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Abstract

Bayesian optimization (BO) is a popular framework for black-box optimization. Two classes
of BO approaches have shown promising empirical performance while providing strong the-
oretical guarantees. The first class optimizes an acquisition function to select points, which
is typically computationally expensive and can only be done approximately. The second
class of algorithms use systematic space partitioning, which is much cheaper computation-
ally but the selection is typically less informed. This points to a potential trade-off between
the computational complexity and empirical performance of these algorithms. The current
literature, however, only provides a sparse sampling of empirical comparison points, giving
little insight into this trade-off. The primary contribution of this work is to conduct a com-
prehensive, repeatable evaluation within a common software framework, which we provide
as an open-source package. Our results give strong evidence about the relative performance
of these methods and reveal a consistent top performer, even when accounting for overall
computation time.

Keywords: empirical evaluation, global optimization, black box optimization, bayesian
optimization

1. Introduction

We consider the problem of optimizing an unknown function f by selecting experiments
that each specify an input x and return a response f(z). Given an experimental budget,
the goal is to select a sequence of experiments in order to find an input that approximately
maximizes f. An effective approach to this problem is Bayesian optimization (BO) (Brochu
et al., 2010), which assumes a Bayesian prior in order to quantify the uncertainty over f
via posterior inference. This posterior can then be used to bias the experiment selection in
a variety of ways.

Perhaps the most traditional and widely used BO approach is acquisition-based BO
(ABO) (Kushner, 1964; Jones, 2001). The key idea is to define an acquisition function
in terms of the posterior, which is then optimized at each iteration to select the next
experiment. Two commonly used acquisition functions are Expected Improvement (EI)
(Mockus, 1994) and Upper Confidence Bound (UCB) (Srinivas et al., 2010), which have
both been shown to be practically effective. In addition, UCB has been shown to have
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probabilistic guarantees on performance under the assumption that the acquisition function
can be perfectly optimized at each iteration. However, both UCB and EI are non-convex,
making optimization costly and inexact for higher dimensional functions. Thus, in practice,
the theoretical results for ABO do not hold and the selection of each experiment can be
computationally expensive.

A recent alternative approach to ABO completely avoids the optimization of acquisi-
tion functions. These approaches are inspired by the simultaneous optimistic optimization
(Munos et al., 2014) (SOO) algorithm, which is a non-Bayesian approach that intelligently
partitions the space based on observed experiments to effectively balance exploration and
exploitation of the objective. We will refer to SOO and algorithms derived from it as
partition-based global optimization (PGO) algorithms. A key feature of SOO is that it
provides finite time performance guarantees with minimal assumptions about the objective
function’s properties. SOO does not, however, exploit the potential benefits of posterior in-
ference. This has led to variants of SOO, such as BaMSOO (Wang et al., 2014) and IMGPO
(Kawaguchi et al., 2015), that integrate posterior inference to better direct SOO’s explo-
ration. We will refer to these alternative approaches that integrate posterior inference with
PGO approaches as partitioning-based BO (PBO) algorithms. Importantly, the PBO al-
gorithms are able to select each experiments using significantly less computation compared
to ABO. At the same time, they maintain probabilistic variants of SOO’s performance
guarantees.

ABO uses more computation per experiment selection than the partition-based ap-
proaches, so one might expect ABO to make higher quality decisions and outperform
partition-based methods given the same number of experiments. Thus, ABO may have
an advantage for application where the number of experiments is fixed and not limited by
the runtime of experiment selection. For example, when experiments involve lengthy wet
lab trials or expensive simulations, the computation time required for selecting experiments
may be negligible. Alternatively, there are applications where the expense of ABO can
limit the number of experiments compared to partition-based methods. For example, if
experiments correspond to running fast physics simulations, then the higher computational
cost of ABO may be a bottleneck that will lead to running fewer experiments in a fixed
time horizon and potentially perform worse than partitioning methods.

The above intuitions suggest a potential trade-off between acquisition-based and partition-
based methods, however, the literature provides little guidance regarding this trade-off.
Most comparisons between ABO, PBO, and PGO have been either indirect or on a sparse
set of problems. For example, the PBO algorithm BaMSOO was shown (Wang et al., 2014)
to outperform both SOO and selected ABO algorithms. However, this was on a modest
number of problems and for Bayesian hyper-parameters that were selected on a per problem
basis, which is not always a realistic real-world use scenario. Later, a non-Bayesian PGO
algorithm, LOGO (Kawaguchi et al., 2016), was shown to outperform SOO and BaMSOO,
which combined with the prior BaMSOO results was taken as evidence for preferring LOGO
over ABO approaches. More recent work on IMGPO (Kawaguchi et al., 2015) shows further
benefits of PBO over ABO on a small set of problems. However, the ABO implementations
used in those evaluations appear to yield inferior performance to the experience of others.
If taken at face value, these prior results suggest that PBO approaches dominate ABO



AN EMPIRICAL STUDY OF BAYESIAN OPTIMIZATION

approaches despite their much lower computational cost. Yet most applications of BO are
still using ABO approaches.

The primary contribution of this paper is to conduct a more thorough evaluation of
these approaches with the aim of understanding when and if one should be preferred. We
conduct this investigation using a common software framework, which will be publicly
available and allow for complete reproducibility. Importantly, we do not introduce new
algorithms or variants of existing algorithms in order to avoid the potential appearance
of bias in our evaluation. Our results yield fairly consistent observations across a variety
of test problems, shedding light on the relative performance of some of key representative
acquisition-based and partition-based algorithms.

2. Problem Setup and Background

We consider optimizing an unknown function f : X — R where X is a compact d-
dimensional subset of R?. The black box function f does not necessarily have a closed
form but can be evaluated at any point in the domain. Running an experiment x allows us
to observe the outcome y = f(x) at some cost. Given a budget that constrains the number
of experiments, the goal is to find a input x that approximately maximizes f. Without any
constraints on f, there is no way to guarantee a near optimal value will be found. Thus,
prior theoretical and practical work on this black-box optimization problem typically makes
some form of smoothness assumption on f (Munos et al., 2014). Under such assumptions it
is possible to design more intelligent optimization procedures that prune away and prioritize
parts of the input space based on previously observed experiments.

Bayesian optimization (BO) formalizes smoothness via a Bayesian prior over f, which
is often represented by a Gaussian Process (GP) (Williams and Rasmussen, 2006). In this
work, we will focus on BO using GP priors. A GP is a collection of possibly infinite random
variables where any subset is multivariate Gaussian distributed. One advantage of using a
GP prior over f is that for any experiment x there is a closed form for the mean and standard
deviation of its response f(z), conditioned on the previously observed experiments. A GP
is completely specified by its mean function, m(x) and its covariance function, k(x1,x2). A
common choice in the BO literature, which we follow in our experiments, is to select the
prior mean to be zero; that is, m(z) = 0 for all z € X. In addition, we will use the squared-
exponential kernel with a width hyper-parameter 6; for each input dimension, which is a
widely used kernel in the BO and more generally GP literature. Given a set of observed
experiments, we select the hyper-parameters via automatic relevance determination (SE-
ARD) (MacKay, 1998), which optimizes the marginal likelihood with respect to the hyper-
parameters.

To evaluate the performance of each algorithm on each objective function, we calculate
its regret after ¢ objective observations r; = f(z*) — f(x;), where #* is the optimum point
and x; is the best point the algorithm has observed so far after making ¢ observations.
Note that regret for ABO methods is frequently calculated by setting z;" to the point
that maximizes its GP’s mean function after making ¢ observations. Since partitioning-
based methods cannot provide a similar prediction, to ensure a fair comparison between the
different results we exclusively consider points that the algorithms have observed directly
when calculating their regret.
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3. Description of Algorithms

This section describes the algorithms that are included in our empirical study, which cov-
ers three algorithmic classes. First, we describe two widely used algorithms from the class
of acquisition-based BO (ABO) algorithms. Second, we describe two partitioning-based
global optimization (PGO) algorithms, which do not use a Bayesian prior, but have strong
theoretical guarantees on regret. Third, we describe two partitioning-based Bayesian opti-
mization (PBO) algorithms, which incorporate a Bayesian prior into the PGO approaches.
A comparison of the most relevant properties of all the algorithms is provided in Table 1.

3.1 Acquisition-Based BO

Assume we have the observations D; = {x1.,y1+} and we are interested in the distribution
of the output y. of a test point (another experiment) z.. Since we have a GP with prior
mean zero, the joint distribution of y1.; and y. can be written as:

] o (o [l Rz

where K (-, -) is the corresponding covariance matrix using the covariance function element-
wise. Having the joint distribution, the conditional distribution of y, given the observed
data can be derived as:

y*|Dta T~ N (;L(.CL‘*), 0.2(1,*))
M(x*) = K(.T*, xl:t)[K<x1!t7 xl:t)]_lylzt
o (@) = K (04, 24) — K (24, 31:¢) [K (2120, T1:¢)] T K (@124, 74

ABO uses an acquisition function as a selection heuristic that evaluates each candidate
point based on its mean and variance. Acquisition functions are generally designed so that
their high values correspond to potentially high values of the objective function. Starting
with some initial observed data points, the covariance matrix of the GP is calculated. Using
the posterior mean and variance of each candidate data point, the value of the acquisition
function can be obtained. The point that maximizes this value is then selected for obser-
vation. The experiment and its observed output get added to the data set and this process
can be repeated until a specified horizon or budget is exhausted. Since optimizing the hy-
perparameters of the kernel function helps fit a more accurate GP model to the data, the
kernel parameters are tuned periodically during the iterative process. Pseudocode for the
ABO algorithm is provided in Algorithm 1.

In this paper, we consider two of the most popular acquisition functions, namely Ex-
pected Improvement (EI) (Mockus et al., 1978) and Gaussian Process Upper Confidence
Bound (GP-UCB) (Srinivas et al., 2010). At any time step ¢ + 1 with prior experiments
1.4, the acquisition function EI measures the expected improvement with respect to the
current best previously observed objective value f(z; ), where z;7 = arg max, ¢, ., f(xi).
Under Gaussian Processes, EI can be analytically computed as follows:

Api(z) = (u(z) — F(a) S(HELLED) 4 o(z) gL L))
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where p(x) and o2(z) are the predicted mean and variance of point x. And, ® and ¢ are
the CDF and PDF of the standard normal distribution, respectively.

More recently, GP-UCB with provable cumulative regret bounds with high probability
was proposed as a BO algorithm (Srinivas et al., 2010). Formally, the algorithm defines the
following acquisition function:

1/2

Avcp(x) = ) + ;"o ()

where [; are appropriate coefficients that balance exploitation against exploration.

The regret bounds provided by Srinivas et al. (2010) depend on the assumptions on the
kernel spectrum and their correspondingly defined 5;. In practice, the researchers choose
the form of B; based on their domain knowledge. For instance, although different from
B¢ used in their theoretical results, Kandasamy et al. (2015b) use ; = 0.2dlog 2t in their
experiments where d is the number of dimensions. Since we wish to evaluate the performance
of these algorithms in a setting where we have no pre-existing domain knowledge that can
be used to effectively set these values, we chose to instead select a value for 8; that others
had reported experimental success with. In this work, we use f; = 2log(|X|t>72/68) which
was found to be effective by Srinivas et al. (2010) with § = 0.1, where the smaller value of
0 provides a higher probability of achieving the regret bound. The size of X is obtained
assuming each dimension is discretized into 1000 points.

Algorithm 1 Bayesian optimization Process

Input: Dg, Ny, > Dy is the initial data; the hyperparameters get updated every IV,
iterations
1: fort =12, ... do
2 if Ny, is a divisor of ¢ then
3 Update the kernel hyperparameters
4: end if
5 Given D;_1, specify the GP
6 Select x; by optimizing the acquisition function
xp = argmax,c y A(z|Di—1)
7 Observe y;, the output of z;
8: Augment data Dy = {D;_1, (z¢,yt)}
9: end for

3.2 Partitioning-Based Optimization

Partitioning-based approaches attempt to use an implicit upper bound on the values con-
tained within cells of varying sizes of the objective function’s space. Once a procedure has
identified the cells with the most promising upper bound, the algorithms can then direct
their search focusing on those promising ones by refining them into smaller, hopefully more
informative cells. These newly created cells require additional objective observations so
that they can be assigned a value representative of the space each cell encloses.

This loop of selecting promising cells and refining them with additional function evalua-
tions is what drives the partitioning algorithms’ search, and the predictable behavior of the
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growth of the partitioning tree is what permits the algorithms their theoretical guarantees.
In this section, we consider two PGO algorithms with strong theoretical guarantees, one of
which (LOGO) has claimed in prior work (Kawaguchi et al., 2016) to be competitive with
ABO.

3.2.1 SIMULTANEOUS OPTIMISTIC OPTIMIZATION (SOO)

The simultaneous optimistic optimization algorithm is a partitioning-based global optimiza-
tion (PGO) algorithm introduced by Munos et al. (2014). Two advantages of SOO over
other algorithms are its weak assumptions about the function being optimized and its rela-
tive speed. To meet its preconditions SOO only requires that there exists some semi-metric
¢ over the objective such that f(z*) — f(x) < £(z*, x)Vx (where z* is the optimum point of
the objective function) and that the space can be partitioned into cells with monotonically
decreasing ‘size’ according to £. However, it is not required to know or estimate this metric
for the algorithm. Additionally, since SOO is computationally very simple and does not
require the optimization of any auxiliary functions to operate, it can consistently select
points for observation in a near-zero amount of time when executed on modern computer
hardware. A high-level pseudocode description of the algorithm is provided at Algorithm
2.

SOO works by partitioning its objective function’s domain using a tree 7. Each node in
the tree represents a hyper-rectangle (cell) in the space and is assigned the observed value
of the objective function at the center point of the hyper-rectangle. This single objective
sample and the size of the cell is used to reason about the potential function values that
could be contained within the cell’s region. We use zj,; to represent the center point of the
ith node at depth h in 7, and g(zp;) for its associated observed value from the objective
function f. In each iteration, SOO selects a set of promising cells for refinement, where
each selected cell is partitioned into three equal-sized sub-cells as its children®. If a cell has
not been refined, it is referred to as a leaf.

Initially, the partition tree contains only a single leaf node that covers the entire input
space. The center of the input space is sampled and the resultant function value is assigned
to this node. From that point onward, SOO iteratively selects the leaf node at each depth
in the tree with the highest upper bound according to the implied semi-metric ¢ for further
partitioning (refinement), as long as the selected leaf’s upper bound is greater than the
upper bound of any leaf of larger cell sizes in 7 during that iteration. Importantly, we do
not need to explicitly compute the upper bounds in order to select the leaf with the highest
upper bound.

Specifically, since all leaves at a given depth of the tree have cells of the same size,
finding the leaf with the highest upper bound at a fixed depth h according to £ is simply a
matter of finding the leaf at that depth with the highest center value g(x, ;). Furthermore,
we know that if any larger-sized leaf has a greater center value than a smaller-sized leaf, the
larger one’s upper bound according to ¢ must be greater due to its larger size and higher
known value at its center. Therefore, we can safely ignore the smaller-sized leaf. As such,
as we iterate through each depth level of the partitioning tree and select the leaf with the
highest center value at each depth, we only need to consider those leaves whose center value

1. Tie breaking is discussed in Section 4.4.
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is higher than that of any larger-sized leaves. This will guarantee that the leaf with the
maximum upper bound according to £ is always selected for expansion regardless of the true
definition of /.

SOO takes as parameter a depth-limiting function hpmax(n) that defines the maximum
depth to which the partitioning tree can be expanded after n cell refinements. In previous
work (Munos et al., 2014) (Kawaguchi et al., 2016), this function has always been defined
as hmax(n) = v/n so we ignore this parameter and assume that this common setting of hyax
is a part of SOO itself.

At a high level, the SOO algorithm can be viewed as consisting of two parts: the
cell selection process (lines 8-15), and the cell expansion process (lines 16-23). Since the
remaining partitioning-based algorithms involve modifying one or both of these processes,
we define a simplified version of the algorithm at Algorithm 3, which is used to enable a
more clear definition of the derivative algorithms.

Algorithm 2 Simultaneous Optimistic Optimization

1: Initialize 7, = 0 VA > 0 > 75, contains the set of leaves at depth A
2: 79 = {xo,0} > 20,0 is the center of the objective function f’s domain
3: g(z0,0) = f(0,0)

4: n=1

5: loop

6: E=10

7 Vmax — — 00

8: for h =0...min(depth (7), Amax (n)) do

9: (h,i) =argmax,, e, 9(¥n,;), where Ly contains all leaves of T at depth &

10: if g(zn) > Umax then

11: EFE=FU {$h7i}

12: Umax = 9(Zh;)

13: n=n+1

14: end if

15: end for

16: for each cell zp; in F do

17: Subdivide x,; into its three resultant children cells xp41j, ... Thy1j;
18: for each child cell zj,11; do
19: 9(@hi15) = f(@hs1,5)

20: Th4+1 = Tht1 U Tpi1j

21: end for

22: end for

23: end loop
24: return argmax,, <, 9(Th,i)

3.2.2 LocALLy ORIENTED GLOBAL OPTIMIZATION (LOGO)

Locally Oriented Global Optimization (LOGO) (Kawaguchi et al., 2016), as described in
Algorithm 4, is a modification to SOO that introduces a local bias parameter w to achieve
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Algorithm 3 Simultaneous Optimistic Optimization (simplified)

1: Initialize the partitioning tree 7 with an observation from the center
2: loop

3 FE = SELECTCELLSs00

4: EXPANDCELLSs00 (F)

5: end loop

6: return argmax,, . 9(n,;)

a finer control of the exploration-exploitation behavior of the algorithm. In particular,
instead of selecting the best leaf in the partitioning tree that meets the refinement criteria
at each depth level for expansion, LOGO uses the same selection process across disjoint sets
of w adjacent depth levels. With this approach, when w is set to a high value LOGO will
be more inclined to spend its observation budget exploiting a smaller number of the most
attractive cells rather than exploring those in nearby depths that are not as attractive, but
would have been expanded by SOO. Note that when w = 1, the behavior of LOGO and
SOO are identical.

LOGO sets the value of w according to the local bias schedule hyperparameter W, which
must be a list of positive integers and should be monotonically increasing. At the end of
each iteration of the algorithm, if the value of the best cell observed during that step is
greater than that of the previous step w is set to the next value in W. Otherwise, w is
set to the previous value in the schedule. The intuition behind this design is that when
the algorithm is succeeding (that is, successively observing higher and higher objective
values) it should continue exploiting, which is enabled by increasing w. When the opposite
situation occurs (that is, the algorithm repeatedly fails to find values that improve on the
previous step’s observations), the algorithm should instead fall back to more exploration-
focused behavior to attempt to more quickly locate the next area that may offer further
improvement. A fixed-size schedule is used to avoid edge cases where the algorithm would
frequently ‘get lucky’ early on, causing the value of w to consistently increase to the point
where the algorithm is then ‘stuck’ exhibiting exploitative behavior for the remainder of
the optimization.

On some objective functions, this adaptive behavior leads to significantly better per-
formance than SOQ’s static approach without violating any of the original algorithm’s
performance guarantees.

3.2.3 DiviDING RECTANGLES (DIRECT)

DIRECT (Jones et al., 1993) is a popular partitioning-based optimization algorithm which,
while very similar in structure to SOO, is meant to improve on Lipschitzian optimization
rather than achieve certain theoretical regret bounds. Its primary differences from SOO
are modified cell selection conditions, the lack of the concept of a ‘depth limit’, and a more
thorough expansion procedure when expanding cells which are hyper-rectangles for which
all edges are of the same size.
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Algorithm 4 Locally Oriented Global Optimization

1: function SELECTCELLS],0G0O

2 E=1

3 Umax = —00

4 for £k =0...|min(depth (7), Amax (n))/w] do
5: D = Tpw U Thwa1 U o o Thwtw—1

6 i = argmax;,, cr, 9(Th,i), where Lp contains all the leaves in D
7 if g(2h,i) > Umax then

8 E=FU {xh’i}

9: Umax = g(xh,i)

10: n=n-+1

11: end if

12: end for

13: return F

14: end function

We are considering DIRECT in this evaluation primarily as a benchmark for other
partitioning-based optimization algorithms due to its ubiquity and efficacy in practice, so
we will not provide a more detailed description of the DIRECT algorithm itself.

3.3 Partition-Based Bayesian Optimization

While the PGO methods exhibit predictable average-case performance, they clearly have
room for improvement. Their treatment of the objective as a true black box results in the
PGO algorithms frequently observing regions of the objective that should seem obviously
unpromising. However, without any ability to predict the behavior of the objective at a
given point, the algorithm’s only choice is to spend a function evaluation to prove to itself
that the region in question is ‘bad’ and can be ignored. Even when a poor region is ignored,
though, it is still guaranteed to be expanded once it is the only remaining leaf at its depth
level, resulting in even more ‘unnecessary’ function observations in potentially irrelevant
areas of the objective.

Here we examine two methods that attempt to improve PGO optimization by incorpo-
rating a GP prior into the procedure to use past observations to better direct the expansion
and selection of cells.

3.3.1 BAYESIAN MULTI-SCALE OPTIMISTIC OPTIMIZATION (BAMSOO)

The Bayesian Multi-Scale Optimistic Optimization (Wang et al., 2014) algorithm (Algo-
rithm 5) is a SOO-based algorithm that uses the same selection strategy, but avoids evalu-
ating a point during expansion if the point is deemed unpromising according to the posterior.
Specifically, this is done by comparing the upper confidence bound (UCB) derived from the
prior at the locations which are about to be observed to the best function value observed in
the tree. If the UCB of a cell’s center is smaller than the best value observed, we know that
the cell is unlikely to contain the optimum. Therefore, Instead of using up a function obser-
vation assigning a value to a cell that is unlikely to be further expanded, the cell is assigned
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the value of the lower confidence bound of its center point according to the prior. This
allows the algorithm to continue as expected by effectively ‘ignoring’ the unpromising cell
instead of spending an objective evaluation to assign a value to the probably-unimportant
cell.

Algorithm 5 Bayesian Multi-Scale Optimistic Optimization

1: function EXPANDCELLSBAMSO()(E)

2 D = the observations in 7 not marked as GP-based

3 for each cell zp; in E do

4 Refine zj,; into its three resultant children cells zpy1j, ... Thi1j;
5: for each child cell zj,11; do

6 if U(zpq1,]D) > f* then

7 9(zht1,5) = f(Thi1,5)

8

9

else
- 9(@h1,5) = L(znt1,4]D)
10: Mark g(zp+1,;) as GP-based
11: end if
12: Th4+1 = Tht1 U Tpij
13: end for
14: end for

15: end function

3.3.2 INFINITE-METRIC GP OpTIMIZATION (IMGPO)
IMGPO (Algorithm 6) builds on BaMSOO by further taking advantage of the information

encoded in the prior by also using it to guide the cell selection process. In addition to the
requirement that any cell suitable for refinement must have a value greater than the value
of any larger cell, IMGPO also requires that the cell being considered must contain a UCB
greater than the value of any smaller (that is, deeper in the tree) cell.

To determine the UCBs that a cell contains, IMGPO builds a subtree within the cell
down to a fixed depth using the same node refinement rules. Instead of observing the value
of the function at the center of each cell in the subtree, the UCB of each cell’s center point
is calculated instead. The highest value in this temporary UCB subtree is then considered
to be the best UCB contained within the cell in question. With this approach, IMGPO
determines whether or not a cell is worth expanding based on the prior information about
the upper bound on the value of its potential children, further allowing the algorithm to
ignore areas of the objective that seem unpromising.

This change is also the most significant departure from SOO or any of the partitioning-
based algorithms. Every other partitioning algorithm’s expansion criteria for a leaf is solely
based on the properties of the cells above it in the tree. It follows that, for these algorithms,
the top-most leaf of the tree must be expanded regardless of its value, leading to predictable
grid-search-like behavior as the minimum depth of any leaf in the tree grows. Since IMGPO
also evaluates cells for refinement based on how they compare to smaller cells, a cell can
remain unexpanded while being the only leaf at its depth level. This seemingly minor
change prevents IMGPO from exhibiting the grid-search-like behavior that can be seen in

10
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’ Algorithm \ Sample Selection \ Fits GP \ Optimizes Acquisition Function \ Sample ‘depth limit’ ‘

SO0 Grid-aligned No No Yes
LOGO Grid-aligned No No Yes
DIRECT Grid-aligned No No No
BaMSOO Grid-aligned Yes No Yes
IMGPO Grid-aligned Yes No No
BO Unrestricted Yes Yes N/A

Table 1: Comparison of several properties shared by the algorithms being compared.

the PGO algorithms’ results. Accordingly, the depth limit function hpax(n) that is used in
every other SOO-derived algorithm is no longer necessary for IMGPO.

Algorithm 6 Infinite-Metric GP Optimization

1: function SELECTCELLSIMGPO

2 E=10

3 D = the observations in 7 not marked as GP-based

4: Umax = —00

5: for h =0...depth(7) do

6 (h,i) =argmax,, cr, 9(2n,;), Wwhere L, contains all leaves of T at depth &
7 if xj,; would be selected by SelectCellssoo then

8 Refine zp,; into a subtree S

9 U* = maxs,, esU(sw,;|D)

10: f* = the greatest value among all non-GP-based cells at depths A/ > h
11: if U* > f* then

12: E=FU {xh,i}

13: n=n+1

14: end if

15: end if

16: end for

17: end function

4. Experimental Setup

When reviewing the reported results of the algorithms evaluated in this paper, we found
that they were rarely evaluated in a true black-box setting. Instead, the algorithms’ hy-
perparameters were tuned after the fact or alternatively the results were presented with
non-standard metrics to best demonstrate the strengths of the proposed approach.

These differences in procedure led to confusing and seemingly contradictory results being
presented, which spurred the development of this work. Our goal is to directly compare
the performance of each algorithm in a setting where they have minimal knowledge of the
objective being optimized with the hopes of resolving some of the confusion one could suffer
from trying to collectively reason about the previous works’ results.

11
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4.1 Hyperparameter Selection

To avoid the issue of ex post facto algorithm tuning, we attempted to separate the process of
selecting values and settings for any algorithm’s hyperparameters from the evaluation itself.
To accomplish this, we looked to previous works that had used the algorithms or the papers
that had introduced the algorithms themselves and duplicated settings that were suggested
or reported as having good empirical performance. To accomplish this, we selected all
the hyperparameters for each algorithm before executing them on any objective functions.
The hyperparameter values were selected by duplicated them from the paper that had
introduced the algorithm or other works that reported good empirical performance with
certain settings. The specific values considered for this evaluation are described in the
algorithms descriptions in Section 3.

4.2 Software Platform

To perform these experiments, we built a custom, extendable C++ framework that executes
easily-repeatable evaluations of arbitrary black-box optimization algorithms. The source
code is publicly available at https://github.com/Eiii/opt_cmp.

Our framework includes C+4 implementations of all partitioning-based algorithms
(SO0, LOGO, BaMSOO, IMGPO), while a modified? version of the bayesopt library
(Martinez-Cantin, 2014) provides the implementation of BO that we use in our evalua-
tion. Although the authors of some partitioning-based algorithms provide implementations
of their algorithm, we chose to use custom implementations of the algorithms since each
derivative PGO and PBO algorithm can be trivially implemented as a minor extension of a
simpler partitioning-based algorithm. This choice to define all the partitioning-based algo-
rithms from the same base behavior also prevents one algorithm from incorrectly appearing
more or less effective due to differing design decisions or assumptions made by each author
of an implementation.

To ensure a fair comparison between the ABO and PBO methods, the PBO imple-
mentations repurpose bayesopt’s internal GP functionality when they require the use of a
GP.

4.3 Black Box Functions

We chose to exclusively use synthetic benchmark functions as objectives for this evaluation
to ensure that each benchmark could sufficiently evaluate each objective with the time and
resources available. The benchmark functions were selected with the goals of including func-
tions with a wide range of quantitative and qualitative properties and including functions
that the authors of the partitioning-based methods used to evaluate their algorithms.

The LOGO paper evaluates its algorithm on the sin_2, branin, Rosenbrock, Hartmann3,
Hartmann6, and Shekel (with m = 5,7,10) functions (Kawaguchi et al., 2016) with varying
dimensionality and parameterizations when possible. IMGPO and BaMSOO are also both
evaluated on a subset of these objectives (Kawaguchi et al., 2015) (Wang et al., 2014), so
we chose to include all of them in our experiments to allow for a more direct comparison

2. Modifications were made to expose previously purely internal functions and data structures as required
for the BO-aware algorithms to function. The optimization behavior of the library itself is unchanged.
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| Function Name | Dimensionality [ Description/Category | Evaluated in Previous Works: |

Sin 2 Simple SO0, LOGO, IMGPO
Branin 2 Simple LOGO, BaMSOO, IMGPO
Rastrigin 2,4, 6,10 Many local maxima

Schwefel 2,4, 6,10 Many local maxima

Ackley 2,4,6,10 Many local maxima

Rosenbrock 2,4, 6, 10 Valley shaped LOGO, BaMSOO, IMGPO
Hartmann 3,6 LOGO, BaMSOO, IMGPO
Shekel (m =5,7,10) | 4 LOGO, BaMSOO, IMGPO

Table 2: Summary of the properties of each objective function used.

between results. Additionally, we chose to include the Rastrigin, Schwefel, and Ackley test
functions (Molga and Smutnicki, 2005) in our evaluation to provide more variety among the
objectives.

The Rastrigin, Schwefel, Ackley, and Rosenbrock objective functions (Molga and Smut-
nicki, 2005) can be defined with arbitrary dimensionality D. Functions with this property
are useful in allowing us to better determine the effect that the dimensionality of the objec-
tive has on each algorithm’s performance. For these objectives, we evaluated each algorithm
on each function with D =2, 4, 6, and 10.

A summary of the properties of each objective function can be found in Table 2.

4.4 Evaluation Process

To evaluate the set of algorithms we ran 70 iterations consisting of executing each op-
timization algorithm on each function to a horizon of at least 500 samples. For further
comparisons, we extended the horizon for SOO, LOGO, DIRECT, and Random to 10,000
samples and configured BaMSOO and IMGPO to run for the average amount of wall-clock
time the ABO algorithms expended across all their runs on each objective. These extended
horizons were chosen considering the cost to run experiments and the runtime of each al-
gorithm. Each individual evaluation of one algorithm on one objective function was run on
one core of a c4.4xlarge Amazon EC2 instance. The decision to run 70 iterations in total
was made beforehand by estimating what was feasible within the compute time available
for these experiments.

4.4.1 OBJECTIVE FUNCTION RANDOMIZATION

Since SOO and LOGO are deterministic algorithms, it is possible that the algorithm could
get unusually lucky or unlucky on some objective functions. This luck could manifest as
making a series of observations and resultant partitioning decisions that happen to result in
exceptional behavior that is not representative of the algorithm’s average-case performance
on objective functions with similar properties. Additionally, since any SOO-derived algo-
rithm must first observe the exact center of the hyper-rectangle that defines the objective
function’s domain, they are all guaranteed to trivially and immediately achieve zero regret
on any objective function whose maximum is at its center. Since neither of these difficulties
of evaluating SOO-derived algorithms is relevant to the algorithms’ performance on real-
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world problems, we chose to avoid them by randomizing certain properties of the objective
functions used in our evaluation.

The cell refinement procedure shared by SOO and its derived algorithms simply splits
evenly along the dimension along which the cell has the longest edge. This approach fre-
quently results in ties between dimensions which must be resolved using a tie breaking pro-
cedure. The tie breaking procedure used by the partitioning algorithms is simply to assign
a fixed priority order to the dimensions and split the higher-priority dimensions first in the
case of a tie. It is plausible that this approach could lead to situations where the assignment
of this arbitrary ordering could have a significant impact on the algorithms’ performance
on some objective functions. To mitigate the possibility that this behavior causes certain
algorithms to exhibit non-representative behavior, we randomize the tie break dimension
ordering at the beginning of each run of each algorithm.

To allow us to evaluate the performance of the partitioning algorithms on objective
functions in which the optimum point is in its center, we randomly shrink the bounds of
the hyper-rectangle that define the objective’s domain such that the optimum point is still
guaranteed to be contained within the new bounds.

These methods of randomizing objective functions are applied to every algorithm in a
predictable and repeatable way identical to all algorithms so that, for example, one algo-
rithm will not be advantaged by getting ‘easier’ domains on certain functions than another
algorithm.

4.4.2 HYPERPARAMETER SETTINGS

To evaluate the algorithms in a true black-box setting, we use one set of hyperparameters
for each algorithm across every objective function. To avoid manually tuning the algorithms
with the goal of maximizing their performance on our specific problem set, when possible
we use the same hyperparameter settings the authors of each method used during their
evaluation process.

We use the implementation of BO from the bayesopt (Martinez-Cantin, 2014) library.
For our evaluations, we use the squared exponential kernel with automatic relevance detec-
tion in which the parameters are estimated using maximum total likelihood. Each ABO run
is started with three randomly chosen initial points (which count against the algorithm’s
budget), and the GP’s parameters are re-estimated from the observed data every second
ABO iteration.

The EI criteria is parameter-free, but UCB requires us to define a value for 5. This
value is frequently tuned per-objective, but we instead set it to §; = 2log (|D\t27r2 / 65),
which Srinivas et al. (2010) found to be effective. In this case, t is the number of function
observations made so far and J is a constant set to 0.5.

SOO has no parameters to set. LOGO only requires a list of integers to use as the
adaptive schedule W for its local bias parameter. In this work, we set W = 3,4,5,6,8, 30
to duplicate the value chosen by Kawaguchi et al. (2016) in their work that introduced the
LOGO algorithm.

BaMSOO and IMGPO both require the use of a GP prior to estimate the upper bound
on the objective function’s value at certain nodes’ locations. Using the GP’s estimated mean
function p and standard deviation function o, we define the LCB and UCB as p(z)+Bno(z).
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For BaMSOO we define By = y/2log (72N2/67) as suggested by Wang et al. (2014), and
for IMGPO we define By = +/2log (72N?2/12n) as suggested by Kawaguchi et al. (2015).
In both cases, N is the total number of times the GP was used to evaluate a node, and the
constant 7 is set to 0.05 to duplicate the value used in the experimental results included by
Kawaguchi et al. (2015) and Wang et al. (2014).

5. Empirical Results

In this section we present the results of our experiments using simple regret as our primary
performance metric. In particular, after each run of an optimization algorithm, the simple
regret is the difference between the best observed outcome and the optimal value. The
reported regrets are averages over 70 independent trials.

5.1 General Trends of Regret Curves

We first consider the performance of the algorithms when given the same experimental bud-
get. Figure 1 shows the average regret curves for each algorithm on the Ackley, Rastrigin,
Rosenbrock, and Schwefel functions with dimensionality D = {4,6, 10}, as well as the 2D
functions Sin2, Branin, and Rosenbrock2. For all but the two-dimensional functions, there
appears to be a clear ordering of the different classes of algorithms: ABO-EI overwhelmingly
dominates the remaining algorithms at most sample counts with only a few exceptions. The
PBO methods are consistently the next closest algorithm class to ABO-EI’s performance
but are rarely able to achieve the same regret. The PGO algorithms keep up with the
best-performing algorithms initially, but their performance quickly seems to ‘flat line’ and
they have difficulty significantly improving further throughout the remainder of the sample
budget.

In practice, it is important to understand the worst case performance that we may
expect to encounter. Figure 2 shows the worst-case regret for each algorithm observed
across the 70 trials at each sample size. Results are shown for three objective functions that
are representative of the overall results. Overall, we found that the ordering of the worst-
case performance of the algorithms was approximately similar to their relative average-case
performances. Most notably, the PGO methods consistently have an inferior worst-case
performance than Random on higher dimensional functions.

One difference compared to the average case results is that PBO methods occasionally
have significantly poorer worst-case performance than the PGO methods. This is likely due
to behavior we have observed in which the GP prior used in PBO methods can be ‘tricked’
by a few unlucky unappealing function samples near the optimum value that causes the
algorithm to ignore what should ideally be seen as a promising region of the function. Since
the PGO methods are ‘dumber’ in that they do not take advantage of a prior and are more
likely to fall back to grid-search-like behavior, they do not suffer from this failure case.

5.2 Pairwise Comparisons

To gain a better understanding of how the algorithms compare to one another across all
the objective functions, we compiled Table 3 which shows a pairwise comparison of all the
algorithms across every objective after 500 samples. To generate the table, we calculated the
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Figure 1: Regret curves for each algorithm on a variety of functions. Each curve shows the
regret at each time step averaged across 70 randomized runs. Error bars have been omitted
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Figure 2: Worst-case regret curves for each algorithm. FEach curve shows the maximum
regret at each time step across 70 randomized runs.

| [[ ABO-EI [ ABO-UCB | PBO-BaMSO00 | PBO-IMGPO | PGO-LOGO [ PGO-S00 | DIRECT | Random ]

ABO-EI 12-3-38 12-0-11 10-1-12 18-1-4 18-1-4]13-1-19]123-0-0
ABO-UCB 3-12-8 0-2-21 0-4-19 12-1-10 11-1-11]0-6-17 | 20-0-3
PBO-BaMSOO [[0-12-11| 2-0- 21 0-2-21 9-1-13 10-1-12| 0-4-19 | 23-0-0
PBO-IMGPO 1-10-12| 4-0-19 2-0-21 10-1-12 10-1-12| 0-2-21 22-0-1
PGO-LOGO 1-18-4 [1-12-10 1-9-13 1-10-12 1-2-20|0-13-10]12-1-10
PGO-SOO 1-18-4 | 1-11-11 1-10-12 1-10-12 2-1-20 0-13-10| 14-0-9
DIRECT 1-3-19 6-0-17 4-0-19 2-0-21 13-0-10 13-0-10 22-0-1
Random 0-23-0 0-20-3 0-23-0 0-22-1 1-12-10 0-14-9 0-22-1

Table 3: Pairwise comparison of each algorithm across all objective functions at ¢ = 500
samples. Each cell displays the number of ‘wins’; ‘losses’, and ‘ties’ between the algorithm
in the row and the algorithm algorithm in the column (for example, the bottom-left-most
cell shows that Random beat ABO-EI 0 times, lost 23 times, and tied 0 times).

95% confidence interval of the mean regret of each algorithm on each objective function at
the specified sample size. We considered one algorithm to beat another on a given function
if the upper bound of the confidence interval of the mean of its regret was less than the
lower bound of the ‘challenger’ algorithm. If the confidence intervals of the two algorithms’
performance overlapped, then they were considered to tie. We use this information to
examine differences between different classes of algorithms, across different types of objective
functions, and different sample budgets.

ABO-UCB versus ABO-EI. ABO-EI and ABO-UCB, despite being similar algo-
rithms, performed very differently from one another compared to other algorithm pairs in
the same class. EI wins over UCB over half of the time, and loses only 3 times. While EI
consistently beats every other algorithm, UCB seems to be able to at best tie with the PBO
algorithms, and could only beat the PGO algorithms approximately half of the time.

Note that this result is based on our selected method for updating the UCB hyperpa-
rameter 5. It is important to recall that this choice was based on our best effort to select
from the variety of 8 selection methods considered in previous work during a preliminary
validation period—we know of no better overall method for g selection.

It is very likely that one could tune  on a per problem basis to outperform EI, however,
this tuning methodology would not result in algorithm behavior that is representative of
its efficacy in many real-world scenarios. To test this possibility, we selected a number
of additional settings for the  parameter and compared UCB’s performance using these
settings to our previous results and ABO-EI’s. Selected results from these experiments are
shown in Figure 3.
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Figure 3: Regret curves for a variety of different 8 values for the UCB algorithm. ABO-EI
and Random are provided as benchmarks.

We compared a variety of constant values for § (labeled as UCB-x, where x is the
constant value), another suggested schedule that was used by Kandasamy et al. (2015a)
(labeled as UCB-K), an annealing schedule provided by the Bayesopt library (Martinez-
Cantin, 2014) (labeled as UCB-Annealed), the original schedule we used in the previous
results (labeled as UCB-Krause), and ABO-EIL

The results show that no one 3 setting appears to be able to match EI's performance
more than occasionally. The UCB-K setting does appear to generally do better than the
UCB-Krause setting we evaluated, but not to the extent that it would significantly change
our results had we selected that schedule instead.

Simple constant values of 8 perform surprisingly well on some objectives, with 0.1 and
1.0 occasionally beating EI. However, the lack of a consistent winner suggests that the 3
value needs to be manually tuned to perform well on each objective function. It’s unclear
what knowledge about the objective’s properties is required to determine which § values
will be effective or if it’s feasible to make that determination during the optimization of an
unknown objective function.

On the other hand, EI is parameter free and therefore does not require such a selection
process. Thus, these results suggest that ABO-EI is more appropriate to use in a true black-
box setting where the objective’s properties are unknown, or that further work should be
done on determining how to adaptively set ABO-UCB’s g parameter to improve its black-
box performance.

Acquisition Functions versus Partitioning. If we consider ABO-EI as the rep-
resentative of the ABO class of algorithms, it appears that ABO approaches dominate
partitioning-based approaches across the board. PBO methods frequently seem to tie with
EI’s performance, but the fact that they are almost never able to actually outperform EI
when given an equal number of objective function observations suggests that EI is the more
effective approach in this study.

PBO versus PGO. As should be expected, augmenting SOO to enable it to take
advantage of Bayesian inference significantly improves the PBO methods’ performance over
that of the PGO algorithms. While PBO and PGO methods frequently tie with each other
in our comparison, both PBO methods only lose once to SOO and LOGO.

Comparison to Random. The ABO and PBO algorithms are consistently able to
beat Random, with only UCB and IMGPO ever tying with it. PGO methods are not as
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dominant versus Random, with both SOO and LOGO winning over Random only slightly
more often than they’re able to tie, and LOGO losing on 1 function.

Comparison to DIRECT. DIRECT clearly performs significantly better than either
SOO or LOGO in our results. It ties with ABO-EI approximately as often as the other
PGO methods lose to ABO-EI, and most notably never loses to either SOO or LOGO while
consistently outperforming them.

This is surprising, considering how similar DIRECT is to SOO in its structure and
operation. The most notable differences are DIRECT’s lack of a ‘depth limit’ when refining
its partitioning tree over the objective’s domain, and its lack of a uniform selection of cells
to refine among all depths of its partitioning tree.

While these properties are what give SOO its theoretical guarantees, the former may
prevent SOO from quickly exploiting an area of the objective that’s known to be good
while the latter forces it to ‘waste’ observations exploring areas that might otherwise seem
unappealing.

In practice, this appears to suggest that DIRECT’s lack of these potential limitations
allows it to significantly outperform the PGO algorithms. Since DIRECT’s runtime is
comparable to SOO and LOGO’s, our results do not suggest a potential use case for which

SOO or LOGO would be more appropriate to select as an optimization algorithm over
DIRECT.

5.3 Other Results and Discussion

Large Numbers of Experiments. Since PGO algorithms are orders of magnitude faster
than ABO and PBO algorithms, and PBO algorithms can be at least an order of magnitude
faster than ABO algorithms, it is interesting to consider the performance of each algorithm
when the limiting factor is time rather than a sample budget. We present the performance
of the algorithms when run for the maximum number of samples considered in this study
in Table 4. This simulates the extra objective observations that the faster methods would
be able to collect within a fixed time budget, assuming the evaluation of the objective
is fast and cheap. These sample sizes were selected based on computational feasibility of
conducting the 70 trials for each algorithm on each function.

We allowed the PGO algorithms 10K samples, the ABO algorithms 500 samples, and
the PBO algorithms were allowed to run for the same average wall clock run time as the
ABO algorithms. This approach resulted in approximately 25k samples on average per
problem for BaMSOO, and 4k samples for IMGPO. We empirically observe that both SOO
and LOGO improve in comparison to the lower-sample-size ABO and PBO approaches,
contrasting the pairwise comparisons in Table 3 and Table 4 reveals that the difference is
less significant than would be expected considering the PGO methods are allowed ten to
twenty times as many samples as the others. On the other hand, DIRECT seems to be able
to take advantage of the extra samples—whereas at 500 samples it was beaten handily by
ABO-EI, after 10,000 samples it never loses to ABO-EI and wins against it more than any
other algorithm.

This suggests that the depth-limiting behavior, which is necessary to maintain SOO and
LOGOQO’s exploration behavior in earlier stages of the optimization, may be hurting their
ability to take advantage of large numbers of objective samples. The resulting coarse grid

19



MERRILL, FERN, FERN, AND DOLATNIA

new samples are restrained to by the limited depth of the refinement tree may be limiting the
extent to which the partitioning algorithms are able to quickly ‘hone in’ on promising regions
of the function once they’ve been identified. Modifying the algorithms’ depth limiting Apax
function to allow for greater tree expansion at very large number of samples could prevent
this behavior, although it may also reduce performance by allowing PGO to spend too many
samples exploiting attractive-looking regions earlier on. Investigations during our validation
period did not reveal a superior choice for hy.x overall.

Comparing PBO versus ABO, we see that both PBO algorithms reduce the number of
losses to ABO-EI at the larger sample size, they do not improve the number of wins over
ABO-EI. The performance of the PBO algorithms improves slightly against ABO-UCB,
however, ABO-UCB was already not very competitive when PBO was allowed only 500
samples.

To more directly compare the performance of PBO and ABO algorithms, we removed
the sample budget and applied a time horizon to the PBO methods that allows them to
execute for the same average runtime as the ABO method would on the same objective.
Due to ABO’s need to optimize its increasingly expensive to evaluate acquisition function
to select each point, at large numbers of observations ABO runs slowly enough that the
PBO methods which are not burdened by this responsibility are able to achieve up to
thousands of extra samples of the objective in the same amount of time. We show a sample
of representative results obtained with varying time horizon in Figure 4. As our previous
results indicate, despite being allowed up to thousands of extra samples of the objective
over ABO, the PBO methods are unable to translate those extra samples into a better final
regret.

We also evaluated the algorithms’ relative performance when the objective function
takes more or less time to execute. Our data set contains the wall clock execution time (e)
and sample count (¢) for each step in each optimization. Since we know the benchmark
functions take near-zero time to evaluate, we assume that the wall clock time represents the
amount of time the algorithm itself has consumed up until that point. We can then derive a
data set simulating the algorithms’ performance on objective functions that takes time o to
evaluate by replacing each wall clock time/sample count pair (e, t) in the data set with an
updated pair (e 4 ot,t). We hoped to discover that by adjusting the ‘objective complexity’
we would could find a trade-off where the rapid sampling pace of the partitioning algorithms
would outperform the slower optimization-bound approach of the acquisition algorithms.
However, we did not follow through on this analysis once we observed that the partitioning
methods were unable to reliably outperform the acquisition methods even when given orders
of magnitude more samples.

‘Flexibility’ of ABO. Although we’re using one set of hyperparameters on one imple-
mentation of ABO for our evaluation, it’s important to consider that ABO has many implicit
and explicit parameters that can be modified to achieve a desired performance/computation
trade off. For example, by tweaking the time allowed by the inner optimization algorithm
that optimizes the GP’s parameters or the algorithm that optimizes the acquisition func-
tion, ABO can be made to run much faster with some unknown penalty to its performance
that depends on the objective’s sensitivity to the underlying GP’s accuracy or the accuracy
of the acquisition function optimization. We do not explicitly explore the details of those
minor tweaks to ABO in this work. Instead, to examine the impact on ABQO’s performance
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Figure 4: Regret curves for PBO and ABO methods in terms of wall clock time rather than
number of function evaluations executed. Each curve shows the regret at each time step
averaged across 70 randomized runs.
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Figure 5: Regret curves for each instance of ABO on a representative selection of functions.
Each curve shows the regret at each time step averaged across 70 randomized runs. Error
bars have been omitted for readability.

when it is not allowed the same amount of wall clock execution time, we adjust the number
of samples in-between GP parameter optimizations.

Figure 5 compares the performance of the instance of ABO we present in this paper
to a ‘sparse’ instance that is identical to the implementation of ABO we used other than
that it re-learns GP parameters from the observed data one-eighth as frequently. That
is, it performs the GP optimization every sixteen observations instead of at every second
observation.

Despite an expected decrease in execution time by a factor of eight, the performance
of this ‘lighter’ instance of ABO does not appear to perform significantly differently than
our ‘standard’ ABO. If ABO-EI did not already appear to be the dominant algorithm in
this evaluation, instead presenting a version of it that achieves similar results in one-eighth
the time would make it appear even more attractive when compared to the other methods.
However, since making this change would not affect our conclusions, we do not consider this
‘lighter’ ABO in our results other than to demonstrate how flexible ABO approaches can
be made to be.

Dependence on Dimensionality. Because ABO is known to be effective in problems
with low dimensionality, we intentionally compared the algorithms on objective functions
with a wide range of dimensionality to better understand where and why the partitioning
methods’ performance differs from ABO’s. Table 5 shows the same comparison restricted
to only two-dimensional objective functions, while Table 6 only shows the results for the
objectives with dimension greater than two.
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[ [[ ABO-EI | ABO-UCB | PBO-BaMSOO | PBO-IMGPO | PGO-LOGO | PGO-500 | DIRECT | Random |

ABO-EI 12-3-38 15-0-8 6-1-16 13-3-7 13-4-6 0-9-14 | 23-0-0
ABO-UCB 3-12-8 9-0-14 1-6-16 4-2-17 4-2-17 [0-12-11] 14-2-7
PBO-BaMSOO [[0-15-8| 0-9-14 0-6-17 1-6-16 0-6-17 |0-13-10| 3-2-18
PBO-IMGPO 1-6-16| 6-1-16 6-0-17 7-0-16 7-0-16 0-2-21 {13-0-10
PGO-LOGO 3-13-7] 2-4-17 6-1-16 0-7-16 1-0-22 (1-10-12| 11-3-9
PGO-SO0O 4-13-6| 2-4-17 6-0-17 0-7-16 0-1-22 1-10-12| 12-3-8
DIRECT 9-0-14]112-0-11 13-0-10 2-0-21 10-1-12 10-1-12 23-0-0
Random 0-23-0| 2-14-7 2-3-18 0-13-10 3-11-9 3-12-8 0-23-0

Table 4: Pairwise comparison of each algorithm across all objective functions when al-
gorithms are run for the maximum number of samples considered in this paper. PGO,
DIRECT, and Random are allowed 10, 000 samples, ABO is allowed 500 samples, and PBO
is allowed the same wall-clock run time as the ABO algorithms.

[ [[ABO-EI [ ABO-UCB | PBO-BaMSOO | PBO-IMGPO | PGO-LOGO | PGO-500 | DIRECT | Random |

ABO-EI 1-1-4 1-0-5 2-0-4 3-1-2 3-1-2 0-1-5|6-0-0
ABO-UCB 1-1-4 0-0-6 0-0-6 2-1-3 3-1-2 0-1-5]16-0-0
PBO-BaMSOO |[0-1-5 0-0-6 0-0-6 1-1-4 0-1-5 0-1-5]16-0-0
PBO-IMGPO 0-2-4 0-0-6 0-0-6 1-1-4 0-1-5 0-1-5|5-0-1
PGO-LOGO 1-3-2 1-2-3 1-1-4 1-1-4 1-2-3 0-3-3|4-1-1
PGO-SOO 1-3-2 1-3-2 1-0-5 1-0-5 2-1-3 0-3-3]6-0-0
DIRECT 1-0-5 1-0-5 1-0-5 1-0-5 3-0-3 3-0-3 6-0-0
Random 0-6-0 0-6-0 0-6-0 0-5-1 1-4-1 0-6-0 0-6-0

Table 5: Pairwise comparison of each algorithm across all objective functions with dimension
D =2 at t = 500 samples.

For the two-dimensional functions we evaluated, it appears that the difference between
the algorithms’ performance is not as pronounced. While ABO-EI still appears to be the
most effective, the PGO approaches frequently tie with its results and even beat it on one
occasion each.

For objectives with dimensions greater than two, ABO is much more dominant. ABO-EI
only loses to a partitioning method once, and wins against the other algorithms much more
frequently than it ties with them. Although we expect ABO’s performance to degrade at
higher dimensions, it seems that PGO’s performance is hit much harder by the increase in
objective dimensions. This may be because having more dimensions along which to split
the cells means the partitioning tree over the space would be much deeper before PGO can
start to refine its search towards promising areas (since each cell must be split along each
dimension in some order, regardless of the values observed). This ‘refinement’ shortcoming,
combined with the depth-limiting behavior of PGO algorithms, is likely what causes the
performance of PGO algorithms to degrade so consistently on high-dimensional functions.

[ [[ ABO-EI | ABO-UCB | PBO-BaMSOO | PBO-IMGPO | PGO-LOGO | PGO-500 | DIRECT | Random |

ABO-EI 11-2-4 11-0-6 8-1-8 15-0-2 15-0-2 |3-0-14|17-0-0
ABO-UCB 2-11-4 0-2-15 0-4-13 10-0-7 8-0-9 0-5-12]114-0-3
PBO-BaMSOO ||0-11-6] 2-0-15 0-2-15 8-0-9 10-0-7 |0-3-14[17-0-0
PBO-IMGPO 1-8-8 4-0-13 2-0-15 9-0-8 10-0-7 |0-1-16|17-0-0
PGO-LOGO 0-15-2| 0-10-7 0-8-9 0-9-8 0-0-17 [0-10-7| 8-0-9
PGO-SOO 0-15-2 0-8-9 0-10-7 0-10-7 0-0-17 0-10-7]8-0-9
DIRECT 0-3-14| 5-0-12 3-0-14 1-0-16 10-0-7 10-0-7 16 -0-1
Random 0-17-0] 0-14-3 0-17-0 0-17-0 0-8-9 0-8-9 0-16-1

Table 6: Pairwise comparison of each algorithm across all objective functions with dimension
D > 2 at t = 500 samples.
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Comparison to Previous Results. Several aspects of our results appear to differ from
some of those reported in previous works. The experimental results presented by Wang et al.
(2014) suggest that BaMSOO performs better than both SOO and ABO-UCB while being
significantly faster than ABO-UCB. Those presented by Kawaguchi et al. (2015) suggest
that IMGPO performs better than BaMSOO, SOO, and UCB-EI while being significantly
faster than BaMSOO. Later, Kawaguchi et al. (2016) report results that suggests that
LOGO is more effective than BaMSOO and significantly more so than SOO.

Taken as a whole, these results seem to suggest that LOGO and IMGPO are the dom-
inant optimization algorithms among those considered, both handily beating the current
state-of-the-art ABO methods. Our results contradict this implied ranking. Most notably,
we found that ABO-EI was a dominant algorithm and LOGO rarely performs significantly
better than SOO.

Of course, we need to be cautious about reasoning about prior results in a transitive
fashion. Each evaluation was performed on a different set of black-box functions, sometimes
according to different metrics, and likely using different implementations of each algorithm.
Still, it’s surprising that there is such a discrepancy between our observed relatively perfor-
mances and those derived from previous work.

For LOGO, the code used to generate prior results was not available due to contractual
issues and we have not been able to replicate those results. However, we have validated
our implementation with the authors of LOGO. One potential source for the discrepancy is
that our evaluation employs randomization of the objective function, which we found was
important to avoid observing performance differences due to lucky initializations or grid
alignment.

ABO algorithms are necessarily ‘tuned’ by the authors of papers that use them in
comparisons—however, the parameters selected are rarely reported since they’re not con-
sidered relevant to the paper itself. Although EI is parameter-free, the Gaussian processes
used in ABO methods have many parameters that can significantly effect ABO’s perfor-
mance. This may explain the unusually poor performance by ABO-EI in previous work.
Without any motivation to maximize the ABO methods’ performance in the comparison,
it’s unclear whether or not the parameters selected for the evaluation result in representative
behavior from the algorithm.

6. Summary

We presented experimental results comparing PGO, PBO, and ABO methods within a com-
mon open-source evaluation framework. The results demonstrate that acquisition-based
optimization approaches, specifically ABO-EI, outperform partitioning-based optimization
methods when evaluated by the average regret achieved after a given number of function
observations in a strict black-box setting. Even when partitioning methods are given sig-
nificantly more samples of the objective function, they are frequently unable to match the
results that ABO-EI can achieve with much fewer samples.

The utility of an extremely computationally cheap black box optimization algorithm
is already questionable since the limiting factor in problems that apply these algorithms
is usually evaluating the black box function itself rather than the optimization algorithm’s
runtime. We demonstrate that fast partitioning-based methods tend to ‘flat-line’ on difficult
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problems even when given significantly more observations, or at least equal runtime, than
competing expensive algorithms. This suggests that there are fewer situations in which
PGO optimization should be chosen over BO-enabled methods than one might otherwise
assume.

This apparent weakness is described in our results, but not well explained. Follow-up
investigations into why or how the partitioning methods fail to improve as consistently
as ABO methods can after a large number of samples are warranted. If the algorithm’s
shortcomings are in fact due to the refinement issue we discuss above, it’s possible that
modifying the depth limiting function or making other small changes to the algorithm could
significantly improve its long-term performance compared to otherwise slower algorithms.
Still, the partitioning methods’ relative speed and efficiency make them a promising target
for future work.

Although UCB is commonly shown to perform well when evaluated on synthetic ob-
jective functions, we found that without manually tuning its 8 parameter to maximize its
performance it regularly failed to outperform both PBO and PGO methods.

Acknowledgements

This work was supported by NSF grant 11S-1619433 and DARPA contract N66001-19-2-
4035.

References

Eric Brochu, Vlad M. Cora, and Nando de Freitas. A Tutorial on Bayesian Optimization
of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical
Reinforcement Learning. arXiv e-prints, art. arXiv:1012.2599, Dec 2010.

Donald R Jones. A taxonomy of global optimization methods based on response surfaces.
Journal of global optimization, 21(4):345-383, 2001.

Donald R Jones, Cary D Perttunen, and Bruce E Stuckman. Lipschitzian optimization
without the lipschitz constant. Journal of Optimization Theory and Applications, 79(1):
157-181, 1993.

Kirthevasan Kandasamy, Jeff Schneider, and Barnabas Péczos. High dimensional bayesian
optimisation and bandits via additive models. In International Conference on Machine
Learning, pages 295-304, 2015a.

Kirthevasan Kandasamy, Jeff G Schneider, and Barnabas Péczos. High dimensional bayesian
optimisation and bandits via additive models. In ICML, pages 295-304, 2015b.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Tomaés Lozano-Pérez. Bayesian optimization
with exponential convergence. In Advances in Neural Information Processing Systems,
pages 2809-2817, 2015.

Kenji Kawaguchi, Yu Maruyama, and Xiaoyu Zheng. Global continuous optimization with
error bound and fast convergence. Journal of Artificial Intelligence Research, 56(1):153—
195, 2016.

24



AN EMPIRICAL STUDY OF BAYESIAN OPTIMIZATION

Harold J Kushner. A new method of locating the maximum point of an arbitrary multipeak
curve in the presence of noise. Journal of Basic Engineering, 86(1):97-106, 1964.

David JC MacKay. Introduction to gaussian processes. NATO ASI Series F' Computer and
Systems Sciences, 168:133—-166, 1998.

Ruben Martinez-Cantin. Bayesopt: a bayesian optimization library for nonlinear optimiza-
tion, experimental design and bandits. Journal of Machine Learning Research, 15(1):
3735-3739, 2014.

J. Mockus, V. Tiesis, and A. Zilinskas. The application of bayesian methods for seeking
the extremum. In L.C.W.Dixon and G.P. Szego, editors, Towards Global Optimisation 2,
pages 117-129. 1978.

Jonas Mockus. Application of bayesian approach to numerical methods of global and
stochastic optimization. Journal of Global Optimization, 4(4):347-365, 1994.

Marcin Molga and Czestaw Smutnicki. Test functions for optimization needs. Test functions
for optimization needs, 101, 2005.

Rémi Munos et al. From bandits to monte-carlo tree search: The optimistic principle
applied to optimization and planning. Foundations and Trends®) in Machine Learning,
7(1):1-129, 2014.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process
optimization in the bandit setting: no regret and experimental design. In Proceedings of
the 27th International Conference Machine Learning, pages 1015-1022. Omnipress, 2010.

Ziyu Wang, Babak Shakibi, Lin Jin, and Nando de Freitas. Bayesian multi-scale optimistic
optimization. In AISTATS, pages 1005-1014, 2014.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine
learning, volume 2. MIT Press Cambridge, MA, 2006.

25



	Introduction
	Problem Setup and Background
	Description of Algorithms
	Acquisition-Based BO
	Partitioning-Based Optimization
	Simultaneous Optimistic Optimization (SOO)
	Locally Oriented Global Optimization (LOGO)
	Dividing Rectangles (DIRECT)

	Partition-Based Bayesian Optimization
	Bayesian Multi-Scale Optimistic Optimization (BaMSOO)
	Infinite-Metric GP Optimization (IMGPO)


	Experimental Setup
	Hyperparameter Selection
	Software Platform
	Black Box Functions
	Evaluation Process
	Objective Function Randomization
	Hyperparameter Settings


	Empirical Results
	General Trends of Regret Curves
	Pairwise Comparisons
	Other Results and Discussion

	Summary

