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Abstract
Suppose that we wish to estimate a vector x from a set of binary paired comparisons of
the form “x is closer to p than to q” for various choices of vectors p and q. The problem
of estimating x from this type of observation arises in a variety of contexts, including
nonmetric multidimensional scaling, “unfolding,” and ranking problems, often because it
provides a powerful and flexible model of preference. We describe theoretical bounds for how
well we can expect to estimate x under a randomized model for p and q. We also present
results for the case where the comparisons are noisy and subject to some degree of error.
Additionally, we show that under a randomized model for p and q, a suitable number of
binary paired comparisons yield a stable embedding of the space of target vectors. Finally,
we also show that we can achieve significant gains by adaptively changing the distribution
used for choosing p and q.
Keywords: paired comparisons, ideal point models, recommendation systems, 1-bit sensing,
binary embedding

1. Introduction

In this paper we consider the problem of determining the location of a point in Euclidean
space based on distance comparisons to a set of known points, where our observations are
nonmetric. In particular, let x ∈ R𝑛 be the true position of the point that we are trying to
estimate, and let (p1, q1), . . . , (p𝑚, q𝑚) be pairs of “landmark” points in R𝑛 which we assume
to be known a priori. Rather than directly observing the raw distances from x, i.e., ‖x−p𝑖‖
and ‖x− q𝑖‖, we instead obtain only paired comparisons of the form ‖x− p𝑖‖ < ‖x− q𝑖‖.
Our goal is to estimate x from a set of such inequalities. Nonmetric observations of this
type arise in numerous applications and have seen considerable interest in recent literature
e.g., (Ailon, 2011; Davenport, 2013; Eriksson, 2013; Shah et al., 2016). These methods are
often applied in situations where we have a collection of items and hypothesize that it is
possible to embed the items in R𝑛 in such a way that the Euclidean distance between points
corresponds to their “dissimilarity,” with small distances corresponding to similar items.

Here, we focus on the sub-problem of adding a new point to a known (or previously
learned) configuration of landmark points.

As a motivating example, we consider the problem of estimating a user’s preferences from
limited response data. This is useful, for instance, in recommender systems, information

c○2021 Andrew K. Massimino and Mark A. Davenport.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/18-105.html.

mailto:massimino@gatech.edu
mailto:mdav@gatech.edu
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/18-105.html


Massimino and Davenport

qi

pi

x

Figure 1: An illustration of the localization problem from paired comparisons. The infor-
mation that x is closer to p𝑖 than q𝑖 tells us which side of a hyperplane x lies.
Through many such comparisons we can hope to localize x to a high degree of
accuracy.

retrieval, targeted advertising, and psychological studies. A common and intuitively appealing
way to model preferences is via the ideal point model, which supposes preference for a
particular item varies inversely with Euclidean distance in a feature space (Coombs, 1950).
We assume that the items to be rated are represented by points p𝑖 and q𝑖 in an 𝑛-dimensional
Euclidean space. A user’s preference is modeled as an additional point x in this space (called
the individual’s “ideal point”). This represents a hypothetical “perfect” item satisfying all
of the user’s criteria for evaluating items.

Using response data consisting of paired comparisons between items (e.g., “user x prefers
item p𝑖 to item q𝑖”) is a natural approach when dealing with human subjects since it avoids
requiring people to assign precise numerical scores to different items, which is generally a
quite difficult task, especially when preferences may depend on multiple factors (Miller, 1956).
In contrast, human subjects often find pairwise judgements much easier to make (David,
1963). Data consisting of paired comparisons is often generated implicitly in contexts where
the user has the option to act on two (or more) alternatives; for instance they may choose
to watch a particular movie, or click a particular advertisement, out of those displayed to
them (Radlinski and Joachims, 2007). In such contexts, the “true distances” in the ideal
point model’s preference space are generally inaccessible directly, but it is nevertheless still
possible to obtain an estimate of a user’s ideal point.

1.1 Main Results

The fundamental question which interests us in this paper is how many comparisons we
need (and how should we choose them) to estimate x to a desired degree of accuracy. Thus,
we consider the case where we are given an existing embedding of the items (as in a mature
recommender system) and focus on the on-line problem of locating a single new user from
their feedback (consisting of binary data generated from paired comparisons). The item
embedding could be generated using various methods, such as multidimensional scaling
applied to a set of item features, or even using the results of previous paired comparisons via
an approach like that in (Agarwal et al., 2007). Given such an embedding of ℓ items, there
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are a total of
(︀ℓ

2
)︀

= Θ(ℓ2) possible paired comparisons. Clearly, in a system with thousands
(or more) items, it will be prohibitive to acquire this many comparisons as a typical user will
likely only provide comparisons for a handful of items. Fortunately, in general we can expect
that many, if not most, of the possible comparisons are actually redundant. For example, of
the comparisons illustrated in Fig. 1, all but four are redundant and—at least in the absence
of noise—add no additional information.

Any precise answer to this question would depend on the underlying geometry of the
item embedding. Each comparison essentially divides R𝑛 in two, indicating on which side of
a hyperplane x lies, and some arrangements of hyperplanes will yield better tessellations
of the preference space than others. Thus, to gain some intuition on this problem without
reference to the geometry of a particular embedding, we will instead consider a probabilistic
model where the items are generated at random from a particular distribution. In this case
we show that under certain natural assumptions on the distribution, it is possible to estimate
the location of any x to within an error of 𝜖 using a number of comparisons which, up to log
factors, is proportional to 𝑛/𝜖. This is essentially optimal, so that no set of comparisons
can provide a uniform guarantee with significantly fewer comparisons. We then describe
several stability and robustness guarantees for various settings in which the comparisons
are subject to noise or errors. Finally, we then describe a simple extension to an adaptive
scheme where we adaptively select the comparisons (manifested here in adaptively altering
the mean and variance of the distribution generating the items) to substantially reduce the
required number of comparisons.

1.2 Related Work

It is important to note that the ideal point model, while similar, is distinct from the low-rank
model used in matrix completion (Rennie and Srebro, 2005; Candès and Recht, 2009).
Although both models suppose user choices are guided by a number of attributes, the ideal
point model leads to preferences that are non-monotonic functions of those attributes. The
ideal point model suggests that each feature has an ideal level; too much of a feature can be
just as undesirable as too little. It is not possible to obtain this kind of performance with a
traditional low-rank model, though if points are limited to the sphere, then the ideal point
model can duplicate the performance of a low-rank factorization. There is also empirical
evidence that the ideal point model captures behavior more accurately than factorization
based approaches do (Dubois, 1975; Maydeu-Olivares and Böckenholt, 2009).

There is a large body of work that studies the problem of learning to rank items from
various sources of data, including paired comparisons of the sort we consider in this paper.
See, for example, (Jamieson and Nowak, 2011a,b; Wauthier et al., 2013) and references
therein. We first note that in most work on rankings, the central focus is on learning a correct
rank-ordered list for a particular user, without providing any guarantees on recovering a
correct parameterization for the user’s preferences as we do here. While these two problems
are related, there are natural settings where it might be desirable to guarantee an accurate
recovery of the underlying parameterization (x in our model). For example, one could exploit
these guarantees in the context of an iterative algorithm for nonmetric multidimensional
scaling which aims to refine the underlying embedding by updating each user and item one
at a time (e.g., see O’Shaughnessy and Davenport, 2016), in which case an understanding of
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the error in the estimate of x is crucial. Moreover, we believe that our approach provides an
interesting alternative perspective as it yields natural robustness guarantees and suggests
simple adaptive schemes.

Also closely related is the work in (Lu and Negahban, 2015; Park et al., 2015; Oh et al.,
2014) which consider paired comparisons and more general ordinal measurements in the
similar (but as discussed above, subtly different) context of low-rank factorizations. Perhaps
most closely related to our work is that of (Jamieson and Nowak, 2011a), which examines
the problem of learning a rank ordering using the same ideal point model considered in this
paper. The message in this work is broadly consistent with ours, in that the number of
comparisons required should scale with the dimension of the preference space (not the total
number of items) and can be significantly improved via a clever adaptive scheme. However,
this work does not bound the estimation error in terms of the Euclidean distance, which is
our central concern. (Jamieson and Nowak, 2011b) also incorporates adaptivity, but seeks
to embed a set of points in Euclidean space (as opposed to estimating a single user’s ideal
point) and relies on paired comparisons involving three arbitrarily selected points (rather
than a user’s ideal point and two items). Our dyadic adaptive strategy is also similar in
spirit to a higher-dimensional form of binary search, as in (Nowak, 2009), however here
we consider estimating a continuous ideal point x rather than choosing from a finite set of
possible hypotheses.

Constructing an embedding of items given comparison measurements is sometimes
referred to as ordinal embedding and is studied in (Kleindessner and Luxburg, 2014), (Jain
et al., 2016), and (Arias-Castro et al., 2017). As mentioned, in this work we assume the
presence of an item embedding created by e.g., those methods. Our work could then be
used to create a corresponding embedding of users based on response data to perform e.g.,
personalization and customer segmentation.

Finally, while seemingly unrelated, we note that our work builds on the growing body
of literature of 1-bit compressive sensing. In particular, our results are largely inspired by
those in (Knudson et al., 2016; Baraniuk et al., 2017), and borrow techniques from (Jacques
et al., 2013) in the proofs of some of our main results. Our embedding result of Section 4.1
is most directly related to the work of (Plan and Vershynin, 2014), which studies a similar
problem to (2) but under a different, non-pairwise model. Because of this distinction, their
results are not directly applicable. However, due to our particular probabilistic model, our
results are also in some sense stronger. We will expand further with a direct comparison to
this work during the presentation of our result. The 1-bit sensing problem is also considered
in (Plan and Vershynin, 2013b) and (Plan and Vershynin, 2013a) but these works handle
only queries involving homogeneous hyperplanes, without offset, which is not applicable
to our pairwise setting. Ideas similar to 1-bit sensing appear in field of locality sensitive
hashing, e.g, (Konoshima and Noma, 2012) which does treat inhomogeneous hyperplanes
but does not provide theory.

Note that in this work we extend preliminary results first presented in (Massimino and
Davenport, 2016, 2017).
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2. A Randomized Observation Model

For the moment we will consider the “noise-free” setting where each comparison between x
and q𝑖 versus p𝑖 results in assigning the point which is truly closest to x with probability
1. In this case we can represent the observed comparisons mathematically by letting 𝒜𝑖(x)
denote the 𝑖th observation, which consists of comparisons between p𝑖 and q𝑖, and setting

𝒜𝑖(x) := sign
(︁
‖x− q𝑖‖2 − ‖x− p𝑖‖2

)︁
=
{︃

+1 if x is closer to p𝑖

−1 if x is closer to q𝑖.
(1)

We will also use 𝒜(x) := [𝒜1(x), · · · ,𝒜𝑚(x)]𝑇 to denote the vector of all observations
resulting from 𝑚 comparisons. Note that since

‖x− q𝑖‖2 − ‖x− p𝑖‖2 = 2(p𝑖 − q𝑖)𝑇 x + ‖q𝑖‖2 − ‖p𝑖‖2 ,

if we set ǎ𝑖 = (p𝑖 − q𝑖) and 𝜏𝑖 = 1
2(‖p𝑖‖2 − ‖q𝑖‖2), then we can re-write our observation

model as
𝒜𝑖(x) = sign

(︁
2ǎ𝑇

𝑖 x− 2𝜏𝑖

)︁
= sign

(︁
ǎ𝑇

𝑖 x− 𝜏𝑖

)︁
. (2)

This is reminiscent of the standard setup in one-bit compressive sensing (with dithers) (Knud-
son et al., 2016; Baraniuk et al., 2017) with the important differences that: (i) we have not
made any kind of sparsity or other structural assumption on x and, (ii) the “dithers” 𝜏𝑖,
at least in this formulation, are dependent on the ǎ𝑖, which results in difficulty applying
standard results from this theory to the present setting.

However, many of the techniques from this literature will nevertheless be helpful in
analyzing this problem. To see this, we consider a randomized observation model where
the pairs (p𝑖, q𝑖) are chosen independently with i.i.d. entries drawn according to a normal
distribution, i.e., p𝑖, q𝑖 ∼ 𝒩 (0, 𝜎2I). In this case, we have that the entries of our sensing
vectors are i.i.d. with �̌�𝑖(𝑗) ∼ 𝒩 (0, 2𝜎2). Moreover, if we define b𝑖 = p𝑖 + q𝑖, then we also
have that b𝑖 ∼ 𝒩 (0, 2𝜎2I), and

1
2 ǎ𝑇

𝑖 b𝑖 = 1
2
∑︁

𝑗

(p𝑖(𝑗)− q𝑖(𝑗))(p𝑖(𝑗) + q𝑖(𝑗))

= 1
2
∑︁

𝑗

p𝑖(𝑗)2 − q𝑖(𝑗)2 = 1
2(‖p𝑖‖2 − ‖q𝑖‖2) = 𝜏𝑖.

Note that while 𝜏𝑖 = 1
2 ǎ𝑇

𝑖 b𝑖 is clearly dependent on ǎ𝑖, we do have that ǎ𝑖 and b𝑖 are
independent.

To simplify, we re-normalize by dividing by ‖ǎ𝑖‖, i.e., setting a𝑖 := ǎ𝑖/ ‖ǎ𝑖‖ and 𝜏𝑖 :=
𝜏𝑖/ ‖ǎ𝑖‖, in which case we can write

𝒜𝑖(x) = sign(a𝑇
𝑖 x− 𝜏𝑖). (3)

It is easy to see that a𝑖 is distributed uniformly on the sphere S𝑛−1 = {a ∈ R𝑛 : ‖a‖ = 1}.
Note that throughout our analysis we will exploit the fact that a𝑖 is uniform on S𝑛−1 and
will let 𝜈 denote the uniform measure on the sphere. Note also that

𝜏𝑖 = 1
2a𝑇

𝑖 b𝑖.
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Since ǎ𝑖 and b𝑖 are independent, a𝑖 and b𝑖 are also independent. Moreover, for any unit-
vector a𝑖, if b𝑖 ∼ 𝒩 (0, 2𝜎2I) then a𝑇

𝑖 b𝑖 ∼ 𝒩 (0, 2𝜎2). Thus, we must have 𝜏𝑖 ∼ 𝒩 (0, 𝜎2/2),
independent of a𝑖, which is the key insight that enables the analysis below.

3. Guarantees in the Noise-Free Setting

We now state a result concerning localization under the noise-free random model from
Section 2. Extensions to noisy comparisons and efficient estimation in practice are discussed
in Sections 4 and 5, respectively. Let B𝑛

𝑅 denote the 𝑛-dimensional, radius 𝑅 Euclidean ball.

Theorem 1 Let 𝜖, 𝜂 > 0 be given. Let 𝒜𝑖(·) be defined as in (1), and suppose that 𝑚 pairs
{(p𝑖, q𝑖)}𝑚𝑖=1 are generated by drawing each p𝑖 and q𝑖 independently from 𝒩 (0, 𝜎2𝐼) where
𝜎2 = 2𝑅2/𝑛. There exists a constant 𝐶 such that if

𝑚 ≥ 𝐶
𝑅

𝜖

(︃
𝑛 log 𝑅

√
𝑛

𝜖
+ log 1

𝜂

)︃
, (4)

then with probability at least 1− 𝜂, for all x, y ∈ B𝑛
𝑅 such that 𝒜(x) = 𝒜(y),

‖x− y‖ ≤ 𝜖.

The result follows from applying Lemma 2 below to pairs of points in a covering set of B𝑛
𝑅.

The key message of this theorem is that if one chooses the variance 𝜎2 of the distribution
generating the items appropriately, then it is possible to estimate x to within 𝜖 using a
number of comparisons that is nearly linear in 𝑛/𝜖. As we will show in Theorem 3, this
result is optimal, ignoring log factors, in terms of the scaling of 𝑚 with 𝑛 and 𝜖. This also
makes intuitive sense; if all the hyperplanes were all axis-aligned, one would require the
number of hyperplanes be at least proportional to the number of dimensions, 𝑛, otherwise
some direction would be unconstrained. Theorem 1 is also sensible in terms of the ratio of
the initial uncertainty 𝑅 to the target uncertainty 𝜖 since 𝑅/𝜖 hyperplanes would be required
to uniformly localize a point along a single dimension.

A natural question is what would happen with a different choice of 𝜎2. In fact, this
assumption is critical—if 𝜎2 is substantially smaller the bound quickly becomes vacuous, and
as 𝜎2 grows much past 𝑅2/𝑛 the bound begins to become steadily worse.1 As we will see in
Section 6, this is in fact observed in practice. It should also be somewhat intuitive: if 𝜎2 is
too small, then nearly all the hyperplanes induced by the comparisons will pass very close to
the origin, so that accurate estimation of even ‖x‖ becomes impossible. On the other hand,
if 𝜎2 is too large, then an increasing number of these hyperplanes will not even intersect the
ball of radius 𝑅 in which x is presumed to lie, thus yielding no new information.

Lemma 2 Let w, z ∈ B𝑛
𝑅 be distinct and fixed, and let 𝛿 > 0 be given. Define

𝐵𝛿(w) := {u ∈ B𝑛
𝑅 : ‖u−w‖ ≤ 𝛿}.

1. We note that it is possible to try to optimize 𝜎2 by setting 𝜎2 = 𝑐𝑅2/𝑛 for some constant 𝑐 and then
selecting 𝑐 so as to minimize the constant 𝐶 in (4). We believe this would yield limited insight since,
in order to obtain a result which is valid uniformly for all possible 𝑛, we use certain bounds which for
general 𝑛 can be somewhat loose and would skew the resulting 𝑐. We instead simply select 𝑐 = 2 for
simplicity in our analysis (as it results in 𝜏𝑖 ∼ 𝒩 (0, 𝑅2/𝑛)) and because it aligns well with simulations.
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Let 𝒜𝑖 be defined as in Theorem 1. Denote by 𝑃sep the probability that 𝐵𝛿(w) and 𝐵𝛿(z) are
separated by hyperplane 𝑖, i.e.,

𝑃sep := P [∀u ∈ 𝐵𝛿(w),∀v ∈ 𝐵𝛿(z) : 𝒜𝑖(u) ̸= 𝒜𝑖(v)] .

For any 𝜖0 ≤ ‖w− z‖ we have

𝑃sep ≥
𝜖0 − 𝛿

√
2𝑛

22
√

𝜋𝑒5/2𝑅
.

Proof Let 𝜖 = ‖w− z‖. Here, we denote the normal vector and threshold of hyperplane 𝑖
by a and 𝜏 respectively. It is easy to show that 𝑃sep can be expressed as

𝑃sep = P
[︁
a𝑇 z + 𝛿 ≤ 𝜏 ≤ a𝑇 w− 𝛿 or a𝑇 w + 𝛿 ≤ 𝜏 ≤ a𝑇 z− 𝛿

]︁
= 2P

[︁
a𝑇 z + 𝛿 ≤ 𝜏 ≤ a𝑇 w− 𝛿

]︁
, (5)

where the second equality follows from the symmetry of the distributions of a and 𝜏 .
Define 𝐶𝛼 := {a ∈ S𝑛−1 : a𝑇 (w− z) ≥ 𝛼}. Note that the probability in (5) is zero unless

a ∈ 𝐶2𝛿. Thus, recalling that 𝜏𝑖 ∼ 𝒩 (0, 𝜎2/2) we have

𝑃sep = 2
∫︁

𝐶2𝛿

⃒⃒⃒⃒
⃒Φ
(︃

a𝑇 w− 𝛿

𝜎/
√

2

)︃
− Φ

(︃
a𝑇 z + 𝛿

𝜎/
√

2

)︃⃒⃒⃒⃒
⃒ 𝜈(da)

≥ 2
∫︁

𝐶′

⃒⃒⃒⃒
⃒Φ
(︃

a𝑇 w− 𝛿

𝜎/
√

2

)︃
− Φ

(︃
a𝑇 z + 𝛿

𝜎/
√

2

)︃⃒⃒⃒⃒
⃒ 𝜈(da) (6)

for any 𝐶 ′ ⊆ 𝐶2𝛿. To obtain a lower bound on (6), we will consider a carefully chosen subset
𝐶 ′ ⊆ 𝐶2𝛿 and then simply multiply the area of 𝐶 ′ by the minimum value 𝛾 of the integrand
over that set, yielding a bound of the form

𝑃sep ≥ 2𝛾𝜈(𝐶 ′).

We construct the set 𝐶 ′ as follows. Let 𝑊 := {a : a𝑇 w ≤ 𝜉/
√

𝑛 ‖w‖}, 𝑍 := {a : a𝑇 z ≥
−𝜉/
√

𝑛 ‖z‖}, and set 𝐶 ′ := 𝐶𝛼 ∩ 𝑊 ∩ 𝑍 for some 𝛼 ≥ 2𝛿. Note that for any a ∈ 𝐶 ′,
since a𝑇 (w − z) ≥ 𝛼 ≥ 2𝛿, we have −𝑅𝜉/

√
𝑛 ≤ a𝑇 z + 𝛿 ≤ a𝑇 w − 𝛿 ≤ 𝑅𝜉/

√
𝑛. Thus, by

Lemma 11,

𝛾 = inf
a∈𝐶′

⃒⃒⃒⃒
⃒Φ
(︃

a𝑇 w− 𝛿

𝜎/
√

2

)︃
− Φ

(︃
a𝑇 z + 𝛿

𝜎/
√

2

)︃⃒⃒⃒⃒
⃒ ≥
√

2
𝜎

(𝛼− 2𝛿)𝜑
(︂√2𝑅𝜉

𝜎
√

𝑛

)︂
.

Recall by assumption we have that 𝜎 =
√

2𝑅/
√

𝑛, thus we obtain by setting 𝜉 =
√

5,

𝛾 ≥
√

𝑛

𝑅
(𝛼− 2𝛿)𝜑(𝜉) =

√
𝑛(𝛼− 2𝛿)√
2𝜋𝑒5/2𝑅

. (7)

Next note that 𝐶 ′ = 𝐶𝛼 ∩𝑊 ∩𝑍 = 𝐶𝛼 ∖𝑊 𝑐 ∖𝑍𝑐 is a difference of a set of hyperspherical
caps. To obtain a lower bound on 𝜈(𝐶 ′) we use the upper and lower bounds on the measure
of hyperspherical caps given in Lemma 2.1 of (Brieden et al., 2001).
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Case 𝑛 ≥ 6 Provided that 𝛼/𝜖 <
√︀

2/𝑛 we can bound 𝜈(𝐶 ′) as

𝜈(𝐶 ′) ≥ 𝜈(𝐶𝛼)− 𝜈(𝑊 𝑐)− 𝜈(𝑍𝑐) ≥ 1
12 − 2 1

2𝜉
(1− 𝜉2/𝑛)(𝑛−1)/2 ≥ 1

12 −
1√

5𝑒5/2 ,

where the last inequality follows from the fact that (1 − 𝑥/𝑛)𝑛−1 ≤ 𝑒−𝑥 for 𝑛 ≥ 𝑥 ≥ 2.
Combining this with lower estimate (7),

𝑃sep ≥ 2𝛾𝜈(𝐶 ′) ≥ 2
√

𝑛(𝛼− 2𝛿)√
2𝜋𝑒2𝑅

1− 12𝑒−5/2/
√

5
12 .

Setting 𝛼 = 𝛿 + 𝜖/
√

2𝑛, since 1− 12𝑒−5/2/
√

5 > 5/9, we have that

𝑃sep ≥
2
√

𝑛(𝜖/
√

2𝑛− 𝛿)(1− 12𝑒−5/2/
√

5)
12
√

2𝜋𝑒5/2𝑅
≥ 𝜖− 𝛿

√
2𝑛

22
√

𝜋𝑒5/2𝑅
.

Note that this bound holds under the assumption that 𝛼/𝜖 <
√︀

2/𝑛, which for our choice
of 𝛼 is equivalent to the assumption that 𝜖 > 𝛿

√
2𝑛. However, this bound also holds trivially

for all 𝜖 ≤ 𝛿
√

2𝑛, and thus in fact holds for all 𝜖 ≥ 0.

Case 𝑛 ≤ 5 In this case, note that 𝜉/
√

𝑛 ≥ 1, so the sets 𝑊 and 𝑍 are the entire sphere.
Hence, 𝜈(𝑊 𝑐) = 𝜈(𝑍𝑐) = 0 and 𝜈(𝐶 ′) = 𝜈(𝐶𝛼) ≥ 1

12 . Thus,

𝑃sep ≥ 2𝛾𝜈(𝐶 ′) ≥ 𝜖− 𝛿
√

2𝑛

12
√

𝜋𝑒5/2𝑅
.

We obtain the stated lemma by noting 𝜖0 ≤ 𝜖.

Proof of Theorem 1 Let 𝑃e denote the probability that there exists some x, y ∈ B𝑛
𝑅 with

‖x− y‖ > 𝜖 and 𝒜(x) = 𝒜(y). Our goal is to show that 𝑃e ≤ 𝜂. Towards this end, let 𝑈 be
a 𝛿-covering set for B𝑛

𝑅 with |𝑈 | ≤ (3𝑅/𝛿)𝑛. By construction, for any x, y ∈ B𝑛
𝑅, there exist

some w, z ∈ 𝑈 satisfying ‖x−w‖ ≤ 𝛿 and ‖y− z‖ ≤ 𝛿. In this case, if ‖x− y‖ > 𝜖 then

‖w− z‖ ≥ ‖x− y‖ − 2𝛿 > 𝜖− 2𝛿.

Our goal is to upper bound the probability that there exists some w, z ∈ 𝑈 with ‖w− z‖ ≥
𝜖0 = 𝜖− 2𝛿 and 𝒜(u) = 𝒜(v) for some u ∈ 𝐵𝛿(w) and v ∈ 𝐵𝛿(z). Said differently, we would
like to bound the probability that there exists a w, z ∈ 𝑈 with ‖w− z‖ ≥ 𝜖0 for which
𝐵𝛿(w) and 𝐵𝛿(z) are not separated by any of the 𝑚 hyperplanes.

Let 𝑃𝑚(w, z) denote the probability that 𝐵𝛿(w) and 𝐵𝛿(z) are not separated by any
of the 𝑚 hyperplanes for a fixed w, z ∈ 𝑈 with ‖w− z‖ ≥ 𝜖0. Lemma 2 controls this
probability for a single hyperplane, yielding a bound of

1− 𝑃sep ≤ 1− 𝜖0 − 𝛿
√

2𝑛

22
√

𝜋𝑒5/2𝑅
.

Since the (p𝑖, q𝑖) are independent, we obtain

𝑃𝑚(w, z) ≤
(︃

1− 𝜖0 − 𝛿
√

2𝑛

22
√

𝜋𝑒5/2𝑅

)︃𝑚

. (8)
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Since we are interested in the event that there exists any w, z ∈ 𝑈 with ‖w− z‖ ≥ 𝜖0 for
which 𝐵𝛿(w) and 𝐵𝛿(z) are separated by none of the 𝑚 hyperplanes, we use the fact that
there are at most (3𝑅/𝛿)2𝑛 such pairs w, z and combine a union bound with (8) to obtain

𝑃e ≤
(︂3𝑅

𝛿

)︂2𝑛
(︃

1− 𝜖0 − 𝛿
√

2𝑛

22
√

𝜋𝑒5/2𝑅

)︃𝑚

≤ exp

⎛⎝2𝑛 log 3𝑅

𝛿
−

(︁
𝜖0 − 𝛿

√
2𝑛
)︁

𝑚

22
√

𝜋𝑒5/2𝑅

⎞⎠ , (9)

which follows from (1− 𝑥) ≤ 𝑒−𝑥. Bounding the right-hand side of (9) by 𝜂, we obtain

2𝑛 log 3𝑅

𝛿
−

(︁
𝜖0 − 𝛿

√
2𝑛
)︁

𝑚

22
√

𝜋𝑒5/2𝑅
≤ log 𝜂. (10)

If we now make the substitutions 𝜖0 = 𝜖 − 2𝛿 and 𝛿 = 𝜖/(4 +
√

8𝑛), then we have that
𝜖0 − 𝛿

√
𝑛 = 𝜖/2 and thus we can reduce (10) to

2𝑛 log 3𝑅(4 +
√

8𝑛)
𝜖

− 𝜖𝑚

44
√

𝜋𝑒5/2𝑅
≤ log 𝜂.

By rearranging, we see that this is equivalent to

𝑚 ≥ 44
√

𝜋𝑒5/2 𝑅

𝜖

(︃
2𝑛 log 3𝑅(4 +

√
8𝑛)

𝜖
+ log 1

𝜂

)︃
. (11)

One can easily show that (4) implies (11) for an appropriate choice of 𝐶.

We now show that the result in Theorem 1 is optimal in the sense that any set of
comparisons which can guarantee a uniform recovery of all x ∈ B𝑛

𝑅 to accuracy 𝜖 will require
a number of comparisons on the same order as that required in Theorem 1 (up to log factors).

Theorem 3 For any configuration of 𝑚 (inhomogeneous) hyperplanes in R𝑛 dividing B𝑛
𝑅

into cells, if 𝑚 < 2
𝑒

𝑅
𝜖 𝑛, then there exist two points x, y ∈ B𝑛

𝑅 in the same cell such that
‖x− y‖ ≥ 𝜖.

Proof We will use two facts. First, the number of cells (both bounded and unbounded)
defined by 𝑚 hyperplanes in R𝑛 in general position2 is given by

𝐹𝑛(𝑚) =
𝑛∑︁

𝑖=0

(︃
𝑚

𝑖

)︃
≤
(︂

𝑒𝑚

𝑛

)︂𝑛

<

(︂2𝑅

𝜖

)︂𝑛

, (12)

where the second inequality follows from the assumption that 𝑚 < 2𝑅𝑛/𝑒𝜖.
Second, for any convex set 𝐾 we have the isodiametric inequality (Giaquinta and Modica,

2010): where Diam(𝐾) = sup𝑥,𝑦∈𝐾 ‖𝑥− 𝑦‖,
(︂Diam(𝐾)

2

)︂𝑛 𝜋𝑛/2

Γ(𝑛/2 + 1) ≥ Vol(𝐾), (13)

2. For non-general position, this is an upper bound (Buck, 1943).

9
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with equality when 𝐾 is a ball. Since the entire volume of B𝑛
𝑅, denoted Vol(B𝑛

𝑅), is filled by
at most 𝐹𝑛(𝑚) non-overlapping cells, there must exist at least one such cell 𝐾0 with

Vol(𝐾0) ≥ Vol(B𝑛
𝑅)

𝐹𝑛(𝑚) = 𝜋𝑛/2

Γ(𝑛/2 + 1)
𝑅𝑛

𝐹𝑛(𝑚) . (14)

Combining (13) with (14), we obtain(︂Diam(𝐾0)
2

)︂𝑛

≥ 𝑅𝑛

𝐹𝑛(𝑚) ,

which, together with (12), implies that

Diam(𝐾0) ≥ 2𝑅
𝑛
√︀

𝐹𝑛(𝑚)
> 𝜖.

Thus there are vectors x, y ∈ 𝐾0 such that ‖x− y‖ > 𝜖.

4. Stability in Noise

So far, we have only considered the noise-free case. In most practical applications, obser-
vations may be corrupted by noise. We consider two scenarios; in the first, we make no
assumption on the source of the errors and instead show the paired comparison observations
are stable with respect to Euclidean distance. That is, two signals that have similar sign
patterns are also nearby (and vice-versa). One can view this as a strengthening of the result
in Theorem 1. In the second case, Gaussian noise is added prior to the sign(·) function in (3).
This is equivalent to the Thurstone model (Thurstone, 1927) with the Probit (normal) link.

The results of this section apply without considering any particular recovery method
or algorithm and relate to the number of paired comparisons which may be flipped due to
the noise, not from reconstruction. We address these concerns by introducing a practical
algorithm and associated guarantees in Section 5.

Throughout the following, we denote by 𝑑𝐻 the Hamming distance, i.e., 𝑑𝐻 counts the
fraction of comparisons which differ between two sets of observations, here denoted 𝒜(x)
and 𝒜(y):

𝑑𝐻(𝒜(x),𝒜(y)) := 1
𝑚

𝑚∑︁
𝑖=1

1
2 |𝒜𝑖(x)−𝒜𝑖(y)|. (15)

4.1 Stable Embedding

Here we show that given enough comparisons there is an approximate embedding of the
preference space into {−1, 1}𝑚 via our model. Theorem 4 states that if x and y are sufficiently
close, then the respective comparison patterns 𝒜(x) and 𝒜(y) closely align. In contrast with
Theorem 8, Theorem 4 is a purely geometric statement which makes no assumptions on any
particular noise model. Note also that Theorem 4 applies uniformly for all x and y.

10
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Theorem 4 Let 𝜂, 𝜁 > 0 be given. Let 𝒜(x) denote the collection of 𝑚 observations defined
as in Theorem 1. There exist constants 𝐶1, 𝑐1, 𝐶2, 𝑐2 such that if

𝑚 ≥ 1
2𝜁2

(︃
2𝑛 log 3

√
𝑛

𝜁
+ log 2

𝜂

)︃
, (16)

then with probability at least 1− 𝜂, for all x, y ∈ B𝑛
𝑅 we have

𝐶1
‖x− y‖

𝑅
− 𝑐1𝜁 ≤ 𝑑𝐻(𝒜(x),𝒜(y)) ≤ 𝐶2

‖x− y‖
𝑅

+ 𝑐2𝜁. (17)

This result implies that the fraction of differences in the set of observed comparisons
between x and y will be constrained to within a constant factor of the Euclidean distance,
plus an additive error approximately proportional to 1/

√
𝑚. At first glance, this seems worse

than the result of Theorem 1, which suggests the rate 1/𝑚. However, Theorem 4 comes with
much greater flexibility in that Theorem 1 only concerns the case where 𝑑𝐻(𝒜(x),𝒜(y)) = 0.
As in Theorem 1, this result applies for all x on the same randomly drawn set of items.

This result is very reminiscent of Theorem 1.10 in (Plan and Vershynin, 2014) which
concerns tessellations under uniform random affine hyperplanes generated according to the
Haar measure, rather than the particular Gaussian model we study. Compared to that
work, our result is much better in terms of the scaling of the lower bound on 𝑚 with respect
to distortion 𝜁 (they predict 1/𝜁12 while ours is 1/𝜁2). This is due to both our specific
probabilistic model and because we do not use the technique of “lifting” the problem to
dimension 𝑛 + 1 in our analysis because it would incur additional distortion. On the other
hand, the result of (Plan and Vershynin, 2014) is applicable to x lying in an arbitrary convex
body whereas our result considers only x within a radius 𝑅 ball.

Unlike in Theorem 1, we are not aware whether the relationship between 𝜁 and 𝑚 given
in Theorem 4 is optimal. This result is related to open questions concerning Dvoretzky’s
theorem for embedding ℓ2 into ℓ1. See the discussion of optimality in Section 1.7 of (Plan
and Vershynin, 2014) and Remark 1.6 of (Plan and Vershynin, 2013b).

In the context of a hypothetical recovery problem, suppose x is a parameter of interest
and y is an estimate produced by any algorithm. Then, (17) says that if we want to recover
x to within error 𝜖, the algorithm should look for vectors y which have up to 𝑂(𝜖) incorrect
comparisons. Likewise, if a y can be found having up to 𝑂(𝜖) comparison errors, we have
the same 𝑂(𝜖) guarantee on the Euclidean error of the estimate. In many cases, such as
when errors are generated randomly, Theorem 1 would be inappropriate because finding a y
such that 𝑑𝐻(𝒜(x),𝒜(y)) = 0 is likely to be impossible.

To prove Theorem 4 we will require the following Lemmas 5 and 6.

Lemma 5 Let w, z ∈ B𝑛
𝑅 be distinct and fixed, and let 𝛿 > 0 be given. Let 𝒜(x) denote the

collection of 𝑚 observations defined as in Theorem 1, and let 𝐵𝛿(·) be defined as in Lemma 2.
Denote by 𝑃0 the probability that 𝐵𝛿(w) and 𝐵𝛿(z) are not separated by hyperplane 𝑖, i.e.,

𝑃0 = P [∀u ∈ 𝐵𝛿(w), ∀v ∈ 𝐵𝛿(z) : 𝒜𝑖(u) = 𝒜𝑖(v)] .

Then
1− 𝑃0 ≤

√︂
2
𝜋

(︃
‖w− z‖

𝑅
+ 𝛿
√

𝑛

𝑅

)︃
.

11
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Proof We need an upper bound on

1− 𝑃0 = P [𝒜𝑖(u) ̸= 𝒜𝑖(v) for some u ∈ 𝐵𝛿(w), v ∈ 𝐵𝛿(z)] .

Suppose for now that a is fixed and without loss of generality that a𝑇 w > a𝑇 z. Then this
probability is simply

P
[︁
a𝑇 v < 𝜏 < a𝑇 u for some u ∈ 𝐵𝛿(w), v ∈ 𝐵𝛿(z)

]︁
= P

[︃
min

v∈𝐵𝛿(z)
a𝑇 v < 𝜏 < max

u∈𝐵𝛿(w)
a𝑇 u

]︃
≤ P

[︁
a𝑇 z− 𝛿 < 𝜏 < a𝑇 w + 𝛿

]︁
,

since by Cauchy–Schwarz we have

min
v∈𝐵𝛿(z)

a𝑇 v ≥ a𝑇 z− 𝛿 and max
u∈𝐵𝛿(w)

a𝑇 u ≤ a𝑇 w + 𝛿.

Thus, recalling that 𝜏𝑖 ∼ 𝒩 (0, 𝑅2/𝑛), from Lemma 11 we have

P
[︁
a𝑇 z− 𝛿 < 𝜏 < a𝑇 w + 𝛿

]︁
= Φ

(︃
a𝑇 w + 𝛿

𝑅/
√

𝑛

)︃
− Φ

(︃
a𝑇 z− 𝛿

𝑅/
√

𝑛

)︃

≤ 1
𝑅

√︂
𝑛

2𝜋

(︁
a𝑇 (w− z) + 2𝛿

)︁
.

Similarly, for a𝑇 w < a𝑇 z we have

P
[︁
a𝑇 w− 𝛿 < 𝜏 < a𝑇 z + 𝛿

]︁
≤ 1

𝑅

√︂
𝑛

2𝜋

(︁
a𝑇 (z−w) + 2𝛿

)︁
.

Combining these we have

1− 𝑃0 ≤
∫︁
S𝑛−1

1
𝑅

√︂
𝑛

2𝜋

(︁
|a𝑇 (w− z)|+ 2𝛿

)︁
𝜈(da)

= 1
𝑅

√︂
𝑛

2𝜋

∫︁
S𝑛−1
|a𝑇 (w− z)| 𝜈(da) + 2𝛿

𝑅

√︂
𝑛

2𝜋

=
√

2𝑛

𝑅𝜋

Γ(𝑛
2 )

Γ(𝑛+1
2 )
‖w− z‖+ 𝛿

𝑅

√︂
2𝑛

𝜋
,

where the last equality is proven in Lemma 12. The lemma then follows from the facts that
Γ(1/2)
Γ(1) =

√
𝜋 and Γ( 𝑛

2 )
Γ( 𝑛+1

2 ) ≤
2√

2𝑛−1 ≤
√︁

𝜋
𝑛 for 𝑛 ≥ 2 (Qi, 2010, (2.20)).

Lemma 6 Let w, z ∈ B𝑛
𝑅 be distinct and fixed, and let 𝛿, 𝜁 > 0 be given. Let 𝒜(x) denote

the collection of 𝑚 observations defined as in Theorem 1, and let 𝐵𝛿(·) be defined as in
Lemma 2. Then for all u ∈ 𝐵𝛿(w) and v ∈ 𝐵𝛿(z),

1
22𝑒5/2√𝜋

(︃
‖w− z‖

𝑅
− 𝛿
√

2𝑛

𝑅

)︃
− 𝜁 ≤ 𝑑𝐻(𝒜(u),𝒜(v)) ≤

√︂
2
𝜋

(︃
‖w− z‖

𝑅
+ 𝛿
√

𝑛

𝑅

)︃
+ 𝜁,

with probability at least 1− exp(−2𝜁2𝑚).
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Proof Fix 𝛿 > 0 and let u ∈ 𝐵𝛿(w), v ∈ 𝐵𝛿(z). Recall that the Hamming distance 𝑑𝐻 is
a sum of independent and identically distributed Bernoulli random variables and we may
bound it using Hoeffding’s inequality. Since our probabilistic upper and lower bounds must
hold for all u, v as described above, we introduce quantities 𝐿0 and 𝐿1 which represent two
“extreme cases” of the Bernoulli variables:

𝐿0 := sup
u∈𝐵𝛿(w),v∈𝐵𝛿(z)

1
2𝑚

𝑚∑︁
𝑖=1
|𝒜𝑖(u)−𝒜𝑖(v)|

𝐿1 := inf
u∈𝐵𝛿(w),v∈𝐵𝛿(z)

1
2𝑚

𝑚∑︁
𝑖=1
|𝒜𝑖(u)−𝒜𝑖(v)|.

Then we have
𝐿1 ≤ 𝑑𝐻(𝒜(u),𝒜(v)) ≤ 𝐿0.

Denote 𝑃0 = 1− E𝐿0 and 𝑃1 = E𝐿1, i.e.,

𝑃0 = P [∀u ∈ 𝐵𝛿(w), ∀v ∈ 𝐵𝛿(z) : 𝒜𝑖(u) = 𝒜𝑖(v)]
𝑃1 = P [∀u ∈ 𝐵𝛿(w), ∀v ∈ 𝐵𝛿(z) : 𝒜𝑖(u) ̸= 𝒜𝑖(v)] .

By Hoeffding’s inequality,

P [𝐿0 > (1− 𝑃0) + 𝜁] ≤ exp(−2𝑚𝜁2)
P [𝐿1 < 𝑃1 − 𝜁] ≤ exp(−2𝑚𝜁2).

Hence, with probability at least 1− 2 exp(−2𝑚𝜁2),

𝑃1 − 𝜁 ≤ 𝑑𝐻(𝒜(u),𝒜(v)) ≤ (1− 𝑃0) + 𝜁.

The result follows directly from this combined with the facts that from Lemma 2 we have

𝑃1 ≥
1

22𝑒5/2√𝜋

(︃
‖w− z‖

𝑅
− 𝛿
√

2𝑛

𝑅

)︃
,

and from Lemma 5 we have

1− 𝑃0 ≤
√︂

2
𝜋

(︃
‖w− z‖

𝑅
+ 𝛿
√

𝑛

𝑅

)︃
.

Proof of Theorem 4 By Lemma 6, for any fixed pair w, z ∈ B𝑛
𝑅 we have bounds on the

Hamming distance that hold with probability at least 1− 2 exp(−2𝜁2𝑚), for all u ∈ 𝐵𝛿(w)
and v ∈ 𝐵𝛿(z). Recall that the radius 𝑅 ball can be covered with a set 𝑈 of radius 𝛿
balls with |𝑈 | ≤ (3𝑅/𝛿)𝑛. Thus, by a union bound we have that with probability at least
1− 2(3𝑅/𝛿)2𝑛 exp(−2𝜁2𝑚), for any w, z ∈ 𝑈 ,

1
22𝑒5/2√𝜋

(︃
‖w− z‖

𝑅
− 𝛿
√

2𝑛

𝑅

)︃
− 𝜁 ≤ 𝑑𝐻(𝒜(u),𝒜(v)) ≤

√︂
2
𝜋

(︃
‖w− z‖

𝑅
+ 𝛿
√

𝑛

𝑅

)︃
+ 𝜁,
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for all u ∈ 𝐵𝛿(w) and v ∈ 𝐵𝛿(z). Since ‖x− y‖−2𝛿 ≤ ‖w− z‖ ≤ ‖x− y‖+2𝛿, this implies
that

1
22𝑒5/2√𝜋

(︃
‖x− y‖ − 2𝛿

𝑅
− 𝛿
√

2𝑛

𝑅

)︃
−𝜁 ≤ 𝑑𝐻(𝒜(x),𝒜(y)) ≤

√︂
2
𝜋

(︃
‖x− y‖+ 2𝛿

𝑅
+ 𝛿
√

𝑛

𝑅

)︃
+𝜁,

Letting 𝛿 = 𝜁𝑅/
√

𝑛 and setting 𝐶1, 𝑐1, 𝐶2, 𝑐1 appropriately3 this reduces to (17). Lower
bounding the probability by 1− 𝜂, we obtain

2(3
√

𝑛/𝜁)2𝑛 exp(−2𝜁2𝑚) ≤ 𝜂.

Rearranging yields (16).

4.2 Gaussian Noise

Here we aim to understand how the paired comparisons change with the introduction of
“pre-quantization” Gaussian noise. This will have the effect of causing some comparisons to
be erroneous, where the probability of an error will be largest when x is equidistant from p𝑖

and q𝑖 and will decay as x moves away from this boundary.
Towards this end, recall that the observation model in (1) can be reduced to the form

𝒜𝑖(x) = sign(𝑞𝑖) 𝑞𝑖 := a𝑇
𝑖 x− 𝜏𝑖. (18)

In the noisy case, we will consider the observations

𝒜𝑖(x) = sign(𝑞𝑖) 𝑞𝑖 := a𝑇
𝑖 x− 𝜏𝑖 + 𝑧𝑖 = 𝑞𝑖 + 𝑧𝑖, (19)

where 𝑧𝑖 ∼ 𝒩 (0, 𝜎2
𝑧). Note that since ‖a𝑖‖ = 1, this model is equivalent to adding multivariate

Gaussian noise directly to x with covariance 𝜎2
𝑧I. For a fixed x, we can then quantify the

probability that 𝑑𝐻(𝒜(x),𝒜(x)) is large via our next two results. We first consider the case
of a single comparison in Lemma 7, then extend this to an arbitrary number of comparisons
in Theorem 8.

Lemma 7 Suppose 𝑛 ≥ 4. Then P[𝒜𝑖(x) ̸= 𝒜𝑖(x)] ≤ 𝜅𝑛(𝜎2
𝑧) where 𝜅𝑛 is defined by

𝜅𝑛(𝜎2
𝑧) := 1

2

√︃
𝜎2

𝑧

𝜎2
𝑧 + 2𝑅2/𝑛 + 4 ‖x‖2 /𝑛

≤ 1
2

√︃
1

1 + 2𝑅2/(𝑛𝜎2
𝑧) . (20)

For clarity, we focus here on the 𝑛 ≥ 4 case. We consider the 𝑛 = 2 and 𝑛 = 3 cases separately
because when 𝑛 ≥ 4 the probability distribution function of a𝑇

𝑖 x is well-approximated by a
Gaussian function but not for 𝑛 < 4. We give alternative expressions for 𝜅𝑛 when 𝑛 = 2 and
𝑛 = 3 in Appendix B.

3. We set 𝐶1 = 1/22𝑒5/2√
𝜋 and 𝐶2 =

√︀
2/𝜋. We may set 𝑐1 = 1+1/11𝑒5/2√

𝜋+
√︀

2/𝜋 and 𝑐2 = 1+3
√︀

2/𝜋
to obtain constants that are valid for all 𝑛—improved values are possible for large 𝑛.
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Theorem 8 Suppose 𝑛 ≥ 4 and fix x ∈ B𝑛
𝑅. Let 𝒜(x) and 𝒜(x) denote the collection of 𝑚

observations defined as in (18) and (19) respectively, where the {(p𝑖, q𝑖)}𝑚𝑖=1 (and hence the
{(a𝑖, 𝜏𝑖)}𝑚𝑖=1) are generated as in Theorem 1. Then,

E 𝑑𝐻(𝒜(x),𝒜(x)) ≤ 𝜅𝑛(𝜎2
𝑧) ≤ 1

2

√︃
1

1 + 2𝑅2/(𝑛𝜎2
𝑧) . (21)

and
P
[︁
𝑑𝐻(𝒜(x),𝒜(x)) ≥ 𝜅𝑛(𝜎2

𝑧) + 𝜁
]︁
≤ exp(−2𝑚𝜁2). (22)

where 𝜅𝑛 is defined in (20).

Proof By Lemma 7, we have that P[𝒜𝑖(x) ̸= 𝒜𝑖(x)] is bounded by 𝜅𝑛(𝜎2
𝑧). Since the

comparisons are independent, the expected number of sign mismatches is just the probability
of a sign flip just computed, which establishes (21). The tail bound in (22) is a simple
consequence of Hoeffding’s inequality.

The bound (21) of Theorem 8 behaves as one would expect. If the variance 𝜎2
𝑧 of the

added Gaussian noise is small, we predict that the expected fraction of errors is also small.
To place this result in context, recall that 𝜏𝑖 ∼ 𝒩 (0, 𝑅2/𝑛). Suppose that 𝜎2

𝑧 = 𝑐0𝑅2/𝑛. In
this case one can bound 𝜅𝑛(𝜎2

𝑧) in (20) as

1
2

√︂
𝑐0

𝑐0 + 6 ≤ 𝜅𝑛(𝜎2
𝑧) ≤ 1

2

√︂
𝑐0

𝑐0 + 2 .

Intuitively, if 𝑐0 is close to 1, meaning the noise variance is comparable to that of 𝜏𝑖,
then we would expect to lose a significant amount of information about x, in which case
𝑑𝐻(𝒜(x),𝒜(x)) could potentially be quite large. In contrast, by letting 𝑐0 grow small we
can bound 𝜅𝑛(𝜎2

𝑧) ≤
√︀

𝑐0/8 arbitrarily close to zero.
It is instructive to consider Theorem 8 next to Theorem 4, which also predicts the

fraction of sign mismatches up to an additive constant which is proportional to 1/
√

𝑚. (21)
and (22) provide upper estimates of the level of comparison errors which is unavoidable,
regardless of recovery technique. If, in a particular application the noise is expected to
be Gaussian, the bound in (22) can be used in the lower half of (17) to create a recovery
guarantee. Note that since Theorem 4 is a uniform guarantee, better estimates than this
could be possible in the specific case of Gaussian noise. We explore Gaussian noise further
in Section 5.1.
Proof of Lemma 7 The probability of a sign flip is given by

P [𝑞𝑖𝑞𝑖 < 0] = P [𝑞𝑖 < 0 and 𝑞𝑖 > 0] + P [𝑞𝑖 > 0 and 𝑞𝑖 < 0] .

Note that if we set 𝑟𝑖 := a𝑇
𝑖 x/ ‖x‖ ∈ [−1, 1], then we can write 𝑞𝑖 = 𝑟𝑖 ‖x‖ − 𝜏𝑖 and

𝑞𝑖 = 𝑟𝑖 ‖x‖ − 𝜏𝑖 + 𝑧𝑖 where the random variables 𝑟𝑖, 𝜏𝑖, and 𝑧𝑖 are independent. Where 𝑓𝑟(𝑟𝑖)
denotes the probability density functions for 𝑟𝑖 and recalling that 𝜏𝑖 ∼ 𝒩 (0, 2𝑅2/𝑛), we
show in Appendix B using standard Gaussian tail bounds that

P[𝑞𝑖𝑞𝑖 < 0] ≤ 1
𝑅

√︂
𝑛

𝜋

∫︁ 1

0

∫︁ ∞

−∞
𝑓𝑟(𝑟𝑖) exp

(︃
−(𝑟𝑖 ‖x‖ − 𝜏𝑖)2

2𝜎2
𝑧

− 𝑛𝜏2
𝑖

4𝑅2

)︃
d𝜏𝑖 d𝑟𝑖. (23)
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The remainder of the proof (given in Appendix B) is obtained by bounding this integral.
Note that in general, we have 1

2(𝑟𝑖 + 1) ∼ Beta((𝑛− 1)/2, (𝑛− 1)/2), but 𝑟𝑖 is asymptotically
normal with variance 1/𝑛 (Spruill, 2007). For 𝑛 ≥ 4, we use the simple upper bound

𝑓𝑟(𝑟𝑖) = 1
2

[︂
𝐵

(︂
𝑛− 1

2 ,
𝑛− 1

2

)︂]︂−1(︂1 + 𝑟𝑖

2
1− 𝑟𝑖

2

)︂(𝑛−3)/2

≤ 1
2

[︃√
2𝜋 𝑛−1

2
(𝑛−2)/2 𝑛−1

2
(𝑛−2)/2

(𝑛− 1)𝑛−1−1/2

]︃−1(︃
1− 𝑟2

𝑖

4

)︃(𝑛−3)/2

= 1
2

[︂ √
2𝜋

2𝑛−2√𝑛− 1

]︂−1 1
2𝑛−3 exp(−(𝑛− 3)𝑟2

𝑖 /2)

=
√

𝑛− 1
4
√

2𝜋
exp(−(𝑛− 3)𝑟2

𝑖 /2) ≤
√

𝑛

4
√

2𝜋
exp(−𝑛𝑟2

𝑖 /8). (24)

This follows from the standard inequalities 𝐵(𝑥, 𝑦) ≥
√

2𝜋𝑥𝑥−1/2𝑦𝑦−1/2/(𝑥 + 𝑦)𝑥+𝑦−1/2 (e.g.,
Grenié and Molteni, 2015) and 1− 𝑥 ≤ exp(−𝑥).

5. Estimation Algorithm and Guarantees

In the noise-free setting, given a set of comparisons 𝒜(x), we may produce an estimate ̂︀x
by finding any ̂︀x ∈ B𝑛

𝑅 satisfying 𝒜(̂︀x) = 𝒜(x). A simple approach is the following convex
program:

̂︀x = arg min
w

‖w‖2 subject to 𝒜𝑖(x)(a𝑇
𝑖 w− 𝜏𝑖) ≥ 0 ∀𝑖 ∈ [𝑚]. (25)

This is relatively easy to solve since the constraints are simple linear inequalities and the
feasible region is convex. Note that (25) is guaranteed to satisfy ̂︀x ∈ B𝑛

𝑅 since x ∈ B𝑛
𝑅 and x

is feasible, so that ‖̂︀x‖ ≤ ‖x‖ ≤ 𝑅. In this case we may apply Theorem 1 to argue that if 𝑚
obeys the bound in (4), then ‖̂︀x− x‖ ≤ 𝜖.

However, in most practical applications, observations are likely to be corrupted by noise
leading to inconsistencies. Any errors in the observations 𝒜(x) would make strictly enforcing
𝒜(̂︀x) = 𝒜(x) a questionable goal since, among other drawbacks, x itself would become
infeasible. In fact, in this case we cannot even necessarily guarantee that (25) has any
feasible solutions. In the noisy case we instead use a relaxation inspired by the extended
𝜈-SVM of (Perez-Cruz et al., 2003), which introduces slack variables 𝜉𝑖 ≥ 0 and is controlled
by the parameter 𝜈. Specifically, we denote by 𝒜(x) the collection of (potentially) corrupted
measurements, and we solve

minimizê︀w∈R𝑛+1,𝜉∈R𝑚,𝜌∈R
−𝜈𝜌 + 1

𝑚

𝑚∑︁
𝑖=1

𝜉𝑖

subject to 𝒜𝑖(x)([a𝑇
𝑖 ,−𝜏𝑖] ̂︀w) ≥ 𝜌− 𝜉𝑖, 𝜉𝑖 ≥ 0, ∀𝑖 ∈ [𝑚],

‖ ̂︀w[1 : 𝑛]‖2 ≤ 2𝑅2

1+𝑅2 , and ‖ ̂︀w‖2 = 2.

(26)

Finally, we set ̂︀x = ̂︀w[1, . . . , 𝑛]/ ̂︀w[𝑛 + 1]. The additional constraint ‖ ̂︀w[1 : 𝑛]‖2 ≤ 2𝑅2

1+𝑅2

ensures that ‖̂︀x‖ ≤ 𝑅. Note that an important difference between the extended 𝜈-SVM and
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(26) is that there is no “offset” parameter to be optimized over. That is, if we interpret
[a𝑖,−𝜏𝑖] as “training examples,” then w := [x, 1] ∈ R𝑛+1 corresponds to a homogeneous
linear classifier. Note that in the absence of comparison errors, setting 𝜈 = 0, we would have
a feasible solution with 𝜉𝑖 = 0.

Unfortunately, due to the norm equality constraint, (26) is not convex and a unique
global minimum cannot be guaranteed, i.e., there may be multiple solutions ̂︀x. Nevertheless,
the following result shows that any local minimum will have certain desirable properties,
and in the process also provides guidance on choosing the parameter 𝜈. Combined with our
previous results, this also allows us to give recovery guarantees.

Proposition 9 At any local minimum ̂︀x of (26), we have 1
𝑚 |{𝑖 : 𝜉𝑖 > 0}| ≤ 𝜈. If the

corresponding 𝜌 > 0, this further implies that 𝑑𝐻(𝒜(̂︀x),𝒜(x)) ≤ 𝜈.

Proof This proof follows similarly to that of Proposition 7.5 of (Schölkopf and Smola,
2001), except applied to the extended 𝜈-SVM of (Perez-Cruz et al., 2003) and with the
removal of the hyperplane bias term. Specifically, we first form the Lagrangian of (26):

𝐿( ̂︀w, 𝜉, 𝜌, 𝛼, 𝛽, 𝛾, 𝛿) = −𝜈𝜌 + 1
𝑚

∑︁
𝑖

𝜉𝑖 −
∑︁

𝑖

(𝛼𝑖(𝒜𝑖(x)[a𝑖,−𝜏𝑖]𝑇 ̂︀w− 𝜌 + 𝜉𝑖) + 𝛽𝑖𝜉𝑖)

+ 𝛾

(︂ 2𝑅2

1 + 𝑅2 − ‖ ̂︀w[1 : 𝑛]‖2
)︂
− 𝛿(2− ‖ ̂︀w‖2).

We define the functions corresponding to the equality constraint (ℎ1) and inequality con-
straints (𝑔𝑖 for 𝑖 ∈ [2𝑚 + 1]) as follows:

ℎ1(w, 𝜉, 𝜌) := (2− ‖w‖2),

𝑔𝑖(w, 𝜉, 𝜌) :=

⎧⎪⎪⎨⎪⎪⎩
𝒜𝑖(x)[a𝑖,−𝜏𝑖]𝑇 w− 𝜌 + 𝜉𝑖 𝑖 ∈ [1, 𝑚]
𝜉𝑖−𝑚 𝑖 ∈ [𝑚 + 1, 2𝑚]
−
(︁

2𝑅2

1+𝑅2 − ‖w[1 : 𝑛]‖2
)︁

𝑖 = 2𝑚 + 1.

Consider the 𝑛 + 𝑚 + 2 variables ( ̂︀w, 𝜉, 𝜌). The gradient corresponding to the equality
constraint, ∇h1, involves only the first 𝑛+1 variables. Thus, there exists an 𝑚+1 dimensional
subspace 𝒟 ⊂ R𝑛+𝑚+2 where for any d ∈ 𝒟, ∇h𝑇

1 d = 0. The gradients corresponding to
the 2𝑚 + 1 inequality constraints are given in the (2𝑚 + 1)× (𝑛 + 𝑚 + 2) matrix

G :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇g𝑇
1

...
∇g𝑇

𝑚

∇g𝑇
𝑚+1
...

∇g𝑇
2𝑚

∇g𝑇
2𝑚+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · · −1 · · · 0 1

· · ·
... . . . ...

...
← (𝑛 + 1)→ 0 · · · −1 1

irrelevant −1 · · · 0 0

· · ·
... . . . ...

...
· · · 0 · · · −1 0

← ̂︀w[1 : 𝑛] → 0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Since there is a d ∈ 𝒟 such that (Gd)[𝑖] < 0 for all 𝑖 (for example, d = [0, . . . , 0|1, . . . , 1,−1]),
the Mangasarian–Fromovitz constraint qualifications hold and we have the following first-
order necessary conditions for local minima (see e.g., Bertsekas, 1999),

𝜕𝐿

𝜕𝜌
= −𝜈 +

∑︁
𝛼𝑖 =⇒

∑︁
𝛼𝑖 = 𝜈

and
𝜕𝐿

𝜕𝜉𝑖
= 1

𝑚
− 𝛼𝑖 − 𝛽𝑖 = 0 =⇒ 𝛼𝑖 + 𝛽𝑖 = 1

𝑚
.

Since
∑︀𝑚

𝑖=1 𝛼𝑖 = 𝜈, at most a fraction of 𝜈 can have 𝛼𝑖 = 1/𝑚. Now, any 𝑖 such that 𝜉𝑖 > 0
must have 𝛼𝑖 = 1/𝑚 since by complimentary slackness, 𝛽𝑖 = 0. Hence, 𝜈 is an upper bound
on the fraction of 𝜉 such that 𝜉𝑖 > 0.

Finally, note that if 𝜌 > 0, then 𝜉𝑖 = 0 implies 𝒜𝑖(x)([a𝑇
𝑖 ,−𝜏𝑖] ̂︀w) ≥ 𝜌− 𝜉𝑖 > 0. Hence,

the fraction of 𝜉 such that 𝜉𝑖 > 0 is an upper bound for 𝑑𝐻(𝒜(̂︀x),𝒜(x)).

5.1 Estimation Guarantees

We now show how the results of Theorems 8 and 4 can be combined with Proposition 9
to give recovery guarantees on ‖̂︀x− x‖ when (26) is used for recovery under realistic noisy
observation models. We consider three basic noise models. In the first, an arbitrary (but
small) fraction of comparisons are reversed. We then consider the implication of this result
in the context of two other noise models, one where Gaussian noise is added to either the
underlying x or to the comparisons “pre-quantization,” that is, directly to (a𝑇

𝑖 x− 𝜏𝑖), and
another where the observations are generated using an arbitrary (but bounded) perturbation
of x. We will ultimately see that largely similar guarantees are possible in all three cases,
summarized in Table 1.

Table 1: Summary of our estimation guarantees in this section, where each result holds
separately with probability at least 1− 𝜂 where 𝜂, 𝑐1, 𝑐2, 𝐶1, 𝐶2 are constants which
may differ between results.

Noise type Guarantee on ‖̂︀x− x‖ /𝑅 Eq.

Adversarial, level 𝜅 ∘ ≤ 2
𝐶1

𝜅 + 𝑐1
𝐶1

√︁
𝑛 log(18𝑚)+log(2/𝜂)

2𝑚 (30)
i.i.d. Gaussian, 𝜎2

𝑧 ∘ ≤
√

2
𝐶1

√︁
𝑛𝜎2

𝑧
𝑅2 + 1

𝐶1

√︁
log(1/𝜂)

2𝑚 + 𝑐1
𝐶1

√︁
𝑛 log(18𝑚)+log(2/𝜂)

2𝑚 (31)
Perturbations 𝑥 ↦→ 𝑥′ ∘ ≤ 2𝐶2

𝐶1
‖x−x′‖

𝑅 + 𝑐1+2𝑐2
𝐶1

√︁
𝑛 log(18𝑚)+log(2/𝜂)

2𝑚 (33)

In our analysis of all three settings, we will use the fact that from the lower bound of
Theorem 4 we have

‖̂︀x− x‖
𝑅

≤ 𝑑𝐻(𝒜(x),𝒜(x)) + 𝑐1𝜁

𝐶1
(27)
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with probability at least 1− 𝜂 provided that 𝑚 is sufficiently large, e.g., by taking

𝑚 = 1
2𝜁2

(︃
2𝑛 log 3

√
𝑛

𝜁
+ log 2

𝜂

)︃
. (28)

Note that by setting 𝛽 = 9𝑛
𝜁2

(︁
2
𝜂

)︁1/𝑛
, we can rearrange (28) to be of the form

18𝑚

(︂2
𝜂

)︂1/𝑛

= 𝛽 log 𝛽,

which implies that

𝛽 = 18𝑚(2/𝜂)1/𝑛

𝑊
(︀
18𝑚(2/𝜂)1/𝑛

)︀ ,
where 𝑊 (·) denotes the Lambert 𝑊 function. Using the fact that 𝑊 (𝑥) ≤ log(𝑥) for 𝑥 ≥ 𝑒
and substituting back in for 𝛽, we have

𝜁 ≤

√︃
𝑛 log(18𝑚) + log(2/𝜂)

2𝑚

under the mild assumption that 𝑚 ≥ 𝑒
18(𝜂

2 )1/𝑛. Substituting this in to (27) yields

‖̂︀x− x‖
𝑅

≤ 𝑑𝐻(𝒜(x),𝒜(x))
𝐶1

+ 𝑐1
𝐶1

√︃
𝑛 log(18𝑚) + log(2/𝜂)

2𝑚
. (29)

We use this bound repeatedly below.

Noise model 1. In the first noise model, we suppose that an adversary is allowed to
arbitrarily flip a fraction 𝜅 of measurements, where we assume 𝜅 is known (or can be bounded).
This would seem to be a challenging setting, but in fact a guarantee under this model follows
immediately from the lower bound in Theorem 4. Specifically, suppose that 𝒜(x) represents
the noise-free comparisons, and we receive instead 𝒜(x), where 𝑑𝐻(𝒜(x),𝒜(x)) ≤ 𝜅.

Consider using (26) to produce an ̂︀x setting 𝜈 = 𝜅. If ̂︀x is a local minimum for (26) with
𝜌 > 0, Proposition 9 implies that 𝑑𝐻(𝒜(̂︀x),𝒜(x)) ≤ 𝜅. Thus, by the triangle inequality,

𝑑𝐻(𝒜(̂︀x),𝒜(x)) ≤ 𝑑𝐻(𝒜(̂︀x),𝒜(x)) + 𝑑𝐻(𝒜(x),𝒜(x)) ≤ 2𝜅.

Plugging this into (29) we have that with probability at least 1− 𝜂

‖̂︀x− x‖
𝑅

≤ 2𝜅

𝐶1
+ 𝑐1

𝐶1

√︃
𝑛 log(18𝑚) + log(2/𝜂)

2𝑚
. (30)

We emphasize the power of this result—the adversary may flip not merely a random
fraction of comparisons, but an arbitrary set of comparisons. Moreover, this holds uniformly
for all x and ̂︀x simultaneously (with high probability).
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Noise model 2. Here we model errors as being generated by adding i.i.d. Gaussian before
the sign(·) function, as described in Section 4.2, i.e.,

𝒜𝑖(x) = sign(a𝑇
𝑖 x− 𝜏𝑖 + 𝑧𝑖),

where 𝑧𝑖 ∼ 𝒩 (0, 𝜎2
𝑧). Note that this model is equivalent to the Thurstone model of

comparative judgment (Thurstone, 1927), and causes a predictable probability of error
depending the geometry of the set of items. Specifically, comparisons which are “decisive,”
i.e., whose hyperplane lies far from x, are unlikely to be affected by this noise. Conversely,
comparisons which are nearly even are quite likely to be affected.

Under the random observation model considered in this paper, by Theorem 8 we have
that, with probability at least 1− 𝜂,

𝑑𝐻(𝒜(x),𝒜(x)) ≤ 𝜅𝑛(𝜎2
𝑧) +

√︃
log(1/𝜂)

2𝑚
,

where

𝜅𝑛(𝜎2
𝑧) =

√︃
𝜎2

𝑧

𝜎2
𝑧 + 2𝑅2/𝑛 + 4 ‖x‖2 /𝑛

≤

√︃
𝑛𝜎2

𝑧

2𝑅2 .

We now assume that ̂︀x is a local minimum of (26) with 𝜈 = 𝜅𝑛(𝜎2
𝑧) such that 𝜌 > 0. By the

triangle inequality and Proposition 9,

𝑑𝐻(𝒜(̂︀x),𝒜(x)) ≤ 𝑑𝐻(𝒜(̂︀x),𝒜(x)) + 𝑑𝐻(𝒜(x),𝒜(x)) ≤ 2

√︃
𝑛𝜎2

𝑧

2𝑅2 +

√︃
log(1/𝜂)

2𝑚
.

Combining this with (29), we have that with probability at least 1− 2𝜂,

‖̂︀x− x‖
𝑅

≤
√

2
𝐶1

√︃
𝑛𝜎2

𝑧

𝑅2 + 1
𝐶1

√︃
log(1/𝜂)

2𝑚
+ 𝑐1

𝐶1

√︃
𝑛 log(18𝑚) + log(2/𝜂)

2𝑚
. (31)

We next consider an alternative perspective on this model. Specifically, suppose that
our observations are generated via

𝒜𝑖(x) = 𝒜𝑖(x′
𝑖) where x′

𝑖 = x + z𝑖,

where z𝑖 ∼ 𝒩 (0, 𝜎2
𝑧𝐼). Note that we can write this as

𝒜𝑖(x′
𝑖) = a𝑇

𝑖 (x + z𝑖)− 𝜏𝑖 = a𝑇
𝑖 x− 𝜏𝑖 + a𝑇

𝑖 z𝑖.

Since ‖a𝑖‖ = 1, a𝑇
𝑖 z𝑖 ∼ 𝒩 (0, 𝜎2

𝑧), and thus this is equivalent to the model described above.
Thus, we can also interpret the above results as applying when each comparison is generated
using a “misspecified” version of x which has been perturbed by Gaussian noise. Moreover,
note that

E
⃦⃦
x− x′

𝑖

⃦⃦2 = E ‖z𝑖‖2 = 𝑛𝜎2
𝑧 ,

in which case we can also express the bound in (31) as

‖̂︀x− x‖
𝑅

≤
√

2
𝐶1

√︃
E ‖x− x′

𝑖‖
2

𝑅2 + 1
𝐶1

√︃
log(1/𝜂)

2𝑚
+ 𝑐1

𝐶1

√︃
𝑛 log(18𝑚) + log(2/𝜂)

2𝑚
. (32)
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Thus, a small Gaussian perturbation of x in the comparisons will result in an increased
recovery error roughly proportional to the (average) size of the perturbation.

Note that in establishing this result we apply Theorem 8, and so in contrast to our first
noise model, here the result holds with high probability for a fixed x (as opposed to being
uniform over all x for a single choice of 𝒜).

Noise model 3. In the third noise model, we assume the comparisons are generated
according to

𝒜(x) = 𝒜(x′),

where x′ represents an arbitrary perturbation of x. Much like in the previous model,
comparisons which are “decisive” are not likely to be affected by this kind of noise, while
comparisons which are nearly even are quite likely to be affected. Unlike the previous model,
our results here make no assumption on the distribution of the noise and will instead use
the upper bound in Theorem 4 to establish a uniform guarantee that holds (with high
probability) simultaneously for all choices of x (and x′). Thus, in this model our guarantees
are quite a bit stronger.

Specifically, we use the fact that from the upper bound of Theorem 4, with probability
at least 1− 𝜂 we simultaneously have (27) and

𝑑𝐻(𝒜(x),𝒜(x)) ≤ 𝐶2
‖x− x′‖

𝑅
+ 𝑐2𝜁 =: 𝜅.

We again use (26) with 𝜈 = 𝜅 and Proposition 9 to produce an estimate ̂︀x satisfying
𝑑𝐻(𝒜(̂︀x),𝒜(x)) ≤ 𝜅. Again using the triangle inequality, we have

𝑑𝐻(𝒜(̂︀x),𝒜(x)) ≤ 𝑑𝐻(𝒜(̂︀x),𝒜(x)) + 𝑑𝐻(𝒜(x),𝒜(x)) ≤ 2𝜅.

Combining this with (27) we have

‖̂︀x− x‖
𝑅

≤ 2𝜅 + 𝑐1𝜁

𝐶1
= 2𝐶2

𝐶1

‖x− x′‖
𝑅

+ 𝑐1 + 2𝑐2
𝐶1

𝜁.

Substituting in for 𝜁 as in (29) yields

‖̂︀x− x‖
𝑅

≤ 2𝐶2
𝐶1

‖x− x′‖
𝑅

+ 𝑐1 + 2𝑐2
𝐶1

√︃
𝑛 log(18𝑚) + log(2/𝜂)

2𝑚
. (33)

Contrasting the result in (33) with that in (32), we note that up to constants, the results
are essentially the same. This is perhaps somewhat surprising since (33) applies to arbitrary
perturbations (as opposed to only Gaussian noise), and moreover, (33) is a uniform guarantee.

5.2 Adaptive Estimation

Here we describe a simple extension to our previous (noiseless) theory and show that if
we modify the mean and variance of the sampling distribution of items over a number of
stages, we can localize adaptively and produce an estimate with many fewer comparisons
than possible in a non-adaptive strategy. We assume 𝑡 stages (𝑡 = 1 for the non-adaptive
approach). At each stage ℓ ∈ [𝑡] we will attempt to produce an estimate ̂︀xℓ such that
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‖x − ̂︀xℓ‖ ≤ 𝜖ℓ where 𝜖ℓ = 𝑅ℓ/2 = 𝑅2−ℓ, then recentering to our previous estimate and
dividing the problem radius in half. In stage ℓ, each p𝑖, q𝑖 ∼ 𝒩 (̂︀x, 2𝑅2

ℓ /𝑛I). After 𝑡 stages
we will have ‖x− ̂︀x𝑡‖ ≤ 𝑅2−𝑡 =: 𝑒𝑡 with probability at least 1− 𝑡𝜂.

Proposition 10 Let 𝜖𝑡, 𝜂 > 0 be given. Suppose that x ∈ B𝑛
𝑅 and that 𝑚 total comparisons

are obtained following the adaptive scheme where

𝑚 ≥ 2𝐶 log2

(︂2𝑅

𝜖𝑡

)︂(︂
𝑛 log 2

√
𝑛 + log 1

𝜂

)︂
,

where 𝐶 is a constant. Then with probability at least 1− log2(2𝑅/𝜖𝑡)𝜂, for any estimate ̂︀x
satisfying 𝒜(̂︀x) = 𝒜(x),

‖x− ̂︀x‖ ≤ 𝜖𝑡.

Proof The adaptive scheme uses 𝑡 = ⌈log2(𝑅/𝜖𝑡)⌉ ≤ log2(2𝑅/𝜖𝑡) stages. Assume each stage
is allocated 𝑚ℓ comparisons. By Theorem 1, localization at each stage ℓ can be accomplished
with high probability when

𝑚ℓ ≥ 𝐶
𝑅ℓ

𝜖ℓ

(︃
𝑛 log 𝑅ℓ

√
𝑛

𝜖ℓ
+ log 1

𝜂

)︃
= 2𝐶

(︂
𝑛 log 2

√
𝑛 + log 1

𝜂

)︂
.

This condition is met by giving an equal number of comparisons to each stage, 𝑚ℓ = ⌊𝑚/𝑡⌋.
Each stage fails with probability 𝜂. By a union bound, the target localization fails with
probability at most 𝑡𝜂. Hence, localization succeeds with probability at least 1− 𝑡𝜂.

Proposition 10 implies 𝑚adapt ≍ (𝑛 log 𝑛) log2(𝑅/𝜖𝑡) comparisons suffice to estimate x
to within 𝜖𝑡. This represents an exponential improvement in terms of number of total
comparisons as a function of the target accuracy, 𝜖𝑡, as compared to a lower bound on the
number of required comparisons, 𝑚lower := 2𝑛𝑅/(𝑒𝜖𝑡) for any non-adaptive strategy (recall
Theorem 3).

Note that this result holds in the noise-free setting, but can be generalized to handle
noisy settings via the approaches discussed in Sections 4 and 5. While we cannot hope to
achieve the same exponential improvement in the general case, we expect rates better than
those of passive methods to be possible for certain noise levels.

6. Simulations

In this section we perform a range of synthetic experiments to demonstrate our approach.

6.1 Effect of Varying 𝜎2

In Fig. 2, we let x ∈ R{2,3,4,8} with ‖x‖ = 𝑅 = 1. We vary 𝜎2 and perform 1500 trials, each
with 𝑚 = 100 or 𝑚 = 200 pairs of points drawn according to 𝒩 (0, 𝜎2𝐼). To isolate the
impact of 𝜎2, we consider the case where our observations are noise-free, and use (25) to
recover ̂︀x. As predicted by the theory, localization accuracy depends on the parameter 𝜎,
which controls the distribution of the hyperplane thresholds. Intuitively, if 𝜎 is too small,
the hyperplane boundaries concentrate closer to the origin and do not localize points with
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(a) (b)

(c) (d)

Figure 2: Mean error norm ‖x− ̂︀x‖ as 𝜎2 varies for dimensions (a) 2, (b) 3, (c) 4, and (d) 8
for (a–c) 100 comparisons and (d) 200 comparisons.

large norm well. On the other hand, if 𝜎 is too large, most hyperplanes lie far from the
target x. The sweet spot which allows uniform localization over the radius 𝑅 ball exists
around 𝜎2 ≈ 2𝑅2/𝑛 here.

6.2 Effect of Noise

Here we experiment with noise as discussed in Sections 4 and 5, and use the optimization
program (26) for recovery. To approximately solve this non-convex problem, we use the
linearization procedure described in (Perez-Cruz et al., 2003). Specifically, over a number of
iterations 𝑘, we repeatedly solve the sub-problem

minimize
𝜌∈R,𝜉∈R𝑚,̂︀w(𝑘)∈R𝑛+1

−𝜈𝜌 + 1
𝑚

𝑚∑︁
𝑖=1

𝜉𝑖

subject to 𝒜𝑖(x)([a𝑇
𝑖 ,−𝜏𝑖] ̂︀w(𝑘)) ≥ 𝜌− 𝜉𝑖, 𝜉𝑖 ≥ 0, ∀𝑖 ∈ [𝑚],̂︀w(𝑘)𝑇 ̃︀w(𝑘) = 2

where we set ̃︀w(𝑘+1) ← 𝜒 ̃︀w(𝑘) + (1 − 𝜒) ̂︀w(𝑘) with 𝜒 = 0.7. After sufficient iterations, if̃︀w(𝑘) ≈ ̂︀w(𝑘) then (26) is approximately solved. This is a linear program and it can be easily
verified using the KKT conditions that |{𝑖 : 𝜉𝑖 > 0}| ≤ 𝑚𝜈. Thus in practice, this property
will always be satisfied after each iteration.
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We also emphasize that the error bounds in Section 5 rely on the fact from Proposition 9
that 𝑑𝐻(𝒜(̂︀x),𝒜(x)) ≤ 𝜈, provided that the solution results in a 𝜌 > 0. Unfortunately, we
cannot guarantee that this will always be the case. Empirically, we have observed that given
a certain noise level quantified by 𝑑𝐻(𝒜(x),𝒜(x)) = 𝜅, we are more likely to observe 𝜌 ≤ 0
when we aggressively set 𝜈 = 𝜅. By increasing 𝜈 somewhat this becomes much less likely.
As a rule of thumb, we set 𝜈 = 2𝜅. We note that while in our context this choice is purely
heuristic, it has some theoretical support in the 𝜈-SVM literature (e.g., see Proposition 5 of
Chen et al., 2005).

We consider the following noise models; (i) Gaussian, where we add pre-quantization
Gaussian noise as in Section 4.2, (ii) logistic, in which pre-quantization logistic noise is added,
(iii) random, where a uniform random 𝜈/2 fraction of comparisons are flipped, and (iv)
adversarial, where we flip the 𝜈/2 fraction of comparisons whose hyperplanes lie farthest from
the ideal point. The logistic noise assumption is commonly studied in paired comparison
literature and is equivalent to the Bradley–Terry model (Bradley and Terry, 1952). Although
we do not have theory for this case, we expect the logistic noise case to behave similarly
to the Gaussian case. In both the Gaussian and logistic cases, we sweep the added noise
variance, then for each variance plot against the mean number of errors induced as the
x-axis. In each case, we set 𝑛 = 5 and generate 𝑚 = 1000 pairs of points and a random x
with ‖x‖ = 0.7.

The mean and median recovery error ‖̂︀x− x‖ and the fraction of violated comparisons
𝑑𝐻(𝒜(̂︀x),𝒜(x)) are plotted over 100 independent trials with varying number of comparison
errors in Figs. 3–6. In the Gaussian noise, logistic noise, and uniform random comparison
flipping cases, the actual fraction of comparison errors of the estimate is on average much
smaller than our target 𝜈. This is also seen in the adversarial case (Fig. 6) for smaller
levels of error. However, at a high fraction of error (greater than about 17%) the error
(both in terms of Euclidean norm and fraction of incorrect comparisons) grows rapidly. This
illustrates a limitation to the approach of using slack variables as a relaxation to the 0–1 loss.
We mention that in this regime, the recovery approach of (26) frequently yields 𝜌 ≤ 0, to
which our theory does not apply. Here, the recovery error counter-intuitively decreases with
increasing comparison flips. This scenario, with a large number of erroneous comparisons,
represents a very difficult situation in which any tractable recovery strategy would likely
struggle. A possible direction for future work would be to make (26) more robust to such
large outliers.

6.3 Adaptive Comparisons

In Fig. 7, we show the effect of varying levels of adaptivity, starting with the completely
non-adaptive approach up to using 10 stages where we progressively re-center and re-scale
the hyperplane offsets. In each case, we generate x ∈ R3 where ‖x‖ = 0.75 and choosing the
direction randomly. The total number of comparisons are held fixed and are split as equally
as possible among the number of stages (preferring earlier stages when rounding). We set
𝜎2 = 𝑅 = 1 and plot the average over 700 independent trials. As the number of stages
increases, performance worsens if the number of comparisons are kept small due to bad
localization in the earlier stages. However, if the number of total comparisons is sufficiently
large, an exponential improvement over non-adaptivity is possible.
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Figure 3: Mean estimation error and average fraction comparison errors when adding pre-
quantization Gaussian noise, sweeping the variance and plotting against the
average number of induced errors for each variance.

Figure 4: Mean estimation error and fraction comparison errors when adding pre-
quantization logistic noise, sweeping the variance and plotting against the average
number of induced errors for each variance.
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Figure 5: Mean estimation error and fraction comparison errors when introducing uniform
random comparison errors.

6.4 Adaptive Comparisons with a Fixed Non-Gaussian Data Set

In Fig. 8, we demonstrate the effect of adaptively choosing item pairs from a fixed synthetic
data set over four stages versus choosing items non-adaptively, i.e., without attempting to
estimate the signal during the comparison collection process. We first generated 10,000 items
uniformly distributed inside the 3-dimensional unit ball and a vector x ∈ R3 where ‖x‖ = 0.4.
In both cases, we generate pairs of Gaussian points and choose the items from the fixed
data set which lie closest to them. In the adaptive case over four stages, we progressively
re-center and re-scale the generated points; the initial 𝜎2 is set to the variance of the data
set and is reduced dyadically after each stage. The total number of comparisons is held
fixed and is split as equally as possible among the number of stages (preferring later stages
when rounding). We plot the mean error over 200 independent data set trials.

7. Discussion

We have shown that given the ability to generate item pairs according to a Gaussian
distribution with a particular variance, it is possible to estimate a point x satisfying ‖x‖ ≤ 𝑅
to within 𝜖 with roughly 𝑛𝑅/𝜖 paired comparisons (ignoring log factors). This procedure is
also robust to a variety of forms of noise. If one is able to shift the distribution of the items
drawn, adaptive estimation gives a substantial improvement over a non-adaptive strategy. To
directly implement such a scheme, one would require the ability to generate items arbitrarily
in R𝑛. While there may be some cases where this is possible (e.g., in market testing of
items where the features correspond to known quantities that can be manually manipulated,
such as the amount of various ingredients in a food or beverage), in many of the settings
considered by recommendation systems, the only items which can be compared belong to a
fixed set of points. While our theory would still provide rough guidance as to how accurate
of a localization is possible, many open questions in this setting remain. For instance, the
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Figure 6: (Top) Mean estimation error and fraction comparison errors when flipping the
farthest comparisons. (Bottom) Fraction of trials with 𝜌 > 0.
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Figure 7: Mean error norm ‖x− ̂︀x‖ versus total comparisons for a sequence of experiments
with varying number of adaptive stages.

Figure 8: Mean error norm ‖x− ̂︀x‖ versus total comparisons for nonadaptive and adaptive
selection. Dotted lines denote stage boundaries.
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algorithm itself needs to be adapted, as done in Section 6.4. Of course, there are many
other ways that the adaptive scheme could be modified to account for this restriction. For
example, one could use rejection sampling, so that although many candidate pairs would
need to be drawn, only a fraction would actually need to be presented to and labeled by the
user. We leave the exploration of such variations for future work.
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Appendix A. Supporting Lemmas

Lemma 11 Let 𝑏 > 𝑎 and let 𝐿 = min{|𝑎|, |𝑏|} and 𝑈 = max{|𝑎|, |𝑏|}. Then if Φ and 𝜑
respectively denote the standard normal cumulative distribution function and probability
distribution function, we have the bounds

(𝑏− 𝑎)𝜑(𝑈) ≤ Φ(𝑏)− Φ(𝑎) ≤ (𝑏− 𝑎)𝜑(𝐿) ≤ (𝑏− 𝑎)𝜑(0).

Proof By the mean value theorem, we have for some 𝑎 < 𝑐 < 𝑏, Φ(𝑏)−Φ(𝑎) = (𝑏−𝑎)Φ′(𝑐) =
(𝑏− 𝑎)𝜑(𝑐). Since 𝜑(|𝑥|) is monotonic decreasing, it is lower bounded by 𝜑(𝑈) and upper
bounded by 𝜑(𝐿) (and also 𝜑(0)).

Lemma 12 Let x, y ∈ R𝑛. Then,∫︁
S𝑛−1
|a𝑇 (x− y)| 𝜈(da) = 2√

𝜋

Γ(𝑛
2 )

Γ(𝑛+1
2 )
‖x− y‖ .

Proof By spherical symmetry, we may assume Δ = x − y = [𝜖, 0, . . . , 0] for 𝜖 > 0
without loss of generality. Then ‖x− y‖ = 𝜖 and |a𝑇 (x − y)| = 𝑎(1)𝜖 = 𝜖|cos 𝜃|, where
cos−1(𝑎(1)) = 𝜃 ∈ [0, 𝜋]. We will use the fact (Gradshteyn and Ryzhik, 2007):∫︁ 𝜋

2

0
cos𝜇−1 𝜃 sin𝜔−1 𝜃 d𝜃 = 1

2𝐵

(︂
𝜇

2 ,
𝜔

2

)︂
= 1

2
Γ(𝜇/2)Γ(𝜔/2)
Γ((𝜇 + 𝜔)/2) .

Integrating |cos 𝜃| in the first spherical coordinate, since the integrand is symmetric about 𝜋
2 ,∫︁ 𝜋

0
|cos 𝜃| sin𝑛−2 𝜃 d𝜃 = 2

∫︁ 𝜋/2

0
cos 𝜃 sin𝑛−2 𝜃 d𝜃 =

Γ(1)Γ(𝑛−1
2 )

Γ(1 + 𝑛−1
2 )

= 2
𝑛− 1 .

Then with the appropriate normalization, we have (using Γ(1/2) =
√

𝜋)∫︁
𝑆𝑛−1

|𝑎𝑇 (x− y)| 𝜈(d𝑎) =
(︂∫︁ 𝜋

0
sin𝑛−2 𝜃 d𝜃

)︂−1 ∫︁ 𝜋

0
𝜖|cos 𝜃| sin𝑛−2 𝜃 d𝜃

= 𝜖

(︃
Γ(1

2)Γ(𝑛−1
2 )

Γ(1
2 + 𝑛−1

2 )

)︃−1 2
𝑛− 1 = 2√

𝜋

Γ(𝑛
2 )

Γ(𝑛+1
2 )
‖x− y‖ .

Appendix B. Integral Calculations for Lemma 7

Bound (23) Recall that 𝑟𝑖 := a𝑇
𝑖 x/ ‖x‖ ∈ [−1, 1], 𝑞𝑖 = 𝑟𝑖 ‖x‖− 𝜏𝑖, and 𝑞𝑖 = 𝑟𝑖 ‖x‖− 𝜏𝑖 + 𝑧𝑖.

Thus, if 𝑓𝑟(𝑟𝑖), 𝑓𝜏 (𝜏𝑖), and 𝑓𝑧(𝑧𝑖) denote the probability density functions for 𝑟𝑖, 𝜏𝑖, and 𝑧𝑖,
then since these random variables are independent we can write

P [𝑞𝑖 < 0 and 𝑞𝑖 > 0] = P [𝑟𝑖 ‖x‖ − 𝜏𝑖 < 0 and 𝑟𝑖 ‖x‖ − 𝜏𝑖 + 𝑧𝑖 > 0]

=
∫︁ 1

−1

∫︁ ∞

𝑟𝑖‖x‖

∫︁ 𝑟𝑖‖x‖−𝜏𝑖

−∞
𝑓𝑟(𝑟𝑖)𝑓𝜏 (𝜏𝑖)𝑓𝑧(𝑧𝑖) d𝑧𝑖 d𝜏𝑖 d𝑟𝑖

=
∫︁ 1

−1

∫︁ ∞

𝑟𝑖‖x‖
𝑓𝑟(𝑟𝑖)𝑓𝜏 (𝜏𝑖)P [𝑧𝑖 > 𝜏𝑖 − 𝑟𝑖 ‖x‖] d𝜏𝑖 d𝑟𝑖

=
∫︁ 1

−1

∫︁ ∞

𝑟𝑖‖x‖
𝑓𝑟(𝑟𝑖)𝑓𝜏 (𝜏𝑖)𝑄

(︂
𝜏𝑖 − 𝑟𝑖 ‖x‖

𝜎𝑧

)︂
d𝜏𝑖 d𝑟𝑖,
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where 𝑄(𝑥) = 1√
2𝜋

∫︀∞
𝑥 exp(−𝑥2/2) d𝑥, i.e., the tail probability for the standard normal

distribution. Via a similar argument we have

P [𝑞𝑖 > 0 and 𝑞𝑖 < 0] = P [𝑟𝑖 ‖x‖ − 𝜏𝑖 > 0 and 𝑟𝑖 ‖x‖ − 𝜏𝑖 + 𝑧𝑖 < 0]

=
∫︁ 1

−1

∫︁ 𝑟𝑖‖x‖

−∞

∫︁ ∞

𝑟𝑖‖x‖−𝜏𝑖

𝑓𝑟(𝑟𝑖)𝑓𝜏 (𝜏𝑖)𝑓𝑧(𝑧𝑖) d𝑧𝑖 d𝜏𝑖 d𝑟𝑖

=
∫︁ 1

−1

∫︁ 𝑟𝑖‖x‖

−∞
𝑓𝑟(𝑟𝑖)𝑓𝜏 (𝜏𝑖)P [𝑧𝑖 < 𝜏𝑖 − 𝑟𝑖 ‖x‖)] d𝜏𝑖 d𝑟𝑖

=
∫︁ 1

−1

∫︁ 𝑟𝑖‖x‖

−∞
𝑓𝑟(𝑟𝑖)𝑓𝜏 (𝜏𝑖)𝑄

(︂
𝑟𝑖 ‖x‖ − 𝜏𝑖

𝜎𝑧

)︂
d𝜏𝑖 d𝑟𝑖.

Combining these we obtain

P[𝑞𝑖𝑞𝑖 < 0] = P [𝑞𝑖 < 0 and 𝑞𝑖 > 0] + P [𝑞𝑖 > 0 and 𝑞𝑖 < 0]

=
∫︁ 1

−1

∫︁ ∞

−∞
𝑓𝑟(𝑟𝑖)𝑓𝜏 (𝜏𝑖)𝑄

(︂ |𝑟𝑖 ‖x‖ − 𝜏𝑖|
𝜎𝑧

)︂
d𝜏𝑖 d𝑟𝑖

= 2
∫︁ 1

0

∫︁ ∞

−∞
𝑓𝑟(𝑟𝑖)𝑓𝜏 (𝜏𝑖)𝑄

(︂ |𝑟𝑖 ‖x‖ − 𝜏𝑖|
𝜎𝑧

)︂
d𝜏𝑖 d𝑟𝑖,

following from the symmetry of 𝑓𝑟(·). Using the bound 𝑄(𝑥) ≤ 1
2 exp(−𝑥2/2) (see (13.48) of

Johnson et al., 1994), and recalling that 𝜏𝑖 ∼ 𝒩 (0, 2𝑅2/𝑛), we have that

P[𝑞𝑖𝑞𝑖 < 0] ≤ 1
𝑅

√︂
𝑛

𝜋

∫︁ 1

0

∫︁ ∞

−∞
𝑓𝑟(𝑟𝑖) exp

(︃
−(𝑟𝑖 ‖x‖ − 𝜏𝑖)2

2𝜎2
𝑧

− 𝑛𝜏2
𝑖

4𝑅2

)︃
d𝜏𝑖 d𝑟𝑖.

B.1 Bounding 𝜅𝑛

First, we give an expression for 𝜅𝑛 for all cases 𝑛 ≥ 2, expanding upon that given in
Theorem 8 and Lemma 7. We have

𝜅𝑛(𝜎2
𝑧) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2

√︂
𝜎2

𝑧
𝜎2

𝑧+𝑅2 𝑛 = 2

min
{︂√︂

𝜎2
𝑧

𝜎2
𝑧+2𝑅2/3 ,

√︁
𝜋
2

𝜎𝑧
‖x‖

}︂
𝑛 = 3√︂

𝜎2
𝑧

𝜎2
𝑧+2𝑅2/𝑛+4‖x‖2/𝑛

𝑛 ≥ 4.

Below we derive this expression for the cases 𝑛 = 2, 𝑛 = 3, and 𝑛 ≥ 4.

B.2 Case 𝑛 = 2

For the special case 𝑛 = 2, 𝑑𝑖 = cos 𝜃𝑖 where 𝜃𝑖 ∈ [−𝜋, 𝜋] is distributed uniformly. In this
case, (23) can be re-written as

P[𝑞𝑖𝑞𝑖 < 0] ≤ 1
2𝑅

√︂
2
𝜋

∫︁ 𝜋/2

−𝜋/2

∫︁ ∞

−∞

1
2𝜋

exp
(︃
−(‖x‖ cos 𝜃𝑖 − 𝜏𝑖)2

2𝜎2
𝑧

− 𝜏2
𝑖

2𝑅2

)︃
d𝜏𝑖 d𝜃𝑖

= 1
𝜋𝑅

√︂
1

2𝜋

∫︁ 𝜋/2

0

∫︁ ∞

−∞
exp

(︃
−(‖x‖ cos 𝜃𝑖 − 𝜏𝑖)2

2𝜎2
𝑧

− 𝜏2
𝑖

2𝑅2

)︃
d𝜏𝑖 d𝜃𝑖.
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Expanding and setting 𝛼, 𝛽, and 𝛾 appropriately,

P[𝑞𝑖𝑞𝑖 < 0] ≤ 1
𝜋𝑅

√︂
1

2𝜋

∫︁ 𝜋/2

0

∫︁ ∞

−∞
exp

(︃
−‖x‖

2 cos2 𝜃𝑖

2𝜎2
𝑧

+ 2 ‖x‖ 𝜏𝑖 cos 𝜃𝑖

2𝜎2
𝑧

− 𝜏2
𝑖

2𝜎2
𝑧

− 𝜏2
𝑖

2𝑅2

)︃
d𝜏𝑖 d𝜃𝑖

= 1
𝜋𝑅

√︂
1

2𝜋

∫︁ 𝜋/2

0

∫︁ ∞

−∞
exp

(︁
−𝛾 cos2 𝜃𝑖 + 𝛽𝜏𝑖 cos 𝜃𝑖 − 𝛼𝜏2

𝑖

)︁
d𝜏𝑖 d𝜃𝑖.

Completing the square for 𝜏𝑖,

P[𝑞𝑖𝑞𝑖 < 0] = 1
𝜋𝑅

√︂
1

2𝜋

∫︁ 𝜋/2

0

∫︁ ∞

−∞
exp

(︃
−𝛼

(︂
𝜏𝑖 + 𝛽 cos 𝜃𝑖

2𝛼

)︂2
+ (𝛽 cos 𝜃𝑖)2

4𝛼
− 𝛾 cos2 𝜃𝑖

)︃
d𝜏𝑖 d𝜃𝑖

= 1
𝜋𝑅

√︂
1

2𝜋

∫︁ 𝜋/2

0

√︂
𝜋

𝛼
exp

(︃
−
(︃

𝛾 − 𝛽2

4𝛼

)︃
cos2 𝜃𝑖

)︃
d𝜃𝑖

= 𝜋

2𝜋𝑅

√︂
1

2𝛼
exp

(︃
−1

2

(︃
𝛾 − 𝛽2

4𝛼

)︃)︃
𝐼0

(︃
1
2

(︃
𝛾 − 𝛽2

4𝛼

)︃)︃
,

where 𝐼0(·) denotes the modified Bessel function of the first kind. Since exp(−𝑡)𝐼0(𝑡) < 1,
by plugging back in for 𝛼 we obtain

P[𝑞𝑖𝑞𝑖 < 0] ≤ 1
2𝑅

√︂
1

2𝛼
= 1

2
√

2𝑅

⎯⎸⎸⎷ 1
1

2𝜎2
𝑧

+ 1
2𝑅2

= 1
2

√︃
𝜎2

𝑧

𝜎2
𝑧 + 𝑅2 .

We also note that since since exp(−𝑡)𝐼0(𝑡) < 1/
√

𝜋𝑡, we can obtain the bound P[𝑞𝑖𝑞𝑖 < 0] ≤
1√
𝜋

𝜎𝑧
‖x‖ , but one can show that the previous bound will dominate this whenever ‖x‖ ≤ 𝑅.

B.3 Case 𝑛 = 3

For the case 𝑛 = 3, 𝑑𝑖 ∼ [−1, 1] is itself distributed uniformly. In this case we have

P[𝑞𝑖𝑞𝑖 < 0] ≤ 1
2𝑅

√︂
3
𝜋

∫︁ 1

0

∫︁ ∞

−∞
exp

(︃
−(𝑑𝑖 ‖x‖ − 𝜏𝑖)2

2𝜎2
𝑧

− 3𝜏2
𝑖

4𝑅2

)︃
d𝜏𝑖 d𝑑𝑖.

Expanding and setting 𝛼, 𝛽, and 𝛾 appropriately,

P[𝑞𝑖𝑞𝑖 < 0] ≤ 1
2𝑅

√︂
3
𝜋

∫︁ 1

0

∫︁ ∞

−∞
exp

(︃
−𝑑2

𝑖 ‖x‖
2

2𝜎2
𝑧

+ 2𝑑𝑖 ‖x‖ 𝜏𝑖

2𝜎2
𝑧

− 𝜏2
𝑖

2𝜎2
𝑧

− 3𝜏2
𝑖

4𝑅2

)︃
d𝜏𝑖 d𝑑𝑖

= 1
2𝑅

√︂
3
𝜋

∫︁ 1

0

∫︁ ∞

−∞
exp

(︁
−𝛾𝑑2

𝑖 + 𝛽𝑑𝑖𝜏𝑖 − 𝛼𝜏2
𝑖

)︁
d𝜏𝑖 d𝑑𝑖.

Completing the square for 𝜏𝑖,

P[𝑞𝑖𝑞𝑖 < 0] = 1
2𝑅

√︂
3
𝜋

∫︁ 1

0

∫︁ ∞

−∞
exp

(︃
−𝛼

(︂
𝜏𝑖 + 𝑑𝑖𝛽

2𝛼

)︂2
+ (𝑑𝑖𝛽)2

4𝛼
− 𝛾𝑑𝑖

)︃
d𝜏𝑖 d𝑑𝑖

= 1
2𝑅

√︂
3
𝜋

∫︁ 1

0

√︂
𝜋

𝛼
exp

(︃
−𝑑2

𝑖

(︃
𝛾 − 𝛽2

4𝛼

)︃)︃
d𝑑𝑖

= 1
2𝑅

√︂
3
𝛼

√
𝜋

2
erf
(︁√︀

𝛾 − 𝛽2/4𝛼
)︁

√︀
𝛾 − 𝛽2/4𝛼

.
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Since erf(𝑡)/𝑡 ≤ 2/
√

𝜋, by plugging back in for 𝛼 we obtain

P[𝑞𝑖𝑞𝑖 < 0] ≤ 1
2𝑅

⎯⎸⎸⎷ 3
1

2𝜎2
𝑧

+ 3
4𝑅2

=
√︃

𝜎2
𝑧

𝜎2
𝑧 + 2𝑅2/3 .

Additionally, since erf(𝑡) ≤ 1,

P[𝑞𝑖𝑞𝑖 < 0] ≤
√

3𝜋

4𝑅

(︁
𝛾𝛼− 𝛽2/4

)︁−1/2

=
√

3𝜋

4𝑅

(︃
‖x‖2

2𝜎2
𝑧

(︂ 1
2𝜎2

𝑧

+ 3
4𝑅2

)︂
− ‖x‖

2

4𝜎4
𝑧

)︃−1/2

=
√

3𝜋

4𝑅

(︃
3 ‖x‖2

8𝜎2
𝑧𝑅2

)︃−1/2

=
√︂

𝜋

2
𝜎𝑧

‖x‖ ,

which can be tighter when 𝜎𝑧 is small and ‖x‖ is large.

B.4 Case 𝑛 ≥ 4

Combining (23) with our upper bound (24) on 𝑓𝑑(𝑑𝑖), we obtain

P[𝑞𝑖𝑞𝑖 < 0] ≤ 𝑛

4
√

2𝜋𝑅

∫︁ 1

0

∫︁ ∞

−∞
exp

(︃
−(𝑑𝑖 ‖x‖ − 𝜏𝑖)2

2𝜎2
𝑧

− 𝑛𝜏2
𝑖

4𝑅2 −
𝑛𝑑2

𝑖

8

)︃
d𝜏𝑖 d𝑑𝑖.

Expanding and setting 𝛼, 𝛽, and 𝛾 appropriately,

P[𝑞𝑖𝑞𝑖 < 0] ≤ 𝑛

4
√

2𝜋𝑅

∫︁ 1

0

∫︁ ∞

−∞
exp

(︃
−𝑑2

𝑖

(︃
‖x‖2

2𝜎2
𝑧

+ 𝑛

8

)︃
+ 2𝑑𝑖 ‖x‖ 𝜏𝑖

2𝜎2
𝑧

− 𝜏2
𝑖

2𝜎2
𝑧

− 𝑛𝜏2
𝑖

4𝑅2

)︃
d𝜏𝑖 d𝑑𝑖

= 𝑛

4
√

2𝜋𝑅

∫︁ 1

0

∫︁ ∞

−∞
exp

(︂
−𝛾𝑑2

𝑖 + 𝛽𝑑𝑖𝜏𝑖 − 𝛼𝜏2
𝑖

)︂
d𝜏𝑖 d𝑑𝑖.

Completing the square for 𝜏𝑖,

P[𝑞𝑖𝑞𝑖 < 0] = 𝑛

4
√

2𝜋𝑅

∫︁ 1

0

∫︁ ∞

−∞
exp

(︃
−𝛼

(︂
𝜏𝑖 −

𝑑𝑖𝛽

2𝛼

)︂2
+ (𝑑𝑖𝛽)2

4𝛼
− 𝛾𝑑2

𝑖

)︃
d𝜏𝑖 d𝑑𝑖

= 𝑛

4
√

2𝜋𝑅

∫︁ 1

0

√︂
𝜋

𝛼
exp

(︃
−𝑑2

𝑖

(︃
𝛾 − 𝛽2

4𝛼

)︃)︃
d𝑑𝑖

= 𝑛

4
√

2𝜋𝛼𝑅

√
𝜋

2
erf
(︁√︀

𝛾 − 𝛽2/4𝛼
)︁

√︀
𝛾 − 𝛽2/4𝛼

.
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Since erf(𝑡) ≤ 1, we have

P[𝑞𝑖𝑞𝑖 < 0] ≤ 𝑛

4
√

2𝑅

(︁
𝛾𝛼− 𝛽2/4

)︁−1/2

= 𝑛

4
√

2𝑅

(︃(︃
‖x‖2

2𝜎2
𝑧

+ 𝑛

8

)︃(︂ 1
2𝜎2

𝑧

+ 𝑛

4𝑅2

)︂
− ‖x‖

2

4𝜎4
𝑧

)︃−1/2

= 1
2

(︃
32𝑅2

𝑛2

(︃
‖x‖2 𝑛

8𝜎2
𝑧𝑅2 + 𝑛

16𝜎2
𝑧

+ 𝑛2

32𝑅2

)︃)︃−1/2

= 1
2

√︃
𝜎2

𝑧

𝜎2
𝑧 + 2𝑅2/𝑛 + 4 ‖x‖2 /𝑛

.

We also note that since erf(𝑡)/𝑡 ≤ 2/
√

𝜋, it is also possible to obtain the bound

P[𝑞𝑖𝑞𝑖 < 0] ≤ 1
2

√︂
𝑛

2𝜋

√︃
𝜎2

𝑧

𝜎2
𝑧 + 2𝑅2/𝑛

.

However, this bound can only be tighter when ‖x‖ is small and when 𝑛
2𝜋 < 1 (i.e., for 𝑛 ≤ 6).

Given this narrow range of applicability, we omit this from the formal statement of the
result.
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