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Abstract
Numerous researchers recently applied empirical spectral analysis to the study of modern
deep learning classifiers. We identify and discuss an important formal class/cross-class
structure and show how it lies at the origin of the many visually striking features observed
in deep neural network spectra, some of which were reported in recent articles, others are
unveiled here for the first time. These include spectral outliers, “spikes”, and small but
distinct continuous distributions, “bumps”, often seen beyond the edge of a “main bulk”.
Keywords: deep learning, Hessian, spectral analysis, low-rank approximation, multinomial
logistic regression

1. Introduction

1.1 Empirical measurements of deep neural network spectra

Recently there has been a surge of interest in measuring the spectra associated with deep
classifying neural networks. LeCun et al. (2012), Dauphin et al. (2014) and Sagun et al.
(2016, 2017) measured the eigenvalues of the Hessian of the parameters averaged over the
training data. They plotted histograms of eigenvalues and observed a bulk, together with a
few large outliers. We define these somewhat informally (see also Figure 1):

Definition 1.1 (Bulk). A collection of eigenvalues which, when displayed in a his-
togram form, seemingly follows a continuous distribution.

Definition 1.2 (Outliers). A collection of eigenvalues, each individually isolated away
from the other eigenvalues.

Crucially, Sagun et al. (2016, 2017) observed that the number of outliers in the spectrum of
the Hessian is often equal to the number of classes C. Their observation was supported by
Gur-Ari et al. (2018) who noticed that the eigenvectors corresponding to these C outliers
span approximately the gradients of stochastic gradient descent (SGD). Papyan (2019)
developed a rigorous attribution methodology which attributed these C outliers to a rank C
subspace spanned by class means of logit derivatives. Fort and Ganguli (2019) alluded to
yet another related phenomenon–training deep networks is successful even when confined to
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low dimensional subspace of parameters (Li et al., 2018; Jastrzębski et al., 2018b; Fort and
Jastrzębski, 2019; Fort and Scherlis, 2019).

Sagun et al. (2017) experimented with: (i) two-hidden-layer networks, with 30 hidden
units each, trained on synthetic data sampled from a Gaussian Mixture Model data; and
(ii) one-hidden-layer networks, with 70 hidden units, trained on MNIST. Their exploration
was limited to architectures with thousands of parameters–orders of magnitude smaller
than state-of-the-art architectures such as VGG by Simonyan and Zisserman (2014) and
ResNet by He et al. (2016) that have tens of millions, hundreds of millions or close
to a billion parameters (Mahajan et al., 2018). In the absence of other deeper insights,
phenomena observed in such small-scale ‘academic’ examples could not be expected to persist
in large-scale real-world examples. In the last year, it became possible to study spectra of
Hessians at full-scale. Papyan (2018) used this to observe that the patterns seen in previous
small-scale examples persist even in state-of-the-art architectures.

In parallel, Ghorbani et al. (2019) studied the evolution of the full spectrum throughout
the epochs of SGD, investigating the effects of skip connections, batch normalization and
learning rate drops on properties of outliers and bulk. In addition to studying the spectrum of
the full Hessian, Li et al. (2019) measured the spectrum of the layer-wise Fisher Information
Matrix (FIM). They observed a bulk-and-outliers structure, and a closer inspection of their
results shows that there is in fact more than just one bulk. Jastrzębski et al. (2020), in
addition to studying the spectrum of the Hessian, also studied the spectrum of the covariance
of gradients, observing a bulk-and-outliers structure in both cases. They showed how SGD
hyperparameters affect the magnitude of the spectral norm and the condition number of
both matrices.

There were also measurements in the literature of quantities other than the Hessian,
FIM, and covariance of gradients. (Martin and Mahoney, 2018; Mahoney and Martin,
2019) measured extensively the spectrum of weight matrices throughout the layers. Their
plots sometimes show a set of outliers isolated from a bulk and closer inspection suggests
occasionally the presence of another small bulk beyond the main bulk. Verma et al. (2018)
proposed a novel regularization scheme for training deep networks and investigated its effect
on the spectra of features, which they show exhibit a bulk-and-outliers structure. Oymak
et al. (2019) measured the spectrum of the backpropagated errors and showed again a set of
outliers isolated from a bulk.

1.2 Initial theoretical studies

Mathematically oriented researchers tried to leverage Random Matrix Theory (RMT) to
generate features similar to the ones observed in practice and study them. Pennington
and Bahri (2017) decomposed the Hessian into two components, the FIM G and a residual
E, assumed that the eigenvalues of G are distributed according to the Marchenko-Pastur
law and those of E according to the semi-circle law, and studied the predicted spectrum
of the Hessian. Pennington and Worah (2018) calculated the Stieltjes transform of the
spectral density of the FIM for a single hidden layer neural network with squared loss and
normally distributed weights and inputs. Granziol et al. studied the deviation of the train
Hessian from the population Hessian, as a function of the ratio of sample size to number of
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parameters. They assumed the spectrum of the Hessian has a bulk, originating from the
Gaussian Orthogonal Ensemble, with several outliers.

The loss surface of deep networks changes depending on the width of the network (Geiger
et al., 2019, 2020). Mathematically oriented researchers therefore tried to leverage large-width
limits to prove claims about deep neural network spectra. Karakida et al. (2019b,a) calculated
the mean, variance and maximum of the FIM eigenvalues. Dyer and Gur-Ari (2019) and
Andreassen and Dyer (2020) used Feynman diagrams to study the training dynamics of SGD,
calculating the spectra of the Hessian and the Neural Tangent Kernel (NTK) (Jacot et al.,
2018). Jacot et al. (2019a) calculated the moments of the Hessian throughout training and
showed how the FIM and E are asymptotically mutually orthogonal.

At the present time, existing spectral measurements display a wide variety of features
(bulk shapes, outliers, secondary mini-bulks, etc.). It seems fair to say that existing theoretical
studies reproduce certain of these features. However, the connections between formal analysis
and observed features are so far incomplete. In fact, it is an ongoing activity to propose
generative models exhibiting the different observed phenomena.

1.3 Why are many researchers measuring deep neural network spectra?

In doing spectral analysis of each of these fundamental objects–Hessian, FIM, features,
backpropagated errors, and weights–researchers hope to gain deeper insights into the be-
haviour of deep neural networks. Many researchers believe that such spectral features, once
better understood, will provide clues to improvements in deep learning training or classifier
performance (LeCun et al., 1998; Dauphin et al., 2014; Sagun et al., 2016, 2017; Gur-Ari
et al., 2018; Ghorbani et al., 2019; Yao et al., 2019).

1.4 Open questions

Our goal in this work is the answer the following fundamental questions:

Cause attribution: Can we say what causes outliers, mini-bulk(s) and bulk(s)
in various spectra? Can we explain the number of eigenvalue outliers? Can we
explain why the largest outlier is much farther out?

Ubiquity: Why are these patterns pervasive in spectra across a variety of deep
neural networks and variety of objects (features, backpropagated errors, gradients,
weights, FIM, Hessian)?

Significance: Are these patterns mere artifacts or do they convey meaningful
clues? If meaningful, how can we best use the hints they give?

1.5 Insights from three-level hierarchical structure

In previous work, Papyan (2019) introduced a three-level hierarchical structure for the
gradients of deep neural networks. He then introduced its connection to some of the spectral
patterns in the FIM mentioned above. This work shows how this three-level hierarchical
structure can be utilized to explain the spectra of all the fundamental quantities in deep
learning, not just the gradients.
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Figure 1: Schematic typical spectrum. In the above schematic, with C=4 classes, we
see the presence of one isolated outlier on the far right, of C − 1 secondary outliers that are
less separated, of a mini-bulk consisting of C(C − 1) ≈ C2 outliers, and of a “main bulk” on
the left. These important spectral features are explained further in the body of the text.

1.6 A pattern covering all cases

We now make clear the main spectral features we will be discussing and explaining, through
a pattern schematized in Figure 1. This pattern applies to any of the spectral settings
mentioned earlier or any of the several new settings to be discussed below. The pattern
consists of:

• A bulk;

• C(C − 1) eigenvalue outliers, i.e., eigenvalues outside the main bulk (for the sake of
brevity we will refer to them as C2 outliers);

• C − 1 eigenvalue outliers situated at still larger amplitudes; and

• A single isolated outlier larger still.

The C2 outliers may appear either as separated spikes, or alternatively as what we call
a mini-bulk: an approximately continuous distribution rather than a series of separated
spikes. We emphasize the schematic nature of the above description; the exact appearance
of a spectral plot will differ from situation to situation. This schematic only applies to
classification problems. Studying other tasks, such as regression, is left for future work.

1.7 Class block structure

Our first goal in this work is to explain what causes this ubiquitous pattern to emerge. To
this end, we need the following definitions.

Definition 1.3 (Class block structure). An array of vectors {vI}I exhibits a (bal-
anceda) class block structure when the indices have the form I = (i, c), where 1 ≤ i ≤ N
runs across the indices of examples in a certain class, and 1 ≤ c ≤ C runs across the
class indices.
a. Imbalanced structure would result if different classes c had different numbers of examples per class

Nc. We only study the balanced case, where Nc = Nc′ , ∀c, c′.
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Example 1 (Training examples) Training examples in standard class-balanced machine
learning datasets such as CIFAR10 exhibit class block structure. For example, CIFAR10 has
a total of 50000 training vectors, which include 5000 examples in class ‘cat’, 5000 examples
in class ‘dog’, etc. We denote the i’th example in the c’th class by xi,c.

Let f(·) be some fixed function. Consider an array {vi,c}i,c, where vi,c = f(xi,c). Such an
array inherits the class block structure from the train examples xi,c.

Example 2 (Features) Consider the post-activations (also called features) at some fixed
layer l of a deep neural network. They exhibit a class block structure. Indeed, they are
functions of the examples and hence they inherit the class organization. The concatenation of
such features across the layers also exhibits such structure. We denote the l’th layer features
of xi,c by hli,c and their cross-layer concatenation by hi,c.

Example 3 (Gradients) The gradients of the loss L(θ) with respect to the parameters of
the model θ,

∂`(f(xi,c;θ),yc)

∂θ
,

inherit the class block structure from the examples xi,c.

1.8 Cross-class block structure

Assume we are using cross-entropy loss,

L(θ) = Ave
i,c,c′
Li,c,c′ = −Ave

i,c,c′
yi,c,c′ log

(
pi,c,c′

)
,

where pi,c,c′ is the probability under the ‘logistic’ or ‘softmax’ model, that the i’th example
in the c’th class belongs to c′. Similarly, yi,c,c′ is the ground truth probability of the i’th
example in the c’th class belonging to c′, which is equal to the Kronecker delta function, δc=c′ .
The interpretation of the second subscript (c′) is different than that of the first subscript (c).
The first denotes the actual class of that observation; while the second denotes the classes
enumerated in applying the cross-entropy loss. In what follows, c′ will generally denote such
a cross-entropy class, or cross-class. c′ generally represents a would-be class, as distinguished
from c, the actual observed label class.

Definition 1.4 (Cross-class block structure). An N×C×C array of vectors vi,c,c′
exhibits a (balanced) cross-class block structure when it is indexed by a three-tuple, (i, c, c′),
where 1 ≤ i ≤ N runs across the indices of examples in a certain class, 1 ≤ c ≤ C runs
across the class indices, and 1 ≤ c′ ≤ C runs across the cross-class indices.

Example 4 (Losses) The losses Li,c,c′ exhibit cross-class structure.

Example 5 (Extended gradients) The “ordinary” gradients of the loss, associated with
an example xi,c, have the form:

gi,c,c =
∂`(f(xi,c;θ),yc)

∂θ
=
∂f(xi,c;θ)

∂θ

>
(pi,c − yc);
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they exhibit class block structure but not cross-class block structure. We define an extended
gradient, denoted gi,c,c′ , which does exhibit cross-class block structure. In its definition, we
replace in the above equation the actual observed one-hot vector yc with a counterfactual
one-hot vector corresponding to a would-be observation yc′:

gi,c,c′ =
∂`(f(xi,c;θ),yc′)

∂θ
=
∂f(xi,c;θ)

∂θ

>
(pi,c − yc′).

Later we will see that the Fisher Information Matrix is a (weighted) second moment of
extended gradients. In what follows, we refer to these extended gradients as simply gradients.

Example 6 (Backpropagated errors) The derivative of the loss with respect to the output
of some fixed layer l, also known as the backpropagated error, provides yet another array
of vectors exhibiting cross-class block structure, provided we consider extended derivatives
associated with all possible cross-class labels. In what follows, we refer to these extended
backpropagated errors as simply backpropagated errors. The concatenation of backpropagated
errors across layers also exhibits such structure. The l’th layer backpropagated error induced
by example xi,c will be denoted δli,c,c′; the cross-layer concatenation will be denoted δi,c,c′ .

1.9 Global mean, C class means and C2 cross-class means

Arrays exhibiting class/cross-class block structure permit various averages to be compactly
expressed.

Definition 1.5 (C2 cross-class means). For an array of vectors {vi,c,c′}i,c,c′ exhibit-
ing cross-class structure, we denote their C2 cross-class means by {vc,c′}c,c′; they are
obtained by averaging, for a fixed class c, and cross-class c′, across the replication index
i, i.e.,

vc,c′ = Ave
i
vi,c,c′ .

Example 7 Denote the C2 cross-class means of gradients by {gc,c′}c,c′.

Example 8 Denote the C2 cross-class means of the l’th layer backpropagated errors by
{δlc,c′}c,c′, and their layer-wise concatenation by {δc,c′}c,c′ .

Definition 1.6 (C class means). For an array of vectors {vi,c,c′}i,c,c′ exhibiting cross-
class block structure, we denote their C class means by {vc}c; each is obtained by
averaging, for a fixed class c, the cross-class means associated with that class, i.e.,

vc = Ave
c′
vc,c′ = Ave

i,c′
vi,c,c′ . (1.1)
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Moreover, an array {vi,c}i,c exhibiting class block structure has C class means, {vc}c;
each is obtained by averaging, for a fixed class c, across the replication index i, i.e.,

vc = Ave
i
vi,c.

Example 9 Denote the C feature class means at layer l by {hlc}c and their layer-wise
concatenation by {hc}c.

Example 10 Denote the C backpropagated error class means at layer l by {δlc}c and their
layer-wise concatenation by {δc}c.

Example 11 Denote the C class means of gradients by {gc}c.

Definition 1.7 (Global mean). An array of vectors exhibiting class/cross-class block
structure has a global mean, given by

vG = Ave
c
vc.

1.10 Second moment matrices and covariances in the class/cross-class structure

It is very natural to express second moment matrices for arrays with class/cross-class
structure:

Definition 1.8 (Second moment matrix). An array of vectors exhibiting class or
cross-class block structure with D-dimensional vectors has a second moment matrix
V ∈ RD×D given by

V = Ave
i,c
vi,cv

>
i,c,

or
V = Ave

i,c,c′
vi,c,c′v

>
i,c,c′ ,

respectively.

Definition 1.9 (Second moment of global mean). Associated with an array of
vectors {vi,c,c′}i,c,c′ exhibiting class/cross-class structure is the second moment matrix of
the global mean,

vGv
>
G.

Definition 1.10 (Between-class second moment). Associated with an array of
vectors {vi,c,c′}i,c,c′ exhibiting class/cross-class structure is the between-class second
moment, V class ∈ RD×D,

V class = Ave
c
vcv

>
c .
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Definition 1.11 (Between-cross-class covariance). The between-cross-class covari-
ance, V cross ∈ RD×D associated with an array of vectors {vi,c,c′}i,c,c′ exhibiting cross-class
structure, is given by

V cross = Ave
c,c′

zc,c′z
>
c,c′ ,

where the cross-class mean deviations zc,c′ ∈ Rp are defined as follows:

zc,c′ = vc,c′ − vc.

Definition 1.12 (Within-cross-class covariance). The within-cross-class covari-
ance,
V within ∈ RD×D, associated with an array of vectors exhibiting cross-class structure, is
given by

V within = Ave
i,c,c′

zi,c,c′z
>
i,c,c′ ,

where the replication deviations zi,c,c′ ∈ RD are defined as follows:

zi,c,c′ = vi,c,c′ − vc,c′ .

For simplicity, the notations of mean, covariance and second moment matrix discussed so far
involved averages rather than weighted averages. Below, those notations will be extended to
include certain weights wi,c,c′ associated with corresponding terms vi,c,c′ . Moreover, we will
distinguish between vectors vi,c,c′ , where c = c′ and c 6= c′. 1

1.11 Cause attribution

As the introduction has shown, various spectral features have been observed in the literature.
By proper use of our definitions, we are able to attribute causes for all the observed features
as well as new ones. The cross-entropy loss induces a three-index structure of class, cross-class
and replication. This index structure–inherited by all fundamental entities in deep neural
networks, including features, backpropagated errors, and (extended) gradients–allows us
to easily express certain second moment and covariance matrices. We shall demonstrate
empirically that these matrices cause various spectral features:

• The second moment matrix of the global mean causes the top outlier;

• The between-class covariance causes the leading cluster of C − 1 outliers;

• The between-cross-class covariance causes the mini-bulk of C(C − 1) outliers; and

• The within-cross-class covariance causes the main bulk.

We will prove these assertions data-analytically by “knocking out” each of these matrices,
and showing that such knockout eliminates the corresponding visual feature in the spectrum
under study. We will formalize this notion of “knockout” into a formal attribution procedure.

1. In effect, we are introducing into deep networks constructs familiar in Multivariate Analysis of Variance
(MANOVA), where the class/cross-class index structure would be called a two-way categorical layout.
See reference (Huberty and Olejnik, 2006) for further details.
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Quantity Section Second moment Attribution Figures
C outliers C2 outliers

(mini-bulk) Bulk

Hessian 5 - G - E 3, 4

Gradients 6 G
Gclass

gc ≈ hc ⊗ δc
Gcross

gc,c′ ≈ hc ⊗ δc,c′
Gwithin 6

Features 7.4 H Hclass - Hwithin 7, 8
Backprop.
errors 7.7 ∆ ∆class ∆cross ∆within 9, 10

Weights 7.13 W W class - Wwithin 13

Table 1: Summary of conclusions from knockout experiments. Each row corresponds
to a different quantity of interest. The column “Section” references the section in which
this quantity is described and possibly decomposed into its constituent components. The
column “Second moment” indicates the notation for the second moment of this quantity.
The attribution columns summarize the conclusions from the knockout experiments, which
attribute spectral features observed in the spectrum of this quantity. In some cases, it also
provides approximations for the matrices to which the spectral features are attributed. The
last “Figures” column references all figures relevant to this quantity.

1.12 Ubiquity

The effects of the class/cross-class structure permeate the spectra of features, backprop-
agated errors, gradients, weights, Fisher Information matrix, and Hessian, whether these
are considered in the context of an individual layer or the concatenation of several layers.
Specifically, we will show:

• For a fixed layer l, the Kronecker product of the c’th class mean in the features, hlc,
and the c’th class mean in the backpropagated errors, δlc, approximates the c’th class
mean in the gradients, glc.

• For a fixed layer l, the Kronecker product of the c’th class mean in the features, hlc,
and the (c, c′) cross-class mean in the backpropagated errors, δlc,c′ , approximates the
(c, c′) cross-class mean in the gradients, glc,c′ .

• Similar relations hold between the class/cross-class means of features, hc, backpropa-
gated errors δc, δc,c′ , and gradients gc, gc,c′ , once these are concatenated across the
layers. However, now the Kronecker product is replaced by the Khatri-Rao product of
the associated quantities.

• The C class means and C2 cross-class means in the layer-concatenated gradients induce
C and C2 outliers in the spectra of the FIM.

• Outliers in the FIM also induce outliers in the spectrum of the Hessian, as the Hessian
can be written as a summation of two components, one of them being the FIM.

These insights are summarized in Figure 2, as well as Table 1.
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Cross-layer concatenated features Cross-layer concatenated  
backpropagated errors

Hessian

E Fisher information matrix (G)

Figure 2: Class/cross-class structure permeates all deep neural network spectra
(C = 3 classes). Class means in features are Khatri-Rao multiplied by class means in
backpropagated errors to create class-means in FIM. Class means in features are Khatri-Rao
multiplied by cross-class means in backpropagated errors to create cross-class-means in FIM.
Class/cross-class means in FIM are inherited by the Hessian. This important inheritance
mechanism is further explained in the body of the text.

1.13 Generalization

The outliers caused by the class means are clearly fundamental in predicting generalization.
This is most evident through the following insights which will be presented in the following
sections:

• In the context of multinomial logistic regression trained on Gaussian Mixture Model
data, the ratio of outliers to bulk predicts misclassification.

• In the context of deep neural networks, feature class means gradually separate from the
bulk with growing depth and also gradually become orthogonal. The ratio of outliers to
bulk therefore predicts layer-wise linear separability, while the standard deviation of
the outliers represents the layer-wise orthogonality of the classes.

1.14 Significance

There is by now a very extensive literature studying the eigenstructure of the Hessian, as well
as other fundamental deep network objects (LeCun et al., 2012; Dauphin et al., 2014; Sagun
et al., 2016, 2017; Pennington and Bahri, 2017; Gur-Ari et al., 2018; Pennington and Worah,
2018; Jastrzębski et al., 2018b; Martin and Mahoney, 2018; Verma et al., 2018; Jacot et al.,
2018; Li et al., 2018; Karakida et al., 2019a; Dyer and Gur-Ari, 2019; Jacot et al., 2019a;
Karakida et al., 2019b; Granziol et al.; Fort and Ganguli, 2019; Fort and Jastrzębski, 2019;
Fort and Scherlis, 2019; Ghorbani et al., 2019; Mahoney and Martin, 2019; Oymak et al.,
2019; Li et al., 2019; Jastrzębski et al., 2020; Andreassen and Dyer, 2020). These works
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were authored by some of the most prominent figures in the machine learning community,
who were fascinated by the structures appearing in various empirical measurements of deep
network spectra. As far as we are aware, our manuscript is the first paper that explains
where these structures are coming from. Part of the significance is therefore the explanation
of pre-existing measurements using mathematical concepts.

At the core of mathematical statistics it is well-understood that the Hessian and FIM
give fundamental inequalities for how well statistical quantities can be estimated. For the
last one hundred years researchers were leveraging the Fisher information matrix – first
introduced in 1924 by R. A. Fisher – for predicting generalization, one of the most well-known
results being Cramer’s and Rao’s bound. The literature on studying the Hessian of deep
networks evolved because researchers understood, in the same way Fisher understood, that
the Hessian and FIM are important for predicting generalization. Dziugaite and Roy (2017)
demonstrate this by showing how a PAC-Bayes bound, based on a diagonal approximation
of the Hessian, can be used to predict the generalization performance of deep networks. Part
of the significance of studying the spectra of the Hessian and the Fisher information matrix
is to provide better estimates for these matrices, which, in turn, would translate into better
generalization bounds.

2. Problem setting

Consider the balanced C-class classification problem whereby, given n training examples
in each of the C different classes and their corresponding labels, the goal is to predict the
labels on future data. Denote by xi,c the i’th training example in the c’th class and by yc
its corresponding one-hot vector. A network is trained to classify an input xi,c by passing it
through a cascade of nonlinear transformations, ending with a linear classifier that outputs a
set of predictions, f(xi,c;θ) ∈ RC . The parameters of the network, denoted by θ ∈ Rp, are
trained using stochastic gradient descent (SGD) by minimizing the empirical cross-entropy
loss ` averaged over the training data,

L(θ) = Ave
i,c

`(f(xi,c;θ),yc).

The train Hessian is defined to be the second derivative of the loss with respect to the
parameters of the model, averaged over the training data, i.e.,

Hess(θ) = Ave
i,c

{
∂2`(f(xi,c; θ),yc)

∂θ2

}
.

3. Spectral attribution via knockouts

Throughout this work we will be pointing to spectral features visible in the eigenvalue
distribution of various second moment and covariance matrices. We will attribute these
features to various causes. We use two particular attribution procedures, based on different
notions of knockout.

11



Papyan

Definition 3.1 (Subtraction knockout). The process of subtracting a matrix B from
another matrix A with the aim of eliminating certain spectral features. The resulting
matrix will be denoted by A	B.

Definition 3.2 (Projection knockout). The process of projecting the column space
of a matrix B from another matrix A, with the aim of eliminating certain spectral
features. Mathematically, this is equivalent to computing (I −BB†)A(I −BB†), where
B† is the Moore–Penrose pseudoinverse of the matrix B. The resulting matrix will be
denoted by A ∦ B. Assuming A and B are not square matrices, we define the projection
knockout to be

A ∦ B = (I −UU>)A(I − V V >),

where U and V contain all the left and right singular vectors of B, respectively.

Definition 3.3 (Spectral attribution via linear algebraic knockouts). The pro-
cess of attributing spectral features in the spectrum of matrix A to the spectrum of another
matrix B by observing that these spectral features visually disappear after B is knocked
out.

4. Hessian spectrum

Sagun et al. (2016, 2017) measured the spectrum of the Hessian, observing a bulk-and-outliers
structure with approximately C outliers. They experimented with: (i) two-hidden-layer
networks, with 30 hidden units each, trained on synthetic data sampled from a Gaussian
Mixture Model data; and (ii) one-hidden-layer networks, with 70 hidden units, trained on
MNIST. In this section, we confirm their reports, this time at the full scale of modern
state-of-the-art networks trained on real natural images.

We release software implementing state-of-the-art tools in numerical linear algebra, which
allows one to approximate efficiently the spectrum of the Hessian of modern deep neural
networks such as VGG and ResNet. We describe its functionality in Appendix C. Similar
tools were concurrently proposed in the literature by Ghorbani et al. (2019); Pfahler and
Morik (2019); Granziol et al.; Chatzimichailidis et al. (2019), each utilized for a different
purpose.

4.1 Spectrum of Hessian has structure

In Figure 3 we plot the spectra of the train and test Hessian of VGG11, an architecture with
28 million parameters, trained on various datasets. The top-C eigenspace was estimated
precisely using LowRankDeflation (built upon the power method) and the rest of the
spectrum was approximated using LanczosApproxSpec. Both are described in Appendix
C, where we also show the same plots except without first applying LowRankDeflation.

We observe a clear bulk-and-outliers structure with, arguably, C outliers. The bulk is
centered around zero and there is a big concentration of eigenvalues at zero due to the large
number of parameters in the model (28 million) compared to the small amount of training
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(a) MNIST, train (b) MNIST, test

(c) Fashion, train (d) Fashion, test

(e) CIFAR10, train (f) CIFAR10, test

Figure 3: Spectrum of the Hessian for VGG11 trained on various datasets. Each
row of panels documents a ‘well-known’ or ‘standard’ dataset in deep learning. The panels in
the left column correspond to the train Hessian, while those in the right column to the test
Hessian. Notice the presence of a bulk and C(=10) outliers. The y-axis is on a logarithmic
scale.

(50 thousand) or testing (10 thousand) examples. As pointed out by Sagun et al. (2016, 2017)
and further discussed by Alain et al. (2019), negative eigenvalues exist in the spectrum of the
train Hessian. This is despite the fact that the model was trained for hundreds of epochs, the
learning rate was annealed twice and its initial value was optimized over a set of 100 values.
Note there is a clear difference in magnitude between the train and test Hessian, despite the
fact that both were normalized by the number of contributing terms. This phenomenon is
explained by Granziol (2020).

5. Decomposing Hessian into two components:
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Hess = G+E

Following the ideas presented by Sagun et al. (2016), we use the generalized Gauss-Newton
decomposition of the Hessian and write it as a summation of two components:

Hess = Ave
i,c

∂f(xi,c;θ)

∂θ

>∂2`(z,yc)

∂z2

∣∣∣∣∣
zi,c

∂f(xi,c;θ)

∂θ

︸ ︷︷ ︸
G

(5.1)

+ Ave
i,c


C∑
c′=1

∂`(z,yc)

∂zc′

∣∣∣∣∣
zi,c

∂2fc′(xi,c;θ)

∂θ2

︸ ︷︷ ︸
E

, (5.2)

where zi,c = f(xi,c;θ). In mathematical statistics G is called the Fisher Information Matrix
(FIM). Moreover, it is related to the natural gradient algorithm (Amari, 1998), as explained
by Pascanu and Bengio (2013).

5.1 Outliers attributable to G, bulk attributable to E

Figure 4 plots: (i) the spectrum of the Hessian, (ii) the spectrum of the Hessian after E is
knocked out via a subtraction knockout and only G is left; and (iii) the spectrum of the
Hessian after G is knocked out via a subtraction knockout and only E is left. Each spectrum
was approximated using LanczosApproxSpec and the LowRankDeflation procedure
was applied on the Hessian and the G component to approximate the top-C subspace. Notice
how the spectra of all three matrices resemble variations of Figure 1.

Notice how knocking out E shrinks the bulk significantly, indicating that the bulk
originates largely from E. Note also that the upper tails of the test Hessian and test G obey
eigenvalue interlacing, as in Cauchy’s interlacing theorem (Horn and Johnson, 2012).

Notice how knocking out G eliminates the outliers in the spectrum; the outliers in the
Hessian are attributable to G. Papyan (2019) showed that the outliers in G are attributable
to the presence of C high magnitude gradient class means, which explains our previous
observation of C outliers in the spectrum of the Hessian.

6. Cross-class structure in G

Papyan (2019) proposed to decompose G based on the cross-class structure. We follow their
proposition but slightly modify their decomposition. Recall the definition of an extended
gradient2

gi,c,c′ =
∂`(f(xi,c;θ),yc′)

∂θ
. (6.1)

Note that for c = c′, gi,c,c is simply the usual gradient of the i’th training example in the c’th
class. Alternatively, for c 6= c′, gi,c,c′ is the would-be gradient of the i’th training example in
the c’th class, as if it belonged to cross-class c′ instead. This definition is useful since, as we

2. In Papyan (2019) gi,c,c′ is defined slightly differently.
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(a) Outliers attributed to G. The first block of three panels plots train spectra, while
the second block plots test spectra. Within each block, each panel depicts the spectrum of
a different matrix. The top panel: spectrum of Hessian. Middle panel: spectrum of G (E
subtraction-knocked out). Bottom panel: spectrum of E (G subtraction-knocked out). Note
how G is clearly responsible for the outliers.

Hess

G

E

(b) Bulk attributed to E. Zoom in on the bulks of the Hessian and its two components.
The top panel plots train spectra; the bottom, test spectra.

Figure 4: Spectrum of the Hessian with its constituent components. The network
is VGG11 and it was trained on MNIST sub-sampled to 5000 examples per class. The y-axis
of all plots is on a logarithmic scale.
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prove in Appendix A, G is a weighted second moment matrix of these gradients, i.e.,

G =
∑
i,c,c′

wi,c,c′gi,c,c′g
>
i,c,c′ , (6.2)

where the weights wi,c,c′ are defined as follows:

wi,c,c′ =
pi,c,c′

nC
.

Above, pi,c,c′ is the c′-th entry of p(xi,c;θ) ∈ RC , which are the Softmax probabilities of xi,c.
Define the gradient cross-class means:

gc,c′ =
∑
i

πi,c,c′gi,c,c′ ,

the gradient within-cross-class covariance:

Gwithin =
∑
i,c,c′

wi,c,c′(gi,c,c′ − gc,c′)(gi,c,c′ − gc,c′)>, (6.3)

and its class/cross-class specific versions:

Gwithin,c,c′ =
∑
i

πi,c,c′(gi,c,c′ − gc,c′)(gi,c,c′ − gc,c′)>,

where the weights are given by

πi,c,c′ =
wi,c,c′

wc,c′

wc,c′ =
∑
i

wi,c,c′ .

These equations group together gradients for a fixed pair of c, c′. Define the gradient class
means:

gc =
∑
c′ 6=c

πc,c′gc,c′ .

Notice that the above average does not take into account gc,c. The reason is that these are
gradient means, which are approximately equal to zero at convergence of SGD. Define also
the between-class gradient second moment :

Gclass =
∑
c

wcgcg
>
c ,

the within-cross-class gradient covariance:

Gcross =
∑
c,c′ 6=c

wc,c′(gc,c′ − gc)(gc,c′ − gc)>,

and its class-specific version:

Gcross,c =
∑
c′ 6=c

πc,c′(gc,c′ − gc′)(gc,c′ − gc′)>,
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where the weights are given by

πc,c′ =
wc,c′

wc

wc =
∑
c′ 6=c

wc,c′ .

These equations represent an even coarser grouping, where the gradients with a fixed c (and
possibly varying c′) are grouped together. Although not used above, we will also define
πc = wc∑

c wc
. Leveraging these definitions, we prove in Appendix A that G can be decomposed

as follows:

G = Gclass +Gcross +Gwithin +
∑
c

wc,cgc,cg
>
c,c︸ ︷︷ ︸

Gc=c′

. (6.4)

6.1 C outliers attributable to Gclass, C2 outliers attributable to Gcross and bulk
attributable to Gwithin

Papyan (2019) showed empirically that the outliers in the spectrum of G are attributable
to the covariance of the gradient class means, i.e., Gclass in our decomposition. However,
that earlier work did not provide empirical evidence for the existence of other components
in the decomposition in Equation (6.4), since these are quite subtle and not always visibly
pronounced in the spectra of G or its knockouts. For the present work, we developed a tool3

to approximate the spectrum of log(G) by leveraging the numerical linear algebra machinery
developed in Appendix C. It turns out, the spectrum of log(G) rather than G exposes all
the components in the decomposition.

The first panel of Figure 5 depicts the spectrum of log(G). Notice its surprisingly simple
structure with three separated bulks. The one in the middle is the main bulk that would
ordinarily be seen in the spectrum of G. The left and right bulks have very low density of
eigenvalues compared to it–they can only be seen because we are looking at the spectrum
of log(G). The same Figure also shows the spectrum of G once different matrices are
knocked out. Once Gclass is knocked out, the C outliers on the right disappear, corroborating
previous findings by Papyan (2019) that claim these outliers are attributable to Gclass. More
importantly, once Gcross is knocked out, the left mini-bulk disappears; it is attributable to
the between-cross-class covariance. Once Gwithin is knocked out, the main bulk disappears,
implying it is attributable to the within-cross-class covariance. Subtracting Gc=c′ has no
clear effect on the spectrum, which can be explained by noticing that Gc=c′ is a second
moment of gradient means, which are approximately equal to zero at convergence of SGD.

3. The matrix G is very large – having several millions of rows and columns – and therefore its eigenvalues can
not be calculated directly by simply invoking standard linear algebra software. Instead, our experiments
approximate the distribution of the eigenvalues by using the Lanczos algorithm, as explained in Appendix
C. Similarly, the log-eigenvalues of G can not be calculated directly by simply invoking standard linear
algebra software and applying the logarithm function. Instead, in Section C.7 of the Appendix, we propose
a novel modification to Lanczos that allows us to approximate the distribution of the log-eigenvalues of
G.
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G	 0

G	Gclass

G	Gcross

G	Gwithin

G	Gc=c′

Figure 5: Attribution via knockouts of spectral features in spectrum of G calcu-
lated on train data. Each panel in the right column plots the approximate log spectrum
of the matrix indicated in the left column. The approximation is computed using the
LanczosApproxSpec procedure. The network is VGG11 and it was trained on CIFAR10
subsampled to 136 examples per class. The y-axis is on a logarithmic scale.

6.2 Dynamics of bulk and two groups of outliers with training and sample size

Figure 6 plots spectra of log(G) across epochs and training sample size. Notice the alignment
between the C outliers ofG, colored in orange, and the eigenvalues ofGclass, colored in yellow.
Notice also the alignment between the C2 outliers of G and the green dots corresponding
to Gcross, and also the main bulk of G and the red dots corresponding to Gwithin. This
correspondence aligns with the attribution of the different spectral features to the different
components in the cross-class structure, observed already in the previous subsection.

Fixing sample size and increasing the number of epochs causes spectral bulks of Gcross
and Gwithin to separate. In contrast, fixing the epoch and increasing sample size causes the
spectral bulks to merge. Moreover, varying the epoch number or the training sample size
does not change significantly the distance between the Gclass and Gwithin.

7. Multilayer perceptron

In this section we study the relation between the patterns in the features, backpropagated
errors, gradients, FIM, and weights in the context of a multilayer perceptron (MLP), i.e., a
cascade of fully connected layers.
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Figure 6: Dynamics with training and sample size of cross-class structure in G.
Each column of panels plots, for one specific sample size N , the spectrum of G calculated
on train data throughout the epochs of SGD, so that each row corresponds to a different
epoch. Each panel plots, in orange, the top-C eigenvalues of G, estimated using Sub-
spaceIteration and, in blue, the log spectrum of the rank-C deflated G, estimated using
LanczosApproxSpec. Each panel also plots the eigenvalues of Gclass +Gcross +Gc=c′ .
The top-C eigenvalues of this matrix, which are attributable to Gclass, are colored in yellow.
The next C2 − 2C eigenvalues, attributable to Gcross, are colored in green. The final C
eigenvalues, attributable to Gc=c′ , are colored in teal but are missing from the plots because
their magnitude is less than 10−4. Each panel also plots in red the average eigenvalue of the
matrices {Gwithin,c}Cc=1, given by { 1

N Tr{Gwithin,c}}Cc=1, where Gwithin,c is the within-cross-
class covariance restricted to class c. The y-axis of all panels is on a logarithmic scale. For
numerical stability, we approximate the spectrum of log

(
G+ 10−5I

)
.
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7.1 Forward pass

In the forward pass, for each layer 1 ≤ l ≤ L, we multiply the features of the previous layer
hl−1i,c by a weight4 matrix W l to produce the pre-activations of the next layer zli,c, i.e.,

zli,c = W lhl−1i,c .

Note that for l = 1, hl−1i,c = h0
i,c is equal to xi,c. These are then passed through a non-linearity

σ, which in our case is the rectified linear unit (ReLU), to produce the features of the next
layer,

hli,c = σ(zli,c).

7.2 Backward pass

The backward pass computes the gradient of the loss with respect to the parameters of the
model, which in this case are the weight matrices,

∂`(f(xi,c;θ),yc)

∂W l
.

We will consider a more general gradient where the label class c and the cross-class c′ are
allowed to differ, i.e.,

∂`(f(xi,c;θ),yc′)

∂W l
.

Using the chain rule of calculus, one can show that:

∂`(f(xi,c;θ),yc′)

∂W l
=
∂`(f(xi,c;θ),yc′)

∂zli,c

∂zli,c

∂W l
(7.1)

= δli,c,c′h
l−1
i,c

>
, (7.2)

where δli,c,c′ denote the backpropagated errors, which we define as follows:

δli,c,c′ =
∂`(f(xi,c;θ),yc′)

∂zli,c
.

Let vec(·) denote the operator forming a vector from a matrix by stacking its columns as
subvector blocks within a single vector. Using this operator, the above equation can be
vectorized as follows:

∂`(f(xi,c;θ),yc′)

∂ vec(W l)
= hl−1i,c ⊗ δ

l
i,c,c′ , (7.3)

where ⊗ denotes the Kronecker product. Recall our definition of gi,c,c′ in Equation (6.1),
and define its analogous layer-specific quantity:

gli,c,c′ =
∂`(f(xi,c;θ),yc′)

∂ vec(W l)
;

4. In practice, we use batch normalization layers prior to ReLU. However, for simplicity of exposition we
ignore them.
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using Equation (7.3), this is equal to

gli,c,c′ = hl−1i,c ⊗ δ
l
i,c,c′ . (7.4)

Note that gli,c,c′ is the l’th subvector of gi,c,c′ . Define the feature hi,c to be the concatenation
of all the feature subvectors {hl−1i,c }Ll=1 into a single vector so that hl−1i,c is the l’th subvector
of hi,c. Similarly, define the backpropagated error δi,c,c′ to be the concatenation of all the
backpropagated errors {δli,c,c′}Ll=1 into a single vector so that δli,c,c′ is the l’th subvector of
δi,c,c′ . Using these definitions, we can write

gi,c,c′ = hi,c � δi,c,c′ , (7.5)

where � denotes the Khatri-Rao5 product, which computes in the l’th layer block of gi,c,c′
the Kronecker product of the corresponding l’th layer blocks from δi,c,c′ and hi,c.

7.3 Kronecker structure in G

Plugging Equation (7.5) into Equation (6.2), we obtain that

G =
∑
i,c,c′

wi,c,c′gi,c,c′g
>
i,c,c′ (7.6)

=
∑
i,c,c′

wi,c,c′(hi,c � δi,c,c′)(hi,c � δi,c,c′)> (7.7)

=
∑
i,c,c′

wi,c,c′(hi,ch
>
i,c)� (δi,c,c′δ

>
i,c,c′). (7.8)

Similarly, the subset of G corresponding to the l’th layer is given by

Gl =
∑
i,c,c′

wi,c,c′(h
l−1
i,c h

l−1
i,c

>
)⊗ (δli,c,c′δ

l
i,c,c′

>
).

The above equation relates G to the backpropagated errors δi,c,c′ and the features hi,c. As
such, in the next subsection we study the second moment of the features, and in the following
subsection the weighted second moment of the backpropagated errors.

7.4 Class block structure in features

Consider the second moment of the l’th layer features,

H l = Ave
i,c
hli,ch

l
i,c
>
.

Define the feature class means:
hlc = Ave

i
hli,c,

and the feature global mean:
hlG = Ave

c
hlc.

5. The Khatri-Rao product is a section of the full Kronecker product.
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Define further the between-class feature second moment :

H l
class = Ave

c
hlch

l
c
>
,

and the within-class feature covariance,

H l
within = Ave

i,c
(hli,c − hlc)(hli,c − hlc)>.

Using a mean-variance decomposition, one can show that

H l = H l
class +H l

within.

Define also a class-specific second moment matrix,

Hc = Ave
i
hli,ch

l
i,c
>
,

which is related to the global one through the following equation,

H l = Ave
c
H l

c.

7.5 C outliers attributable to Hclass and bulk attributable to Hwithin

In Figure 7 we attribute via knockouts the top C outliers in the spectrum of H l to the
spectrum of H l

class. One can similarly attribute via knockouts the largest of these C outliers
to the second moment of the global mean. Specifically, Figure 7 shows scatter plots of λi(H l)
versus λi(H l ∦H l

class). The last column of the second row illustrates the projection of a blue
and an orange point on the x- and y-axes. Notice how their projections on the y-axis are
dramatically farther apart than their projections on the x-axis. The projections on the y-axis
are far apart because the spectrum of H l has outliers, corresponding to the blue points,
which are separated from a bulk, corresponding to the orange points. The same two points
are quite close when projected on the x-axis. This is because the outliers are close to the bulk
after the knockout procedure. Since the knockout eliminated the outliers, these would-be
outliers are attributed to the matrix we knocked out, i.e., H l

class. Roughly speaking, the
orange points are situated along the identity line, which means the bulk of the spectrum
is unaffected by knockouts. The blue points, on the other had, corresponding to the top-C
eigenvalues, deviate substantially from the identity line. In fact, in the last few columns they
deviate so strongly that they separate markedly from the orange points; see the fourth and
fifth panels of the third row. In short, there is a bulk-and-outliers structure in the spectrum
of H l and the outliers emerge from the bulk with increasing depth.

7.6 Gradual separation and whitening of feature class-means

Figure 8 plots the same spectra of H l, together with the C eigenvalues of H l
class. Compare

and contrast the first and last columns of the first row. In the first column of the first
row, the top-C eigenvalues associated with the eigenvalues of H l

class are smaller than the
top-C eigenvalues of H l. Those eigenvalues of H l

class are too small to induce outliers in
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lo
g
λ
(H

l )

log λ(Hl ∦ Hl
class)

Figure 7: Attribution via knockouts of spectral features in the spectrum of the
features. Each row of panels corresponds to a different dataset and each column to a
different layer. Each panel shows a scatter plot of the top 750 log-eigenvalues of H l versus
those of H l ∦ H l

class. The black curve within each panel is the identity line. The top-C
outliers are marked in blue and the rest of the eigenvalues are marked in orange. The sixth
column of the first row shows the C outliers, attributable to the between-class covariance,
H l

class, and the bulk, attributable to the within-class covariance, H l
within. The third column

of the second row shows the biggest outlier, which is attributable to the global mean, hG.
The fourth and fifth columns of the third row show the layer in which the C outliers separate
from the bulk. The network is an eight-layer MLP with 2048 neurons in each hidden layer.
For visibility purposes, the values on the x-axis and y-axis are normalized to the range [0, 1].
See Section 7.5 for further details.

the spectrum of H l
class. In the last column of the first row, the top-C eigenvalues of H l

and the top-C eigenvalues of H l
class are close to each other–which is already expected; recall

that we attributed these outliers to H l
class in the previous subsection. These eigenvalues are

dramatically larger than later eigenvalues. Again, there is a bulk and C eigenvalues sticking
out of the bulk.

Observe the increasing separation, with increasing depth, of the C eigenvalues of H l
class

from the bulk. Underlying this, the class means have larger magnitude with depth and this
causes separation. Statistically, this means the features at later layers are more discriminative.

Observe the eigenvalues ofH l
class in different columns of the second row of panels, together

with the whiskers highlighting the ratio between the second-largest and smallest eigenvalue.
Notice how the ratio decreases as function of depth, i.e., the eigenvalues of H l

class become
increasingly closer to each other. This implies the optimization algorithm finds features
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Figure 8: Scree plot of top eigenvalues in the spectrum of the features. An
alternative presentation of the data in Figure 7. Each row of panels corresponds to a
different dataset and each column to a different layer. Each panel depicts spectra of H l

in blue and H l
class in orange. Eigenvalues in each panel are normalized by the median of{

log
(
λi(H

l
class)

)}C
i=1

. The panel in the last column of the first row highlights the “bulk and
C outliers” pattern. The panels in the second row show whiskers whose edges are located at
the second largest and at the smallest eigenvalue of H l

class. Notice how the ratio between
the whisker edges decreases as function of depth, until a point where all eigenvalues are of
similar magnitude. The third row highlights the top outlier, which is attributable to the
global mean, hG. The network is an eight-layer MLP with 2048 neurons in each hidden layer.
For more details, see Section 7.6.

whose class means are increasingly closer to orthogonal (once these class means are centered
by a global mean, which eliminates the first outlier).

7.7 Cross-class block structure in backpropagated errors

Consider the weighted second moment of backpropagated errors:

∆l =
1

NC

∑
i,c,c′

wi,c,c′δ
l
i,c,c′δ

l
i,c,c′

>
.

24



Class/Cross-Class Structure Pervades Deep Learning

Define the backpropagated errors cross-class means:

δlc,c′ =
∑
i

πi,c,c′δ
l
i,c,c′ ,

and their corresponding within-cross-class covariance:

∆l
within =

∑
i,c,c′

wi,c,c′(δ
l
i,c,c′ − δlc,c′)(δli,c,c′ − δlc,c′)>.

These equations group together backpropagated errors for a fixed pair of c, c′. Define also
the backpropagated errors class means:

δlc =
∑
c′ 6=c

πc,c′δ
l
c,c′ ,

the between-class backpropagated error second moment :

∆l
class =

∑
c

wcδ
l
cδ
l
c
>
,

and the between-cross-class backpropagated error covariance:

∆l
cross =

∑
c′ 6=c
c

wc,c′(δ
l
c,c′ − δlc′)(δlc,c′ − δlc′)>.

In these equations, the backpropagated errors with a fixed c (and possibly varying c′) are
clustered together. Leveraging these definitions, we obtain the following decomposition of ∆:

∆l = ∆l
class + ∆l

cross + ∆l
within +

∑
c

wc,cδ
l
c,cδ

l
c,c
>

︸ ︷︷ ︸
∆c=c′

.

The above decomposition is similar to the decomposition of the gradients in Section 6 and
its proof is therefore omitted. We can also define a class-specific weighted second moment
given by,

∆l
c =

1

N

∑
i,c′

wi,c,c′δ
l
i,c,c′δ

l
i,c,c′

>
.

7.8 C outliers attributable to ∆class, C2 outliers attributable to ∆cross and bulk
attributable to ∆within

In Figure 9a we attribute via knockouts the top C outliers in ∆l to the spectrum of ∆l
class.

Specifically, Figure depicts scatter plots of λi(∆l) versus λi(∆l ∦ ∆l
class). The last column

of the second row illustrates the projection of a blue and an orange point on the principal
axes. Their projections on the y-axis are dramatically farther apart than their projections
on the x-axis. Their projections on the y-axis are far apart because the spectrum of ∆l has
outliers, corresponding to the blue points, which are separated from a bulk, corresponding
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(a) Top-C outliers attributed to C class means. Each panel shows a scatter plot of top the
750 log-eigenvalues of ∆l versus those of ∆l ∦ ∆l

C . The top-C outliers are marked in blue and the
rest of the eigenvalues are marked in orange. The fifth column of the first row shows the C outliers,
attributable to the between-class covariance, ∆l

class, and a bulk. The third column of the second row
shows the biggest outlier, which is attributable to the global mean, δG. The fifth and sixth columns
of the third row show the layer in which the C outliers separate from the bulk.
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∦
∆
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log λ
(
∆l ∦

(
∆l

class +∆l
cross

))
(b) Top-C2 outliers attributed to C2 cross-class means. Each panel shows a scatter plot of
the top 750 log-eigenvalues of ∆l ∦ ∆l

class versus those of ∆l ∦ (∆l
class + ∆l

cross). The top-C2 outliers
are marked in blue and the rest are marked in orange. The fourth column of the third row shows the
C2 outliers, attributable to the between-cross-class covariance, ∆l

cross, and a bulk, attributable to
the within-cross-class covariance ∆l

within.

Figure 9: Attribution via knockouts of spectral features in the spectrum of back-
propagated errors. Eight-layer MLP with 2048 neurons in each hidden layer. Within
each subfigure, each row of panels corresponds to a different dataset and each column to a
different layer. The black curve within each panel is the identity line. For visibility purposes,
the values on the x-axis and y-axis are normalized to the range [0, 1]. See Section 7.8 for
further details. 26
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to the orange points. The same two points are quite close when projected on the x-axis.
This is because the outliers are close to the bulk after the knockout procedure. Since the
knockout eliminated the outliers, these would-be outliers are attributed to the matrix we
knocked out, i.e., ∆l

class. The orange points are situated along the identity line, which means
the bulk of the spectrum is unaffected by knockouts. The blue points, corresponding to the
top-C eigenvalues, deviate substantially from the identity line. In some panels they deviate
so strongly that they separate markedly from the orange points; see fifth and sixth panels of
the third row. In short, there is a bulk-and-outliers structure in the spectrum of ∆l and the
outliers emerge from the bulk with increasing depth.

In Figure 9b we attribute via knockouts the top C2 outliers in the spectrum of ∆l to the
spectrum of ∆class + ∆cross. Specifically, Figure 9b depicts scatter plots of λi(∆l ∦ ∆l

class)
versus λi(∆l ∦ (∆l

class + ∆cross)). The seventh column of the second row illustrates the
projection of two blue points–not a blue and an orange point, as was done previously–onto
the principal axes. Notice the gap dividing the set of all blue points into two groups: one
that is close to the orange points, and another which is well-separated from the orange points.
Notice how the projections of these two blue points onto the y-axis are dramatically father
apart than their projections on the x-axis. Their projection onto the y-axis are far apart
because the spectrum of ∆l ∦ ∆l

class has outliers, corresponding to one of the groups of
blue points. These are separated from a bulk, comprised of the other group of blue points
and also the orange points. The same two points are quite close when projected on the
x-axis. This is because the outliers are close to the bulk after the knockout procedure. Since
knocking out ∆cross eliminated the outliers in ∆l ∦ (∆l

class + ∆cross), these would-be outliers
are attributable to the matrix we knocked out, i.e., ∆l

cross. Some of the blue points and all of
the orange points are situated along the identity line, which means the bulk of the spectrum
is unaffected by the knockout procedure.

7.9 Gradual separation and whitening of backpropagated error class-means

Figure 10 plots the same spectra of ∆l, together with the eigenvalues of ∆l
class and ∆l

class +
∆l

cross. Compare and contrast the first, fifth and seventh column of the second row. In the
first column of the second row, the top-C eigenvalues associated with the eigenvalues of
∆l

class, and the next C2 outliers associated with the eigenvalues of ∆l
cross, are smaller than

the top eigenvalues of ∆l. Those eigenvalues of ∆l
class and ∆l

cross are too small to induce
outliers in the spectrum of ∆l. In the fifth column of the second row, the top-C eigenvalues
of ∆l and the top-C eigenvalues of ∆l

class are close to each other, which is already expected;
recall that we attributed the top-C outliers in the spectrum of ∆l to ∆l

class in the previous
subsection. Moreover, the C2 eigenvalues associated with ∆l

cross are smaller than the top C2

eigenvalues of ∆l. Those eigenvalues are too small to induce outliers in the spectrum of ∆l.
In the seventh column of the second row, some of the top-C2 eigenvalues of ∆l and the C2

eigenvalues of ∆l
cross are close to each other. This is again already expected; recall that we

attributed the top-C outliers in ∆l to ∆l
class and the top-C2 outliers in ∆l to ∆l

cross.
Observe the increasing separation, with increasing depth, of the C eigenvalues of ∆l

class
from the bulk. Underlying this, the class means have larger magnitude with depth and
this causes separation. Heuristically, this figure implies that the backpropagated errors
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Figure 10: Scree plot of top eigenvalues in spectra of the backpropagated errors.
An alternative presentation of the data in Figure 9. Each row of panels corresponds to a
different dataset and each column to a different layer. Each panel depicts spectra of ∆l in
blue, ∆l

class in orange and ∆l
class + ∆l

cross in gray. Eigenvalues in each panel are normalized
by the median of {log

(
λi(∆

l
class)

)
}Ci=1. The first, fifth and eighth columns of the second row

track: (i) the emergence of the C outliers from the bulk, (ii) the emergence of the C2 outliers
from the bulk. The panels in the first row show whiskers whose edges are located at the
second largest and at the smallest eigenvalue of ∆l

class. Notice how the ratio between the
whisker edges decreases as function of depth, until a point where all eigenvalues are of similar
magnitude. The network is an eight-layer MLP with 2048 neurons in each hidden layer. For
more details, see Section 7.9.

contain strong class information in deeper layers, but this information is gradually lost during
backpropagation to successively shallower layers.

Observe in the panels of the first row the eigenvalues of ∆l
class throughout the layers. The

whiskers highlight the ratio between the second-largest and the smallest eigenvalue. Note
how this ratio decreases with depth; by the last layer, all eigenvalues are of fairly similar
magnitude. This implies the error class means are ultimately very close to being orthogonal,
but their orthogonality is gradually deteriorating as they are backpropagated throughout the
layers.
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Figure 11: Spectra of Gl, Gl
KFAC and Gl

CFAC for layer l = 8. Each panel plots the
spectrum of Gl in blue. The left panel highlights features in the spectrum of G, which
include C outliers, as well as a mini-bulk composed of C2 outliers. The main bulk in the
spectrum of the last layer features is concentrated and appears as a narrow bump around
the origin. In addition, the left panel plots the spectrum of Gl

KFAC in orange, while the right
one plots the spectrum of Gl

CFAC in yellow. Notice that outliers in the spectrum of Gl
KFAC

do not align well with outliers in the spectrum of Gl. On the other hand, notice that the C
and C2 outliers in the spectrum of Gl

CFAC do align well with corresponding outliers in the
spectrum of Gl. The network is an eight-layer MLP with 2048 neurons in each hidden layer
trained on MNIST. The y-axis is on a logarithmic scale.

7.10 Class-distinct factorized approximate curvature

Traditional quadratic optimization can be readily solved using a single Newton’s method step,
by moving in the direction of the gradient preconditioned by Hess−1. For nonlinear least
squares problems, one can utilize the Gauss–Newton algorithm, which replaces Hess−1 by
G−1 and performs several steps, instead of just one. In the context of deep neural networks,
Gauss-Newton is problematic, since the matrix of G is too large for it to be stored in memory.
Researchers would like to find other matrices that might precondition the gradient (Grosse
and Salakhudinov, 2015; Ye et al., 2018; Wang and Zhang, 2019; Xu et al., 2019; Kylasa
et al., 2019; Xu et al., 2020). For example, Martens and Grosse (2015) proposed the KFAC
matrix as a proxy for G.

Definition 7.1 (KFAC; Martens and Grosse (2015)). The KFAC matrix is defined as
follows:

GKFAC = Ave
i,c

{
hi,ch

>
i,c

}
�

∑
i,c,c′

wi,c,c′δi,c,c′δ
>
i,c,c′


= H �∆,

where � denotes Khatri-Rao product. The block diagonal KFAC matrix is given by:

Gl
KFAC = Ave

i,c

{
hli,ch

l
i,c
>}⊗

∑
i,c,c′

wi,c,c′δ
l
i,c,c′δ

l
i,c,c′

>


= H l ⊗∆l,

where ⊗ is the Kronecker product6.

6. Hence the name of their method–Kronecker-Factored Approximation of Curvature (KFAC).
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(a) MNIST

(b) FashionMNIST

(c) CIFAR10

Figure 12: Spectra of Gl, Gl
KFAC and Gl

CFAC. Each subfigure corresponds to one specific
dataset. Each row of panels corresponds to one specific layer. In each panel, the spectrum of
Gl is plotted in blue. The first column of panels plots the spectrum of Gl

KFAC in orange,
while the second column of panels plots the spectrum of GCFAC in yellow. Notice how the
spectra of Gl and Gl

KFAC do not align well, as evident by the lack of agreement of blue and
orange outliers, mini-bulks and main bulks. Conversely, notice how the spectra of Gl and
Gl

CFAC align much better, especially at deeper layers. At the seventh and eighth layers of
CIFAR10, the outliers and mini-bulks in the spectra of Gl and Gl

CFAC align almost perfectly.
In other cases, such as the sixth and seventh layers of FashionMNIST, the outliers in the
spectra of Gl and Gl

CFAC align up to a small shift. In some shallower layers, such as the
third layer of MNIST, the outliers in the spectrum of Gl align with those in the spectrum
of Gl

CFAC. In other cases, such as the second layer of CIFAR10, the misalignment of the
outliers in the spectra of Gl and Gl

CFAC is as bad as the misalignment between the outliers
of Gl and Gl

KFAC. The network is an eight-layer MLP with 2048 neurons in each hidden
layer. The y-axis is on a logarithmic scale. 30
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The idea of using Kronecker-based preconditioners can be traced to earlier works by Van Loan
and Pitsianis (1993), and the use of a block-diagonal approximation can be traced back to
Collobert and Bengio (2004). KFAC has proven to be very useful in practice, and since its
conception several generalizations and applications were proposed for it (Grosse and Martens,
2016; Ba et al., 2016; Wu et al., 2017b,a; Wang et al., 2019).

Tools developed in this present work can be used to study the spectra of these matrices,
and thereby to also understand the extent (or not) of agreement between the spectra of G
and GKFAC. When we apply our attribution tools (see left panels of Figures 11 and 12),
we notice very distinct failures of approximation. GKFAC has its mini-bulks and outliers
drastically misaligned from those of G. We propose an alternative approximation for G.

Definition 7.2 (Class-distinct Factorized Approximate Curvature). The CFAC ma-
trix is given by:

GCFAC = Ave
c
Hc �∆c,

and the block diagonal CFAC matrix is given by:

Gl
CFAC = Ave

c
H l

c ⊗∆l
c.

7.11 CFAC is a better proxy for G than KFAC

In Figure 11 we compare the spectra of Gl, Gl
KFAC and Gl

CFAC for the last layer of an MLP
trained on MNIST. Inspection reveals that the spectra of Gl

CFAC and Gl align much better
than do those of Gl

KFAC and Gl. In Figure 12, we perform a more comprehensive comparison,
which considers all the layers of the MLP across three canonical datasets. At deeper layers,
the spectra of Gl

CFAC and Gl again align much better than GKFAC and Gl. At shallower
layers, improvement in alignment depends on the dataset.

7.12 Relating the class/cross-class structure in the features, backpropagated
errors and G

Recall that G, H and ∆ all have C-dimensional eigenspaces attributable to the class-specific
mean structure. In KFAC, each of the C features class means would be Khatri-Rao-multiplied
by each of the C error class means. In other words, the feature mean of one class would
be multiplied by the error mean of another class. In CFAC, on the other hand, the feature
mean of a class would only be multiplied by the error mean of that class.

The previous subsection suggests that the class means of gradients, which cause the
outliers in G, can be approximated as the Khatri-Rao product of the C feature class means
and the C error class means, i.e.,

gc ≈ δc � hc.

Moreover, the C2 cross-class means causing the other visible outliers can be approximated as
the Khatri-Rao product of the C feature class means and the C2 error cross-class means, i.e.,

gc,c′ ≈ δc,c′ � hc.
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lo
g
s(
W

l )

log s(W l ∦ W l
class)

Figure 13: Attribution via knockouts of spectral features in the spectrum of the
weights. Each row of panels corresponds to a specific dataset and each column to a specific
layer. Each panel shows a scatter plot of the top 150 log singular values of W l versus those
of W l ∦W l

class. The black curve within each panel is the identity line. The top-C outliers
are marked in blue; other singular values are marked in orange. The fourth column of the
first row shows the C outliers, attributable to the between-class covariance, W l

class, and the
bulk, attributable to the within-class covariance, W l

within. The second column of the third
row shows the biggest outlier, which is attributable to the global mean, δGh>G. The third
and fourth columns of the third row show the layer in which the C outliers separate from
the bulk. The network is an eight-layer MLP with 2048 neurons in each hidden layer. For
plotting purposes, values on the x-axis and y-axis are normalized to the range [0, 1]. See
Section 7.13 for further details.

7.13 Relating the class structure in features, backpropagated errors and
weights

In this subsection we assume a weight decay regularization is used to train the network.
Recalling Equation (7.1), the gradient of the loss with respect to the l’th layer weight matrix
W l is given by

∂L(θ)

∂W l
= Ave

i,c

∂`(f(xi,c;θ),yc)

∂W l
= Ave

i,c
δli,c,ch

l−1
i,c

>
+ ηW l.

Setting the above gradient to zero, we obtain

W l = −1

η
Ave
i,c
δli,c,ch

l−1
i,c

>
.
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Define the between-class weight matrix

W l
class = −1

η
Ave
c
δlc,ch

l−1
c
>
,

where
δlc,c = Ave

i
δli,c.

In Figure 13 we attribute via knockouts the top C outliers in the spectrum of W l to
the spectrum of W l

class. Similarly we could attribute via knockouts the largest of these
C outliers to the second moment of the global mean. Specifically, Figure 7 shows scatter
plots of singular values of W l versus those of W l ∦ W l

class (here we use the definition of
projection knockouts for non-square matrices). The last column of the second row illustrates
the projection of a blue and an orange point on the x- and y-axes. The projections on the
y-axis are well-separated, which implies the spectrum ofW l has C outliers, corresponding to
the blue points, which are separated from a bulk, corresponding to the orange points. The
projections onto the x-axis are not well-separated, which implies that the outliers if any, are
largely eliminated after the knockout procedure. Since the knockout eliminated the outliers,
these would-be outliers are attributed to the matrix we knocked out, i.e., W l

class. Notice
how the orange points are situated along the identity line, which means the bulk of the
spectrum is unaffected by the knockout procedure, whereas the blue points, corresponding to
the top-C singular values, deviate substantially from the identity line. In fact, in the last
few columns they deviate so much that they separate from the orange points, as shown by
the third and fourth panels of the third row. This implies a ‘bulk-and-outliers’ pattern exists
in the spectrum of W l, and the outliers emerge from the bulk as we move towards deeper
layers.

8. Multinomial logistic regression

The emergence of the pattern in Figure 1 is not restricted to spectra originating from deep
neural networks, as it already appears in simpler examples. In this section, we study the
spectrum of the FIM of a multinomial logistic regression classifier trained on Gaussian
Mixture Model data in order to obtain intuitive understanding of (i) the different components
in the spectrum ofG; and (ii) the relation between these components and the misclassification
error.

Since the top layer of a deep network is equivalent to a multinomial logistic regression
model, one could think of this section as studying the spectrum of the partial FIM associated
with just the top layer, assuming that all lower layers are fixed and the last-layer features
are distributed as a Gaussian Mixture Model.

8.1 FIM of multinomial logistic regression

Assuming our network is a multinomial logistic regression classifier, we have

f(xi,c;θ) = Wxi,c, θ = vec(W ),

where we denoted by vec(·) the operator forming a vector from a matrix by stacking its
columns as subvector blocks within a single vector. Denote by ⊗ the Kronecker product.
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Using the property of Kronecker products, vec(AB) = (B> ⊗ IC) vec(A), we can rewrite
the classifier as follows:

f(xi,c;θ) = Wxi,c = (x>i,c ⊗ IC) vec(W ) = (x>i,c ⊗ IC)θ.

The above implies that
∂f(xi,c;θ)

∂θ

>
= xi,c ⊗ IC ,

and also
∂2`(z,yc)

∂z2

∣∣∣∣∣
zi,c

= diag(pi,c)− pi,cp>i,c,

where pi,c ∈ RC denotes the predicted probability vector of the i’th example belonging to
the c’th class. The above identity was proven by Böhning (1992). Plugging these into the
definition of G in Equation (5.1), we obtain

G = Ave
i,c

{
(xi,c ⊗ IC)(diag(pi,c)− pi,cp>i,c)(xi,c ⊗ IC)>

}
.

8.2 Spectrum of FIM under generative model setting

Definition 8.1 (Canonical classification model). An instance of the canonical
classification model CCM(D,C) consists of the following components:

• C canonical vector class means, ec ∈ RD i.e.,

ec = [0, . . . , 0, 1︸︷︷︸
index c

, 0, . . . , 0].

• NC independently normally distributed D-dimensional sample deviations:

zi,c ∼ N (0, I), 1 ≤ c ≤ C, 1 ≤ i ≤ N.

• A scalar representing the signal-to-noise ratio t.

The above give rise to a set {xi,c}i,c obeying the class block structure, whose elements
satisfy:

xi,c = t ec + zi,c.

As a side note, since the distribution of the sample deviations is rationally invariant, the
proofs of following claims could be easily extended to a more general case, whereby the
canonical class vector means are rotations of the ones defined above. We can further simplify
the CCM model by imposing the following assumption.
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Definition 8.2 (Symmetric probabilities). The probabilities predicted by the multi-
nomial logistic regression classifier are symmetric if the following holds:

pi,c,c′ =

{
1− α, for c = c′
α

C−1 , for c 6= c′
,

for some constant α satisfying 1
C ≤ 1− α ≤ 1, where pi,c,c′ is the probability of the i’th

example in the c’th class belonging to cross-class c′. In other words, the probabilities are
independent of the sample index i and the cross-class c′, assuming c′ 6= c. The vector of
probabilities will be denoted by p·,c. The correct classification rate 1−α is lower bounded
by 1

C – the rate obtained by randomly guessing a label out of C possibilities.

The following lemma, whose proof is deferred to Appendix B, proves that in the canonical
classification model the expected FIM admits a particularly simple form.

Lemma 8.1 (Expected FIM of multinomial logistic regression trained on
CCM). The expected FIM of multinomial logistic regression, with symmetric proba-
bilities, trained on CCM(D,C), is given by:

EG =
s

C
· blkdiag(U1, . . . ,UC ,0DC−C2) + I ⊗ Ū ,

where

s =t2

U c = diag(p·,c)− p·,cp>·,c,
Ū = Ave

c
U c,

and the operator blkdiag(·) forms a block diagonal matrix with U c in its c’th block and
zeros elsewhere.

Notice that the C ×C matrices U c are in general of rank C and the block diagonal matrix is
of rank C2. Hence, the expected FIM is a perturbation of a rank-C2 matrix. The following
theorem, proven in Appendix B, describes the spectrum of this matrix.

Theorem 8.1 (Spectrum of expected FIM of multinomial logistic regression
trained on CCM). The spectrum of the expected FIM of multinomial logistic regression,
with symmetric probabilities, trained on CCM(D,C), is given by:

λi (EG) =



α
C−1

(
s(1− α) +

(
2− α C

C−1

))
, for 1 ≤ i ≤ C

α
C−1

(
s
C +

(
2− α C

C−1

))
, for C < i ≤ C(C − 1)

α
C−1

(
2− α C

C−1

)
, for C(C − 1) < i ≤ D(C − 1)

0, for D(C − 1) < i ≤ DC

.

Notice how the spectrum has C outliers, a mini-bulk consisting of approximately C2 eigen-
values, and a main bulk.
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The expression α
C−1

(
2− α C

C−1

)
appears in all eigenvalues and is therefore irrelevant

when comparing their relative magnitudes. It is clear that the mini-bulk is bigger than the
main bulk since its eigenvalues have the additional non-negative term α

C−1
s
C . Moreover,

since we assumed 1− α > 1
C , we have that α

C−1s(1− α) > α
C−1

s
C , which implies the top-C

outliers are bigger than the mini-bulk.
Notice how increasing the squared signal-to-noise ratio s results in: (i) the separation of

the top-C outliers from the mini-bulk (because 1− α would increase); (ii) the separation of
the top-C outliers from the bulk; and (iii) the separation of the mini-bulk from the main
bulk. As such, the ratio of outliers to mini-bulk, the ratio of outliers to bulk, and the ratio
of mini-bulk to bulk are all predictive of misclassification.

9. Overview of literature in light of this paper

In light of the insights gathered throughout this work, we can now view in a different light
several papers in the literature.

9.1 Start looking at layer-wise features and backpropagated errors, stop
focusing on the Hessian

In the last year, a large amount of research effort has been devoted into investigating the
spectrum of the Hessian. This paper shows that the Hessian is the most complicated quantity
one could possibly investigate since: (a) it inherits its cross-class structure from the product
of features and backpropagated errors; (b) its cross-class structure, caused by the FIM, is
perturbed by another matrix E; and (c) it blends the information across the layers into a
single quantity. The research community should therefore move from studying the Hessian
into studying the layer-wise features and backpropagated errors.

Zhang et al. (2019) raised similar concerns, stating that the analysis of the optimization
landscape would be better performed through the study of individual layers, rather than
a single holistic quantity, such as the Hessian. Jiang et al. (2018) further motivated the
investigation of layer-wise features by showing how generalization error can be predicted
from margins of layer-wise features.

9.2 Start looking at class/cross-class means and covariances, stop looking at
eigenvalues

The most surprising contribution of this paper is that it shows the inadequacy of eigenanalysis
in revealing the fundamental structure in deep learning. It is true the spectrum reflects this
structure, as seen through the plethora of measurements made in the literature, but the
spectrum does not explain this structure, the class and cross-class means do.

Throughout this paper we consider the setting in which the number of classes C is
smaller than the dimension of features in a certain layer. However, if C is bigger than
the dimension of the features, then the spectrum would not manifest any bulk-and-outliers
structure. However, class means, cross-class means and within-cross-class covariances would
still be perfectly valid quantities to measure and study.
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Even if the number of classes is small, if the class means are not gigantic, we may see
that the spectrum has no outliers. However, the class and cross-class means are still present
in the data, they are just not visible through eigenanalysis.

9.3 The effect of batch normalization on the bulk-and-outliers structure

Ghorbani et al. (2019) claim that “batch normalization (Ioffe and Szegedy, 2015) pushes
outliers back into the bulk” and “hypothesize a mechanistic explanation for why batch
normalization speeds up optimization: it does so via suppression of outlier eigenvalues which
slow down optimization”.

This paper explains their empirical observation. Specifically, the top-C outliers in the
spectrum of the Hessian are caused by a Khatri-Rao product between the feature global mean,
hG, and backpropagated errors class means δc. The whitening step of batch normalization
subtracts the global mean from the features, which significantly decreases their class-mean
magnitude. As a result, the outliers in the Hessian are pushed back into the main bulk.
Jacot et al. (2019b) provided a similar explanation for why batch normalization accelerates
training by proving that the top outlier in the spectrum of the NTK matrix (Jacot et al.,
2018) is suppressed as a result of batch normalization.

However, the fact that these outliers are pushed back by batch normalization does not
mean they are completely removed, nor does it lessen their fundamental significance. The
outliers are caused by class means, which separate from the bulk as function of depth. They
represent the separation of class information from noise and are of utmost importance in
studying the classification performance of deep neural networks.

9.4 Flatness conjecture

Hochreiter and Schmidhuber (1997) conjectured that the flatness of the loss function around
the minima found by SGD is correlated with good generalization. Recent empirical work
by Keskar et al. (2016); Jastrzębski et al. (2017, 2018a); Jiang et al. (2019); Lewkowycz
et al. (2020) gave credence to this statement by showing, through empirical measurements,
how sharpness can predict generalization. Dinh et al. (2017) questioned this conjecture by
showing that most notions of flatness are problematic for deep models and can not be tied
to generalization. Their argument relied on the observation that one can reparametrize a
model and increase arbitrarily the sharpness of its minima, without changing the function it
implements. However, the measures of flatness considered by Dinh et al. (2017) were the
trace (sum of eigenvalues) or spectral norm (maximal eigenvalue) of the Hessian; they never
considered the separation of the outliers from the bulk in the spectrum of the Hessian which,
in light of our paper, should correlate with generalization.

10. Conclusions

There exist many fundamental objects associated with deep neural networks. No one
has any intuition about their properties, structure or behaviour. Researchers therefore
started extracting from them descriptive statistics like eigenvalues. It is remarkable such
measurements are even possible, given how high-dimensional some of these objects are. After
measuring the eigenvalues, one starts seeing a great deal of structure, which is curiously
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explicit, consisting of C outliers, C2 secondary outliers, and a main-bulk. Researchers
pointed to the existence of some of the structure or its traces. However, it has been an open
question as to what is causing this structure to appear and how to exploit it. This paper
shows there exists a specific highly organized structure and those initial observations can be
expected to persist everywhere. These are not artifacts but deeply significant observations
and understanding them is important for understanding deep learning. This is not a spandrel,
it is a clue of deep significance.
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Appendix A. Cross-class structure in G

Recall the definition of G,

G = Ave
i,c

{
∂f(xi,c)

∂θ

>∂2`(xi,c,yi,c)

∂f2

∂f(xi,c)

∂θ

}
.

Plugging the Hessian of multinomial logistic regression Böhning (1992), we obtain

G = Ave
i,c

{
∂f(xi,c)

∂θ

> (
diag(pi,c)− pi,cp>i,c

) ∂f(xi,c)

∂θ

}
.

The above can be shown to be equivalent to

G = Ave
i,c

∑
c′

pi,c,c′

(
∂fc′(xi,c)

∂θ
−
∑
c′

pi,c,c′
∂fc′(xi,c)

∂θ

)>
(
∂fc′(xi,c)

∂θ
−
∑
c′

pi,c,c′
∂fc′(xi,c)

∂θ

)}
.

Define the p-dimensional vector,

gi,c,c′ =
∂`(f(xi,c;θ),yc′)

∂θ
,

and note that

gi,c,c′ =
∂`(f(xi,c;θ),yc′)

∂θ

=
∂f(xi,c;θ)

∂θ

>∂`(f(xi,c;θ),yc′)

∂f

=
∂f(xi,c)

∂θ

>
(yc′ − pi,c)

=
∂fc′(xi,c)

∂θ
−
∑
c′

pi,c,c′
∂fc′(xi,c)

∂θ
.

Plugging the above expression into the definition of G, we get

G = Ave
i,c

{∑
c′

pi,c,c′gi,c,c′g
>
i,c,c′

}
,

or equally
G =

∑
i,c,c′

wi,c,c′gi,c,c′g
>
i,c,c′ .
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A.1 First decomposition

Recall the following definitions:

gc,c′ =
∑
i

πi,c,c′gi,c,c′

Gwithin,c,c′ =
∑
i

πi,c,c′(gi,c,c′ − gc,c′)(gi,c,c′ − gc,c′)>

πi,c,c′ =
wi,c,c′

wc,c′

wc,c′ =
∑
i

wi,c,c′ .

Note that

G =
∑
i,c,c′

wi,c,c′gi,c,c′g
>
i,c,c′

=
∑
c,c′

wc,c′
1

wc,c′

∑
i

wi,c,c′gi,c,c′g
>
i,c,c′

=
∑
c,c′

wc,c′
∑
i

πi,c,c′gi,c,c′g
>
i,c,c′

=
∑
c,c′

wc,c′(gc,c′g
>
c,c′ +Gwithin,c,c′)

=
∑
c,c′

wc,c′gc,c′g
>
c,c′ +

∑
c,c′

wc,c′Gwithin,c,c′

=
∑
c,c′

c 6=c′

wc,c′gc,c′g
>
c,c′ +

∑
c

wc,cgc,cg
>
c,c +

∑
c,c′

wc,c′Gwithin,c,c′ .

In what follows, we further decompose only the first summation in the above equation.

A.2 Second decomposition

Recall the following definitions:

gc =
∑
c′ 6=c

πc,c′gc,c′

Gcross,c =
∑
c′ 6=c

πc,c′(gc,c′ − gc′)(gc,c′ − gc′)>

πc,c′ =
wc,c′

wc

wc =
∑
c′ 6=c

wc,c′ .

40



Class/Cross-Class Structure Pervades Deep Learning

We have ∑
c,c′

c 6=c′

wc,c′gc,c′g
>
c,c′ =

∑
c

∑
c′ 6=c

wc,c′gc,c′g
>
c,c′

=
∑
c

wc
1

wc

∑
c′ 6=c

wc,c′gc,c′g
>
c,c′

=
∑
c

wc
∑
c′ 6=c

πc,c′gc,c′g
>
c,c′

=
∑
c

wc(gcg
>
c +Gcross,c)

=
∑
c

wcgcg
>
c +

∑
c

wcGcross,c.

A.3 Combination

Combining all the expressions from the previous subsections, we get

G =
∑
c

wcgcg
>
c︸ ︷︷ ︸

Gclass

+
∑
c

wcGcross,c︸ ︷︷ ︸
Gcross

+
∑
c,c′

wc,c′Gwithin,c,c′︸ ︷︷ ︸
Gwithin

+
∑
c

wc,cgc,cg
>
c,c︸ ︷︷ ︸

Gc=c′

. (A.1)

Appendix B. Multinomial logistic regression

Lemma 8.1 (Expected FIM of multinomial logistic regression trained on
CCM). The expected FIM of multinomial logistic regression, with symmetric proba-
bilities, trained on CCM(D,C), is given by:

EG =
s

C
· blkdiag(U1, . . . ,UC ,0DC−C2) + I ⊗ Ū ,

where

s =t2

U c = diag(p·,c)− p·,cp>·,c,
Ū = Ave

c
U c,

and the operator blkdiag(·) forms a block diagonal matrix with U c in its c’th block and
zeros elsewhere.

Proof Recall the definition of G:

G = Ave
i,c

{
(xi,c ⊗ IC)(diag(pi,c)− pi,cp>i,c)(xi,c ⊗ IC)>

}
.

Using our symmetric probabilities assumption, there exist C × C matrices {U c}c for which

G = Ave
i,c

{
(xi,c ⊗ IC)U c(xi,c ⊗ IC)>

}
.
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Using the property of the Kronecker product, (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD), the
expression in the above average can be simplified into:

(xi,c ⊗ IC)U c (xi,c ⊗ IC)>

= (xi,c ⊗ IC) (1⊗U c) (xi,c ⊗ IC)>

= (xi,c ⊗U c) (xi,c ⊗ IC)>

=(xi,cx
>
i,c)⊗U c.

Plugging this expression into the previous equation, we get

G = Ave
i,c

{
(xi,cx

>
i,c)⊗U c

}
.

Plugging our assumption that xi,c = tec + zi,c, we obtain

G =t2 Ave
i,c

{
(ece

>
c )⊗U c

}
+tAve

i,c

{
(ecz

>
i,c)⊗U c

}
+tAve

i,c

{
(zi,ce

>
c )⊗U c

}
+ Ave

i,c

{
(zi,cz

>
i,c)⊗U c

}
.

Taking the expectation of both sides over zi,c, we get

EG = t2 Ave
c

{
(ece

>
c )⊗U c

}
+ Ave

c
{I ⊗U c} .

The above can be written concisely as follows:

EG =
s

C
blkdiag(U1, . . . ,UC ,0DC−C2) + I ⊗Ave

c
U c.

Lemma B.1 Consider the C × C matrix,

A =


a b . . . b
b a . . . b
...

...
. . .

...
b b . . . a

 .
Its eigenvalues are given by:

λ(A) =

{
a+ b(C − 1), for i = 1
a− b, for 1 < i ≤ C

}
.
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Proof Notice that
A

1√
C
1 = (a+ b(C − 1))

1√
C
1.

As such, 1√
C
1 is an eigenvector with an eigenvalue a+ b(C − 1). Recall that the trace of a

matrix is equal to the sum of its eigenvalues. Notice that the rest of the eigenvalues are all
the same. As such, their value is equal to

Tr{A} − (a+ b(C − 1))

C − 1
=
aC − (a+ b(C − 1))

C − 1
= a− b.

Lemma B.2 Consider the C × C matrix,

B =


a b b . . . b

b d c . . . c

b c d
...

...
...

. . .
...

b c . . . . . . d

 .

Its eigenvalues are given by:

λ (B) =


(T + ∆)/2, for i = 1
(T −∆)/2, for i = 2
d− e, for 2 < i ≤ C

 .

where

T =a+ d+ e(C − 2)

D =a (d+ e (C − 2))− b2(C − 1)

∆ =
√
T 2 − 4D.

Proof Consider the (C − 1)× (C − 1) matrix,

A =


d c . . . c
c d . . . c
...

...
. . .

...
c c . . . d

 .
Its eigenvalues are given by:

λ(A) =

{
d+ c(C − 1), for i = 1
d− c, for 1 < i ≤ C − 1

}
.

Denote by v3, . . . ,vC the C − 2 eigenvectors corresponding to the eigenvalue d− c. Define
the orthonormal basis:

V =

[
e1,

1√
C
1̃,v3, . . . ,vC

]
,
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where 1̃ is a C-dimensional vector of ones, except in the first coordinate, where it is equal to
zero. In other words,

1̃ = [0, 1, . . . , 1] .

Notice that

V TBV =



a b
√
C − 1 0 0 . . . 0

b
√
C − 1 d+ c(C − 2) 0 0 . . . 0

0 0 d− c 0 . . . 0
0 0 0 d− c 0
...

...
. . .

...
0 0 0 0 . . . d− c


.

The diagonal values in the above matrix are obtained through the following equations

e>1 Be1 =a

1√
C
1̃
>B

1√
C
1̃1 =d+ c(C − 2)

viBvi =d− c, i ≥ 3.

The off-diagonal values are obtained by noticing that

e>1 B
1√
C
1̃ =b

√
C − 1

e>1 Bvi =0, i ≥ 3

v>i Bvj =0, i, j ≥ 3.

The above implies that d − c is an eigenvalue with multiplicity C − 2. The other two
eigenvalues are equal to the eigenvalues of the matrix

C =

[
a b

√
C − 1

b
√
C − 1 d+ e(C − 2)

]
.

Recall that the trace of the matrix is equal to the sum of its eigenvalues and the determinant
to the multiplication of the eigenvalues. As such,

a+ d+ e(C − 2) = Tr{C} = λ1 + λ2

a(d+ e(C − 2))− b2(C − 1) = |C| = λ1λ2.

Notice that
λ2 =

|C|
λ1

.

Plugging the above into the equation of the trace, we get

Tr{C} = λ1 +
|C|
λ1

.
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Multiplying both sides by λ1 and rearranging the terms, we obtain

0 = λ21 − Tr{C}λ1 + |C|,

the solution of which is

λ1 =
Tr{C} ±

√
Tr{C}2 − 4|C|
2

.

Defining

∆ =

√
Tr{C}2 − 4|C|,

we obtain
λ1 =

Tr{C} ±∆

2
.

Theorem 8.1 (Spectrum of expected FIM of multinomial logistic regression
trained on CCM). The spectrum of the expected FIM of multinomial logistic regression,
with symmetric probabilities, trained on CCM(D,C), is given by:

λi (EG) =



α
C−1

(
s(1− α) +

(
2− α C

C−1

))
, for 1 ≤ i ≤ C

α
C−1

(
s
C +

(
2− α C

C−1

))
, for C < i ≤ C(C − 1)

α
C−1

(
2− α C

C−1

)
, for C(C − 1) < i ≤ D(C − 1)

0, for D(C − 1) < i ≤ DC

.

Proof Consider without loss of generality the matrix U1. Using the symmetric probabilities
assumption, the (c, c′) entry of this matrix is given by:

U1(c
′, c′′) = Ave

i

{
δ{c′=c′′}pi,1,c′ − pi,1,c′pi,1,c′′

}
.

As such, the whole matrix equals

U1 =



1− α 0 0 . . . 0

0 α
C−1 0 . . . 0

0 0 α
C−1

...
...

...
. . .

...
0 0 . . . . . . α

C−1



−



(1− α)2 α(1−α)
C−1

α(1−α)
C−1 . . . α(1−α)

C−1
α(1−α)
C−1 ( α

C−1)2 ( α
C−1)2 . . . ( α

C−1)2

α(1−α)
C−1 ( α

C−1)2 ( α
C−1)2

...
...

...
. . .

...
α(1−α)
C−1 ( α

C−1)2 . . . . . . ( α
C−1)2


.
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Simplifying the expressions, we get

U1 =



α(1− α) −α(1−α)
C−1 −α(1−α)

C−1 . . . −α(1−α)
C−1

−α(1−α)
C−1

α
C−1

(
1− α

C−1

)
−( α

C−1)2 . . . −( α
C−1)2

−α(1−α)
C−1 −( α

C−1)2 α
C−1

(
1− α

C−1

) ...
...

...
. . .

...
−α(1−α)

C−1 −( α
C−1)2 . . . . . . α

C−1

(
1− α

C−1

)


.

Notice that

Ū =


a b . . . b
b a . . . b
...

...
. . .

...
b b . . . a

 ,
where

a =
1

C
α(1− α) +

C − 1

C

α

C − 1

(
1− α

C − 1

)
=
α

C

(
2− α C

C − 1

)
,

and

b =
2

C

−α(1− α)

C − 1
+
C − 2

C

−α2

(C − 1)2

=− α

C(C − 1)

(
2− α C

C − 1

)
.

Using the previous lemma, the eigenvalues of Ū are given by

λ(Ū) =

{
a+ b(C − 1), for i = 1
a− b, for 1 < i ≤ C

}
,

or equally,

λ(Ū) =

{
0, for i = 1
α

C−1

(
2− α C

C−1

)
, for 1 < i ≤ C

}
.

Recalling that
EG =

s

C
blkdiag(U1, . . . ,UC ,0(D−C)C) + I ⊗ Ū ,

we get that EG has (D − C)(C − 1) eigenvalues equal to

α

C − 1

(
2− α C

C − 1

)
, (B.1)
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and also D − C eigenvalues equal to zero. Next, notice that

s

C
U1 + Ū =


a b b . . . b

b d e . . . e

b e d
...

...
...

. . .
...

b e . . . . . . d

 ,

where

a =
s

C
α(1− α) +

α

C

(
2− α C

C − 1

)
b =− s

C

α(1− α)

C − 1
− α

C(C − 1)

(
2− α C

C − 1

)
e =− s

C

(
α

C − 1

)2

− α

C(C − 1)

(
2− α C

C − 1

)
d =

s

C

α(C − 1− α)

(C − 1)2
+
α

C

(
2− α C

C − 1

)
,

or equally,

a =
α

C

(
s(1− α) +

(
2− α C

C − 1

))
b =− α

C(C − 1)

(
s(1− α) +

(
2− α C

C − 1

))
e =− α

C(C − 1)

(
s

α

C − 1
+

(
2− α C

C − 1

))
d =

α

C

(
s
C − 1− α
(C − 1)2

+

(
2− α C

C − 1

))
.

Using the previous lemma, its eigenvalues are given by:

λ
( s
C
U1 + Ū

)
=


(T + ∆)/2, for i = 1
(T −∆)/2, for i = 2
d− e, for 2 < i ≤ C

 . (B.2)

where

T =a+ d+ e(C − 2)

D =a (d+ e (C − 2))− b2(C − 1)

∆ =
√
T 2 − 4D.
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Plugging the values of d and e and simplifying the expressions, we get

d− e =
α

C

(
s
C − 1− α
(C − 1)2

+

(
2− α C

C − 1

))
(B.3)

+
α

C(C − 1)

(
s

α

C − 1
+

(
2− α C

C − 1

))
(B.4)

=
α

C − 1

(
s

C
+

(
2− α C

C − 1

))
. (B.5)

Plugging the values into the trace, we obtain

T =
α

C

(
s(1− α) +

(
2− α C

C − 1

))
+
α

C

(
s
C − 1− α
(C − 1)2

+

(
2− α C

C − 1

))
− α

C(C − 1)

(
s

α

C − 1
+

(
2− α C

C − 1

))
(C − 2)

=
sα(1− α)

C − 1
+

α

C − 1

(
2− α C

C − 1

)
=

α

C − 1

(
s(1− α) +

(
2− α C

C − 1

))
.

Notice that

d+ e (C − 2)

=
α

C

(
s
C − 1− α
(C − 1)2

+

(
2− α C

C − 1

))
− α

C(C − 1)

(
s

α

C − 1
+

(
2− α C

C − 1

))
(C − 2)

=
α

C(C − 1)

(
s(1− α) +

(
2− α C

C − 1

))
.

As such,

a (d+ e (C − 2))

=
α

C

(
s(1− α) +

(
2− α C

C − 1

))
× α

C(C − 1)

(
s(1− α) +

(
2− α C

C − 1

))
=

α2

C2(C − 1)

(
s(1− α) +

(
2− α C

C − 1

))2

.
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Notice also that

b2(C − 1)

=

(
α

C(C − 1)

(
s(1− α) +

(
2− α C

C − 1

)))2

(C − 1)

=
α2

C2(C − 1)

(
s(1− α) +

(
2− α C

C − 1

))2

.

Combining the two previous expressions, we get the determinant is equal to zero,

D =a (d+ e (C − 2))− b2(C − 1)

=
α2

C2(C − 1)

(
s(1− α) +

(
2− α C

C − 1

))2

− α2

C2(C − 1)

(
s(1− α) +

(
2− α C

C − 1

))2

=0.

Hence,

∆ =
√
T 2 − 4D = T.

One of the eigenvalues of s
CU1 + Ū is zero, since

T −∆

2
=
T − T

2
= 0, (B.6)

while the other is equal to

T + ∆

2
=
T + T

2
= T =

α

C − 1

(
s(1− α) +

(
2− α C

C − 1

))
. (B.7)

Plugging Equations (B.3), (B.7) and (B.6) into Equation (B.2), we get

λ
( s
C
U1 + Ū

)
=


α

C−1

(
s(1− α) +

(
2− α C

C−1

))
, for i = 1

α
C−1

(
s
C +

(
2− α C

C−1

))
, for 1 < i < C

0, for i = C

 .

Recall that the spectrum of s
CU c + Ū does not depend on c. As such, the spectrum of

s
C blkdiag(U1, . . . ,UC) + I ⊗ Ū is obtained by simply multiplying the multiplicity of each
eigenvalue in s

CU1 + Ū by C, i.e.,

λ
( s
C

blkdiag(U1, . . . ,UC) + I ⊗ Ū
)

=


α

C−1

(
s(1− α) +

(
2− α C

C−1

))
, for 1 ≤ i ≤ C

α
C−1

(
s
C +

(
2− α C

C−1

))
, for C < i ≤ C(C − 1)

0, for C(C − 1) < i ≤ C2

 .
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Combining the above with Equation (B.1), we conclude

λi (EG) = λi

( s
C

blkdiag(U1, . . . ,UC ,0(D−C)C) + I ⊗ Ū
)

=



α
C−1

(
s(1− α) +

(
2− α C

C−1

))
, for 1 ≤ i ≤ C

α
C−1

(
s
C +

(
2− α C

C−1

))
, for C < i ≤ C(C − 1)

α
C−1

(
2− α C

C−1

)
, for C(C − 1) < i ≤ D(C − 1)

0, for D(C − 1) < i ≤ DC


.

Appendix C. Tools from numerical linear algebra

Our approach for approximating the spectrum of the Hessian (and similarly other quantities)
builds on the survey of Lin et al. (2016), which discussed several different methods for
approximating the density of the spectrum of large linear operators; many of which were
first developed by physicists and chemists in quantum mechanics starting from the 1970’s
(Ducastelle and Cyrot-Lackmann, 1970; Wheeler and Blumstein, 1972; Turek, 1988; Drabold
and Sankey, 1993). From the methods presented therein, we implemented and tested two:
the Lanczos method and KPM. From our experience Lanczos was effective and useful, while
KPM was temperamental and problematic. As such, we focus in this work on Lanczos.

(a) MNIST, train (b) Fashion, train (c) CIFAR10, train (d) CIFAR100, train

(e) MNIST, test (f) Fashion, test (g) CIFAR10, test (h) CIFAR100, test

Figure 14: Spectrum of the Hessian for VGG11 trained on various datasets. Each
panel corresponds to a different famous dataset in deep learning. The spectrum was approxi-
mated using LanczosApproxSpec. Unlike the figure in the main manuscript, the top-C
eigenspace was not removed using LowRankDeflation.
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C.1 SlowLanczos

The Lanczos algorithm (Lanczos, 1950) computes the spectrum of a symmetric matrix
A ∈ Rp×p by first reducing it to a tridiagonal form T p ∈ Rp×p and then computing the
spectrum of that matrix instead. The motivation is that computing the spectrum of a
tridiagonal matrix is very efficient, requiring only O(p2) operations. The algorithm works
by progressively building an adapted orthonormal basis V m ∈ Rp×m that satisfies at each
iteration the relation V >mAV m = Tm, where Tm ∈ Rm×m is a tridiagonal matrix. For
completeness, we summarize its main steps in Algorithm 1.

Algorithm 1: SlowLanczos(A)

Input: Linear operator A ∈ Rp×p with spectrum in the range [−1, 1].
Result: Eigenvalues and eigenvectors of the tridiagonal matrix T p.
for m = 1, . . . , p do

if m == 1 then
sample v ∼ N (0, I);
v1 = v1

‖v1‖2 ;
w = Av1;

else
w = Avm − βm−1vm−1;

end
αm = v>mw;
w = w − αmvm;
/* reorthogonalization */
w = w − V mV

>
mw;

βm = ‖w‖2;
vm+1 = w

βm
;

end

T p =


α1, β1,
β1, α2, β2,

β2, α3,
. . . βp−1
βp−1 αp

;
{θm}pm=1, {ym}

p
m=1 = eig(T p);

return {θm}pm=1, {ym}
p
m=1;

C.2 Complexity of SlowLanczos

Assume without loss of generality we are computing the spectrum of the train Hessian. Each
of the p iterations of the algorithm requires a single Hessian-vector multiplication, incurring
O(Np) complexity. The complexity due to all Hessian-vector multiplications is therefore
O(Np2). The m’th iteration also requires a reorthogonalization step, which computes the
inner product of m vectors of length p and costs O(mp) complexity. Summing this over

51



Papyan

the iterations, m = 1, . . . , p, the complexity incurred due to reorthogonalization is O(p3).
The total runtime complexity of the algorithm is therefore O(Np2 + p3). As for memory
requirements, the algorithm constructs a basis V p ∈ Rp×p and as such its memory complexity
is O(p2). Since p is in the order of magnitude of millions, both time and memory complexity
make SlowLanczos impractical.

Algorithm 2: FastLanczos(A,M)

Input: Linear operator A ∈ Rp×p with spectrum in the range [−1, 1].
Number of iterations M .

Result: Eigenvalues and eigenvectors of the tridiagonal matrix Tm.
for m = 1, . . . ,M do

if m == 1 then
sample v ∼ N (0, I);
v = v

‖v‖2 ;
vnext = Av;

else
vnext = Av − βm−1vprev;

end
αm = v>nextv;
vnext = vnext − αmv;
βm = ‖vnext‖2;
vnext = vnext

βm
;

vprev = v;
v = vnext;

end

TM =


α1, β1,
β1, α2, β2,

β2, α3,
. . . βM−1

βM−1 αM

;
{θm}Mm=1, {ym}Mm=1 = eig(TM );
return {θm}Mm=1, {ym}Mm=1;

C.3 Spectral density estimation via FastLanczos

As a first step towards making Lanczos suitable for the problem we attack in this paper,
we remove the reorthogonalization step in Algorithm 1. This allows us to save only three
terms–vprev, v and vnext–instead of the whole matrix V m ∈ Rp×m (see Algorithm 2). This
greatly reduces the memory complexity of the algorithm at the cost of a nuisance that is
discussed in Section C.5. Moreover, it removes the O(p3) term from the runtime complexity.

In light of the runtime complexity analysis in the previous subsection, it is clear that
running Lanczos for p iterations is impractical. Realizing that, the authors of Lin et al.
(2016) proposed to run the algorithm for M � p iterations and compute an approximation
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Algorithm 3: LanczosApproxSpec
(A,M,K, nvec, κ)

Input: Linear operator A ∈ Rp×p with spectrum in the range [−1, 1].
Number of iterations M .
Number of points K.
Number of repetitions nvec.

Result: Density of the spectrum of A evaluated at K evenly distributed points in
the range [−1, 1].

for l = 1, . . . , nvec do
{θlm}Mm=1, {ylm}Mm=1 = FastLanczos(A,M);

end
{tk}Kk=1 = linspace(−1, 1,K);
for k = 1, . . . ,K do

σ = 2

(M−1)
√

8 log(κ)
;

φk = 1
nvec

∑nvec
l=1

∑M
m=1 y

l
m[1]

2
gσ(t− θlm)

end
return {φk}Kk=1;

to the spectrum based on the eigenvalues {θm}Mm=1 and eigenvectors {ym}Mm=1 of TM .
Denoting by ym[1] the first element in ym, their proposed approximation was φ̂(t) =∑M

m=1 ym[1]2gσ(t − θlm), where gσ(t − θlm) is a Gaussian with width σ centered at θlm.
Intuitively, instead of computing the true spectrum φ(t) = 1

p

∑p
i=1 δ(t− λi), their algorithm

computes only M � p eigenvalues and replaces each with a Gaussian bump. They further
proposed to improve the approximation by starting the algorithm from several different
starting vectors, vl1, l = 1, . . . , nvec, and averaging the results. We summarize FastLanczos
in Algorithm 2 and LanczosApproxSpec in Algorithm 3.

C.4 Complexity of FastLanczos

Each of the M iterations requires a single Hessian-vector multiplication. As previously
mentioned, this product requires O(Np) complexity. The total runtime complexity of
the algorithm is therefore O(MNp) (for nvec = 1). Although the complexity might seem
equivalent to that of training a model from scratch for M epochs, this is not the case. The
batch size used for training a model is usually limited (128 in our case) so as to no deteriorate
the model’s generalization. Such limitations do not apply to FastLanczos, which can
utilize the largest possible batch size that fits into the GPU memory (1024 in our case). As
for memory requirements; we only save three vectors and as such the memory complexity is
merely O(p).

C.5 Reorthogonalization

Under exact arithmetic, the Lanczos algorithm constructs an orthonormal basis. However,
in practice the calculations are performed in floating point arithmetic, resulting in loss of
orthogonality. This is why the reorthogonalization step in Algorithm 1 was introduced in the
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first place. From our experience, we did not find the lack of reorthogonalization to cause
any issue, except for the known phenomenon of appearance of “ghost” eigenvalues–multiple
copies of eigenvalues, which are unrelated to the actual multiplicities of the eigenvalues.
Despite these, in all the toy examples we ran on synthetic data, we found that our method
approximates the spectrum well, as is shown in Figure 15.

(a) Verification of FastLanczos. Ap-
proximating the spectrum of a matrix Y ∈
R2000×2000, sampled from the distribution Y =
X + 1

2000ZZ
>, where X1,1 = 5, X2,2 = 4,

X3,3 = 3, Xi,j = 0 elsewhere and the entries
of Z ∈ R2000×2000 are standard normally dis-
tributed.

(b) Verification of FastLanczos for ap-
proximating the log-spectrum. Approximat-
ing the log-spectrum of a matrix Y ∈ R1000×1000,
sampled from the distribution Y = 1

1000ZZ
>,

where the entries of Z ∈ R500×1000 are dis-
tributed i.i.d Pareto with index α = 1. This
type of matrices are known to have a power law
spectral density.

Figure 15: Verification of spectrum approximation on synthetic data. The eigenval-
ues obtained from eigenvalue decomposition are plotted in blue color in a histogram with
100 bins. Our spectral approximation is plotted on top as a red line. In both the left and
the right plots we average over nvec = 10 initial vectors.

C.6 Normalization

As a first step towards approximating the spectrum of a large matrix, we renormalize its
range to [−1, 1]. This can be done using any method that allows to approximate the maximal
and minimal eigenvalue of a matrix–for example, the power method. In this work we follow
the method proposed in Lin et al. (2016). This normalization has the benefit of allowing us
to set σ to a fixed number, which does not depend on the specific spectrum approximated.
We summarize the procedure in Algorithm 4.

C.7 Spectral density estimation of f(A)

Figure 16a approximates the spectrum of E, showing that it is approximately linear on a
log-log plot. A better idea would have been to approximate the spectrum of log(|E|) in the
first place (the absolute value is due to E being symmetric about the origin), since this would
lead to a more precise estimate. Mathematically speaking, this amounts to approximating
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Algorithm 4: Normalization(A,M0, τ)

Input: Linear operator A ∈ Rp×p.
Number of iterations M0.
Margin percentage τ .

Result: Linear operator A ∈ Rp×p with spectrum in the range [−1, 1].
/* approximate minimal and maximal eigenvalues */
{θm}M0

m=1, {ym}
M0
m=1 = FastLanczos(A,M0);

λmin = θ1 − ‖(A− θ1I)y1‖;
λmax = θM0 + ‖(A− θM0I)yM0‖;
/* add margin */
∆ = τ(λmax − λmin);
λmin = λmin −∆;
λmax = λmax + ∆;
/* normalized operator */
c = λmin+λmax

2 ;
d = λmax−λmin

2 ;
return A−cI

d ;

the measure Pr(log(|λ|))d log(|λ|) instead of Pr(λ)dλ. Using change of measure arguments,
we have

Pr(log(|λ|))d log(|λ|) = Pr(log(|λ|))d log(|λ|)
d|λ|

d|λ| = Pr(log(|λ|)) 1

|λ|
d|λ|.

Following the ideas presented in Section C.3, the above can be approximated as

M∑
m=1

ym[1]2
1

θlm
gσ(|λ| − log

(
θlm

)
).

Implementation-wise, all that is required is to replace θlm with log
(
θlm
)
in Algorithm 3,

scale the Gaussian bumps by 1
θlm

, and to apply log on |λmin| and |λmax| before adding the
margin in Algorithm 4. In practice, we apply f = log(|λ|+ ε), where ε is a small constant
added for numerical stability. Figure 16b shows the outcome of such procedure. The idea of
approximating the log of the spectrum (or any function of it) is inspired by a recent work of
Ubaru et al. (2017), which suggests a method for approximating Tr{f(A)} using Lanczos and
comments that similar ideas could be used for approximating functions of matrix spectra.

C.8 SubspaceIteration

The spectrum of the Hessian follows a bulk-and-outliers structure. Moreover, the number of
outliers is approximately equal to C, the number of classes in the classification problem. It
is therefore natural to extract the top C outliers using, for example, the subspace iteration
algorithm, and then to apply LanczosApproxSpec on a rank C deflated operator to
approximate the bulk. We demonstrate the benefits of SubspaceIteration in Figure 17
and summarize its steps in Algorithm 5. The runtime complexity of SubspaceIteration
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(a) Spectrum of E on a logarithmic x-axis
scale

(b) Spectrum of log(E)

Figure 16: Tail properties of E. Spectrum of the test E for VGG11 trained on MNIST
sub-sampled to 1351 examples per class. On the left we approximate the spectrum of E
and plot it on a logarithmic x-axis. The positive eigenvalues of E are plotted in red and
the absolute value of the negative ones in blue. Notice how the spectrum is almost perfectly
symmetric about the origin. Fitting a power law trend on part of the spectrum results in
a fit φ = 1.2×10−4 |λ|−2.7 with an R2 of 0.99. On the right we approximate the spectrum
of log(E). Fitting a power law trend results in a fit φ = 2.6×10−4 |λ|−2.2 with an R2 of
0.99. These spectra can not originate from Wigner’s semicircle law, nor other classical RMT
distributions

Algorithm 5: SubspaceIteration(A, C, T )

Input: Linear operator A ∈ Rp×p.
Rank C.
Number of iterations T .

Result: Eigenvalues {λc}Cc=1.
Eigenvectors {vc}Cc=1.

for c = 1, . . . , C do
sample vc ∼ N (0, I);
vc = vc

‖vc‖2 ;
end
Q = QR(V );
for t = 1, . . . , T do

V = AQ;
Q = QR(V );

end
for c = 1, . . . , C do

λc = ‖vc‖2
end
return {λc}Cc=1, {vc}Cc=1

is O(TC2Np), T being the number of iterations, which is C2 times higher than that of
FastLanczos.
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Figure 17: Benefits of low rank deflation using subspace iteration. Spectrum of the
train Hessian for ResNet18 trained on MNIST with 136 examples per class. Top panel:
SubspaceIteration followed by LanczosApproxSpec. Bottom panel: LanczosAp-
proxSpec only. Notice how the top eigenvalues at the top panel align with the outliers in
the bottom panel. Low rank deflation allows for precise detection of outlier location and
improved ‘resolution’ of the bulk distribution.

Appendix D. Experimental details

D.1 Training networks

We present here results from training the VGG11 (Simonyan and Zisserman, 2014) and
ResNet18 (He et al., 2016) architectures on the MNIST (LeCun et al., 2010), FashionMNIST
(Xiao et al., 2017), CIFAR10 and CIFAR100 (Krizhevsky and Hinton, 2009) datasets. We
use stochastic gradient descent with 0.9 momentum, 5×10−4 weight decay and 128 batch size.
We train for 200 epochs in the case of MNIST and FashionMNIST and 350 in the case of
CIFAR10 and CIFAR100, annealing the initial learning rate by a factor of 10 at 1/3 and 2/3
of the number of epochs. For each dataset and network, we sweep over 100 logarithmically
spaced initial learning rates in the range [0.25, 0.0001] and pick the one that results in the
best test error in the last epoch. For each dataset and network, we repeat the previous
experiments on 20 training sample sizes logarithmically spaced in the range [10, 5000].

We also train an eight-layer multilayer perceptrons (MLP) with 2048 neurons in each
hidden layer on the same datasets. We use the same hyperparameters, except we train for
350 epochs for all datasets and optimize the initial learning rate over 25 logarithmically
spaced values.

The massive computational experiments reported here were run painlessly using Cluster-
Job and ElastiCluster (Monajemi and Donoho, 2015; Monajemi et al., 2017, 2019).
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D.2 Analyzing the spectra

For each operator A, we begin by computing Normalization(A,M0=32, τ=0.05). We
then approximate the spectrum using LanczosApproxSpec(A,M,K=1024, nvec=1, κ=3),
where M ∈ {128, 256}. Finally, we denormalize the spectrum into its original range (which
is not [−1, 1]). Optionally, we apply the above steps on a rank-C deflated operator obtained
using
SubspaceIteration(A, C, T=128). Optionally, we compute the log-spectrum, in which
case we use M=2048 iterations and a different value of κ.

D.3 Removing sources of randomness

The methods we employ in this paper–including Lanczos and subspace iteration–assume
deterministic linear operators. As such, we train our networks without preprocessing the
input data using random flips or crops. Moreover, we replace dropout layers (Srivastava et al.,
2014) with batch normalization ones (Ioffe and Szegedy, 2015) in the VGG architecture. The
batch normalization layers are always set to “test mode”.
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