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Abstract

This work initiates a general study of learning and generalization without the i.i.d. assump-
tion, starting from first principles. While the traditional approach to statistical learning
theory typically relies on standard assumptions from probability theory (e.g., i.i.d. or sta-
tionary ergodic), in this work we are interested in developing a theory of learning based
only on the most fundamental and necessary assumptions implicit in the requirements of
the learning problem itself. We specifically study universally consistent function learning,
where the objective is to obtain low long-run average loss for any target function, when the
data follow a given stochastic process. We are then interested in the question of whether
there exist learning rules guaranteed to be universally consistent given only the assumption
that universally consistent learning is possible for the given data process. The reasoning
that motivates this criterion emanates from a kind of optimist’s decision theory, and so
we refer to such learning rules as being optimistically universal. We study this question
in three natural learning settings: inductive, self-adaptive, and online. Remarkably, as
our strongest positive result, we find that optimistically universal learning rules do indeed
exist in the self-adaptive learning setting. Establishing this fact requires us to develop new
approaches to the design of learning algorithms. Along the way, we also identify concise
characterizations of the family of processes under which universally consistent learning is
possible in the inductive and self-adaptive settings. We additionally pose a number of
enticing open problems, particularly for the online learning setting.

Keywords: statistical learning theory, universal consistency, nonparametric estimation,
stochastic processes, non-stationary processes, generalization, online learning

1. Introduction

At least since the time of the ancient Pyrrhonists, it has been observed that learning in
general is sometimes not possible. Rather than turning to radical skepticism, modern learn-
ing theorists have preferred to introduce constraining assumptions, under which learning
becomes possible, and have established positive guarantees for various learning strategies
under these assumptions. However, much of the learning theory literature has been based
on standard assumptions imported from the probability theory literature, rather than be-
ing rooted in a principled approach to the learning problem itself. This is typified by the
overwhelming reliance on the assumption that training samples are independent and iden-
tically distributed, or resembling this (e.g., stationary ergodic). While such assumptions
are known to be sufficient for learning due to their convenient convergence properties (i.e.,
laws of large numbers), it is clear that they are not necessary for learning. In the present
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work, we revisit the issue of the assumptions at the foundation of statistical learning theory,
starting from first principles, without relying on traditional probabilistic assumptions about
the data, such as independence and stationarity (which will be recovered as special cases).

We approach this via a kind of optimist’s decision theory, reasoning that if we are
tasked with achieving a given objective O in some scenario, then already we have implicitly
committed to the assumption that achieving objective O is at least possible in that scenario.
We may therefore rely on this assumption in our strategy for achieving the objective. We
are then most interested in strategies guaranteed to achieve objective O in all scenarios
where it is possible to do so: that is, strategies that rely only on the assumption that
objective O is achievable. Such strategies have the satisfying property that, if ever they fail
to achieve the objective, we may rest assured that no other strategy could have succeeded,
so that nothing was lost.

Thus, in approaching the problem of learning (suitably formalized), we may restrict
focus to those scenarios in which learning is possible. This assumption — that learning is
possible — essentially represents a most “natural” assumption, since it is necessary for a
theory of learning. Concretely, in this work, we initiate this line of exploration by focusing
on (arguably) the most basic type of learning problem: universal consistency in learning
a function. Following the optimist’s reasoning above, we are interested in determining
whether there exist optimistically universal learners, in the sense that they are guaranteed
to be universally consistent given only the assumption that universally consistent learning is
possible under the given data process: that is, they are universally consistent under all data
processes that admit the existence of universally consistent learners. We find that, in certain
learning protocols, such optimistically universal learners do indeed exist, and we provide a
construction of such a learning rule. Interestingly, it turns out that not all learning rules
consistent under the i.i.d. assumption satisfy this type of universality, so that this criterion
can serve as an informative desideratum in the design of learning methods. Along the way,
we are also interested in expressing concise necessary and sufficient conditions for universally
consistent learning to be possible under a given data process.

We specifically consider three natural learning settings — inductive, self-adaptive, and
online — distinguished by the level of access to the data available to the learner. In
all three settings, we suppose there is an unknown target function f? and a sequence of
data (X1, Y1), (X2, Y2), . . . with Yt = f?(Xt),

1 of which the learner is permitted to observe
the first n samples (X1, Y1), . . . , (Xn, Yn): the training data. Based on these observations,
the learner is tasked with producing a predictor fn. The performance of the learner is
determined by how well fn(Xt) approximates the (unobservable) Yt value for data (Xt, Yt)
encountered in the future (i.e., t > n).2 To quantify this, we suppose there is a loss function
`, and we are interested in obtaining a small long-run average value of `(fn(Xt), Yt). A
learning rule is said to be universally consistent under the process {Xt} if it achieves this
(almost surely, as n→∞) for all target functions f?.3

The three different settings are then formed as natural variants of this high-level descrip-
tion. The first is the basic inductive learning setting, in which fn is fixed after observing the

1. Later we also discuss extensions to allow noisy responses Yt.
2. Of course, in certain real learning scenarios, these future Yt values might never actually be observable,

and therefore should be considered merely as hypothetical values for the purpose of theoretical analysis.
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initial n samples, and we are interested in obtaining a small value of 1
m

∑n+m
t=n+1 `(fn(Xt), Yt)

for all large m. This inductive setting is perhaps the most commonly-studied in the prior
literature on statistical learning theory (see e.g., Devroye, Györfi, and Lugosi, 1996). The
second setting is a more-advanced variant, which we call self-adaptive learning, in which
fn may be updated after each subsequent prediction fn(Xt), based on the additional (un-
labeled) test observations Xn+1, . . . , Xt: that is, it continues to learn from its test data. In
this case, denoting by fn,t the predictor after observing (X1, Y1), . . . , (Xn, Yn), Xn+1, . . . , Xt,
we are interested in obtaining a small value of 1

m

∑n+m
t=n+1 `(fn,t−1(Xt), Yt) for all large m.

In principle, self-adaptive learning should be possible in many common learning scenar-
ios where the test data are observed sequentially, such as in pattern recognition based on
a data stream from a camera or other sensors. This setting is related to several others
studied in the literature, including semi-supervised learning (Chapelle, Schölkopf, and Zien,
2010), transductive learning (Vapnik, 1982, 1998), and (perhaps most-closely related) the
problems of domain adaptation and covariate shift (Huang, Smola, Gretton, Borgwardt,
and Schölkopf, 2007; Cortes, Mohri, Riley, and Rostamizadeh, 2008; Ben-David, Blitzer,
Crammer, Kulesza, Pereira, and Vaughan, 2010; Hanneke and Kpotufe, 2019). Finally, the
strongest setting considered in this work is the online learning setting, in which, after each
prediction fn(Xt), the learner is permitted to observe Yt and update its predictor fn. We
are then interested in obtaining a small value of 1

m

∑m−1
n=0 `(fn(Xn+1), Yn+1) for all large

m. This is a particularly strong setting, since it requires that the supervisor providing the
Yt responses remains present in perpetuity. Nevertheless, this is sometimes the case to a
certain extent (e.g., in forecasting problems), and consequently the online setting has re-
ceived considerable attention (e.g., Littlestone, 1988; Haussler, Littlestone, and Warmuth,
1994; Cesa-Bianchi and Lugosi, 2006; Ben-David, Pál, and Shalev-Shwartz, 2009; Rakhlin,
Sridharan, and Tewari, 2015).

Our most-complete result is for the self-adaptive setting, where we propose a new learn-
ing rule and prove that it is universally consistent under every data process {Xt} for which
there exist universally consistent self-adaptive learning rules. As discussed above, we refer
to this property as being optimistically universal. The learning rule achieving this is de-
scribed at a high level in Section 1.2 and is formally defined in Section 5.1. Interestingly,
we also prove that there is no optimistically universal inductive learning rule, so that the
additional ability to learn from the (unlabeled) test data is crucial. For both inductive
and self-adaptive learning, we also prove that the family of processes {Xt} that admit the
existence of universally consistent learning rules is completely characterized by a simple
condition on the tail behavior of empirical frequencies (Condition 1 below). In particu-
lar, since the same condition characterizes this family of processes for both inductive and
self-adaptive learning, this also means that these two families are equal. In contrast, we
find that the family of processes admitting the existence of universally consistent online
learning rules forms a strict superset of these other two families. However, beyond this,
the treatment of the online learning setting in this work remains incomplete, and leaves a
number of enticing open problems regarding whether or not there exist optimistically uni-

3. Technically, to be consistent with the terminology used in the literature on universal consistency, we
should qualify this as “universally consistent for function learning,” to indicate that Yt is a fixed function
of Xt. We omit this qualification and simply write “universally consistent” for brevity. The more-general
case of random variable pairs (Xt, Yt), where Yt may be noisy, will be discussed in Section 9.
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versal online learning rules, and concisely characterizing the family of processes admitting
the existence of universally consistent online learners. In addition to results about learning
rules, we also argue that there is no consistent hypothesis test for whether a given process
admits the existence of universally consistent learners (in any of these settings), indicat-
ing that the possibility of learning must indeed be considered an assumption, rather than
merely a verifiable hypothesis. The above results are all established for general bounded
losses. We also discuss the case of unbounded losses, a much more demanding setting for
universal learners. In that setting, the theory becomes significantly simpler, and we are
able to resolve the essential questions of interest for all three learning settings, with the
exception of one particular question on the types of processes that admit the existence of
universally consistent learning rules.

In addition to these general results for function learning, we also discuss extensions of
the theory to allow noisy responses Yt, in Section 9. Specifically, we consider the case of
responses Yt that are conditionally independent given Xt, with the further requirement that
there is a time-invariant optimal function f?. We find that the results for inductive and
self-adaptive learning indeed extend to these noisy scenarios, for certain families of losses:
for instance, regression with the squared loss.

1.1 Formal Definitions

We begin our formal discussion with a few basic definitions. Let (X ,B) be a measurable
space, with B a Borel σ-algebra generated by a separable metrizable topological space
(X , T ), where X is called the instance space and is assumed to be nonempty. Fix a space
Y, called the value space, and a function ` : Y2 → [0,∞), called the loss function. We
also define ¯̀ = sup

y,y′∈Y
`(y, y′). Unless otherwise indicated explicitly, we will suppose ¯̀< ∞

(i.e., ` is bounded); the sole exception to this is Section 8, which is devoted to exploring the
setting of unbounded `. Furthermore, to focus on nontrivial scenarios, we will suppose X
and Y are nonempty and ¯̀> 0 throughout.

For simplicity, we suppose that ` is a near-metric: that is, ∀y1, y2 ∈ Y, ` satisfies
`(y1, y2) = `(y2, y1), and `(y1, y2) = 0 if and only if y1 = y2, and also satisfies a relaxed
triangle inequality, namely, there is a finite constant c` ≥ 1 such that ∀y1, y2, y3 ∈ Y,
`(y1, y2) ≤ c`(`(y1, y3) + `(y3, y2)). We further suppose that (Y, `) is separable, in the
usual sense that there exists a countable Ỹ ⊆ Y with sup

y∈Y
inf
ỹ∈Ỹ

`(ỹ, y) = 0. For instance,

these conditions are satisfied for discrete classification under the 0-1 loss (Y countable,
`(a, b) = 1[a 6= b]), or bounded real-valued regression under the squared loss (Y = [−B,B],
`(a, b) = (a−b)2) or indeed any Lp loss (`(a, b) = |a−b|p, p > 0), as well as many other losses.
Most of the theory developed here also easily extends to any ` that is merely dominated by a
separable near-metric `o, in the sense that ∀y, y′ ∈ Y, `(y, y′) ≤ χ(`o(y, y

′)) for a continuous
nondecreasing function χ : [0,∞) → [0,∞) with χ(0) = 0 and satisfying a non-triviality
condition sup

y0,y1
inf
y

max{`(y, y0), `(y, y1)} > 0. This then admits discrete classification with

asymmetric misclassification costs, and many other interesting cases. We include a brief
discussion of this generalization in Section 10.1.

Below, any reference to a measurable set A ⊆ X should be taken to mean A ∈ B, unless
otherwise specified. Additionally, let T` be the topology on Y generated by the open balls of
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`, {{y ∈ Y : `(y, y0) < r} : y0 ∈ Y, r > 0}, and let B` = σ(T`) denote the Borel σ-algebra on
Y generated by T`; references to measurability of subsets B ⊆ Y below should be taken to
indicate B ∈ B`. We will be interested in the problem of learning from data described by a
discrete-time stochastic process X = {Xt}∞t=1 on X . We do not make any assumptions about
the nature of this process. For any s ∈ N and t ∈ N ∪ {∞}, and any sequence {xi}∞i=1,
define xs:t = {xi}ti=s, or xs:t = {} if t < s, where {} or ∅ denotes the empty sequence
(overloading notation, as these may also denote the empty set); for convenience, also define
xs:0 = {}. For any function f and sequence x = {xi}∞i=1 in the domain of f , we define
f(x) = {f(xi)}∞i=1 and f(xs:t) = {f(xi)}ti=s. Also, for any set A ⊆ X , we denote by xs:t ∩A
or A ∩ xs:t the subsequence of all entries of xs:t contained in A, and |xs:t ∩ A| denotes the
number of indices i ∈ N ∩ [s, t] with xi ∈ A.

For any function g : X → R, and any sequence x = {xt}∞t=1 in X , define

µ̂x(g) = limsup
n→∞

1

n

n∑
t=1

g(xt).

In particular, we will often use this notation with x = X, for a process X = {Xt}∞t=1, in
which case µ̂X(g) is a random variable. For any set A ⊆ X we overload this notation,
defining µ̂x(A) = µ̂x(1A), where 1A is the binary indicator function for the set A. We also
use the notation 1[p], for any logical proposition p, to denote a value that is 1 if p holds
(evaluates to “True”), and 0 otherwise. We also make use of the standard notation for limits

of sequences {Ai}∞i=1 of sets (see e.g., Ash and Doléans-Dade, 2000): limsup
i→∞

Ai =
∞⋂
k=1

∞⋃
i=k

Ai,

liminf
i→∞

Ai =
∞⋃
k=1

∞⋂
i=k

Ai, and lim
i→∞

Ai exists and equals limsup
i→∞

Ai if and only if limsup
i→∞

Ai =

liminf
i→∞

Ai. As one final remark on notation, we note that we will generally interpret claims

regarding conditional expectations to mean that there exist versions of the corresponding
conditional expectations for which the claims hold, such as in E[Z|Y ] ≤ E[Z|X] = E[W |X].

As discussed above, we are interested in three learning settings, defined as follows. An
inductive learning rule is any sequence of measurable functions fn : X n × Yn × X → Y,
n ∈ N ∪ {0}. A self-adaptive learning rule is any array of measurable functions fn,m :
Xm × Yn × X → Y, n,m ∈ N ∪ {0}, m ≥ n. An online learning rule is any sequence of
measurable functions fn : X n × Yn × X → Y, n ∈ N ∪ {0}. In each case, these functions
can potentially be stochastic (that is, we allow fn itself to be a random variable), though
independent from X. For any measurable f? : X → Y, any inductive learning rule fn, any
self-adaptive learning rule gn,m, and any online learning rule hn, we define

L̂X(fn, f
?;n) = limsup

t→∞

1

t

n+t∑
m=n+1

` (fn(X1:n, f
?(X1:n), Xm), f?(Xm)) ,

L̂X(gn,·, f
?;n) = limsup

t→∞

1

t+ 1

n+t∑
m=n

`(gn,m(X1:m, f
?(X1:n), Xm+1), f?(Xm+1)) ,

L̂X(h·, f
?;n) =

1

n

n−1∑
t=0

`(ht(X1:t, f
?(X1:t), Xt+1), f?(Xt+1)) .
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In each case, L̂X(·, f?;n) measures a kind of limiting loss of the learning rule, relative
to the source of the target values: f?. In this context, we refer to f? as the target function.
Note that, in the cases of inductive and self-adaptive learning rules, we are interested in
the average future losses after some initial number n of “training” observations, for which
target values are provided, and after which no further target values are observable. Thus,
a small value of the loss L̂X in these settings represents a kind of generalization to fu-
ture (possibly previously-unseen) data points. In particular, in the special case of i.i.d.
X with marginal distribution PX , the strong law of large numbers implies that the loss
L̂X(fn, f

?;n) of an inductive learning rule fn is equal (almost surely) to the usual notion of
the risk of fn(X1:n, f

?(X1:n), ·) — namely,
∫
`(fn(X1:n, f

?(X1:n), x), f?(x))PX(dx) — com-

monly studied in the statistical learning theory literature, so that L̂X(fn, f
?;n) represents

a generalization of the notion of risk. Note that, in the case of general processes X, the

average loss 1
t

n+t∑
m=n+1

`(fn(X1:n, f
?(X1:n), Xm), f?(Xm)) might not have a well-defined limit

as t→∞, particularly for non-stationary processes X, and it is for this reason that we use
the limit superior in the definition (and similarly for L̂X(gn,·, f

?;n)). We also note that,
since the loss function is always finite, we could have included the losses on the n train-
ing samples in the summation in the inductive L̂X(fn, f

?;n) definition without affecting its
value. This observation implies the following simple equality.

L̂X(fn, f
?;n) = µ̂X(`(fn(X1:n, f

?(X1:n), ·), f?(·))) . (1)

The distinction between the inductive and self-adaptive settings is merely the fact that
the self-adaptive learning rule is able to update the function used for prediction after ob-
serving each “test” point Xt, t > n. Note that the target values are not available for these
test points: only the “unlabeled” Xt values. In the special case of an i.i.d. process, the
self-adaptive setting is closely related to the semi-supervised learning setting studied in the
statistical learning theory literature (Chapelle, Schölkopf, and Zien, 2010). For more-general
processes, it has relations to problems of domain adaptation and covariate shift (Huang,
Smola, Gretton, Borgwardt, and Schölkopf, 2007; Cortes, Mohri, Riley, and Rostamizadeh,
2008; Ben-David, Blitzer, Crammer, Kulesza, Pereira, and Vaughan, 2010; Hanneke and
Kpotufe, 2019), as the additional samples X(n+1):m provide important information about
how representative the training samples X1:n are for the purpose of estimating certain rel-
evant long-run averages µ̂X(g) (see Section 5.1 for details). In particular, for this purpose,
it is important that these additional unlabeled samples are actual test samples, rather than
(for instance) taken from an independent copy of the process, since general (non-ergodic)
processes may have very different long-run behaviors in different sample paths.

In the case of online learning, the prediction function is again allowed to update after
every test point, but in this case the target value for the test point is accessible (after
the prediction is made). This online setting, with precisely this same L̂X(h·, f

?;n) objective
function, has been studied in the learning theory literature, both in the case of i.i.d. processes
and relaxations thereof (e.g., Haussler, Littlestone, and Warmuth, 1994; Györfi, Kohler,
Krzyżak, and Walk, 2002) and in the very-general setting of X an arbitrary process (e.g.,
Littlestone, 1988; Cesa-Bianchi and Lugosi, 2006; Rakhlin, Sridharan, and Tewari, 2015).

Our interest in the present work is the basic problem of universal consistency, wherein
the objective is to design a learning rule with the guarantee that the long-run average loss
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L̂X approaches zero (almost surely) as the training sample size n grows large, and that this
fact holds true for any target function f?. Specifically, we have the following definitions.

Definition 1 We say an inductive learning rule fn is strongly universally consistent under
X if, for every measurable f? : X → Y, lim

n→∞
L̂X(fn, f

?;n) = 0 (a.s.).

We say a process X admits strong universal inductive learning if there exists an inductive
learning rule fn that is strongly universally consistent under X.
We denote by SUIL the set of all processes X that admit strong universal inductive learning.

Definition 2 We say a self-adaptive learning rule fn,m is strongly universally consistent
under X if, for every measurable f? : X → Y, lim

n→∞
L̂X(fn,·, f

?;n) = 0 (a.s.).

We say a process X admits strong universal self-adaptive learning if there exists a self-
adaptive learning rule fn,m that is strongly universally consistent under X.
We denote by SUAL the set of all processes X that admit strong universal self-adaptive
learning.

Definition 3 We say an online learning rule fn is strongly universally consistent under X
if, for every measurable f? : X → Y, lim

n→∞
L̂X(f·, f

?;n) = 0 (a.s.).

We say a process X admits strong universal online learning if there exists an online learning
rule fn that is strongly universally consistent under X.
We denote by SUOL the set of all processes X that admit strong universal online learning.

Technically, the above definitions of universal consistency are defined relative to the loss
function `. However, we will establish below that SUIL and SUAL are in fact invariant to
the choice of (Y, `), subject to the basic assumptions stated above (separable near-metric,
0 < ¯̀ < ∞). We will also find that this is true of SUOL, subject to the additional
constraint that (Y, `) is totally bounded. Furthermore, for unbounded losses we find that all
three families are invariant to (Y, `), subject to separability and ¯̀> 0.

As noted above, much of the prior literature on universal consistency without the i.i.d.
assumption has focused on relaxations of the i.i.d. assumption to more-general families of
processes, such as stationary mixing, stationary ergodic, or certain limited forms of non-
stationarity (see e.g., Steinwart, Hush, and Scovel, 2009, Chapter 27 of Györfi, Kohler,
Krzyżak, and Walk, 2002, and references therein). Though the analysis of learning tech-
niques becomes significantly more challenging under these relaxations, in many cases the
essential features of the i.i.d. setting useful for proving consistency are preserved (partic-
ularly, laws of large numbers). In contrast, our primary interest in the present work is
to study the natural assumption intrinsic to the universal consistency problem itself : the
assumption that universal consistency is possible. By definition, this is a necessary assump-
tion for universal consistency. Thus, the important question is whether there is a learning
rule for which it is also a sufficient assumption for establishing universal consistency. In
other words, we are interested in the following abstract question:

Do there exist learning rules that are strongly universally consistent under
every process X that admits strong universal learning?

Each of the three learning settings yields a concrete instantiation of this question. For the
reason discussed in the introductory remarks, we refer to any such learning rule as being
optimistically universal. Hence we have the following definition.

7
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Definition 4 An (inductive/self-adaptive/online) learning rule is optimistically universal
if it is strongly universally consistent under every process X that admits strong universal
(inductive/self-adaptive/online) learning.

1.2 Summary of the Main Results

Here we briefly summarize the main results of this work. Their proofs, along with several
other results, will be developed throughout the rest of this article.

The main positive result in this work is the following theorem, which establishes that
optimistically universal self-adaptive learning is indeed possible. In fact, in proving this
result, we develop a specific construction of one such self-adaptive learning rule.

Theorem 5 There exists an optimistically universal self-adaptive learning rule.

Interestingly, it turns out that the additional capabilities of self-adaptive learning, com-
pared to inductive learning, are actually necessary for optimistically universal learning.
This is reflected in the following result.

Theorem 6 There does not exist an optimistically universal inductive learning rule, if
(X , T ) is an uncountable Polish space.

Taken together, these two results are interesting indeed, as they indicate there can be
strong advantages to designing learning methods to be self-adaptive. This seems particularly
interesting when we note that very few learning methods in common use are designed to
exploit this capability: that is, to adjust their trained predictor based on the (unlabeled)
test samples they encounter. As mentioned, self-adaptive learning should be possible in
many common learning scenarios where the unlabeled test data are observed sequentially,
such as in pattern recognition based on a data stream from a camera or other sensors.
In light of these results, it seems worthwhile to revisit the definitions of commonly-used
learning methods with a view toward designing self-adaptive variants.

In the self-adaptive method we propose in Section 5.1 below, the main utility of being
self-adaptive is in a model selection component: for each hypothesis class Fi in a hierarchy
of classes, we use X1:n and X1:m to respectively produce two estimates of µ̂X(`(f(·), f ′(·)))
for all f, f ′ ∈ Fi, and select the largest class Fi in the hierarchy for which these two
estimates are uniformly close. If Fi is sufficiently rich to approximate f?, this technique
functions as an approximate test for whether a particular estimate of µ̂X(`(f(·), f?(·)))
based on (X1:n, f

?(X1:n)) is close to the true value µ̂X(`(f(·), f?(·))), for all f ∈ Fi, so
that minimizing the estimate over f ∈ Fi produces a function f with relatively small
µ̂X(`(f(·), f?(·))); see Section 5.1 for the details.

As for the online learning setting, the present work makes only partial progress toward
resolving the question of the existence of optimistically universal online learning rules (in
Section 6). In particular, the following question remains open at this time.

Open Problem 1 Does there exist an optimistically universal online learning rule?

To be clear, as we discuss in Section 6, one can convert the optimistically universal
self-adaptive learning rule from Theorem 5 into an online learning rule that is strongly
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universally consistent for any process X that admits strong universal self-adaptive learning.
However, as we prove below, the set of processes X that admit strong universal online
learning is a strict superset of these, and so optimistically universal online learning represents
a much stronger requirement for the learner.

In the process of studying the above, we also investigate the problem of concisely char-
acterizing the family of processes that admit strong universal learning, of each of the three
types: that is, SUIL, SUAL, and SUOL. In particular, consider the following simple condi-
tion on the tail behavior of a given process X.

Condition 1 For every monotone sequence {Ak}∞k=1 of sets in B with Ak ↓ ∅,

lim
k→∞

E[µ̂X(Ak)] = 0.

Denote by C1 the set of all processes X satisfying Condition 1. In Section 2 below, we
discuss this condition in detail, and also provide several equivalent forms of the condition.
One interesting instance of this is Theorem 12, which indicates that the condition can es-
sentially be viewed as requiring that a relaxed form of Birkhoff’s ergodic theorem holds.
Specifically, while a process satisfying Birkhoff’s ergodic theorem would have expected limit-
ing frequencies forming a probability measure, Condition 1 merely requires that its expected
limsup frequencies form a continuous submeasure: that is, Condition 1 is equivalent to the
condition that the set function E[µ̂X(·)] is a continuous submeasure (Definition 10 below).
For our present interest, the most important fact about Condition 1 is that it precisely
identifies which processes X admit strong universal inductive or self-adaptive learning, as
the following theorem states.

Theorem 7 The following statements are equivalent for any process X.

• X satisfies Condition 1.

• X admits strong universal inductive learning.

• X admits strong universal self-adaptive learning.

Equivalently, SUIL = SUAL = C1.

Certainly any i.i.d. process satisfies Condition 1 (by the strong law of large numbers).
Indeed, we argue in Section 3.1 that any process satisfying the law of large numbers — or
more generally, having pointwise convergent relative frequencies — satisfies Condition 1,
and hence by Theorem 7 admits strong universal learning (in both settings). For instance,
this implies that all stationary processes admit strong universal inductive and self-adaptive
learning. We also demonstrate in Section 3.1 that there are also many other types of pro-
cesses, which do not have convergent relative frequencies, but which do satisfy Condition 1,
so that Condition 1 is a strictly more-general condition.

Other than the fact that Condition 1 precisely characterizes the families of processes
that admit strong universal inductive or self-adaptive learning, another interesting fact
established by Theorem 7 is that these two families are actually equivalent : that is, SUIL =
SUAL. Interestingly, we find that this equivalence does not extend to online learning.
Specifically, in Section 6 we find that SUAL ⊆ SUOL, with strict inclusion iff X is infinite.

9



Hanneke

As for the problem of concisely characterizing the family of processes that admit strong
universal online learning, again the present work only makes partial progress. Specifically,
in Section 6, we formulate a concise necessary condition for a process X to admit strong
universal online learning (Condition 2 below), but we leave open the important question of
whether this condition is also sufficient, or more-broadly of identifying a concise condition
on X equivalent to the condition that X admits strong universal online learning.

In addition to the questions of optimistically universal learning and concisely charac-
terizing the family of processes admitting universal learning, another interesting question
is whether it is possible to empirically test whether a given process admits universal learn-
ing (of any of the three types). However, in Section 7 we find that in all three settings
this is not the case. Specifically, in Theorem 47 we prove that (when X is infinite) there
does not exist a consistent hypothesis test for whether a given X admits strong universal
(inductive/self-adaptive/online) learning. Hence, the assumption that learning is possible
truly is an assumption, rather than a testable hypothesis.

While all of the above results are established for bounded losses, Section 8 is devoted
to the study of these same issues in the case of unbounded losses. In that case, the theory
becomes significantly simplified, as universal consistency is much more difficult to achieve,
and hence the family of processes that admit universal learning is severely restricted. We
specifically find that, when the loss is unbounded, there exists an optimistically universal
learning rule of all three types. We also identify a concise condition (Condition 3 below)
that is necessary and sufficient for a process to admit strong universal learning in any/all
of the three settings.

In Section 9, we extend the theory to allow the Yt response values to be noisy, subject to
being conditionally independent. We discuss other extensions of the theory in Section 10,
admitting more-general loss functions, as well as relaxation of the requirement of strong
consistency to mere weak consistency. Finally, we conclude the article in Section 11 by
summarizing several interesting open questions that arise from the theory developed below.

1.3 Related Work

There are several important works in the literature related to universal consistency under
non-i.i.d. processes. Questions about consistency under general stationary ergodic processes
were posed by Cover (1975) for the forecasting problem (i.e., predicting Yt+1 based on
Y1:t) and related settings. In particular, Cover’s question of whether there is an estimator
m̂(Y1:t) with |m̂(Y1:t) − E[Yt+1|Y1:t]| → 0 (a.s.) for all stationary ergodic Y = {Yt}∞t=1 on
{0, 1} was answered negatively by Bailey (1976) and Ryabko (1988). A related negative
result was also established by Nobel (1999) for regression, showing there is no estimator
f̂t(X1:t, Y1:t, ·) with E|f̂(X1:t, Y1:t, X) − E[Y |X]| → 0 for all stationary ergodic processes
(X,Y) = {(Xt, Yt)}∞t=1 on [0, 1]2, and where (X,Y ) is an independent random variable of
the same marginal distribution. In contrast, there is a substantial literature on estimators
that are consistent (in various senses) under mixing conditions, which are stronger than
ergodicity (e.g., Steinwart, Hush, and Scovel, 2009; Lozano, Kulkarni, and Schapire, 2006;
Roussas, 1988; Collomb, 1984; Irle, 1997).

On the other hand, a series of works by Ornstein (1978), Algoet (1992, 1994, 1999),
Morvai, Yakowitz, and Györfi (1996), Györfi, Lugosi, and Morvai (1999), Györfi and Lu-
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gosi (2002), and Nobel (2003) showed (among other results) that there do exist univer-
sally consistent forecasting rules under general (with bounded moment) stationary er-
godic processes Y = {Yt}t∈Z on R, if we are merely interested in the long-run average
loss: that is, 1

n

∑n−1
t=0 |m̂(Y1:t) − E[Yt+1|Y−∞:t]| → 0 (a.s.). This is analogous to the on-

line setting studied in the present work. This result was extended to classification and
bounded regression settings by Morvai, Yakowitz, and Györfi (1996), Györfi, Lugosi, and
Morvai (1999), and Györfi and Lugosi (2002), yielding an online learning rule f̂t for which
1
n

∑n−1
t=0 (f̂t(X1:t, Y1:t, Xt+1)−E[Yt+1|X−∞:(t+1), Y−∞:t])

2 → 0 (a.s.) for all stationary ergodic

processes (X,Y) = {(Xt, Yt)}t∈Z on Rd × R with |Yt| bounded.

In contrast, as we discuss below (Section 3), an immediate implication of Theorems 5, 7,
and 41 is that the ergodicity assumption is superfluous for the existence of such estimators
(i.e., stationarity alone suffices), if we restrict to cases where Yt = f?(Xt) for arbitrary
unknown functions f?, or more generally, cases where Yt is conditionally independent of
{(Xs, Ys)}s 6=t given Xt. Indeed, universal consistency is even possible in the much weaker
self-adaptive setting for such stationary processes. One interpretation of this is that, while
the stationary ergodic assumption enables a learner to estimate and optimize its expected
risk, stationarity alone already suffices if we are only interested in estimating and optimizing
its average loss on the actual future samples in the individual sample path, so that infor-
mation about the expected risk is unnecessary. We also remark that the results established
here also hold for many non-stationary processes as well.

Other works have considered learning under various non-stationary processes. A mild
form of non-stationarity was discussed by Irle (1997), who constructs consistent regression
estimators under mixing processes that have vanishing average total variation distance of
the marginals to a fixed distribution the risk is defined under. Steinwart, Hush, and Scovel
(2009) generalize this to the family of all processes for which a law of large numbers holds,
which includes all asymptotically mean stationary ergodic processes (Gray and Kieffer, 1980;
Gray, 2009). However, the learning rule of Steinwart, Hush, and Scovel (2009) has a depen-
dence on the distribution of (X,Y), which is in fact necessary (due to the negative result
of Nobel, 1999; see also the proof of Theorem 6 below). However, Steinwart, Hush, and
Scovel (2009) show that this dependence can be removed if we further restrict to processes
(X,Y) satisfying a mixing condition (constrained weak α-bi-mixing rate), in which case an
(X,Y)-independent choice of the parameter sequence yields weak consistency. This relaxes
the requirements of an earlier result of Lozano, Kulkarni, and Schapire (2006) establishing
strong consistency (for a different learning rule) for stationary processes satisfying a stronger
type of mixing condition (constrained β-mixing rate). Morvai, Kulkarni, and Nobel (1999)
also studied consistency under general processes satisfying a law of large numbers, in a
bounded regression setting on R. These results even hold for deterministic processes, as
long as the frequencies converge to a probability measure in the limit. They specifically
show that a particular learning rule is consistent as long as the regression function of the
limit distribution satisfies a known constraint on its total variation in each bounded interval.

Other works have considered learning with families of non-stationary processes not even
satisfying a law of large numbers. Kulkarni, Posner, and Sandilya (2002) established a very
general result, showing that for the regression setting (generalized to Hilbert spaces Y), if
we only require the learner to be consistent for continuous target functions f?, then there
is an online learning rule that is strongly consistent under every process X = {Xt}∞t=1 such
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that the set {Xt : t ∈ N} is almost surely totally bounded. For instance, if X is totally
bounded, then this is the case for all processes X on X . They in fact establish a more general
result that also allows Yt to be corrupted by conditionally independent noise (subject to
f?(Xt) = E[Yt|Xt]), a topic we discuss in Section 9 below. The results in the present work
reveal that, if we seek truly universal learners, consistent for all possible target functions
f?, including discontinuous functions, then even in totally bounded spaces X , there exist
processes X where no such universal learners exist. Thus, the best we can aim for is a
learning rule that is universally consistent under every process X that admits universal
learning: i.e., an optimistically universal learner.

Ryabko (2006) introduced another type of non-stationary process for the classification
setting with finite Y: namely, processes (X,Y) where the process Y = {Yt}∞t=1 = {f?(Xt)}∞t=1

is arbitrary (subject to each y ∈ Y occurring with non-vanishing liminf frequency), and
the Xt sequence is “conditionally i.i.d.”, meaning that the Xt variables are conditionally
independent given their respective Yt = f?(Xt) values, with time-invariant conditional
distribution. This family of processes captures many interesting scenarios beyond the i.i.d.
assumption, including many non-stationary processes. Under this condition, Ryabko (2006)
shows that certain learning rules known to be universally consistent under the i.i.d. assump-
tion remain (weakly) consistent under this more-general family of processes (in the online
setting). In particular, this is true of the nearest neighbor rule. He also shows strong uni-
versal consistency for learning rules based on empirical risk minimization for a sequence of
hypothesis classes becoming rich as n → ∞. The consistency result of Ryabko (2006) is
stated in a stronger form: P(hn(X1:n, Y1:n, Xn+1) 6= Yn+1|X1:n, Y1:n) → 0 (a.s.). However,
under the conditions considered by Ryabko (2006), this would actually be satisfied by any
inductive learning rule hn satisfying L̂X(hn, f

?;n)→ 0 (a.s.), and indeed the learning rules
considered by Ryabko (2006) are of this type.

The nature of the conditional i.i.d. assumption of Ryabko (2006) is somewhat different
from the conditions studied in the present work, in that it is a condition on the joint process
(X,Y) rather than X alone. Nevertheless, it is straightforward to verify that for finite Y, for
any (X,Y) satisfying the conditional i.i.d. assumption, X satisfies Condition 1, and hence
by Theorems 7 and 41 it admits strong universal learning (in any of the three settings
studied here); this is true even without restrictions on the frequencies of each y ∈ Y. Note
that this also implies consistency even for target functions f? for which (X, f?(X)) is not
conditionally i.i.d.

Ryabko (2006) also asks a question of how to extend beyond the setting of deterministic
responses Yt = f?(Xt) to allow more-general distributions of Yt given Xt. The results in
Section 9.3 on the topic of handling noisy labels are relevant to this question, in particular
studying the case where the noise is conditionally independent: that is, the optimal pre-
diction f?(Xt) remains a t-invariant function of Xt, but the observed response Yt may be
stochastic. This condition can be combined with Ryabko’s conditional i.i.d. assumption by
taking the Xt sequence to be conditionally i.i.d. given an (arbitrary) f?(Xt) sequence, and
then taking the Yt responses to be conditionally independent given the respective Xt values
(subject to the requirement that the conditional distribution of Yt given Xt is a t-invariant
function of Xt, and y = f?(Xt) minimizes E[`(y, Yt)|Xt]). The results in Section 9.3 then
imply that there is a learning rule that is strongly consistent for every process (X,Y) of this
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type (in the self-adaptive or online setting).4 Moreover, the results in Section 9 also imply
consistency under a much broader family of processes.

In the broader subject of learning theories beyond i.i.d. processes, the topic of finding
a function with near-minimal risk within a fixed restricted hypothesis class F has received
considerably more attention. There, the goal is consistency relative to F : that is, finding a
function f̂ ∈ F with risk converging to at most the best risk achievable by functions in F .
Most of this work has studied learning under stationary processes satisfying various mixing
conditions. Of particular relevance in this context is the set F` = {(x, y) 7→ `(f(x), y) :
f ∈ F}. When F` is a VC class, or generally has bounded covering numbers, methods
based on variants of empirical risk minimization have been shown to be consistent relative
to F (see e.g., Yu, 1994; Karandikar and Vidyasagar, 2002, 2004; Vidyasagar, 2005; Zou,
Li, and Xu, 2009). Moving beyond mixing assumptions, when F` is a VC class, Adams
and Nobel (2010a,b, 2012) showed that empirical risk minimization is consistent relative to
F under every stationary ergodic process. Later, van Handel (2013) extended this to all
classes such that F` is a universal Glivenko-Cantelli class. Kuznetsov and Mohri (2014) and
Hanneke and Yang (2019) have also considered extensions of some of these results to some
restricted families of non-stationary mixing processes, constrained by the rate of change of
the single-index marginal distribution.

A significant change in the present work compared to the above is that much of the
prior work on statistical learning without the i.i.d. assumption essentially studies the same
learning methods developed for i.i.d. processes, such as local averaging estimators or em-
pirical risk minimization. In contrast, we argue below that such methods will fail in certain
non-stationary scenarios, in which other methods would be consistent. As such, the tech-
niques we develop in this work necessarily differ significantly from those designed with i.i.d.
processes in mind.

2. Equivalent Expressions of Condition 1

Before getting into the analysis of learning, we first discuss basic properties of the µ̂x
functional. In particular, we find that there are several equivalent ways to state Condition 1,
which will be useful in various parts of the proofs below, and which may themselves be of
independent interest in some cases.

2.1 Basic Lemmas

We begin by proving some basic properties of the µ̂x functional that will be indispensable
in the main proofs below.

Lemma 8 For any sequence x = {xt}∞t=1 in X , and any functions f : X → R, g : X → R,
if µ̂x(f) and µ̂x(g) are not both infinite and of opposite signs, the following properties hold.

1. (monotonicity) if f ≤ g, then µ̂x(f) ≤ µ̂x(g),

2. (homogeneity) ∀c ∈ (0,∞), µ̂x(cf) = cµ̂x(f),

3. (subadditivity) µ̂x(f + g) ≤ µ̂x(f) + µ̂x(g).

4. One can show this result also holds in the inductive setting for this special case, though we will not
discuss this extension, for the sake of brevity.
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Proof Properties 1 and 2 follow directly from the definition of µ̂x, and monotonicity and
homogeneity (for positive constants) of limsup. Property 3 is established by noting

limsup
n→∞

1

n

n∑
t=1

(f(xt) + g(xt)) ≤ lim
k→∞

(
sup
n≥k

1

n

n∑
t=1

f(xt)

)
+

(
sup
n≥k

1

n

n∑
t=1

g(xt)

)

=

(
limsup
n→∞

1

n

n∑
t=1

f(xt)

)
+

(
limsup
n→∞

1

n

n∑
t=1

g(xt)

)
.

These properties immediately imply related properties for the set function µ̂x.

Lemma 9 For any sequence x = {xt}∞t=1 in X , and any sets A,B ⊆ X ,

1. (nonnegativity) 0 ≤ µ̂x(A),

2. (monotonicity) µ̂x(A ∩B) ≤ µ̂x(A),

3. (subadditivity) µ̂x(A ∪B) ≤ µ̂x(A) + µ̂x(B).

Proof These follow directly from the properties listed in Lemma 8, since 0 ≤ 1A, 1A∩B ≤
1A, and 1A∪B ≤ 1A + 1B.

2.2 An Equivalent Expression in Terms of Continuous Submeasures

Next, we note a connection to a much-studied definition from the measure theory literature:
namely, the notion of a continuous submeasure. This notion appears in the measure theory
literature, most commonly under the name Maharam submeasure (see e.g., Maharam, 1947;
Talagrand, 2008; Bogachev, 2007), but is also referred to as a subadditive Dobrakov submea-
sure (see e.g., Dobrakov, 1974, 1984), and related notions arise in discussions of Choquet
capacities (see e.g., Choquet, 1954; O’Brien and Vervaat, 1994).

Definition 10 A submeasure on B is a function ν : B → [0,∞] satisfying the following
properties.

1. ν(∅) = 0.

2. ∀A,B ∈ B, A ⊆ B ⇒ ν(A) ≤ ν(B).

3. ∀A,B ∈ B, ν(A ∪B) ≤ ν(A) + ν(B).

A submeasure is called continuous if it additionally satisfies the condition

4. For every monotone sequence {Ak}∞k=1 in B with Ak ↓ ∅, lim
k→∞

ν(Ak) = 0.

Note that we have defined “submeasure” to only require finite subadditivity. However,
it immediately follows that any continuous submeasure would also be countably subadditive
(see Fremlin, 2002, Chapter 39, Lemma 392H). The relevance of this definition to our present
discussion is via the set function E[µ̂X(·)], which we can easily show is always a submeasure,
as follows.
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Lemma 11 For any process X, E[µ̂X(·)] is a submeasure.

Proof Since µ̂X(∅) = 0 follows directly from the definition of µ̂X, we have E[µ̂X(∅)] =
E[0] = 0 as well (property 1 of Definition 10). Furthermore, monotonicity of µ̂X (Lemma 8)
and monotonicity of the expectation imply monotonicity of E[µ̂X(·)] (property 2 of Def-
inition 10). Likewise, finite subadditivity of µ̂X (Lemma 9) implies that for A,B ∈ B,
µ̂X(A ∪ B) ≤ µ̂X(A) + µ̂X(B), so that monotonicity and linearity of the expectation imply
E[µ̂X(A ∪B)] ≤ E[µ̂X(A) + µ̂X(B)] = E[µ̂X(A)] + E[µ̂X(B)] (property 3 of Definition 10).

Together with the definition of Condition 1, this immediately implies the following theo-
rem, which states that Condition 1 is equivalent to E[µ̂X(·)] being a continuous submeasure.

Theorem 12 A process X satisfies Condition 1 if and only if E[µ̂X(·)] is a continuous
submeasure.

2.3 Other Equivalent Expressions of Condition 1

We next state several other results expressing equivalent formulations of Condition 1, and
other related properties. These equivalent forms will be useful in proofs below.

Lemma 13 The following conditions are all equivalent to Condition 1.

• For every monotone sequence {Ak}∞k=1 of sets in B with Ak ↓ ∅,

lim
k→∞

µ̂X(Ak) = 0 (a.s.).

• For every sequence {Ak}∞k=1 of sets in B,

lim
i→∞

µ̂X

⋃
k≥i

Ak

 = µ̂X

(
limsup
k→∞

Ak

)
(a.s.).

• For every disjoint sequence {Ak}∞k=1 of sets in B,

lim
i→∞

µ̂X

⋃
k≥i

Ak

 = 0 (a.s.).

Proof First, suppose X satisfies Condition 1, and let {Ak}∞k=1 be any monotone se-
quence in B with Ak ↓ ∅. By monotonicity and nonnegativity of the set function µ̂X
(Lemma 9), lim

k→∞
µ̂X(Ak) always exists and is nonnegative. Therefore, since the set func-

tion µ̂X is bounded in [0, 1], the dominated convergence theorem implies E
[

lim
k→∞

µ̂X(Ak)

]
=

lim
k→∞

E [µ̂X(Ak)] = 0, where the last equality is due to Condition 1. Combined with the fact

that lim
k→∞

µ̂X(Ak) ≥ 0, it follows that lim
k→∞

µ̂X(Ak) = 0 (a.s.) (e.g., Ash and Doléans-Dade,

2000, Theorem 1.6.6). Thus, Condition 1 implies the first condition in the lemma.
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Next, let X be any process satisfying the first condition in the lemma, and let {Ak}∞k=1

be any sequence in B. For each k ∈ N, let Bk = Ak \
⋃
j>k

Aj . Note that {Bk}∞k=1 is a

sequence of disjoint measurable sets. In particular, this implies
⋃
k≥i

Bk ↓ ∅, so that (since

X satisfies the first condition) lim
i→∞

µ̂X

(⋃
k≥i

Bk

)
= 0 (a.s.). Furthermore, for any i ∈ N, we

have
⋃
k≥i

Ak =

(
limsup
j→∞

Aj

)
∪
⋃
k≥i

Bk. Therefore, by finite subadditivity of µ̂X (Lemma 9),

lim
i→∞

µ̂X

⋃
k≥i

Ak

 = lim
i→∞

µ̂X

(limsup
j→∞

Aj

)
∪
⋃
k≥i

Bk


≤ µ̂X

(
limsup
j→∞

Aj

)
+ lim
i→∞

µ̂X

⋃
k≥i

Bk

 = µ̂X

(
limsup
j→∞

Aj

)
(a.s.).

Furthermore, since limsup
j→∞

Aj ⊆
⋃
k≥i

Ak for every i ∈ N, monotonicity of µ̂X (Lemma 8)

implies µ̂X

(⋃
k≥i

Ak

)
≥ µ̂X

(
limsup
j→∞

Aj

)
, which implies lim

i→∞
µ̂X

(⋃
k≥i

Ak

)
≥ µ̂X

(
limsup
j→∞

Aj

)
.

Together, we have that the first condition implies the second condition in this lemma.
Furthermore, the second condition in this lemma trivially implies the third condition, since
any disjoint sequence {Ak}∞k=1 in B has limsup

k→∞
Ak = ∅, and µ̂X(∅) = 0 is immediate from

the definition of µ̂X.
Finally, suppose the third condition in this lemma holds, and let {Ak}∞k=1 be a monotone

sequence in B with Ak ↓ ∅. For each k ∈ N, let Bk = Ak \
⋃
j>k

Aj . Note that {Bk}∞k=1

is a sequence of disjoint sets in B, and that monotonicity of {Ak}∞k=1 implies ∀k ∈ N,

Ak =

(
limsup
j→∞

Aj

)
∪
⋃
i≥k

Bi; furthermore, Ak ↓ ∅ implies limsup
j→∞

Aj = ∅, so that Ak =
⋃
i≥k

Bi.

Therefore, the third condition in the lemma implies

lim
k→∞

µ̂X(Ak) = lim
k→∞

µ̂X

⋃
i≥k

Bi

 = 0 (a.s.).

Since the set function µ̂X is bounded in [0, 1], combining this with the dominated convergence

theorem implies lim
k→∞

E[µ̂X(Ak)] = E
[

lim
k→∞

µ̂X(Ak)

]
= 0. Since this applies to any such se-

quence {Ak}∞k=1, we have that Condition 1 holds. This completes the proof of the lemma.

In combination with Lemma 13, the following lemma allows us to extend Condition 1
to other useful equivalent forms. In particular, the form expressed in (3) will be a key
component (via Corollary 15) in the proof below (in Lemma 20) that Condition 1 is a
necessary condition for a process X to admit strong universal self-adaptive learning.
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Lemma 14 For any sequence x = {xt}∞t=1 of elements of X , and any sequence {Ai}∞i=1 of
disjoint subsets of X , the following conditions are all equivalent.

lim
k→∞

µ̂x

⋃
i≥k

Ai

 = 0. (2)

lim
n→∞

µ̂x

(⋃
{Ai : x1:n ∩Ai = ∅}

)
= 0. (3)

lim
m→∞

lim
n→∞

µ̂x

(⋃
{Ai : |x1:n ∩Ai| < m}

)
= 0. (4)

Proof Fix x and {Ai}∞i=1 as described. For each x ∈
∞⋃
i=1

Ai, let i(x) denote the index i ∈ N

with x ∈ Ai; for each x ∈ X \
∞⋃
i=1

Ai, let i(x) = 0. First, suppose (3) is satisfied. For any

k ∈ N, let

nk = max

n ∈ N ∪ {0,∞} : x1:n ∩
⋃
i≥k

Ai = ∅

 .

By definition of nk, we have
⋃
i≥k

Ai ⊆
⋃
{Ai : x1:nk ∩ Ai = ∅}, so that monotonicity of µ̂x

(Lemma 9) implies

lim
k→∞

µ̂x

⋃
i≥k

Ai

 ≤ lim
k→∞

µ̂x

(⋃
{Ai : x1:nk ∩Ai = ∅}

)
. (5)

Next note that monotonicity of
⋃
i≥k

Ai implies nk is nondecreasing in k. In particular, this

implies that if any k ∈ N has nk =∞, then

lim
k→∞

µ̂x

(⋃
{Ai : x1:nk ∩Ai = ∅}

)
= µ̂x

(⋃
{Ai : x ∩Ai = ∅}

)
= 0

by definition of µ̂x, which establishes (2) when combined with (5). Otherwise, suppose
nk < ∞ for all k ∈ N. In this case, we will argue that nk → ∞. Note that ∀k ∈ N,
by maximality of nk, we have xnk+1 ∈

⋃
i≥k

Ai, so that i(xnk+1) ≥ k. Together with the

definition of nk this also implies that for k′ = i(xnk+1) + 1 we have x1:(nk+1) ∩
⋃
i≥k′

Ai = ∅,

and therefore nk′ ≥ nk + 1. Together with monotonicity of nk in k, this implies nk → ∞.
Combined with (3) and monotonicity of µ̂x(

⋃
{Ai : x1:n ∩Ai = ∅}) in n, this implies that

lim
k→∞

µ̂x

(⋃
{Ai : x1:nk ∩Ai = ∅}

)
= lim

n→∞
µ̂x

(⋃
{Ai : x1:n ∩Ai = ∅}

)
= 0,

which establishes (2) when combined with (5) and nonnegativity of µ̂x (Lemma 9).
Next, suppose (2) is satisfied, and fix any m ∈ N. By inductively applying the finite

subadditivity property of µ̂x (Lemma 9), for any n, k ∈ N,

µ̂x

(⋃
{Ai : |x1:n ∩Ai| < m}

)
≤ µ̂x

(⋃
{Ai : |x1:n ∩Ai| < m, i ≥ k}

)
+

∑
i∈{1,...,k−1}:
|x1:n∩Ai|<m

µ̂x(Ai).

(6)
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Note that, for any i ∈ N with µ̂x(Ai) > 0, there must be an infinite subsequence of x
contained in Ai; in particular, this implies ∃n′i ∈ N with |x1:n′i

∩Ai| = m. Also define n′i = 0
for every i ∈ N with µ̂x(Ai) = 0. Therefore, for every n ∈ N, defining

kn = min
({
i ∈ N : n′i > n

}
∪ {∞}

)
,

we have that every i < kn has either |x1:n ∩Ai| ≥ m or µ̂x(Ai) = 0. Thus, it follows that∑
i∈{1,...,kn−1}:
|x1:n∩Ai|<m

µ̂x(Ai) = 0. (7)

Next we argue that kn → ∞. To see this, note that by definition kn is nondecreasing,
and if kn < ∞, then any n′ ≥ n′kn has n′ > n (since n′kn > n by the definition of kn), and
hence n′i ≤ n′ for every i ≤ kn (since minimality of kn implies n′i ≤ n < n′ for every i < kn,
and by assumption n′kn ≤ n′), which implies kn′ ≥ kn + 1. Therefore, we have kn → ∞.
Thus, combined with (6) and (7), and monotonicity of µ̂x (Lemma 9), we have

lim
n→∞

µ̂x

(⋃
{Ai : |x1:n ∩Ai| < m}

)
≤ lim

n→∞
µ̂x

(⋃
{Ai : |x1:n ∩Ai| < m, i ≥ kn}

)
+

∑
i∈{1,...,kn−1}:
|x1:n∩Ai|<m

µ̂x(Ai)

= lim
n→∞

µ̂x

(⋃
{Ai : |x1:n ∩Ai| < m, i ≥ kn}

)
≤ lim

k→∞
µ̂x

⋃
i≥k

Ai

 .

If (2) is satisfied, this last expression is 0. Thus,

lim
n→∞

µ̂x

(⋃
{Ai : |x1:n ∩Ai| < m}

)
= 0

for all m ∈ N. Taking the limit of both sides as m→∞ establishes (4).
Finally, note that for any n ∈ N,

µ̂x

(⋃
{Ai : x1:n ∩Ai = ∅}

)
= µ̂x

(⋃
{Ai : |x1:n ∩Ai| < 1}

)
,

and monotonicity of µ̂x (Lemma 9) implies that for any m ∈ N,

µ̂x

(⋃
{Ai : |x1:n ∩Ai| < 1}

)
≤ µ̂x

(⋃
{Ai : |x1:n ∩Ai| < m}

)
.

Taking limits of both sides, we have

lim
n→∞

µ̂x

(⋃
{Ai : |x1:n ∩Ai| < 1}

)
≤ lim

m→∞
lim
n→∞

µ̂x

(⋃
{Ai : |x1:n ∩Ai| < m}

)
.

Thus, if (4) is satisfied, then (3) must also hold.

This further implies the following corollary relating Condition 1 to a requirement of
having vanishing missing mass in any countable discretization of X .
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Corollary 15 A process X satisfies Condition 1 if and only if every disjoint sequence

{Ai}∞i=1 in B with
∞⋃
i=1

Ai = X (i.e., every countable measurable partition) satisfies

lim
n→∞

µ̂X

(⋃
{Ai : X1:n ∩Ai = ∅}

)
= 0 (a.s.). (8)

Proof If X satisfies Condition 1, then for any disjoint sequence {Ai}∞i=1 in B, Lemma 13 im-

plies that, on an event of probability one, lim
k→∞

µ̂X

(⋃
i≥k

Ai

)
= 0. The equivalence of (2) and

(3) in Lemma 14 then implies that, on this same event, lim
n→∞

µ̂X(
⋃
{Ai : X1:n ∩Ai = ∅}) = 0,

so that (8) holds.
On the other hand, if X does not satisfy Condition 1, then Lemma 13 implies that

there exists a disjoint sequence {A′i}∞i=1 in B such that, on an event of nonzero probability,

lim
k→∞

µ̂X

(⋃
i≥k

A′i

)
> 0. Since this claim only involves the tail of the A′i sequence, if we define

A1 = X \
∞⋃
i=1

A′i and Ai+1 = A′i for i ∈ N (so that {Ai}∞i=1 is a countable measurable partition

of X ), then on this same event we have lim
k→∞

µ̂X

(⋃
i≥k

Ai

)
> 0. The equivalence of (2) and

(3) in Lemma 14 then implies that, on this same event, lim
n→∞

µ̂X(
⋃
{Ai : X1:n ∩Ai = ∅}) > 0,

so that (8) does not hold.

One interesting property of processes X satisfying Condition 1 is that µ̂X is countably
subadditive (almost surely), as implied by the following two lemmas. Note that this is not
necessarily true of processes X failing to satisfy Condition 1 (e.g., the process Xi = i on
N does not have countably subadditive µ̂X). However, we note that this kind of countable
subadditivity is not actually equivalent to Condition 1, as not every process satisfying this
countable subadditivity condition also satisfies Condition 1 (e.g., any deterministic process
X on N with ∀i ∈ N, µ̂X({i}) = 1 has countably subadditive µ̂X and yet X /∈ C1).

Lemma 16 For any sequence x = {xt}∞t=1 of elements of X , and any sequence {Ai}∞i=1 of
disjoint subsets of X , if (2) is satisfied, then

µ̂x

( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

µ̂x(Ai).

Proof By finite subadditivity of µ̂x (Lemma 9 and induction), we have that for any k ∈ N,

µ̂x

( ∞⋃
i=1

Ai

)
≤ µ̂x

⋃
i≥k

Ai

+

k−1∑
i=1

µ̂x(Ai). (9)

If (2) is satisfied, then lim
k→∞

µ̂x

(⋃
i≥k

Ai

)
= 0, so that taking the limit as k →∞ in (9) yields

the claimed inequality, completing the proof.
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Lemma 17 If X satisfies Condition 1, then for any sequence {Ai}∞i=1 in B,

µ̂X

( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

µ̂X(Ai) (a.s.).

Proof Let B1 = A1, and for each i ∈ N\{1}, let Bi = Ai\
i−1⋃
j=1

Aj . Then {Bi}∞i=1 is a disjoint

sequence in B. If X satisfies Condition 1, then Lemma 13 implies lim
k→∞

µ̂X

( ⋃
j≥k

Bj

)
= 0

(a.s.). Combined with Lemma 16, this implies that µ̂X

( ∞⋃
i=1

Bi

)
≤
∞∑
i=1

µ̂X(Bi) (a.s.). Noting

that
∞⋃
i=1

Bi =
∞⋃
i=1

Ai, we have µ̂X

( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

µ̂X(Bi) (a.s.). Finally, since Bi ⊆ Ai for

every i ∈ N, monotonicity of µ̂X (Lemma 9) implies µ̂X(Bi) ≤ µ̂X(Ai), so that µ̂X

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

µ̂X(Ai) (a.s.).

3. Relation to the Condition of Convergent Relative Frequencies

Before proceeding with the general analysis, we first discuss the relation between Condition 1
and the commonly-studied condition of convergent relative frequencies. In particular, we
show that Condition 1 is a strictly more-general condition. This is interesting in the context
of learning, as the vast majority of the prior literature on statistical learning theory without
the i.i.d. assumption studies learning rules designed for and analyzed under assumptions that
imply convergent relative frequencies. These results therefore indicate that we should not
expect such learning rules to be optimistically universal, and hence that we will need to seek
more general strategies in designing optimistically universal learning rules. In particular,
in Section 3.2 we provide an example of a process satisfying Condition 1 under which the
nearest neighbor predictor fails to be universally consistent.

Formally, define CRF as the set of processes X such that, ∀A ∈ B,

lim
m→∞

1

m

m∑
t=1

1A(Xt) exists (a.s.). (10)

These processes are said to have convergent relative frequencies. Equivalently, this is
the family of processes with ergodic properties with respect to the class of measurements
{1A×X∞ : A ∈ B} (Gray, 2009). Certainly CRF contains every i.i.d. process, by the
strong law of large numbers. More generally, it is known that any stationary process X
is contained in CRF (by Birkhoff’s ergodic theorem), and in fact, it suffices for the pro-
cess to be asymptotically mean stationary (Gray, 2009, Theorem 8.1): that is, ∀A ∈ B∞,

lim
n→∞

1
n

n∑
t=1

P(Xt:∞ ∈ A) exists.

20



Learning Whenever Learning is Possible

3.1 Processes with Convergent Relative Frequencies Satisfy Condition 1

The following theorem establishes that every X with convergent relative frequencies satisfies
Condition 1, and that the inclusion is strict in all nontrivial cases.

Theorem 18 CRF ⊆ C1, and the inclusion is strict iff |X | ≥ 2.

Proof Fix any X ∈ CRF. For each A ∈ B, define πm(A) = 1
m

∑m
t=1 P(Xt ∈ A). One

can easily verify that πm is a probability measure. The definition of CRF implies that,
∀A ∈ B, there exists an event EA of probability one, on which lim

m→∞
1
m

∑m
t=1 1A(Xt) exists;

in particular, this implies µ̂X(A) = lim
m→∞

1
m

∑m
t=1 1A(Xt)1EA almost surely. Together with

the dominated convergence theorem and linearity of expectations, this implies

E[µ̂X(A)] = E

[
lim
m→∞

1

m

m∑
t=1

1A(Xt)1EA

]
= lim

m→∞
E

[
1

m

m∑
t=1

1A(Xt)1EA

]

= lim
m→∞

1

m

m∑
t=1

P(Xt ∈ A) = lim
m→∞

πm(A).

In particular, this establishes that the limit in the rightmost expression exists. The Vitali-
Hahn-Saks theorem then implies that lim

m→∞
πm(·) is also a probability measure (see Gray,

2009, Lemma 7.4). Thus, we have established that A 7→ E[µ̂X(A)] is a probability measure,
and hence is a continuous submeasure (see e.g., Schervish, 1995, Theorem A.19). That
CRF ⊆ C1 now follows from Theorem 12.

For the claim about strict inclusion, first note that if |X | = 1 then there is effectively
only one possible process (infinitely repeating the sole element of X ), and it is trivially
in CRF, so that CRF = C1. On the other hand, suppose |X | ≥ 2, let x0, x1 be distinct
elements of X , and define a deterministic process X such that, for every i ∈ N and ev-
ery t ∈ {3i−1, . . . , 3i − 1}, Xt = xi−2bi/2c: that is, Xt = x0 if i is even and Xt = x1 if
i is odd. Since any monotone sequence {Ak}∞k=1 in B with Ak ↓ ∅ necessarily has some
k0 ∈ N with {x0, x1} ∩Ak = ∅ for all k ≥ k0, we have E[µ̂X(Ak)] = 0 for all k ≥ k0, so that

X ∈ C1. However, for any odd i, 1
3i−1

3i−1∑
t=1

1{x1}(Xt) ≥ 2
3 , so that limsup

m→∞
1
m

m∑
t=1

1{x1}(Xt) ≥ 2
3 ,

while for any even i, 1
3i−1

3i−1∑
t=1

1{x1}(Xt) ≤ 1
3 , so that liminf

m→∞
1
m

m∑
t=1

1{x1}(Xt) ≤ 1
3 . Therefore

1
m

m∑
t=1

1{x1}(Xt) does not have a limit as m→∞, and hence X /∈ CRF.

3.2 Inconsistency of the Nearest Neighbor Rule

The separation C1 \ CRF 6= ∅ established above indicates that, in approaching the design
of consistent inductive or self-adaptive learning rules under processes in C1, we should
not rely on the property of having convergent relative frequencies, as it is not generally
guaranteed to hold. Since most learning rules in the prior literature rely heavily on this
property for their performance guarantees, we should not generally expect them to be
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consistent under processes in C1. To give a concrete example illustrating this, consider
X ⊆ Rd (with the standard topology), and let fn be the well-known nearest neighbor
learning rule: an inductive learning rule defined by the property that fn(x1:n, y1:n, x) = yin ,
where in = argmin

i∈{1,...,n}
‖x−xi‖ (with an appropriate policy for breaking ties). For classification

and regression in Rd this learning rule is known to be strongly universally consistent (in the
sense of Definition 1) under every i.i.d. process (e.g., Devroye, Györfi, and Lugosi, 1996).

We exhibit a process X ∈ C1 for X = [0, 1], under which the nearest neighbor inductive
learning rule is not universally consistent for binary classification.5 This also provides a
second proof that C1\CRF 6= ∅ for this space, as this process will not have convergent relative
frequencies. Specifically, let {Wi}∞i=1 be independent Uniform(0, 1/2) random variables. Let
n1 = 1, and for each k ∈ N with k ≥ 2, inductively define nk = nk−1 + k · n2

k−1. Now for
each k ∈ N, let ak = k − 2bk/2c (i.e., ak = 1 if k is odd, and otherwise ak = 0), and let
bk = 1 − ak. Define X1 = 0, and for each k ∈ N with k ≥ 2, and each i ∈ {1, . . . , n2

k−1},
define Xnk−1+(i−1)k+1 = bk

2 + i−1
2n2
k−1

, and for each j ∈ {2, . . . , k}, define Xnk−1+(i−1)k+j =
ak
2 +Wnk−1+(i−1)k+j .

The intention in constructing this process is that there are segments of the sequence in
which the fraction of the data in [0, 1/2) is relatively small compared to [1/2, 1], and other
segments of the sequence in which the fraction of the data in [1/2, 1] is relatively small
compared to [0, 1/2). Furthermore, at certain time points (namely, the nk times), the vast
majority of the points on the sparse side are determined a priori, in contrast to the points
on the dense side, which are uniform random. This is designed to frustrate most learning
rules designed under the CRF assumption, many of which would base their predictions in
the sparse side on these deterministic points, rather than the relatively very-sparse random
points in the same region left over from the previous epoch (i.e., when that region was
relatively dense, and the majority of points in that region were uniform random). It is easy
to verify that, because of this switching of which side is dense and which side sparse, which
occurs infinitely many times, this process X does not have convergent relative frequencies.

We first argue that X satisfies Condition 1. Let I = {1} ∪ {nk−1 + (i − 1)k + 1 : k ∈
N\{1}, i ∈ {1, . . . , n2

k−1}}. Note that, for any k ∈ N\{1, 2} and any m ∈ {nk−1 +1, . . . , nk},

|{t ∈ I : t ≤ m}| ≤ nk−2 +
nk−1 − nk−2

k − 1
+

⌈
m− nk−1

k

⌉
≤ 1 + nk−2 +

nk−1

k − 1
+
m− nk−1

k − 1

= 1 + nk−2 +
m

k − 1
≤ 1 +

√
nk−1

k − 1
+

m

k − 1
≤ 1 +

√
m

k − 1
+

m

k − 1
.

Thus, letting km = min{k ∈ N : m ≤ nk} for each m ∈ N, and noting that km →∞ (since
each nk is finite), we have that

lim
m→∞

|{t ∈ I : t ≤ m}|
m

≤ lim
m→∞

1

m
+

√
1

m(km − 1)
+

1

km − 1
= 0.

5. Of course, Theorem 6 indicates that any inductive learning rule has processes in C1 for which it is not
universally consistent. However, the construction here is more direct, and illustrates a common failing
of many learning rules designed for i.i.d. data, so it is worth presenting this specialized argument as well.
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We therefore have that, for any set A ∈ B,

µ̂X(A) ≤ limsup
m→∞

1

m

m∑
t=1

1N\I(t)1A(Xt) + lim
m→∞

|{t∈I : t≤m}|
m

= limsup
m→∞

1

m

m∑
t=1

1N\I(t)1A(Xt).

Furthermore, noting that every t ∈ N \ I has Xt ∈
{
Wt,

1
2 +Wt

}
, we have

limsup
m→∞

1

m

m∑
t=1

1N\I(t)1A(Xt) ≤ limsup
m→∞

1

m

m∑
t=1

(
1A(Wt)+1A

(
1

2
+Wt

))
,

and the strong law of large numbers implies that, with probability one, the expression on the
right hand side equals 2λ(A∩ (0, 1/2)) + 2λ(A∩ (1/2, 1)) = 2λ(A), where λ is the Lebesgue
measure. In particular, this implies E[µ̂X(A)] ≤ 2λ(A) for every A ∈ B. Therefore, for
any monotone sequence {Ak}∞k=1 in B with Ak ↓ ∅, lim

k→∞
E[µ̂X(Ak)] ≤ lim

k→∞
2λ(Ak) = 0

since 2λ(·) is a finite measure (because X is bounded) and therefore is continuous (see e.g.,
Schervish, 1995, Theorem A.19). Thus, X satisfies Condition 1.

Now to see that the nearest neighbor rule is not universally consistent under this process
X, let y0, y1 ∈ Y be such that `(y0, y1) > 0. Define

V =

{
bk
2

+
i− 1

2n2
k−1

: k ∈ N \ {1}, i ∈
{

1, . . . , n2
k−1

}}
,

and take f?(x) = y1 for x ∈ [0, 1] \ V , and f?(x) = y0 for x ∈ V , and note that this is a
measurable function since V is countable. Note that we have defined f? so that every t ∈ I
has f?(Xt) = y0, and with probability one every t ∈ N \ I has f?(Xt) = y1. Then note
that, for any k ∈ N \ {1, 2} with ak = 1, the points {Xi : 1 ≤ i ≤ nk, f

?(Xi) = y0} form
a 1

2n2
k−1

cover of [0, 1/2). Furthermore, the set {Xi : 1 ≤ i ≤ nk, f
?(Xi) = y1} ∩ (0, 1/2)

contains at most nk−1 points. Together, these facts imply that for the nearest neighbor
inductive learning rule fn, letting Nk = {x ∈ [0, 1] : fnk(X1:nk , f

?(X1:nk), x) = y0}, it

holds that λ(Nk ∩ (0, 1/2)) ≥ 1
2 −

nk−1

2n2
k−1

= 1
2

(
1− 1

nk−1

)
. In particular, this implies that

a Uniform(0, 1/2) random variable (independent from fnk and X1:nk) has probability at
least 1 − 1

nk−1
of being in Nk. However, for every k′ ∈ N \ {1} with 2k′ > k, we have

a2k′ = 0, so that the set {Xi : n2k′−1 < i ≤ n2k′} ∩ (0, 1/2) consists of (2k′ − 1)n2
2k′−1 =

2k′−1
2k′ (n2k′ − n2k′−1) independent Uniform(0, 1/2) samples (also independent from fnk and
X1:nk). Since V is countable, with probability one every one of these samples has f?(Xi) =
y1. Furthermore, a Chernoff bound (under the conditional distribution given fnk and X1:nk)
and the law of total probability imply that

|Nk ∩ {Xi : n2k′−1 < i ≤ n2k′} ∩ (0, 1/2)| ≥
(

1− 1

2k′−1

)(
1− 1

nk−1

)
2k′−1

2k′
(n2k′ − n2k′−1)

with probability at least 1 − exp
{
− 1

2(2k′−1)2

(
1− 1

nk−1

)
(2k′ − 1)n2

2k′−1

}
> 1 − e−(2k′−1)/4

(since n2k′−1 ≥ 2k′ − 1 and nk−1 > 2). Noting that
∞∑
k′=2

e−(2k′−1)/4 <∞, the Borel-Cantelli
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lemma implies that with probability one this event occurs for all sufficiently large k′. Thus,
by the union bound, we have that with probability one,

µ̂X(`(fnk(X1:nk , f
?(X1:nk), ·), f?(·)))

≥ limsup
k′→∞

1

n2k′

n2k′∑
t=1

`(fnk (X1:nk , f
?(X1:nk), Xt) , f

?(Xt))

≥ limsup
k′→∞

|Nk ∩ {Xi : n2k′−1 < i ≤ n2k′} ∩ (0, 1/2)|
n2k′

`(y0, y1)

≥ `(y0, y1) limsup
k′→∞

(
1− 1

2k′−1

)(
1− 1

nk−1

)
2k′−1

2k′

(
1−n2k′−1

n2k′

)
= `(y0, y1)

(
1− 1

nk−1

)
.

By the union bound, with probability one, this holds for every odd value of k ∈ N \ {1, 2}.
Thus, with probability one,

limsup
n→∞

L̂X(fn, f
?;n) ≥ limsup

k→∞
µ̂X
(
`
(
fn2k+1

(X1:n2k+1
, f?(X1:n2k+1

), ·), f?(·)
))

≥ limsup
k→∞

`(y0, y1)

(
1− 1

n2k

)
= `(y0, y1).

In particular, this implies fn is not strongly universally consistent under X. Similar argu-
ments can be constructed for most learning methods in common use (e.g., kernel rules, the
k-nearest neighbors rule, support vector machines with radial basis kernel).

It is clear from this example that obtaining consistency under general X satisfying
Condition 1 will require a new approach to the design of learning rules. We develop such
an approach in the sections below. The essential innovation is to base the predictions not
only on performance on points that seem typical relative to the present data set X1:n, but
also on the prefixes X1:n′ of the data set (for a well-chosen range of values n′ ≤ n).

4. Condition 1 is Necessary and Sufficient for Universal Inductive and
Self-Adaptive Learning

This section presents the proof of Theorem 7 from Section 1.2, establishing equivalence
of the set of processes admitting strong universal inductive learning, the set of processes
admitting strong universal self-adaptive learning, and the set of processes satisfying Condi-
tion 1. For convenience, we restate that result here (in simplified form) as follows.

Theorem 7 (restated) SUIL = SUAL = C1.

The proof is by way of three lemmas: Lemma 20, representing necessity of Condition 1
for strong universal self-adaptive learning, Lemma 27, representing sufficiency of Condi-
tion 1 for strong universal inductive learning, and Lemma 19, which indicates that any
process admitting strong universal inductive learning necessarily admits strong universal
self-adaptive learning. We begin with the last (and simplest) of these.

Lemma 19 SUIL ⊆ SUAL.
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Proof Let X ∈ SUIL, and let fn be an inductive learning rule such that, for every mea-
surable f? : X → Y, lim

n→∞
L̂X(fn, f

?;n) = 0 (a.s.). Then define a self-adaptive learning rule

gn,m as follows. For every n,m ∈ N, and every {xi}mi=1 ∈ Xm, {yi}ni=1 ∈ Yn, and z ∈ X , if
n ≤ m, define gn,m(x1:m, y1:n, z) = fn(x1:n, y1:n, z). With this definition, we have that for
every measurable f? : X → Y, for every n ∈ N,

L̂X(gn,·, f
?;n) = limsup

t→∞

1

t+ 1

n+t∑
m=n

`(gn,m(X1:m, f
?(X1:n), Xm+1), f?(Xm+1))

= limsup
t→∞

1

t+ 1

n+t∑
m=n

`(fn(X1:n, f
?(X1:n), Xm+1), f?(Xm+1)) = L̂X(fn, f

?;n),

so that lim
n→∞

L̂X(gn,·, f
?;n) = lim

n→∞
L̂X(fn, f

?;n) = 0 (a.s.).

Next, we prove necessity of Condition 1 for strong universal self-adaptive learning.

Lemma 20 SUAL ⊆ C1.

Proof We prove this result in the contrapositive. Suppose X /∈ C1. By Corollary 15,

there exists a disjoint sequence {Ai}∞i=1 in B with
∞⋃
i=1

Ai = X such that, with probability

greater than 0, lim
n→∞

µ̂X(
⋃
{Ai : X1:n ∩Ai = ∅}) > 0. For any n ∈ N, let Ā(X1:n) =

⋃
{Ai :

X1:n ∩ Ai = ∅}. Now take any two distinct values y0, y1 ∈ Y, and construct a set of target
functions {f?κ : κ ∈ [0, 1)} as follows. For any κ ∈ [0, 1) and i ∈ N, let κi = b2iκc−2b2i−1κc:
the ith bit of the binary representation of κ. For each i ∈ N and each x ∈ Ai, define
f?κ(x) = yκi . Note that (x, κ) 7→ f?κ(x) is measurable in the product σ-algebra (under B
for the x argument, and the usual Borel σ-algebra on [0, 1) for the κ argument), since the

inverse image of {y1} is
∞⋃
i=1

(Ai × {κ : κi = 1}) (a countable union of measurable rectangle

sets) and the inverse image of {y0} is the complement of this set.

For any t ∈ N, let it denote the value of i ∈ N for which Xt ∈ Ai. Now fix any self-
adaptive learning rule gn,m, and for brevity define a function fκn,m : X → Y as fκn,m(·) =
gn,m(X1:m, f

?
κ(X1:n), ·) (a composition of measurable functions, and therefore measurable).

Then we have

sup
κ∈[0,1)

E
[
limsup
n→∞

L̂X(gn,·, f
?
κ ;n)

]
≥
∫ 1

0
E
[
limsup
n→∞

L̂X(gn,·, f
?
κ ;n)

]
dκ

≥
∫ 1

0
E

[
limsup
n→∞

limsup
t→∞

1

t+ 1

n+t∑
m=n

`
(
fκn,m(Xm+1), f?κ(Xm+1)

)
1Ā(X1:n)(Xm+1)

]
dκ.

By Fubini’s theorem, this last expression is equal

E

[∫ 1

0
limsup
n→∞

limsup
t→∞

1

t+ 1

n+t∑
m=n

`
(
fκn,m(Xm+1), f?κ(Xm+1)

)
1Ā(X1:n)(Xm+1)dκ

]
.
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Since ` is bounded, Fatou’s lemma implies this is at least as large as

E

[
limsup
n→∞

limsup
t→∞

∫ 1

0

1

t+ 1

n+t∑
m=n

`
(
fκn,m(Xm+1), f?κ(Xm+1)

)
1Ā(X1:n)(Xm+1)dκ

]
,

and linearity of integration implies this equals

E

[
limsup
n→∞

limsup
t→∞

1

t+ 1

n+t∑
m=n

1Ā(X1:n)(Xm+1)

∫ 1

0
`
(
fκn,m(Xm+1), f?κ(Xm+1)

)
dκ

]
. (11)

Note that, for any m, the value of fκn,m(Xm+1) is a function of X and the values κi1 , . . . , κin .
Therefore, for any m with Xm+1 ∈ Ā(X1:n), the value of fκn,m(Xm+1) is functionally inde-
pendent of κim+1 . Thus, letting K ∼ Uniform([0, 1)) be independent of X and gn,m, for any
such m we have∫ 1

0
`
(
fκn,m(Xm+1), f?κ(Xm+1)

)
dκ = E

[
`
(
fKn,m(Xm+1), f?K(Xm+1)

) ∣∣∣X, gn,m]
= E

[
E
[
`
(
gn,m(X1:m, {yKij }

n
j=1, Xm+1), yKm+1

) ∣∣∣X, gn,m,Ki1 , . . . ,Kin

] ∣∣∣X, gn,m]
= E

 ∑
b∈{0,1}

1

2
`
(
gn,m(X1:m, {yKij }

n
j=1, Xm+1), yb

) ∣∣∣X, gn,m
 .

By the relaxed triangle inequality, this last line is no smaller than E
[

1
2c`
`(y0, y1)

∣∣∣X, gn,m] =
1

2c`
`(y0, y1), so that (11) is at least as large as

E

[
limsup
n→∞

limsup
t→∞

1

t+ 1

n+t∑
m=n

1Ā(X1:n)(Xm+1)
1

2c`
`(y0, y1)

]
=

1

2c`
`(y0, y1)E

[
lim
n→∞

µ̂X

(⋃
{Ai : X1:n ∩Ai = ∅}

)]
.

Since any nonnegative random variable with mean 0 necessarily equals 0 almost surely (e.g.,
Ash and Doléans-Dade, 2000, Theorem 1.6.6), and since lim

n→∞
µ̂X(
⋃
{Ai : X1:n ∩Ai = ∅}) > 0

with probability strictly greater than 0, and the left hand side of this inequality is nonneg-

ative, we have that E
[

lim
n→∞

µ̂X(
⋃
{Ai : X1:n ∩Ai = ∅})

]
> 0. Furthermore, since ` is a

near-metric, we also have `(y0, y1) > 0. Altogether we have that

sup
κ∈[0,1)

E
[
limsup
n→∞

L̂X(gn,·, f
?
κ ;n)

]
≥ 1

2c`
`(y0, y1)E

[
limsup
n→∞

µ̂X

(⋃
{Ai : X1:n ∩Ai = ∅}

)]
> 0.

In particular, this implies ∃κ ∈ [0, 1) such that E
[
limsup
n→∞

L̂X(gn,·, f
?
κ ;n)

]
> 0. Since

any random variable equal 0 (a.s.) necessarily has expected value 0, and since we have
limsup
n→∞

L̂X(gn,·, f
?
κ ;n) ≥ 0, it must be that limsup

n→∞
L̂X(gn,·, f

?
κ ;n) > 0 with probability strictly

greater than 0, so that gn,m is not strongly universally consistent. Since gn,m was an ar-
bitrary self-adaptive learning rule, we conclude that there does not exist a self-adaptive
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learning rule that is strongly universally consistent under X: that is, X /∈ SUAL. Since this
argument holds for any X /∈ C1, the lemma follows.

Finally, to complete the proof of Theorem 7, we prove that Condition 1 is sufficient for
X to admit strong universal inductive learning. We prove this via a more general strategy:
namely, a kind of constrained maximum empirical risk minimization. Though the lemmas
below are in fact somewhat stronger than needed to prove Theorem 7, some of them are
useful later for establishing Theorem 5, and some should also be of independent interest.
We propose to study an inductive learning rule f̂n such that, for any n ∈ N, x1:n ∈ X n, and
y1:n ∈ Yn, the function f̂n(x1:n, y1:n, ·) is defined as

argmin
f∈Fn

max
m̂n≤m≤n

1

m

m∑
t=1

`(f(xt), yt), (12)

where Fn is a well-chosen finite class of functions X → Y, and m̂n is a well-chosen integer.
Suppose ties in the argmin are broken based on a fixed preference ordering of Fn. In
particular, this makes f̂n a measurable function, and hence (12) defines a valid inductive
learning rule. For our purposes, f̂0({}, {}, ·) can be defined as an arbitrary measurable
function X → Y.

The sequence of classes Fn and values m̂n, and the guarantees they provide, originate in
the following several lemmas. The general strategy is to define Fn so that, for large n, Fn
is rich enough to contain a function f with small µ̂X(`(f(·), f?(·))), while at the same time

not too rich, so that (for an appropriate choice of m̂n) max
m̂n≤m≤n

1
m

m∑
t=1

`(f(Xt), f
?(Xt)) is a

reasonable estimate of µ̂X(`(f(·), f?(·))) for all f ∈ Fn. The fact that these two properties
can exist simultaneously, and for all possible f?, is enabled by X satisfying Condition 1. We
now proceed with the details.

Lemma 21 For any finite set G of bounded measurable functions X → R, for any process X,
there exists a (nonrandom) nondecreasing sequence {sn}∞n=1 in N with sn ≤ n and sn →∞
such that

lim
n→∞

E

[
sup
n′≥n

max
g∈G

∣∣∣∣∣µ̂X(g) − max
sn≤m≤n′

1

m

m∑
t=1

g(Xt)

∣∣∣∣∣
]

= 0.

Proof The proof of this lemma proceeds in three steps. First, we note that the result would
follow almost immediately from the definition of limsup, if the sequence X were deterministic
and we were merely interested in the case of a single function g. Second, we extend this
observation to any finite set G of functions by taking the sn sequence as the minimum of the
corresponding sn values for each individual g. The final component is to extend the result
to hold for non-deterministic processes X, by replacing the sn sequence corresponding to
each sample path of X with an appropriate confidence bound on its value. This last step
requires us to introduce some notation in the first two steps to explicitly define these sn
sequences for the sample paths, so that together they are a measurable function of X, and
hence confidence bounds are well-define. We now turn to the details of the proof.
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Fix any sequence x = {xt}∞t=1 in X and any bounded function g : X → R. By definition,

µ̂x(g) = lim
s→∞

lim
n→∞

max
s≤m≤n

1

m

m∑
t=1

g(xt).

In particular, for each s ∈ N, since max
s≤m≤n

1
m

m∑
t=1

g(xt) is nondecreasing in n ≥ s, and g is

bounded, lim
n→∞

max
s≤m≤n

1
m

m∑
t=1

g(xt) exists and is finite. This implies that, for each s ∈ N,

∃ngs(x) ∈ N s.t. ngs(x) ≥ s and every n′ ≥ ngs(x) has

max
s≤m≤n′

1

m

m∑
t=1

g(xt) ≤ sup
s≤m<∞

1

m

m∑
t=1

g(xt) ≤ 2−s + max
s≤m≤n′

1

m

m∑
t=1

g(xt). (13)

In particular, let us define ngs(x) to be the minimal value in N with this property. We
first argue that ngs(x) is nondecreasing in s. To see this, first note that the left in-
equality in (13) is trivially satisfied for every s, n′ ∈ N with n′ ≥ s. Moreover, for any

n′, s ∈ N with s ≥ 2 and n′ ≥ ngs(x), either sup
s−1≤m<∞

1
m

m∑
t=1

g(xt) = 1
s−1

s−1∑
t=1

g(xt), in which

case it is clearly less than 2−(s−1) + max
s−1≤m≤n′

1
m

m∑
t=1

g(xt), or else sup
s−1≤m<∞

1
m

m∑
t=1

g(xt) =

sup
s≤m<∞

1
m

m∑
t=1

g(xt), in which case (since n′ ≥ ngs(x)) it is at most 2−s+ max
s≤m≤n′

1
m

m∑
t=1

g(xt) ≤

2−(s−1) + max
s−1≤m≤n′

1
m

m∑
t=1

g(xt). Furthermore, we have ngs(x) ≥ s ≥ s − 1. Altogether, we

have ngs−1(x) ≤ ngs(x), so that ngs(x) is indeed nondecreasing in s.
For each n ∈ N with n ≥ ng1(x), let sgn(x) = max{s ∈ {1, . . . , n} : n ≥ ngs(x)}; for

completeness, let sgn(x) = 0 for n < ng1(x). Then, for any finite set G of bounded functions

X → R, define sGn(x) = min
g∈G

sgn(x) = max

({
s ∈ {1, . . . , n} : n ≥ max

g∈G
ngs(x)

}
∪ {0}

)
. Since

ngs(x) is nondecreasing in s, we have for any n, n′ ∈ N with n′ ≥ n, for 1 ≤ s ≤ sGn(x), every
g ∈ G has n′ ≥ ngs(x), so that (13) is satisfied for every g ∈ G, which implies

max
g∈G

∣∣∣∣∣ sup
s≤m<∞

1

m

m∑
t=1

g(xt)− max
s≤m≤n′

1

m

m∑
t=1

g(xt)

∣∣∣∣∣ ≤ 2−s.

Therefore, for any sequence sn → ∞ with sn ≤ n such that ∃n0 ∈ N with 1 ≤ sn ≤ sGn(x)
for all n ≥ n0, we have

lim
n→∞

sup
n′≥n

max
g∈G

∣∣∣∣∣ sup
sn≤m<∞

1

m

m∑
t=1

g(xt) − max
sn≤m≤n′

1

m

m∑
t=1

g(xt)

∣∣∣∣∣ ≤ lim
n→∞

2−sn = 0.

Furthermore, for any such sequence sn, for every g ∈ G, by definition

lim
n→∞

sup
sn≤m<∞

1

m

m∑
t=1

g(xt) = µ̂x(g),
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and since G has finite cardinality, this implies

lim
n→∞

max
g∈G

∣∣∣∣∣µ̂x(g) − sup
sn≤m<∞

1

m

m∑
t=1

g(xt)

∣∣∣∣∣ = max
g∈G

lim
n→∞

∣∣∣∣∣µ̂x(g) − sup
sn≤m<∞

1

m

m∑
t=1

g(xt)

∣∣∣∣∣ = 0.

Altogether, the triangle inequality implies

lim
n→∞

sup
n′≥n

max
g∈G

∣∣∣∣∣µ̂x(g) − max
sn≤m≤n′

1

m

m∑
t=1

g(xt)

∣∣∣∣∣
≤ lim

n→∞
sup
n′≥n

max
g∈G

∣∣∣∣∣ sup
sn≤m<∞

1

m

m∑
t=1

g(xt) − max
sn≤m≤n′

1

m

m∑
t=1

g(xt)

∣∣∣∣∣
+ lim
n→∞

max
g∈G

∣∣∣∣∣µ̂x(g) − sup
sn≤m<∞

1

m

m∑
t=1

g(xt)

∣∣∣∣∣ = 0. (14)

Next, suppose the bounded functions in the set G are measurable. Note that this implies
that, for any g ∈ G, the set of sequences x satisfying (13) for a given s, n ∈ N is a measurable
subset of X∞, so that for each s, n′ ∈ N the set of sequences x with ngs(x) = n′ is also a
measurable set, so that ngs is a measurable function. Since the value of sgn is obtained
from the values ngs via operations that preserve measurability, we also have that sgn is a
measurable function. Since the minimum of a finite set of measurable functions is also
measurable, we also have that sGn is a measurable function.

Now fix any process X. At this point, it may be tempting to use sGn(X) to complete the
proof. However, recall that the lemma requires a nonrandom sequence sn, whereas sGn(X)
is a random variable. To address this, we will replace sGn(X) with an appropriate sequence
of confidence bounds on its value, as follows. For any n ∈ N and δ ∈ (0, 1] define

sGn(δ) = max
{
s ∈ {0, 1, . . . , n} : P(sGn(X) ≥ s) ≥ 1− δ

}
.

Since sGn(x) is nondecreasing for each sequence x, we must also have that sGn(δ) is nonde-
creasing in n. Furthermore, since each s ∈ N and g ∈ G have ngs(x) < ∞, and G is a finite
set, we have sGn(x) → ∞ for any sequence x; thus, by continuity of probability measures
(e.g., Schervish, 1995, Theorem A.19), ∀s ∈ N, lim

n→∞
P(sGn(X) < s) = 0. We therefore have

sGn(δ)→∞ for any δ ∈ (0, 1]. In particular, letting

sn = max
{
s ∈ N ∪ {0} : sGn(2−s) ≥ s

}
for each n ∈ N, we have that sn is nondecreasing, and sn →∞. Furthermore, by definition,
we have P(sGn(X) ≥ sn) ≥ 1− 2−sn , and since any δ ∈ (0, 1] has sGn(δ) ≤ n, the definition of
sn also implies sn ≤ n. Let n1 = 1, and let n2, n3, . . . denote the increasing subsequence of
all values n ∈ N \ {1} for which sn > sn−1; since sn → ∞ while each n has sn ≤ n < ∞,
there are indeed an infinite number of such nk values. Note that, since sn is nondecreasing,
and hence these snk are each distinct values in N ∪ {0}, we have

∞∑
k=1

P(sGnk(X) < snk) ≤
∞∑
k=1

2−snk ≤
∞∑
i=0

2−i = 2 <∞.
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Therefore, the Borel-Cantelli Lemma implies that, with probability one, for all sufficiently
large k, we have sGnk(X) ≥ snk . Furthermore, since sGn(X) is nondecreasing in n, and sn = snk
for all n ∈ {nk, . . . , nk+1 − 1} (due to sn nondecreasing), if sGnk(X) ≥ snk for a given k ∈ N,
then sGn(X) ≥ sn for every n ∈ {nk, . . . , nk+1 − 1}. Combining this again with the fact that
sn → ∞, we may conclude that, with probability one, for all sufficiently large n ∈ N, we
have 1 ≤ sn ≤ sGn(X). Thus, sn almost surely satisfies the requirements for (14) to hold for
x = X, which therefore implies

lim
n→∞

sup
n′≥n

max
g∈G

∣∣∣∣∣µ̂X(g) − max
sn≤m≤n′

1

m

m∑
t=1

g(Xt)

∣∣∣∣∣ = 0 (a.s.). (15)

Finally, since the functions in G are bounded and G has finite cardinality,{
sup
n′≥n

max
g∈G

∣∣∣∣∣µ̂X(g) − max
sn≤m≤n′

1

m

m∑
t=1

g(Xt)

∣∣∣∣∣
}∞
n=1

is a uniformly bounded sequence of random variables, so that combining (15) with the
dominated convergence theorem implies

lim
n→∞

E

[
sup
n′≥n

max
g∈G

∣∣∣∣∣µ̂X(g) − max
sn≤m≤n′

1

m

m∑
t=1

g(Xt)

∣∣∣∣∣
]

= 0.

Lemma 22 Suppose {Gi}∞i=1 is a sequence of nonempty finite sets of bounded measur-
able functions X → R, with G1 ⊆ G2 ⊆ · · · , and {γi}∞i=1 is a sequence in (0,∞) with

γ1 ≥ max
g∈G1

(
sup
x∈X

g(x)− inf
x∈X

g(x)

)
. Then for any process X, there exist (nonrandom) nonde-

creasing sequences {mi}∞i=1 and {in}∞n=1 in N with mi →∞ and in →∞ such that ∀n ∈ N,
min ≤ n and

E

[
max
g∈Gin

∣∣∣∣∣µ̂X(g) − max
min≤m≤n

1

m

m∑
t=1

g(Xt)

∣∣∣∣∣
]
≤ γin .

Proof For each i ∈ N, let {mi,n}∞n=1 denote a nondecreasing sequence in N with lim
n→∞

mi,n =

∞, mi,n ≤ n, and

lim
n→∞

E

[
sup
n′≥n

max
g∈Gi

∣∣∣∣∣µ̂X(g) − max
mi,n≤m≤n′

1

m

m∑
t=1

g(Xt)

∣∣∣∣∣
]

= 0. (16)

Such a sequence is guaranteed to exist by Lemma 21. From here, it would be straightforward

to produce a sequence in satisfying E
[

max
g∈Gin

∣∣∣∣µ̂X(g) − max
min,n≤m≤n

1
m

m∑
t=1

g(Xt)

∣∣∣∣] ≤ γin , simply

letting in grow sufficiently slowly. However, comparing this to the claim in the lemma,
we require slightly more than this: namely, replacing min,n with a single-index sequence

30



Learning Whenever Learning is Possible

min . The existence of such a sequence min is enabled by the additional supremum in the
expression on the left of (16). The basic idea is that this allows us to define a sequence

ni such that E
[
max
g∈Gi

∣∣∣∣µ̂X(g) − max
mi,ni≤m≤n

1
m

m∑
t=1

g(Xt)

∣∣∣∣] ≤ γi for any n ≥ ni. We may then

conclude by defining mi = mi,ni , and in maximal such that n ≥ nin . The formal argument
becomes somewhat more technical in order to verify such sequences are well-defined and to
satisfy the monotonicity requirements of mi and in from the lemma. The details follow.

Formally, for each n ∈ N, define

jn=max

{
i∈{1, . . . , n} : ∀i′≤ i, sup

n′′≥n
E

[
sup
n′≥n′′

max
g∈Gi′

∣∣∣∣∣µ̂X(g) − max
mi′,n′′≤m≤n′

1

m

m∑
t=1

g(Xt)

∣∣∣∣∣
]
≤γi′

}
.

First note that the set on the right hand side is nonempty, since every n′′ ∈ N has

E

[
sup
n′≥n′′

max
g∈G1

∣∣∣∣∣µ̂X(g) − max
m1,n′′≤m≤n′

1

m

m∑
t=1

g(Xt)

∣∣∣∣∣
]
≤ max

g∈G1

(
sup
x∈X

g(x)− inf
x∈X

g(x)

)
≤ γ1.

Thus, jn is well-defined for every n ∈ N. In particular, by this definition, we have ∀n ∈ N,
∀i ∈ {1, . . . , jn},

E

[
sup
n′≥n

max
g∈Gi

∣∣∣∣∣µ̂X(g) − max
mi,n≤m≤n′

1

m

m∑
t=1

g(Xt)

∣∣∣∣∣
]
≤ γi. (17)

Furthermore, since

sup
n′′≥n

E

[
sup
n′≥n′′

max
g∈Gi

∣∣∣∣∣µ̂X(g) − max
mi,n′′≤m≤n′

1

m

m∑
t=1

g(Xt)

∣∣∣∣∣
]

is nonincreasing in n for every i ∈ N, we have that jn is nondecreasing. Also note that, for
any i ∈ N, since γi > 0, (16) implies that ∃n′i ∈ N such that, ∀n ≥ n′i,

sup
n′′≥n

E

[
sup
n′≥n′′

max
g∈Gi

∣∣∣∣∣µ̂X(g) − max
mi,n′′≤m≤n′

1

m

m∑
t=1

g(Xt)

∣∣∣∣∣
]
≤ γi.

Therefore jn ≥ i for every n ≥ max

{
i, max

1≤i′≤i
n′i′

}
. Since this is true of every i ∈ N, we have

that jn →∞.
Next, let n1 = 1, and for each i ∈ N \ {1}, inductively define

ni = min
{
n ∈ N : jn ≥ i,mi,n > mi−1,ni−1

}
.

Note that, given the value ni−1 ∈ N, the value ni is well-defined since lim
n→∞

jn = ∞ and

lim
n→∞

mi,n = ∞. Thus, by induction, ni is a well-defined value in N for all i ∈ N. For

each i ∈ N, define mi = mi,ni . In particular, by definition of ni, for all i ∈ N we have
mi+1 = mi+1,ni+1 > mi,ni = mi, so that mi is strictly increasing, with mi → ∞. Finally,
for each n ∈ N, define in = max {i ∈ {1, . . . , n} : ni ≤ n}. Since n1 = 1, in is a well-defined
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value in N for all n ∈ N. Also, any i ∈ {1, . . . , n} with ni ≤ n also has ni ≤ n+ 1, so that in
is nondecreasing in n. Furthermore, since ni < ∞ for every i ∈ N, we have in → ∞. Also
note that, ∀n ∈ N, we have n ≥ nin , which also implies min ≤ nin ≤ n (by the assumed
property that mi,n ≤ n for any n). Thus, for every n ∈ N,

E

[
max
g∈Gin

∣∣∣∣∣µ̂X(g)− max
min≤m≤n

1

m

m∑
t=1

g(Xt)

∣∣∣∣∣
]
≤E

[
sup

n′≥nin
max
g∈Gin

∣∣∣∣∣µ̂X(g)− max
min,nin

≤m≤n′
1

m

m∑
t=1

g(Xt)

∣∣∣∣∣
]
.

By definition of nin , we have jnin ≥ in (this is immediate from the ni definition if in ≥ 2,
and is also trivially true for in = 1 since j1 ≥ 1), so that (17) implies the rightmost expres-
sion above is at most γin , which completes the proof.

The following lemma represents the first use of Condition 1 in the proof of sufficiency
of Condition 1 for strong universal inductive learning. Indeed, in the special case of binary
classification, this is actually the only use of Condition 1 needed for the proof. For the case
of general (Y, `), one additional use of Condition 1 (in Lemma 24 below) will be needed, to
extend this lemma from set approximation to function approximation.

Lemma 23 There exists a countable set T1 ⊆ B such that, ∀X ∈ C1, ∀A ∈ B,

inf
G∈T1

E[µ̂X(G4A)] = 0.

Proof By assumption, B is generated by a separable metrizable topology T , and since every
separable metrizable topological space is second countable (see Srivastava, 1998, Proposition
2.1.9), we have that there exists a countable set T0 ⊆ T such that, ∀A ∈ T , ∃A ⊆ T0

s.t. A =
⋃
A. Now from this, there is an immediate proof of the lemma if we were

to take T1 as the algebra generated by T0 (which is a countable set) via the monotone
class theorem (Ash and Doléans-Dade, 2000, Theorem 1.3.9), using Condition 1 to argue
that the sets A satisfying the claim in the lemma form a monotone class. However, here
we will instead establish the lemma with a smaller choice of the set T1, which thereby
simplifies the problem of implementing the resulting learning rule. Specifically, we take
T1 = {

⋃
A : A ⊆ T0, |A| <∞}: all finite unions of sets in T0. Note that, given an indexing

of T0 by N, each A ∈ T1 can be indexed by a finite subset of N (the indices of elements of
the corresponding A), of which there are countably many, so that T1 is countable. Now fix
any X ∈ C1 and let

Λ =

{
A ∈ B : inf

G∈T1
E[µ̂X(G4A)] = 0

}
.

We will prove that Λ = B by establishing that T ⊆ Λ and that Λ is a σ-algebra.

First consider any A ∈ T . As mentioned above, ∃{Bi}∞i=1 in T0 such that A =
∞⋃
i=1

Bi.

But then letting Ak =
k⋃
i=1

Bi for each k ∈ N, we have Ak4A = A \Ak ↓ ∅, and Ak ∈ T1 for

each k ∈ N. Therefore, inf
G∈T1

E [µ̂X(G4A)] ≤ lim
k→∞

E [µ̂X(Ak 4A)], and the right hand side

equals 0 by Condition 1. Together with nonnegativity of inf
G∈T1

E [µ̂X(G4A)] (Lemma 9),

this implies A ∈ Λ. Since this holds for any A ∈ T , we have T ⊆ Λ.
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Next, we argue that Λ is a σ-algebra. We begin by showing it is closed under com-
plements. Toward this end, consider any A ∈ Λ, and for any k ∈ N denote by Gk an
element of T1 with E [µ̂X(Gk 4A)] < 1/k (guaranteed to exist by the definition of Λ). Since
Gk ∈ T1 ⊆ T , it follows that X \ Gk is a closed set. Therefore, since (X , T ) is metriz-

able, ∃{Bki}∞i=1 in T such that X \ Gk =
∞⋂
i=1

Bki (Kechris, 1995, Proposition 3.7). Let-

ting Ckj =
j⋂
i=1

Bki for each j ∈ N, we have that Ckj 4 (X \ Gk) = Ckj \ (X \ Gk) ↓ ∅

as j → ∞, and Ckj ∈ T for each j ∈ N. In particular, by Condition 1, ∃jk ∈ N
such that E[µ̂X(Ckjk 4 (X \Gk))] < 1/k. Also, since Ckjk ∈ T , and we proved above
that T ⊆ Λ, ∃Dk ∈ T1 such that E [µ̂X(Dk 4 Ckjk)] < 1/k. Together with the facts
that Dk 4 (X \ A) ⊆ (Dk 4 Ckjk) ∪ (Ckjk 4 (X \ Gk)) ∪ ((X \ Gk) 4 (X \ A)) and
(X \Gk)4 (X \A) = Gk 4A, by subadditivity of E[µ̂X(·)] (Lemma 11), we have that

E[µ̂X(Dk 4 (X \A))] ≤ E[µ̂X(Dk 4 Ckjk)] +E[µ̂X(Ckjk 4 (X \Gk))] +E[µ̂X(Gk 4A)] < 3/k.

Since Dk ∈ T1, and this argument holds for any k ∈ N, we have

inf
G∈T1

E[µ̂X(G4 (X \A))] ≤ inf
k∈N

3/k = 0.

Together with nonnegativity of the left hand side (Lemma 9), this implies X \A ∈ Λ. Thus,
Λ is closed under complements.

Next, we argue that Λ is closed under countable unions. Let {Ai}∞i=1 be a sequence

in Λ, let A =
∞⋃
i=1

Ai, and fix any ε > 0. Letting Bk =
k⋃
i=1

Ai for each k ∈ N, we have

Bk4A = A\Bk ↓ ∅. Therefore, Condition 1 implies ∃kε ∈ N such that E[µ̂X(Bkε 4A)] < ε.
Next, for each i ∈ N, let Gi be an element of T1 with E[µ̂X(Gi 4Ai)] < ε/kε (guaranteed

to exist, since Ai ∈ Λ). Let Ckε =
kε⋃
i=1

Gi. Noting that it follows immediately from its

definition that T1 is closed under finite unions, we have that Ckε ∈ T1. Then noting that

Ckε 4A ⊆ (Bkε 4A) ∪ (Ckε 4Bkε) ⊆ (Bkε 4A) ∪
kε⋃
i=1

(Gi 4Ai),

altogether we have that

inf
G∈T1

E[µ̂X(G4A)]≤E[µ̂X(Ckε4A)]≤E[µ̂X(Bkε4A)]+

kε∑
i=1

E[µ̂X(Gi4Ai)]<ε+

kε∑
i=1

ε

kε
= 2ε,

where the second inequality is due to subadditivity of E[µ̂X(·)] (Lemma 11). Since this
argument holds for any ε > 0, taking the limit as ε→ 0 reveals that inf

G∈T1
E[µ̂X(G4A)] ≤ 0.

Together with nonnegativity of the left hand side (Lemma 9), this implies A ∈ Λ. Thus, Λ
is closed under countable unions.

Finally, recalling that T is a topology, by definition we have X ∈ T , and since T ⊆ Λ,
this implies X ∈ Λ. Altogether, we have established that Λ is a σ-algebra. Therefore,
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since B is the σ-algebra generated by T , and T ⊆ Λ, it immediately follows that B ⊆ Λ
(which also implies Λ = B). Since this argument holds for any choice of X ∈ C1, the lemma
immediately follows.

For example, in the special case of X = Rd (d ∈ N) with the Euclidean topology, the
above proof implies it suffices to take the set T1 as the finite unions of rational-centered
rational-radius open balls. Now, continuing with the general case, the next lemma extends
Lemma 23 from set approximation to function approximation, again using Condition 1.

Lemma 24 There exists a countable set F̃ of measurable functions X → Y such that, for
every X ∈ C1, for every measurable f : X → Y,

inf
f̃∈F̃

E
[
µ̂X(`(f̃(·), f(·)))

]
= 0.

Proof The proof will establish this claim for the set F̃ of finite-depth decision list functions,
where the decision region of each node is specified by an element from the countable set T1

(from Lemma 23) and the values are taken from a countable dense set Ỹ ⊆ Y.

We will first prove that there exists a countable set F̃ of measurable functions X → Y
such that, for every X ∈ C1, ∀ε > 0, for every measurable f : X → Y, ∃f̃ε ∈ F̃ s.t.

E
[
µ̂X(`(f̃ε(·), f(·)))

]
< 3c`ε. The lemma will follow immediately from this (for this same

set F̃) by taking ε → 0. Let T1 be as in Lemma 23, and let Ỹ ⊆ Y be a countable set
with sup

y∈Y
inf
ỹ∈Ỹ

`(ỹ, y) = 0; this must exist, by the assumption that (Y, `) is separable. Fix

some arbitrary value y0 ∈ Y, and let A0 = X . For any k ∈ N, values y1, . . . , yk ∈ Y, and
sets A1, . . . , Ak ∈ B, for any x ∈ X , define f̃(x; {yi}ki=1, {Ai}ki=1) = ymax{j∈{0,...,k}:x∈Aj}; one

can easily verify that f̃(·; {yi}ki=1, {Ai}ki=1) is a measurable function (indeed, it is a simple
function). Define

F̃ =
{
f̃(·; {yi}ki=1, {Ai}ki=1) : k ∈ N,∀i ≤ k, yi ∈ Ỹ, Ai ∈ T1

}
,

and note that, given an indexing of Ỹ and T1 by N, we can index F̃ by finite tuples of
integers (the indices of the corresponding yi and Ai values), of which there are countably
many, so that F̃ is countable.

Enumerate the elements of Ỹ as ỹ1, ỹ2, . . . (for simplicity of notation, we suppose this
sequence is infinite; otherwise, we can simply repeat the elements to get an infinite sequence).
For each ε > 0, let Bε,1 = {y ∈ Y : `(ỹ1, y) ≤ ε}, and for each integer i ≥ 2, inductively

define Bε,i = {y ∈ Y : `(ỹi, y) ≤ ε} \
i−1⋃
j=1

Bε,j . Note that the sets Bε,i are measurable and

disjoint over i ∈ N, and that
∞⋃
i=1

Bε,i = Y.

Now fix any X ∈ C1, any measurable f : X → Y, and any ε > 0. For each i ∈ N,
define Cε,i = f−1(Bε,i), which is an element of B by measurability of f and Bε,i. Note

that
∞⋃
i=1

Cε,i = f−1

( ∞⋃
i=1

Bε,i

)
= f−1(Y) = X , and furthermore that (since the Bε,i sets are
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disjoint) the sets Cε,i are disjoint over i ∈ N. It follows that lim
k→∞

∞⋃
i=k

Cε,i = ∅, with
∞⋃
i=k

Cε,i

nonincreasing in k, so that Condition 1 entails lim
k→∞

E
[
µ̂X

( ∞⋃
i=k

Cε,i

)]
= 0. In particular,

this implies ∃kε ∈ N such that E

[
µ̂X

(
∞⋃

i=kε+1

Cε,i

)]
< c`ε/¯̀.

For each i ∈ {1, . . . , kε}, let Aε,i ∈ T1 be a set with E[µ̂X(Aε,i 4 Cε,i)] < ε/(kε ¯̀), which
exists by the defining property of T1 from Lemma 23. Finally, let

f̃ε(·) = f̃
(
·; {ỹi}kεi=1, {Aε,i}

kε
i=1

)
,

and note that f̃ε ∈ F̃ . Furthermore, for any x ∈ X =
∞⋃
i=1

Cε,i,

`(f(x), f̃ε(x)) ≤ ¯̀1⋃∞
i=kε+1 Cε,i

(x) +

kε∑
i=1

`(f(x), f̃ε(x))1Cε,i(x)

≤ ¯̀1⋃∞
i=kε+1 Cε,i

(x) +

kε∑
i=1

c`

(
`(f(x), ỹi)1Cε,i(x) + `(ỹi, f̃ε(x))1Cε,i(x)

)
≤ ¯̀1⋃∞

i=kε+1 Cε,i
(x) + c`ε+ c`

kε∑
i=1

`(ỹi, f̃ε(x))1Cε,i(x). (18)

Focusing now on the rightmost summation, let [kε] = {1, . . . , kε}. If x /∈
⋃

i∈[kε]

Cε,i then

this term is trivially zero due to the 1Cε,i(x) factors. Otherwise, let j ∈ [kε] be such that
x ∈ Cε,j ; this j is unique by disjointness of the Cε,i sets, and for this same reason we have

kε∑
i=1

`(ỹi, f̃ε(x))1Cε,i(x) = `(ỹj , f̃ε(x))1Cε,j (x). (19)

Now note that if x ∈ Aε,j \
⋃

i∈[kε]\{j}
Aε,i, then `(ỹj , f̃ε(x)) = 0. Thus, if `(ỹj , f̃ε(x))1Cε,j (x) 6=

0, then either x ∈ Cε,j\Aε,j , or else ∃i ∈ [kε]\{j} with x ∈ Cε,j∩Aε,i ⊆ Aε,i\Cε,i (where this
last inclusion follows from Cε,j∩Cε,i = ∅). Either way, we see that if `(ỹj , f̃ε(x))1Cε,j (x) 6= 0
then ∃i ∈ [kε] with x ∈ Cε,i 4Aε,i, so that

`(ỹj , f̃ε(x))1Cε,j (x) ≤ `(ỹj , f̃ε(x))

kε∑
i=1

1Cε,i4Aε,i(x) ≤ ¯̀
kε∑
i=1

1Cε,i4Aε,i(x). (20)

Combining (19) and (20) and plugging back into (18) yields

`(f(x), f̃ε(x)) ≤ ¯̀1⋃∞
i=kε+1 Cε,i

(x) + c`ε+ c` ¯̀
kε∑
i=1

1Cε,i4Aε,i(x).
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Therefore, by linearity of the expectation, together with monotonicity, homogeneity, and
finite subadditivity of µ̂X (Lemma 8),

E
[
µ̂X

(
`
(
f(·), f̃ε(·)

))]
≤ c`ε+ ¯̀E

µ̂X
 ∞⋃
i=kε+1

Cε,i

+ c` ¯̀
kε∑
i=1

E[µ̂X(Cε,i 4Aε,i)] < 3c`ε.

The lemma now follows directly from this (together with non-negativity and symme-

try of `), since each f̃ε ∈ F̃ , so that inf
f̃∈F̃

E
[
µ̂X(`(f̃(·), f(·)))

]
≤ lim

ε→0
E
[
µ̂X(`(f̃ε(·), f(·)))

]
≤

lim
ε→0

3c`ε = 0.

Remark: Before proceeding, we remark that since T1 in the proof of Lemma 23 is defined as
the set of finite unions of elements of T0 (where T0 is any countable base for the topology T ),
we can in fact represent any f ∈ F̃ as a function f̃(·; {yi}ki=1, {Ai}ki=1), k ∈ N, {yi}ki=1 ∈ Ỹk,
with {Ai}ki=1 ∈ T k0 (for f̃(·; ·, ·) and Ỹ as defined in the above proof: that is, in the definition
of F̃ in the proof of Lemma 24, we can replace T1 with T0 and the set F̃ remains unchanged.
For instance, in the special case of X = Rd (d ∈ N) and Y = [0, 1] with ` the squared loss
(`(a, b) = (a − b)2), we can take F̃ as the set of rational-valued finite-depth decision lists,
with the region of each decision node being a rational-centered rational-radius open ball.

We will use Lemma 24 via the following immediate implication.

Lemma 25 There exists a sequence {Fi}∞i=1 of nonempty finite sets of measurable functions
X → Y with F1 ⊆ F2 ⊆ · · · such that, for every X ∈ C1, for every measurable f : X → Y,

lim
i→∞

min
fi∈Fi

E[µ̂X(`(fi(·), f(·)))] = 0.

Proof Enumerate the elements of the countable set F̃ from Lemma 24 as f̃1, f̃2, . . ., and

define Fi =
{
f̃1, . . . , f̃i

}
. With this definition, by Lemma 24, any X ∈ C1 and measurable

f : X → Y satisfy lim
i→∞

min
fi∈Fi

E[µ̂X(`(fi(·), f(·)))] = inf
f̃∈F̃

E
[
µ̂X(`(f̃(·), f(·)))

]
= 0.

Additionally, we have the following property for the f -approximating sequences of sets
Fi implied by Lemma 25.

Lemma 26 Fix any process X on X , any measurable function f : X → Y, any nondecreas-
ing sequence {ui}∞i=1 in N with ui → ∞, and any sequence {Fi}∞i=1 of sets of measurable
functions X → Y with F1 ⊆ F2 ⊆ · · · such that lim

i→∞
inf
g∈Fi

E[µ̂X(`(g(·), f(·)))] = 0. There

exists a (nonrandom) sequence {fi}∞i=1, with fi ∈ Fi for each i ∈ N, and a (nonrandom) se-
quence {αi}∞i=1 in (0,∞) with αi → 0, such that, on an event K of probability one, ∃ι0 ∈ N
such that ∀i ≥ ι0,

sup
ui≤m<∞

1

m

m∑
t=1

`(fi(Xt), f(Xt)) ≤ αi.
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Proof Let {gi}∞i=1 be a sequence with gi ∈ Fi for each i ∈ N, s.t. lim
i→∞

E[µ̂X(`(gi(·), f(·)))] =

0. Then ∀k ∈ N, ∃jk ∈ N such that E[µ̂X(`(gjk(·), f(·)))] < 4−k ¯̀. Let us fix any sequence
{jk}∞k=1 in N such that jk has this property for every k. For completeness, also define j0 = 1.
Furthermore, since ui →∞, the dominated convergence theorem implies that ∀j ∈ N,

lim
i→∞

E

[
sup

ui≤m<∞

1

m

m∑
t=1

`(gj(Xt), f(Xt))

]
= E

[
lim
i→∞

sup
ui≤m<∞

1

m

m∑
t=1

`(gj(Xt), f(Xt))

]

= E

[
limsup
m→∞

1

m

m∑
t=1

`(gj(Xt), f(Xt))

]
= E[µ̂X(`(gj(·), f(·)))] .

In particular, this implies that ∀k ∈ N, ∃ik ∈ N such that

E

[
sup

uik≤m<∞

1

m

m∑
t=1

`(gjk(Xt), f(Xt))

]
≤ E[µ̂X(`(gjk(·), f(·)))] + 4−k ¯̀< 2 · 4−k ¯̀. (21)

Also note that, since the leftmost expression in (21) is nonincreasing in ik, we may choose
ik > ik−1 if k ≥ 2 (or ik > 1 for k = 1). Thus, letting i0 = 1, there exists a strictly
increasing sequence {ik}∞k=0 in N such that ik has the property (21) for every k ∈ N. We
may then note that, by Markov’s inequality,

∞∑
k=0

P

(
sup

uik≤m<∞

1

m

m∑
t=1

`(gjk(Xt), f(Xt)) > 2(1/2)−k
√

¯̀

)

≤
∞∑
k=0

1

2(1/2)−k
√

¯̀
E

[
sup

uik≤m<∞

1

m

m∑
t=1

`(gjk(Xt), f(Xt))

]

≤
∞∑
k=0

1

2(1/2)−k
√

¯̀
2 · 4−k ¯̀=

∞∑
k=0

2(1/2)−k
√

¯̀= 23/2
√

¯̀<∞.

Therefore, by the Borel-Cantelli Lemma, there exists an event K of probability one, on
which ∃κ0 ∈ N such that, ∀k ≥ κ0,

sup
uik≤m<∞

1

m

m∑
t=1

`(gjk(Xt), f(Xt)) ≤ 2(1/2)−k
√

¯̀. (22)

Now, ∀i ∈ N, define

ki = max {k ∈ N ∪ {0} : max{ik, jk} ≤ i} ,

and let αi = 2(1/2)−ki
√

¯̀. To see that the value ki is well-defined for every i ∈ N, note that
max{i0, j0} = 1 ≤ i, so that the set on the right hand side is nonempty, and furthermore,
since {ik}∞k=0 is strictly increasing, every k ≥ i has max{ik, jk} > i, so that the set is finite,
and hence has a maximum element. Also, since ik and jk are finite for every k, we have that
lim
i→∞

ki = ∞. In particular, this implies that, on the event K, ∃ι0 ∈ N such that ∀i ≥ ι0,

ki ≥ κ0, so that (22) implies

sup
uiki
≤m<∞

1

m

m∑
t=1

`(gjki (Xt), f(Xt)) ≤ αi. (23)
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Now define fi = gjki for every i ∈ N. Note that, since jki ≤ i (by definition of ki) and
F1 ⊆ F2 ⊆ · · · , we have Fjki ⊆ Fi. In particular, since fi = gjki ∈ Fjki (by definition),
this implies fi ∈ Fi for every i ∈ N. Also note that, since iki ≤ i (by definition of ki), and
{ut}∞t=1 is a nondecreasing sequence, uiki ≤ ui for every i ∈ N. Together with (23), these
facts imply that, on the event K, ∀i ≥ ι0,

sup
ui≤m<∞

1

m

m∑
t=1

`(fi(Xt), f(Xt)) ≤ sup
uiki
≤m<∞

1

m

m∑
t=1

`(fi(Xt), f(Xt)) ≤ αi.

With these results in hand, we are finally ready for the proof of sufficiency of Condition 1
for strong universal inductive learning.

Lemma 27 C1 ⊆ SUIL.

Proof Suppose X ∈ C1. Lemma 25 implies that there exists a sequence {Gi}∞i=1 of finite
sets of measurable functions with G1 ⊆ G2 ⊆ · · · such that, for every measurable function
f? : X → Y, lim

i→∞
min
gi∈Gi

E[µ̂X(`(gi(·), f?(·)))] = 0. Furthermore, applying Lemma 22 to

the sequence of sets {`(f(·), g(·)) : f, g ∈ Gi}, with γi = 41−i ¯̀, we find that there exist
(nonrandom) nondecreasing sequences {mi}∞i=1 and {in}∞n=1 in N with mi →∞ and in →∞
such that ∀n ∈ N, min ≤ n and

E

[
max
f,g∈Gin

∣∣∣∣∣µ̂X(`(f(·), g(·))) − max
min≤m≤n

1

m

m∑
t=1

`(f(Xt), g(Xt))

∣∣∣∣∣
]
≤ γin . (24)

Let I = {in : n ∈ N}, and for each i ∈ I, define ni = min{n ∈ N : in = i}. Markov’s
inequality and (24) imply∑

i∈I
P

(
max
f,g∈Gi

∣∣∣∣∣µ̂X(`(f(·), g(·))) − max
mi≤m≤ni

1

m

m∑
t=1

`(f(Xt), g(Xt))

∣∣∣∣∣ > √γi
)

≤
∑
i∈I

1
√
γi
E

[
max
f,g∈Gi

∣∣∣∣∣µ̂X(`(f(·), g(·))) − max
mi≤m≤ni

1

m

m∑
t=1

`(f(Xt), g(Xt))

∣∣∣∣∣
]

≤
∑
i∈I

√
γi ≤

∞∑
i=1

21−i
√

¯̀= 2
√

¯̀<∞.

Therefore, the Borel-Cantelli Lemma implies that there exists an event K ′ of probability
one, on which ∃ι1 ∈ N such that ∀i ∈ I with i ≥ ι1,

max
f,g∈Gi

(
µ̂X(`(f(·), g(·))) − max

mi≤m≤ni

1

m

m∑
t=1

`(f(Xt), g(Xt))

)
≤ √γi. (25)

Additionally, note that ∀n ∈ N, n ≥ nin , so that ∀f, g ∈ Gin ,

max
min≤m≤n

1

m

m∑
t=1

`(f(Xt), g(Xt)) ≥ max
min≤m≤nin

1

m

m∑
t=1

`(f(Xt), g(Xt)). (26)
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Furthermore, since in →∞, on the event K ′, ∃ν1 ∈ N such that ∀n ≥ ν1, we have in ≥ ι1,
so that (25) and (26) imply

max
f,g∈Gin

(
µ̂X(`(f(·), g(·))) − max

min≤m≤n

1

m

m∑
t=1

`(f(Xt), g(Xt))

)
≤ √γin . (27)

Now consider using the inductive learning rule f̂n defined in (12), with Fn = Gin and
m̂n = min for each n ∈ N. Fix any measurable function f? : X → Y. By the defining
properties of the Gi sequence, and the fact that mi is nondecreasing with lim

i→∞
mi = ∞,

Lemma 26 implies that there exists a (nonrandom) sequence {f?i }∞i=1 with f?i ∈ Gi for each
i ∈ N, a (nonrandom) sequence {αi}∞i=1 in (0,∞) with αi → 0, and an event K of probability
one, on which ∃ι0 ∈ N such that ∀i ≥ ι0,

sup
mi≤m<∞

1

m

m∑
t=1

`(f?i (Xt), f
?(Xt)) ≤ αi. (28)

On this event, let ν0 ∈ N be a value such that ∀n ∈ N with n ≥ ν0, we have in ≥ ι0; such a
ν0 exists since lim

n→∞
in =∞.

For brevity, define ĝn(·) = f̂n(X1:n, f
?(X1:n), ·) for every n ∈ N. Note that, by the

definition of f̂n from (12) and the fact that f?n ∈ Fn = Gin and m̂n = min , ∀n ∈ N, we have

max
min≤m≤n

1

m

m∑
t=1

`(ĝn(Xt), f
?(Xt)) ≤ max

min≤m≤n

1

m

m∑
t=1

`(f?in(Xt), f
?(Xt)).

Thus, on the event K, ∀n ∈ N with n ≥ ν0, (28) implies

max
min≤m≤n

1

m

m∑
t=1

`(ĝn(Xt), f
?(Xt)) ≤ αin . (29)

Now suppose the event K ∩K ′ occurs and fix any n ∈ N with n ≥ max{ν0, ν1}. The
relaxed triangle inequality and subadditivity of µ̂X (Lemma 8) imply

µ̂X(`(ĝn(·), f?(·))) ≤ c`µ̂X(`(ĝn(·), f?in(·))) + c`µ̂X(`(f?in(·), f?(·))). (30)

Furthermore, since ĝn and f?in are both elements of Gin , and since the event K ′ holds and
n ≥ ν1, the inequality (27) implies

µ̂X(`(ĝn(·), f?in(·))) ≤ max
min≤m≤n

1

m

m∑
t=1

`(ĝn(Xt), f
?
in(Xt)) +

√
γin . (31)

Then the relaxed triangle inequality and symmetry of `, together with subadditivity of the
max, imply

max
min≤m≤n

1

m

m∑
t=1

`(ĝn(Xt), f
?
in(Xt))

≤ c` max
min≤m≤n

1

m

m∑
t=1

`(ĝn(Xt), f
?(Xt)) + c` max

min≤m≤n

1

m

m∑
t=1

`(f?in(Xt), f
?(Xt)). (32)
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Also, since min is finite, we generally have

µ̂X(`(f?in(·), f?(·))) ≤ sup
min≤m<∞

1

m

m∑
t=1

`(f?in(Xt), f
?(Xt)).

Combining this with (31) and (32) and plugging into (30) yields

µ̂X(`(ĝn(·), f?(·)))

≤ c2
` max
min≤m≤n

1

m

m∑
t=1

`(ĝn(Xt), f
?(Xt)) + c`(c`+1) sup

min≤m<∞

1

m

m∑
t=1

`(f?in(Xt), f
?(Xt)) + c`

√
γin .

Since the event K holds and n ≥ ν0, the inequalities (29) and (28) provide upper bounds
on the first two terms above, respectively, so that altogether we have

µ̂X(`(ĝn(·), f?(·))) ≤ c2
`αin + c`(c` + 1)αin + c`

√
γin = c`(2c` + 1)αin + c`

√
γin .

In particular, recall that in →∞ and lim
i→∞

αi = lim
i→∞

γi = 0, so that the rightmost expression

above converges to 0 as n → ∞. Thus, on the event K ∩K ′, since max{ν0, ν1} < ∞, we
have that

limsup
n→∞

L̂X(f̂n, f
?;n) = limsup

n→∞
µ̂X(`(ĝn(·), f?(·))) ≤ lim

n→∞
c`(2c` + 1)αin + c`

√
γin = 0.

Since the event K ∩ K ′ has probability one (by the union bound), and L̂X is nonneg-
ative, this establishes that L̂X(f̂n, f

?;n) → 0 (a.s.). Since this argument applies to any
measurable f? : X → Y, this establishes that f̂n is strongly universally consistent under X,
so that X ∈ SUIL. Since this argument applies to any X ∈ C1, this completes the proof that
C1 ⊆ SUIL.

Combining Lemmas 19, 20, and 27 completes the proof of Theorem 7.

Interestingly, we may note that the only reliance of the above proof of Lemma 27 on
the assumption X ∈ C1 is in the existence of the set F̃ from Lemma 24 (used here via its
implication in Lemma 25): that is, we have in fact established that any X for which there
exists a countable set F̃ with these properties admits strong universal inductive learning,
so that the existence of such a set implies X ∈ SUIL. Together with Theorem 7 (implying
C1 = SUIL) and Lemma 24 (implying X ∈ C1 suffices for such a set F̃ to exist), this
establishes that C1 is in fact equivalent to the set of processes for which such a set exists
(and hence so are SUIL and SUAL, via Theorem 7). Thus, we have yet another useful
equivalent way of expressing Condition 1, stated formally in the following corollary.

Corollary 28 A process X satisfies Condition 1 if and only if there exists a countable
set G̃ of measurable functions X → Y such that, for every measurable f : X → Y,
inf
g̃∈G̃

E[µ̂X(`(g̃(·), f(·)))] = 0.
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Indeed, we may further observe that, since Condition 1 does not involve Y or `, applying
the above equivalence to the special case of Y = {0, 1} and `(y, y′) = 1[y 6= y′] admits
another simple equivalent condition: namely, a process X satisfies Condition 1 if and only
if there exists a countable set T2 ⊆ B with sup

A∈B
inf
G∈T2

E[µ̂X(G4A)] = 0. Recall that this

was the guarantee for the set T1 from Lemma 23. However, Lemma 23 also guarantees the
stronger property that this same set T1 can serve as the above set T2 for every X satisfying
Condition 1. Similarly, the set F̃ supplied by Lemma 24 is also defined independent of
X, so that this same set F̃ can serve as the set G̃ in Corollary 28 for every X satisfying
Condition 1. This universality of T1 and F̃ will be crucial in the next section when discussing
optimistically universal learning.

5. Optimistically Universal Learning

This section presents the proofs of two results on optimistically universal learning: Theo-
rems 5 and 6 stated in Section 1.2. For the first of these, we propose a new general self-
adaptive learning rule, and prove that it is optimistically universal: that is, it is strongly
universally consistent under every process admitting strong universal self-adaptive learn-
ing. For the second of these theorems, we prove that there is no optimistically universal
inductive learning rule. Together, these results imply that the additional capability of self-
adaptive learning rules to adjust their predictor based on the unlabeled test data is crucial
for optimistically universal learning.

5.1 Existence of Optimistically Universal Self-Adaptive Learning Rules

We now present the construction of an optimistically universal self-adaptive learning rule.
Fix a sequence {Fi}∞i=1 of nonempty finite sets of measurable functions X → Y with F1 ⊆
F2 ⊆ · · · such that ∀X ∈ C1, for every measurable f :X →Y, lim

i→∞
min
fi∈Fi

E[µ̂X(`(fi(·), f(·)))] =

0. Recall that such a sequence {Fi}∞i=1 is guaranteed to exist by Lemma 25. Let {ui}∞i=1

be an arbitrary nondecreasing sequence in N with ui → ∞ and u1 = 1, and let {γi}∞i=1 be
an arbitrary sequence in (0,∞) with γ1 ≥ ¯̀ and γi → 0. Let {xi}∞i=1 be any sequence in X
and let {yi}∞i=1 be any sequence in Y. For each n,m ∈ N with m ≥ n, let

în,m(x1:m) = max

{
i ∈ N : ui ≤ n and (33)

max
f,g∈Fi

(
max

ui≤s≤m

1

s

s∑
t=1

`(f(xt), g(xt))− max
ui≤s≤n

1

s

s∑
t=1

`(f(xt), g(xt))

)
≤ γi

}
.

This is a well-defined positive integer, since our constraints on u1 and γ1 guarantee that the
set of i values on the right hand side is nonempty, while the fact that ui →∞ implies this
set of i values is finite (and hence has a maximum element). Finally, for every n,m ∈ N
with m ≥ n, define the function f̂n,m(x1:m, y1:n, ·) as

argmin
f∈Fîn,m(x1:m)

max
uîn,m(x1:m)≤s≤n

1

s

s∑
t=1

`(f(xt), yt). (34)
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We break ties in the argmin based on a fixed preference ordering of Fi. Since the sets Fi
are finite, one can easily verify that this makes f̂n,m a measurable function, and hence (34)
defines a valid self-adaptive learning rule. For completeness, for every m ∈ N ∪ {0}, also
define f̂0,m(x1:m, {}, ·) as an arbitrary element of F1 (chosen identically for every m and
x1:m), which is then also a measurable function.

The essential difference between the self-adaptive learning rule (34) and the inductive
learning rule (12) is that the self-adaptive rule uses the sequence of test samples X1:m

for the model selection component, selecting which class Fi to use in the optimization in
(34), whereas (12) uses a distribution-dependent selection. Specifically, the self-adaptive rule
replaces the distribution-dependent value in from Lemma 22, used in the proof of Lemma 27,
with a data-dependent value în,m(X1:m), thus removing all dependence on the distribution
of X. In the proof of Lemma 27, the value in is chosen to guarantee (via Lemma 22) that the

estimator max
min≤m≤n

1
m

m∑
t=1

`(f(Xt), g(Xt)) is close to µ̂X(`(f(·), g(·))) uniformly over all f, g

in the class Gin defined in the proof. The value în,m(X1:m) in (33) is designed to provide this

guarantee directly. Specifically, in the analysis of f̂n,m below, the value în,m(X1:m) ensures

(essentially) that for large m, for all f, g ∈ Fîn,m(X1:m), max
uîn,m(X1:m)≤s≤n

1
s

s∑
t=1

`(f(Xt), g(Xt))

is close to µ̂X(`(f(·), g(·))). These can then be related to the losses relative to f? via relaxed
triangle inequalities and the approximation guarantees from Lemma 26, to conclude that

the function f ∈ Fîn,m(X1:m) minimizing max
uîn,m(X1:m)≤s≤n

1
s

s∑
t=1

`(f(Xt), f
?(Xt)) achieves a

relatively small value of µ̂X(`(f(·), f?(·))). In both the inductive and self-adaptive cases,
this approach is analogous to the traditional principles of model selection, whereby we
constrain the function class so that empirical estimates of the risk are close enough to the
corresponding population risks to guarantee that optimizing the estimate yields a function
with relatively small population risk, but while also allowing the constraint to become less
restrictive as n grows, to admit increasingly good approximations of f?.

As discussed in the proofs of Lemmas 23, 24, and 25, and the remark following the
proof of Lemma 24, the sets Fi can be constructed based on an enumeration of finite-depth
decision lists, with the region of each decision node being an element of a countable base
for the topology T , and with values from a countable dense subset of Y. For instance, in
the special case of X = Rd (d ∈ N) with the Euclidean topology, and Y = [0, 1] with the
squared loss (`(a, b) = (a−b)2), we can let f̃1, f̃2, . . . be an enumeration of the rational-valued
finite-depth decision lists, with the region of each decision node being a rational-centered
rational-radius open ball. Then we can let Fi = {f̃1, . . . , f̃i} for each i ∈ N. In this case,
in principle the learning rule f̂n,m can be approximated by a digital computer (up to some
finite precision for the points and predictions).

Continuing with the general case, we have the following theorem for this f̂n,m rule.

Theorem 29 The self-adaptive learning rule f̂n,m is optimistically universal.

Proof The proof proceeds along similar lines to that of Lemma 27, except using the data-
dependent values în,m(X1:m) in place of the distribution-dependent sequence in from the
proof of Lemma 27. Fix any X ∈ C1 and any measurable f? : X → Y.
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Note that, for any given i ∈ N and f, g ∈ Fi, max
ui≤s≤m

1
s

s∑
t=1

`(f(Xt), g(Xt)) is nondecreas-

ing in m, so that ∀n ∈ N, în,m(X1:m) is nonincreasing in m. Since în,m(X1:m) is always
positive, this implies în,m(X1:m) converges as m→∞; in particular, since în,m(X1:m) ∈ N,
this implies ∀n ∈ N, ∃m∗n ∈ N with m∗n ≥ n such that ∀m ≥ m∗n, în,m(X1:m) = în,m∗n(X1:m∗n).

For brevity, let us define în = în,m∗n(X1:m∗n). By definition of în,m(X1:m), we have that every
m ≥ m∗n satisfies

max
f,g∈Fîn

(
max

uîn≤s≤m

1

s

s∑
t=1

`(f(Xt), g(Xt))− max
uîn≤s≤n

1

s

s∑
t=1

`(f(Xt), g(Xt))

)
≤ γîn .

Taking the limiting case as m → ∞, together with monotonicity of the max function, this
implies

max
f,g∈Fîn

(
sup

uîn≤s<∞

1

s

s∑
t=1

`(f(Xt), g(Xt))− max
uîn≤s≤n

1

s

s∑
t=1

`(f(Xt), g(Xt))

)
≤ γîn . (35)

Furthermore, for each i ∈ N, since Fi is finite, continuity of the max function implies

limsup
n→∞

max
f,g∈Fi

(
max

ui≤s≤m∗n

1

s

s∑
t=1

`(f(Xt), g(Xt))− max
ui≤s≤n

1

s

s∑
t=1

`(f(Xt), g(Xt))

)

≤ limsup
n→∞

max
f,g∈Fi

(
max

ui≤s<∞

1

s

s∑
t=1

`(f(Xt), g(Xt))− max
ui≤s≤n

1

s

s∑
t=1

`(f(Xt), g(Xt))

)

= max
f,g∈Fi

(
max

ui≤s<∞

1

s

s∑
t=1

`(f(Xt), g(Xt))− lim
n→∞

max
ui≤s≤n

1

s

s∑
t=1

`(f(Xt), g(Xt))

)
= 0 < γi.

Together with finiteness of every ui, this implies

lim
n→∞

în =∞. (36)

Next note that, by our choices of the sequences {Fi}∞i=1 and {ui}∞i=1, Lemma 26 implies
that there exists a (nonrandom) sequence {f?i }∞i=1, with f?i ∈ Fi for each i ∈ N, a (nonran-
dom) sequence {αi}∞i=1 in (0,∞) with αi → 0, and an event K of probability one, on which
∃ι0 ∈ N such that ∀i ≥ ι0,

sup
ui≤s<∞

1

s

s∑
t=1

`(f?i (Xt), f
?(Xt)) ≤ αi.

In particular, since lim
n→∞

în = ∞ by (36), this implies that, on the event K, ∃ν0 ∈ N such

that ∀n ≥ ν0, we have în ≥ ι0, so that the above implies

sup
uîn≤s<∞

1

s

s∑
t=1

`(f?
în

(Xt), f
?(Xt)) ≤ αîn . (37)
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For brevity, for every n,m ∈ N with m ≥ n, define ĝn,m(·) = f̂n,m(X1:m, f
?(X1:n), ·).

Since every m ≥ m∗n has în,m(X1:m) = în,m∗n(X1:m∗n), the definition of f̂n,m implies that any
m ≥ m∗n also has ĝn,m = ĝn,m∗n (recalling that ties are broken in the argmin based on a fixed

ordering). Define ĝn = ĝn,m∗n . Combining the definition of f̂n,m∗n with (37) we have that, on
the event K, ∀n ∈ N with n ≥ ν0,

max
uîn≤s≤n

1

s

s∑
t=1

`(ĝn(Xt), f
?(Xt)) ≤ max

uîn≤s≤n

1

s

s∑
t=1

`(f?
în

(Xt), f
?(Xt))

≤ sup
uîn≤s<∞

1

s

s∑
t=1

`(f?
în

(Xt), f
?(Xt)) ≤ αîn . (38)

Now suppose the event K occurs and fix any n ∈ N with n ≥ ν0. The relaxed triangle
inequality and subadditivity of the supremum imply

sup
uîn≤s<∞

1

s

s∑
t=1

`(ĝn(Xt), f
?(Xt))

≤ c` sup
uîn≤s<∞

1

s

s∑
t=1

`(ĝn(Xt), f
?
în

(Xt)) + c` sup
uîn≤s<∞

1

s

s∑
t=1

`(f?
în

(Xt), f
?(Xt)). (39)

Since ĝn and f?
în

are both elements of Fîn , (35) implies

sup
uîn≤s<∞

1

s

s∑
t=1

`(ĝn(Xt), f
?
în

(Xt)) ≤ max
uîn≤s≤n

1

s

s∑
t=1

`(ĝn(Xt), f
?
în

(Xt)) + γîn . (40)

The relaxed triangle inequality and symmetry of `, together with subadditivity of the max,
then imply

max
uîn≤s≤n

1

s

s∑
t=1

`(ĝn(Xt), f
?
în

(Xt))

≤ c` max
uîn≤s≤n

1

s

s∑
t=1

`(ĝn(Xt), f
?(Xt)) + c` max

uîn≤s≤n

1

s

s∑
t=1

`(f?
în

(Xt), f
?(Xt)).

Combining this with (40) and plugging into (39) yields

sup
uîn≤s<∞

1

s

s∑
t=1

`(ĝn(Xt), f
?(Xt))

≤ c2
` max
uîn≤s≤n

1

s

s∑
t=1

`(ĝn(Xt), f
?(Xt)) + c`(c` + 1) sup

uîn≤s<∞

1

s

s∑
t=1

`(f?
în

(Xt), f
?(Xt)) + c`γîn .

Since the event K holds and n ≥ ν0, the inequalities (38) and (37) provide upper bounds
on the first two terms above, respectively, so that altogether we have

sup
uîn≤s<∞

1

s

s∑
t=1

`(ĝn(Xt), f
?(Xt)) ≤ c`(2c` + 1)αîn + c`γîn . (41)
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Now note that, for every n ∈ N, since ĝn,m = ĝn for every m ≥ m∗n, we have

L̂X
(
f̂n,·, f

?;n
)

= limsup
s→∞

1

s+ 1

n+s∑
m=n

`(ĝn,m(Xm+1), f?(Xm+1))

≤ limsup
s→∞

1

s+ 1
(m∗n − 1)¯̀+

1

s+ 1

n+s∑
m=m∗n

`(ĝn(Xm+1), f?(Xm+1))

≤ limsup
s→∞

n+ s+ 1

s+ 1

1

n+ s+ 1

n+s+1∑
t=1

`(ĝn(Xt), f
?(Xt))

= limsup
s→∞

1

s

s∑
t=1

`(ĝn(Xt), f
?(Xt)) ≤ sup

uîn≤s<∞

1

s

s∑
t=1

`(ĝn(Xt), f
?(Xt)) .

Combined with (41), this implies that, on the event K, every n ∈ N with n ≥ ν0 satisfies

L̂X
(
f̂n,·, f

?;n
)
≤ c`(2c` + 1)αîn + c`γîn .

Recalling that (by their definitions) lim
i→∞

αi = 0 and lim
i→∞

γi = 0, and that lim
n→∞

în = ∞ by

(36), we have that on the event K,

limsup
n→∞

L̂X
(
f̂n,·, f

?;n
)
≤ lim

n→∞
c`(2c` + 1)αîn + c`γîn = 0.

Since the event K has probability one, and L̂X is nonnegative, this establishes that

L̂X
(
f̂n,·, f

?;n
)
→ 0 (a.s.). Since this argument applies to any measurable f? : X → Y, this

establishes that f̂n,m is strongly universally consistent under X. Furthermore, since this
argument applies to any X ∈ C1, and Theorem 7 implies SUAL = C1, this completes the
proof that f̂n,m is strongly universally consistent under every X ∈ SUAL: that is, f̂n,m is
optimistically universal.

An immediate consequence of Theorem 29 is that there exist optimistically universal
self-adaptive learning rules, so that this also completes the proof of Theorem 5 stated in
Section 1.2.

5.2 Nonexistence of Optimistically Universal Inductive Learning Rules

Given the positive result above on optimistically universal self-adaptive learning, it is nat-
ural to wonder whether the same is true of inductive learning. However, it turns out this
is not the case. In fact, we find below that there do not even exist inductive learning rules
that are strongly universally consistent under every X with convergent relative frequencies,
which form a proper subset of SUIL (recall the discussion in Section 3). We begin with the
following result (restated from Section 1.2). For technical reasons, throughout Section 5.2
we assume that (X , T ) is a Polish space; for instance, Rp satisfies this for any p ∈ N, under
the usual Euclidean topology.
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Theorem 6 (restated) There does not exist an optimistically universal inductive learning
rule, if X is uncountable.

Before presenting the proof, we first have a technical lemma regarding a basic fact about
nonatomic probability measures.

Lemma 30 For any nonatomic probability measure π0 on X , there exists a sequence
{Rk}∞k=1 in B such that, ∀k ∈ N, π0(Rk) = 1/2, and ∀A ∈ B, lim

k→∞
π0(A∩Rk) = (1/2)π0(A).

Proof Denote by λ the Lebesgue measure on R. First, note that since (X , T ) is a Polish
space, (X ,B) is a standard Borel space (in the sense of Srivastava, 1998). In particular,
since π0 is nonatomic, this implies that there exists a Borel isomorphism ψ : X → [0, 1]
such that, for every Borel subset B of [0, 1], π0(ψ−1(B)) = λ(B) (see e.g., Srivastava, 1998,
Theorem 3.4.23).

For each k ∈ N and each i ∈ Z, define Ck,i =
[
(i− 1)2−k, i2−k

)
, let Bk =

⋃
i∈Z

Ck,2i,

and define Rk = ψ−1(Bk ∩ [0, 1]). Note that each Bk ∩ [0, 1] is a Borel subset of [0, 1],
so that measurability of ψ implies Rk ∈ B; furthermore, π0(Rk) = π0(ψ−1(Bk ∩ [0, 1])) =
λ(Bk ∩ [0, 1]) = 1/2, as required.

Now fix any set A ∈ B, and let B ⊆ [0, 1] be the Borel subset of [0, 1] with A = ψ−1(B)
(which exists by the bimeasurability property of ψ). Since λ is a regular measure (e.g.,
Cohn, 1980, Proposition 1.4.1), for any ε > 0, there exists an open set Uε with B ⊆ Uε ⊆ R
such that λ(Uε \ B) < ε. As any open subset of R is a union of countably many pairwise-
disjoint open intervals (e.g., Kolmogorov and Fomin, 1975, Section 6, Theorem 6), we let
(a1, b1), (a2, b2), . . . be a sequence of disjoint open intervals (ai ∈ [−∞,∞), bi ∈ (−∞,∞])

with Uε =
∞⋃
i=1

(ai, bi); for notational simplicity, we suppose this sequence is infinite, which can

always be achieved by adding an infinite number of empty intervals (ai, bi) with ai = bi ∈ R.

Since Uε \
j⋃
i=1

(ai, bi) ↓ ∅ as j → ∞, and since λ(Uε) = λ(Uε \ B) + λ(B) < ε + 1 < ∞,

continuity of finite measures implies lim
j→∞

λ

(
Uε \

j⋃
i=1

(ai, bi)

)
= 0 (e.g., Schervish, 1995,

Theorem A.19). In particular, for any δ > 0, ∃jδ ∈ N such that λ

(
Uε \

jδ⋃
i=1

(ai, bi)

)
< δ/2.

Let kδ =
⌈
log2

(
4jδ
δ

)⌉
. Since λ(Uε) < ∞, we know that every i has ai > −∞ and bi < ∞.

Also, letting āi = min{t2−kδ : ai < t2−kδ , t ∈ Z} and b̄i = max{t2−kδ : bi > t2−kδ , t ∈ Z},
we have that

λ
(

(ai, bi) \
⋃
{Ckδ,t : Ckδ,t ⊆ (ai, bi), t ∈ Z}

)
≤ |āi − ai|+ |bi − b̄i| ≤ 2 · 2−kδ ≤ δ

2jδ
.
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Thus,

λ
(
Uε \

⋃
{Ckδ,t : Ckδ,t ⊆ Uε, t ∈ Z}

)
≤ λ

(
Uε \

jδ⋃
i=1

(ai, bi)

)
+ λ

(
jδ⋃
i=1

(ai, bi) \
⋃
{Ckδ,t : Ckδ,t ⊆ Uε, t ∈ Z}

)

< δ/2 +

jδ∑
i=1

λ
(

(ai, bi) \
⋃
{Ckδ,t : Ckδ,t ⊆ Uε, t ∈ Z}

)
≤ δ/2 +

jδ∑
i=1

λ
(

(ai, bi) \
⋃
{Ckδ,t : Ckδ,t ⊆ (ai, bi), t ∈ Z}

)
≤ δ/2 +

jδ∑
i=1

δ

2jδ
= δ. (42)

Now note that, for every k > kδ and i ∈ Z, each j ∈ Z has either Ck,j ⊆ Ckδ,i or
Ck,j ∩ Ckδ,i = ∅, and moreover each j has Ck,2j ⊆ Ckδ,i if and only if Ck,2j−1 ⊆ Ckδ,i (the
smallest j with Ck,j ⊆ Ckδ,i has (j− 1)2−k = (i− 1)2−kε , which implies j is an odd number
because k > kε; similarly, the largest j with Ck,j ⊆ Ckδ,i has j2−k = i2−kε and is therefore
even), so that

λ(Bk ∩ Ckδ,i) = λ
(⋃
{Ck,2j : Ck,2j ⊆ Ckδ,i, j ∈ Z}

)
= (1/2)λ(Ckδ,i),

and hence (by disjointness of the Ckδ,i sets)

λ
(
Bk ∩

⋃
{Ckδ,i : Ckδ,i ⊆ Uε, i ∈ Z}

)
=

∑
i∈Z:Ckδ,i⊆Uε

λ(Bk ∩ Ckδ,i)

=
∑

i∈Z:Ckδ,i⊆Uε

(1/2)λ(Ckδ,i) = (1/2)λ
(⋃
{Ckδ,i : Ckδ,i ⊆ Uε, i ∈ Z}

)
.

Therefore ∀k > kδ,

λ(Uε ∩Bk)

= λ
(
Bk ∩

⋃
{Ckδ,i : Ckδ,i ⊆ Uε, i ∈ Z}

)
+ λ

(
Bk ∩ Uε \

⋃
{Ckδ,i : Ckδ,i ⊆ Uε, i ∈ Z}

)
= (1/2)λ

(⋃
{Ckδ,i : Ckδ,i ⊆ Uε, i ∈ Z}

)
+ λ

(
Bk ∩ Uε \

⋃
{Ckδ,i : Ckδ,i ⊆ Uε, i ∈ Z}

)
.

(43)

The first term in (43) equals (1/2) (λ(Uε)− λ(Uε \
⋃
{Ckδ,i : Ckδ,i ⊆ Uε, i ∈ Z})), which by

(42) is greater than (1/2)λ(Uε) − δ/2. Furthermore, the second term in (43) is no smaller
than 0, and no greater than λ(Uε \

⋃
{Ckδ,i : Ckδ,i ⊆ Uε, i ∈ Z}). Thus,

(1/2)λ(Uε)− δ/2 < λ(Uε ∩Bk)

≤ (1/2)
(
λ(Uε)−λ

(
Uε\

⋃
{Ckδ,i : Ckδ,i⊆Uε, i∈Z}

))
+ λ

(
Uε\

⋃
{Ckδ,i : Ckδ,i⊆Uε, i∈Z}

)
= (1/2)

(
λ(Uε) + λ

(
Uε \

⋃
{Ckδ,i : Ckδ,i ⊆ Uε, i ∈ Z}

))
< (1/2)λ(Uε) + δ/2,

where this last inequality is by (42).
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Since this holds for every k > kδ, and kδ is finite for every δ ∈ (0, 1), we have ∀δ ∈ (0, 1),

(1/2)λ(Uε)− δ/2 ≤ liminf
k→∞

λ(Uε ∩Bk) ≤ limsup
k→∞

λ(Uε ∩Bk) ≤ (1/2)λ(Uε) + δ/2,

and taking the limit as δ → 0 implies

lim
k→∞

λ(Uε ∩Bk) = (1/2)λ(Uε).

This further implies that

limsup
k→∞

λ(B ∩Bk) ≤ lim
k→∞

λ(Uε ∩Bk) = (1/2)λ(Uε) < (1/2)λ(B) + ε/2,

and

liminf
k→∞

λ(B ∩Bk) ≥ lim
k→∞

λ(Uε ∩Bk)− λ(Uε \B) = (1/2)λ(Uε)− λ(Uε \B)

= (1/2)λ(B)− (1/2)λ(Uε \B) > (1/2)λ(B)− ε/2.

Since these inequalities hold for every ε > 0, taking the limit as ε→ 0 reveals that

lim
k→∞

λ(B ∩Bk) = (1/2)λ(B).

Furthermore, since ψ−1(B) ∩ ψ−1(Bk ∩ [0, 1]) = ψ−1(B ∩ Bk ∩ [0, 1]) = ψ−1(B ∩ Bk) for
every k ∈ N, this implies that

lim
k→∞

π0(A ∩Rk) = lim
k→∞

π0(ψ−1(B) ∩ ψ−1(Bk ∩ [0, 1])) = lim
k→∞

π0(ψ−1(B ∩Bk))

= lim
k→∞

λ(B ∩Bk) = (1/2)λ(B) = (1/2)π0(ψ−1(B)) = (1/2)π0(A).

Since this argument holds ∀A ∈ B, this completes the proof.

We are now ready for the proof of Theorem 6. The proof is partly inspired by that of a
related (but somewhat different) result of Nobel (1999), based on a technique of Adams and
Nobel (1998). Specifically, Nobel (1999) proves that there is no learning rule converging
to the stationary regression function for all joint processes (X,Y) that are stationary and
ergodic. In contrast, we are interested in learning under a fixed target function f?, and
as such the construction of Nobel (1999) needs to be modified for our purposes. However,
the proof below does preserve the essential elements of the cutting and stacking argument
of Adams and Nobel (1998), though generalized to suit our abstract setting. While the
processes X we construct do not have the property of stationarity from the original proof of
Nobel (1999), they do have convergent relative frequencies (CRF) and are ergodic (indeed,
they are product processes). Thus, this establishes the stronger fact that (when X is un-
countable) there is no inductive learning rule that is strongly universally consistent for every
ergodic X ∈ CRF (as stated in Corollary 32 below); this suffices to establish Theorem 6
since Theorems 18 and 7 imply CRF ⊆ SUIL.
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Proof of Theorem 6 Fix any inductive learning rule fn. We begin by constructing the
process X. Since X is uncountable, and (X , T ) is a Polish space, there exists a nonatomic
probability measure π0 on X (with respect to B) (see Parthasarathy, 1967, Chapter 2,
Theorem 8.1). Furthermore, fixing any such nonatomic π0, Lemma 30 implies there exists
a sequence {Rk}∞k=1 in B such that, ∀k ∈ N, π0(Rk) = 1/2, and ∀A ∈ B, lim

k→∞
π0(A∩Rk) =

(1/2)π0(A). Also define R0 = ∅. Define random variables Uk,j (for all k, j ∈ N), Vk,j (for
all k, j ∈ N), and Wj (for all j ∈ N), all mutually independent (and independent from
{fn}n∈N), with distributions specified as follows. For each k, j ∈ N, Uk,j has distribution
π0(·|X \ Rk), while Vk,j has distribution π0(·|Rk). For each j ∈ N, Wj has distribution π0.
Let U = {Uk,j}k,j∈N, V = {Vk,j}k,j∈N, W = {Wj}j∈N.

Fix any y0, y1 ∈ Y with `(y0, y1) > 0, and define ∆01 = `(y0, y1)/(2c`). Importantly,
the near-metric properties of ` imply that any y ∈ Y with `(y, y1) < ∆01 necessarily has
`(y, y0) > `(y, y0) + `(y, y1) − ∆01 ≥ `(y0, y1)/c` − ∆01 = ∆01, where the second inequal-
ity is due to the relaxed triangle inequality and symmetry. Thus, it is not possible to
simultaneously achieve `(y, y1) < ∆01 and `(y, y0) ≤ ∆01.

For any array v = {vk,j}k,j∈N, and any K ∈ N, define v<K = {vk,j}k,j∈N,k<K , and
define vK = {vK,j}j∈N. Then, for any arrays u = {uk,j}k,j∈N and v = {vk,j}k,j∈N in X , any
sequence w = {wj}j∈N in X , and any K ∈ N, define

f?K(x; u<K ,v<K ,w) =

{
y0, if x ∈ (v<K ∪RK) \ (w ∪ u<K)

y1, otherwise

and

f?0 (x; v) =

{
y0, if x ∈ v

y1, otherwise
,

where, for notational simplicity, in these definitions we treat v<K , w, u<K , v as the sets of
the distinct values in the respective arrays. Note that the above functions are measurable,
since each RK is measurable, and v, v<K , w, u<K are all countable and hence measurable
(recalling that singleton sets {x} are closed, hence measurable).

Now, for any u, v, w as above, inductively define values X
(k)
i (u<k,uk,v<k,vk,w) as

follows. Let n0 = 0. For this inductive definition, suppose that for some k ∈ N the

value nk−1 ∈ N and the values {X(k−1)
i (u<k−1,uk−1,v<k−1,vk−1,w) : i ∈ N, i ≤ nk−1}

are already defined (taking this to be trivially satisfied in the case k = 1, wherein this is

an empty sequence). For each i ∈ N with i ≤ nk−1, define X̃
(k)
i (u<k,uk,v<k,vk,w) and

X
(k)
i (u<k,uk,v<k,vk,w) both equal to X

(k−1)
i (u<k−1,uk,v<k−1,vk−1,w). Then, for each

i ∈ N, define X̃
(k)
nk−1+k(i−1)+1(u<k,uk,v<k,vk,w) = vk,nk−1+k(i−1)+1, and for each j ∈ N

with 2 ≤ j ≤ k, define X̃
(k)
nk−1+k(i−1)+j(u<k,uk,v<k,vk,w) = uk,nk−1+k(i−1)+j . To simplify

notation, for each i ∈ N, abbreviate X̂
(k)
i = X̃

(k)
i (U<k,Uk,V<k,Vk,W). If ∃n ∈ N with

n > nk−1 such that

P
(
π0

({
x : `

(
fn

(
X̂

(k)
1:n, f

?
k

(
X̂

(k)
1:n; U<k,V<k,W

)
, x
)
, y0

)
≥ ∆01

})
≥ 3/4

)
< 2−k, (44)

then fix the minimum such n, and ∀i ∈ {nk−1 +1, . . . , n} define X
(k)
i (u<k,uk,v<k,vk,w) =

X̃
(k)
i (u<k,uk,v<k,vk,w). Furthermore, for each i ∈ N with n + 1 ≤ i ≤ n2, define
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X
(k)
i (u<k,uk,v<k,vk,w)=wi. Finally, define nk=n2. Otherwise, if no such n satisfies (44),

then ∀i ∈ N with i > nk−1, define X
(k)
i (u<k,uk,v<k,vk,w) = X̃

(k)
i (u<k,uk,v<k,vk,w), in

which case the inductive definition is complete (upon reaching the smallest value of k for
which no such n exists). Note that, since we do not condition on any variables in (44), the
values nk are not random.

Now we consider two cases. First, suppose there is a maximum value k∗ of k ∈ N for
which nk−1 is defined. In this case, @n ∈ N with n > nk∗−1 satisfying (44) with k = k∗, and

furthermore X
(k∗)
i (u<k∗ ,uk∗ ,v<k∗ ,vk∗ ,w) = X̃

(k∗)
i (u<k∗ ,uk∗ ,v<k∗ ,vk∗ ,w) for every i ∈ N,

and every u, v, and w. Next note that, by the law of total probability and basic limit
theorems for probabilities (e.g., based on Fatou’s lemma), defining Qk∗ = (U<k∗ ,V<k∗ ,W),

E
[
P
(

limsup
n→∞

{
π0

({
x :`
(
fn

(
X̂

(k∗)
1:n , f

?
k∗

(
X̂

(k∗)
1:n ; Qk∗

)
, x
)
, y0

)
≥∆01

})
≥3/4

} ∣∣∣Qk∗

)]
= P

(
limsup
n→∞

{
π0

({
x : `

(
fn

(
X̂

(k∗)
1:n , f?k∗

(
X̂

(k∗)
1:n ; Qk∗

)
, x
)
, y0

)
≥ ∆01

})
≥ 3/4

})
≥ limsup

n→∞
P
(
π0

({
x : `

(
fn

(
X̂

(k∗)
1:n , f?k∗

(
X̂

(k∗)
1:n ; Qk∗

)
, x
)
, y0

)
≥ ∆01

})
≥ 3/4

)
.

The negation of (44) implies this last expression is at least 2−k
∗

(noting that the nega-
tion of (44) holds for every n > nk∗−1 in the present case). In particular, since the
Uk,j ,Vk′,j′ , and Wj′′ variables are all independent, this implies ∃u,v,w such that, taking

Xi = X
(k∗)
i (u<k∗ ,Uk∗ ,v<k∗ ,Vk∗ ,w) for every i ∈ N, and f?(·) = f?k∗(·; u<k∗ ,v<k∗ ,w), we

have

P
(

limsup
n→∞

{π0({x : `(fn(X1:n, f
?(X1:n), x) , y0) ≥ ∆01}) ≥ 3/4}

)
≥ 2−k

∗
.

Define the event

E′ =

{
limsup
n→∞

π0({x ∈ Rk∗ : `(fn(X1:n, f
?(X1:n), x) , y0) ≥ ∆01}) ≥ 1/4

}
.

Since π0(Rk∗) = 1/2, we have that

limsup
n→∞

{π0({x : `(fn(X1:n, f
?(X1:n), x) , y0) ≥ ∆01}) ≥ 3/4}

⊆ limsup
n→∞

{π0({x ∈ Rk∗ : `(fn(X1:n, f
?(X1:n), x) , y0) ≥ ∆01}) ≥ 1/4} ⊆ E′,

so that E′ has probability at least 2−k
∗
. Also let E denote the event that ∀k, j ∈ N,

Vk,j /∈ {wj′ : j′ ∈ N} ∪ {uk′,j′ : k′, j′ ∈ N}; note that, since π0 is nonatomic, and hence so is
each π0(·|Rk) (since π0(Rk) > 0), E has probability one.

Define ti = nk∗−1 + k∗(i − 1) + 1 for each i ∈ N, and let Ik∗ = {ti : i ∈ N}. Note that,
since every Vk∗,j is in Rk∗ and every t ∈ Ik∗ has Xt = Vk∗,t (by definition), on the event E,
every t ∈ Ik∗ has f?(Xt) = y0 (by definition of f?). Therefore, on the event E, every n ∈ N
with n > nk∗−1 has

L̂X(fn, f
?;n) ≥ limsup

m→∞

1

m

n+m∑
t=n+1

1Ik∗ (t)`(fn(X1:n, f
?(X1:n), Xt) , y0) .
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Since k∗
n+m∑
t=n+1

1Ik∗ (t) > m − 2k∗, letting in = max{i ∈ N : ti ≤ n}, the right hand side

above is at least as large as

limsup
s→∞

1

k∗s+ 2k∗

s∑
j=1

`
(
fn
(
X1:n, f

?(X1:n), Xtin+j

)
, y0

)
= limsup

s→∞

1

k∗s

s∑
j=1

`
(
fn
(
X1:n, f

?(X1:n), Xtin+j

)
, y0

)
≥ limsup

s→∞

1

k∗s

s∑
j=1

1
[
`
(
fn
(
X1:n, f

?(X1:n), Xtin+j

)
, y0

)
≥ ∆01

]
∆01.

Furthermore, the subsequence {Xtin+j}∞j=1 is a sequence of independent random variables
with distribution π0(·|Rk∗) (namely, a subsequence of Vk∗), also independent from the rest
of the sequence {Xt : t /∈ {tin+j : j ∈ N}} and fn. This implies that{

1
[
`
(
fn
(
X1:n, f

?(X1:n), Xtin+j

)
, y0

)
≥ ∆01

]}∞
j=1

is a sequence of conditionally i.i.d. Bernoulli random variables (given X1:n and fn). Thus,
∀n ∈ N with n > nk∗−1, by the strong law of large numbers (applied under the conditional
distribution given X1:n and fn) and the law of total probability, there is an event E′′n of
probability one such that, on E ∩ E′′n,

limsup
s→∞

1

k∗s

s∑
j=1

1
[
`
(
fn
(
X1:n, f

?(X1:n), Xtin+j

)
, y0

)
≥ ∆01

]
∆01

=
∆01

k∗
π0

(
{x : `(fn(X1:n, f

?(X1:n), x) , y0) ≥ ∆01}
∣∣∣Rk∗)

=
2∆01

k∗
π0({x ∈ Rk∗ : `(fn(X1:n, f

?(X1:n), x) , y0) ≥ ∆01}) .

Altogether, we have that on the event E ∩ E′ ∩
⋂

n>nk∗−1

E′′n,

limsup
n→∞

L̂X(fn, f
?;n)

≥ 2∆01

k∗
limsup
n→∞

π0({x ∈ Rk∗ : `(fn(X1:n, f
?(X1:n), x) , y0) ≥ ∆01}) ≥

∆01

2k∗
.

Since ∆01
2k∗ > 0, and since E ∩ E′ ∩

⋂
n>nk∗−1

E′′n has probability at least 2−k
∗
> 0 (by the

union bound), this implies that fn is not strongly universally consistent under the process
X defined here.

To complete this first case, we argue that X ∈ SUIL; in fact, we will show the stronger
claim that X ∈ CRF. Note that for every t > nk∗−1, if t−nk∗−1−1 is an integer multiple of
k∗, then t ∈ Ik∗ , in which case Xt = Vk∗,t, and otherwise Xt = Uk∗,t. Thus, since all Xt are
independent, all Vk∗,t are identically distributed, and all Uk∗,t are identically distributed, we
have that for any n > nk∗−1, {Xt}∞t=n and {Xt}∞t=n+k∗ have identical distributions. Thus,
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the process {Xt}∞t=nk∗−1+1 is k∗-stationary (see Gray, 2009, Section 5.10), and hence also

asymptotically mean stationary (recall the definition from Section 3). Since {Xt}∞t=nk∗−1+1

differs from X only by removing an initial finite segment, this immediately implies X is also
asymptotically mean stationary. Thus, since (as discussed in Section 3 above) Theorem 8.1
of Gray (2009) implies that every asymptotically mean stationary process has convergent
relative frequencies, and Theorem 18 of Section 3 establishes that CRF ⊆ C1, we have that
X ∈ C1, and since Theorem 7 establishes that SUIL = C1, this implies X ∈ SUIL. Therefore,
in this first case, we conclude that the inductive learning rule fn is not optimistically
universal.

Next, let us examine the second case, wherein nk is defined for every k ∈ N ∪ {0}, so
that {nk}∞k=0 is an infinite increasing sequence of nonnegative integers. In this case, for
every k ∈ N, (44) and the definition of nk imply that, defining Qk = (U<k,V<k,W),

P
(
π0

({
x : `

(
f√nk

(
X̂

(k)
1:
√
nk
, f?k

(
X̂

(k)
1:
√
nk

; Qk

)
, x
)
, y0

)
≥ ∆01

})
≥ 3/4

)
< 2−k.

By the monotone convergence theorem and linearity of expectations, combined with the
law of total probability, this implies

E

[ ∞∑
k=1

P
(
π0

({
x : `

(
f√nk

(
X̂

(k)
1:
√
nk
, f?k

(
X̂

(k)
1:
√
nk

; Qk

)
, x
)
, y0

)
≥ ∆01

})
≥ 3/4

∣∣∣V)]

=
∞∑
k=1

P
(
π0

({
x : `

(
f√nk

(
X̂

(k)
1:
√
nk
, f?k

(
X̂

(k)
1:
√
nk

; Qk

)
, x
)
, y0

)
≥ ∆01

})
≥ 3/4

)
< 1.

In particular, this implies that with probability one,

∞∑
k=1

P
(
π0

({
x :`
(
f√nk

(
X̂

(k)
1:
√
nk
, f?k

(
X̂

(k)
1:
√
nk

; Qk

)
, x
)
, y0

)
≥∆01

})
≥ 3/4

∣∣∣V) <∞.
Since U, W, and {fn}n∈N are independent from V, and since every k, j ∈ N has Vk,j
with distribution π0(·|Rk) and hence Vk,j ∈ Rk, this implies ∃v with vk,j ∈ Rk for every

k, j ∈ N, such that, defining Xi = X
(k)
i (U<k,Uk,v<k,vk,W) for every k ∈ N and i ∈

{nk−1 + 1, . . . , nk},
∞∑
k=1

P
(
π0

({
x :`
(
f√nk

(
X1:
√
nk , f

?
k

(
X1:
√
nk ; U<k,v<k,W

)
, x
)
, y0

)
≥∆01

})
≥3/4

)
<∞.

The Borel-Cantelli Lemma then implies that there exists an event H ′ of probability one, on
which ∃k0 ∈ N such that, ∀k ∈ N with k > k0,

π0

({
x : `

(
f√nk

(
X1:
√
nk , f

?
k

(
X1:
√
nk ; U<k,v<k,W

)
, x
)
, y0

)
≥ ∆01

})
< 3/4.

Next, let H denote the event that {Wj : j ∈ N} ∩ {vk,j : k, j ∈ N} = ∅ and {Uk,j : k, j ∈
N}∩{vk,j : k, j ∈ N} = ∅. Note that, since π0 is nonatomic, and so is π0(·|X \Rk) for every
k ∈ N, H has probability one. Furthermore, for every k ∈ N, by definition of f?k , ∀j ∈ N,
f?k (Wj ; U<k,v<k,W) = y1, and ∀k′, j ∈ N with k′ < k, f?k (Uk′,j ; U<k,v<k,W) = y1. Also,
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for every j ∈ N, the distribution of Uk,j is π0(·|X \ Rk), and therefore we have Uk,j /∈ Rk;
together with the definition of f?k , this implies f?k (Uk,j ; U<k,v<k,W) = y1 on the event
H. The definition of f?k further implies that, on H, for every k′, k, j ∈ N with k′ < k,
f?k (vk′,j ; U<k,v<k,W) = y0. Also, since vk,j ∈ Rk for every k, j ∈ N, on the event H,
every k, j ∈ N has f?k (vk,j ; U<k,v<k,W) = y0. Furthermore, by definition of f?0 , every
k, j ∈ N has f?0 (vk,j ; v) = y0, and on the event H, every j ∈ N has f?0 (Wj ; v) = y1, and
∀k, j ∈ N, f?0 (Uk,j ; v) = y1. Altogether we have that, on the event H, every k′, k, j ∈ N
with k′ ≤ k has f?k (vk′,j ; U<k,v<k,W) = f?0 (vk′,j ; v), f?k (Uk′,j ; U<k,v<k,W) = f?0 (Uk′,j ; v),
and f?k (Wj ; U<k,v<k,W) = f?0 (Wj ; v). In particular, note that for any k ∈ N, every
i ∈

{
1, . . . ,

√
nk
}

has Xi ∈ {vk′,i : k′ ≤ k} ∪ {Uk′,i : k′ ≤ k} ∪ {Wi}, so that, on the event
H, f?k (Xi; U<k,v<k,W) = f?0 (Xi; v). Thus, taking f?(·) = f?0 (·; v), on the event H ∩H ′,
∀k ∈ N with k > k0,

π0

({
x : `

(
f√nk

(
X1:
√
nk , f

?(X1:
√
nk), x

)
, y0

)
≥ ∆01

})
< 3/4.

As mentioned above, the near-metric properties of ` imply that any y ∈ Y with `(y, y1) <
∆01 necessarily has `(y, y0) > ∆01. Therefore, on H ∩H ′, ∀k ∈ N with k > k0,

π0

({
x : `

(
f√nk

(
X1:
√
nk , f

?(X1:
√
nk), x

)
, y1

)
≥ ∆01

})
= 1− π0

({
x : `

(
f√nk

(
X1:
√
nk , f

?(X1:
√
nk), x

)
, y1

)
< ∆01

})
≥ 1− π0

({
x : `

(
f√nk

(
X1:
√
nk , f

?(X1:
√
nk), x

)
, y0

)
> ∆01

})
> 1/4. (45)

Now fix any k, k′ ∈ N with k′ ≥ k and k′ > 1 (which implies nk′ >
√
nk′), and note that

every t ∈ {√nk′ + 1, . . . , nk′} has Xt = Wt; on H, this implies f?(Xt) = y1. Thus, on the
event H,

1

nk′ −
√
nk′

nk′∑
t=
√
nk′+1

`
(
f√nk

(
X1:
√
nk , f

?
(
X1:
√
nk

)
, Xt

)
, f?(Xt)

)

=
1

nk′ −
√
nk′

nk′∑
t=
√
nk′+1

`
(
f√nk

(
X1:
√
nk , f

?
(
X1:
√
nk

)
, Xt

)
, y1

)

≥ 1

nk′ −
√
nk′

nk′∑
t=
√
nk′+1

1
[
`
(
f√nk

(
X1:
√
nk , f

?
(
X1:
√
nk

)
, Xt

)
, y1

)
≥ ∆01

]
∆01.

Furthermore, the fact that {Xt}
nk′
t=
√
nk′+1 = {Wt}

nk′
t=
√
nk′+1 also implies that {Xt}

nk′
t=
√
nk′+1 are

independent π0-distributed random variables, also independent from X1:
√
nk (since k ≤ k′)

and f√nk . Therefore, Hoeffding’s inequality (applied under the conditional distribution
given X1:

√
nk and f√nk) and the law of total probability imply that, on an event H ′′k,k′ of
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probability at least 1− 1
(k′)3 ,

1

nk′ −
√
nk′

nk′∑
t=
√
nk′+1

1
[
`
(
f√nk

(
X1:
√
nk , f

?
(
X1:
√
nk

)
, Xt

)
, y1

)
≥ ∆01

]

≥ π0

({
x : `

(
f√nk

(
X1:
√
nk , f

?
(
X1:
√
nk

)
, x
)
, y1

)
≥ ∆01

})
−

√
(3/2) ln(k′)

nk′ −
√
nk′

.

Combining with (45) we have that, on the event H ∩H ′∩
⋂

k′∈N\{1}

⋂
k≤k′

H ′′k,k′ , every k, k′ ∈ N

with k′ ≥ k > k0 satisfy

1

nk′ −
√
nk′

nk′∑
t=
√
nk′+1

`
(
f√nk

(
X1:
√
nk , f

?
(
X1:
√
nk

)
, Xt

)
, f?(Xt)

)

> ∆01

(
1

4
−

√
(3/2) ln(k′)

nk′ −
√
nk′

)
.

Since nk is strictly increasing in k, we have that on H ∩H ′ ∩
⋂

k′∈N\{1}

⋂
k≤k′

H ′′k,k′ ,

limsup
n→∞

L̂X(fn, f
?;n) ≥ limsup

k→∞
L̂X
(
f√nk , f

?;
√
nk

)
= limsup

k→∞
limsup
m→∞

1

m

m∑
t=1

`
(
f√nk

(
X1:
√
nk , f

?
(
X1:
√
nk

)
, Xt

)
, f?(Xt)

)
≥ limsup

k→∞
limsup
k′→∞

1

nk′

nk′∑
t=
√
nk′+1

`
(
f√nk

(
X1:
√
nk , f

?
(
X1:
√
nk

)
, Xt

)
, f?(Xt)

)

≥ limsup
k′→∞

nk′ −
√
nk′

nk′
∆01

(
1

4
−

√
(3/2) ln(k′)

nk′ −
√
nk′

)
. (46)

Since nk′ is strictly increasing in k′, we have that for any k′ ≥ 4, 0 ≤ (3/2) ln(k′)
nk′−

√
nk′
≤ 3 ln(nk′ )

nk′
,

which converges to 0 as k′ → ∞. Furthermore,
nk′−

√
nk′

nk′
= 1− 1√

nk′
, which converges to 1

as k′ →∞. Therefore, the expression in (46) equals ∆01/4. By the union bound, the event
H ∩H ′ ∩

⋂
k′∈N\{1}

⋂
k≤k′

H ′′k,k′ has probability at least

1−
∑

k′∈N\{1}

∑
k≤k′

1

(k′)3
= 1−

∑
k′∈N\{1}

1

(k′)2
= 1−

(
π2

6
− 1

)
> 0,

so that there is a nonzero probability that limsup
n→∞

L̂X(fn, f
?;n) ≥ ∆01/4 > 0. Thus, the

inductive learning rule fn is not strongly universally consistent under X.
It remains to show that the process X defined above for this second case is an element

of SUIL; again, we will in fact establish the stronger fact that X ∈ CRF. For this, for each
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k ∈ N, let Jk = {nk−1 + (i − 1)k + 1 : i ∈ N, nk−1 + (i − 1)k + 1 ≤ √nk}. For any n ∈ N,
define kn = max{k ∈ N : nk−1 < n}; this is well-defined, since n0 = 0 (so that this set of
k values is nonempty), and nk is strictly increasing (so that this set of k values is finite,
and hence has a maximum value). Note that, since nk is finite for every k, it follows that
kn →∞. Fix any A ∈ B. By the construction of the process above, we have that, ∀n ∈ N,

1

n

n∑
t=1

1A(Xt) =
1

n

kn∑
k=1

min{√nk,n}∑
t=nk−1+1

(
1Jk(t)1A(vk,t) + 1N\Jk(t)1A(Uk,t)

)+

min{nk,n}∑
t=
√
nk+1

1A(Wt)

.
(47)

By Kolmogorov’s strong law of large numbers (Ash and Doléans-Dade, 2000, Theorem
6.2.2), with probability one we have

lim
n→∞

1

n

kn∑
k=1

min{√nk,n}∑
t=nk−1+1

(
1Jk(t) (1A(vk,t)−1A(vk,t)) + 1N\Jk(t) (1A(Uk,t)−π0(A|X \Rk))

)
+

min{nk,n}∑
t=
√
nk+1

(1A(Wt)− π0(A))

 = 0.

(48)

We therefore focus on establishing convergence of

1

n

kn∑
k=1

min{√nk,n}∑
t=nk−1+1

(
1Jk(t)1A(vk,t) + 1N\Jk(t)π0(A|X \Rk)

)+

min{nk,n}∑
t=
√
nk+1

π0(A)

 . (49)

Note that, for any k, n ∈ N with n > nk−1,

|Jk ∩ {nk−1 + 1, . . . ,min{
√
nk, n}}| =

⌈
min

{√
nk, n

}
− nk−1

k

⌉
≤ n

k
+ 1,

and that max(Jk−1) ≤ √nk−1 for any k > 1. Thus,

0 ≤ 1

n

kn∑
k=1

min{√nk,n}∑
t=nk−1+1

1Jk(t)1A(vk,t) ≤
1

n

kn∑
k=1

min{√nk,n}∑
t=nk−1+1

1Jk(t)

≤
√
nkn−1

n
+

1

n

(
n

kn
+ 1

)
=

√
nkn−1

n
+

1

kn
+

1

n
. (50)

By definition of kn, this rightmost expression at most 1√
n

+ 1
kn

+ 1
n , which has limit 0 as

n→∞ since kn →∞. Thus,

lim
n→∞

1

n

kn∑
k=1

min{√nk,n}∑
t=nk−1+1

1Jk(t)1A(vk,t) = 0. (51)

By the definition of the Rk sequence, for any ε ∈ (0, 1), ∃kε ∈ N such that, ∀k ≥ kε,
|π0(A∩Rk)−(1/2)π0(A)| < ε/2. For any k ≥ kε, we have π0(A|X \Rk) = 2π0(A∩(X\Rk)) =
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2(π0(A) − π0(A ∩ Rk)) ∈ (2(π0(A) − (1/2)π0(A) − ε/2), 2(π0(A) − (1/2)π0(A) + ε/2)) =
(π0(A)− ε, π0(A) + ε). Thus, for any n ∈ N with kn ≥ kε, we have that

1

n

kn∑
k=1

min{√nk,n}∑
t=nk−1+1

1N\Jk(t)π0(A|X \Rk) +

min{nk,n}∑
t=
√
nk+1

π0(A)


≥ −ε+

1

n

kn∑
k=kε

min{nk,n}∑
t=nk−1+1

1N\Jk(t)π0(A) ≥ −ε+
1

n

kn∑
k=kε

min{nk,n}∑
t=nk−1+1

(π0(A)− 1Jk(t))

≥ −ε−

 1

n

kn∑
k=1

min{nk,n}∑
t=nk−1+1

1Jk(t)

+

 1

n

kn∑
k=kε

min{nk,n}∑
t=nk−1+1

π0(A)


= −ε−

 1

n

kn∑
k=1

min{√nk,n}∑
t=nk−1+1

1Jk(t)

+
(

1− nkε−1

n

)
π0(A)

and

1

n

kn∑
k=1

min{√nk,n}∑
t=nk−1+1

1N\Jk(t)π0(A|X \Rk) +

min{nk,n}∑
t=
√
nk+1

π0(A)


≤ nkε−1

n
+

1

n

kn∑
k=kε

min{√nk,n}∑
t=nk−1+1

π0(A|X \Rk) +

min{nk,n}∑
t=
√
nk+1

π0(A)


≤ nkε−1

n
+

1

n

kn∑
k=kε

min{nk,n}∑
t=nk−1+1

(π0(A) + ε) ≤ nkε−1

n
+ π0(A) + ε.

As mentioned above, the rightmost expression in (50) has limit 0, which in particular

also implies that lim
n→∞

1
n

kn∑
k=1

min{√nk,n}∑
t=nk−1+1

1Jk(t) = 0. Furthermore, for any fixed ε ∈ (0, 1),

lim
n→∞

nkε−1

n = 0. Thus, since kn →∞ implies kn ≥ kε for all sufficiently large n, we have

π0(A)− ε ≤ liminf
n→∞

1

n

kn∑
k=1

min{√nk,n}∑
t=nk−1+1

1N\Jk(t)π0(A|X \Rk) +

min{nk,n}∑
t=
√
nk+1

π0(A)


≤ limsup

n→∞

1

n

kn∑
k=1

min{√nk,n}∑
t=nk−1+1

1N\Jk(t)π0(A|X \Rk) +

min{nk,n}∑
t=
√
nk+1

π0(A)

 ≤ π0(A) + ε.

Taking the limit as ε→ 0 reveals that

lim
n→∞

1

n

kn∑
k=1

min{√nk,n}∑
t=nk−1+1

1N\Jk(t)π0(A|X \Rk) +

min{nk,n}∑
t=
√
nk+1

π0(A)

 = π0(A),
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which also establishes that the limit exists. Combined with (51), (48), and (47), we have

1

n

n∑
t=1

1A(Xt)→ π0(A) (a.s.). (52)

In particular, this implies that the limit of the left hand side exists almost surely. Since
this holds for any choice of A ∈ B, we have that X ∈ CRF. Since (as argued above) it holds
that CRF ⊆ C1 = SUIL, this further implies X ∈ SUIL. Thus, in this second case as well,
we conclude that the inductive learning rule fn is not optimistically universal. Since any
inductive learning rule fn satisfies one of these two cases, this completes the proof that no
inductive learning rule is optimistically universal.

Combining this result with a simple technique for learning in countable spaces, we
immediately have the following corollary.

Corollary 31 There exists an optimistically universal inductive learning rule if and only
if X is countable.

Proof The “only if” part of the claim follows immediately from Theorem 6. For the
“if” part, consider a simple inductive learning rule f̂n, defined as follows. For any n ∈ N,
x1:n ∈ X n, y1:n ∈ Yn, and x ∈ X , if x ∈ {x1, . . . , xn}, then letting i(x;x1:n) = min{i ∈
{1, . . . , n} : xi = x}, we define f̂n(x1:n, y1:n, x) = yi(x;x1:n); define f̂n(x1:n, y1:n, x) = y0

for some arbitrary fixed y0 ∈ Y if x /∈ {x1, . . . , xn}. In other words, this method simply
memorizes the observed data points (xi, yi), i ∈ {1, . . . , n}, and if the test point x is among
the observed xi points, it simply reports the corresponding memorized yi value.

Suppose X is countable, and enumerate its elements X = {z1, z2, . . .} (or in the case of
finite |X |, X = {z1, z2, . . . , z|X |}). For each k ∈ N with k ≤ |X |, let Ak = {zk}; if |X | <∞,
let Ak = ∅ for all k ∈ N with k > |X |. Fix any X ∈ C1. By Corollary 15, we have

lim
n→∞

µ̂X

(⋃
{Ai : X1:n ∩Ai = ∅}

)
= 0 (a.s.).

From the definition of f̂n, for each n ∈ N, any f? : X → Y, and each zi ∈ X , if
f̂n(X1:n, f

?(X1:n), zi) 6= f?(zi), then necessarily zi /∈ {X1, . . . , Xn}. Therefore,⋃
{Ai : X1:n ∩Ai = ∅} = X \ {X1, . . . , Xn} ⊇ {zi : f̂n(X1:n, f

?(X1:n), zi) 6= f?(zi)}.

Combining this with Lemma 8 (for homogeneity and monotonicity of µ̂X), we have that for
any f? : X → Y,

lim
n→∞

L̂X(f̂n, f
?;n) ≤ lim

n→∞
µ̂X

(
1{x:f̂n(X1:n,f?(X1:n),x) 6=f?(x)}(·)¯̀

)
= ¯̀ lim

n→∞
µ̂X

(
{x : f̂n(X1:n, f

?(X1:n), x) 6= f?(x)}
)

≤ ¯̀ lim
n→∞

µ̂X

(⋃
{Ai : X1:n ∩Ai = ∅}

)
= 0 (a.s.).

Thus, since L̂X is nonnegative, f̂n is strongly universally consistent under every X ∈ C1.
Recalling that (by Theorem 7) SUIL = C1, this completes the proof.
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It is worth noting here that the proof of Theorem 6 can be made somewhat simpler if
we only wish to directly establish the theorem statement. Specifically, the variables Vk,j
there can be replaced by i.i.d. π0 samples, while the Uk,j variables can all be set equal to
some fixed point x0 ∈ X ; in this case, the sets Rk are not needed (replaced by X \ {x0}),
and several of the definitions can be simplified (e.g., the f?k functions can all be replaced by
a fixed function f?1 , which simply outputs y0 except on wj and x0 points, where it outputs
y1). The general approach to the proof of inconsistency remains essentially unchanged.
One can easily verify that the resulting process satisfies Condition 1; however, it does not
necessarily have convergent relative frequencies (specifically, in the second case discussed in
the proof). The details of this simpler proof are left as an exercise for the interested reader.
We have chosen the more-involved proof presented above so that the inductive learning rule
is shown to not be universally consistent even under processes that are ergodic (since they
are product processes) with convergent relative frequencies (CRF), as argued in the proof.
Formally, we have established the following corollary.

Corollary 32 If X is uncountable, then there does not exist an inductive learning rule that
is strongly universally consistent under every ergodic X ∈ CRF.

6. Online Learning

In this section, we discuss the online learning setting, establishing a number of results re-
lated to the following question (restated from Section 1.2) on the existence of optimistically
universal learning rules.

Open Problem 1 (restated) Does there exist an optimistically universal online learning
rule?

We approach this question and related issues in an analogous fashion to the above
discussion of self-adaptive and inductive learning. However, unlike the results on self-
adaptive and inductive learning, the results presented here are only partial, and leave open
a number of interesting core questions, including the above open problem.

After introducing some useful lemmas on online aggregation techniques in Section 6.1, we
begin the discussion of universally consistent online learning in Section 6.2 with the subject
of concisely characterizing the family of processes SUOL. We propose a concise condition
(Condition 2) for a process X, and prove that it is generally a necessary condition: i.e.,
it is satisfied by any X that admits strong universal online learning. We also argue that
it is a sufficient condition in the case that X is countable or that X is deterministic, and
at the same time positively resolve Open Problem 1 for countable X . However, for the
general case with uncountable X , we leave open both the question in Open Problem 1 and
the question of whether Condition 2 is sufficient for X to admit strong universal online
learning (Open Problem 2). Following this, in Section 6.3, we address the relation between
admission of strong universal online learning and admission of strong universal self-adaptive
learning. We specifically establish that the latter implies the former, but not vice versa
(when X is infinite): that is, SUAL ⊂ SUOL with strict inclusion, which establishes a
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separation of SUOL from SUAL and SUIL. We also construct an online learning rule
that is universally consistent under every X ∈ SUAL. Although lacking a general concise
(provable) characterization of SUOL, we are at least able to show, in Section 6.4, that the
family SUOL is invariant to the choice of loss function ` (as was true of SUIL and SUAL
above, from their equivalence to C1 in Theorem 7), under the additional restriction that ` is
totally bounded. We also argue that SUOL is invariant to the choice of ` among losses that
are separable but not totally bounded, but we leave open the question of whether these two
SUOL families are equal (Open Problem 3).

6.1 Online Aggregation

Before getting into the new results of the present work on online learning, we first introduce
some supporting lemmas based on a well-known aggregation technique from the literature
on online learning with arbitrary sequences. The first lemma is a regret guarantee for a
weighted averaging prediction algorithm. The technique and analysis are taken from classic
works in the theory of online learning (Vovk, 1990, 1992; Littlestone and Warmuth, 1994;
Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, and Warmuth, 1997; Kivinen and
Warmuth, 1999; Singer and Feder, 1999; Györfi and Lugosi, 2002). For completeness, we
include a brief proof: a version of this classic argument.

Lemma 33 For each n ∈ N, let {zn,i}∞i=1 be a sequence of values in [0, 1], and let {pi}∞i=1 be

a sequence in (0, 1) with
∞∑
i=1

pi = 1. Fix a finite constant b ∈ (0, 1). For each n, i ∈ N, define

Ln,i = 1
n

n∑
t=1

zt,i. Then for each i ∈ N, define w1,i = v1,i = pi, and for each n ∈ N \ {1},

define wn,i = pib
(n−1)L(n−1),i, and vn,i = wn,i/

∞∑
i=1

wn,i. Finally, for each n ∈ N, define

z̄n =
∞∑
i=1

vn,izn,i. Then for every n ∈ N,

1

n

n∑
t=1

z̄t ≤ inf
i∈N

(
ln(1/b)

1− b
Ln,i +

1

(1− b)n
ln

(
1

pi

))
.

Proof Define Wn =
∞∑
i=1

wn,i for each n ∈ N. Then note that ∀n ∈ N, Wn+1 =
∞∑
i=1

wn,ib
zn,i =

Wn

∞∑
i=1

vn,ib
zn,i . Noting that bzn,i ≤ 1− (1− b)zn,i, we find that

Wn+1

Wn
≤
∞∑
i=1

vn,i(1− (1− b)zn,i) = 1− (1− b)z̄n.

Since W1 = 1, by induction we have Wn+1 ≤
n∏
t=1

(1−(1−b)z̄t). Noting that ln(1−(1−b)z̄t) ≤

−(1 − b)z̄t, we have that ln(Wn+1) ≤
n∑
t=1

ln(1 − (1 − b)z̄t) ≤ −(1 − b)
n∑
t=1

z̄t. Therefore, for

59



Hanneke

any n ∈ N,

n∑
t=1

z̄t ≤
1

1− b
ln

(
1

Wn+1

)
=

1

1− b
ln

(
1∑∞

i=1 pib
nLn,i

)
≤ 1

1− b
ln

(
1

supi∈N pib
nLn,i

)
= inf

i∈N

(
ln(1/b)

1− b
nLn,i +

1

1− b
ln

(
1

pi

))
.

Dividing the leftmost and rightmost expressions by n completes the proof.

For our purposes, we will need the following implication of this lemma.

Lemma 34 For any sequence
{
ĥ

(i)
n

}∞
i=1

of online learning rules, there exists an online

learning rule f̂n such that, for any process X and any measurable function f? : X →
Y, if, with probability one, there exists a sequence {in}∞n=1 in N with ln(in) = o(n) s.t.

lim
n→∞

L̂X(ĥ
(in)
· , f?;n) = 0, then lim

n→∞
L̂X(f̂·, f

?;n) = 0 (a.s.).

Proof Fix any sequences x = {xn}∞n=1 in X and y = {yn}∞n=1 in Y. For each n, i ∈ N,

define ẑn,i(x1:n, y1:n) = `(ĥ
(i)
n−1(x1:(n−1), y1:(n−1), xn), yn)/¯̀ (which may be random, if ĥ

(i)
n−1

is a randomized learning rule). For each i ∈ N, let pi = 6
π2i2

, and note that
∞∑
i=1

pi = 1. Fix

any b ∈ (0, 1), and for n, i ∈ N define vn,i as in Lemma 33, for these pi values, and for zn,i =

ẑn,i(x1:n, y1:n) ∈ [0, 1] for each n, i ∈ N. Finally, define z̄n(x1:n, y1:n) =
∞∑
i=1

vn,iẑn,i(x1:n, y1:n).

From this point, there are two possible routes toward defining the online learning rule f̂n,
depending on whether we involve randomization. In the simplest definition, when predicting
for xn+1, we could simply sample an index i (independently for each n) according to the

distribution specified by {v(n+1),i}∞i=1, and take the ĥ
(i)
n learning rules’s prediction. It is

fairly straightforward to relate the expected performance of this method to the quantities
z̄t(x1:t, y1:t) and then apply Lemma 33 (see e.g., Littlestone and Warmuth, 1994), together
with concentration inequalities to argue that the bound from Lemma 33 almost surely
becomes valid in the limit of n → ∞. However, instead of this approach, we will analyze
a method that avoids randomization.6 Specifically, let {εn}∞n=0 be any sequence in (0,∞)
with εn → 0, and for each n ∈ N ∪ {0}, define f̂n(x1:n, y1:n, xn+1) = ŷn+1 for some value
ŷn+1 ∈ Y satisfying7

∞∑
i=1

v(n+1),i`
(
ŷn+1, ĥ

(i)
n (x1:n, y1:n, xn+1)

)
≤ εn + inf

y∈Y

∞∑
i=1

v(n+1),i`
(
y, ĥ(i)

n (x1:n, y1:n, xn+1)
)
.

6. In general, randomization is known to be necessary for achieving optimal regret guarantees in online
learning (see Cesa-Bianchi and Lugosi, 2006, Chapter 4). However, since the reference sequence ĥ

(in)
·

itself has L̂X(ĥ
(in)
· , f?;n) → 0 (a.s.), we are not concerned with multiplicative constant factors for the

purpose of achieving L̂X(f̂·, f
?;n)→ 0 (a.s.), and thus we can avoid randomization.

7. Here we suppose the choice of ŷn+1 is such that the function f̂n(·, ·, ·) is measurable: for instance, it would
suffice to consider an enumeration of a countable dense subset of Y (which exists by the separability
assumption on Y) and then choose the first y in this enumeration satisfying the εn-excess criterion in
the definition of ŷn+1.
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We use this definition for any n and any such sequences x and y, so that this completes the
definition of f̂n. With this definition, for any t ∈ N ∪ {0} and sequences x and y, by the

relaxed triangle inequality and the fact that
∞∑
i=1

v(t+1),i = 1, we have that

`
(
f̂t(x1:t, y1:t, xt+1), yt+1

)
=
∞∑
i=1

v(t+1),i`
(
f̂t(x1:t, y1:t, xt+1), yt+1

)
≤ c`

∞∑
i=1

v(t+1),i`
(
f̂t(x1:t, y1:t, xt+1), ĥ

(i)
t (x1:t, y1:t, xt+1)

)
+ c`

∞∑
i=1

v(t+1),i`
(
ĥ

(i)
t (x1:t, y1:t, xt+1), yt+1

)
.

Then the definition of f̂t guarantees the right hand side is at most

εt + inf
y∈Y

c`

∞∑
i=1

v(t+1),i`
(
y, ĥ

(i)
t (x1:t, y1:t, xt+1)

)
+ c`

∞∑
i=1

v(t+1),i`
(
ĥ

(i)
t (x1:t, y1:t, xt+1), yt+1

)
≤ εt + 2c`

∞∑
i=1

v(t+1),i`
(
ĥ

(i)
t (x1:t, y1:t, xt+1), yt+1

)
= εt + 2c` ¯̀̄zt+1(x1:(t+1), y1:(t+1)),

so that

1

n

n−1∑
t=0

`
(
f̂t(x1:t, y1:t, xt+1), yt+1

)
≤ 1

n

n−1∑
t=0

(
εt + 2c` ¯̀̄zt+1(x1:(t+1), y1:(t+1))

)
.

Together with Lemma 33, we have that

1

n

n−1∑
t=0

`
(
f̂t(x1:t, y1:t, xt+1), yt+1

)
(53)

≤

(
1

n

n−1∑
t=0

εt

)
+ 2c` inf

i∈N

(
ln(1/b)

1− b

(
1

n

n−1∑
t=0

`
(
ĥ

(i)
t (x1:t, y1:t, xt+1), yt+1

))
+

¯̀

(1− b)n
ln

(
1

pi

))
.

Now fix X and f? such that, with probability one, there exists a sequence {in}∞n=1 in N
with ln(in) = o(n) such that lim

n→∞
L̂X(ĥ

(in)
· , f?;n) = 0. Then, on the event that this occurs,

the inequality in (53) implies

L̂X(f̂·, f
?;n) ≤

(
1

n

n−1∑
t=0

εt

)
+ 2c` inf

i∈N

(
ln(1/b)

1− b
L̂X(ĥ

(i)
· , f

?;n) +
¯̀

(1− b)n
ln

(
1

pi

))

≤

(
1

n

n−1∑
t=0

εt

)
+ 2c`

(
ln(1/b)

1− b
L̂X(ĥ

(in)
· , f?;n) +

2¯̀

(1− b)n
ln(in) +

¯̀

(1− b)n
ln

(
π2

6

))
.

Since εt→0 =⇒ lim
n→∞

1
n

n−1∑
t=0

εt = 0, and since lim
n→∞

L̂X(ĥ
(in)
· , f?;n) = 0 and lim

n→∞
1
n ln(in) = 0

in this context, and L̂X is nonnegative, it follows that lim
n→∞

L̂X(f̂·, f
?;n) = 0 on this event.
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The next lemma provides a technical fact useful in the proofs of the theorems below.

Lemma 35 Suppose {βi,n}i,n∈N is an array of values in [0,∞) such that lim
i→∞

limsup
n→∞

βi,n =

0, and that {jn}∞n=1 is a sequence in N with jn →∞. Then there exists a sequence {in}∞n=1

in N such that in ≤ jn for every n ∈ N, and lim
n→∞

βin,n = 0.

Proof For each i ∈ N, let ni ∈ N be such that sup
n≥ni

βi,n ≤ 1
i + limsup

n→∞
βi,n; such an ni is

guaranteed to exist by the definition of the limsup. For each n ∈ N with n < n1, define
in = 1, and for each n ∈ N with n ≥ n1, define in = max{i ∈ {1, . . . , jn} : n ≥ ni}. By
definition, we have in ≤ jn for every n ∈ N. Furthermore, by definition, we have n ≥ nin
for every n ≥ n1, so that βin,n ≤ 1

in
+ limsup

n′→∞
βin,n′ . Finally, since ni is finite for each i ∈ N,

and jn →∞, we have in →∞. Altogether, we have

limsup
n→∞

βin,n ≤ limsup
n→∞

(
1

in
+ limsup

n′→∞
βin,n′

)
≤ limsup

i→∞

(
1

i
+ limsup

n→∞
βi,n

)
= 0.

Since liminf
n→∞

βin,n ≥ 0 by nonnegativity of the βi,n values, the result follows.

6.2 Toward Concisely Characterizing SUOL

We begin the discussion of universally consistent online learning with the subject of con-
cisely characterizing the family of processes SUOL. Specifically, we consider the following
candidate for such a characterization. Though we succeed in establishing its necessity for
X to admit strong universal online learning, determining whether it is also sufficient will be
left as an open problem.

Condition 2 For every sequence {Ak}∞k=1 of disjoint elements of B,

|{k ∈ N : X1:T ∩Ak 6= ∅}| = o(T ) (a.s.).

Denote by C2 the set of all processes X satisfying Condition 2. With the aim of con-
cisely characterizing the family of processes SUOL, we consider now the specific question
of whether SUOL = C2. Formally, we make partial progress toward resolving the following
question, which remains open at this writing.

Open Problem 2 Is SUOL = C2?

In this subsection, we show that in general, SUOL ⊆ C2, and that equality holds when
X is countable. Equality also holds for the intersections of these sets with the family of
deterministic processes.

We begin with the first of these claims. First, as was true of C1, we can also state
Condition 2 in an alternative equivalent form, which makes the necessity of Condition 2
for learning more immediately clear. In particular, we may note an interesting parallel to
Corollary 15.
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Lemma 36 A process X satisfies Condition 2 if and only if every disjoint sequence {Ai}∞i=1

in B with
∞⋃
i=1

Ai = X (i.e., every countable measurable partition) satisfies

limsup
T→∞

1

T

T∑
t=1

1
[
Xt ∈

⋃{
Ai : X1:(t−1) ∩Ai = ∅

}]
= 0 (a.s.).

Proof First note that, for any sequence {Ak}∞k=1 of disjoint sets in B, defining B1 =

X \
∞⋃
k=1

Ak and Bk = Ak−1 for k ≥ 2, we have that {Bk}∞k=1 is a disjoint sequence in B with

∞⋃
k=1

Bk = X and |{k : X1:T ∩ Ak 6= ∅}| ≤ |{k : X1:T ∩Bk 6= ∅}| ≤ |{k : X1:T ∩ Ak 6= ∅}|+ 1,

so that |{k : X1:T ∩Bk 6= ∅}| = o(T ) (a.s.) if and only if |{k : X1:T ∩Ak 6= ∅}| = o(T ) (a.s.).
Thus, the set of processes X satisfying Condition 2 remains unchanged if we restrict the

disjoint sequences {Ak}∞k=1 to those satisfying
∞⋃
k=1

Ak = X .

Now fix any process X and any disjoint sequence {Ai}∞i=1 in B with
∞⋃
i=1

Ai = X . Then

note that, for any T ∈ N, |{k ∈ N : X1:T ∩Ak 6= ∅}| = 1
[
XT ∈

⋃{
Ai : X1:(T−1)∩Ai = ∅

}]
+∣∣{k ∈ N : X1:(T−1) ∩Ak 6= ∅

}∣∣. By induction (taking T = 1 as a trivially-satisfied base case),
this implies that ∀T ∈ N,

|{k ∈ N : X1:T ∩Ak 6= ∅}| =
T∑
t=1

1
[
Xt ∈

⋃{
Ai : X1:(t−1) ∩Ai = ∅

}]
.

In particular, this implies that
T∑
t=1

1
[
Xt ∈

⋃{
Ai : X1:(t−1) ∩Ai = ∅

}]
= o(T ) (a.s.) if and

only if |{k ∈ N : X1:T ∩Ak 6= ∅}| = o(T ) (a.s.). Since this equivalence holds for any choice

of disjoint sequence {Ai}∞i=1 in B with
∞⋃
i=1

Ai = X , the lemma follows.

With this lemma in hand, we can now prove the following theorem, which establishes
that Condition 2 is necessary for a process to admit strong universal online learning.

Theorem 37 SUOL ⊆ C2.

Proof This proof follows essentially the same outline as that of Lemma 20. We prove the
result in the contrapositive. Suppose X /∈ C2. By Lemma 36, there exists a disjoint sequence

{Ai}∞i=1 in B with
∞⋃
i=1

Ai = X such that, with probability strictly greater than 0,

limsup
T→∞

1

T

T∑
t=1

1
[
Xt ∈

⋃{
Ai : X1:(t−1) ∩Ai = ∅

}]
> 0.

Furthermore, since the left hand side is always nonnegative, this also implies (see e.g., Ash
and Doléans-Dade, 2000, Theorem 1.6.6)

E

[
limsup
T→∞

1

T

T∑
t=1

1
[
Xt ∈

⋃{
Ai : X1:(t−1) ∩Ai = ∅

}]]
> 0. (54)
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Now take any two distinct values y0, y1 ∈ Y, and (as we did in the proof of Lemma 20)
for each κ ∈ [0, 1), i ∈ N, and x ∈ Ai, letting κi = b2iκc − 2b2i−1κc ∈ {0, 1}, define
f?κ(x) = yκi . Recall that we established in the proof of Lemma 20 that (x, κ) 7→ f?κ(x)
is measurable in the appropriate product σ-algebra. Also for every t ∈ N define it as the
unique i ∈ N with Xt ∈ Ai, and for any n ∈ N ∪ {0}, let Ā(X1:n) =

⋃
{Ai : X1:n ∩Ai = ∅}.

Now fix any online learning rule gn, and for brevity define fκn (·) = gn(X1:n, f
?
κ(X1:n), ·)

for each n ∈ N. Then

sup
κ∈[0,1)

E
[
limsup
n→∞

L̂X(g·, f
?
κ ;n)

]
≥
∫ 1

0
E
[
limsup
n→∞

L̂X(g·, f
?
κ ;n)

]
dκ

≥
∫ 1

0
E

[
limsup
n→∞

1

n

n−1∑
t=0

` (fκt (Xt+1), f?κ(Xt+1)) 1Ā(X1:t)(Xt+1)

]
dκ.

By Fubini’s theorem, this is equal

E

[∫ 1

0
limsup
n→∞

1

n

n−1∑
t=0

`(fκt (Xt+1), f?κ(Xt+1)) 1Ā(X1:t)(Xt+1)dκ

]
.

Since ` is bounded, Fatou’s lemma implies this is at least as large as

E

[
limsup
n→∞

∫ 1

0

1

n

n−1∑
t=0

`(fκt (Xt+1), f?κ(Xt+1)) 1Ā(X1:t)(Xt+1)dκ

]
,

and linearity of integration implies this equals

E

[
limsup
n→∞

1

n

n−1∑
t=0

1Ā(X1:t)(Xt+1)

∫ 1

0
`(fκt (Xt+1), f?κ(Xt+1)) dκ

]
. (55)

For any t ∈ N∪{0}, the value of fκt (Xt+1) is a function of X and κi1 , . . . , κit . Therefore,
for any t ∈ N∪ {0} with Xt+1 ∈ Ā(X1:t), the value of fκt (Xt+1) is functionally independent
of κit+1 . Thus, for any t ∈ N ∪ {0}, letting K ∼ Uniform([0, 1)) be independent of X and
gt, if Xt+1 ∈ Ā(X1:t), we have∫ 1

0
`(fκt (Xt+1), f?κ(Xt+1)) dκ = E

[
`
(
fKt (Xt+1), f?K(Xt+1)

) ∣∣∣X, gt]
= E

[
E
[
`
(
gt(X1:t, {yKij }

t
j=1, Xt+1), yKt+1

) ∣∣∣X, gt,Ki1 , . . . ,Kit

] ∣∣∣X, gt]
= E

 ∑
b∈{0,1}

1

2
`
(
gt(X1:t, {yKij }

t
j=1, Xt+1), yb

) ∣∣∣X, gt
 .

By the relaxed triangle inequality, this is no smaller than E
[

1
2c`
`(y0, y1)

∣∣∣X, gt] = 1
2c`
`(y0, y1),

so that (55) is at least as large as

E

[
limsup
n→∞

1

n

n−1∑
t=0

1Ā(X1:t)(Xt+1)
1

2c`
`(y0, y1)

]

=
1

2c`
`(y0, y1)E

[
limsup
n→∞

1

n

n∑
t=1

1
[
Xt ∈

⋃{
Ai : X1:(t−1) ∩Ai = ∅

}]]
> 0,
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where this last inequality is immediate from (54) and the fact that (since ` is a near-metric)
`(y0, y1) > 0. Altogether, we have that

sup
κ∈[0,1)

E
[
limsup
n→∞

L̂X(g·, f
?
κ ;n)

]
> 0.

In particular, this implies ∃κ ∈ [0, 1) such that E
[
limsup
n→∞

L̂X(g·, f
?
κ ;n)

]
> 0. Since any

random variable equal 0 (a.s.) necessarily has expected value 0, this further implies that
with probability strictly greater than 0, limsup

n→∞
L̂X(g·, f

?
κ ;n) > 0. Thus, gn is not strongly

universally consistent. Since gn was an arbitrary online learning rule, we conclude that
there does not exist an online learning rule that is strongly universally consistent under X:
that is, X /∈ SUOL. Since this argument holds for any X /∈ C2, the theorem follows.

Although this work falls short of establishing equivalence between SUOL and C2 in
the general case (i.e., positively resolving Open Problem 2 in general), we do show this
equivalence in the special case of countable X , and indeed also positively resolve Open
Problem 1 for countable X . Note that, in this special case, Condition 2 simplifies to the
condition that the number of distinct points x ∈ X occurring in the sequence X1:T is o(T )
almost surely. Specifically, we have the following result.

Lemma 38 If X is countable, then a process X satisfies Condition 2 if and only if

|{x ∈ X : X1:T ∩ {x} 6= ∅}| = o(T ) (a.s.).

Proof Enumerate the elements of X as z1, z2, . . . (or z1, . . . , z|X | in the case of finite |X |).
If Condition 2 is satisfied, then choose Ak = {zk} for every k ∈ N with k ≤ |X |, and if
|X | < ∞ then let Ak = ∅ for every k > |X |. It immediately follows from Condition 2 that
|{x ∈ X : X1:T ∩ {x} 6= ∅}| = o(T ) (a.s.). For the other direction, if Condition 2 fails, there
exists a disjoint sequence {Ak}∞k=1 in B that has |{k ∈ N : X1:T ∩ Ak 6= ∅}| 6= o(T ) with
nonzero probability. Noting that |{k ∈ N : X1:T ∩ Ak 6= ∅}| ≤ |{x ∈ X : X1:T ∩ {x}}|, we
have that, on this same event of nonzero probability, |{x ∈ X : X1:T∩{x}}| 6= o(T ) as well.

We now state our result for strong universal online learning when X is countable.

Theorem 39 If X is countable, then Condition 2 is necessary and sufficient for a process X
to admit strong universal online learning: that is, SUOL = C2. Moreover, if X is countable,
then there exists an optimistically universal online learning rule.

Proof Suppose X is countable. For the first claim, since we already know SUOL ⊆ C2

from Theorem 37, it suffices to show C2 ⊆ SUOL, for this special case. We will establish this
fact, while simultaneously establishing the second claim, by showing that there is an online
learning rule that is strongly universally consistent under every X ∈ C2 (which thereby
also establishes that every such process is in SUOL). Toward this end, fix any y0 ∈ Y,
and define an online learning rule fn such that, for each n ∈ N ∪ {0}, ∀x1:(n+1) ∈ X n+1,
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∀y1:n ∈ Yn, if xn+1 = xi for some i ∈ {1, . . . , n}, then fn(x1:n, y1:n, xn+1) = yi for the
smallest i ∈ {1, . . . , n} with xn+1 = xi, and otherwise fn(x1:n, y1:n, xn+1) = y0. The key
property of fn here is that it is memorization-based, in that any previously-observed point’s
response y will be faithfully reproduced if that point is encountered again later in the
sequence. The specific fact that it evaluates to y0 in the case of a previously-unseen point
is unimportant in this context, and this case can in fact be defined arbitrarily (subject to
the function fn being measurable) without affecting the result (and similarly for the choice
to break ties to favor smaller indices).

Now fix any X ∈ C2 and any measurable function f? : X → Y. Note that any i, t ∈ N with
i ≤ t and Xt+1 = Xi has f?(Xt+1) = f?(Xi), so that `(ft(X1:t, f

?(X1:t), Xt+1), f?(Xt+1)) =
`(f?(Xi), f

?(Xt+1)) = 0. Therefore, we have

limsup
n→∞

L̂X(f·, f
?;n) = limsup

n→∞

1

n

n−1∑
t=0

`(ft(X1:t, f
?(X1:t), Xt+1), f?(Xt+1))

≤ limsup
n→∞

1

n

n−1∑
t=0

¯̀1[@i ∈ {1, . . . , t} : Xt+1 = Xi] = ¯̀limsup
n→∞

1

n
|{x ∈ X : X1:n ∩ {x} 6= ∅}| .

Lemma 38 implies that the rightmost expression above is equal 0 almost surely. Since
this argument holds for any choice of f?, we conclude that fn is strongly universally consis-
tent under X. Furthermore, since this holds for any choice of X ∈ C2, the theorem follows.

For uncountable X , we can at least state a corollary holding for all deterministic pro-
cesses, via a reduction to the case of countable X .

Corollary 40 For any deterministic process X, Condition 2 is necessary and sufficient for
X to admit strong universal online learning: that is, X ∈ SUOL if and only if X ∈ C2.

Proof Sketch This result follows from essentially the same proof used for Theorem 39;
the only significant change is in the proof of Lemma 38, which can be established for de-
terministic processes on general X by replacing the zk sequence defined in the proof by the
distinct entries of the sequence X (noting that the intersection of X with the complement of
this zk sequence is empty). Alternatively, it can also be established via a reduction to the
case of countable X . Specifically, fix any deterministic process X, and let XX denote the set
of distinct points x ∈ X appearing in the sequence X. Note that XX is countable, and that
(with a slight abuse of notation) X may be thought of as a sequence of XX-valued variables.
Furthermore, it is straightforward to show that any deterministic X satisfies Condition 2 for
the space XX if and only if it satisfies Condition 2 for the original space X (since only the
intersections of the sets Ai with XX are relevant for checking this condition). Thus, since
Theorem 39 holds for any countable space X , applying it to the space XX, we have that X
admits strong universal online learning if and only if X satisfies Condition 2.

6.3 Relation of Online Learning to Inductive and Self-Adaptive Learning

Next, we turn to addressing the relation between admission of strong universal online learn-
ing and admission of strong universal inductive or self-adaptive learning. Specifically, we
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find that the latter implies the former, but not vice versa (if X is infinite), so that ad-
mission of strong universal online learning is a strictly more general condition. To show
this, since we have established in Theorem 7 that SUIL = SUAL, it suffices to argue that
SUAL ⊆ SUOL, with strict inclusion if |X | = ∞: that is, SUOL \ SUAL 6= ∅. For this we
have the following theorem.

Theorem 41 SUAL ⊆ SUOL, and the inclusion is strict if and only if |X | =∞.

Proof We begin by showing SUAL ⊆ SUOL. In fact, we will establish a stronger claim:
that there exists a single online learning rule f̂n that is strongly universally consistent for
every X ∈ SUAL. Specifically, let ĝn,m be an optimistically universal self-adaptive learning
rule. The existence of such a rule was established in Theorem 5, and an explicit construction
is given in (34), as established by Theorem 29. Now fix any y0 ∈ Y, and for each i ∈ N
define an online learning rule ĥ

(i)
n as follows. For each n ∈ N ∪ {0}, for any sequences

x1:(n+1) ∈ X n+1 and y1:n ∈ Yn, if n < i, then define ĥ
(i)
n (x1:n, y1:n, xn+1) = y0, and if n ≥ i,

then define ĥ
(i)
n (x1:n, y1:n, xn+1) = ĝi,n(x1:n, y1:i, xn+1). Measurability of ĥ

(i)
n follows from

measurability of ĝi,n, so that this is a valid definition of an online learning rule.

Given this definition of the sequence
{
ĥ

(i)
n

}∞
i=1

, denote by f̂n the online learning rule

guaranteed to exist by Lemma 34 (defined explicitly in the proof above), satisfying the

property described there relative to this sequence
{
ĥ

(i)
n

}∞
i=1

. Now fix any X ∈ SUAL and

any measurable f? : X → Y, and for each i, n ∈ N, define β̂i,n = L̂X(ĥ
(i)
· , f

?;n). In
particular, note that since ` is always finite, it holds that ∀i ∈ N,

limsup
n→∞

β̂i,n = limsup
n→∞

1

n

n−1∑
t=0

`
(
ĥ

(i)
t (X1:t, f

?(X1:t), Xt+1), f?(Xt+1)
)

= limsup
n→∞

1

n

n−1∑
t=i

`(ĝi,t(X1:t, f
?(X1:i), Xt+1), f?(Xt+1))

= limsup
n→∞

1

n+ 1

i+n∑
t=i

`(ĝi,t(X1:t, f
?(X1:i), Xt+1), f?(Xt+1)) = L̂X(ĝi,·, f

?; i).

Since ĝn,m is strongly universally consistent under X, it follows that lim
i→∞

limsup
n→∞

β̂i,n = 0

on an event E of probability one. In particular, on E, Lemma 35 implies that there exists
a sequence {in}∞i=1 in N with in ≤ n for every n, such that lim

n→∞
β̂in,n = 0. Therefore,

since ln(in) ≤ ln(n) = o(n), the property of f̂n guaranteed by Lemma 34 implies that
lim
n→∞

L̂X(f̂·, f
?;n) = 0 almost surely. Since this argument holds for any choice of f?, we

conclude that f̂n is strongly universally consistent under X, and since this holds for any
choice of X ∈ SUAL, it follows that SUAL ⊆ SUOL.

SUOL and SUAL are trivially equal if |X | <∞, since then every process X is contained
in C1, and Theorem 7 implies SUAL = C1, while we have just established that SUOL ⊇
SUAL, so every process is contained in both SUAL and SUOL. Now consider the case
|X | =∞. To see that SUOL\SUAL 6= ∅ in this case, in light of Corollary 40, together with
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Theorem 7, it suffices to construct a deterministic process in C2 \ C1. Toward this end, we
let {zi}∞i=1 be an arbitrary sequence of distinct elements of X , and define a deterministic
process X as follows. For each t ∈ N, define it = blog2(2t)c, and let Xt = zit . For any
sequence {Ak}∞k=1 of disjoint elements of B, and any T ∈ N,

|{k ∈ N : X1:T ∩Ak 6= ∅}| ≤ |{i ∈ N : X1:T ∩ {zi} 6= ∅}| = blog2(2T )c = o(T ).

Therefore, X ∈ C2. However, let Ak = {zi : i ≥ k} for each k ∈ N, and note that
each Ak is countable, hence in B, and that Ak ↓ ∅. Then note that every i ∈ N has

1
2i−1

2i−1∑
t=1

1{zi}(Xt) = 2i−1

2i−1
> 1

2 . Thus, since each |Ak| = ∞, we have µ̂X(Ak) ≥ 1
2 for every

k ∈ N, so that lim
k→∞

µ̂X(Ak) ≥ 1
2 > 0. Since X is deterministic, this violates the requirement

of Condition 1, and therefore X /∈ C1.

The proof of Theorem 41 actually establishes two additional results. First, since the
online learning rule f̂n constructed in the proof has no dependence on the distribution of
the process X from SUAL, this proof also establishes the following corollary.

Corollary 42 There exists an online learning rule that is strongly universally consistent
under every X ∈ SUAL.

Note that this is a weaker claim than would be required for positive resolution of Open
Problem 1, since (as established by Theorem 41) the set of processes admitting strong
universal online learning is a strict superset of the set of processes admitting strong universal
self-adaptive learning (if X is infinite).

Second, since Theorem 37 establishes that SUOL ⊆ C2, and Theorem 7 establishes
that SUAL = C1, Theorem 41 also establishes that C1 ⊆ C2 (a fact that one can easily
verify from their definitions as well). Furthermore, the above proof that the inclusion
SUAL ⊆ SUOL is strict if |X | = ∞ establishes this fact by constructing a deterministic
process X ∈ C2 \ C1 (which thereby verifies the claim due to Corollary 40 and Theorem 7).
Thus, it also establishes that the inclusion C1 ⊆ C2 is strict in the case |X | = ∞. Also, as
noted in the above proof, if |X | < ∞, then C1 contains every process. Since C1 ⊆ C2, this
clearly implies that if |X | <∞, then C1 = C2. Altogether, we conclude that the above proof
also establishes the following result.

Corollary 43 C1 ⊆ C2, and the inclusion is strict if and only if |X | =∞.

6.4 Invariance of SUOL to the Choice of Loss Function

In this subsection, we are interested in the question of whether the family SUOL is invariant
to the choice of loss function (subject to the basic constraints from Section 1.1). Recall that
we established above that this property holds for the families SUIL and SUAL (as implied
by their equivalence to C1 from Theorem 7, regardless of the choice of (Y, `)). Furthermore,
a positive resolution of Open Problem 2 would immediately imply this property for SUOL,
since Condition 2 has no dependence on (Y, `). However, since Open Problem 2 remains
open at this time, it is interesting to directly explore the question of invariance of SUOL to
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the choice of (Y, `). Specifically, we prove two relevant results. First, we show that SUOL
is invariant to the choice of (Y, `), under the additional constraint that (Y, `) is totally
bounded : that is, ∀ε > 0, ∃Yε ⊆ Y s.t. |Yε| < ∞ and sup

y∈Y
inf
yε∈Yε

`(yε, y) ≤ ε. For instance,

` as any Lp loss (y, y′) 7→ |y − y′|p (p ∈ (0,∞)) with Y any bounded subset of R would
satisfy this. In particular, this means that, in characterizing the family of processes SUOL
for totally bounded losses, it suffices to characterize this set for the simplest case of binary
classification: (Y, `) = ({0, 1}, `01), where for any Y we generally denote by `01 : Y2 → [0,∞)
the 0-1 loss on Y, defined by `01(y, y

′) = 1[y 6= y′] for all y, y′ ∈ Y. Second, we also find that
the set SUOL is invariant among (bounded, separable) losses that are not totally bounded
(e.g., the 0-1 loss with Y = N). We leave open the question of whether or not these two
SUOL sets are equal (Open Problem 3 below). We begin with the totally bounded case.

Theorem 44 The set SUOL is invariant to the specification of (Y, `), subject to (Y, `)
being totally bounded with ¯̀> 0.

Proof To disambiguate notation in this proof, for any near-metric space (Y ′, `′), we denote
by SUOL(Y ′,`′) the family SUOL as it would be defined if (Y, `) were specified as (Y ′, `′). As
above, define the measurable subsets of Y ′ as the elements of the Borel σ-algebra generated
by the topology induced by `′. Let `01 be the 0-1 loss on {0, 1}, as defined above. To
establish the theorem, it suffices to verify the claim that SUOL(Y ′,`′) = SUOL({0,1},`01) for
all totally bounded near-metric spaces (Y ′, `′) with sup

y,y′∈Y ′
`′(y, y′) > 0. Fix any such (Y ′, `′).

The inclusion SUOL(Y ′,`′) ⊆ SUOL({0,1},`01) is quite straightforward, as follows. For

any X ∈ SUOL(Y ′,`′), letting f̂n be an online learning rule that is strongly universally
consistent under X (for the specification (Y, `) = (Y ′, `′)), we can define an online learning
rule f̂ 01

n for the specification (Y, `) = ({0, 1}, `01) as follows. Let z0, z1 ∈ Y ′ be such that
`′(z0, z1) > 0. For any n ∈ N∪{0}, and any sequences x1:(n+1) in X and y1:n in {0, 1}, define

a sequence y′1:n with y′i = zyi for each i ∈ {1, . . . , n}, and then define f̂ 01
n (x1:n, y1:n, xn+1) =

argmin
y∈{0,1}

`′
(
f̂n(x1:n, y

′
1:n, xn+1), zy

)
(breaking ties in favor of y = 0). In particular, that f̂ 01

n

is a measurable function X n×{0, 1}n×X → {0, 1} follows immediately from measurability
of f̂n. Then note that, for any measurable function f : X → {0, 1}, defining f ′ : X → Y ′ as
f ′(x) = zf(x) (which is clearly also measurable), we have ∀t ∈ N ∪ {0},

1
[
f̂ 01
t (X1:t, f(X1:t), Xt+1) 6= f(Xt+1)

]
≤ 1

[
`′
(
f̂t(X1:t,f

′(X1:t),Xt+1),f ′(Xt+1)
)

= max
y∈{0,1}

`′
(
f̂t(X1:t,f

′(X1:t),Xt+1),zy

)]

≤ 1

`′(f̂t(X1:t,f
′(X1:t),Xt+1),f ′(Xt+1)

)
≥
∑

y∈{0,1}

1

2
`′
(
f̂t(X1:t,f

′(X1:t),Xt+1),zy

)
≤ 1

[
`′
(
f̂t(X1:t, f

′(X1:t), Xt+1), f ′(Xt+1)
)
≥ 1

2c`
`′(z0, z1)

]
≤ 2c`
`′(z0, z1)

`′
(
f̂t(X1:t, f

′(X1:t), Xt+1), f ′(Xt+1)
)
,
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where the second-to-last inequality is due to the relaxed triangle inequality. Therefore,
under the specification (Y, `) = ({0, 1}, `01), we have

limsup
n→∞

L̂X
(
f̂ 01
· , f ;n

)
= limsup

n→∞

1

n

n−1∑
t=0

1
[
f̂ 01
t (X1:t, f(X1:t), Xt+1) 6= f(Xt+1)

]
≤ 2c`
`′(z0, z1)

limsup
n→∞

1

n

n−1∑
t=0

`′
(
f̂t(X1:t, f

′(X1:t), Xt+1), f ′(Xt+1)
)

= 0 (a.s.),

where the last equality (to which the “almost surely” qualifier applies) is due to strong
universal consistency of f̂n (and the fact that z0, z1 were chosen to satisfy `′(z0, z1) > 0).
Since this argument holds for any choice of measurable f : X → {0, 1}, we conclude that
f̂ 01
n is strongly universally consistent under X (for the specification (Y, `) = ({0, 1}, `01)), so

that X ∈ SUOL({0,1},`01). Since this argument holds for any X ∈ SUOL(Y ′,`′), we conclude
that SUOL(Y ′,`′) ⊆ SUOL({0,1},`01).

The proof of the converse inclusion is somewhat more involved. Specifically, fix any
X ∈ SUOL({0,1},`01), and let f̂ 01

n be an online learning rule that is strongly universally
consistent under X (for the specification (Y, `) = ({0, 1}, `01)). We then define an online
learning rule f̂ ′n for the specification (Y, `) = (Y ′, `′) totally bounded, as follows. For each
ε > 0, let Y ′ε ⊆ Y ′ be such that |Y ′ε| <∞ and sup

y∈Y ′
inf
yε∈Y ′ε

`′(yε, y) ≤ ε, as guaranteed to exist

by total boundedness. For each y ∈ Y ′, let gε(y) = argmin
yε∈Y ′ε

`′(yε, y), breaking ties to favor

smaller indices in some fixed enumeration of Y ′ε. Then, for each y ∈ Y ′ and each yε ∈ Y ′ε,
define h

(yε)
ε (y) = 1[gε(y) = yε]. One can easily verify that gε and h

(yε)
ε are measurable

functions, and furthermore that for every y ∈ Y ′, exactly one yε ∈ Y ′ε has h
(yε)
ε (y) = 1 while

every y′ε ∈ Y ′ε \ {yε} has h
(y′ε)
ε (y) = 0.

For any n ∈ N ∪ {0}, and any sequences x1:(n+1) in X and y1:n in Y ′, define

f̂ (ε)
n (x1:n, y1:n, xn+1) = argmax

yε∈Y ′ε
f̂ 01
n (x1:n, h

(yε)
ε (y1:n), xn+1),

breaking ties to favor yε with a smaller index in a fixed enumeration of Y ′ε. Again, one
can easily verify that f̂n is a measurable function X n × (Y ′)n × X → Y ′, which follows

immediately from measurability of f̂ 01
n , the h

(yε)
ε functions, and the argmax. Thus, f̂

(ε)
n

defines an online learning rule.

Now note that, for any measurable function f : X → Y ′, and each yε ∈ Y ′ε, the composed

function x 7→ h
(yε)
ε (f(x)) is a measurable function X → {0, 1}, and therefore (by strong

universal consistency of f̂ 01
n ) with probability one,

limsup
n→∞

1

n

n−1∑
t=0

`01

(
f̂ 01
t (X1:t, h

(yε)
ε (f(X1:t)), Xt+1), h(yε)

ε (f(Xt+1))
)

= 0.

By the union bound, this holds simultaneously for all yε ∈ Y ′ε with probability one. Further-

more, note that if f̂ 01
t (X1:t, h

(yε)
ε (f(X1:t)), Xt+1) = h

(yε)
ε (f(Xt+1)) for every yε ∈ Y ′ε, then
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f̂
(ε)
t (X1:t, f(X1:t), Xt+1) = gε(f(Xt+1)). We therefore have that, under the specification

(Y, `) = (Y ′, `′),

limsup
n→∞

L̂X
(
f̂

(ε)
· , f ;n

)
= limsup

n→∞

1

n

n−1∑
t=0

`′
(
f̂

(ε)
t (X1:t, f(X1:t), Xt+1), f(Xt+1)

)
≤ limsup

n→∞

1

n

n−1∑
t=0

(
`′(gε(f(Xt+1)), f(Xt+1)) + ¯̀1

[
f̂

(ε)
t (X1:t, f(X1:t), Xt+1) 6= gε(f(Xt+1))

])

≤ limsup
n→∞

1

n

n−1∑
t=0

ε+ ¯̀
∑
yε∈Y ′ε

`01

(
f̂ 01
t (X1:t, h

(yε)
ε (f(X1:t)), Xt+1), h(yε)

ε (f(Xt+1))
)

≤ ε+ ¯̀
∑
yε∈Y ′ε

limsup
n→∞

1

n

n−1∑
t=0

`01

(
f̂ 01
t (X1:t, h

(yε)
ε (f(X1:t)), Xt+1), h(yε)

ε (f(Xt+1))
)

= ε (a.s.),

where the inequality on this last line is due to finiteness of |Y ′ε|.
We now apply this argument to values ε ∈ {1/i : i ∈ N}. For any measurable f? :

X → Y ′, for each i, n ∈ N, define βf
?

i,n = L̂X
(
f̂

(1/i)
· , f?;n

)
(under the specification (Y, `) =

(Y ′, `′)). By the above argument, together with a union bound, on an event of probability
one, we have

lim
i→∞

limsup
n→∞

βf
?

i,n ≤ lim
i→∞

1/i = 0.

Thus, since these βf
?

i,n are also nonnegative, Lemma 35 implies that, on this event, there

exists a sequence {in}∞n=1 in N, with in ≤ n for every n ∈ N, such that lim
n→∞

βf
?

in,n
= 0.

Therefore, applying Lemma 34 to the sequence
{
f̂

(1/i)
n

}∞
i=1

of online learning rules, we

conclude that there exists an online learning rule f̂n such that, for this process X, for any

measurable f? : X → Y ′, under the specification (Y, `) = (Y ′, `′), lim
n→∞

L̂X
(
f̂·, f

?;n
)

= 0

almost surely: that is, f̂n is strongly universally consistent under X. In particular, this
implies X ∈ SUOL(Y ′,`′). Since this argument holds for any X ∈ SUOL({0,1},`01), we con-
clude that SUOL({0,1},`01) ⊆ SUOL(Y ′,`′). Combining this with the first part, we have that
SUOL(Y ′,`′) = SUOL({0,1},`01), and since these arguments apply to any totally bounded
(Y ′, `′) with sup

y,y′∈Y ′
`′(y, y′) > 0, this completes the proof.

Next, we have the analogous result for losses that are not totally bounded.

Theorem 45 The set SUOL is invariant to the specification of (Y, `), subject to being
separable with ¯̀<∞ but not totally bounded.

Proof This proof follows the same line as that of Theorem 44, but with a few important
differences. We continue the notational conventions introduced there, but in this context
we let `01 denote the 0-1 loss on N: that is, ∀y, y′ ∈ N, `01(y, y

′) = 1[y 6= y′]. To establish
the theorem, it suffices to verify the claim that SUOL(Y ′,`′) = SUOL(N,`01) for all separable
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near-metric spaces (Y ′, `′) with sup
y,y′∈Y ′

`′(y, y′) < ∞ that are not totally bounded. Fix any

such space (Y ′, `′).
We again begin with the inclusion SUOL(Y ′,`′) ⊆ SUOL(N,`01). For any X ∈ SUOL(Y ′,`′),

letting ĝn be an online learning rule that is strongly universally consistent under X (for the
specification (Y, `) = (Y ′, `′)), we can define an online learning rule ĝNn for the specification
(Y, `) = (N, `01) as follows. Since (Y ′, `′) is not totally bounded, ∃ε > 0 such that any Y ′ε ⊆
Y ′ with sup

y∈Y
inf
yε∈Y ′ε

`′(yε, y) ≤ ε necessarily has |Y ′ε| =∞. In particular, this implies that for

any finite sequence z1, . . . , zk ∈ Y ′, k ∈ N, there exists zk+1 ∈ Y ′ with min
i≤k

`′(zi, zk+1) > ε.

Thus, starting from any initial z1 ∈ Y ′, we can inductively construct an infinite sequence
z1, z2, . . . ∈ Y ′ with inf

i,j∈N:i 6=j
`′(zi, zj) ≥ ε > 0. For any n ∈ N ∪ {0}, and any sequences

x1:(n+1) in X and y1:n in N, define a sequence y′1:n with y′i = zyi for each i ∈ {1, . . . , n}, and

then define ĝNn (x1:n, y1:n, xn+1) as the (unique) value y ∈ N with `′(ĝn(x1:n, y
′
1:n, xn+1), zy) <

ε/(2c`), if such a y ∈ N exists, and otherwise define it to be z1. One can easily check that ĝNn
is a measurable function, due to measurability of ĝn. Then for any measurable f : X → N,
defining f ′ : X → Y ′ as f ′(x) = zf(x) (which is clearly also measurable), we have (under
the specification (Y, `) = (N, `01))

limsup
n→∞

L̂X
(
ĝN· , f ;n

)
= limsup

n→∞

1

n

n−1∑
t=0

1
[
ĝNt (X1:t, f(X1:t), Xt+1) 6= f(Xt+1)

]
≤ limsup

n→∞

1

n

n−1∑
t=0

1
[
`′
(
ĝt(X1:t, f

′(X1:t), Xt+1), f ′(Xt+1)
)
≥ ε/(2c`)

]
≤ 2c`

ε
limsup
n→∞

1

n

n−1∑
t=0

`′
(
ĝt(X1:t, f

′(X1:t), Xt+1), f ′(Xt+1)
)

= 0 (a.s.),

where the last equality (to which the “almost surely” qualifier applies) is due to strong
universal consistency of ĝn (and the fact that ε > 0). Since this argument holds for any
choice of measurable f : X → N, we conclude that ĝNn is strongly universally consistent under
X (for the specification (Y, `) = (N, `01)), so that X ∈ SUOL(N,`01). Since this argument
holds for any X ∈ SUOL(Y ′,`′), we conclude that SUOL(Y ′,`′) ⊆ SUOL(N,`01).

For the converse inclusion, fix any X ∈ SUOL(N,`01), and let f̂Nn be any online learning
rule that is strongly universally consistent under X (for the specification (Y, `) = (N, `01)).
We then define an online learning rule f̂ ′n for the specification (Y, `) = (Y ′, `′) as follows. Let
Ỹ ′ be a countable subset of Y ′ such that sup

y∈Y ′
inf
ỹ∈Ỹ ′

`′(ỹ, y) = 0; such a set Ỹ ′ is guaranteed to

exist by separability of (Y ′, `′) (and furthermore, is necessarily infinite, due to (Y ′, `′) not
being totally bounded). Enumerate the elements of Ỹ ′ as ỹ1, ỹ2, . . ., and for each ε > 0 and
each y ∈ Y ′, define hε(y) = min{i ∈ N : `′(ỹi, y) ≤ ε}. One can easily check that this is a
measurable function Y ′ → N.

For any n ∈ N∪{0}, and any x1:n ∈ X n, y1:n ∈ (Y ′)n, and x ∈ X , define f̂
(ε)
n (x1:n, y1:n, x)

= ỹi for i = f̂Nn (x1:n, hε(y1:n), x). That f̂
(ε)
n is a measurable function X n × (Y ′)n ×X → Y ′

follows immediately from measurability of f̂Nn and hε. Thus, f̂
(ε)
n defines an online learning

rule. Now, for any measurable function f : X → Y ′, the composed function x 7→ hε(f(x))
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is a measurable function X → N, and therefore (by strong universal consistency of f̂Nn )

limsup
n→∞

1

n

n−1∑
t=0

`01

(
f̂Nt (X1:t, hε(f(X1:t)), Xt+1), hε(f(Xt+1))

)
= 0 (a.s.).

We therefore have that, under the specification (Y, `) = (Y ′, `′),

limsup
n→∞

L̂X
(
f̂

(ε)
· , f ;n

)
= limsup

n→∞

1

n

n−1∑
t=0

`′
(
f̂

(ε)
t (X1:t, f(X1:t), Xt+1), f(Xt+1)

)
≤ limsup

n→∞

1

n

n−1∑
t=0

(
`′(ỹhε(f(Xt+1)), f(Xt+1))+¯̀1

[
f̂Nt (X1:t, hε(f(X1:t)), Xt+1) 6=hε(f(Xt+1))

])
≤ ε+ ¯̀limsup

n→∞

1

n

n−1∑
t=0

`01

(
f̂Nt (X1:t, hε(f(X1:t)), Xt+1), hε(f(Xt+1))

)
= ε (a.s.).

The rest of this proof follows identically to the analogous part of the proof of Theorem 44.

Briefly, for any measurable f? : X → Y ′, for each i, n ∈ N, defining βf
?

i,n = L̂X
(
f̂

(1/i)
· , f?;n

)
(under the specification (Y, `) = (Y ′, `′)), by the union bound, on an event of probability
one, we have

lim
i→∞

limsup
n→∞

βf
?

i,n ≤ lim
i→∞

1/i = 0.

Therefore Lemma 35 (with jn = n) and Lemma 34 imply that there exists an online learning
rule f̂n such that, for this process X, for any measurable f? : X → Y ′, under the specifica-

tion (Y, `) = (Y ′, `′), lim
n→∞

L̂X
(
f̂·, f

?;n
)

= 0 almost surely. This implies X ∈ SUOL(Y ′,`′).

Since this argument holds for any X ∈ SUOL(N,`01), we conclude SUOL(N,`01) ⊆ SUOL(Y ′,`′).
Combining this with the first part, we have SUOL(Y ′,`′) = SUOL(N,`01), and since these
arguments apply to any separable near-metric space (Y ′, `′) with sup

y,y′∈Y ′
`′(y, y′) < ∞ that

is not totally bounded, this completes the proof.

Since the reductions used to construct the learning rules in the above two proofs do not
explicitly depend on the distribution of the process X, these proofs also establish another
interesting property: namely, invariance to the specification of (Y, `) in the existence of
optimistically universal online learning rules. Specifically, the proofs of Theorems 44 and
45 can also be used to establish the following corollary.

Corollary 46 For any separable near-metric space (Y ′, `′) with 0 < sup
y,y′∈Y ′

`′(y, y′) < ∞,

the following hold.

• If (Y ′, `′) is totally bound, there exists an optimistically universal online learning rule
when (Y, `) = (Y ′, `′) if and only if there exists an optimistically universal online
learning rule when (Y, `) = ({0, 1}, `01).

• If (Y ′, `′) is not totally bound, there exists an optimistically universal online learning
rule when (Y, `) = (Y ′, `′) if and only if there exists an optimistically universal online
learning rule when (Y, `) = (N, `01).
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The question of whether the two SUOL sets from the above Theorems 44 and 45 are
equivalent remains an interesting open problem.

Open Problem 3 Is the set SUOL invariant to the specification of (Y, `), subject to (Y, `)
being separable with 0 < ¯̀<∞?

In particular, in the notation of the above proofs, Theorems 44 and 45 imply this
problem is equivalent to the question of whether SUOL({0,1},`01) = SUOL(N,`01): that is,
whether the set of processes that admit strong universal online learning is the same for
binary classification as for multiclass classification with a countably infinite number of
possible classes.

7. No Consistent Test for Existence of a Universally Consistent Learner

It is also interesting to ask to what extent admission of universal consistency is actually an
assumption, rather than a testable hypothesis: that is, is there any way to detect whether or
not a given data sequence X admits strong universal learning (in any of the above senses)?
It turns out the answer is no.

In our present context, a hypothesis test is a sequence of (possibly random)8 measurable
functions t̂n : X n → {0, 1}, n ∈ N ∪ {0}. We say t̂n is consistent for a set of processes C if,

for every X ∈ C, t̂n(X1:n)
P−→ 1, and for every X /∈ C, t̂n(X1:n)

P−→ 0. We have the following
theorem.9

Theorem 47 If X is infinite, there is no consistent hypothesis test for SUIL, SUAL, or
SUOL.

Proof Suppose X is infinite and fix any hypothesis test t̂n. Let {wi}∞i=0 be any sequence
of distinct elements of X . We construct a process X inductively, as follows. Let n0 = 0.
For the purpose of this inductive definition, suppose, for some k ∈ N, that nk−1 is defined,

and that Xt is defined for every t ∈ N with t ≤ nk−1. Let X
(k)
t = Xt for every t ∈ N with

t ≤ nk−1. If (k+ 1)/2 ∈ N (i.e., k is odd), then let X
(k)
t = w0 for every t ∈ N with t > nk−1.

Otherwise, if k/2 ∈ N (i.e., k is even), then let X
(k)
t = wt for every t ∈ N with t > nk−1. If

∃n ∈ N with n > nk−1 such that

P
(
t̂n(X

(k)
1:n) = 1[(k + 1)/2 ∈ N]

)
> 1/2, (56)

then define nk = n for some such value of n, and define Xt = X
(k)
t for every t ∈ {nk−1 +

1, . . . , nk}. Otherwise, if no such n exists, define Xt = X
(k)
t for every t ∈ N with t > nk−1,

in which case the inductive definition is complete (upon reaching the smallest value of k for
which no such n exists).

8. In the case of random t̂n, we will suppose t̂n is independent from X.
9. There is actually a fairly simple proof of this theorem if X is uncountable and (X , T ) is a Polish space.

In that case, we can simply use the fact that no test can distinguish between an i.i.d. process with a
given nonatomic marginal distribution versus a deterministic process chosen randomly among the sample
paths of the i.i.d. process. However, the proof we present here has the advantage of applying also to
countable X , and indeed it remains valid even if we restrict to deterministic processes.
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The above inductive definition specifies a deterministic process X. Now consider two
cases. First, suppose there is a maximum value k∗ of k ∈ N for which nk−1 is defined.
In this case, there is no n > nk∗−1 satisfying (56) with k = k∗. Furthermore, by the

definition of X
(k∗)
t for every t ≤ nk∗−1, and by our choice of Xt for every t > nk∗−1, we have

X = {X(k∗)
t }∞t=1. Together, these imply that ∀n ∈ N with n > nk∗−1,

P
(
t̂n(X1:n) = 1[(k∗ + 1)/2 ∈ N]

)
≤ 1/2. (57)

If (k∗ + 1)/2 ∈ N, then Xt = w0 for every t ∈ N with t > nk∗−1. In this case, for
any A ∈ B, µ̂X(A) = 1A(w0). Thus, for any monotone sequence {Ai}∞i=1 of sets in B with
Ai ↓ ∅, lim

i→∞
E[µ̂X(Ai)] = lim

i→∞
1Ai(w0) = 1 lim

i→∞
Ai(w0) = 1∅(w0) = 0. Therefore, X satisfies

Condition 1 (i.e., X ∈ C1). Since Theorem 7 implies SUIL = SUAL = C1, we also have
that X ∈ SUIL and X ∈ SUAL. Also, since Theorem 41 implies SUAL ⊂ SUOL, we have
X ∈ SUOL as well. However, (57) implies limsup

n→∞
P(t̂n(X1:n) 6= 1) ≥ 1/2, so that t̂n(X1:n)

fails to converge in probability to 1, and hence t̂n is not consistent for any of SUIL, SUAL,
or SUOL.

On the other hand, if (k∗ + 1)/2 /∈ N, then Xt = wt for every t ∈ N with t > nk∗−1.
In this case, letting Ai = {wi} ∈ B for each i ∈ N, these Ai sets are disjoint, and for
any T ∈ N, |{i ∈ N : X1:T ∩ Ai 6= ∅}| ≥ T − nk∗−1 6= o(T ), so that X fails to satisfy
Condition 2: that is, X /∈ C2. Since Theorem 37 implies SUOL ⊆ C2, and Theorems 7 and
41 imply SUIL = SUAL ⊂ SUOL, we also have that X /∈ SUOL, X /∈ SUAL, and X /∈ SUIL.
However, (57) implies limsup

n→∞
P(t̂n(X1:n) 6= 0) ≥ 1/2, so that t̂n(X1:n) fails to converge in

probability to 0, and hence t̂n is not consistent for any of SUIL, SUAL, or SUOL.
For the remaining case, suppose nk is defined for all k ∈ N ∪ {0}, so that {nk}∞k=0 is an

infinite strictly-increasing sequence of nonnegative integers. For each k ∈ N, our choice of nk
guarantees that (56) is satisfied with n = nk. Furthermore, for every k ∈ N, our definition

of X
(k)
t for values t ≤ nk−1, and our choice of Xt for values t ∈ {nk−1 + 1, . . . , nk} imply

that X1:nk = X
(k)
1:nk

. Thus, every k ∈ N satisfies P(t̂nk(X1:nk) = 1[(k + 1)/2 ∈ N]) > 1/2. In
particular, this implies that

limsup
n→∞

P(t̂n(X1:n) 6= 1) ≥ limsup
j→∞

P(t̂n2j (X1:n2j ) = 0) ≥ 1/2,

while
limsup
n→∞

P(t̂n(X1:n) 6= 0) ≥ limsup
j→∞

P(t̂n2j+1(X1:n2j+1) = 1) ≥ 1/2.

Thus, t̂n(X1:n) fails to converge in probability to any value: that is, it neither converges in
probability to 0 nor converges in probability to 1. Therefore, in this case as well, we find
that t̂n is not consistent for any of SUIL, SUAL, or SUOL.

Thus, regardless of which of these is the case, we have established that t̂n is not a con-
sistent test for SUIL, SUAL, or SUOL.

Recall that, if X is finite, every X admits strong universal inductive learning: any
sequence Ak ↓ ∅ has Ak = ∅ for all sufficiently large k, so that every X has lim

k→∞
E[µ̂X(Ak)] =
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µ̂X(∅) = 0, and hence satisfies Condition 1, which implies X ∈ SUIL ∩ SUAL ∩ SUOL by
Theorems 7 and 41. Therefore, the constant function t̂n(·) = 1 is a consistent test for SUIL,
SUAL, and SUOL in this case. Thus, we may conclude the following corollary.

Corollary 48 There exist consistent hypothesis tests for each of SUIL, SUAL, and SUOL
if and only if X is finite.

Note that, since Theorem 7 implies SUIL = C1, this corollary also holds for consistent
tests of C1. It is also easy to see that the proof above can further extend this corollary to
consistent tests of C2 as well.

8. Unbounded Losses

In this section, we depart from the above discussion by considering the case of unbounded
losses. Specifically, we retain the assumption that (Y, `) is a separable near-metric space,
but now we replace the assumption that ` is bounded (i.e., ¯̀<∞) with the complementary
assumption that ¯̀=∞. To be clear, we suppose `(y1, y2) is finite for every y1, y2 ∈ Y, but
is unbounded, in that sup

y1,y2∈Y
`(y1, y2) = ∞. All of the other restrictions from Section 1.1

(e.g., that (Y, `) is a separable near-metric space) remain unchanged. In this setting, we
find that the condition necessary and sufficient for a process to admit universal learning
becomes significantly stronger. Indeed, not even all i.i.d. processes admit universal learning
when ¯̀ = ∞. However, we are nevertheless able to establish results on the existence of
optimistically universal learning rules and consistent tests. We again find that the set of
processes admitting strong universal learning is invariant to ` (subject to ¯̀ = ∞), and
specified by a simple condition. Specifically, consider the following condition.

Condition 3 Every monotone sequence {Ak}∞k=1 of sets in B with Ak ↓ ∅ satisfies

|{k ∈ N : X ∩Ak 6= ∅}| <∞ (a.s.).

We denote by C3 the set of processes X satisfying Condition 3. We can also state an
equivalent form of Condition 3 in terms of countable measurable partitions of X , as follows.

Lemma 49 A process X satisfies Condition 3 if and only if every disjoint sequence {Ai}∞i=1

in B with
∞⋃
i=1

Ai = X (i.e., every countable measurable partition) satisfies

|{k ∈ N : X ∩Ak 6= ∅}| <∞ (a.s.). (58)

Proof First suppose X satisfies Condition 3. Given any disjoint sequence {Ak}∞k=1 in

B with
∞⋃
k=1

Ak = X , we can define a sequence Bk =
∞⋃
i=k

Ai in B with Bk ↓ ∅. Then

note that |{k ∈ N : X ∩Ak 6= ∅}| ≤ sup {k ∈ N : X ∩Ak 6= ∅} = |{k ∈ N : X ∩Bk 6= ∅}|, and
Condition 3 implies the rightmost expression is finite almost surely. Thus, (58) holds for all
such sequences {Ak}∞k=1.
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For the converse direction, suppose X satisfies (58) for every disjoint sequence {Ai}∞i=1 in

B with
∞⋃
i=1

Ai = X . Let {Bk}∞k=1 be any monotone sequence in B with Bk ↓ ∅, and for sim-

plicity also define B0 = X . We can define a disjoint sequence {Ak}∞k=1 in B with
∞⋃
k=1

Ak = X

by letting Ak = Bk−1 \ Bk for each k ∈ N. Then note that |{k ∈ N : X ∩Bk 6= ∅}| =
sup{k ∈ N ∪ {0} : X ∩Bk 6= ∅} = sup{k ∈ N ∪ {0} : X ∩ Ak+1 6= ∅}, and this rightmost
quantity is finite if and only if |{k ∈ N : X∩Ak 6= ∅}| <∞. Together with (58), this implies
|{k ∈ N : X ∩Bk 6= ∅}| < ∞ (a.s.). Since this holds for every such sequence {Bk}∞k=1, it
follows that X satisfies Condition 3.

It is straightforward to see that any process satisfying Condition 3 necessarily also
satisfies Condition 1: i.e., C3 ⊆ C1. Specifically, for any X ∈ C3, for any sequence {Ak}∞k=1

in B with Ak ↓ ∅, with probability one every sufficiently large k has X ∩ Ak = ∅, which
implies lim

k→∞
µ̂X(Ak) = 0; thus, X ∈ C1 by Lemma 13.

Condition 3 will turn out to be the key condition for determining whether a given
process admits strong universal learning (in any of the three protocols: inductive, self-
adaptive, or online) when the loss is unbounded, analogous to the role of Condition 1 for
the case of bounded losses in inductive and self-adaptive learning. This is stated formally
in the following theorem.

Theorem 50 When ¯̀=∞, the following statements are equivalent for any process X.

• X satisfies Condition 3.

• X admits strong universal inductive learning.

• X admits strong universal self-adaptive learning.

• X admits strong universal online learning.

Equivalently, when ¯̀=∞, SUOL = SUAL = SUIL = C3.

We present the proof of this result in Section 8.3 below. One remarkable consequence
of this result is that, unlike Theorem 7 for bounded losses, this theorem includes online
learning among the equivalences. This is noteworthy for two reasons. First, in the case of
bounded losses, we found (in Theorem 41) that SUOL is typically not equivalent to SUAL
and SUIL, instead forming a strict superset of these. This therefore creates an interesting
distinction between bounded and unbounded losses regarding the relative strengths of these
settings. A second interesting contrast to the above analysis of bounded losses is that, in
the case of unbounded losses, Theorem 50 establishes a concise condition that is necessary
and sufficient for a process to admit strong universal online learning; this contrasts with the
analysis of online learning for bounded losses in Section 6, where we fell short of provably
establishing a concise characterization of the processes admitting strong universal online
learning (see Open Problem 2).

In addition to the above equivalence, we also find that in all three learning settings
studied here, for unbounded losses, there exist optimistically universal learning rules. This
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again contrasts with the results for bounded losses, in the inductive setting (cf. Theorem 6).
We have the following theorem, the proof of which is given in Section 8.3 below.

Theorem 51 When ¯̀ = ∞, there exists an optimistically universal (inductive / self-
adaptive / online) learning rule.

Indeed, we find that effectively the same learning strategy, described in (68) below,
suffices for optimistically universal learning in all three of these settings.

8.1 A Question Concerning the Number of Distinct Values

It is worth noting that Condition 3 is quite restrictive. In fact, it is even violated by
many i.i.d. processes: namely, all those with the marginal distribution of Xt having infinite
support. Clearly any process X such that the number of distinct points Xt is (almost surely)
finite satisfies Condition 3. Indeed, for deterministic processes or for countable X , one can
easily show that this is equivalent to Condition 3. But in general, it is not presently known
whether there exist processes X satisfying Condition 3 for which the number of distinct Xt

values is infinite with nonzero probability. Thus we have the following open question.

Open Problem 4 For some uncountable X , does there exist X ∈ C3 such that, with
nonzero probability, |{x ∈ X : X ∩ {x} 6= ∅}| =∞?

Either answer to this question would be interesting. If no such processes X exist, then
the proof of Theorem 50 below could be dramatically simplified, since it would then be
completely trivial to construct a strongly universally consistent learning rule (in any of the
three settings) under X ∈ C3, simply using memorization (once n is sufficiently large, all
the distinct points will have been observed in the training sample). On the other hand,
if there do exist such processes, then it would indicate that C3 is in fact a somewhat rich
family of processes, and that the learning problem is indeed nontrivial. It is straightforward
to show that, if such processes do exist for X = [0, 1] (with the standard topology), then
there would also exist processes of this type that are convergent (to a nondeterministic
limit point) almost surely;10 thus, in attempting to answer Open Problem 4 (in the case of
X = [0, 1]), it suffices to focus on convergent processes.

8.2 An Equivalent Condition

Before getting into the discussion of consistency under processes in C3, we first note an
elegant equivalent formulation of the condition, which may help to illuminate its relevance
to the problem of learning with unbounded losses. Specifically, we have the following result.

Lemma 52 A process X satisfies Condition 3 if and only if every measurable function
f : X → R satisfies

sup
t∈N

f(Xt) <∞ (a.s.).

10. For instance, for {Ut}∞t=0 i.i.d. Uniform(0, 2/3), the process Xt = U0 + 2−tUt is convergent to the
nondeterministic limit U0.
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Proof First, suppose X ∈ C3, and fix any measurable f : X → R. For each k ∈ N, define
Ak = f−1([k − 1,∞)). Since f(x) < ∞ for every x ∈ X , we have Ak ↓ ∅. Thus, by the
definition of C3, with probability one ∃k0 ∈ N such that X∩Ak0+1 = ∅; in other words, with
probability one, ∃k0 ∈ N such that every t ∈ N has f(Xt) < k0, so that sup

t∈N
f(Xt) ≤ k0 <∞.

For the other direction, suppose X is such that every measurable f : X → R satisfies
sup
t∈N

f(Xt) <∞ (a.s.). Fix any monotone sequence {Ak}∞k=1 of sets in B with Ak ↓ ∅, and de-

fine a function f : X → R such that, ∀x ∈ X , f(x) =
∞∑
k=1

1Ak(x) = |{k ∈ N : x ∈ Ak}|. Note

that, since Ak ↓ ∅, we indeed have f(x) ∈ R for every x ∈ X . Furthermore, f is clearly mea-
surable (being a limit of simple functions). Therefore sup

t∈N
f(Xt) <∞ (a.s.). Also note that

monotonicity of the sequence {Ak}∞k=1 implies ∀x ∈ X , f(x) = max({k∈N : x ∈ Ak} ∪ {0}).
Thus, defining k̂ = sup

t∈N
f(Xt), on the event (of probability one) that k̂ < ∞, every k ∈ N

with k > k̂ has X ∩ Ak = ∅, so that |{k ∈ N : X ∩ Ak 6= ∅}| ≤ k̂ < ∞ (in fact, the
first inequality holds with equality). Since this holds for any choice of monotone sequence
{Ak}∞k=1 in B with Ak ↓ ∅, we have that X ∈ C3.

8.3 Proofs of the Main Results for Unbounded Losses

This subsection presents the proofs of Theorems 50 and 51. As with Theorem 7, we prove
Theorem 50 via a sequence of lemmas, corresponding to the implications among the various
statements claimed to be equivalent. The first of these is analogous to Lemma 19, showing
that processes admitting strong universal inductive learning also admit strong universal
self-adaptive learning. The proof is identical to that of Lemma 19, and as such is omitted.

Lemma 53 When ¯̀=∞, SUIL ⊆ SUAL.

Next, we have a result analogous to Lemma 20, showing that any process admitting
strong universal self-adaptive or online learning necessarily satisfies Condition 3.

Lemma 54 When ¯̀=∞, SUAL ∪ SUOL ⊆ C3.

Proof Fix any X that fails to satisfy Condition 3. Then there exists a monotone sequence
{Bk}∞k=1 in B with Bk ↓ ∅ such that, on a σ(X)-measurable event E of probability strictly
greater than zero,

|{k ∈ N : X ∩Bk 6= ∅}| =∞. (59)

Furthermore, monotonicity of B 7→ X ∩ B implies that, without loss of generality, we may
suppose B1 = X . Also, by monotonicity of {Bk}∞k=1, on the event E, (59) implies that

∀k ∈ N,X ∩Bk 6= ∅. (60)

Now for each i ∈ N, define Ai = Bi \Bi+1. Note that, due to monotonicity of the {Bk}∞k=1

sequence and the facts that Bk ↓ ∅ and B1 = X , {Ai}∞i=1 is a disjoint sequence in B with

79



Hanneke

∞⋃
i=1

Ai = X . Thus, for every t ∈ N, there exists a unique (Xt-dependent) variable it ∈ N

with Xt ∈ Ait . Also note that every j ∈ N has Bj =
⋃
i≥j

Ai, again due to monotonicity of

{Bk}∞k=1 and the fact that Bk ↓ ∅.
For each j ∈ N, define a random variable

τj =

{
min{t ∈ N : Xt ∈ Bj} , if X ∩Bj 6= ∅
0, otherwise

.

Note that, on the event E, (60) implies that we have τj = min{t ∈ N : Xt ∈ Bj} for every
j ∈ N (and that this minimum exists and is well-defined). Let {Tj}∞j=1 be a nondecreasing
sequence of (nonrandom) values in N ∪ {0} such that, for each j ∈ N,

P(τj > Tj) < 2−j .

Such a sequence must exist, since τj is almost surely finite, so that lim
t→∞

P(τj > t) = 0

(e.g., Schervish, 1995, Theorem A.19). Since
∞∑
j=1

P (τj > Tj) <
∞∑
j=1

2−j = 1 <∞, the Borel-

Cantelli Lemma implies that, on a σ(X)-measurable event E′ of probability one, ∃ι0 ∈ N
such that ∀j ∈ N with j ≥ ι0, τj ≤ Tj . For each i ∈ N, let yi,0, yi,1 ∈ Y be such that
`(yi,0, yi,1) > Ti. For every κ ∈ [0, 1) and i ∈ N, define κi = b2iκc − 2b2i−1κc: the ith

bit of the binary representation of κ. Then for each κ ∈ [0, 1), i ∈ N, and x ∈ Ai, define
f?κ(x) = yi,κi . Note that (x, κ) 7→ f?κ(x) is measurable in the product σ-algebra (under B
for the x argument, and the usual Borel σ-algebra on [0, 1) for the κ argument), since the
inverse image of any measurable set C ⊆ Y is a countable union of measurable rectangle
sets: namely,

⋃
i∈N,b∈{0,1}:

yi,b∈C

(Ai × {κ : κi = b}).

For the purpose of treating both self-adaptive and online learning simultaneously, for any
n,m ∈ N∪{0}, let fn,m denote any (possibly random) measurable function Xm×Ym×X →
Y. We will see below that any online learning rule can be expressed as such a function by
simply disregarding the n index, while any self-adaptive learning rule can be expressed as
such a function by disregarding the Y-valued arguments beyond the first n (when m ≥ n).
Additionally, for every x ∈ X , n,m ∈ N ∪ {0}, and every κ ∈ [0, 1), for brevity we define
fκn,m(x) = fn,m(X1:m, f

?
κ(X1:m), x) (a composition of measurable functions, and therefore

measurable); equivalently, fκn,m(x) = fn,m(X1:m, {yit,κit}
m
t=1, x). We generally have

sup
κ∈[0,1)

E

[
limsup
n→∞

limsup
t→∞

1

t

t−1∑
m=0

`
(
fκn,m(Xm+1), yim+1,κim+1

)]

≥
∫ 1

0
E

[
limsup
n→∞

limsup
t→∞

1

t

t−1∑
m=0

`
(
fκn,m(Xm+1), yim+1,κim+1

)]
dκ. (61)

We therefore aim to establish that this last expression is strictly greater than 0.
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Since ` is nonnegative, Tonelli’s theorem implies that the last expression in (61) equals

E

[∫ 1

0
limsup
n→∞

limsup
t→∞

1

t

t−1∑
m=0

`
(
fκn,m(Xm+1), yim+1,κim+1

)
dκ

]

≥ E

[
1E∩E′

∫ 1

0
limsup
n→∞

limsup
t→∞

1

t

t−1∑
m=0

`
(
fκn,m(Xm+1), yim+1,κim+1

)
dκ

]
. (62)

Since Bk ↓ ∅, for any t ∈ N there exists kt ∈ N with X1:t ∩Bkt = ∅, which (by monotonicity
of {Bj}∞j=1) implies that on the event E (so that (60) holds), every integer j ≥ kt has τj > t.
Thus, on E, τj →∞ as j →∞. Therefore, the expression on the right hand side of (62) is
at least as large as

E

1E∩E′
∫ 1

0
limsup
n→∞

limsup
j→∞

1

τj

τj−1∑
m=0

`
(
fκn,m(Xm+1), yim+1,κim+1

)
dκ


≥ E

[
1E∩E′

∫ 1

0
limsup
n→∞

limsup
j→∞

1

τj

(
`
(
fκn,τj−1(Xτj ), yiτj ,κiτj

)
∧ τj

)
dκ

]
. (63)

In particular, since ∀n, j ∈ N with τj > 0, we have 1
τj

(
`
(
fκn,τj−1(Xτj ), yiτj ,κiτj

)
∧ τj

)
≤ 1,

Fatou’s lemma (applied twice) implies that (63) is at least as large as

E

[
1E∩E′ limsup

n→∞
limsup
j→∞

1

τj

∫ 1

0

(
`
(
fκn,τj−1(Xτj ), yiτj ,κiτj

)
∧ τj

)
dκ

]
. (64)

Now note that on the event E, for every j ∈ N, minimality of τj implies that every t ∈ N
with t < τj has Xt /∈ Bj , and since Bj =

⋃
i≥j

Ai, this implies it < j. Furthermore, on E, by

definition of τj we have Xτj ∈ Bj =
⋃
i≥j

Ai, so that iτj ≥ j for every j ∈ N. Together these

facts imply that on E, every j ∈ N has iτj /∈ {i1, . . . , iτj−1}, so that fκn,τj−1(Xτj ) is function-
ally independent of κiτj . Therefore, for K ∼ Uniform([0, 1)) independent of X and fn,τj−1,

it holds that fKn,τj−1(Xτj ) is conditionally independent of Kiτj
given Ki1 , . . . ,Kiτj−1 , X, and

fn,τj−1, on the event E. Furthermore, on this event, Kiτj
is conditionally independent of

Ki1 , . . . ,Kiτj−1 given X and fn,τj−1, and the conditional distribution of Kiτj
is Bernoulli(1

2),
given X and fn,τj−1, on this event. Therefore, on the event E,∫ 1

0

(
`
(
fκn,τj−1(Xτj ), yiτj ,κiτj

)
∧ τj

)
dκ = E

[(
`
(
fKn,τj−1(Xτj ), yiτj ,Kiτj

)
∧ τj

) ∣∣∣X, fn,τj−1

]
= E

[
E
[(
`
(
fn,τj−1

(
X1:(τj−1),{yit,Kit}

τj−1
t=1 ,Xτj

)
, yiτj,Kiτj

)
∧τj
)∣∣∣X,{Kit}

τj−1
t=1 ,fn,τj−1

] ∣∣∣X,fn,τj−1

]
= E

 ∑
b∈{0,1}

1

2

(
`
(
fn,τj−1

(
X1:(τj−1), {yit,Kit}

τj−1
t=1 , Xτj

)
, yiτj ,b

)
∧ τj

) ∣∣∣X, fn,τj−1

 . (65)
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Since τj ≥ 0, one can easily verify that `(·, ·)∧τj is a pseudo-near-metric (i.e., a near-metric
except that `(y, y′) might sometimes be 0 even for y 6= y′) with c` as the constant in the
relaxed triangle inequality. Thus, by the relaxed triangle inequality,∑

b∈{0,1}

(
`
(
fn,τj−1

(
X1:(τj−1), {yis,Kis}

τj−1
s=1 , Xτj

)
, yiτj ,b

)
∧ τj

)
≥ 1

c`

(
`
(
yiτj ,0, yiτj ,1

)
∧ τj

)
≥ 1

c`

(
Tiτj ∧ τj

)
. (66)

As established above, on the event E, every j ∈ N has iτj ≥ j. Since {Ti}∞i=1 is nondecreas-
ing, this implies that, on E, Tiτj ≥ Tj . Furthermore, on the event E′, every j ≥ ι0 has

Tj ≥ τj . Combining this with (65) and (66) yields that, on the event E ∩E′, ∀n, j ∈ N with
j ≥ ι0, ∫ 1

0

(
`
(
fκn,τj−1(Xτj ), yiτj ,κiτj

)
∧ τj

)
dκ ≥ E

[
1

2c`
τj

∣∣∣X, fn,τj−1

]
=

1

2c`
τj ,

where the rightmost equality follows from σ(X)-measurability of τj . Therefore, the expres-
sion in (64) is at least as large as

E

[
1E∩E′ limsup

n→∞
limsup
j→∞

1

τj

(
1

2c`
τj

)]
=

1

2c`
P
(
E ∩ E′

)
≥ 1

2c`

(
P(E)− P((E′)c)

)
=

1

2c`
P(E),

where the rightmost equality is due to the fact that P(E′) = 1. In particular, recall that
P(E) > 0, so that the above is strictly greater than zero.

Altogether, we have established that the last expression in (61) is strictly greater than
0. By the inequality in (61) this implies ∃κ ∈ [0, 1) such that

E

[
limsup
n→∞

limsup
t→∞

1

t

t−1∑
m=0

`
(
fκn,m(Xm+1), yim+1,κim+1

)]
> 0,

which further implies (see e.g., Theorem 1.6.5 of Ash and Doléans-Dade, 2000) that, with
probability strictly greater than zero,

limsup
n→∞

limsup
t→∞

1

t

t−1∑
m=0

`
(
fκn,m(Xm+1), yim+1,κim+1

)
> 0.

This argument applies to any measurable functions fn,m : Xm × Ym × X → Y (pos-
sibly random). In particular, for any online learning rule hn, we can define a function
fn,m(x1:m, y1:m, x) = hm(x1:m, y1:m, x) (for every n,m ∈ N∪{0} and x1:m ∈ Xm, y1:m ∈ Ym,
x ∈ X ), in which case any κ ∈ [0, 1) has

limsup
n→∞

L̂X(h·, f
?
κ ;n) = limsup

n→∞
limsup
t→∞

1

t

t−1∑
m=0

`
(
fκn,m(Xm+1), yim+1,κim+1

)
.

Therefore, the above argument implies that ∃κ ∈ [0, 1) for which, with probability strictly
greater than 0, limsup

n→∞
L̂X(h·, f

?
κ ;n) > 0, so that hn is not strongly universally consistent
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under X. Since this argument applies to any online learning rule hn, this implies X /∈ SUOL,
and since the argument applies to any process X failing to satisfy Condition 3, we conclude
that SUOL ⊆ C3.

Similarly, for any self-adaptive learning rule gn,m, for every n,m ∈ N∪ {0} with m ≥ n,
we can define a function fn,m(x1:m, y1:m, x) = gn,m(x1:m, y1:n, x) (for every x1:m ∈ Xm,
y1:m ∈ Ym, x ∈ X ). For n,m ∈ N∪{0} with m < n, we can simply define fn,m(x1:m, y1:m, x)
as an arbitrary fixed y ∈ Y (invariant to the arguments x1:m ∈ Xm, y1:m ∈ Ym, x ∈ X ).
Then for any κ ∈ [0, 1), we have

limsup
n→∞

L̂X(gn,·, f
?
κ ;n) = limsup

n→∞
limsup
t→∞

1

t+ 1

n+t∑
m=n

`
(
fκn,m(Xm+1), yim+1,κim+1

)
= limsup

n→∞
limsup
t→∞

1

t

t−1∑
m=0

`
(
fκn,m(Xm+1), yim+1,κim+1

)
.

Therefore, the above argument implies that ∃κ ∈ [0, 1) for which, with probability strictly
greater than 0, limsup

n→∞
L̂X(gn,·, f

?
κ ;n) > 0, so that gn,m is not strongly universally consistent

under X. Since this argument applies to any self-adaptive learning rule gn,m, this implies
X /∈ SUAL, and since the argument applies to any process X failing to satisfy Condition 3,
we conclude that SUAL ⊆ C3, which completes the proof.

To argue sufficiency of C3 for strong universal inductive learning, we propose a new
type of learning rule, suitable for learning with unbounded losses under processes in C3.
Specifically, let ε0 = ∞, and for each k ∈ N, let εk = (2c`)

−k. Given a sequence {f̃i}∞i=1 of
measurable functions X → Y (described below), and any n ∈ N, x1:n ∈ X n, and y1:n ∈ Yn,
define în,0(x1:n, y1:n) = 1, and for each k ∈ N, inductively define

în,k(x1:n, y1:n) = min

{
i ∈ N : max

1≤t≤n
`
(
f̃i(xt), yt

)
≤ εk, and

sup
x∈X

`
(
f̃i(x), f̃în,k−1(x1:n,y1:n)(x)

)
≤ c`εk−1 + εk

}
, (67)

if it exists. For completeness, if the set on the right hand side of (67) is empty for a given
k ∈ N, let us define în,k(x1:n, y1:n) = în,k−1(x1:n, y1:n). Fix any sequence {kn}∞n=1 in N with
kn →∞. Then, for any n ∈ N, and any x1:n ∈ X n, y1:n ∈ Yn, and x ∈ X , define

f̂n(x1:n, y1:n, x) = f̃în,kn (x1:n,y1:n)(x). (68)

We will argue in the proof of Lemma 57 below that f̂n is measurable, and hence (68) defines
a valid inductive learning rule. We will see below that, for an appropriate choice of the
sequence {f̃i}∞i=1, this inductive learning rule is strongly universally consistent under every
X ∈ C3, even for unbounded losses. To specify an appropriate sequence {f̃i}∞i=1, and to
study the performance of the resulting learning rule, we first prove modified versions of
Lemmas 23 and 25, under the restriction of X to C3.
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Lemma 55 There exists a countable set T1 ⊆ B such that, ∀X ∈ C3, ∀A ∈ B, with proba-
bility one, ∃Â ∈ T1 s.t. X ∩ Â = X ∩A.

Proof This proof follows along similar lines to the proof of Lemma 23, and indeed the set
T1 will be the same as defined in that proof. Let T0 be as in the proof of Lemma 23. As in
the proof of Lemma 23, there is an immediate proof based on the monotone class theorem
(Ash and Doléans-Dade, 2000, Theorem 1.3.9), by taking T1 as the algebra generated by T0

(which, one can show, is a countable set), and then showing that the collection of sets A for
which the claim holds forms a monotone class (straightforwardly using Condition 3 for this
part). However, as was the case for Lemma 23, we will instead establish the claim with a
smaller set T1, which thereby simplifies the problem of implementing the resulting learning
rule. Specifically, as in the proof of Lemma 23, take T1 = {

⋃
A : A ⊆ T0, |A| <∞}, which

(as discussed in that proof) is a countable set. Fix any X ∈ C3, and let

Λ =
{
A ∈ B : P

(
∃Â ∈ T1 s.t. X ∩ Â = X ∩A

)
= 1
}
.

For any A ∈ T , as mentioned in the proof of Lemma 23, ∃{Bi}∞i=1 in T0 such that

A =
∞⋃
i=1

Bi. Then letting Ak =
k⋃
i=1

Bi for each k ∈ N, we have Ak 4 A = A \ Ak ↓ ∅

(monotonically), and Ak ∈ T1 for each k ∈ N. Therefore, by Condition 3, with probability
one, ∃k ∈ N such that X ∩ (Ak 4 A) = ∅, which implies X ∩ Ak = X ∩ A. Thus, A ∈ Λ.
Since this holds for any A ∈ T , we have T ⊆ Λ.

Next, we argue that Λ is a σ-algebra, beginning with the property of being closed
under complements. First, consider any A ∈ T1. Since T1 ⊆ T , it follows that X \ A is a

closed set. Since (X , T ) is metrizable, this implies ∃{Bi}∞i=1 in T such that X \A =
∞⋂
i=1

Bi

(Kechris, 1995, Proposition 3.7). Defining Ck =
k⋂
i=1

Bi for each k ∈ N, we have that

Ck4 (X \A) = Ck \ (X \A) ↓ ∅ (monotonically), and Ck ∈ T for each k ∈ N. In particular,

by Condition 3, this implies that on an event E
(A)
0 of probability one, there exists k0 ∈ N

such that X ∩ (Ck0 4 (X \ A)) = ∅, which implies X ∩ Ck0 = X ∩ (X \ A). Furthermore,

for each k ∈ N, since Ck ∈ T ⊆ Λ, there is an event E
(A)
k of probability one, on which

∃Âk ∈ T1 with X ∩ Âk = X ∩ Ck. Altogether, on the event
∞⋂
k=0

E
(A)
k (which has probability

one, by the union bound), X ∩ Âk0 = X ∩ (X \ A). Thus, every A ∈ T1 has (X \ A) ∈ Λ.

Now define E(T1) =
⋂

A∈T1

∞⋂
k=0

E
(A)
k , which has probability one by the union bound (since T1

is countable).

Next, consider any A ∈ Λ, and suppose the event (of probability one), denoted E′, that
∃Â ∈ T1 s.t. X ∩ Â = X ∩ A holds, which also implies X ∩ (X \ Â) = X ∩ (X \ A). Since
Â ∈ T1, on the event E(T1) we have that ∃Â′ ∈ T1 with X∩ Â′ = X∩ (X \ Â). Thus, on the
event E′ ∩ E(T1), we have X ∩ Â′ = X ∩ (X \ A). Since E′ ∩ E(T1) has probability one (by
the union bound), we have that X \ A ∈ Λ. Since this argument holds for any A ∈ Λ, we
have that Λ is closed under complements.
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Next, we show that Λ is closed under countable unions. Let {Ai}∞i=1 be a sequence in Λ,

and let A =
∞⋃
i=1

Ai. Since each Ai ∈ Λ, by the union bound there is an event E of probability

one, on which there exists a sequence {Âi}∞i=1 in T1 such that ∀i ∈ N, X ∩ Ai = X ∩ Âi.

Furthermore, since A4
k⋃
i=1

Ai = A \
k⋃
i=1

Ai ↓ ∅ (monotonically), Condition 3 implies that,

on an event E′′ of probability one, ∃k ∈ N such that X ∩
(
A4

k⋃
i=1

Ai

)
= ∅, which implies

X ∩
k⋃
i=1

Ai = X ∩ A. Since, for any k ∈ N, X ∩
k⋃
i=1

Ai is simply the subsequence of X

consisting of all entries appearing in any of the X∩Ai subsequences with i ≤ k, and (on E)
each X ∩ Ai = X ∩ Âi, together we have that on the event E ∩ E′′ (which has probability

one, by the union bound), ∃k ∈ N such that X∩
k⋃
i=1

Âi = X∩
k⋃
i=1

Ai = X∩A. Since it follows

immediately from its definition that the set T1 is closed under finite unions, we have that
k⋃
i=1

Âi ∈ T1. Therefore, A ∈ Λ. Since this holds for any choice of the sequence {Ai}∞i=1 in

Λ, we have that Λ is closed under countable unions.
Finally, recalling that T is a topology, we have X ∈ T , and since T ⊆ Λ, this implies

X ∈ Λ. Altogether, we have established that Λ is a σ-algebra. Therefore, since B is the
σ-algebra generated by T , and T ⊆ Λ, it immediately follows that B ⊆ Λ (which also
implies Λ = B). Since this argument holds for any choice of X ∈ C3, the lemma follows.

Lemma 56 There exists a countable set F̃ of measurable functions X → Y such that, for
every X ∈ C3, for every measurable f : X → Y, with probability one, ∀ε > 0, ∀f̃1 ∈ F̃ ,
∃f̃2 ∈ F̃ with

sup
x∈X

`
(
f̃2(x), f̃1(x)

)
≤ ε+ c` sup

t∈N
`
(
f̃1(Xt), f(Xt)

)
and sup

t∈N
`
(
f̃2(Xt), f(Xt)

)
≤ ε.

Proof The construction, and first half of this proof, will proceed analogously to the proof
of Lemma 24, but with a few important changes. Specifically, let T1 be as in Lemma 55, let
Ỹ be a countable subset of Y with sup

y∈Y
inf
ỹ∈Ỹ

`(ỹ, y) = 0 (which exists by separability of (Y, `)),

let A0 = X , let y0 be an arbitrary value in Y, and for any k ∈ N, any sequence {Ai}ki=1

in B, and any sequence {yi}ki=1 in Y, define f̃(x; {yi}ki=1, {Ai}ki=1) = ymax{i∈{0,...,k}:x∈Ai}.

Define T2 =
{⋂k

i=1Ai : k ∈ N, A1, . . . , Ak ∈ T1

}
: the finite intersections of sets in T1. This

is a countable set since T1 is countable. Then define

F̃ =
{
f̃(·; {yi}ki=1, {Ai}ki=1) : k ∈ N,∀i ≤ k, yi ∈ Ỹ, Ai ∈ T2

}
,

which is a countable set (since Ỹ and T2 are countable). Enumerate the elements of Ỹ as
ỹ1, ỹ2, . . .; for simplicity, we will suppose this sequence is infinite, which is always the case
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if ¯̀ = ∞, and otherwise can be achieved by repeating elements if necessary in the general
case. As in the proof of Lemma 24, for each ε > 0, let Bε,1 = {y ∈ Y : `(ỹ1, y) ≤ ε} and for

each integer i ≥ 2 inductively define Bε,i = {y ∈ Y : `(ỹi, y) ≤ ε} \
i−1⋃
j=1

Bε,j . For each ε > 0,

this defines a disjoint sequence {Bε,i}∞i=1 in B` with
∞⋃
i=1

Bε,i = Y.

Fix any X ∈ C3, any measurable f : X → Y, and any ε > 0. For each i ∈ N, define

Cε,i = f−1(Bε,i), an element of B (by measurability of f and Bε,i). Note that
∞⋃
i=1

Cε,i =

f−1

( ∞⋃
i=1

Bε,i

)
= f−1(Y) = X , and since the Bε,i sets are disjoint over the values of i, the

sets Cε,i are also disjoint over i. It follows that lim
k→∞

∞⋃
i=k

Cε,i = ∅, with
∞⋃
i=k

Cε,i nonincreasing

in k, so that Condition 3 implies that, on an event Eε,1 of probability one, ∃k0 ∈ N s.t.

X ∩
∞⋃

i=k0+1

Cε,i = ∅. Since
∞⋃
i=1

Cε,i = X , this also means X ∩
k0⋃
i=1

Cε,i = X. Furthermore,

by the union bound and the defining property of T1 from Lemma 55, on an event Eε,2 of
probability one, ∀i ∈ N, ∃Ãε,i ∈ T1 with X ∩ Ãε,i = X ∩ Cε,i. This also means that, when

the events Eε,1 and Eε,2 occur simultaneously, we have X ∩
k0⋃
i=1

Ãε,i = X.

At this point, we may note that the function f̃(·; {ỹi}k0i=1, {Ãε,i}
k0
i=1) would suffice as a

specification of f̃2 for the purpose of satisfying the second requirement in the lemma: that

is, sup
t∈N

`
(
f̃2(Xt), f(Xt)

)
≤ ε. Indeed if this were the only requirement, we could have used

T1 in place of T2 in the specification of F̃ above. However, we must modify this function in
order to also satisfy the first requirement, constraining the supremum distance between f̃2

and a given f̃1 in F̃ .

Toward this end, supposing the event Eε,1∩Eε,2 occurs and that k0 and {Ãε,i}k0i=1 are as

above, fix any function f̃1 ∈ F̃ , and let k1 ∈ N, {yi}k1i=1 ∈ Ỹk1 , and {Ai}k1i=1 ∈ T
k1

2 be such

that f̃1(·) = f̃(·; {yi}k1i=1, {Ai}
k1
i=1). Let A0 and y0 be as specified above, and define Ãε,0 = X

and ỹ0 = y0. Let k2 = (k0 + 1)(k1 + 1)− 1. For each i ∈ {0, . . . , k0} and j ∈ {0, 1, . . . , k1},
define Âj(k0+1)+i = Ãε,i ∩ Aj . Also, for each i ∈ {0, . . . , k0} and j ∈ {0, 1, . . . , k1}, define

D̂i,j = Âj(k0+1)+i \
k2⋃

j′=j(k0+1)+i+1

Âj′ ; if X ∩ D̂i,j 6= ∅, define ŷj(k0+1)+i = ỹi, and otherwise

define ŷj(k0+1)+i = yj . Note that Â1, . . . , Âk2 are elements of T2 and ŷ1, . . . , ŷk2 are elements

of Ỹ, and therefore, defining f̃2(·) = f̃(·; {ŷi}k2i=1, {Âi}
k2
i=1), we have that f̃2 ∈ F̃ .

Now, for every x ∈ X , denote by (i(x), j(x)) the unique value in {0, . . . , k0}×{0, . . . , k1}
such that j(x)(k0 + 1) + i(x) = max

{
j′ ∈ {0, . . . , k2} : x ∈ Âj′

}
(noting that Â0 = X , so

that this is always well-defined). By definition, we have f̃2(x) = ŷj(x)(k0+1)+i(x) (noting that

ŷ0 = y0, so that this equality holds even when (i(x), j(x)) = (0, 0)). Since Ãε,0 = X , it
holds that every j ∈ {0, . . . , k1} has Âj(k0+1) = Aj . In particular, this implies that, for
every x ∈ X , it holds that j(x) = max{j′ ∈ {0, . . . , k1} : x ∈ Aj′}: that is, by definition of

(i(x), j(x)), we have x ∈ Âj(x)(k0+1)+i(x) ⊆ Aj(x), and maximality of j(x)(k0 +1)+i(x) implies
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that every j′ ∈ {j(x) + 1, . . . , k1} has x /∈ Âj′(k0+1) = Aj′ . Moreover, for any i ∈ {0, . . . , k0},
if x ∈ Ãε,i, then since x ∈ Aj(x) as well, we have x ∈ Âj(x)(k0+1)+i = Ãε,i ∩ Aj(x); in

particular, this is true of the largest i ∈ {0, . . . , k0} with x ∈ Ãε,i. It immediately follows
that i(x) = max{i′ ∈ {0, . . . , k0} : x ∈ Ãε,i′}.

Now note that, for any t ∈ N, since Xt ∈ D̂i(Xt),j(Xt), we have X ∩ D̂i(Xt),j(Xt) 6= ∅.
Therefore, by definition, ŷj(Xt)(k0+1)+i(Xt) = ỹi(Xt). Furthermore, since Âj(Xt)(k0+1)+i(Xt) ⊆

Ãε,i(Xt), we have Xt ∈ Ãε,i(Xt), and since X ∩
k0⋃
i=1

Ãε,i = X, there exists i ∈ {1, . . . , k0}

with Xt ∈ Ãε,i. Therefore, the fact (established above) that i(Xt) = max{i′ ∈ {0, . . . , k0} :
Xt ∈ Ãε,i′} implies i(Xt) 6= 0. Since every i ∈ N has X ∩ Ãε,i = X ∩ Cε,i, this fur-
ther implies that Xt ∈ Cε,i(Xt), and therefore `

(
ỹi(Xt), f(Xt)

)
≤ ε, so that altogether

we have `
(
f̃2(Xt), f(Xt)

)
≤ ε. Since this is true of every t ∈ N, we conclude that

sup
t∈N

`
(
f̃2(Xt), f(Xt)

)
≤ ε.

Next, note that for any x ∈ X , since (as established above) j(x) = max{j′ ∈ {0, . . . , k1} :
x ∈ Aj′}, we have f̃1(x) = yj(x). In particular, if X ∩ D̂i(x),j(x) = ∅, then, by definition, we

have f̃2(x) = yj(x), so that in this case `
(
f̃2(x), f̃1(x)

)
= `(yj(x), yj(x)) = 0. On the other

hand, if X∩D̂i(x),j(x) 6= ∅, then, by definition, we have f̃2(x) = ỹi(x). In this case, letting t ∈ N
be such that Xt ∈ D̂i(x),j(x), it immediately follows that (i(Xt), j(Xt)) = (i(x), j(x)), so that

we also have f̃1(Xt) = yj(x) and f̃2(Xt) = ỹi(x). Thus, in this case we have `
(
f̃2(x), f̃1(x)

)
=

`
(
ỹi(x), yj(x)

)
= `
(
f̃2(Xt), f̃1(Xt)

)
. Since every x ∈ X satisfies one of these two cases, and

since each Xt itself takes a value in X , we conclude that

sup
x∈X

`
(
f̃2(x), f̃1(x)

)
= sup

t∈N
`
(
f̃2(Xt), f̃1(Xt)

)
.

Combining this with the relaxed triangle inequality and the fact (established above) that

sup
t∈N

`
(
f̃2(Xt), f(Xt)

)
≤ ε, we conclude that

sup
x∈X

`
(
f̃2(x), f̃1(x)

)
≤ c` sup

t∈N
`
(
f̃2(Xt), f(Xt)

)
+ c` sup

t∈N
`
(
f̃1(Xt), f(Xt)

)
≤ c`ε+ c` sup

t∈N
`
(
f̃1(Xt), f(Xt)

)
.

The above results hold for any fixed ε > 0. Now letting ε′k = 2−k for each k ∈ N,

we have that on the event
∞⋂
k=1

(
Eε′k,1 ∩ Eε′k,2

)
, for any f̃1 ∈ F̃ and any ε > 0, letting

k = dlog2((c`/ε) ∨ 2)e, we have that ∃f̃2 ∈ F̃ with

sup
t∈N

`(f̃2(Xt), f(Xt)) ≤ ε′k ≤ ε,

and

sup
x∈X

`(f̃2(x), f̃1(x)) ≤ c`ε′k + c` sup
t∈N

`(f̃1(Xt), f(Xt)) ≤ ε+ c` sup
t∈N

`(f̃1(Xt), f(Xt)).
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Noting that the event
∞⋂
k=1

(
Eε′k,1 ∩ Eε′k,2

)
has probability one (by the union bound) com-

pletes the proof.

We are now ready to present a result establishing that any process satisfying Condition 3
necessarily admits strong universal inductive (and online) learning. This is analogous to
Lemma 27 from the bounded case. For clarity, we make explicit the fact that this result
holds for ¯̀=∞, though it clearly also holds for ¯̀<∞ (since C3 ⊆ C1).

Lemma 57 When ¯̀=∞, C3 ⊆ SUIL ∩ SUOL.

Proof We begin by showing that C3 ⊆ SUIL. Let f̂n be the inductive learning rule
specified by (68), where the sequence {f̃i}∞i=1 is chosen as an enumeration of the elements
of the countable set F̃ from Lemma 56. We establish the stated result by arguing that
f̂n is strongly universally consistent for every X ∈ C3, which thereby establishes that every
X ∈ C3 admits strong universal inductive learning.

To verify that f̂n is a measurable function, we note that any measurable B ⊆ Y has

f̂−1
n (B) =

⋃
i∈N

(
î−1
n,kn

({i})×X
)
∩
(
X n × Yn × f̃−1

i (B)
)

. Since each f̃i is a measurable func-

tion, it suffices to verify measurability of în,k for all n, k. Note that în,0 is constant, hence
trivially measurable. For the purpose of induction, let us suppose some k ∈ N has în,k−1

measurable. For any i ∈ N, let Ji,k =

{
j ∈ N : sup

x∈X
`
(
f̃i(x), f̃j(x)

)
≤ c`εk−1 + εk

}
, and

Ai,k = î−1
n,k−1(Ji,k)∩

{
(x1:n, y1:n) : max

1≤t≤n
`
(
f̃i(xt), yt

)
≤ εk

}
. Since în,k−1 is measurable (by

assumption) and ` and f̃i are measurable functions, we observe that Ai,k is a measurable

set. Then note that any i ∈ N has î−1
n,k({i}) =

(
Ai,k \

⋃
i′<i

Ai′,k

)
∪
(
î−1
n,k−1({i}) \

⋃
i′∈N

Ai′,k

)
,

where the second term is due to the case when the set on the right hand side of (67) is
empty. Thus, î−1

n,k({i}) is a measurable set. Since any C ⊆ N has î−1
n,k(C) =

⋃
i∈C

î−1
n,k({i}),

we conclude that în,k is measurable, and this holds for all k by the principle of induction.

Therefore, f̂n is a valid inductive learning rule.
Now fix any X ∈ C3 and any measurable function f? : X → Y. To simplify the notation,

let us abbreviate în,k = în,k(X1:n, f
?(X1:n)) for every n ∈ N and k ∈ N∪ {0}. Let E denote

the event of probability one guaranteed by Lemma 56, for the process X and the function
f = f?: that is, on E, ∀ε > 0, ∀i ∈ N, ∃j ∈ N with

sup
x∈X

`
(
f̃j(x), f̃i(x)

)
≤ ε+ c` sup

t∈N
`
(
f̃i(Xt), f

?(Xt)
)

(69)

and sup
t∈N

`
(
f̃j(Xt), f

?(Xt)
)
≤ ε. (70)

Let us suppose this event E occurs.
We now argue by induction that, ∀k ∈ N ∪ {0}, ∃i∗k, n∗k ∈ N such that, ∀n ≥ n∗k,

în,k = i∗k and sup
t∈N

`
(
f̃i∗k(Xt), f

?(Xt)
)
≤ εk, for εk as defined above (67). In particular, as
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a base case, let us define i∗0 = 1 and n∗0 = 1, for which the claims trivially hold since we
have defined în,0 = 1 for every n ∈ N, and moreover, ε0 = ∞, so that we trivially have

sup
t∈N

`
(
f̃i∗0(Xt), f

?(Xt)
)
≤ ε0.

Now take as an inductive hypothesis that, for some k ∈ N, ∃i∗k−1, n
∗
k−1 ∈ N such that,

∀n ≥ n∗k−1, it holds that în,k−1 = i∗k−1 and sup
t∈N

`
(
f̃i∗k−1

(Xt), f
?(Xt)

)
≤ εk−1. Then define

i∗k = min

{
j ∈ N : sup

t∈N
`
(
f̃j(Xt), f

?(Xt)
)
≤ εk and sup

x∈X
`
(
f̃j(x), f̃i∗k−1

(x)
)
≤ c`εk−1 + εk

}
.

Note that, taking ε = εk and i = i∗k−1 in (69) and (70), and combining with the fact (from

the inductive hypothesis) that sup
t∈N

`
(
f̃i∗k−1

(Xt), f
?(Xt)

)
≤ εk−1, we can conclude that the

set of values j on the right hand side of the definition of i∗k is nonempty, so that i∗k is a

well-defined element of N. In particular, by definition, we have sup
t∈N

`
(
f̃i∗k(Xt), f

?(Xt)
)
≤ εk.

Next note that, by minimality of i∗k, for every j ∈ N with j < i∗k and sup
x∈X

`
(
f̃j(x), f̃i∗k−1

(x)
)
≤

c`εk−1 + εk (if any such j exists), we have sup
t∈N

`
(
f̃j(Xt), f

?(Xt)
)
> εk, so that ∃tj,k ∈ N

such that `
(
f̃j(Xtj,k), f?(Xtj,k)

)
> εk. Now define

n∗k = max

({
tj,k : j∈{1, . . . , i∗k − 1}, sup

x∈X
`
(
f̃j(x), f̃i∗k−1

(x)
)
≤ c`εk−1 + εk

}
∪
{
n∗k−1

})
,

which (being a maximum of a finite subset of N) is a finite positive integer. In particular,
note that (since n∗k ≥ n∗k−1) for any n ≥ n∗k, the inductive hypothesis implies în,k−1 = i∗k−1.

Additionally, for any n ≥ n∗k, every j ∈ N with j < i∗k and sup
x∈X

`
(
f̃j(x), f̃i∗k−1

(x)
)
≤

c`εk−1 + εk has max
1≤t≤n

`
(
f̃j(Xt), f

?(Xt)
)
≥ `
(
f̃j(Xtj,k), f?(Xtj,k)

)
> εk. In particular, this

means that any such j is not included in the set on the right hand side of (67) (when
x1:n = X1:n and y1:n = f?(X1:n)). Furthermore, for n ≥ n∗k, every j ∈ N with j < i∗k
and sup

x∈X
`
(
f̃j(x), f̃i∗k−1

(x)
)
> c`εk−1 + εk is clearly also not included in the set on the

right hand side of (67) in this case (again, since în,k−1 = i∗k−1). On the other hand, by

definition we have sup
x∈X

`
(
f̃i∗k(x), f̃i∗k−1

(x)
)
≤ c`εk−1 + εk, and max

1≤t≤n
`
(
f̃i∗k(Xt), f

?(Xt)
)
≤

sup
t∈N

`
(
f̃i∗k(Xt), f

?(Xt)
)
≤ εk, so that, since în,k−1 = i∗k−1, we have that i∗k is included in the

set on the right hand side of (67) (with x1:n = X1:n and y1:n = f?(X1:n)). Together with
the definition of în,k, these observations imply that, for any n ≥ n∗k, it holds that în,k = i∗k.

By the principle of induction, we have established the existence of a sequence {n∗k}∞k=0 in

N such that, ∀k ∈ N∪{0}, ∀n ∈ N with n ≥ n∗k, we have sup
t∈N

`
(
f̃în,k(Xt), f

?(Xt)
)
≤ εk. Now

for any n ∈ N, let k∗n = max {k ∈ {0, . . . , kn} : n ≥ n∗k} (recalling that we defined n∗0 = 1
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above, so that k∗n always exists). Note that, by the above guarantee,

sup
t∈N

`
(
f̃în,k∗n

(Xt), f
?(Xt)

)
≤ εk∗n . (71)

Furthermore, since kn →∞, and each n∗k is finite, we have that k∗n →∞.

Note that, by definition, for each k ∈ {1, . . . , kn}, we have sup
x∈X

`
(
f̃în,k(x), f̃în,k−1

(x)
)
≤

c`εk−1 + εk (noting that this is true even when the set on the right hand side of (67) is
empty, by our choice to define în,k = în,k−1 in that case). Combining this with an inductive
application of the relaxed triangle inequality and subadditivity of the supremum, and noting
that k∗n ≤ kn (by definition), this implies

sup
x∈X

`
(
f̃în,kn

(x), f̃în,k∗n
(x)
)
≤ sup

x∈X

kn∑
k=k∗n+1

c
k−k∗n
` `

(
f̃în,k(x), f̃în,k−1

(x)
)

≤
kn∑

k=k∗n+1

sup
x∈X

c
k−k∗n
` `

(
f̃în,k(x), f̃în,k−1

(x)
)

≤
kn∑

k=k∗n+1

c
k−k∗n
` (c`εk−1 + εk) ≤

∞∑
k=k∗n+1

c
k−k∗n
` (c`εk−1 + εk) .

If k∗n ≥ 1, then by our choice of εk = (2c`)
−k for every k ∈ N, the rightmost expression

above equals c
−k∗n
` (2c2

` + 1) · 2−k∗n = (2c2
` + 1)εk∗n ; on the other hand, if k∗n = 0, then our

choice of ε0 =∞ implies the expression is ∞ = (2c2
` + 1)ε0. Thus, either way, we have

sup
x∈X

`
(
f̃în,kn

(x), f̃în,k∗n
(x)
)
≤ (2c2

` + 1)εk∗n . (72)

Therefore, by the relaxed triangle inequality, ∀n ∈ N,

sup
t∈N

`
(
f̃în,kn

(Xt), f
?(Xt)

)
≤ sup

t∈N
c`

(
`
(
f̃în,k∗n

(Xt), f
?(Xt)

)
+ `
(
f̃în,kn

(Xt), f̃în,k∗n
(Xt)

))
≤ c` sup

t∈N
`
(
f̃în,k∗n

(Xt), f
?(Xt)

)
+ c` sup

x∈X
`
(
f̃în,kn

(x), f̃în,k∗n
(x)
)
≤ 2(c3

` + c`)εk∗n ,

where the last inequality is due to (71) and (72). Since k∗n → ∞ and εk → 0, and since
f̂n(X1:n, f

?(X1:n), ·) = f̃în,kn
(·) by its definition in (68), and ` is non-negative, we may

conclude that

sup
t∈N

`
(
f̂n(X1:n, f

?(X1:n), Xt), f
?(Xt)

)
→ 0.

Since all of the above claims hold on the event E, which has probability one, and since
the above argument holds for any choice of measurable function f? : X → Y, we may
conclude that, for any measurable f? : X → Y,

sup
t∈N

`
(
f̂n(X1:n, f

?(X1:n), Xt), f
?(Xt)

)
→ 0 (a.s.). (73)
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This further implies that, for any measurable f? : X → Y,

lim
n→∞

L̂X
(
f̂n, f

?;n
)

= lim
n→∞

limsup
m→∞

1

m

n+m∑
t=n+1

`
(
f̂n(X1:n, f

?(X1:n), Xt), f
?(Xt)

)
≤ lim

n→∞
sup
t∈N

`
(
f̂n(X1:n, f

?(X1:n), Xt), f
?(Xt)

)
= 0 (a.s.).

Thus, since L̂X is non-negative, we conclude that the inductive learning rule f̂n is strongly
universally consistent under X. In particular, this implies that X admits strong universal
inductive learning: that is, X ∈ SUIL.

The above argument can also be used to show that X ∈ SUOL. Specifically, consider
this same f̂n function defined above, but now interpreted as an online learning rule. We
then have, for any measurable f? : X → Y,

lim
n→∞

L̂X
(
f̂·, f

?;n
)

= lim
n→∞

1

n

n−1∑
t=0

`
(
f̂t(X1:t, f

?(X1:t), Xt+1), f?(Xt+1)
)

≤ lim
n→∞

1

n

n−1∑
t=0

sup
m∈N

`
(
f̂t(X1:t, f

?(X1:t), Xm), f?(Xm)
)
. (74)

The convergence in (73) implies sup
m∈N

`
(
f̂t(X1:t, f

?(X1:t), Xm), f?(Xm)
)
→ 0 (a.s.) as t→∞.

Thus, since the arithmetic mean of the first n elements in any convergent sequence in R
is also convergent (as n → ∞) with the same limit value, this immediately implies that
the final expression in (74) equals 0 almost surely. Since this holds for any measurable
f? : X → Y, and ` is non-negative, we have that f̂n is also a strongly universally consistent
online learning rule under X. In particular, this implies that X admits strong universal
online learning: that is, X ∈ SUOL.

Finally, since the above arguments hold for any choice of X ∈ C3, we may conclude that
C3 ⊆ SUIL ∩ SUOL, which completes the proof.

Combining the above lemmas immediately provides the following proof of Theorem 50.

Proof of Theorem 50 Taking Lemmas 53, 54, and 57 together, we have that SUIL ∪
SUOL ⊆ SUAL ∪ SUOL ⊆ C3 ⊆ SUIL ∩ SUOL ⊆ SUAL ∩ SUOL. This further implies that
SUAL4 SUOL = (SUAL ∪ SUOL) \ (SUAL ∩ SUOL) = ∅, and similarly SUIL4 SUOL =
(SUIL ∪ SUOL) \ (SUIL ∩ SUOL) = ∅, so that SUIL = SUOL = SUAL. Combining this
with Lemmas 54 and 57, we obtain SUOL = SUAL∪SUOL ⊆ C3 ⊆ SUIL∩SUOL = SUOL,
so that SUOL = C3. Hence SUIL = SUAL = SUOL = C3, which completes the proof.

We may also note that the proof of Lemma 57 specifically establishes that the inductive
learning rule f̂n specified in (68) (with {f̃i}∞i=1 an enumeration of the countable set F̃ from
Lemma 56) is strongly universally consistent for every X ∈ C3, and therefore by Theorem 50
(just established), for every X ∈ SUIL when ¯̀ = ∞. Since the definition of f̂n has no
direct dependence on the distribution of X, this implies f̂n is an optimistically universal
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inductive learning rule when ¯̀ = ∞. This is particularly interesting, as it contrasts with
the fact, established in Theorem 6 above, that for bounded losses, no optimistically universal
inductive learning rule exists (if X is an uncountable Polish space). Furthermore, this also
means we can easily define an optimistically universal self-adaptive learning rule when
¯̀=∞, simply defining

ĝn,m(x1:m, y1:n, x) = f̂n(x1:n, y1:n, x) (75)

for every n,m ∈ N ∪ {0} with m ≥ n, and every x1:m ∈ Xm, y1:n ∈ Yn, and x ∈ X . In
particular, it is clear that L̂X(ĝn,·, f

?;n) = L̂X(f̂n, f
?;n) for this definition of ĝn,m. Thus,

since f̂n is strongly universally consistent under every X ∈ C3 by Lemma 57, it immediately
follows that ĝn,m also has this property, and the fact that it is an optimistically universal
self-adaptive learning rule (when ¯̀=∞) then follows from SUAL = C3 (from Theorem 50,
just established). The proof of Lemma 57 also establishes strong universal consistency of
f̂n under any X ∈ C3 when f̂n is interpreted as an online learning rule, so that (since
C3 = SUOL when ¯̀=∞, again by Theorem 50) f̂n is also an optimistically universal online
learning rule when ¯̀=∞. We summarize these findings in the following theorem.

Theorem 58 When ¯̀ = ∞, with {f̃i}∞i=1 an enumeration of the countable set F̃ from
Lemma 56, the learning rule f̂n from (68) is an optimistically universal inductive learning
rule, and an optimistically universal online learning rule. Moreover, defining ĝn,m as in
(75), when ¯̀=∞, ĝn,m is an optimistically universal self-adaptive learning rule.

In particular, this implies that for unbounded losses, there exist optimistically universal
(inductive/self-adaptive/online) learning rules, so that Theorem 51 immediately follows.

Remark: Interestingly, the proof of Lemma 57 in fact establishes a much stronger kind of
convergence for f̂n under any X ∈ C3: for any measurable f? : X → Y,

sup
t∈N

`
(
f̂n(X1:n, f

?(X1:n), Xt), f
?(Xt)

)
→ 0 (a.s.). (76)

Denoting by SUILsup the set of processes X that admit the existence of an inductive learn-
ing rule f̂n satisfying (76) for every measurable f? : X → Y, we have thus established that
C3 ⊆ SUILsup when ¯̀ =∞. Furthermore, as shown in the proof of Lemma 57, this type of
convergence itself implies strong universal consistency of f̂n in the original sense of Defini-
tion 1, so that SUILsup ⊆ SUIL. Thus, since SUIL = C3 when ¯̀ = ∞ (from Theorem 50,
just established), we have established that, when ¯̀ =∞, SUILsup = SUIL: that is, the set
of processes X admitting this stronger type of universal consistency is in fact the same as
those admitting strong universal inductive learning in the usual sense of Definition 1. It is
clear that this is not the case when ¯̀< ∞ if X is infinite. Indeed, combining the proof of
Lemma 57 with a straightforward variation on the proof of Lemma 54, one can show that
even when ¯̀< ∞, Condition 3 remains a necessary and sufficient condition for a process
X to admit the existence of an inductive learning rule satisfying (76) for all measurable
functions f? : X → Y: that is, SUILsup = C3. For these same reasons, the same is true of
the analogous guarantee for self-adaptive or online learning: that is, regardless of whether
¯̀ = ∞ or ¯̀< ∞, Condition 3 is necessary and sufficient for there to exist a self-adaptive
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learning rule ĝn,m such that, for all measurable f? : X → Y,

sup
t∈N:t≥n

`(ĝn,t(X1:t, f
?(X1:n), Xt+1), f?(Xt+1))→ 0 (a.s.),

and Condition 3 is also necessary and sufficient for there to exist an online learning rule ĥn
such that, for all measurable f? : X → Y,

`
(
ĥn(X1:n, f

?(X1:n), Xn+1), f?(Xn+1)
)
→ 0 (a.s.).

8.4 No Consistent Test for Existence of a Universally Consistent Learner

As we did in Section 7 in the case of bounded losses, it is also natural to ask whether there
exist consistent hypothesis tests for whether or not a given data process X admits strong
universal learning, in this case when ¯̀=∞. As was true for bounded losses, we again find
that the answer is generally no. Formally, we have the following theorem.

Theorem 59 When ¯̀ = ∞ and X is infinite, there is no consistent hypothesis test for
SUIL, SUAL, or SUOL.

Proof Suppose X is infinite. Since Theorem 50 implies SUIL = SUAL = SUOL = C3

when ¯̀=∞, it suffices to prove that there is no consistent hypothesis test for C3. Fix any
hypothesis test t̂n. Fix X to be that specific process constructed in the proof of Theorem 47,
relative to this hypothesis test t̂n. The proof of Theorem 47 (combined with Theorem 7)
establishes that, for this specific process X, if X ∈ C1, then t̂n(X1:n) fails to converge in
probability to 1, and if X /∈ C1, then t̂n(X1:n) fails to converge in probability to 0.

Recall that C3 ⊆ C1, so that if X /∈ C1, then X /∈ C3 as well. But, as mentioned above,
t̂n(X1:n) fails to converge in probability to 0 in this case. Thus, in the case that this process
X /∈ C1, we have established that t̂n is not a consistent test for C3.

On the other hand, in the case that the constructed process X is in C1, there are two
subcases to consider. First, recalling the construction of X, if there exists a largest k ∈ N
for which nk−1 is defined, then for X to be in C1 we necessarily have (k + 1)/2 ∈ N (i.e.,
k is odd). In this case, every t > nk−1 has Xt = w0 = Xnk−1+1, so that for any disjoint
sequence {Ai}∞i=1 in B,

|{i ∈ N : X ∩Ai 6= ∅}| =
∣∣{i ∈ N : X1:(nk−1+1) ∩Ai 6= ∅

}∣∣ ≤ nk−1 + 1 <∞.

Therefore, Lemma 49 implies that X ∈ C3 as well. But, as mentioned above, in the case
that this constructed process X ∈ C1, t̂n(X1:n) fails to converge in probability to 1, so that
if X ∈ C1 and there is a largest k ∈ N with nk−1 defined, this establishes that t̂n is not a
consistent test for C3. Finally, the only remaining case is where X ∈ C1 and nk−1 is defined
for every k ∈ N. In this case, as established in the proof of Theorem 47, t̂n(X1:n) fails to
converge in probability at all (i.e., neither converges in probability to 0 nor converges in
probability to 1), so that t̂n is not a consistent test for C3 in this case as well.

Since it is trivially true that every X is in C3 when X is finite (and hence also in SUIL,
SUAL, and SUOL when ¯̀=∞, by Theorem 50), we have the following immediate corollary.

Corollary 60 When ¯̀=∞, there exist consistent hypothesis tests for each of SUIL, SUAL,
and SUOL if and only if X is finite.
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9. Noisy Responses

In much of the statistical learning theory literature, it is common to suppose that the
response Yt is noisy, so that rather than Yt = f?(Xt) always, we merely have that among
all measurable functions f : X → Y, the conditional expectation E[`(f(Xt), Yt)|Xt] is
minimized for f = f?. For instance, in classification with ` the 0-1 loss and Y = {0, 1}, this
corresponds to having Yt = f?(Xt) with a probability at least 1/2 given Xt. In regression
with Y an interval in R and ` the squared loss (`(a, b) = (a− b)2), it is well known that the
point-wise minimizer of E[`(f(X), Y )|X] is the conditional mean: f?(X) = E[Y |X] (a.s.).

It is interesting to consider how the theory developed in the sections above can be
modified to accommodate noisy responses. Here we are still interested in obtaining low long-
run average loss. However, in the presence of noise we generally cannot hope to achieve zero
average loss in the limit. We must therefore adjust our goal. Instead, we will aim to achieve
zero excess loss, relative to a fixed optimal function: that is, we will still suppose there
is a function f? representing an optimal predictor, and we will evaluate our performance
relative to this function.

In this context, we achieve two different strengths of results. First, we show that for
certain restricted types of losses `, there exists a self-adaptive learning rule that is strongly
universally consistent for any (X,Y) = {(Xt, Yt)}∞t=1 with X ∈ C1 and Y satisfying a condi-
tional independence property: that is, the Yt variables are conditionally independent given
their respective Xt variables. In particular, this result applies to the squared loss for Y
any bounded interval in R. However, it turns out classification with the 0-1 loss does not
satisfy the requirements on ` for this result. To address classification, we propose a second,
stronger condition, where we suppose Yt is a noisy function of Xt: that is, the Yt values are
conditionally independent and the conditional distribution of Yt given Xt is a t-invariant
function of Xt. We show that there exists a self-adaptive learning rule that is strongly uni-
versally consistent for classification with finite Y and the 0-1 loss, for all processes of this
type with X ∈ C1. The question of learning, either with general conditionally independent
Y or with noisy functions, for general bounded separable losses ` is left for future work.

9.1 Definitions

In this general setting, for any measurable f̄ : X → Y, for any process (X,Y) = {(Xt, Yt)}∞t=1

on X × Y, for any inductive learning rule fn and self-adaptive learning rule gn,m, and any
n ∈ N, we define the long-run average excess loss

L̂X(fn,Y;n, f̄) = limsup
t→∞

1

t

n+t∑
m=n+1

(
`(fn(X1:n, Y1:n, Xm), Ym)− `

(
f̄(Xm), Ym

))
,

L̂X(gn,·,Y;n, f̄) = limsup
t→∞

1

t+ 1

n+t∑
m=n

(
`(gn,m(X1:m, Y1:n, Xm+1), Ym+1)−`

(
f̄(Xm+1), Ym+1

))
.

We are then interested in learning rules fn, gn,m that guarantee that, for all measurable
f̄ , limsup

n→∞
L̂X(fn,Y;n, f̄) ≤ 0 almost surely, or limsup

n→∞
L̂X(gn,·,Y;n, f̄) ≤ 0 almost surely,

respectively, for some specific family of processes (X,Y). For brevity, we will not discuss
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the online setting in detail in this section, though an analogous generalization is possible

there: that is, L̂X(f·,Y; f̄) = limsup
n→∞

1
n

n−1∑
t=0

(
`(ft(X1:t, Y1:t, Xt+1), Yt+1)− `

(
f̄(Xt+1), Yt+1

))
.

It is clear that some kind of restriction to the dependences among the (Xt, Yt) variables
would be required for any positive result to be possible. While the argument we follow here
can also be applied in more general scenarios (within certain limits), as a simple scenario
to consider we restrict to the following two key requirements.

Y1. We restrict to processes Y = {Yt}∞t=1 (dependent on X) with the property that there
exists a measurable function f? : X → Y with

E[`(f?(Xt), Yt)|Xt] = inf
y∈Y

E[`(y, Yt)|Xt] (a.s.)

for every t ∈ N. In other words, we assume there is a time-invariant optimal function.11

Y2. We suppose the Yt variables are conditionally independent given their respective Xt

variables. Formally, we suppose Y = {Yt}∞t=1 has the property that ∀t ∈ N, Yt is
conditionally independent of {(Xt′ , Yt′)}t′ 6=t given Xt.

In particular, note that both of these conditions would be satisfied for any i.i.d. process
(X,Y) if Y is sequentially compact (so that the infimum exists in Y1). Henceforth in this
section, mentions of f? will always refer to the function f? guaranteed to exist by Y1. As
we argue below in Lemma 64, for any process (X,Y) satisfying Y1 and Y2, for any learning
rule fn,m, we have L̂X(fn,·,Y;n, f?) ≥ 0 (a.s.). Moreover, by similar arguments to the proof
of Lemma 64, it is not hard to show that for any measurable function f̄ : X → Y, we have
L̂X(fn,·,Y;n, f?) ≥ L̂X(fn,·,Y;n, f̄) (a.s.). For these reasons, for (X,Y) satisfying Y1 and
Y2, we say a learning rule fn,m is consistent if L̂X(fn,·,Y;n, f?)→ 0 (a.s.).

Below we obtain two different results, corresponding to two different families of processes
(X,Y). These families are stated formally in the following definitions.

Definition 61 We say a process (X,Y) has independent noise if it satisfies properties Y1
and Y2 above. We say Y is a noisy function of X if (X,Y) has independent noise, and the
conditional distribution of Yt given Xt is a t-invariant function of Xt.

The main difference between (X,Y) merely having independent noise and Y being a noisy
function of X is that the former case admits processes where the conditional distribution of
Yt given Xt varies over time. For instance, as a simple example of a process (X,Y) having
independent noise, consider Y = [−1, 1] and ` = `sq the squared loss (`sq(a, b) = (a − b)2),
and take X as any process, while Yt = f?(Xt) +

(
1− 1

t

)
Vt, where f? is any measurable

function with f?(x) ∈ [−1/2, 1/2] for all x ∈ X , and where {Vt}∞t=1 are independent (and
independent of X) with Vt ∼ Uniform([−1/2, 1/2]). This process Y gets noisier over time,
but the optimal function is always f? (the conditional mean of Yt given Xt being f?(Xt)),
and each Yt is conditionally independent of {(Xt′ , Yt′)}t′ 6=t given Xt. Note that Y is not a
noisy function of X. However, if instead we had defined Yt = f?(Xt) +Vt, then it would be.

We now formally state the criteria for universal consistency with noise.

11. In principle, the theory below can be extended to cases where the infimum does not exist, but there
exist f?ε functions with E[`(f?(Xt), Yt)|Xt] ≤ infy∈Y E[`(y, Yt)|Xt] + ε (a.s.). We restrict to cases where
an optimal function f? exists to simplify the exposition.
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Definition 62 For a self-adaptive learning rule gn,m and a process X on X , we say gn,m
is strongly universally consistent with independent noise under X if, for every process Y
such that (X,Y) has independent noise, it holds that lim

n→∞
L̂X(gn,·,Y;n, f?) = 0 (a.s.).

Similarly, for an inductive learning rule fn, we say fn is strongly universally consistent
with independent noise under X if, for every Y such that (X,Y) has independent noise,
lim
n→∞

L̂X(fn,Y;n, f?) = 0 (a.s.). We say a process X admits strong universal (inductive/self-

adaptive) learning with independent noise if there exists an (inductive/self-adaptive) learn-
ing rule that is strongly universally consistent with independent noise under X. We say
a self-adaptive learning rule gn,m is optimistically universal with independent noise if it
is strongly universally consistent with independent noise under every X that admits strong
universal self-adaptive learning with independent noise.

Definition 63 For a self-adaptive learning rule gn,m and a process X on X , we say gn,m
is strongly universally consistent for noisy functions under X if, for every process Y that
is a noisy function of X, it holds that lim

n→∞
L̂X(gn,·,Y;n, f?) = 0 (a.s.). Similarly, for an

inductive learning rule fn, we say fn is strongly universally consistent for noisy functions
under X if, for every Y that is a noisy function of X, lim

n→∞
L̂X(fn,Y;n, f?) = 0 (a.s.). We say

a process X admits strong universal (inductive/self-adaptive) learning for noisy functions if
there exists an (inductive/self-adaptive) learning rule that is strongly universally consistent
for noisy functions under X. We say a self-adaptive learning rule gn,m is optimistically
universal for noisy functions if it is strongly universally consistent for noisy functions under
every X that admits strong universal self-adaptive learning for noisy functions.

In particular, since any i.i.d. process (X,Y) would have Y a noisy function of X (if Y is
sequentially compact, so that the infimum exists in Y1), we note that the theory we develop
here represents a proper generalization of the standard theory of universal consistency under
i.i.d. processes with bounded losses (e.g., Devroye, Györfi, and Lugosi, 1996; Györfi, Kohler,
Krzyżak, and Walk, 2002).

In Section 9.2 below, we show that for certain restricted types of losses (essentially,
those guaranteeing uniqueness of f?), any process X satisfying Condition 1 admits strong
universal inductive and self-adaptive learning with independent noise. In other words,
a process X admits strong universal learning with independent noise if (and only if) it
admits strong universal learning without noise. In particular, this includes the squared loss
(`(a, b) = (a − b)2) for Y any bounded interval in R. We also argue that there is a self-
adaptive learning rule that is optimistically universal with independent noise. Thus, the
theory developed above for the noiseless setting completely generalizes to allow independent
noise, for these loss functions. However, it happens that the 0-1 loss does not satisfy the
requirements for this result. As this is an important loss for the classification setting, in
Section 9.3 we extend the theory to hold for learning with the 0-1 loss (`(a, b) = 1[a 6= b]) for
any finite Y, but only for the stronger noisy function setting. Specifically, we show that for
this loss, any process X satisfying Condition 1 admits strong universal inductive and self-
adaptive learning for noisy functions. We also show that there is a self-adaptive learning rule
that is optimistically universal for noisy functions. Again, this result generalizes the results
for the noiseless setting to the setting of noisy functions. The approach to obtaining this
result is via the traditional plug-in technique (see e.g., Devroye, Györfi, and Lugosi, 1996),
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making use of consistent regression estimators (guaranteed to exist by the aforementioned
result for learning with independent noise) to identify which element in Y has the highest
likelihood given Xt.

Before proceeding with our results for learning with independent noise, we first discuss
the motivation for the special role of f? in the definition of universal consistency above.
This is motivated by the fact that, in any process (X,Y) that has independent noise, f?

is guaranteed to be an optimal function (almost surely), so that no prediction rule can be
better than f? in the limit. Formally, we have the following lemma.

Lemma 64 If ¯̀<∞, for any deterministic self-adaptive learning rule f̂n,m, for any process

(X,Y) that has independent noise, with probability one, ∀n ∈ N, L̂X(f̂n,·,Y;n, f?) ≥ 0.

Proof For any n,m ∈ N with m ≥ n, let gn,m(Xm+1) = f̂n,m(X1:m, Y1:n, Xm+1), and
define ∆n

m+1 = `(gn,m(Xm+1), Ym+1) − `(f?(Xm+1), Ym+1). For any n ∈ N note that, by
the conditional independence property Y2, the sequence{(

∆n
m+1 − E

[
∆n
m+1

∣∣Xm+1, gn,m(Xm+1)
])}∞

m=n

is a martingale difference sequence with respect to
{(
X1:(m+2), Y1:(m+1)

)}∞
m=n

. Therefore,
Azuma’s inequality (Devroye, Györfi, and Lugosi, 1996, Theorem 9.1) implies that, for any
t ∈ N ∪ {0}, with probability at least 1− 1

(t+1)2
,

1

t+ 1

∣∣∣∣∣
n+t∑
m=n

∆n
m+1 − E

[
∆n
m+1

∣∣Xm+1, gn,m(Xm+1)
]∣∣∣∣∣ ≤ ¯̀

√
2 ln(2(t+ 1)2)

t+ 1
.

Since
∞∑
t=0

1
(t+1)2

<∞, the Borel-Cantelli lemma implies that, with probability one,

limsup
t→∞

1

t+ 1

∣∣∣∣∣
n+t∑
m=n

∆n
m+1 − E

[
∆n
m+1

∣∣Xm+1, gn,m(Xm+1)
]∣∣∣∣∣ = 0.

By the definition of f? from Y1, and the conditional independence property Y2, for any
m ≥ n, E

[
∆n
m+1

∣∣Xm+1, gn,m(Xm+1)
]
≥ 0 almost surely. Altogether, by the union bound,

on an event of probability one, we have

L̂X(f̂n,·,Y;n, f?) = limsup
t→∞

1

t+ 1

n+t∑
m=n

E
[
∆n
m+1

∣∣Xm+1, gn,m(Xm+1)
]
≥ 0.

Since this holds for any fixed n ∈ N, the lemma follows by the union bound over all n ∈ N.

9.2 Learning with Independent Noise

We begin with the general setting of learning with independent noise. In this subsection we
will restrict to the case of bounded losses (¯̀<∞), with ` satisfying some special properties.
Specifically, we suppose that there exist functions φ and φ mapping [0, ¯̀]→ [0,∞), strictly
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increasing and continuous, with φ convex and φ concave, such that φ(0) = φ(0) = 0 and
for any Y-valued random variable Y , ∃y∗ ∈ Y with E[`(y∗, Y )] = inf

y∈Y
E[`(y, Y )] (i.e., the

infimum is realized in Y), and ∀y ∈ Y,

φ(`(y, y∗)) ≤ E[`(y, Y )− `(y∗, Y )] ≤ φ(`(y, y∗)). (77)

As a simple example of this, consider the case of bounded regression with the squared
loss: Y = [0, 1] and ` = `sq (where `sq(y, y′) = (y − y′)2 is the squared loss). In this
case, as mentioned above, it is well known that y∗ = E[Y ] uniquely, and that for any
y ∈ [0, 1], E[`(y, Y )− `(y∗, Y )] = `(y, y∗), since for any [0, 1]-valued random variable Y and
for y∗ = E[Y ], it holds that E[(Y − y)2]− E[(Y − y∗)2] = y2 − 2yE[Y ] + 2y∗E[Y ]− (y∗)2 =
(y − y∗)2. Thus, for (Y, `) = ([0, 1], `sq), the above condition holds with φ(x) = φ(x) = x.
As we discuss below, the results also have implications for the classification setting via the
well-known plug-in technique (Devroye, Györfi, and Lugosi, 1996).

For losses satisfying (77), we will argue that the following specifications yield learning
rules that are strongly universally consistent with independent noise. First we specify an
inductive learning rule. Let {Gi}∞i=1, {mi}∞i=1, and {in}∞i=1 be as in the proof of Lemma 27,
and note that without loss of generality we can suppose mi is strictly increasing (since, for
the γi values from the proof of Lemma 27, the sequence i′n = min{i : mi = min} can be
used in place of in in Lemma 22 while still retaining the guarantee in the lemma, and while
still satisfying i′n → ∞), and that |Gi| = i for all i ∈ N (and indeed, this is the case in the
construction given in Lemma 25). Then for any n ∈ N, x1:n ∈ X n, and y1:n ∈ Yn, for each
s ∈ {min , . . . , n} define the function f̃n,s(x1:n, y1:n, ·) as

argmin
f∈Gin

1

s

s∑
t=1

`(f(xt), yt).

Then define the function f̂n(x1:n, y1:n, ·) as

argmin
f∈Gin

max
min≤s≤n

1

s

s∑
t=1

`(f(xt), f̃n,s(x1:n, y1:n, xt)). (78)

We can specify a self-adaptive learning rule analogously, as follows. Let {Fi}∞i=1, {γi}∞i=1,
and {ui}∞i=1 be as in (33), with ui strictly increasing here, and note that without loss
of generality we can suppose |Fi| = i. Define în,m as in (33). Then for any n,m ∈ N
(m ≥ n), x1:m ∈ Xm, and y1:n ∈ Yn, for each s ∈ {uîn,m(x1:m), . . . , n} define the function

f̃n,m,s(x1:m, y1:n, ·) as

argmin
f∈Fîn,m(x1:m)

1

s

s∑
t=1

`(f(xt), yt).

Then define the function f̂n,m(x1:m, y1:n, ·) as

argmin
f∈Fîn,m(x1:m)

max
uîn,m(x1:m)≤s≤n

1

s

s∑
t=1

`(f(xt), f̃n,m,s(x1:m, y1:n, xt)). (79)
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One can easily verify that the choices in these optimizations can be made in such a way
that the functions f̂n and f̂n,m are measurable (e.g., by breaking ties based on a fixed
predefined ordering of each Fi set); for simplicity, we will suppose ties in the argmin are
broken deterministically, so that the learning rules are deterministic functions.

We have the following theorem, which reveals that a process X admits strong universal
(inductive/self-adaptive) learning with independent noise if and only if it admits strong
universal (inductive/self-adaptive) learning without noise. Furthermore, the above learning
rules witness the sufficiency of these conditions, which further implies that the self-adaptive
learning rule (79) is optimistically universal with independent noise.

Theorem 65 If ` satisfies (77), then Condition 1 is necessary and sufficient for a pro-
cess X to admit strong universal (inductive/self-adaptive) learning with independent noise.
Moreover, the self-adaptive learning rule f̂n,m defined by (79) is optimistically universal with
independent noise.

The restrictions to ` guaranteeing existence of φ and φ provide an important convenience
for us: namely, under these conditions, we can still characterize consistency as convergence
to f?. More specifically, we have the following guarantee, which will be a key component
in the proof of Theorem 65.

Lemma 66 If X ∈ C1, (X,Y) has independent noise, ` satisfies (77), and f̂n and f̂n,m are
as in (78) and (79) respectively, then

limsup
n→∞

µ̂X(`(f̂n(X1:n, Y1:n, ·), f?(·))) = 0 (a.s.)

and

limsup
n→∞

limsup
t→∞

1

t+ 1

n+t∑
m=n

`(f̂n,m(X1:m, Y1:n, Xm+1), f?(Xm+1)) = 0 (a.s.).

Proof For brevity, we only give the detailed proof of the claim for the self-adaptive rule
f̂n,m. The proof of the claim for the inductive learning rule f̂n follows analogously, merely
substituting properties of the sequence in established in the proof of Lemma 27, in place of
the analogous properties of în used here. We provide an outline of that analogous argument
following the detailed proof for the self-adaptive learning rule f̂n,m, which we now turn to.

To simplify notation, let ĝn,m(·) = f̂n,m(X1:m, Y1:n, ·) and g̃n,m,s(·) = f̃n,m,s(X1:m, Y1:n, ·).
Let m∗n, în, f?i , αi, ι0, and the event K all be as in the proof of Theorem 29 (defined relative
to the fixed function f? from property Y1), and define ĝn = ĝn,m∗n .

By the conditional independence property Y2, Hoeffding’s inequality (applied under the
conditional distribution given X) and the law of total probability imply that, for any i, s ∈ N
and f ∈ Fi, with probability at least 1− 1

i3s2
,∣∣∣∣∣1s

s∑
t=1

(`(f(Xt), Yt)− `(f?(Xt), Yt))− E[`(f(Xt), Yt)− `(f?(Xt), Yt)|Xt]

∣∣∣∣∣ ≤ 2¯̀

√
ln(2i3s2)

2s
.

(80)
By the union bound, for any fixed i ∈ N, the inequality (80) holds simultaneously for all

f ∈ Fi and s ∈ N with probability at least 1 −
∑∞

s=1 |Fi|
1
i3s2

= 1 − π2

6i2
(since |Fi| = i).
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Furthermore, since
∑∞

i=1
π2

6i2
<∞, the Borel-Cantelli lemma implies that there is an event

K̃ of probability one, on which ∃ι1 ∈ N such that (80) holds simultaneously for every i ≥ ι1
and every s ∈ N.

Now suppose the event K ∩ K̃ occurs. Recalling that lim
n→∞

în =∞ by (36), let ν̃ ∈ N be

such that ∀n ≥ ν̃ it holds that în ≥ max{ι0, ι1}, so that both (80) (for i = în, and for all s)
and (37) hold. Then for any n ≥ ν̃ and any s ∈ {uîn , . . . , n}, for any m ≥ m∗n we have

1

s

s∑
t=1

`(g̃n,m,s(Xt), Yt)− `(f?(Xt), Yt)

≤ 1

s

s∑
t=1

`(f?
în

(Xt), Yt)− `(f?(Xt), Yt)

≤ 2¯̀

√
ln(2̂i3ns

2)

2s
+

1

s

s∑
t=1

E
[
`(f?

în
(Xt), Yt)− `(f?(Xt), Yt)

∣∣∣Xt, în

]

≤ 2¯̀

√
ln(2̂i3ns

2)

2s
+

1

s

s∑
t=1

φ
(
`(f?

în
(Xt), f

?(Xt))
)

≤ 2¯̀

√
ln(2̂i3ns

2)

2s
+ φ

(
1

s

s∑
t=1

`(f?
în

(Xt), f
?(Xt))

)

≤ 2¯̀

√
ln(2̂i3ns

2)

2s
+ φ(αîn) ≤ 2¯̀

√
ln(2̂i5n)

2̂in
+ φ(αîn),

where the last four inequalities are due to (77), Jensen’s inequality (due to concavity of φ),
(37) and monotonicity of φ, and the fact that ui is strictly increasing (so that s ≥ uîn ≥ în).

Now denote by {Y ′t }∞t=1 a sequence with the same conditional distribution given X as Y,
but conditionally independent of Y given X. Again by (80), if n ≥ ν̃ and m ≥ m∗n, every
s ∈ {uîn , . . . , n} has

1

s

s∑
t=1

`(g̃n,m,s(Xt), Yt)− `(f?(Xt), Yt)

≥ −2¯̀

√
ln(2̂i3ns

2)

2s
+

1

s

s∑
t=1

E
[
`(g̃n,m,s(Xt), Y

′
t )− `(f?(Xt), Y

′
t )
∣∣Xt, g̃n,m,s

]
≥ −2¯̀

√
ln(2̂i5n)

2̂in
+

1

s

s∑
t=1

φ(`(g̃n,m,s(Xt), f
?(Xt)))

≥ −2¯̀

√
ln(2̂i5n)

2̂in
+ φ

(
1

s

s∑
t=1

`(g̃n,m,s(Xt), f
?(Xt))

)
,

where the last two inequalities use that ui is strictly increasing (so that s ≥ uîn ≥ în) and
(77) along with Jensen’s inequality (due to convexity of φ).
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Define

βi = φ−1

(
4¯̀

√
ln(2i5)

2i
+ φ(αi)

)
,

noting that the inverse function φ−1 is well-defined due to φ being continuous and strictly

increasing. Note that lim
n→∞

βîn = 0 by the facts that φ and φ are continuous with φ(0) =

φ(0) = 0, together with the facts that αi → 0 and în → ∞ (as established in the proof of
Theorem 29). Altogether, we have established that, on K ∩ K̃, every n ≥ ν̃, m ≥ m∗n, and
s ∈ {uîn , . . . , n} satisfy

1

s

s∑
t=1

`(g̃n,m,s(Xt), f
?(Xt)) ≤ βîn . (81)

Now to relate this performance guarantee for these g̃n,m,s functions on the first n data
points to performance of ĝn,m on the full sequence, note that (just as in the proof of
Theorem 29) since ĝn,m = ĝn for all m ≥ m∗n, we have

limsup
s→∞

1

s+ 1

n+s∑
m=n

`(ĝn,m(Xm+1), f?(Xm+1))

= limsup
s→∞

1

s

s∑
t=1

`(ĝn(Xt), f
?(Xt)) ≤ sup

uîn≤s<∞

1

s

s∑
t=1

`(ĝn(Xt), f
?(Xt)).

Again supposing K ∩ K̃ holds and that n ≥ ν̃, by the relaxed triangle inequality we have

sup
uîn≤s<∞

1

s

s∑
t=1

`(ĝn(Xt), f
?(Xt))

≤ c`

(
sup

uîn≤s<∞

1

s

s∑
t=1

`(ĝn(Xt), f
?
în

(Xt))

)
+ c`

(
sup

uîn≤s<∞

1

s

s∑
t=1

`(f?
în

(Xt), f
?(Xt))

)

≤ c`

(
max

uîn≤s≤n

1

s

s∑
t=1

`(ĝn(Xt), f
?
în

(Xt))

)
+ c`(γîn + αîn),

where the inequality in the last line is due to (35) and (37). By the relaxed triangle inequality
again, we have

max
uîn≤s≤n

1

s

s∑
t=1

`(ĝn(Xt), f
?
în

(Xt))

≤ c`

(
max

uîn≤s≤n

1

s

s∑
t=1

`(f?
în

(Xt), g̃n,m,s(Xt))

)
+ c`

(
max

uîn≤s≤n

1

s

s∑
t=1

`(ĝn(Xt), g̃n,m,s(Xt))

)
,

and since în,m(X1:m) = în and ĝn,m = ĝn for m ≥ m∗n, the definition of f̂n,m from (79)
implies that in this case this last line is at most

2c`

(
max

uîn≤s≤n

1

s

s∑
t=1

`(f?
în

(Xt), g̃n,m,s(Xt))

)
.
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Furthermore, the relaxed triangle inequality implies

max
uîn≤s≤n

1

s

s∑
t=1

`(f?
în

(Xt), g̃n,m,s(Xt))

≤ c`

(
max

uîn≤s≤n

1

s

s∑
t=1

`(f?
în

(Xt), f
?(Xt))

)
+ c`

(
max

uîn≤s≤n

1

s

s∑
t=1

`(g̃n,m,s(Xt), f
?(Xt))

)
≤ c`(αîn + βîn),

where the last inequality is due to (37) and (81). Altogether, on K ∩ K̃, any n ≥ ν̃ has

limsup
s→∞

1

s+ 1

n+s∑
m=n

`(ĝn,m(Xm+1), f?(Xm+1)) ≤ 2c3
` (αîn + βîn) + c`(γîn + αîn).

Thus, since αîn → 0, γîn → 0, and βîn → 0 (as established above), and the event K ∩ K̃
holds with probability one (by the union bound), the claim for the self-adaptive learning
rule f̂n,m in the statement of the lemma follows.

The claim for the inductive learning rule f̂n follows by a very similar argument, except
replacing în above with the quantity in from the proof of Lemma 27. For brevity, we
only give an outline here to illustrate the key steps, leaving the details as an exercise for
the interested reader. For this argument, we take the definitions of f?i , αi, and γi as in
the proof of Lemma 27. Note that an event identical to K̃ now holds for the sets Gi.
Defining ĥn(·) = f̂n(X1:n, Y1:n, ·) and h̃n,s(·) = f̃n,s(X1:n, Y1:n, ·), and following the same
reasoning as above (using the analogous results from the proof of Lemma 27) we have
that with probability one, for every sufficiently large n, every s ∈ {min , . . . , n} satisfies

1
s

s∑
t=1

`(h̃n,s(Xt), f
?(Xt)) ≤ βin . Continuing to follow the same arguments as above, but

now using (27), we then have with probability one, for all sufficiently large n,

µ̂X

(
`
(
ĥn(·), f?(·)

))
≤ c` max

min≤s≤n

1

s

s∑
t=1

`(ĥn(Xt), f
?
in(Xt)) + c`

(√
γin + αin

)
≤ 2c2

` max
min≤s≤n

1

s

s∑
t=1

`(f?in(Xt), h̃n,s(Xt)) + c`
(√
γin + αin

)
≤ 2c3

` (αin + βin) + c`
(√
γin + αin

)
,

which converges to 0 as n→∞.

To complete the proof of the claims for f̂n and f̂n,m in Theorem 65, we will compose
the above result with the following general lemma.

Lemma 67 Fix any process X. If ` satisfies (77), then for any deterministic self-adaptive
learning rule fn,m, if, for every Y such that (X,Y) has independent noise,

limsup
n→∞

limsup
t→∞

1

t+ 1

n+t∑
m=n

`(fn,m(X1:m, Y1:n, Xm+1), f?(Xm+1)) = 0 (a.s.),

then fn,m is strongly universally consistent with independent noise under X.
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Proof For any n,m ∈ N with m ≥ n, define gn,m(x) = fn,m(X1:m, Y1:n, x) and ∆n
m+1 =

`(gn,m(Xm+1), Ym+1)−`(f?(Xm+1), Ym+1). By the assumed properties of the loss ` and the
conditional independence property Y2, every m ≥ n has

E
[
∆n
m+1

∣∣Xm+1, gn,m(Xm+1)
]
≤ φ(`(gn,m(Xm+1), f?(Xm+1))) .

Then note that, due to the conditional independence property Y2, for any n ∈ N,{(
∆n
m+1 − E

[
∆n
m+1

∣∣Xm+1, gn,m(Xm+1)
] )}∞

m=n

is a martingale difference sequence with respect to {(X1:(m+2), Y1:(m+1))}∞m=n. Therefore,
Azuma’s inequality (e.g., Devroye, Györfi, and Lugosi, 1996, Theorem 9.1) implies that, for
any t ∈ N ∪ {0}, with probability at least 1− 1

n2(t+1)2
,

1

t+ 1

∣∣∣∣∣
n+t∑
m=n

∆n
m+1 − E

[
∆n
m+1

∣∣Xm+1, gn,m(Xm+1)
]∣∣∣∣∣ ≤ ¯̀

√
2 ln(2n2(t+ 1)2)

(t+ 1)
.

Since
∞∑
n=1

∞∑
t=0

1
n2(t+1)2

<∞, the Borel-Cantelli lemma implies that, on an event E1 of prob-

ability one,

limsup
n→∞

limsup
t→∞

1

t+ 1

∣∣∣∣∣
n+t∑
m=n

∆n
m+1 − E

[
∆n
m+1

∣∣Xm+1, gn,m(Xm+1)
]∣∣∣∣∣ = 0,

so that

limsup
n→∞

limsup
t→∞

1

t+ 1

n+t∑
m=n

∆n
m+1 ≤ limsup

n→∞
limsup
t→∞

1

t+ 1

n+t∑
m=n

φ(`(gn,m(Xm+1), f?(Xm+1))) .

By Jensen’s inequality, the right hand side above is at most

limsup
n→∞

limsup
t→∞

φ

(
1

t+ 1

n+t∑
m=n

`(gn,m(Xm+1), f?(Xm+1))

)
,

and since φ is continuous and strictly increasing, and its argument is bounded, this expres-
sion equals

φ

(
limsup
n→∞

limsup
t→∞

1

t+ 1

n+t∑
m=n

`(gn,m(Xm+1), f?(Xm+1))

)
.

By the assumed property of fn,m in the statement of the lemma, and the fact that φ(0) = 0,
this last expression equals 0 on an event E2 of probability one. Thus, on the event E1 ∩E2,
we have limsup

n→∞
L̂X(fn,·,Y;n, f?) ≤ 0. Also recall that Lemma 64 implies that, on an event

E3 of probability one, liminf
n→∞

L̂X(fn,·,Y;n, f?) ≥ 0. Altogether, L̂X(fn,·,Y;n, f?)→ 0 on the

event E1 ∩ E2 ∩ E3, which has probability one by the union bound.
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We may also note that, since any inductive learning rule fn can be interpreted as a
self-adaptive learning rule that simply ignores the additional data X(n+1):m, Lemma 67 has
the further implication that, if ` satisfies (77), then for any deterministic inductive learning
rule fn, if, for every Y such that (X,Y) has independent noise,

limsup
n→∞

µ̂X(`(fn(X1:n, Y1:n, ·), f?(·))) = 0 (a.s.),

then fn is strongly universally consistent with independent noise under X.

With the above two lemmas in hand, we are ready for the proof of Theorem 65.

Proof of Theorem 65 It follows immediately from Theorem 7 that Condition 1 is a nec-
essary condition for X to admit strong universal learning (either inductive or self-adaptive)
with independent noise, since the noise-free case is a special case of the stated conditions.
Furthermore, Lemmas 66 and 67 together imply that Condition 1 is sufficient for the rules
f̂n and f̂n,m to be strongly universally consistent with independent noise, and therefore also
sufficient for X to admit strong universal (inductive/self-adaptive) learning with indepen-
dent noise. Finally, note that the self-adaptive learning rule f̂n,m has no direct dependence
on the distribution of X, aside from the data supplied as its arguments, and yet (as just
established) is strongly universally consistent with independent noise under every X satisfy-
ing Condition 1. Together with the fact (also just established) that Condition 1 is necessary
and sufficient for X to admit strong universal self-adaptive learning with independent noise,
this also establishes the claim that f̂n,m is optimistically universal with independent noise.

In particular, this implies (79) is optimistically universal with independent noise for the
special case of regression, where Y is any bounded interval of R and ` is the squared loss:
`sq(y, y′) = (y−y′)2. However, since not every (Y, `) satisfies (77), the questions of whether
Condition 1 is sufficient for universal learning with independent noise, and whether there
exist self-adaptive learning rules that are optimistically universal with independent noise,
for general (bounded, separable) losses `, remain open.

Open Problem 5 Is Condition 1 sufficient for a process X to admit strong universal in-
ductive and self-adaptive learning with independent noise, for every separable near-metric
space (Y, `) with ¯̀<∞?

Open Problem 6 Is it true that, for every separable near-metric space (Y, `) with ¯̀<∞,
there exists a self-adaptive learning rule that is optimistically universal with independent
noise?

9.3 Learning Noisy Functions

While the above results for learning with independent noise are quite general, it turns
out the important problem of classification with the 0-1 loss is not directly covered by
these results, since it does not guarantee the existence of functions φ, φ satisfying (77).
Fortunately, we can extend the above theory to a result on classification for noisy functions
via the well-known plug-in classifier technique (see e.g., Devroye, Györfi, and Lugosi, 1996,
Theorem 2.2).
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Specifically, let f̂ sqn and f̂ sqn,m be the inductive and self-adaptive learning rules f̂n and

f̂n,m from (78) and (79), respectively, but defined for the setting (Y, `) = ([0, 1], `sq) (where
`sq(a, b) = (a − b)2).12 In the finite classification problem, we consider a setting with Y a
finite set with |Y| ≥ 2, and ` = `01 (where `01(a, b) = 1[a 6= b]). For any n ∈ N, x1:n ∈ X n,
y1:n ∈ Yn, and x ∈ X , define an inductive learning rule

ĥn(x1:n, y1:n, x) = argmax
y∈Y

f̂ sqn (x1:n,1{y}(y1:n), x). (82)

Similarly, for any n,m ∈ N (m ≥ n), any x1:m ∈ Xm, y1:n ∈ Yn, and x ∈ X , define a
self-adaptive learning rule

ĥn,m(x1:m, y1:n, x) = argmax
y∈Y

f̂ sqn,m(x1:m,1{y}(y1:n), x). (83)

Since f̂ sqn and f̂ sqn,m are measurable functions, the functions ĥn and ĥn,m can also be defined
as measurable functions (e.g., by breaking ties in the argmax based on a pre-specified
preference order on the finite set Y); for simplicity, let us suppose ties in the argmax are
broken deterministically, so that ĥn and ĥn,m are deterministic functions.

Note that when Y is a noisy function of X, for every y ∈ Y the conditional prob-
ability P(Yt = y|Xt) is a t-invariant function of Xt: that is, there is a function η(·; y)
such that η(Xt; y) = P(Yt = y|Xt) for every t. Moreover, the value η(Xt; y) minimizes
E
[
(η(Xt; y)− 1{y}(Yt))

2
∣∣Xt

]
almost surely. Thus, for X ∈ C1, Lemma 66 implies that for

each y ∈ Y, the estimators f̂ sqn (X1:n,1{y}(Y1:n), Xm+1) and f̂ sqn,m(X1:m,1{y}(Y1:n), Xm+1)
will (on average, in the limit) be very close to P(Ym+1 = y|Xm+1) for all large n. By this
fact, we see that the learning rules ĥn and ĥn,m will (on average, in the limit) predict with a
value y that nearly maximizes P(Ym+1 = y|Xm+1), and therefore achieves a nearly-minimal
0-1 loss for all large n. The following theorem formalizes these claims, and summarizes our
results on learning for noisy functions.

Theorem 68 For finite Y with |Y| ≥ 2, and ` = `01, Condition 1 is necessary and suffi-
cient for a process X to admit strong universal (inductive/self-adaptive) learning for noisy
functions. Moreover, the self-adaptive learning rule ĥn,m defined by (83) is optimistically
universal for noisy functions.

Proof The fact that Condition 1 is necessary for X to admit strong universal inductive or
self-adaptive learning for noisy functions is immediate from Theorem 7 since the noise-free
case is a special case of a noisy function: that is, defining Yt = f?(Xt) for a t-invariant
measurable function f? always satisfies the property of Y being a noisy function of X.

For the sufficiency claim, for brevity, we only present the details for the self-adaptive
learning rule ĥn,m. The proof for the inductive learning rule ĥn is essentially identical,

12. In fact, it is not hard to show that, in the arguments below, it suffices to take f̂sq
n and f̂sq

n,m as any learning
rules that are strongly universally consistent for noisy functions with respect to ([0, 1], `sq) under the
given X ∈ C1, and the resulting “plug-in” learning rules ĥn and ĥn,m will then be strongly universally
consistent for noisy functions under X with respect to (Y, `01) for finite Y. As this more general reduction
requires a few extra steps in the proof, we present the result specialized to (78) and (79) for simplicity.

105



Hanneke

except replacing every occurence of ĥn,m(X1:m, Y1:n, Xm+1) with ĥn(X1:n, Y1:n, Xm+1) and

every occurence of f̂ sqn,m(X1:m, 1{y}(Y1:n), Xm+1) with f̂ sqn (X1:n,1{y}(Y1:n), Xm+1).

We now proceed with the proof for the self-adaptive rule ĥn,m. Suppose X satisfies
Condition 1, and that Y is a noisy function of X. As mentioned above, since Y is a noisy
function of X, for every y ∈ Y the conditional probability P(Yt = y|Xt) is a t-invariant func-
tion of Xt. Also, as is well known, for any p ∈ [0, 1], it holds that E

[
(p− 1{y}(Yt))

2
∣∣Xt

]
=

E
[
(p− P(Yt = y|Xt))

2
∣∣Xt

]
+ E

[
(P(Yt = y|Xt)− 1{y}(Yt))

2
∣∣Xt

]
, which is minimized at p =

P(Yt = y|Xt) almost surely. Therefore, the process {(Xt,1{y}(Yt))}∞t=1 satisfies property Y1
for the squared loss `sq on [0, 1], with the function x 7→ η(x; y) := P(Yt = y|Xt = x) being
the function realizing the minimum value of E[`sq(η(Xt; y),1{y}(Yt))|Xt] (a.s.). Further-
more, since (X,Y) has independent noise, it follows immediately that, ∀t ∈ N, the variable
1{y}(Yt) is conditionally independent of {(Xt′ , 1{y}(Yt′))}t′ 6=t given Xt: that is, the process
{(Xt,1{y}(Yt))}∞t=1 also satisfies property Y2. Therefore, the process {(Xt, 1{y}(Yt))}∞t=1

has independent noise (under the loss `sq on [0, 1]). Furthermore, as discussed above, the
loss `sq on [0, 1] satisfies (77) with φ(x) = φ(x) = x. Therefore, Lemma 66 and the union
bound imply that, on an event E of probability one, we have

max
y∈Y

limsup
n→∞

limsup
t→∞

1

t+ 1

n+t∑
m=n

(
f̂ sqn,m(X1:m,1{y}(Y1:n), Xm+1)− η(Xm+1; y)

)2
= 0.

Furthermore, since the maximum of a finite number of values is continuous and nondecreas-
ing in those values, this implies that on the event E,

limsup
n→∞

limsup
t→∞

max
y∈Y

1

t+ 1

n+t∑
m=n

(
f̂ sqn,m(X1:m,1{y}(Y1:n), Xm+1)− η(Xm+1; y)

)2
= 0,

and again because Y is a finite set, this implies that

limsup
n→∞

limsup
t→∞

1

t+ 1

n+t∑
m=n

max
y∈Y

(
f̂ sqn,m(X1:m,1{y}(Y1:n), Xm+1)− η(Xm+1; y)

)2

≤ limsup
n→∞

limsup
t→∞

1

t+ 1

n+t∑
m=n

∑
y∈Y

(
f̂ sqn,m(X1:m, 1{y}(Y1:n), Xm+1)− η(Xm+1; y)

)2

≤ limsup
n→∞

limsup
t→∞

|Y|max
y∈Y

1

t+ 1

n+t∑
m=n

(
f̂ sqn,m(X1:m,1{y}(Y1:n), Xm+1)− η(Xm+1; y)

)2
= 0.

By Jensen’s inequality, this further implies that on the event E,

limsup
n→∞

limsup
t→∞

(
1

t+ 1

n+t∑
m=n

max
y∈Y

∣∣∣f̂ sqn,m(X1:m,1{y}(Y1:n), Xm+1)− η(Xm+1; y)
∣∣∣)2

= 0,

which (since x 7→ x2 is continuous and nondecreasing on [0, 1]) implies

limsup
n→∞

limsup
t→∞

1

t+ 1

n+t∑
m=n

max
y∈Y

∣∣∣f̂ sqn,m(X1:m,1{y}(Y1:n), Xm+1)− η(Xm+1; y)
∣∣∣ = 0. (84)
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For each n,m ∈ N with m ≥ n, define Ŷn,m+1 = ĥn,m(X1:m, Y1:n, Xm+1) and ∆n
m+1 =

1
[
Ŷn,m+1 6= Ym+1

]
−1[f?(Xm+1) 6= Ym+1]. Then note that, due to the conditional indepen-

dence property Y2, for each n ∈ N, the sequence{
∆n
m+1 − E

[
∆n
m+1

∣∣∣Xm+1, Ŷn,m+1

]}∞
m=n

is a martingale difference sequence with respect to {(X1:(m+2), Y1:(m+1))}∞m=n. Therefore,
Azuma’s inequality (e.g., Devroye, Györfi, and Lugosi, 1996, Theorem 9.1) implies that, for
any t ∈ N ∪ {0}, with probability at least 1− 1

n2(t+1)2
,

1

t+ 1

∣∣∣∣∣
n+t∑
m=n

∆n
m+1 − E

[
∆n
m+1

∣∣∣Xm+1, Ŷn,m+1

]∣∣∣∣∣ ≤
√

2 ln(2n2(t+ 1)2)

t+ 1
.

Since
∞∑
n=1

∞∑
t=0

1
n2(t+1)2

<∞, the Borel-Cantelli lemma implies that, on an event E′ of prob-

ability one,

limsup
n→∞

limsup
t→∞

1

t+ 1

∣∣∣∣∣
n+t∑
m=n

∆n
m+1 − E

[
∆n
m+1

∣∣∣Xm+1, Ŷn,m+1

]∣∣∣∣∣ = 0,

which implies

limsup
n→∞

L̂X(ĥn,·,Y;n, f?) = limsup
n→∞

limsup
t→∞

1

t+ 1

n+t∑
m=n

E
[
∆n
m+1

∣∣∣Xm+1, Ŷn,m+1

]
.

Next, note that for any n,m ∈ N with m ≥ n, by the conditional independence property
Y2, it holds that

E
[
∆n
m+1

∣∣∣Xm+1, Ŷn,m+1

]
= P

(
Ym+1 6= Ŷn,m+1

∣∣∣Xm+1, Ŷn,m+1

)
− P(Ym+1 6= f?(Xm+1)|Xm+1)

= P(Ym+1 = f?(Xm+1)|Xm+1)− P
(
Ym+1 = Ŷn,m+1

∣∣∣Xm+1, Ŷn,m+1

)
.

Recalling that η(Xm+1; y) = P(Ym+1 = y|Xm+1), the conditional independence property
Y2 implies the last expression above equals

η(Xm+1; f?(Xm+1))− η(Xm+1; Ŷn,m+1)

≤ η(Xm+1; f?(Xm+1))− f̂ sqn,m(X1:m,1{f?(Xm+1)}(Y1:n), Xm+1)

+ max
y∈Y

f̂ sqn,m(X1:m, 1{y}(Y1:n), Xm+1)− η(Xm+1; Ŷn,m+1)

= η(Xm+1; f?(Xm+1))− f̂ sqn,m(X1:m,1{f?(Xm+1)}(Y1:n), Xm+1)

+ f̂ sqn,m(X1:m, 1{Ŷn,m+1}(Y1:n), Xm+1)− η(Xm+1; Ŷn,m+1)

≤ 2 max
y∈Y

∣∣∣f̂ sqn,m(X1:m, 1{y}(Y1:n), Xm+1)− η(Xm+1; y)
∣∣∣ .
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Therefore, on the event E, (84) implies we have

limsup
n→∞

limsup
t→∞

1

t+ 1

n+t∑
m=n

E
[
∆n
m+1

∣∣∣Xm+1, Ŷn,m+1

]
≤ 2 limsup

n→∞
limsup
t→∞

1

t+ 1

n+t∑
m=n

max
y∈Y

∣∣∣f̂ sqn,m(X1:m,1{y}(Y1:n), Xm+1)− η(Xm+1; y)
∣∣∣ = 0.

Altogether, on the event E∩E′, it holds that limsup
n→∞

L̂X(ĥn,·,Y;n, f?) ≤ 0. Also, Lemma 64

implies that, on an event E′′ of probability one, liminf
n→∞

L̂X(ĥn,·,Y;n, f?) ≥ 0. Thus, on the

event E ∩E′ ∩E′′ of probability one (by the union bound), we have L̂X(ĥn,·,Y;n, f?)→ 0.

Since this holds for any X ∈ C1, it immediately follows that Condition 1 is sufficient for
X to admit strong universal self-adaptive learning for noisy functions. Moreover, note that
the definition of ĥn,m has no dependence on the distributions of X or Y beyond the data

supplied as its arguments, and we have shown that ĥn,m is strongly universally consistent
for noisy functions under every X satisfying Condition 1. Since we have just established
Condition 1 is necessary and sufficient for X to admit strong universal self-adaptive learning
for noisy functions, this also completes the proof that ĥn,m is optimistically universal for
noisy functions.

We leave open the question of whether the above result for classification can be extended
to general (bounded, separable) losses `, as stated in the following open problems.

Open Problem 7 Is Condition 1 sufficient for a process X to admit strong universal in-
ductive and self-adaptive learning for noisy functions, for every separable near-metric space
(Y, `) with ¯̀<∞?

Open Problem 8 Is it true that, for every separable near-metric space (Y, `) with ¯̀<∞,
there exists a self-adaptive learning rule that is optimistically universal for noisy functions?

Of course, Open Problem 7 would also be resolved by a positive resolution of Open
Problem 5, which represents a strictly stronger result. Moreover, a positive resolution of
both Open Problems 5 and 6 together would also positively resolve Open Problem 8.

10. Extensions

Here we briefly mention two simple extensions of the above theory. First, we present a
straightforward extension to losses ` beyond near-metrics, admitting any loss dominated
by a nondecreasing function of a near-metric loss. Second, we present an extension of the
results to weak universal consistency. In this latter case, we find that all of the results for
inductive and self-adaptive learning above hold without modification for weak consistency
as well. However, interestingly, this is not true for online learning, as we find that the set
of processes admitting weak universal online learning is a strict superset of the set SUOL
of processes admitting strong universal online learning (if X is infinite and ¯̀<∞).
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10.1 More-General Loss Functions

For simplicity, we have chosen to restrict the loss function ` to be a near-metric in the above
results. However, as mentioned in Section 1.1, most of the theory developed above extends
to a much broader family of loss functions, including all functions ` : Y2 → [0,∞) that
are merely dominated by a separable near-metric `o, in the sense that ∀y, y′ ∈ Y, `(y, y′) ≤
χ(`o(y, y

′)) for some continuous nondecreasing unbounded function χ : [0,∞)→ [0,∞) with
χ(0) = 0, and that also satisfy a non-triviality condition: sup

y0,y1∈Y
inf
y∈Y

max{`(y, y0), `(y, y1)} >

0. The measurable sets B` are then defined as the Borel σ-algebra generated by the topology
induced by `o, and we also require that ` be a measurable function with respect to this.
For instance, this extension admits asymmetric losses, such as in discrete classification with
asymmetric misclassification costs.

Here we briefly elaborate on the (minor) changes to the above theory yielding this
generalization. For any z ∈ [0,∞), define χ−1(z) = inf{x ∈ [0,∞) : χ(x) ≥ z}; this always
exists since the conditions on χ guarantee that its range is [0,∞), and moreover by continuity
of χ we have χ(χ−1(z)) = z. Still defining ¯̀ = sup

y,y′∈Y
`(y, y′), in the case of bounded losses

(¯̀<∞), note that we can suppose `o is also bounded without loss of generality, and in fact
that it is bounded by χ−1(¯̀), since the near-metric (y, y′) 7→ `o(y, y

′) ∧ χ−1(¯̀) still satisfies
the requirement `(y, y′) ≤ χ(`o(y, y

′) ∧ χ−1(¯̀)). Then we can simply replace ` with `o in
the learning rules proposed in (12) and (34), and the resulting performance guarantees in
terms of the loss `o then imply universal consistency under ` under the same conditions.
To see this, note that for any ŷ, y? ∈ Y, for any ε > 0, we have

`(ŷ, y?) ≤ χ(`o(ŷ, y
?)) ≤ ε+ ¯̀1

[
`o(ŷ, y

?) > χ−1(ε)
]
≤ ε+

¯̀

χ−1(ε)
`o(ŷ, y

?) ,

noting that χ−1(ε) > 0. Plugging this inequality into the three L̂X definitions, and noting
that it holds for all ε > 0, it easily follows that, in any of the three learning settings discussed
above, strong universal consistency under the loss `o implies strong universal consistency
under the loss `.

Furthermore, in the results where it is needed to argue inconsistency of a given learning
rule (Lemma 20, Theorems 6 and 37), the only property of ` used in those arguments is
the stated non-triviality condition; more specifically, this condition is represented there by
the fact that, for ` a near-metric, any distinct y0, y1 ∈ Y have inf

y∈Y
(`(y, y0) + `(y, y1)) ≥

1
c`
`(y0, y1) > 0, but the arguments would hold just as well for these more-general losses `

by replacing 1
c`
`(y0, y1) with inf

y∈Y
max{`(y, y0), `(y, y1)} and choosing y0, y1 ∈ Y specifically

to make this latter quantity nonzero.

These generalizations can be applied to all of the results involving a loss function in
Sections 1 through 6.3. Section 6.4 is the only place (involving bounded losses) where
somewhat-nontrivial modifications are necessary to extend the results to these more-general
losses, simply due to needing an appropriate generalization of the notion of “total bound-
edness” for the arguments to remain valid.

The results on unbounded losses in Section 8 can also be generalized. In this case, the
same trick of using `o in place of ` in the definition of the learning rule (68) again works for
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establishing universal consistency with ` under X ∈ C3 in Lemma 57, but in this case it fol-
lows from the stronger guarantee (76) for `o (together with continuity and monotonicity of χ,
and χ(0) = 0) rather than from directly relating L̂X for the losses `o and `: that is, the learn-
ing rule defined in terms of `o satisfies the convergence in (76) for the loss `o under X ∈ C3,
and the properties of χ imply that it remains true for χ(`o(·, ·)), and hence also for the loss
`. However, the complementary result in Lemma 54 requires an additional restriction to `
for the argument there to generalize: namely, that sup

y0,y1∈Y
inf
y∈Y

max{`(y, y0), `(y, y1)} = ∞,

a property satisfied by most unbounded losses studied in the literature anyway. Using
this to replace the values `(yi,0, yi,1) appearing in the proof of Lemma 54 with values
inf
y∈Y

max{`(y, yi,0), `(y, yi,1)} (both in the definition of yi,0, yi,1, and in (66)), the result is

then extended to these more-general loss functions. Together, these modifications allow us
to extend all of the results in Section 8 to these more-general loss functions `.

10.2 Weak Universal Consistency

It is straightforward to extend the above results on inductive and self-adaptive learning
(Sections 4 and 5) to weak universal consistency as well, where the definition of weakly uni-
versally consistent learning is as above except replacing the almost sure convergence of L̂X to
0 with convergence in probability. The proof of necessity of Condition 1 for inductive learning
and self-adaptive learning (from Lemmas 19 and 20) can easily be modified to show necessity
of Condition 1 for weak universal consistency by inductive or self-adaptive learning rules as
well. Specifically, the proof of Lemma 20 in this case would follow the same argument, but

starting from sup
κ∈[0,1)

limsup
n→∞

E
[
L̂X(gn,·, f

?
κ ;n)

]
instead of sup

κ∈[0,1)
E
[
limsup
n→∞

L̂X(gn,·, f
?
κ ;n)

]
. Af-

ter relaxing sup
κ∈[0,1)

to an integral over κ ∈ [0, 1) (as in the present proof) and applying Fatou’s

lemma to exchange the integral operator with the limsup
n→∞

, the proof proceeds identically as

before, and the final conclusion follows by noting that if lim
n→∞

µ̂X(
⋃
{Ai : X1:n ∩Ai = ∅}) > 0

with nonzero probability, then (by the monotone convergence theorem)

lim
n→∞

E
[
µ̂X

(⋃
{Ai : X1:n ∩Ai = ∅}

)]
= E

[
lim
n→∞

µ̂X

(⋃
{Ai : X1:n ∩Ai = ∅}

)]
> 0.

For brevity, we leave the details of the proof as an exercise for the interested reader. Since
strong universal consistency implies weak universal consistency, the sufficiency of Condi-
tion 1 for universal consistency of inductive or self-adaptive learning (from Lemmas 27 and
19), as well as the result on optimistically universal self-adaptive learning (Theorem 29),
continue to hold for the weak universal consistency criterion in place of strong universal
consistency. In particular, this means that the set of processes WUIL (or WUAL) admit-
ting weak universal inductive (or self-adaptive) learning is equal to SUIL (or SUAL), both
of which are equal C1 by Theorem 7. Additionally, it follows from statements made in the
proof of Theorem 6 that Theorem 6 remains valid for weak universal consistency as well.
Again, the details are left as an exercise for the interested reader.

Interestingly, the extension to weak consistency in the online learning setting (with
¯̀<∞) is substantially more involved, and indeed the set of processes that admit weak uni-
versal online learning (WUOL) is in fact a strict superset of SUOL (if X is infinite). That it
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is a superset easily follows from the fact that almost sure convergence implies convergence
in probability, so the interesting detail here is that there exist processes X that admit weak
universal online learning but not strong universal online learning. To see this, consider the
following construction of a process X. Let {zi}∞i=0 be distinct elements of X (supposing X is
infinite), and let {Bk}∞k=1 be independent random variables with Bk ∼ Bernoulli( 1

k ). Then
for each k ∈ N and each t ∈ {2k−1, . . . , 2k − 1}, if Bk = 1, then set Xt = zt, and if Bk = 0,

then setXt = z0. Since
∞∑
k=1

1
k =∞, the second Borel-Cantelli lemma implies that, with prob-

ability one, there exists an infinite strictly-increasing sequence {ki}∞i=1 in N with Bki = 1 for
every i ∈ N. On this event, every k ∈ {ki : i ∈ N} has |{j ∈ N : X1:(2k−1)∩{zj} 6= ∅}| ≥ 2k−1,
so that |{j ∈ N : X1:T ∩ {zj} 6= ∅}| 6= o(T ) (a.s.). Thus, X /∈ C2, and hence by Theorem 37,
X /∈ SUOL. However, if we take fn as the simple memorization-based online learning
rule (from the proof of Theorem 39), then for any n ∈ N and measurable f? : X → Y, we

have E
[
L̂X(f·, f

?;n)
]
≤ ¯̀

nE [|{j ∈ N ∪ {0} : X1:n ∩ {zj} 6= ∅}|] ≤
¯̀

n

(
1 +

blog2(2n)c∑
k=1

1
k2k−1

)
≤

¯̀

n

(
1 +
blog2(4n)c∫

1

1
x2x−1dx

)
. Since

t∫
1

1
x2x−1dx = o

(
t∫

1

2xdx

)
as t → ∞ (by L’Hôpital’s

rule and the fundamental theorem of calculus), and
t∫

1

2xdx = 1
ln(2)2t, we conclude that

blog2(4n)c∫
1

1
x2x−1dx = o(n), so that E

[
L̂X(f·, f

?;n)
]
→ 0, which implies L̂X(f·, f

?;n)
P−→ 0 by

Markov’s inequality. Thus, X admits weak universal online learning.

Following arguments analogous to the proof of Theorem 37, one can show that a neces-
sary condition for a process X to admit weak universal online learning is that every disjoint
sequence {Ai}∞i=1 in B satisfies E[|{i ∈ N : X1:T ∩ Ai 6= ∅}|] = o(T ). This represents a
sort of weak form of Condition 2. Furthermore, following similar arguments to the proof of
Theorem 39, one can show that in the special case of countable X , this condition is both
necessary and sufficient for X to admit weak universal online learning. However, as was the
case for Condition 2 and strong universal consistency (Open Problem 2), in the general case
(allowing uncountable X ) it remains an open problem to determine whether this weaker
form of Condition 2 is equivalent to the condition that X admits weak universal online learn-
ing. Likewise, it also remains an open problem to determine whether there generally exist
optimistically universal online learning rules under this weak consistency criterion instead
of the strong consistency criterion.

In the case of unbounded losses, one can show that Theorems 50 and 51 extend to weak
universal consistency without modification. Specifically, since almost sure convergence im-
plies convergence in probability, Theorem 50 immediately implies sufficiency of Condition 3
for a process to admit weak universal learning (in all three settings). Furthermore, the
same construction used in the proof of Lemma 54 can be used to show that Condition 3 is
also necessary for weak universal learning (again in all three settings) when ¯̀=∞. Briefly,
for any X /∈ C3, in the notation defined in the proof of Lemma 54, we would have that for

any online learning rule hn, every j ∈ N has P
(
L̂X(h·, f

?
K ;Tj) >

1
2c`

)
≥ 1

2P(0 < τj ≤ Tj) >
1
2(P(E)− 2−j), which is bounded away from 0 for all sufficiently large j. Since one can also
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show that Tj →∞, it follows that ∃κ ∈ [0, 1) such that limsup
n→∞

P
(
L̂X(h·, f

?
κ ;n) > 1

2c`

)
> 0,

so that hn is not weakly universally consistent under X. Similarly, for any self-adaptive learn-

ing rule gn,m, we would have that for any n ∈ N, P
(
L̂X(gn,·, f

?
K ;n) ≥ 1

2c`

)
≥ P(E ∩E′) > 0,

which implies ∃κ ∈ [0, 1) such that limsup
n→∞

P
(
L̂X(gn,·, f

?
κ ;n) ≥ 1

2c`

)
> 0, so that gn,m is not

weakly universally consistent under X. The same argument holds for any inductive learning
rule fn as well. The details of these arguments are left as an exercise for the interested
reader. Together with Theorems 50 and 51 and the fact that almost sure convergence
implies convergence in probability, this also implies that (when ¯̀=∞) there exists an opti-
mistically universal learning rule (in all three settings) under this weak consistency criterion
as well.

11. Open Problems

For convenience, we conclude the paper by briefly gathering in summary form the main
open problems posed in the sections above, along with additional general directions for
future study. The statements dependent on ` regard the case ¯̀<∞, and always restrict to
(Y, `) a separable near-metric space.

• Open Problem 1: Does there exist an optimistically universal online learning rule?

• Open Problem 2: Is SUOL = C2?

• Open Problem 3: Is the set SUOL invariant to the specification of (Y, `), subject to
(Y, `) being separable with 0 < ¯̀<∞?

• Open Problem 4: For some uncountable X , do there exist processes X ∈ C3 such that,
with nonzero probability, the number of distinct x ∈ X appearing in X is infinite?

• Open Problem (5 / 7): Does every X ∈ C1 admit strong universal inductive and
self-adaptive learning (with independent noise / for noisy functions) for every (Y, `)?

• Open Problem (6 / 8): Is it true that, for every (Y, `), there exists a self-adaptive
learning rule that is optimistically universal (with independent noise / for noisy func-
tions)?
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