for time-to-event analysis fully com-
patible with scikit-learn. It provides implementations of many popular machine learning
techniques for time-to-event analysis, including penalized Cox model, Random Survival For-
est, and Survival Support Vector Machine. In addition, the library includes tools to evaluate
model performance on censored time-to-event data. The documentation contains installation
instructions, interactive notebooks, and a full description of the API. scikit-survival is
distributed under the GPL-3 license with the source code and detailed instructions available
at https://github.com/sebp/scikit-survival
Keywords: Time-to-event Analysis, Survival Analysis, Censored Data, Python

1. Introduction

In time-to-event analysis—also known as survival analysis in medicine, and reliability analysis
in engineering—the objective is to learn a model from historical data to predict the future
time of an event of interest. In medicine, one is often interested in prognosis, i.e., predicting
the time to an adverse event (e.g. death). In engineering, studying the time until failure of a
mechanical or electronic systems can help to schedule maintenance tasks. In e-commerce,
companies want to know if and when a user will return to use a service. In all of these
domains, learning a model is challenging, because the time of past events is only partially
known. Consider a clinical study carried out over a one year period that studied survival
times after treatment. In most cases, only a subset of patients will die during the study
period, while others will live beyond the end of the study. To learn a predictive model
of survival time, we need to consider that the exact day of death is only known for those
patients that actually died during the study period, while for the remaining patients, we only
know that they were alive at least until the study ended. The latter is called right censoring
and occurs in all applications mentioned above.

Today, many successful ideas from machine learning have been adapted for time-to-
event analysis, such as gradient boosting (Ridgeway, 1999; Hothorn et al., 2006), random
forests (Ishwaran et al., 2008), and support vector machines (Van Belle et al., 2007; Evers
and Messow, 2008; Pölsterl et al., 2015). It is important to note that censored data does not
only affect model training, but also model evaluation, because held-out data will be subject
to censoring too. Evaluation metrics range from simple rank correlation metrics (Harrell

©2020 Sebastian Pölsterl.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/20-729.html.

https://github.com/sebp/scikit-survival
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/20-729.html

Pölsterl

et al., 1996; Uno et al., 2011) to time-dependent versions of the well-known mean squared
error (Graf et al., 1999) and receiver operating characteristic curve (Hung and Chiang, 2010;
Uno et al., 2007).

In this paper, we present scikit-survival, a Python library for time-to-event analysis.
It provides a tight integration with scikit-learn (Pedregosa et al., 2011), such that pre-
preprocessing and feature selection techniques within scikit-learn can be seamlessly
combined with a model from scikit-survival. It provides efficient implementations of
linear models, ensemble models, and survival support vector machines, as well as a range of
evaluation metrics suitable for right censored time-to-event data.

2. Overview and Design

The API of scikit-survival is designed to be compatible with the scikit-learn API,
such that existing tools for cross validation, feature transformation, and model selection
can be used for time-to-event analysis. Each model in scikit-survival is a sub-class of
scikit-learn’s BaseEstimator class, which offers users a familiar API to set hyper-parameters
via set_params(), train a model via fit(), and evaluate it on held-out data via score().
Time-to-event data is comprised of a time t > 0 when an event occurred and the time c > 0 of
censoring. Since censoring and experiencing and event are mutually exclusive, it is common
to define a binary event indicator δ = I(t ≤ c) ∈ {0; 1} and a observable time y = t (if δ = 1)
or y = c (if δ = 0). To allow integration with scikit-learn, which expects a single array as
dependent variable, scikit-survival uses numpy’s structured arrays, whose data type is a
composition of simpler data types. The sksurv.util.Surv utility helps users to create such
arrays from pandas DataFrames or individual numpy arrays.

The biggest difference between time-to-event analysis and traditional machine learning
tasks are the semantics of predictions. Predictions in time-to-event analysis are often arbitrary
risk scores of experiencing an event, and not an actual time of an event, which is the input
for training such a model. Consequently, predictions are often evaluated by a measure of
rank correlation between predicted risk scores and observed time points in the test data. For
instance, Harrell’s concordance index (Harrell et al., 1996) computes the ratio of correctly
ordered (concordant) pairs to comparable pairs and is the default performance metric when
calling a model’s score() method. Models that provide time-dependent predictions in the
form of survival function and cumulative hazard function, have two additional prediction
methods: predict_survival_function(), and predict_cumulative_hazard_function().
Such time-dependent predictions can be evaluated on held-out data using the time-dependent
Brier score (Graf et al., 1999).

3. Development

Where possible, scikit-survival uses scikit-learn’s efficient implementations to fit models.
For instance, RandomSurvivalForest leverages scikit-learn’s Cython implementation to fit
tree-based estimators by introducing the log-rank node-splitting criterion for right censored
data. Therefore, the computationally expensive training step usually runs natively, which
leads to high efficiency. To ensure high quality code, all implementations adhere to the PEP8
code style, have inline documentation, and are accompanied by unit tests that are executed

2

scikit-survival

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from sklearn.model_selection import train_test_split
4 from sklearn.pipeline import make_pipeline
5 from sksurv.datasets import load_whas500
6 from sksurv.linear_model import CoxPHSurvivalAnalysis
7 from sksurv.preprocessing import OneHotEncoder
8

9 # load example data
10 data_x, data_y = load_whas500()
11 # split the data
12 X_train, X_test, y_train, y_test = train_test_split(
13 data_x, data_y, test_size=50, random_state=2020)
14

15 # combine feature transform and Cox model
16 pipeline = make_pipeline(
17 OneHotEncoder(), CoxPHSurvivalAnalysis())
18 # fit the model
19 pipeline.fit(X_train, y_train)
20 # compute concordance index on held-out data
21 c_index = pipeline.score(X_test, y_test)
22

23 # plot estimated survival functions
24 surv_fns = pipeline.predict_survival_function(X_test)
25 time_points = np.arange(1, 1000)
26 for surv_func in surv_fns:
27 plt.step(time_points, surv_func(time_points),
28 where="post")
29 plt.ylabel("probability of survival $\hat{S}(t)$")
30 plt.xlabel("time t")
31 plt.title("concordance index = %.3f" % c_index)
32 plt.show()

0 200 400 600 800 1000

time t

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty
of

su
rv

iv
al

Ŝ
(t
)

concordance index = 0.808

Figure 1: Example of using scikit-survival (left) and its output (right).

on all supported platforms by our continuous integration workflow. As a result, units tests
cover 98% of our code, and code quality is rated A by Codacy.1

4. Installation and Usage

scikit-survival is hosted on GitHub2, interactive tutorials in the form of notebooks and
API documentation are available on the Read the Docs platform.3 Pre-compiled packages for
Python 3.6 and above are available for Linux, macOS, and Windows, and can be obtained
via Anaconda using conda install -c sebp scikit-survival. Figure 1 shows a basic
example of fitting and evaluating a model in scikit-survival. More elaborate examples
can be found in the online documentation.

1. https://www.codacy.com/app/sebp/scikit-survival
2. https://github.com/sebp/scikit-survival
3. https://scikit-survival.readthedocs.io/

3

https://www.codacy.com/app/sebp/scikit-survival
https://github.com/sebp/scikit-survival
https://scikit-survival.readthedocs.io/

Pölsterl

Task Model sksurv lifelines statsmodels pycox

Survival Function Non-parametric 3 3 3 3

Estimation Parametric 7 3 7 7

CHF Estimation Non-parametric 3 3 7 7

Parametric 7 3 7 7

Linear Regression Cox 3 3 3 3

Cox + Elastic-Net 3 3 3 7

Log-normal AFT 3 3 7 7

Log-logistic AFT 7 3 7 7

Weibull AFT 7 3 7 7

Piecewise exponential 7 3 7 3

Non-linear Regression Aalen 7 3 7 7

Gradient Boosted AFT 3 7 7 7

Gradient Boosted Cox 3 7 7 7

Heterogenous Ensemble 3 7 7 7

NN (Grouped survival times) 7 7 7 3

NN (Proportional hazards) 7 7 7 3

NN (Piecewise exponential) 7 7 7 3

Random Survival Forest 3 7 7 7

Survival SVM 3 7 7 7

Survival Tree 3 7 7 7

Evaluation Brier Score 3 7 7 3

Concordance Index 3 3 7 3

Time-dependent ROC 3 7 7 7

Table 1: Availability of methods. AFT: Accelerated Failure Time. CHF: Cumulative Hazard
Function. NN: Neural Network. SVM: Support Vector Machine.

5. Comparison to Related Software

The R language currently offers many packages for time-to-event analysis. Usually, each
package focuses on a specific type of model, such as tree-based models, and API and code
quality can vary widely across packages. Options for the Python scientific computing stack
are currently limited. statsmodels (Seabold and Perktold, 2010) only has basic support; it
includes Cox’s proportional hazards models (Cox, 1972), the Kaplan-Meier estimator (Kaplan
and Meier, 1958), and the log-rank test (Peto and Peto, 1972). Its API is not compatible with
scikit-learn. The lifelines package (Davidson-Pilon et al., 2020) includes alternative
implementations of those and additionally includes parametric estimators of the survival
function, additive, semi-parametric and parametric regression models. Recent versions also
include an experimental compatibility layer for integration with the scikit-learn API.
pycox (Kvamme et al., 2019) focuses on neural networks and provides losses for proportional
hazards, grouped survival time, and piecewise exponential models that can be minimized
by stochastic gradient descent. In contrast to the above, scikit-survival is designed to
be fully compatible with the scikit-learn API, includes traditional linear models, modern
machine learning models, and a range of evaluation metrics. Table 1 presents a detailed
comparison.

4

scikit-survival

6. Conclusion

scikit-survival is a Python package that provides implementations of popular machine
learning models and evaluation metrics for time-to-event analysis. Thanks to its compatibility
with the scikit-learn API, users can utilize existing tools for cross-validation and model
selection to create powerful analysis pipelines.

References

D. R. Cox. Regression models and life tables. Journal of the Royal Statistical Society: Series
B, 34:187–220, 1972.

C. Davidson-Pilon, J. Kalderstam, N. Jacobson, sean reed, B. Kuhn, P. Zivich, M. Williamson,
AbdealiJK, D. Datta, A. Fiore-Gartland, A. Parij, D. WIlson, Gabriel, L. Moneda, K. Stark,
A. Moncada-Torres, H. Gadgil, Jona, K. Singaravelan, L. Besson, M. S. Peña, S. Anton,
A. Klintberg, J. Noorbakhsh, M. Begun, R. Kumar, S. Hussey, D. Golland, jlim13, and
A. Flaxman. CamDavidsonPilon/lifelines. Zenodo, 2020. doi: 10.5281/zenodo.805993.

L. Evers and C.-M. Messow. Sparse kernel methods for high-dimensional survival data.
Bioinformatics, 24(14):1632–1638, 2008. doi: 10.1093/bioinformatics/btn253.

E. Graf, C. Schmoor, W. Sauerbrei, and M. Schumacher. Assessment and comparison of
prognostic classification schemes for survival data. Statistics in Medicine, 18(17-18):2529–
2545, 1999. doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.
CO;2-5.

F. E. Harrell, K. L. Lee, and D. B. Mark. Multivariable prognostic models: issues in developing
models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics
in Medicine, 15(4):361–387, 1996. doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::
AID-SIM168>3.0.CO;2-4.

T. Hothorn, P. Bühlmann, S. Dudoit, A. Molinaro, and M. J. van der Laan. Survival
ensembles. Biostatistics, 7(3):355–373, 2006. doi: 10.1093/biostatistics/kxj011.

H. Hung and C. T. Chiang. Estimation methods for time-dependent AUC models with
survival data. Canadian Journal of Statistics, 38(1):8–26, 2010. doi: 10.1002/cjs.10046.

H. Ishwaran, U. B. Kogalur, E. H. Blackstone, and M. S. Lauer. Random survival forests.
The Annals of Applied Statistics, 2(3):841–860, 2008. doi: 10.1214/08-aoas169.

E. L. Kaplan and P. Meier. Nonparametric Estimation from Incomplete Observations. Journal
of the American Statistical Association, 53:457–481, 1958. doi: 10.2307/2281868.

H. Kvamme, Ørnulf Borgan, and I. Scheel. Time-to-Event Prediction with Neural Networks
and Cox Regression. Journal of Machine Learning Research, 20(129):1–30, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

5

Pölsterl

R. Peto and J. Peto. Asymptotically Efficient Rank Invariant Procedures. Journal of the
Royal Statistical Society: Series A, 135(2):185–207, 1972. doi: 10.2307/2344317.

S. Pölsterl, N. Navab, and A. Katouzian. Fast Training of Support Vector Machines for
Survival Analysis. In A. Appice, P. P. Rodrigues, V. Santos Costa, J. Gama, A. Jorge,
and C. Soares, editors, Machine Learning and Knowledge Discovery in Databases, Lecture
Notes in Computer Science, pages 243–259, 2015. doi: 10.1007/978-3-319-23525-7_15.

G. Ridgeway. The state of boosting. Computing Science and Statistics, pages 172–181, 1999.

S. Seabold and J. Perktold. statsmodels: Econometric and statistical modeling with python.
In 9th Python in Science Conference, 2010.

H. Uno, T. Cai, L. Tian, and L. J. Wei. Evaluating Prediction Rules for t-Year Survivors
With Censored Regression Models. Journal of the American Statistical Association, 102:
527–537, 2007. doi: 10.1198/016214507000000149.

H. Uno, T. Cai, M. J. Pencina, R. B. D’Agostino, and L. J. Wei. On the C-statistics for
evaluating overall adequacy of risk prediction procedures with censored survival data.
Statistics in Medicine, 30(10):1105–1117, 2011. doi: 10.1002/sim.4154.

V. Van Belle, K. Pelckmans, J. A. K. Suykens, and S. Van Huffel. Support Vector Machines
for Survival Analysis. In Proc. of the 3rd International Conference on Computational
Intelligence in Medicine and Healthcare, pages 1–8, 2007.

6

	Introduction
	Overview and Design
	Development
	Installation and Usage
	Comparison to Related Software
	Conclusion

