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Abstract

Multiple methods exist for computing marginals involving a linear Diophantine constraint
on random variables. Each of these extant methods has some limitation on the dimension
and support or on the type of marginal computed (e.g., sum-product inference, max-product
inference, mazimum a posteriori, etc.). Here, we introduce the “trimmed p-convolution
tree” an approach that generalizes the applicability of the existing methods and achieves a
runtime within a log-factor or better compared to the best existing methods. A second form
of trimming we call underflow/overflow trimming is introduced which aggregates events
which land outside the supports for a random variable into the nearest support. Trimmed
p-convolution trees with and without underflow/overflow trimming are used in different
protein inference models. Then two different methods of approximating max-convolution
using Cartesian product trees are introduced.

Keywords: Bayesian inference, convolution, L, space, noisy-or, max-convolution, loopy
belief propagation, sum-product inference, max-product inference, Cartesian product

1. Introduction

Probabilistic linear Diophantine equations are useful for efficient message passing in Bayesian
graphical models: Pearl’s belief propagation (BP) (Pearl, 1982) computes exact posteriors
when the graph is a tree by passing a number of messages linear in the number of nodes.
When G is not a tree, “loopy belief propagation” (LBP) heuristically estimates posteriors
by performing BP on subtrees of G.

Belief propagation is a message-passing algorithm which is able to find the exact marginals
when the graph formed is a tree (sum-product inference solves for the marginal whereas max-
product inference solves for the max-marginal). Message passing is how nodes in a graphical
model share information with each other. LBP has been shown to perform well in practice
(Murphy et al., 1999) and to have desirable theoretical properties. For instance, when a
graph contains exactly one loop, LBP has been shown to converge in a number of messages
linear in the number of nodes. “Turbo codes,” (McEliece et al., 1998) the first forward error
correction scheme to approach the Shannon coding limit (Berrou et al., 1993), were shown
to be a form of LBP.
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However, both BP and LBP do not guarantee the efficient computation of a single
message. For example, the constraint ¥ = X; + X9 + -+ + X,,, on random variables
Y, X1, Xo, ..., X;, can be encoded with an m + 1-dimensional table. Adaptive Belief Prop-
agation performs efficient message passing in trees and Gaussian loopy graphs (Papachris-
toudis and Fisher, 2015). When a marginal is updated, the message sent between the
updated and the query node goes only through their lowest common ancestor.

Linear Diophantine equations are of the form y = a1 - x1 + a2 - 2o + -+ + @m_1 -
Tm—1 + Qm - T, Where all a; € Z and x; are unknown integers for which we solve. In
the probabilistic generalization of the linear Diophantine equation, y,x1, 2, ..., Ty, are no

longer integers, but are random variables with discrete probability mass functions (PMFs):
pmfy, pmfy ,pmfy, ,...,pmfy . From these PMFs and the constraint ¥ = X + X5 +
-oo+ X1 + Xy, all marginal, or max-marginal, distributions on Y, X1, ..., X,, may be
computed. Note that a; are no longer necessary, since each PMF can take multiple values;
for example, a PMF on X; with support at {0,3,6,9,...} would be equivalent to using
a; = 3.

There have been several specialized methods developed for efficiently solving certain cases
of probabilistic linear Diophantine equations. HOP-MAP (Tarlow et al., 2010) calculates
the max-marginals of all random variables when X, Xs,..., X,, € {0,1},Y € {0,...,m}
and noisy-or calculates the marginals under a different operator than standard addition and
requires X1, Xo,..., X;, € {0,1} as well as Y € {0,1}. When all X3, Xs,..., X, are binary
inputs, Y = X1, Xo, ..., X;, can be used to calculate the reliability of a k-out-of-n:G system.
The system has n operations, each of which may be good or bad and the system as a whole is
considered good if at least k operations are good. The G denotes that the system is good if k
operations are good. An F' denotes that a k-out-of-n:F' system fails if k of the n operations
fail. Barlow and Heidtmann provide an algorithm which calculates the probabilities that J
operations are good; the algorithm trims the output by not calculating probabilities for all
J based on the values of k and n (Barlow and Heidtmann, 1984). An extended problem,
k-to-f-out-of-n:G, determines the system is good if at least k and no more than £ operations
are good. Belfore (1995) introduced a convolution tree approach to calculate the reliability
of the system which uses only a forward pass to calculate the posterior on Y. Due to the
nature of the problem, the leaves are one-dimensional, binary variables.

Similar to Belfore, Tarlow et al. (2012) create a convolution tree which is limited to one-
dimensional, binary input variables; however, unlike Belfore’s algorithm, Tarlow et al. can
perform a backward pass to calculate the marginals on Xy, Xs,..., X;;,. On the backward
pass, the convolutions are performed based on the supports generated on the interior nodes
during the forward pass. Discovered independently of Belfore and Tarlow et al., Serang
invented convolution trees with a more general input where the leaves are without limit on
their dimension or supports (Serang, 2014).

This paper focuses on methods for efficiently finding the marginals computed by the
probabilistic generalization of linear Diophantine equations. Specifically, given PMFs on
X1,Xo,..., X, with support € {0,1,2,...,n — 1} and a PMF on Y with support C
{0,1,2,...,m-n—1} where Y = X; + Xo + -+ + X;n—1 + X, we present methods which
compute all marginals pmfy | x, x, . and pmfy yx . VX;.
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1.1 HOP-MAP

HOP-MAP is an efficient method for calculating the max-marginals on all Y, X1,..., X,
when X; € {0,1} Vi and Y € {0,...,m}. The method takes advantage of sorting variables
in descending order of their probability of being 1. Let Xy/, X,,s, ..., X;,» be such a sorting.
Then, the most probable way in which Y = listohave X1 =1, X9y =0, X3 =0,--- , X,y =
0 since setting any other X; to 1 replaces X;- which is the most probable to be 1. Similarly,
the most probable way in which ¥ = 2 is to have Xyv = 1, Xy = 1, Xy = 0, Xy =
0,---,X, =0, and so on.
In two linear passes compute and cache the cumulative products Cy (i) = ] = Pr(Xy =

1) and Cp(i) = ] —t1 Pr(Xy =0). Then the max- marglnal onY is
maxy—=; xXy,...Xm (PT(Y = Z,Xl =T1,.. )) PT‘( ) Cl( ) C()(Z)

To calculate the max-marginals on Xy/,... ,Xm , HOP-MAP relies on the fact that the
most probable state of Xy = 0,Y = y and Xy = 1,Y = y is either the same or very
close to the max-marginal on Y = y. To calculate the max-marginals, in two linear passes
compute and cache the cumulative maxes of the cumulative products, My (i) = max(C1(0) -
Cp(0),C1(1) - Co(1),...,C1(i) - Co(7)) and M,.(i) = Pr(Y =1i)-max(C1(m)-Cy(m),Cy(m —
1) - Co(m —1),...,C1(3) - Cp(i)). Then the max-marginal for X;; = 0 is Pr(Y = i) -
max(M;(i), M, (z—i—l) LrXe=0) and Xy = 1is Pr(Y = i)-max(M(i—1)- 5oS=0 M, (i)).

Pr(X,=1) Pr(X, =0)

The reason for the % term is because the maximum configuration for {X; =0,Y =

y} when y > i is the maximum configuration for Y = y but with X;; and X (y+1) switched.

Similarly, the reason for the % term is because the maximum configuration for { X =

1,Y = y} when y < i is the maximum configuration for ¥ = y but with X, and X,
switched. HOP-MAP sorts the variables and then does a constant number of linear passes
so it is € O(mlog(m)).

1.2 Noisy-or

The noisy-or operator is denoted Y = X; or X5 or---or X,,, and requires Y, X1, Xo,..., Xy,
to have support € {0,1}. The noisy-or operator on two variables, C' = A or B, aggregates
the event Pr(A =1, B = 1) into the outcome C' = 1. A noisy-or operator may be used when
several different events have an independent chance of “turning on” an outcome (Morris,
2011). This has been used in protein inference where the presence of a protein may be
turned on independently by the presence of many different peptides (Serang et al., 2010).

The noisy-or operator is associative (X or Y)or Z=Xor (Yor Z)=0if X =Y =
Z = 0,1 else) and therefore solving problems of the form Y = X; or X3 or ---or X,, may
be done efficiently by building a tree similar to a convolution tree but instead of C' = A+ B
for each triplet, the relationship is C = A or B.

In a forward pass, the prior on all internal nodes may calculated by solving 1+ C' =1
A or 1 B, where 1 C is the prior on variable C and | C is the likelihood. The outcome
1T C = 0 is the event that both T A =0 and 7 B = 0, the outcome 1T C' = 1 is the product of
all other events: Pr(1 C =0)=Pr(t A=0,1B=0), Pr(tC=1)=Pr(tA=1,1B =
0)-Pr(tA=0,1B=1)-Pr(tA=1,1B=1).

In the backward pass, the likelihood on all interior nodes may be calculated. The
backward pass can be done by negating the PMF of the sibling node then solving for
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L A =] Cor (— 1 B). The outcome | A = 0 is the product of events that all vari-
ables are equal to 0 plus the event that | C' is turned on by 1 B and not | A: Pr(] A =
0)=Pr(J C=0,1B=0)-Pr({ C=1,7 B =1). The event that | A = 1 is the
product of the events when | C is turned on solely by | A and when all variables are 1:
PrlA=1)=Pr(l C=11B=0)-Pr({ C =1, B=1). After a full forward and
backward pass, all priors and likelihoods may be calculated for the root, leaves, and all
internal nodes. Since the work done at each node is constant, and there are ©(m) nodes, all
messages out may be solved € O(m) time.

1.3 Probabilistic p-convolution Trees

Probabilistic convolution trees solve Y = X1 + - - - + X, where n and the dimension of the
variables, d can take any value. They can be used as a node in a graphical model which
can calculate the priors and likelihoods of Y, X1, ..., X;,. The X1,..., X,, are given priors
and Y is given a likelihood, these are the messages in. The messages out are likelihoods
for X1,..., X, and the prior on Y. The prior distribution on Y may be considered the
marginal on Y, similarly the likelihood distribution on Xj, ..., X,, may be considered their
marginal.

Probabilistic convolution trees work by turning the addition ¥ = X; +--- + X,,, into a
binary tree where the leaves are Xy, ..., X,,, the root is Y and the parent of two children
is the sum of their random variables. For example if Y = X; + X5 + X3 + X4, then a
probabilistic convolution tree will create the interior nodes (X7 + X3) and (X3 + X4). Y
is solved by the addition of the two interior nodes: Y = (X7 + X2) + (X3 + X4). The tree
does one forward pass (leaves to root) to calculate all priors on the interior nodes and the
root and a backward pass to calculate all likelihoods on the interior nodes and the leaves.
When asked, the backward pass marginalizes out all variables except the one of interest.
The key to its efficiency is that the addition of two random variables corresponds to the
convolution of the probability mass functions which can be performed in subquadratic time
via the fast Fourier transform (FFT) (Cooley and Tukey, 1965). For d = 1, all priors and
likelihoods (and therefore, posteriors, which are the products of priors and likelihoods) can
be computed simultaneously € O(m - nlog(m - n)log(m)). If d > 1 the runtime is increased
to O(m? - nd - log(m? - n?)).

Various different p-norms may be used to compute or approximate (depending on the
p desired) a continuum between sum-product inference (p = 1) and max-product inference
(p = o) (Pfeuffer and Serang, 2016). Since a constant number of p-norms are used, the
theoretical runtime is not affected by the value of p.

Here the method of “trimmed p-convolution trees” and the lazy variant (efficient for
online processing with LBP) are presented. The methods for trimming are then modified to
efficiently generalize noisy-or problems.

1.4 Cartesian Product Trees

k-selection on X7 + Xo + - - - 4+ X, returns the top k values of the Cartesian product X +
Xo+-4+ Xy Y =X14+Xo+ -+ X,, and Y, X1, Xs,..., X, are discrete random
variables, then k-selection on X7+ X9+ - -+ X,,, can be used to solve for the max-marginals
on Y, X1, Xo,..., X;; however, since k € {1,2,...,n™} (and retrieving the top k values is
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at least linear in k) solving max-convolution exactly using a k-selection may be exponential
in m. For example, if X1, Xo,..., X, are all binary and Y € 0,1, ..., m then there is only
one way for Y to be 0: X7 = X9 =--- = X,,, = 0. If Yy is the least probable outcome in
X1+ X9+ -+ X, then to retrieve all values in Y, the selection must have k = n™.

There are several optimal methods which perform optimal selection on X7 + X5 in
O(n + k) time (Frederickson, 1993; Kaplan et al., 2019; Serang, 2021). Serang’s method
segments the data into layers of exponentially increasing size where all values in a layer are
at least as good as all values in the following layers. The method finds which layer products
(the Cartesian product of a layer in X; with a layer in X5) may contain values which will
be in the resulting k-selection. All values in the candidate layer products are generated and
the output is trimmed with a linear time one-dimensional selection.

A Cartesian product tree (CPT) is a balanced, binary tree where each leaf node rep-
resents one of the input variables X; and each interior node solves a pairwise selection
problem using Serang’s method (Kreitzberg et al., 2021). Similar to the convolution tree,
the output of the root is Y, but in this case the root performs pairwise selection on
(X1 +Xo+ -+ Xn) + (Xmyg + Xmyg+ -+ Xpp). CPTs have been proven to be
fast in practice and are utilized in NeutronStar, the world’s fastest isotopologue calcula-
tor (Kreitzberg et al., 2020b). A similar algorithm to the CPT may be implemented using
soft heaps (Chagzelle, 2000); however, soft heaps have poor performance in practice (Kre-
itzberg et al., 2020a). CPTs can generate the top k values of the form X; + Xo + -+ X,

€ 0 <m (n log <n,(af1)+1) + n'a'log(a)) +k- mlog(02)> time for constant a € (1,2), e.g

a—1

€ O(m-n+k-m%*1) for a = 1.05. CPTs rely on the use of layer-ordered heaps to retrieve
the top k values without having to sort the data (thus having runtime € o(nlog(n))). An

n-a-log(a)
a—1

array may be layer-order heapified € © (n log (n (0:1) +1> + (Pennington et al.,
2020). If requested, a CPT may produce the individual indices for each value in the k-

selection, in which case there is an added ©(k-m) to the runtime to become ©(n-m+k-m).

2. Methods

Here, we present the lazily trimmed p-convolution tree. We also introduce another method
of trimming that imitates the noisy-or for Y, X1,...,X,, € {0,1}, which we call under-
flow /overflow trimming. Then, CPTs are used to perform fast, approximate max-convolution.

2.1 Trimmed p-convolution Trees

Consider Y = X7 + Xo + X3 + X4, where the priors on the X; variables have support X; €
{0,1,2}, X5 € {0,1}, X3 € {1,2}, and X4 € {1,2,3}, and where the likelihood on Y has
support Y € {1,2,3}. The forward pass of the p-convolution tree algorithm will first compute
priors on X7 + X5 and X3 + X4, then compute the prior on Y = (X; + X3) + (X3 + X4).
Then the backward pass will compute the likelihoods on X7 + X5 and X3 + X4, and finally
the likelihoods on X7, Xo, X3, and X4. After both passes have been performed, all priors
and likelihoods will be available, meaning that all posteriors can be computed. An example
of the forward and backward passes may be seen in Figure 1.

As the forward pass progresses, the support of the distributions grows, leading to the
prior on Y with support Y € {2,3,...,8}. In a large tree, the cost of this growing support
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Figure 1: Trimmed p-convolution tree. The first forward and backward pass are illus-

trated, wherein the possible supports at each node are computed. Possible prior
supports are labeled using blue up arrows and possible likelihood supports are la-
beled using red down arrows. When both supports are available, the intersection
is labeled with both arrow types. Progressing left to right and then top down: 1:
a p-convolution tree immediately after construction with only supports of leaves
and root known and no convolutions propagated. 2: The forward pass computes
the possible prior support of the second layer of the tree. 3: The forward pass
reaches the root node. 4: The root node both possible supports available; the
intersection is stored. 5: The backward pass begins. 6: As the backward pass
progresses, internal nodes have both prior support and likelihood support known;
the intersection is computed before propagating further. 7: The possible like-
lihood supports of the inputs are now known. 8: A bounding box of possible
supports for each node in the tree is now known. Now, convolutions are propa-
gated in a forward and backward pass. If the messages passed leads to a smaller
intersection with the supports on the node then the new intersection is applied to
both PMFs for the node.
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is non-trivial because the cost of FFT convolution is super-linear. Moreover, in practice,
the cache effects of storing several large distributions (rather than several distributions with
trivial support such as {0,1}) can be quite pronounced.

However, the likelihood on Y has support Y € {1,2,3}; therefore, given the observed
data, the event Y = 8, which is entertained by the prior on Y computed in the forward
pass, is impossible. We seek to “trim” the distributions during processing to narrow their
support so that only events in the intersection of the prior support and likelihood support
are considered, avoiding unnecessarily large convolutions on the interior nodes.

To efficiently perform trimming in an online setting, four passes through the tree are
performed instead of two. The first two passes are forward and backward passes that com-
pute only the support of the prior at the given node and the support of the likelihood at
the given node (and intersect these whenever either changes). This method only updates
supports which are affected by the new information being passed in (the supports may only
be trimmed, never expanded). The third pass is a forward pass which computes the priors
on the interior nodes and the root and the fourth pass is a backward pass which computes
the likelihoods on the interior nodes and the leaves, similar to the untrimmed p-convolution
tree. This strategy costs O(m) when updating all supports in a non-lazy manner.

2.2 Lazily Trimmed p-convolution Trees for Online Processing

To most efficiently enable a trimmed p-convolution tree to receive all relevant support infor-
mation, it is best to not compute any convolutions until necessary (in case further informa-
tion is received that will narrow the support). For this reason, cached supports and PMFs
throughout the tree are recomputed only when a message out is requested (Figure 2).

The first message out will cost Q(m) (because it must at least touch each node in the
tree). In terms of convolutions, it will require a full forward pass and a partial backward
pass along the path from the root to the node of interest. After the first message out,
subsequent messages out will be significantly faster, having many nodes in the tree with up-
to-date support and PMF information. Likewise, after all nodes in the tree are cached (in
both directions), the first message sent into the tree will cost O(m) (because it must mark
one direction on all but one node as not cached). This can be done in ©(m) rather than
Q(m) since no convolutions will be performed (because the tree is lazy and only performs
convolutions when a message out is requested). After the first message received, subsequent
messages received will cost O(log(m)), because they are guaranteed to reach the root in
O(log(m)) steps and then reverse direction, and there is at most one path down from the
root that has not yet been marked (the path exactly opposite the path used to dirty the
first message in).

Using the potential method of amortized time analysis, where ¢ counts the number
of nodes cached (including both booleans for whether a prior is cached from below or a
likelihood from above), it can be shown that updating the cache for ¢ successive messages
in will have runtime € O(m). This can be amortized € O(1) by including it in the cost of
constructing the tree (which costs O(m)).

Identical reasoning (but where ¢ represents the count of nodes that are not cached rather
than the number cached) can be used to show that the cost of updating the cache when
t successive messages out are requested will likewise be € 5(1) Alternately sending and
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VA VA A Y
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Message out Message out
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Figure 2: Lazily, trimmed p-convolution tree. Progressing left to right and top down:

1: A p-convolution tree in which all internal nodes have computed their possible
prior and likelihood supports as well as their prior and likelihood PMFs receives
a new message in (an updated prior for X4). 2: Values depending on the prior
of X4 are dirtied in the cache to indicate that they are not current. This costs
O(m). But receiving a new prior on X3 will now take only O(1) steps, because the
process of dirtying the cache can be terminated once another node with a dirty
prior is reached. 3: A message out (the likelihood of X) is requested. 4: The
nodes where either a prior or likelihood is requested are marked. These requests
form a path for repairing the cache. This process does not need to visit every
node; instead, in this case, it need only visit O(log(m)) nodes.
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receiving messages out is more complicated and would merit further investigation on its
own. The balanced construction of probabilistic p-convolution trees means that the longest
non-cyclic path between any nodes in the tree will be € O(log(m)), which would likely
benefit the worst-case amortized or average analysis.

In addition to the faster runtimes, trimmed p-convolution trees have the added benefit of
greater accuracy. One reason for this is that shorter FF'T convolutions (which are used when
p = 1 and as part of numeric p-convolution when p > 1) grow slightly less accurate as the
size of the tensors grows (Pfeuffer and Serang, 2016). This is because the implementation
of p-convolution relies on the numeric approach (via FFTs) on long tensors, but the naive
approach (especially when implemented in TRIOT, a method of efficiently iterating over
multidimensional arrays, created by Heyl and Serang, 2017) is faster on small problems and
also achieves the exact result (rather than a numeric approximation).

2.3 Time Analysis of Trimmed p-convolution Trees

For a p-convolution tree with m input variables, each with support of size n, there will be
log(m) many layers, indexed by £. The layer above the leaves preform convolutions on inputs
of size n, for each layer up the tree, the size of the inputs for the convolution is roughly
doubled, if there is no opportunity to trim the supports. The amount of convolutions
per layer will be half of the layer below, starting with m/2 convolutions in the second
layer. Performing a d-dimensional FFT, where each dimension has length n, can be done
€ O(n%log(n?)) time using an algorithm like Cooley-Tukey. The runtime for a lazily trimmed
p-convolution tree on m inputs of size n and dimension d is as follows:

log(m) log(m)
m B B m_,. '
rmon,d) = ) o (270 ) dog((27 1 m) ) o Y 2520 n log(270 - )
=1 =1
log(m) log(m)
=m - n? Z 2£(d_1)-log(2€'d)+log(nd). Z 9t(d—1)
=1

( log(m) log(m)
=m-n Z log(2%) +log(n) - > 1 if d=1
= =1
=m-n- (log(m —|— log(n)) log(m)

log(m log(m)

=m-n*|d- Z 2£d1 €+ log(n?) - Z 2ﬁd1) ifd>1

-t log(m) + log(n) -t
therefore,

r(m,n,d) €0 (md -n? . log(m® - nd) . {

1, else

log(m), d= 1>

This runtime is derived for the worst case scenario where no trimming of the supports
may be performed. In the best case, where the support at all nodes are of constant size,
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all FFTs are performed in constant time and so the runtime is € ©(m) since every node in
the tree has to be visited but the time spent at each node is constant. Note that ©(m - n -
log(m - n) - log(m) € O((m - n)'*€) for any € > 0; in comparison, constructing the m prior
PMFs of size n would take runtime O(m - n), meaning the p-convolution tree algorithm is
not very much more difficult than loading the data. The runtime of trimmed p-convolution
trees and all other methods are listed in Table 1.

2.4 Generalizing the Noisy-or for Use in Trimmed p-convolution Trees

Here, we introduce a method of trimming p-convolution trees which can imitate the noisy-or
operator. Then, we introduce underflow/overflow trimming which generalizes this trimming
method to random variables that are not necessarily binary.

A noisy-or can be implemented in a p-convolution tree by doing some small post-
processing after the convolution on the forward and backward passes. On the forward
pass the convolution calculates 1 C =T A® 1 B. The outcome 1 C = 0 contains the event
+ Ag- 1t By and the outcome 1 C' = 1 contains the events 1 A;- + By and + Ag- 1 B;. The
only difference between this and the noisy-or is that in the noisy-or the outcome + C' = 1 also
contains the event 1 A;- 1 By. In order to trim 1 C' to be equivalent to T C' =1 A or 1 B,
simply remove the outcome 1 C = 2 and add the event 1T Ay 1 By to the outcome T C=1.
Since no events where created or destroyed, 1 C does not need to be renormalized to be
equivalent to 1 C.

On the backward pass, | A =] C® (— 1 B) has three outcomes, | A=-1,1 A=0, and
d A = 1. The outcome ) A = —1 can be trimmed because the random variables are binary.
The outcome | A = 0 contains the events 4 Co- 1T Bp and | C1- 1 By, which is the same as
the noisy-or. The only difference is that | A = 1 contains only the event | C1- 1+ By but it
should also contain | Cy- 1 BO This extra event, | C’1 1 By, may be calculated directly
and added to the outcome | A=1; however, first | A needs to be multiplied by its scaling
factor which may be cached at construction. After the extra event is added to the outcome
| A =1, normalize | A and it is now equivalent to | A =] C or (-1 B).

In this scenario, where all of Y, X3, ..., X,,, € {0,1}, optimal trimming may occur mean-
ing the supports on all nodes in the tree are € {0,1}. This means the work done at each
node in the tree is equal and therefore noisy-or may be implemented € ©(m) time.

2.5 Underflow/overflow Trimming

Underflow /overflow trimming is a generalization of the noisy-or for cases in which Y, X7, X,

., X;n may have any support, not just € {0,1}. Similar to the case of the classic noisy-or,
any events which land outside the maximum support allowed are aggregated back into the
maximum support; however, this may also include events which land below the minimum
support which will than be aggregated into the minimum support. Note that this general-
ization of the noisy-or is different than generalizing the noisy-or as a max operator on the
random variable arguments, which is not easily achieved using convolution.

Underflow /overflow trimming for non-binary supports may be useful when building a
cardinal model based on fluctuations in the stock market. If the model is based on the
change in the price of a stock, Pr(Z;1 = b|Zy = a) = f(b—a), then it may be possible that
events in the model cause the stock price to fall below $0. Although it is impossible for a
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stock to have a negative value, this event should still be taken into account by aggregating
all events in which the stock price falls below $0 into the event that the stock price is equal
to $0.

Let hy and he be the minimum and maximum supports of some PMF X in dimension /,
respectively. For each dimension, ¢, X will have an overflow (d — 1)-hyperplane formed by
outcomes X hy oo where hy is always equal to the maximum support in dimension £ and
all other indices are at least their minimum and at most their maximum supports in their
respective dimensions. Overflow trimming seeks to aggregate any events which land outside
the maximum support in dimension ¢ to the nearest outcome in this (d — 1)-hyperplane.
Similarly, for each dimension, ¢, X will have an underflow (d — 1)-hyperplane and underflow
trimming seeks to aggregate any events which land below the minimum support in dimension
¢ to the nearest outcome in this (d — 1)-hyperplane

These (d — 1)-hyperplanes form a fringe around an enclosed space of all supported out-
comes, we call the fringe and the enclosed space the interior. The exterior contains all
outcomes which land outside the minimum or maximum supports for X.

2.5.1 FORWARD PAss

During the forward and backward passes, and any subsequent trimming, p is assumed to
be constant, and not necessarily equal to 1 as is the case with the classic noisy-or. On the
forward pass, 1T C' is calculated by convolving 1 A with T B: 1 C =1 A® T B, and then
performing underflow /overflow trimming on 1 C. The convolution may produce outcomes
+ Civino. =1 Civikyiothan. =T Ajy jo..- T Biy ky.... Which land in the exterior of T C, w.lLo.g.
let this happen in the first dimension so that j; + k1 > 1.

Underflow /overflow trimming seeks to aggregate the outcome 7 C’jl k1 >T1,jatka,... 11EO
T Cijstke,..- This can be done through the use of a function, f(X,h1,ha,...), which
accepts a PMF X and an index hq, ho, ... and returns the nearest support in the interior of
X. Then, if T Aj, j,,..- T B, ks,.. lands in the exterior of 1 C’, simply aggregate the event
to outcome 1 CA'f(CJlJrkl,jﬁkzw) =1 CA'HJ.Q Sk, during trimming. All underflow/overflow
trimming on the forward pass may be done by a single iteration through all outcomes in
1+ C and aggregating 1 C’ZHQ into 1 C’f(TC,i1,i2,...)' After underflow/overflow trimming is
complete, normalize 1 C to become 1T C.

2.5.2 BACKWARD PAsS

In the backward pass, the convolution calculates | A =] C® (— 1 B). Ideally, for any event
T Aj jo,.w T Biy ko,... calculated in the forward pass, the event | Cj, 1, jotko, .- T B—ki,—ko,...
will be calculated in the backward pass. However, if the event 1 C}, 1k, jo4k,,.. 1S in the
exterior of + C, then the event would have been aggregated to T Cr(1c ji 441 ja+ko,..) With
f(Coj1+ ki, jo+ ko, ...) # j1 + ki, j2 + ko, ... due to underflow/overflow trimming. If
F( Cog1 + ki, g2+ ko,...) = i1 < j1 + k1,j2 + ko,... (i.e. there was overflow in the first
dimension), then | C'® (— 1 B) will not properly recover the event | C¢(1¢j,+k1 jotka,.)” T
B_k, —k,,. in outcome | Aj j, . The key to underflow/overflow trimming is to efficiently
recover this information which is lost during the forward pass.

This information may be recovered efficiently using FFT; however, the convolution is
not between | C' and (— 1 B). Instead, create a new PMF C’ with minimum supports
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iy = jo+ ke V0 € {1,2,...,d} and maximum supports Z = o+ ke V0 €{1,2,...,d} (these
are the same supports as 7 C' before trimming). For all indices 7, ), ... which are in the

interior of 1 C, copy | Cj; 4 . into sz,l’i,?m. For all indices i}, 1}, ... which are in the exterior

of 1 C, copy | Cypreyn i,y into Cfy ;. Now, convolve | A= C'® (— 1 B).

1ot

For | A=C'® (— 1 B) to correctly perform underflow/overflow trimming it has to do
two things: calculate the same outcomes as | A =] C @& (— T B) and recover all events
which caused either underflow or overflow in the forward pass. Because the supports for C’
are a superset of the supports for | C' and any value in | C' was copied into C’, all outcomes
calculated by | A =] C ® (— 1 B) will be calculated by | A = C' ® (— 1 B) with the same
resulting value.

Let 1 Aj, jo,...- T By ko,.. be an event which landed in an outcome in the exterior of
T C, 1 Cji 1k jotks,., on the forward pass. Then, in the backward pass | Ajl’j%m will
contain the event C§1+k1,j2+k2,...’ T By, —ka. =4 Cracjithn jothe,.) T Bty —ks,... as long
as C§1+k1,j2+k2,‘... 1 B_k,,—k,,... Occurs in the convolution C’ ® (— 1 B). Since T Aj, j, .- T
By, k... occurred in the forward pass, jo < jo < jg and ke < ky < ky V0 € {1,2,...,d}.
This means j, + k¢ V¢ € {1,2,...,d} is in bounds for ¢’ and so the event C.;l:f'klvj2+/€27..,' 1
B_j, —k,,... will occur in the convolution C’'® (— 1 B). After the convolution | A = C'"®(— 1
B), | A should be trimmed to its proper supports and normalized to become | A.

The number of events which land in the exterior of 1 C is € O(n?). During trimming on
the forward pass, after the convolution is done, each outcome is touched at most once. The
operation to move events from one outcome to another takes constant time, however, calcu-
lating the destination uses the function f(X,hi, he,...) which takes ©(d) time. Therefore,
trimming on the forward pass is € O(d - n9).

During the backward pass, when constructing C’; all outcomes are touched exactly once.
The function f(X,hy,he,...) is used to calculate the nearest support in the interior of
X, once this has been calculated there are a constant number of constant-time operations
done. The function f(X,hy,he,...) takes time € O(d) and so constructing C’ takes time
€ O(d -n%). The convolutions on either pass takes time € O(n%log(n?)) = O(d - n%log(n))
so underflow/overflow trimming is free compared to the cost of the FFT.

2.6 Approximating Max-convolution Trees with CPTs

CPTs are used to approximate max-convolution by performing selection on the Cartesian
product ¥ = X; + X9 + -+ + X,;,. Each X, is an array of log probabilities such that
Pr(X; = j) is the exponential of the value in the j* entry in X;. A k = 1 selection on the
Cartesian product Y = X7 + X9 + -+ - + X,;, will produce the most likely outcome in Y. A
k = 2 selection will produce the two most likely outcomes, etc. Note that multiple events
in a k-selection may land at the same support in Y.

2.6.1 A STRAIGHT-FORWARD APPROACH

A standard k-selection may be performed to get approximate values on the max-marginals
of all Y, X1, Xo,...,X,,. The value of k£ will have a great impact on both the runtime
and the accuracy of the approximate max-marginals as there may be multiple values in the
top k& which land at the same outcome in Y. If k is too small, the runtime will be fast
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Method [ Applicability Theoretical runtime
Brute force Universal O(m -n™)
HOP-MAP d=1,n=2p=o00 O(m - log(m))
Noisy-or d=1n=2,p=1 O(m)
d= 17p = o0 n n-a-log(a) log(az)
CPT marginal on Y, single X; o (m (n log (”‘(a*1)+1> T a1 ) thk-m )
CPT with indices d=1,p=o00 o (m (n log <n‘(afl)+1> + n-o:élggﬁa)) + k- m)
p-convolution tree d=1 O(m - n - log(m - n)log(m))
Trimmed d—1 € [©(m - n-log(n)),
p-convolution tree B O(m - n - log(m - n)log(m))]
Trimmed € [B(m? - n? . log(n?)),
. d>1 4 a AN
p-convolution tree O(m® - n - log(m® - n))]

Table 1: Theoretical runtimes of all methods considered in this manuscript. The
“Applicability” column describes the requirements the specialized methods put on
the data. With these constraints in mind, the trimmed p-convolution tree method
is always within a log-factor of the specialized methods. For trimmed p-convolution
trees to achieve their fastest runtimes, if X; has support X; € {t1,t9,...,t,} for
all 4, then Y must have support Y € {t¢;,to,...,t,}. This allows the support on
all interior nodes to be constant, thus the convolutions do not grow in size. For
CPTs, o is a constant € (1,2); the optimal « is not yet known.

but the outcomes in Y may not be saturated. If k£ is too large, the result may be exact
max-convolution but the selection may take £k = n™ time. The user may wish to select
k based either on a probability mass threshold or desired runtime. If a desired runtime is
provided, CPTs may continuously produce output until the runtime limit is reached (either
by repeatedly producing the next k values or the next full layer of values). If a probability
mass threshold is provided, values may be produced until the threshold is hit after which
the remaining outcomes which have not been touched may be assigned a probability of zero
or a value based on the threshold and number of empty outcomes.

2.6.2 WITHHOLDING X; FROM THE SELECTION TO HELP SATURATE OUTCOMES IN Y

To be able to keep a small k (i.e. sub-exponential) while producing more outcomes in Y,
one can hold out any X; and perform a kj-selection on X1 +--- 4+ X;_1 + Xjp1 + -+ Xp.
Then, select the top ks values in X; and perform the Cartesian product on the top ki values
in X1+ -+ Xi—1+ X414+ -+ X,, and top the ks values in X;. This will shift all outcomes
from the ki-selection on X1+ ---+ X;_1 4+ X541+ - -+ X, by the indices in the ko-selection
on X;, thus greatly increasing the saturation of outcomes in Y. If ky - ks = k then this
takes no longer than the standard k-selection. The runtime of CPTs, along with all other
methods, is listed in Table 1.

3. Results

All programs for benchmarking results are written in C++ and compiled with g++ version 7.4.0
using compiler options -std=c++11 -03 -march=native -mtune=native. p-convolution
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Trimmed Untrimmed

m | Y Support Time(s) Time(s)
2 | {0,1} 0.0001700  0.0001660
41 {0,1,2,3} 0.0002530  0.0002450
8 | {0,...,7} 0.0002870  0.0002790
16 | {0,...,15} 0.0005620  0.0006090
32 | {o,...,31} 0.0011250  0.001815
64 | {0,...,63} 0.002299 0.005025

128 | {0,...,127} 0.004729 0.01333

256 | {0,...,255} 0.008496 0.04676

512 | {0,...,511} 0.02227 0.1815
1024 | {0,...,1023} 0.03608 0.7419
2048 | {0,...,2047} 0.07648 2.9806

4096 | {0,...,4095}  0.1636 12.46
8192 | {0,...,8191}  0.3323 50.77
16384 | {0,...,16383}  0.6857 214.2
32768 | {0,...,32767} 1.421 890.6

Table 2: Table comparing the runtimes of untrimmed vs. trimmed p-convolution
trees. The same problem, Y = X7 4+ X9 +---+ X,,, with p = 1, was used for both
trees, where X1,..., X, € {0,1} and Y € {0,1,...,m}.

tree runtimes where calculated using EvergreenForest engine. The computer used had
dual AMD EPYC 7351 16-core processors with 256gb of RAM.

3.1 Trimmed p-convolution Tree Benchmarks

Trimmed p-convolution trees are benchmarked versus untrimmed p-convolution trees (Ta-
ble 2). The random variables are under the constraint ¥ = X; + X + -+ + X,;, where
X1,Xs,...,X,, are binary, random variables and Y € {0,m}. The times reported are to
get posteriors on all variables.

3.2 Runtime and Error Analysis of Trimmed p-convolution Trees and
Specialized Methods

Table 3 shows the runtime and error of trimmed p-convolution trees versus the specialized
methods mentioned in the paper. All inputs are binary (i.e. n = 2) as required by the spe-
cialized methods. The specialized methods were written in C++ and should have very small
run-time constants as the only data structures used are vectors and there are very few con-
stant operations done per iteration. “HOP-MAP” is an implementation of the method pre-
sented by Tarlow et al. (2010) which calculates both the MAP and max-marginals. Trimmed
p-convolution trees use numeric max-convolution for p = oo, this explains the error for larger
problems when comparing to HOP-MAP. Since noisy-or uses p = 1 numeric error is much
less pronounced. Noisy-or was not measured against an untrimmed p-convolution tree be-
cause trimming is required to do underflow/overflow trimming which is what enables the
imitation of the noisy-or operator. For both the noisy-or and HOP-MAP, n and d are fixed
so the trimmed p-convolution solves either case with at worst runtime ©(m log(m)log(m)).
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Mean
m | p Method and Runtime(s) L1 Error L2 Error squared error
Trimmed
Noisy-or p-convolution tree
2 | 1.0 8.200%x107%  0.0001639 0 0 0
4| 1.0 1.700x1079  0.0002296 0 0 0
8 | 1.0 3.680x10~%  0.0004025 0 0 0
16 | 1.0  5.460x1079  0.0005449 0 0 0
32 | 1.0 0.0001161 0.001105 0 0 0
64 | 1.0 0.0002733 0.00269 0 0 0
128 | 1.0  0.0005744 0.005009 0 0 0
256 | 1.0  0.0009627 0.009121 9.728x10~ 111 9.728x10~ 111  4.864 x 10—218
512 | 1.0 0.001863 0.01453 3.899x10-221 0 0
1024 | 1.0 0.003494 0.0286 0 0 0
2048 | 1.0  0.009141 0.05925 0.0003395 0.00024 0.0002361
4096 | 1.0 0.01293 0.1248 2.574x10-05 1.820x10~95 2.714x1096
8192 | 1.0 0.02491 0.2544 6.137x10797  4.340x107°7 3.086x 1099
16384 | 1.0 0.05118 0.5097 1.184x10~10 8.374x10~ 11 2.298x 1016
Mean
m | p Method and Runtime(s) L1 Error L2 Error squared error
Trimmed Untrimmed
HOP-MAP p-convolution tree  p-convolution tree
2 | oo 6.780x1079  0.0001011 6.900x 1095 0 0 0
4 | co  5.970x1079%  0.0001555 0.000106 0 0 0
8 | co 8.960x1079  0.0002902 0.000192 0 0 0
16 | oo 0.0001325 0.0006183 0.00371 0 0 0
32 | oo 0.000251 0.001356 0.000789 0 0 0
64 | co  0.0002504 0.002414 0.001893 0 0 0
128 | oo 0.0007291 0.005067 0.005850 0 0 0
256 | co  0.001393 0.008527 0.01574 0 0 0
512 | co  0.00287 0.01509 0.05524 0 0 0
1024 | oo 0.007398 0.02818 0.1861 0 0 0
2048 | oo 0.01251 0.08808 44.20 0.0003270 3.067x1079  5.779 x 10—96
4096 | co  0.01915 0.2346 184.5 0.0002390  1.304x10-95 2,089 x 10~96
8192 | co  0.02982 0.5756 791.5 0.0001195 5.575x1079  7.639 x 10—97
16384 | oo  0.05271 1.372 3218.0 0.0001531  2.387x107%  2.801 x 10797

Table 3: Tables of error and time analysis for Evergreen versus specialized meth-
ods. All methods used n = 2 and varied with the number of the input variables,
m. Times are averaged over ten iterations. p-trimmed convolution tree has more
numerical instability when using p = co due to the use of numeric max-convolution.

In both cases all m + 1 messages out for Y, X1, Xo, ..

., X, were calculated. There

are no runtimes for noisy-or implemented in an untrimmed tree because trimming
is necessary to imitate the or operator.

For the noisy-or case, since Y € {0, 1}, the supports, and therefore the convolutions, at all
nodes in the tree are constant and so the trimmed p-convolution runs in € ©(m) time.

3.3 Application of Lazily Trimmed p-convolution Trees in Protein Inference

The study of proteins is important in understanding genetics (Pandey and Mann, 2000),
drug discovery (Jhanker et al., 2012), and many biological systems. Proteins are comprised
of peptides which are chains of amino acids. Protein inference is the problem of deciding
which proteins are present in a sample. A protein inference algorithm such as Fido (Serang
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et al., 2010) or EPIFANY (Pfeuffer et al., 2020) may be used to calculate the probability of
the proteins being present in the sample given information about which of their constituent
peptides are in the sample. While Fido and EPIFANY both use graphical models, protein
inference algorithms in general do not have to use graphical models and may incorporate
other information not included here such as which animals the proteins come from.

When a sample is put into a mass spectrometer the proteins in the sample are broken
apart into peptides and the spectra produced will give information about the presence of
each peptide in the sample. Spectra are processed by performing a peptide search using
Comet (Eng et al., 2013) and post-processing using Percolator (Kéll et al., 2007). Percolator
produces the probability of each peptide being in the sample.

LBP is used to estimate marginal (when p = 1) and max-marginal (p = oo) posterior
probabilities on the presence or absence of the proteins. In the protein inference models
used here (Fido and models (A),(B), and (C) in Table 5), the common additive dependency
is: Pr(N;j) = Pr(Xy) + Pr(X2) +---+ Pr(X,),N; € {0,1,...,m}. Nj; is the the number
of proteins which emit peptide j in the sample and Pr(X;) are Bernoulli indicator variables
on the presence of protein i in the sample. The creation of peptides by proteins has causal
independence (Heckerman and Breese, 1996) and so the additive dependency for peptide
j includes the probability of protein ¢ if and only if peptide j is a constituent peptide of
protein i. Proteins have identical and independent prior probability v. A peptide’s prior
is the probability produced by Percolator. The joint on the presence of a peptide and the
number of proteins which emit peptide j is Pr(Y; =1 | N;=n)=1—-((1-5)- (1 —a)").
a (which is not the same as the a used for CPTS) is the probability that if the protein is
present it will emit a peptide. S is the probability that a truly absent peptide is erroneously
observed during the peptide search.

Here, we show the runtimes of Fido when implemented using lazily trimmed p-convolution
trees and LBP (similar to EPIFANY) on three separate data sets. The 18mix data set is a
mixture of eighteen proteins from several different species: bovine, E. coli, B. licheniformis,
rabbit, horse, and chicken (Klimek et al., 2008). The IPRG data set contains 5,592 E. coli
proteins (Lee et al., 2018). The yeast data set has 3,443 yeast proteins (Ramakrishnan et al.,
2009). These three data sets were chosen because they are well curated and are considered
to be ground truth data sets.

Table 4 shows runtimes for protein inference when the convolution tree is trimmed versus
untrimmed. The additive dependencies in the models are explained above. Trimmed versus
untrimmed FFT convolutions will result in different levels of numerical error. This, com-
bined with LBP, caused some models to not fully converge when performing the untrimmed
convolutions. For this reason, we set the convergence threshold to zero so that we could
measure the time taken for one million iterations, instead of measuring how long until con-
vergence.

Table 5 shows the difference in runtime when standard trimming is applied versus
underflow /overflow trimming for a few basic models. In the standard Fido model, over-
flow /underflow trimming would have no noticeable effect due to the supports on the ad-
ditive dependencies, so the models in Table 5 have to be modified in some way to make
overflow /underflow trimming have an effect.
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p [Iterations

IPRG Data Set
Trimmed Untrimmed

18mix Data Set
Trimmed Untrimmed

Yeast Data Set
Trimmed Untrimmed

1.0 1Im
oo 1lm

13.90 24.44
12.23 23.31

2.94 12.48
2.931 12.71

40.82 43.35
20.08 29.78

Fido Parameters

IPRG Data Set 18mix Data Set Yeast Data Set

o 0.09017 0.01818 0.02439
B 0.1459 0.2868 0.1622
¥ 0.1854 0.005026 0.003104

Table 4: Table showing runtime and parameters for protein inference with and

without trimming. Runtimes for protein inference on the three ground truth
data sets. As used within Fido, «, (3, and 7 were found using a golden-section
search (Kiefer, 1953).

IPRG Data Set 18mix Data Set Yeast Data Set

Overflow  Additive | Overflow  Additive | Overflow Additive

Model p Trimmed Trimmed | Trimmed Trimmed | Trimmed Trimmed
(A) 1.0 1.22811 — 2.291 2.219 5.357 5.360
0 — — 2.157 2.260 5.282 5.284
(B) 1.0 — — 3.324 3.580 3.235 3.504
00 — — — — 8.141 8.116
(C) 1.0| 1.81286 1.82866 3.259 3.348 8.626 8.377
00 — — 3.346 3.262 8.202 8.166

Table 5: Table showing runtimes for additive trimming vs underflow/overflow

trimming for several different protein inference models. Models (A), (B),
and (C) all start with the same graphical model as Fido and then they are modified
in some way. Models (A) and (C) modify the additive dependency by making
N; € {0,1} which creates overflow. Models (B) and (C) have an extra additive
dependency: Pr(X;) = 3, E; ;. The binary E; ; variables exist if peptide j is a
constituent of protein ¢ and Pr(E; ;) = 1if Pr(X;) =1 Pr(Y;) =1, Pr(E;;) =0
otherwise. If a model did not converge after one million iterations, its runtime is
reported as “”. All Fido parameters are the same as in Table 4.
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3.4 Comparing the Performance of CPTs Versus Max-convolution Trees and
HOP-MAP

Table 6 and Table 7 show the runtime of approximating the max-marginals on some subset
of Y, Xy,...,X,,. Both methods described above (doing the full Cartesian product on
X1+ X2+ -+ + X, and holding out a single X; from the Cartesian product) are shown
below. Holding out X, is typically an order of magnitude faster than performing the full
Cartesian product while also having less error, the runtime is further reduced when only the
marginal on the single X; variable is calculated.

Table 7 uses the same implementation of HOP-MAP as Table 3 which calculates the
max-marginals on Y, X1,..., X;,. Similar to Table 6, both CPT methods are used and the
method which holds out X; sees a similar reduction in both runtime and error. Since HOP-
MAP calculates max-marginals on X1, Xs, ..., X,,, there is no included time for CPT when
holding out then only calculating the max-marginal on Xj.

4. Discussion

Trimmed p-convolution trees come within a log-factor of the best known specialized methods
while having no restrictions on the data. If n is held constant and optimal trimming is
allowed so that every node in the tree does the same amount of work, trimmed p-convolution
trees run in ©(m), the same cost as loading the data. In practice, trimmed p-convolution
trees are ~ 26x slower than the HOP-MAP method for m=16,384 (Table 3). HOP-MAP
is theoretically better by a log-factor, but the speed-up is also likely due to HOP-MAP
using very simple data structures and standard C++ library sorting methods. Trimmed
p-convolution trees are =~ 10x slower than noisy-or, but they really shine compared to
untrimmed p-convolution trees, being ~ 626x faster for 32768 binary random variables.
Other than p-convolution trees, there are currently no methods which can solve all d = 1
problems in better-than-exponential time.

In protein inference, we see that lazily trimming the p-convolution trees can result is
substantial speed increases (Table 4). While we ran Fido on known, published data sets it is
likely that in practice the data will be significantly larger and the speed-up from trimming
will become more pronounced. When compared across several different models, under-
flow/overflow trimming does not have a significant cost compared to standard trimming
(Table 5. Underflow/overflow trimming tended have significantly higher posteriors on the
proteins, including giving several proteins a 100% chance of being present, than standard
trimming for p = 1. When p = oo, the posteriors from both methods were essentially
identical.

Basic implementations of the CPT to solve Y = X7 + X5 + - -- + X,;, show promise of
a fast approximation for max-convolution. We see that holding out a single X; then taking
the Cartesian product of X1 + --- + X;_1 + Xj41 + -+ + X, and the top values in X;
reduces the error on the max-marginal of X; to around the same level as Evergreen with
FFT convolution while having a runtime reduced by at least one order of magnitude. The
accuracy on Y is not as great as on X; when holding out X;; however, one can solve for Y
in the same manner by solving for —X; = =Y + X1+ - -+ X; 1+ X010+ -+ X, If
the max-marginal of more than one variable, or zero error, is desired then CPTs are still no
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Runtimes Error
m,n k Method Time (s) | Variable L1 L2 MSE
— EVG Naive 0.3103
— EVG 0.2178 Y 2.188 x 1097 1.719 x 10~ 0 1.27 x 10~ 12
X 4.647 x 10796 1,114 x 10796 3,924 x 10— 11
4096 CPT 0.02138 Y 0.0004575 6.485 x 10~ 0°  1.675 x 10~ 0°
X 0.05803 0.02889 0.0238
4096 CPT holdout X; 0.002333 Y 0.0003757 3.909 x 10~ 7 6.073 x 10~ 00
0. X4 0.05718 0.02746 0.02615
S [ 4096 CPT X; holdout X;  0.0006089 | X; 5.045 x 1007 1.425 x 10~ °7  1.598 x 1012
g‘: 8192 CPT 0.04089 Y 0.0004534 6.178 x 10~ 0%  1.52 x 10~ 9°
X 0.05762 0.02791 0.02292
8192 CPT holdout X; 0.004173 Y 0.0003726 3.827 x 10~ 0°  5.824 x 10~ 00
Xz 0.05673 0.02647 0.02563
8192 CPT X; holdout X;  0.0006119 | X, 5.045 x 10 07 1.425 x 10~ 97 1.598 x 10 12
16384 CPT 0.07863 Y 0.0004513 6.035 x 10~ V° 1.45 x 10~ 0°
X 0.05762 0.02791 0.02218
16384  CPT holdout X; 0.0078 Y 0.000369 3.738 x 10~ 9°  5.556 x 10 00
Xz 0.05673 0.02647 0.02515
16384 CPT X, holdout X;  0.0007036 | X; 5.045 x 10° 97  1.425 x 10 97  1.598 x 1012
EVG Naive 1.214
EVG 0.5504 Y 1.38 x 1007 8.825 x 10~ VY 6.285 x 10 13
X 3.423 x 10796 825 x 10797 2,513 x 10~ 1
4096 CPT 0.04264 Y 0.0002358 3.377 x 10~ 9°  9.084 x 10~ V%
X 0.0571 0.02659 0.02575
4096 CPT holdout X; 0.004865 Y 0.0002043 2.049 x 10~ 9% 3.338 x 10 V°
© X 4 0.05848 0.02905 0.02731
B 4096 CPT X; holdout X;  0.0007699 | X, 3.241 x 1097  9.994 x 10V 5.602 x 10~ 13
gé 8192 CPT 0.08222 Y 0.0002342 3.202 x 107 9% 8.167 x 10 V%
X 0.05678 0.02615 0.02545
8192 CPT holdout X; 0.008955 Y 0.0002033 2.014 x 10~ 0 3.224 x 10~ 09
X4 0.05815 0.02809 0.02697
8192 CPT X; holdout X;  0.0008241 | X; 3.241 x 10~ 97 9.994 x 10~ 0 5.602 x 10~ 13
16384 CPT 0.1577 Y 0.0002332 3.106 x 10~ 0°  7.683 x 10~ 00
X 0.05634 0.02569 0.02494
16384  CPT holdout X; 0.01693 Y 0.0002021 1.973 x 10- 9% 3.094 x 10U
Xjti 0.05815 0.02809 0.02668
16384 CPT X; holdout X;  0.0008906 | X; 3.224 x 1097 9.89 x 10~V 5.566 x 10 13

Table 6: Table showing runtimes for Evergreen versus CPT. This table shows the
error and runtime of CPT versus Evergreen (EVG). Both are measured against a
version of Evergreen (labeled as “EVG Naive”) which uses exact convolution (i.e.
not FFT convolution). EVG Naive is not used in practice, but is used here as
a benchmark to evaluate the trade-off between accuracy (where EVG Nai’ve is
perfect) and speed. EVG uses fast p-norm convolution and is used in practice.
Runtimes labeled “CPT” includes calculating the Cartesian product for X; + Xo +
.-+ 4+ X,, and the max-marginals for all Y, X1, ..., X,,. Entries which “holdout X;”
use the method which holds out X; from the Cartesian product then performs the
Cartesian product between the top values of X; and X1+ -+ X; 1+ X001+ +
X, “CPT holdout X;” runtime is the time to perform the Cartesian products and
get max-marginals on all random variables. “CPT X; holdout X;” runtime is the
time to perform the Cartesian products and only get the max-marginals on Y and
X, this does not calculate the indices so it can be done € o(k-m). The k value for
the selection on X; and the k value for the selection on X1 +---+ X;_1 + X411 +
-+« + X,, are selected so that their product is the k£ value used in the Cartesian
product on X7 + Xo + -+ + X,,,. When calculating the error for the CPT method
which holds out X; we look at the error for both X; and X.; separately, since it is
possible that only a single X, is used in the large Cartesian product, whereas we
are guaranteed to see several different values of X;. All runtimes and errors were
averaged over ten trials.
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Runtimes Error
m k Method Time (s) | Variable L1 L2 MSE
— HOP-MAP 9.75¢-05
16 CPT 5.356-05 Y 0.02499 0.0108 0.002159
X 0.06576 0.0465 0.01705
16 CPT holdout X; 1.37¢-05 Y 0.0274 0.01182 0.002806
Xz 0.0003973 0.000281 2.765 x 1096
16 CPT X; holdout X;  6.117¢-05 | X, 0.0003973 0.000281 2.765 x 1000
64 CPT 0.0001238 | Y 0.01191 0.004832 0.0005036
=1 X 0.02709 0.01916 0.004311
I 64 CPT holdout X; 8.8¢-05 Y 0.01416 0.005671 0.0006905
Xz 0.00028 0.000198 2.352 x 10706
64 CPT X,; holdout X;  8.267¢-05 | X, 0.00028 0.000198 2.352 x 1000
— HOP-MAP 0.0001931
32 CPT 0.0001256 | Y 0.01845 0.006892 0.001642
X 0.07433 0.05256 0.02642
32 CPT holdout X; 8.66-05 Y 0.01997 0.007664 0.002057
Xz 0.0004595 0.0003249 5.678 x 1096
32 CPT X,; holdout X;  0.0001012 | X, 0.0004595 0.0003249 5.678 x 1000
160 CPT 0.0004626 | Y 0.0116 0.004167 0.0006211
a X 0.04185 0.02959 0.01142
I 160 CPT holdout X; 0.0002773 | Y 0.012 0.00428 0.0006515
B X i 2.52 x 1079° 1.782 x 1079 1.905 x 10798
160 CPT X; holdout X;  0.0001158 | X; 2.52 x 10~ 0° 1.782 x 10~ 9° 1.905 x 10~ 9
— HOP-MAP 0.000321
64 CPT 0.000407 Y 0.01247 0.004052 0.001097
X 0.1908 0.1349 0.03865
64 CPT holdout X; 0.0002862 | Y 0.01266 0.004168 0.001181
X i 0.0002379 0.0001682 7.224 x 10797
64 CPT X; holdout X; _ 0.0001699 | X, 0.0002379 0.0001682 7.224 X 10 97
384 CPT 0.001268 Y 0.009196 0.002875 0.0005692
3 X 0.1309 0.09255 0.02005
[ 384 CPT holdout X; 0.000747 Y 0.009022 0.002821 0.0005386
g Xz 0.0001566 0.0001107 6.604 x 1097
384 CPT X; holdout X;  0.0002647 | X; 0.0001566 0.0001107 6.604 x 10~ 7
— HOP-MAD 0.0006896
128 CPT 0.001012 Y 0.008139 0.002329 0.000717
X 0.1809 0.1279 0.04728
128 CPT holdout X; 0.000639 Y 0.008078 0.002345 0.0007213
X 6.757 x 10795 4778 x 1079  3.575 x 10798
128 CPT X; holdout X;  0.0002919 | X; 6.757 x 10~ 7° 4778 x 10°9°  3.575 x 10V
w | 896 CPT 0.004787 Y 0.00655 0.001788 0.0004215
Q X 0.09668 0.06837 0.03074
I 896 CPT holdout X; 0.003069 Y 0.006537 0.001788 0.0004222
g Xz 3.273 x 1079 2315 x 107%  1.607 x 10798
896 CPT X; holdout X;  0.0004419 | X, 3.273 x 1079° 2,315 x 10 92  1.607 x 100
— HOP-MAP 0.001097
256 CPT 0.00338 Y 0.004864 0.001243 0.0004021
X 0.1993 0.1409 0.0594
256 CPT holdout X; 0.001761 Y 0.004752 0.001233 0.0003961
Xz 5.467 x 107°6  3.866 x 107%¢  4.191 x 1071
256 CPT X; holdout X;  0.0005929 | X; 5.467 x 10 7% 3.866 x 10~ 9%  4.191 x 101V
o | 2048  CPT 0.01884 Y 0.004131 0.0009855 0.0002539
2 X 0.1211 0.08561 0.04654
I 2048 CPT holdout X; 0.009243 Y 0.004128 0.0009991 0.0002613
g Xz 5.167 x 107%6  3.653 x 107%¢  4.164 x 1071°
2048 CPT X; holdout X;  0.0008625 | X; 5.167 x 10-9°  3.653 x 10 Y0 4.164 x 10~ ¥

Table 7: Table showing runtimes for HOP-MAP versus CPT. Since HOP-MAP only
works on binary random variables, n = 2. All method are the same as those in

Table 6. Note that HOP-MAP calculates the max-marginals on all Y, X1, ...

where the method “CPT X; holdout X;” only calculates the max-marginal on
X;. All other CPT methods calculate the same max-marginals as HOP-MAP. All

runtimes and errors were averaged over ten trials.
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match for HOP-MAP for larger problems, likely due to n being restricted to 2 which may
cause less saturation in the supports on Y.

Ideally, each X; could be held out one at a time in order to get the best approximate
max-marginals on Y, X1, X, ..., X,,; however, holding out every variable and updating all
max-marginals after each selection would be quadratic in m. It may be possible for each
interior node to keep track of its top k values with all X; and without each individual
X, that is in its Cartesian product. This method will be more costly than a standard
CPT (both in memory and runtime), but the trade-off for accuracy may be worth the cost.
Another method to calculate more outcomes in Y is to filter redundant values in the pairwise
selections in the interior nodes. Each interior node can have a set which keeps track of the
supports in the values it has generated so far. If, in further selections, the same support is
seen again it can be filtered from being put into the results. In this way, each interior node
can only touch unique outcomes in their k-selection.

In order for trimmed p-convolution trees to match HOP-MAP in theoretical runtime,
the forward pass would have to be done € O(mlog(m)) time. This would require a fast
algorithm to solve multi-convolution which would allow the p-convolution tree to go straight
from the prior on the leaves to calculate the prior on the root. Perhaps this could be done by
finding the roots of the polynomials on the leaves and some fast algorithm for multiplying
the roots together. However, the backward pass would still be challenging as it requires the
priors to be cached on all interior nodes in the tree, but this merits further investigation.

LBP and trimmed p-convolution trees may be used in concert to form “p-convolution
forests.” These p-convolution forests can be used to efficiently solve probabilistic linear
Diophantine equations and other problems which may be represented as graphical mod-
els. In just computational biology this includes applications in polyploid genotyping and
mapping (Serang et al., 2012), protein identification (Serang, 2014), and metagenomics (or
metatranscriptomics or metaproteomics).

Large problems with p > 1 can suffer numerical error from using fast numerical max-
convolution; however, error on large problems may be worth it in order to use both sum-
product and max-product inference on the same graphical model. There is also no other
method which may use inference somewhere between sum-product and max-product (e.g.
1<p< o).

There are times where only allowing sum-product inference may lead to incorrect results.
Let 2’ = maz(3_, f(x,y)) and 2* = argmax, (f(z,y)) be the maximum value of the marginal
and max-marginal, respectively, of a two-dimensional distribution (in which one or more axis
may be flattened from other multivariate distributions). While it is true that f(z*,y) >
f(2',y), it may not be true that * > 2/. Here, the marginalization using sum-product
inference has led to z’ becoming the mode of the marginal distribution, when in reality x*
should be the mode. If the sum-product inference is performed in a loopy manner where
the result is multiplied back in and then marginalized out repeatedly, this may lead to the
true mode, z*, having probability of zero. Losing the mode of the distribution may lead to
inaccurate results.

Further speed-ups may be obtained from making the FFTs even more sparse. Instead of
trimming on just the ends of the arrays, it is possible to trim in the middle as well to create
several non-zero partitions in the arrays (Stockham Jr., 1966). Then, all pairs of non-zero
partitions across the two arrays would be convolved. This will lead to smaller convolutions;
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however, the number of FFTs required is quadratic in the number of non-zero partitions so
removing all zero entries may lead to poor performance.

5. Code Availability

The C++11 code for the EvergreenForest engine, its modules, demos, and utilities for
visualizing graphs in Python are freely available under an MIT software license and can be
downloaded at https://bitbucket.org/orserang/evergreenforest. The entire library is
implemented in a header-only fashion, so the essential components of each module can be
included via a single #include statement. There is also a stand-alone modeling language
for EvergreenForest allowing users to take advantage of the engine without using C++.
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This material is based on work supported by the National Science Foundation under grant
no. 1845465.
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