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Abstract

We propose the class-specified topic model (CSTM) to deal with the tasks of text classification and
class-specific text summarization. The model assumes that in addition to a set of latent topics that
are shared across classes, there is a set of class-specific latent topics for each class. Each document
is a probabilistic mixture of the class-specific topics associated with its class and the shared topics.
Each class-specific or shared topic has its own probability distribution over a given dictionary. We
develop a Bayesian inference of CSTM in the semisupervised scenario, with the supervised scenario
as a special case. We analyze in detail the 20 Newsgroups dataset, a benchmark dataset for text
classification, and demonstrate that CSTM has better performance than a two-stage approach based
on latent Dirichlet allocation (LDA), several existing supervised extensions of LDA, and an L1

penalized logistic regression. The favorable performance of CSTM is also demonstrated through
Monte Carlo simulations and an analysis of the Reuters dataset.
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1. Introduction

Text classification is an important first step in organizing large document collections and is widely
applied (e.g. Chen and Dumais, 2000; Broder et al., 2007; Gomez and Moens, 2012). Automatic
text summarization allows users to quickly grasp and compare themes in given text corpora and has
become increasingly important with the expanding accumulation of text documents in all fields (e.g.
Zubiaga et al., 2011; Jia et al., 2014). In practice, it is often labor intensive and time consuming
to obtain labeled documents, but it is easy to obtain a large number of unlabeled documents. By
combining information from both unlabeled and labeled documents, semisupervised approaches have
the potential to obtain a higher classification accuracy and better class-specific text summaries than
supervised approaches that use labeled documents only.

A popular paradigm of representing documents in text analysis is vector space models (Salton,
1989; Belew, 2000). In a vector space model, each document is represented by a vector whose length
is equal to the size of a dictionary. Each element in the vector is a certain normalized version of
the count of the number of times that the corresponding term (word or phrase) in the dictionary
appears in the document. In text classification problems, such document-term representation often
leads to a high-dimensional feature set, which poses a challenge for many classification methods.
Therefore, both supervised and semisupervised approaches have been proposed to perform dimension
reduction (e.g., Yang and Pedersen, 1997; Baker and McCallum, 1998; Cong et al., 2004; Su et al.,
2011; Gomez and Moens, 2012). For the task of class-specific text summarization, a recent notable
supervised approach is the concise comparative summarization (CCS) method proposed by Jia et al.
(2014). For a given class, CCS uses supervised sparse classification methods, Lasso (Tibshirani,
1996), and L1-penalized logistic regression (e.g., Genkin et al., 2007; Ifrim et al., 2008) to select
phrases that can predict belonging to a class. The resulting small set of selected phrases can serve as
a summary of texts in the class.

Another paradigm of representing text documents and achieving dimension reduction simulta-
neously is a suite of hierarchical models known as topic models (e.g., Blei et al., 2003; Griffiths
and Steyvers, 2004). Compared to vector space models, topic models can better reveal the thematic
structure in the document collection. The most basic topic model is the latent Dirichlet allocation
(LDA, Blei et al., 2003) model, in which there are a set of latent topics underlying all documents,
with each topic being represented by its specific vector of probabilities over the dictionary. Each
document is assumed to be generated by a probability distribution over these topics. The vector
of topic probabilities for each document and the vector of word probabilities for each topic follow
Dirichlet distributions.

LDA is an unsupervised model. A common practice of using LDA for text classification is to take
a two-stage approach: first, estimating an LDA model using all training documents without reference
to their class labels; and second, using the document-specific topic probabilities to train a classifier,
such as a support vector machine (SVM). This two-stage approach often has better classification
accuracy than classifiers directly built on the high-dimensional term features (Blei et al., 2003). A
two-stage approach can also be used to obtain class-specific text summarization. For each class, some
topics extracted by LDA can be selected to represent the class, and words with top probabilities under
these topics can be used to summarize texts within the class. Another approach is to apply LDA
separately to documents within each class (Blei et al., 2003, Section 4.2). For each document, a class
label can be assigned based on comparing its likelihood under different classes. Topics extracted
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under each class can be used to obtain class-specific text summarization. We refer to this approach as
LDA per class.

Numerous extensions of LDA have also been proposed to account for discrimination between
classes in the model. In the stream of supervised extensions, Blei and McAuliffe (2007) proposed
the supervised latent Dirichlet allocation model (sLDA), in which documents are generated in the
same way as LDA, each document is paired with a response that is related to empirical frequencies
of the topics in the document through a generalized linear model, and the parameters in LDA
and in the generalized linear model are estimated jointly. Lacoste-Julien et al. (2008) propose the
discriminatively trained LDA model (DiscLDA), in which each document is associated with a class
label and the vector of topic probabilities for each document is obtained by applying a class-specific
linear transformation to a Dirichlet random variable. Ramage et al. (2009) proposed labeled LDA, in
which each document is associated with a set of labels, each label directly corresponds to a topic, and
each document is constrained to use only those topics that correspond to its label set. Ramage et al.
(2009) also mentioned an extension of the labeled LDA model that allows a common background
topic in all documents. Resnik et al. (2015) proposed a supervised nested LDA model (SNLDA) in
which, similar to sLDA, the response for a document is related to empirical frequencies of the topics
in the document but the underlying topics are organized into a tree. Examples of other supervised
extensions include Zhu et al. (2009), Lin et al. (2012), Cao et al. (2015), and Li et al. (2015).

There has been relatively less work on semisupervised extensions of LDA. Wang et al. (2012)
and Lu et al. (2013) proposed semisupervised LDA (ssLDA) methods. In these methods, each class is
associated with a topic. Hybrid generative models are assumed for labeled and unlabeled documents.
A labeled document is restricted to use only the topic associated with its class, but an unlabeled
document can use all topics. Zhang and Wei (2014) propose semisupervised topic models, which
also use hybrid generative models. For a labeled document, the generative model describes how the
words and the label are generated. For an unlabeled document, the generative model describes only
how the words are generated.

In this paper, we propose the class-specified topic model (CSTM) as another extension of LDA.
Our method is motivated through the observation that, in the aforementioned two-stage approach, the
training of LDA in the first stage does not take into account any information on the known class labels
in the training documents; therefore, many extracted topics are likely to be unhelpful for classification
or class-specific summarization in the second stage. To alleviate this problem, we partition the latent
topics into class-specific ones associated with each class and common ones shared across classes.
The class-specific topics are designed to capture contents that are distinctively discussed in each
class, and the shared topics are intended for contents that are common to all classes. We assume
coherent generative models for labeled and unlabeled documents. Each document, regardless of
whether it is labeled or unlabeled, can be represented by a probabilistic mixture of the class-specific
topics associated with its class and the shared topics. Each class-specific or shared topic has its vector
of probabilities over the dictionary.

CSTM imposes a sparsity constraint that each document has zero probability to choose class-
specific topics not associated with its class. Therefore, it is more parsimonious than LDA and
potentially has better generalizability. We will show that CSTM can represent unseen text documents
better than LDA, which in turn can facilitate classification of these documents. Furthermore, because
the class-specific topics in CSTM are directly related to class discrimination, we expect that CSTM
can achieve higher classification accuracy and better class-specific text summaries than the two-stage
approach based on LDA.
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The rest of this paper is organized as follows. Section 2 introduces our main dataset consisting of
articles from 20 Newsgroups, a benchmark dataset for text classification, applies LDA to this dataset,
and discusses our motivations for introducing CSTM. Section 3 presents CSTM and compares
analytical structures of the supervised CSTM with sLDA, DiscLDA and labeled LDA. Section 4
develops Bayesian inference of CSTM in the semisupervised scenario, with the supervised scenario as
a special case. Section 5 applies CSTM to the Newsgroups dataset and makes a detailed comparison
with the two-stage LDA approach, the LDA per class approach, sLDA, DiscLDA, labeled LDA,
and a modified CCS approach. Section 5 also mentions further comparison between the supervised
CSTM and its competitors through Monte Carlo simulations and an analysis of the Reuters dataset
(details in Appendix). Section 6 concludes with a brief discussion.

2. The Dataset and Motivations

In this section, we first introduce the 20 Newsgroups dataset and then present its application by using
LDA, the results of which motivated us to develop CSTM.

2.1 The 20 Newsgroups dataset

The 20 Newsgroups dataset1 is a benchmark dataset for text classification. It contains 18,846
newsgroup documents, and on average there are 148.51 words in each document. These documents
are partitioned (nearly) evenly across 20 different newsgroups, which are treated as 20 classes. Some
of the newsgroups are semantically closely related to each other while others are highly unrelated;
hence the 20 newsgroups can be further partitioned into six class groups. The dataset has also been
partitioned into a training set with 60% of the documents and a test set with 40% of the documents.
Table 1 reports the class groups, the classes, and the number of training and test documents in each
class.

Following common practices in text mining, we first preprocess the documents by using the
NLTK library in Python to remove numbers, punctuations and stopwords (words that are commonly
used but have little semantic meaning in most occasions, such as “the” and “is”). After preprocessing,
there are 117,918 unique words in the training documents, which constitute the dictionary.

We consider the semisupervised scenario in which a fraction ϕ of training documents are
randomly chosen to be labeled and the remaining (1-ϕ) fraction of the training documents are
unlabeled. We are interested in using all training documents, labeled and unlabeled, to build
classifiers and extract class-specific text summaries.

2.2 Application of LDA to the 20 Newsgroups dataset

We apply LDA to all training documents. LDA assumes that there are K latent topics underlying
all documents. Each document d is a mixture of these topics according to probability vector θd =
(θd,1, ..., θd,K)>. Each topic k is characterized by its probability distribution φk = (φk,1, ..., φk,V )>

over the dictionary with size V . The generative process of D documents is illustrated in Figure 1 and
described below.

1. Generate φk (k = 1, ...,K) independently from a Dirichlet distribution with parameter
β = (β1, · · · , βV )>: φk ∼ Dir(β).

1. This dataset is downloadable from http://qwone.com/∼jason/20Newsgroups/.
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Table 1: Class Groups, Classes and the Numbers of Documents in Each Class
Class
Group

Class
Number

Class Name
No.

Training
No.
Test

Computer
Science

1 comp.graphics 584 389
2 comp.os.ms-windows.misc 591 394
3 comp.sys.ibm.pc.hardware 590 392
4 comp.sys.mac.hardware 578 385
5 comp.windows.x 593 395

For Sale 6 misc.forsale 585 390

Auto &
Sports

7 rec.autos 594 396
8 rec.motorcycles 598 398
9 rec.sport.baseball 597 397

10 rec.sport.hockey 600 399

Science

11 sci.crypt 595 396
12 sci.electronics 591 393
13 sci.med 594 396
14 sci.space 593 394

Politics
15 talk.politics.guns 546 364
16 talk.politics.mideast 564 376
17 talk.politics.misc 465 310

Religion
18 alt.atheism 480 319
19 soc.religion.christian 599 398
20 talk.religion.misc 377 251
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Figure 1: Generative Process for the LDA Model

2. Each document d (d = 1, ..., D) is independently generated as follows:

(a) Generate θd from a Dirichlet distribution with parameter α = (α1, · · · , αK)>: θd ∼
Dir(α).

(b) Let Nd be the number of words in document d. The nth word in document d (n =
1, · · · , Nd) is generated independently as follows:

i. Choose a topic zd,n by drawing zd,n ∼Multi(θd);

ii. Choose a word wd,n by drawing wd,n ∼Multi(φzd,n).
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Here, α and β are given hyperparameters. We consider a homogeneous Dirichlet distribution with
α1 = · · · = αK = α for the topic probabilities, which does not prefer any topic a priori.

Let zd = (zd,1, ..., zd,Nd)
> and wd = (wd,1, ..., wd,Nd)

> denote the vectors of topic indicators
and words, respectively, for document d, and let z = {z1, ...,zD} and w = {w1, ...,wD} denote
the collection of these indicator and word vectors for all training documents. Let Θ = {θ1, ...,θD}
and Φ = {φ1, ...,φK}. With z being treated as missing data, the full posterior distribution of
(Θ,Φ, z) can be derived from the generative process of the postulated topics model and is presented
in Appendix A.

Since the Dirichlet priors are conjugate to the multinomial distributions, the marginal posterior
distribution p(z|w) can be easily obtained by integrating out Θ and Φ from the full posterior
distribution. Therefore, the LDA model can be trained using the collapsed Gibbs sampling algorithm
(Liu, 1994; Griffiths and Steyvers, 2004), which samples z by iteratively sampling zd,n given the
other elements of z. After convergence is reached, given each draw of z, Θ and Φ can be easily
estimated. Let θ̃d,k and φ̃k,v denote the posterior means of estimates of θd,k and φk,v. The meaning
of topic k can be characterized by words with high values of φ̃k,v.

Following Griffiths and Steyvers (2004), we set α = 50/K and βv = 0.1 for v = 1, · · · , V . We
also follow the Bayesian approach in Griffiths and Steyvers (2004) to train the LDA model, select
the number of topics, and obtain topic probabilities for training or test documents. The marginal
log-likelihood ofw is used to select the number of topics from 1 to 201, with an increment of 5. The
number of topics corresponding to the largest marginal log-likelihood is selected, resulting in 71
topics.

2.3 Motivation for developing CSTM

We set the fraction of labeled training documents as ϕ=20% in this section. We first show that many
topics extracted by LDA do not have the ability to distinguish between classes.

For each topic extracted by LDA, we define its strength of association with each of the 20 classes
as follows. Let Mobs

j denote the number of labeled training documents belonging to class j and Ωobs
j

the set of indexes for these documents. Recall that θ̃d,k is the posterior mean of estimates of θd,k
under the LDA model. For topic k and class j, we define

ρk,j =
1

Mobs
j

∑
d∈Ωobs

j

θ̃d,k, (1)

which is the average topic probability on topic k for labeled training documents belonging to class j.
We further normalize ρk,j to

δk,j =
ρk,j∑J
j′=1 ρk,j′

. (2)

Clearly, if δk,j is concentrated on a very few classes, then topic k is useful for class separation;
however, if δk,j is nearly uniform, then topic k is not helpful for class discrimination.

Figure 2 shows the heatmap of δk,j , in which each row represents a topic and each column
represents a class. The classes are ordered as in Table 1, and the 71 topics are also ordered for a clear
visualization. Briefly, we first screen out those topics with maxj δk,j < 0.1 (listed at the bottom).
Then, starting with class 1, for each class j we sequentially find topics that are most related to it. If a
topic is picked up by two classes, we assign it to the one with the higher δk,j .
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We see from the figure that some topics are highly associated with specific classes. For instance,
topic 20 is almost exclusively associated with class 10 (“rec.sport.hockey”). The top ten words with
the highest values of φ̃k,v under this topic are “team, game, hockey, play, NHL, games, season, players,
go, period”, which are closely related to hockey games discussed in class 10. As another example,
topic 47 is highly associated with classes 19 (“soc.religion.christian”) and 20 (“talk.religion.misc”)
and hence may represent a mixture of contents for these two classes. The top words under topic
47 are “God, Jesus, Bible, church, Christian, Christ, Christians, faith, one, Gods”, which are also
closely related to religion issues discussed in these two classes. By contrast, the topics at the bottom
of Figure 2 are not strongly associated with any class. For example, the top ten words in topic 71
in Figure 2 are “one, would, people, may, many, us, even, also, must, question”, all of which are
nonspecific. Although for each class there are certain topics that are more strongly associated with it
than others, the overall picture given by Figure 2 is not clear. There is a lot of noise in discriminating
between classes using the topics extracted by LDA.
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Figure 2: The heatmap of δk,j across 71 topics extracted by LDA and 20 classes

3. The Class-Specified Topic Model

This section introduces CSTM in detail and then compares the supervised CSTM with other super-
vised extensions of LDA.

3.1 Generative Process of the CSTM

CSTM partitions latent topics into hj class-specific ones associated with each class j (j = 1, ..., J),
which capture contents that are distinctively discussed in each class, and hS “shared” topics commonly
discussed by a large number of classes.
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LetHj be the set of indexes for topics specific to class j (j = 1, ..., J),HC = ∪Jj=1Hj the set of
all class-specific topics, andHS the set of shared topics. Each document in class j is a probabilistic
mixture of topics in the subset Λj = Hj ∪HS . The total number of topics is K =

∑J
j=1 hj + hS .

Figure 3 illustrates our model with J = 3, h1 = 3, h2 = 2, h3 = 2 and hS = 2.

 Class 1   Class 2 Class 3 

𝑯S 

𝑯1 𝑯2 𝑯3 

Figure 3: Illustration of CSTM

Let yd ∈ {1, 2, ..., J} denote the class label for document d. Given yd = j, the topic probabilities
in θd are nonzero only for topics k ∈ Λj ≡ Hj ∪HS . Each class-specific or shared topic has
a vector of probabilities φk (k = 1, ...,K) over the dictionary. Let η = (η1, ..., ηJ)> denote the
probabilities that documents belong to the J classes. The generative process of D documents is
illustrated in Figure 4 and described below.
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𝛼 𝑘 ∈ 𝑯𝑆 

Figure 4: Generative Process for CSTM

1. Generate the class distribution (J dimensional) as η ∼ Dir(γ);

2. Generate the probability distribution for each topic (V-dimensional) independently: φk ∼
Dir(β) for k = 1, ...,K;

3. Each document d is independently generated as follows:
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(a) Generate class label yd ∼Multi(η);

(b) Generate its probability vector over all topics, θd by first setting those θd,l corresponding
to topics not in Λyd to zero and then generating the remaining hyd + hS components
from Dir(α, · · · , α);

(c) The nth word in document d (n = 1, · · · , Nd) is independently generated as follows:

i. Choose a topic by drawing zd,n ∼Multi(θd),
ii. Choose a word wd,n ∼Multi(φzd,n).

Here, α, β and γ are given hyperparameters. We consider a homogeneous Dirichlet distribution for
the class probabilities that does not prefer any class a priori, such that γ1 = · · · = γJ = γ.

CSTM can be regarded as an extension of LDA, with the constraint that θd,k = 0 if k /∈ Λyd .
The benefits of this constraint are twofold. First, when the number of topics is the same, CSTM is
more parsimonious than LDA. Hence, CSTM potentially has better generalization ability than LDA.
Second, the class-specific topics in CSTM directly extract information related to class discrimination,
which can help achieve higher classification accuracy and better class-specific text summaries.

Under the semisupervised scenario, let ymis denote the set of unknown class labels for unlabeled
training documents. The full posterior distribution of (η,ymis,Θ,Φ, z) can be derived from the
generative process and is presented in Appendix B. The supervised scenario is a special case with
ϕ = 100%, where ymis is omitted.

3.2 Analytical Comparison of the Supervised CSTM and Other Supervised Extensions of
LDA

Supervised topic modeling has been an active research direction since late 2000. Many effective
supervised extensions of LDA have been developed in the past decade, including LDA per class (Blei
et al., 2002), sLDA (Blei and McAuliffe, 2007), DiscLDA (Lacoste-Julien et al., 2008), and labeled
LDA (Ramage et al., 2009). Here, we discuss the structural differences between the supervised
CSTM (with ϕ = 100%) and these earlier methods.

In the LDA per class approach, an LDA model is first estimated within each class. The log
marginal likelihood of each test document is calculated under the estimated LDA model for each
class. Then, the label of each test document is predicted to be the class with the largest log marginal
likelihood. Under this approach, all of the topics can be regarded as class-specific topics. However,
common contents appearing across classes are represented by different sets of topics under each class,
which introduces extra model complexity and is not helpful for class discrimination. Compared to
LDA per class, CSTM uses shared topics to account for common contents appearing across classes,
and the extracted class-specific topics allow for a stronger discriminating power.

In sLDA, the generative process for the documents is the same as LDA. In the classification
context, each document d is associated with a class label yd, which is related to the empirical topic
probabilities, (

1

Nd

Nd∑
n=1

I(zd,n = 1), · · · , 1

Nd

Nd∑
n=1

I(zd,n = K)

)
,

through a generalized linear model. The parameters in LDA and those in the generalized linear
model are jointly estimated. Compared with sLDA, CSTM directly incorporates class labels into the
generative process for documents and is more parsimonious and coherent.
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In DiscLDA, for each document d with class label yd, the K-dimensional vector of topic
probabilities θd is obtained by applying a class-specific linear transformation T yd to anL-dimensional
Dirichlet variable ξd, that is, θd = T ydξd. The transformation matrices T y can be jointly estimated
with the vectors of word probabilities φk. When the transformation matrices are not estimated but
rather fixed in the following form with (J + 1) rows and two columns of block matrices,

T 1 =


IK0 0
0 0
...

...
0 0
0 IK1

 , T 2 =


0 0
IK0 0

...
...

0 0
0 IK1

 , T J =


0 0
0 0
...

...
IK0 0
0 IK1

 ,

DiscLDA corresponds to a special case of CSTM with fixed values of hj’s and hS : hj = K0 for
all j, and hS = K1. Although there seems to be a close connection between DiscLDA and CSTM,
there are a number of differences between these two models. First, DiscLDA allows more flexibility
through general transformation matrices, whereas CSTM allows more flexibility through different
numbers of class-specific topics for different classes. Second, with general transformation matrices,
DiscLDA may suffer from high model complexity; with the sparsity constraint on topic probabilities,
CSTM may be more parsimonious. Third, the estimation and prediction methods are different for
DiscLDA and CSTM (see Section 5.2 and Section 4 for more details).

In labeled LDA, each document can be associated with a set of labels, and the number of topics
is set to be the number of unique labels in the documents. In addition to these label-specific topics, a
common background topic can be added (Ramage et al., 2009). For each document d, its vector of
topic probabilities, θd, is restricted to be defined only over the topics that correspond to its label set
and the common topic. In the classification context where each document is associated with only one
class label, the number of topics equals the number of classes plus one, and each document d can
only use the topic that corresponds to its class and the common topic. CSTM allows each document
to use multiple class-specific topics and/or multiple shared topics, which is more flexible than the
labeled LDA model.

4. Bayesian Inference of the CSTM

This section discusses model inference, model selection, and prediction of class labels in CSTM.

4.1 Inference of model parameters

Under the semisupervised scenario, with ymis unknown, the collapsed Gibbs sampling algorithm
cannot be applied directly to make inferences about CSTM because the corresponding collapsed
target distribution is too complicated to sample from. We instead design a Gibbs sampling algorithm
with an embedded Metropolis-Hastings step. Details are presented in Appendix C.

We note that CSTM has a nonidentifiability issue: the posterior distribution remains invariant
after any permutation of the topics indexes within anyHj (j = 1, · · · , J) or withinHS . Solving this
problem can reduce variation in posterior samples and make the resulting topics more meaningful.
We propose a solution to the nonidentifiability problem (see Appendix D for details). After that, R
posterior samples of (η,ymis,Θ,Φ, z) are obtained.
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4.2 Model selection

In CSTM, the numbers of class-specific topics, hj (j = 1, · · · , J), and the number of shared topics,
hS , need to be selected. In practice, it is computationally expensive or even impossible to perform
model selection among all possible combinations of hj and hS . We perform model selection through
two steps.

In the first step, we apply LDA to all training documents and extract KLDA topics. We calculate
δk,j as a measure of the strength with which topic k is associated with class j as in Section 2.3. The
distribution of δk,j is then examined to give candidate sets of values for hj’s and hS .

With a given lower limit τ , we regard δk,j > τ as indicating that an additional class-specific
topic is needed to characterize class j. Since the average value of δk,j across J classes is 1/J , we
require τ ≥ 1/J . Because the shared topics do not directly discriminate between classes, we set an
upper limit, hS,max, for the number of shared topics.

Given the values of τ and hS,max, the candidate set of values for hj and hS is derived as follows.

1. Initialize hj = 0 (j = 1, · · · , J) and hS = 0.

2. For each topic k (k = 1, · · · ,KLDA):

(a) For any class j∗ that satisfies δk,j∗ > τ , topic k indicates that an additional class-specific
topic is needed for this class. Therefore, we set hj∗ ← hj∗ + 1.

(b) If for all classes δk,j ≤ τ , then topic k corresponds to a shared topic. Therefore, we set
hS ← hS + 1.

3. Set hj ← max(hj , 1) for j = 1, · · · , J such that each class has at least one class-specific
topic. Set hS ← min(hS , hS,max) such that the number of shared topics is at most hS,max.

We let τ vary from max(1/J, 0.3) to 0.8, with an increment of 0.05, and let hS,max take values
among {1, 2, 3, 4} and then 5 to min(KLDA −

∑J
j=1 hj , 20), with an increment of 5. Constraining

τ to be at least 0.3 can save computational cost and does not yield different results according to
our experience. The upper bound constraint on hS,max indicates that the total number of topics in
CSTM does not exceed KLDA and that the number of shared topics does not exceed 20. Practically,
20 topics are rich enough to characterize contents shared across different classes. Constraining the
number of shared topics to be at most 20 can save computational cost when KLDA is large and does
not yield different results according to our experience. For each set of values for τ and hS,max, we
can obtain a candidate set of values for hj (j = 1, · · · , J) and hS .

In the second step, a fivefold cross-validation is used to choose the candidate set of values for
hj and hS that yields the highest predictive accuracy.2 Specifically, the labeled training documents
are split into five equal-sized subsamples. Each of the subsamples is treated in turn as the validation
set, and the remaining four subsamples combined with the unlabeled training documents are used to
train each candidate model. For each validation set and each candidate model, we run three parallel
chains and select the chain with the highest average log-posterior density. Posterior samples from the
selected chain are applied to predict the class labels for documents in the validation set (details in
Appendix E). We then calculate the average correct classification rate over the five validation sets for

2. We also tried Bayesian model selection approaches using the Watanabe-Akaike information criterion (WAIC, Watanabe,
2010) or the marginal log-likelihood estimated through the harmonic mean identity (Raftery et al., 2007), but lower
classification accuracy is achieved.
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each candidate model and select the candidate model with the highest average correct classification
rate.

4.3 Prediction of class labels

For an unlabeled training document d, we use the posterior samples of ymis to predict its class label
as the class with the largest posterior proportion. For a validation or test document whose class label
is unknown, we use the posterior samples of (η,Φ) and apply a Bayes rule to predict its class label.
Details are given in Appendix E.

5. Analysis of the 20 Newsgroups Dataset

This section presents the analysis of the 20 Newsgroups dataset using CSTM and its competitors. To
demonstrate the ability of CSTM to utilize information in unlabeled documents, we let the fraction ϕ
of labeled training documents vary from 10% to 100%, with an increment of 10%.

5.1 Training CSTM

We first obtain a few candidate sets of values of hj’s and hS as in Section 4.2. Each candidate model
is then trained using all training documents with the methods presented in Section 4.1. For the
hyperparameters, we set α = 0.5, and βv = 0.1 for v = 1, · · · , V , which are commonly used in LDA
applications (Koltcov et al., 2014; Chen et al., 2016; Qiang et al., 2017). Alternative specifications
of α and β are considered in Section 5.7, and the results do not show significant differences. We
also set γ = 1 so that the prior on the class probabilities is uniform. The tuning parameter for the
Metropolis-Hastings step (see Appendix C) is set at ξ = 0.1, which gives an acceptance rate of
approximately 10%.

Each chain is first run for B = 200 burn-in iterations without addressing the identifiability issue.
A set of G = 15 samples of Φ is then obtained by taking every 20th draw from the next 300 draws
and is used to solve the identifiability issue as in Appendix D. The chain is then run for another 5000
iterations, with the first 1000 iterations discarded as burn-in iterations and the last 4000 iterations
used for model inference. To check model convergence, we run three chains from different random
starting points under the same setting and check the corresponding trace plots of parameters as well
as the logarithm of posterior density. Figure 5 shows the trace plot of η1 and the log-posterior density
when ϕ = 20%, hj = 1 for all j and hS = 5. We observe that different chains may converge to
different modes. The chains with lower log-posterior density can also be associated with lower
classification accuracy. Therefore, we do not mix draws from the three chains and instead obtain
R = 10 samples of (η,ymis,Φ) by taking every 400th draw from the last 4000 draws in the chain
with the highest average log-posterior density. The class labels for validation documents, unlabeled
training documents and test documents are then predicted as in Section 4.3.

We note that, for the supervised version of the CSTM, the Metropolis-Hastings step is not needed
(see Appendix C for the detail). Running different chains under the same setting gives similar
results; hence we can just run one chain under each setting. The computational time can be reduced
considerably for the supervised CSTM. See Section 5.6.2 for further discussion.
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Figure 5: The trace plots of η1 and log-posterior probability in three different chains when ϕ = 20%,
hj = 1 for all j and hS = 5

5.2 Training models for comparison

For comparison, we consider the two-stage approach based on LDA. First, using all training doc-
uments without reference to their class labels, we train a set of LDA models whose numbers of
topics range from 1 to 201 with an increment of 5 and select the optimal number of topics based on
the log marginal likelihood. Second, the document-specific topic probabilities under the selected
LDA model and the class labels for the fraction ϕ of labeled training documents are used to train a
random forest (RF) or a support vector machine (SVM). The resulting RF or SVM is then applied to
the document-specific topic probabilities for the unlabeled training or test documents to predict the
class labels of these documents. We also consider an LDA per class approach. Using all training
documents within each class, we train a set of LDA models whose numbers of topics range from
2 to 20 with an increment of 1 and select the optimal number of topics based on the log marginal
likelihood. For each test document, the log marginal likelihood under the selected LDA model for
each class is calculated. The label of the test document is predicted to be the class with the largest
log marginal likelihood.

We modify the CCS model in Jia et al. (2014) to obtain another statistical model for comparison.
Similar to CSTM and the two-stage approach, we consider using words as terms in the dictionary. We
also consider using phrases as terms following Jia et al. (2014), where the phrases include all words,
bigrams (phrases consisting of two consecutive words) and trigrams (phrases consisting of three
consecutive words) that appear in the training documents. Following Jia et al. (2014), we remove
words or phrases appearing fewer than six times to obtain a more concise dictionary, resulting in
23,419 unique words or 69,772 unique phrases. Details of the modified CCS approach are given in
Appendix F.

We also consider several supervised extensions of LDA: sLDA, DiscLDA and labeled LDA.
For sLDA, we use fivefold cross-validation to select the number of topics from 20 to 200, with an
increment of 10. We then re-estimate the model using the optimal number of topics and all training
documents and apply the model to predict class labels for test documents. For DiscLDA, Lacoste-
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Julien et al. (2008) conducted an experiment on the 20 Newsgroups dataset with a set of pre-defined
transformation matrices (T j’s). They used SVM to classify documents based on document-specific
topic probabilities. The reported classification accuracy of test documents was 80%. We instead
estimate the transformation matrices, use fivefold cross-validation to select the number of topics from
20 to 200 with an increment of 10, and re-estimate the model using the optimal number of topics
and all training documents. Following Lacoste-Julien et al. (2008), we also use SVM to classify
documents based on document-specific topic probabilities. The resulting classification accuracy of
test documents is increased to 81.38%. For labeled LDA, there is one class-specific topic for each
class, plus a common topic, resulting in a total of 21 topics.

5.3 Comparison between CSTM and LDA

For each topic k extracted by CSTM, we follow the procedure proposed in Section 2.3 to calculate
δk,j , which measures the strength of the association of topic k with class j. For any class-specific
topic k associated with class jk, since its topic probability equals zero for any document not in class
jk, we always have δk,jk = 1 and δk,j′ = 0 when j′ 6= jk. Hence, CSTM gives a clearer picture of
the association between topics and classes than LDA (see Figure 2).

As discussed in Section 3.1, CSTM potentially has better generalization ability than LDA, and
topics extracted by CSTM may better represent unseen documents. To illustrate this point, we show
in Table 2 the log marginal likelihood ofwtest under LDA and CSTM for varying values of ϕ (fraction
of labeled training documents), where wtest denotes the collection of words for all test documents.
Table 2 also lists the numbers of topics under LDA and CSTM. CSTM is more parsimonious than
LDA in two aspects. First, the total number of topics inferred by CSTM is 25 or 30, much smaller
than that by LDA (71). Second, CSTM has the sparsity constraint on topic probabilities as discussed
in Section 3.1. However, the log marginal likelihood for CSTM is much higher than that for LDA,
indicating that the test documents are better represented under CSTM.

Table 2: Log Marginal Likelihood of Test Documents under LDA and CSTM
LDA

number of topics log marginal likelihood
71 −2.103× 107

CSTM
ϕ hj and hS log marginal likelihood

10% all hj = 1, hS = 5 −6.803× 106

20% all hj = 1, hS = 5 −6.817× 106

30% all hj = 1, hS = 5 −6.834× 106

40% all hj = 1, hS = 5 −6.852× 106

50% all hj = 1, hS = 5 −6.864× 106

60% all hj = 1, hS = 5 −6.858× 106

70% all hj = 1, hS = 5 −6.872× 106

80% all hj = 1, hS = 10 −6.814× 106

90% all hj = 1, hS = 10 −6.809× 106

100% all hj = 1, hS = 10 −6.816× 106
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5.4 Classification performances of different methods

We first focus on the supervised case with ϕ = 100% and compare the classification accuracy of
test documents for the supervised CSTM and its competitors. Table 3 displays the results. We
observe that CSTM outperforms all other tested methods for this example. We also conduct extensive
simulation studies to compare the supervised CSTM and its competitors; see Appendix G for details.
The simulation results show that, when viewing the data as generated from a topic model, the
advantage of CSTM over its competitors is largest (1) when differences between classes in topic
probabilities are moderate and (2) when topic probabilities differ between classes but differences
between topics in word probabilities are moderate. In Appendix K, we apply the supervised CSTM
and its competitors to analyze the Reuters dataset, another benchmark dataset for text classification.
CSTM again outperforms the other methods.

Table 3: The Classification Accuracy of Test Documents for Supervised CSTM and Its Competitors

Method
Classification

Accuracy
CSTM 85.65%

Two-stage
LDA+RF 71.80%

LDA+SVM 70.24%
LDA per class 33.27%

Modified CCS
word 58.02%

phrase 76.31%
sLDA 73.30%

DiscLDA 81.38%
labeled LDA 70.26%

We next compare the semisupervised CSTM with the two-stage method and the CCS method,
with ϕ varying from 10% to 90%. Tables 4 and 5 present the classification accuracy for unlabeled
training and test documents under these models. Generally, as ϕ and hence the number of labeled
training documents increase, all methods achieve better classification accuracy. For all but one case,
CSTM performs the best among all approaches considered in classifying both the unlabeled training
documents and test documents.

Table 4: Classification Accuracy of Unlabeled Training Documents Under Different Models

ϕ
CSTM LDA LDA Modified Modified

+RF +SVM CCS (word) CCS (phrase)
10% 64.81% 67.60% 59.86% 15.76% 41.49%
20% 74.50% 69.89% 63.62% 17.01% 52.64%
30% 76.85% 71.30% 66.28% 27.63% 61.75%
40% 79.66% 71.49% 67.59% 32.85% 68.79%
50% 80.85% 72.17% 68.90% 39.37% 73.81%
60% 82.62% 71.89% 69.62% 43.86% 77.06%
70% 83.08% 71.59% 69.33% 51.38% 78.82%
80% 83.25% 71.31% 69.68% 58.44% 80.92%
90% 84.86% 73.42% 71.67% 62.72% 81.67%

Recall that τ is the lower limit for δk,j (the measure of the strength of the association of topic k
with class j) to indicate an additional class-specific topic for class j and hS,max is the upper limit
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Table 5: Classification Accuracy of Test Documents Under Different Models
ϕ CSTM LDA LDA Modified Modified

+RF +SVM CCS (word) CCS (phrase)
10% 68.95% 64.78% 50.38% 16.74% 37.75%
20% 75.84% 66.50% 58.72% 21.12% 47.36%
30% 76.45% 67.64% 61.32% 29.45% 54.29%
40% 78.88% 69.54% 65.16% 33.25% 60.58%
50% 80.50% 69.95% 66.09% 37.53% 65.43%
60% 81.51% 69.88% 66.95% 41.34% 68.55%
70% 82.73% 71.39% 67.52% 46.28% 70.99%
80% 83.90% 70.80% 68.28% 50.61% 72.98%
90% 85.01% 71.87% 69.03% 54.43% 74.75%

for the number of shared topics (see Section 4.2 for details). In Appendix H, using ϕ = 20% as
an example, we show the candidate sets of values for hj and hS under different settings of τ and
hS,max and the accuracy of the corresponding candidate models for classifying unlabeled training
documents and test documents. In our example, given the same value of hS,max, as τ increases
(or as the model becomes simpler), the classification accuracy increases; given the same value of
τ , as hS,max increases (or as the model becomes more complicated), the classification accuracy
first increases and then decreases. The best classification accuracy is achieved with τ ≥ 0.35 and
hS,max = 5.

The phrase-based modified CCS works much better than the word-based modified CCS and
eventually outperforms the two-stage approaches based on LDA for unlabeled training documents
when ϕ ≥ 50% and for testing documents when ϕ ≥ 80%. The better performance of the phrase-
based modified CCS compared with the word-based modified CCS might be due to the use of bigrams
and trigrams by the former, which helped it to capture the dependencies among words. Identifying
such dependencies is important for better classification accuracy. Although the size of the dictionary
becomes much larger when bigrams and trigrams are used, the modified CCS uses supervised sparse
classification methods to select only a small set of phrases. Therefore, the use of a larger dictionary
does not hurt classification accuracy for unlabeled documents.

In the LDA and CSTM approaches, dependencies among words are captured by their possible co-
occurrences within a topic. The reason that the two-stage approaches based on LDA performed worse
than the phrases-based modified CCS for larger values of ϕmight be that the topics extracted by LDA,
and hence the within-topic co-occurrence patterns for words, have a lot of noise for discriminating
between classes. In Appendix I, we investigate the performance of LDA and CSTM using bigrams or
trigrams as the basic analysis units. The classification accuracy is generally slightly worse than that
using words as the basic analysis units. Given the larger dictionary resulting from using bigrams
or trigrams, the LDA and CSTM models become more complicated, which hurts the classification
accuracy for unlabeled documents.

To understand how and in what circumstances CSTM performs better than competing approaches,
we investigate the case with ϕ = 20%. The test classification accuracy for each class is reported in
Table 6, where those for words-based modified CCS are omitted. For most classes, CSTM has better
classification accuracy than the other approaches.

The classification accuracy of each approach is related to words or phrases that the approach
finds to be discriminative between classes. For each topic k in CSTM, Table 7 lists the top ten “most
probable” words with highest posterior means of φk,v. For LDA, there is no direct relationship
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Table 6: Detailed Classification Accuracy of Test Documents Under Different Models when ϕ =
20%

Class Group Class CSTM
LDA LDA Modified
+RF +SVM CCS(phrase)

Computer
Science

comp.graphics 62.72% 43.88% 26.02% 50.00%
comp.os.ms-windows.misc 51.27% 60.67% 49.61% 54.50%
comp.sys.ibm.pc.hardware 68.78% 53.06% 29.70% 43.15%

comp.sys.mac.hardware 87.24% 57.14% 77.92% 51.17%
comp.windows.x 47.53% 53.16% 42.03% 52.15%
Group Average 63.51% 53.58% 45.06% 50.19%

For Sale misc.forsale 66.67% 72.05% 50.51% 81.54%

Autos &
Sports

rec.autos 88.64% 88.94% 76.01% 50.76%
rec.motorcycles 90.40% 89.20% 69.60% 55.53%

rec.sport.baseball 96.98% 93.95% 89.17% 51.64%
rec.sport.hockey 97.48% 92.23% 76.69% 45.11%
Group Average 93.38% 91.08% 77.87% 50.76%

Science

sci.crypt 88.38% 85.10% 65.66% 45.45%
sci.electronics 71.25% 58.38% 47.84% 32.32%

sci.med 54.45% 65.15% 37.88% 22.73%
sci.space 80.81% 77.78% 60.41% 49.24%

Group Average 73.72% 71.60% 52.94% 37.43%

Politics

talk.politics.guns 92.89% 79.67% 76.10% 39.84%
talk.politics.mideast 95.48% 65.96% 59.31% 52.39%

talk.politics.misc 56.57% 43.23% 35.48% 35.48%
Group Average 81.65% 62.95% 56.96% 42.57%

Religion

alt.atheism 73.67% 56.74% 57.99% 42.63%
soc.religion.christian 70.35% 72.86% 70.10% 52.01%

talk.religion.misc 39.84% 21.51% 19.52% 29.88%
Group Average 61.29% 50.37% 49.21% 41.51%
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between the discovered topics and the classes. We define a leading topic for each class j as the topic
with the largest value of ρk,j defined in Equation (1). Table A7 in Appendix J lists the top ten words
with the highest posterior means of φk,v under each leading topic.

For the class “comp.sys.ibm.pc.hardware”, CSTM has much higher classification accuracy
than the other approaches. The rate of misclassifying test documents from this class into the
similar class “comp.sys.mac.pc.hardware” is only 12.5% for CSTM but is much higher for the other
approaches. CSTM extracts a class-specific topic with the words “Apple” and “Mac” under the
class “comp.sys.mac.hardware” (see Table 7), thus reducing confusion between these two classes. In
LDA, the topic associated with the word “Mac” is the leading topic for both classes (see Table A7 in
Appendix J); for the modified CCS approach, the phrases “Mac IBM”, “pc Mac” and “IBM pc” are
selected for both classes.

For the class “talk.politics.mideast”, CSTM also performs much better than the other approaches.
The weak performance of the two-stage approaches is because topics generated by LDA have mixed
meanings of politics, Mideast and religion. For example, the topic with the second largest value
of ρk,j for the class “talk.politics.mideast” is featured with words such as “Israel”, “Jews” and
“policy”, and the topic with the third largest value of ρk,j is featured with words such as “atheism”,
“political” and “religion”. Hence, a large proportion of documents in the class “talk.politics.mideast”
are wrongly classified into the class “alt.atheism”, “talk.religion.misc”, or “talk.politics.misc”. The
mixed-meaning problem also exists for the modified CCS approach, whose selected phrases are not
targeted to these specific classes. For example, the phrases “Turkey politics”, “political atheists”,
“religious wars” and “mideast” are selected for all of the above four classes. These analyses suggest
that CSTM is able to capture subtle differences between similar classes.

5.5 Text summarization performances of different methods

We first compare the meaning of the topics extracted by CSTM and LDA. For CSTM, the top ten
words under each class-specific topic can be used as the text summary for the corresponding class.
From the results in Table 7, it is obvious that the meaning of the top words under each class-specific
topic is closely related to the corresponding class. The top words under the shared topics do not seem
to be related to any specific class. For LDA, the top ten words under each leading topic for a class
can be used as a text summary for the class. Based on the results in Table A7 in Appendix J, the
meaning of the leading topics is not necessarily relevant to the classes, and there are several cases in
which different classes have the same leading topic. The topics extracted by CSTM are therefore
more meaningful than those extracted by LDA.

For the phrase-based modified CCS, Table A8 in Appendix J presents the ten phrases that first
enter the L1 penalized binary logistic regression for each class, which can be treated as a text
summary for the class. By using phrases as terms in the dictionary, this approach has the benefit of
being able to detect meaningful phrases such as “VGA graphics mode”, “Windows operating system”
and “answering machine”. However, the selected phrases are not always complete or meaningful.
For example, the phrase “Windows operating” is part of the meaningful phrase “Windows operating
system”, and the phrases “use VGA” and “program produces” are not meaningful.

To compare the summarization performances of CSTM and the modified CCS, we take a closer
look at the ten words extracted by CSTM and the ten phrases extracted by the modified CCS for
the class “misc.forsale”, for which the modified CCS achieves the highest classification accuracy
(see Table 6). For each of the ten words extracted by CSTM for the class “misc.forsale”, Figure
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Table 7: Top Ten Words with Highest Probabilities Under the Class-Specific Topic for Each Class
and the Shared Topics When ϕ = 20% (CSTM)

Topic Top Ten Words with Highest Probabilities

comp.graphics
lines,subject,graphics,file,writes,article,polygon,points,DOS,
image

comp.os.ms-windows.misc
Windows,lines,organization,university,file,use,DOS,version,
program,system

comp.sys.ibm.pc.hardware drive,SCSI,card,university,system,Windows,use,MB,disk,IDE
comp.sys.mac.hardware Apple,know,Mac,like,drive,use,new,problem,computer,monitor

comp.windows.x
Window,file,use,program,server,available,motif,widget,set,
application

misc.forsale
sale,new,please,offer,shipping,used,interested,price,asking,
condition

rec.autos car,like,good,new,engine,oil,time,speed,drive,dealer
rec.motorcycles bike,DOD,like,ride,motorcycle,good,BMW,riding,go,helmet

rec.sport.baseball
year,game,team,university,baseball,last,players,season,win,
first

rec.sport.hockey team,game,play,hockey,NHL,go,season,VS,players,period

sci.crypt
key,encryption,clipper,chip,use,government,security,privacy,
information,public

sci.electronics
use,power,need,circuit,current,work,ground,AMP,voltage,
radar

sci.med
MSG,banks,people,food,use,medical,disease,patients,science,
health

sci.space
space,NASA,launch,orbit,Moon,lunar,data,Earth,satellite,
system

talk.politics.guns
gun,people,guns,right,weapons,firearms,government,use,
control,law

talk.politics.mideast
Israel,Turkish,people,Israeli,Jews,Armenian,Turks,Armenia,
organization,Turkey

talk.politics.misc
president,people,new,Clayton,Cramer,men,gay,government,
war,south

alt.atheism
God,organization,people,think,atheists,morality,objective,
believe,moral,must

soc.religion.christian
God,Jesus,people,Bible,think,Christians,believe,church,Christ,
faith

talk.religion.misc
Judas,new,Greek,Christian,acts,Bible,Matthew,man,
Christianity,iniquity

shared topics

would,subject,lines,organization,one,writes,people,like,article,
know
forest,old,experiment,clouds,flyby,funk,proceed,raffle,
acquaintance,prominent
trouble,likely,survivor,washes,Muhammad,cassettes,race,road,
related,faith
method,mate,plan,automatical,reboot,alphabetic,reused,
removed,thought,advise
employed,commissions,cut,diagnose,relaxes,join,adult,
outbreaks,pilot,school
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6 shows the total number of documents that contain the word and the proportion of documents in
each class that contain the word. For each of the ten phrases extracted by the modified CCS for the
class “misc.forsale”, Figure 7 shows the total number of documents that contain the phrase and the
proportion of documents in each class that contain the phrase.

For CSTM, the extracted ten words all have total frequencies greater than 200. For eight of the
ten words, the class “misc.forsale” has the highest proportion of documents containing the word.
For the modified CCS, for nine of the extracted ten phrases, the class “misc.forsale” has the highest
proportion of documents containing the phrase. However, eight of the ten extracted phrases have
total frequencies lower than 100, among which six phrases have total frequencies lower than 20.

The same phenomenon is observed for the other 19 classes (results not shown). Therefore,
although the modified CCS can discover phrases that can discriminate between classes, these phrases
are often low-frequency ones and are not appropriate for summarizing the main content in each class.
By contrast, CSTM discovers high-frequency words that can discriminate between classes and hence
outperforms the modified CCS in delivering class-specific text summaries.
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Figure 6: For each of the ten words extracted by CSTM for the class “misc.forsale”, the title of the corresponding subplot presents the word
and the total number of documents that contain the word. The corresponding subplot shows the proportion of documents in each
class that contain the word, with the black bar indicating the class “misc.forsale”.
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Figure 7: For each of the ten phrases extracted by the modified CCS for the class “misc.forsale”, the title of the corresponding subplot presents
the phrase and the total number of documents that contain the phrase. The corresponding subplot shows the proportion of documents
in each class that contain the phrase, with the black bar indicating the class “misc.forsale”.
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5.6 Runtime comparison of different methods

This subsection first analytically compares the runtime between CSTM and its competitors and then
presents the real runtime comparison on the 20 Newsgroups dataset.

5.6.1 ANALYTICAL RUNTIME COMPARISON

We now compare the computational complexity of CSTM to that of the two-stage approach based on
LDA.

For the two-stage approach, most of the computational time is spent on obtaining the topic
probabilities for training documents and predicting the topic probabilities for test documents. The
collapsed Gibbs sampling method (Liu, 1994; Griffiths and Steyvers, 2004) is used for both training
and prediction, where the topic indicators zd,n need to be updated in each iteration. WithKLDA topics,
D training documents and the average document length N̄ , the computational complexity in training
is O(KLDADN̄). Similarly, the computational complexity in prediction is O(KLDADtestN̄ test),
where Dtest is the number of test documents and N̄ test is the average length of test documents.

CSTM is trained using a Gibbs sampling algorithm detailed in Appendix C. Each iteration
consists of several steps. In the first step, class probabilities η are updated, with computational
complexity on the order of O(J). In the second step, each topic indicator zd,n is updated within
its class-specific topic set Λd. The computational complexity is O((h̄C + hS)DN̄), where h̄C
is the average number of class-specific topics for each class. In the third step, for each topic
k, the vector of word probabilities φk is updated, with computational complexity O(KV ). In
the fourth step, for each of the D1 labeled documents, the nonzero elements of θd over Λd are
updated, with computational complexity O((h̄C + hS)D1). In the fifth step, for each of the D −D1

unlabeled documents, the class label yd and the nonzero elements of θd are updated together, with
computational complexity O((J + h̄C + hS)(D − D1)). The total computational complexity is
O(J+(h̄C +hS)DN̄+KV +(h̄C +hS)D+J(D−D1)). Because h̄C +hS < KLDA, K ≤ KLDA

and V < DN̄ , the order of computational complexity in each Gibbs iteration for the CSTM is smaller
than that for the two-stage approach based on LDA.

For the CSTM, class labels of the test documents are predicted based on a fixed number of
posterior samples of (η,Φ) (for details, see Appendix E). For each posterior sample of (η,Φ), there
are two steps: (1) conditional on yd = j (j = 1, · · · , J), apply the EM algorithm to obtain estimates
of the topic probabilities, θ̂d,k for k ∈ Λj ; (2) apply the Bayes rule to calculate the class probabilities
for each document.

In the E-step of the EM algorithm, for each class j (j = 1, · · · , J), conditional on yd = j, the
conditional expectation of I(zd,n = k) for k ∈ Λj is calculated. The computational complexity
is O((h̄C + hS)DtestN̄ testJ). In the M-step of the EM algorithm, for each class j (j = 1, · · · , J),
conditional on yd = j, the nonzero elements of θd over Λj are updated. The computational
complexity is O((h̄C +hS)DtestJ). Applying the Bayes rule involves two steps. First, the likelihood
of wd under each class j is calculated, where all possible values of zd,n ∈ Λj are summed for each
word n. The computational complexity is O((h̄C + hS)DtestN̄ testJ). Second, the probability that
each document d belongs to each class j is calculated. The computational complexity is O(DtestJ).
The total computational complexity for prediction in CSTM is O((h̄C + hS)DtestN̄ testJ + (h̄C +
hS)DtestJ + DtestJ). If (h̄C + hS)J is smaller than (equal to, or larger than) KLDA, the order of
computational complexity for prediction in CSTM is smaller than (equal to, or larger than) that in the
two-stage approach based on LDA.

23



WANG, ZHANG, LI, DENG, AND LIU

5.6.2 REAL RUNTIME COMPARISON

Taking the 20 Newsgroups dataset as an example, we first consider an ideal scenario in which there
are an unlimited number of cores and all independent tasks can be run in parallel. We then discuss a
more realistic scenario in which only 16 independent tasks can be run in parallel.

For the two-stage approach based on LDA, a model needs to be trained for each candidate number
of topics, which ranges from 1 to 201 with an increment of 5. There are 40 models in total. In the
ideal scenario, these 40 models can be trained in parallel. We regard the training time as the time
for training the most complicated model with 201 topics. We regard the prediction time as the time
for using the optimal model with 71 topics to predict the labels for test documents. Specifically, we
apply the GibbsLDA++ algorithm implemented in C/C++ (Phan and Nguyen, 2007). In training each
candidate model, we run an MCMC chain with 3000 iterations, of which the first 500 iterations are
discarded as burn-in and every 25th iteration of the remaining 2500 iterations is kept. In prediction,
we run 500 iterations and keep every 25th iteration of the last 125 iterations. Almost the entire
prediction time is used for predicting the topic probabilities, and the time for training or applying RF
or SVM is negligible. On a Dell XPS laptop with 2.8GHz CPU and 8Gb RAM, the training time is
625 minutes, and the prediction time is 35 minutes.

For full-fledged CSTM with model selection, we first need to train a set of LDA models and select
the optimal number of topics. Afterwards, almost the entire training time is used in two tasks: (1)
for each training subsample in the fivefold cross-validation, running three chains for each candidate
set of values for hj’s and hS ; (2) for each validation subsample, using posterior samples from the
selected chain for each candidate model to predict the class labels. Since there are 16 candidate
sets of values for hj and hS (see Appendix H for detail), there are 16× 5× 3 = 240 subtasks for
task (1) and 16× 5 = 80 subtasks for task (2). In the ideal scenario, all 240 or 80 subtasks can be
run in parallel. We regard the training time for CSTM as the time for training an LDA model with
201 topics, plus the longest time for running one chain of a candidate CSTM model on a training
subsample, plus the longest time for predicting class labels for a validation subsample using posterior
samples from the selected chain for a candidate model. The prediction task uses the five selected
chains for the optimal model to predict the class labels for test documents. Prediction using these
five chains can be run in parallel. The prediction time is the time for using one selected chain for the
optimal model to predict the class labels for test documents.

Similarly, we calculate the training time and the prediction time under the ideal scenario for the
other methods. For sLDA, the code accompanying Blei and McAuliffe (2007) is used. Since there
are no codes accompanying the original work for DiscLDA in Lacoste-Julien et al. (2008) and for
labeled LDA in Ramage et al. (2009), we instead use some open-source codes on GitHub.

For each method other than the two-stage approach, Table 8 presents the ratio of the training
time or prediction time to that of the two-stage approach in the supervised case under the ideal
scenario. The computational time for CSTM, sLDA and DiscLDA is approximately twice that for the
two-stage approach. In terms of other models, labeled LDA takes much less computational time than
the two-stage approach due to its smaller number of topics. The LDA per class approach and the
modified CCS methods have negligible computational time compared with the two-stage approach.

For CSTM and the modified CCS methods, Table 9 presents the ratio of the training time or
prediction time to those of the two-stage approach in the semisupervised case under the ideal scenario.
The training time for CSTM is less than 2.5 times that for the two-stage approach, and the prediction
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Table 8: Ratio of training time or prediction time to that of the two-stage approach in the supervised
case (ideal scenario)

Training Prediction
CSTM 1.903 1.093

LDA per class 0.003 0.008
Modified CCS (word) 0.006 0.060

Modified CCS (phrase) 0.020 0.115
sLDA 2.031 0.912

DiscLDA 1.784 0.827
labeled LDA 0.236 0.281

time for CSTM is comparable to that for the two-stage approach. As the fraction of labeled training
documents ϕ decreases, the training time for CSTM is longer.

Table 9: Ratio of training time or prediction time to that of the two-stage approach in the semisuper-
vised case (ideal scenario)

CSTM Modified CCS (word) Modified CCS (phrase)
ϕ Training Prediction Training Prediction Training Prediction

10% 2.446 0.963 0.001 0.057 0.002 0.113
20% 2.390 0.981 0.001 0.058 0.003 0.115
30% 2.349 0.944 0.002 0.056 0.005 0.112
40% 2.285 0.926 0.003 0.059 0.006 0.114
50% 2.219 0.963 0.004 0.055 0.007 0.112
60% 2.148 1.019 0.004 0.060 0.010 0.116
70% 2.099 0.981 0.005 0.056 0.012 0.115
80% 2.046 1.130 0.006 0.057 0.014 0.117
90% 1.950 1.152 0.006 0.059 0.016 0.118

We next compare the runtimes of different methods under the more realistic scenario when only
16 independent tasks can be run in parallel. Take the two-stage approach as an example. In training,
there are 40 candidate models, and we need

⌈
40/16

⌉
= 3 runs. For simplicity, we assume that

the runtime for each run equals the training time in the ideal scenario. The training time under the
realistic scenario is then 625× 3 = 1875 minutes. Because the prediction only uses one model and
does not need parallel computing, the prediction time under the realistic scenario is the same as that
under the ideal scenario and equals 35 minutes. We calculate the training time and prediction time for
the other methods similarly. Table 10 and Table 11 present the ratio of the training time or prediction
time to that of the two-stage approach in the supervised and semisupervised cases under the realistic
scenario.

As mentioned in Section 5.1, in training the supervised CSTM, we can just run one chain
instead of three chains for each training subsample and each candidate model. This does not
make a difference under the ideal scenario but makes a difference under the realistic scenario. As
shown in the first column of Table 10, running only one chain reduces the computational time by
(5.469− 2.505)/5.469 = 54.2%. With one chain under each setting, training the supervised CSTM
takes 2.505 × 1875/60/24 = 3.26 days. In the semisupervised case with ϕ = 20%, training the
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Table 10: Ratio of training time or prediction time to that of the two-stage approach in the supervised
case (realistic scenario)

Training Prediction
CSTM (3 chains) 5.469 1.093
CSTM (1 chain) 2.505 1.093
LDA per class 0.024 0.016

Modified CCS (word) 0.002 0.060
Modified CCS (phrase) 0.007 0.115

sLDA 2.196 0.912
DiscLDA 2.064 0.827

labeled LDA 0.079 0.281

Table 11: Ratio of training time or prediction time to that of the two-stage approach in the semisu-
pervised case (realistic scenario)

CSTM Modified CCS (word) Modified CCS (phrase)
ϕ Training Prediction Training Prediction Training Prediction

10% 8.225 0.963 0.000 0.057 0.001 0.113
20% 7.941 0.981 0.000 0.058 0.001 0.115
30% 7.731 0.944 0.001 0.056 0.002 0.112
40% 7.406 0.926 0.001 0.059 0.002 0.114
50% 7.072 0.963 0.001 0.055 0.002 0.112
60% 6.712 1.019 0.001 0.060 0.003 0.116
70% 6.463 0.981 0.002 0.056 0.004 0.115
80% 6.193 1.130 0.002 0.057 0.005 0.117
90% 5.708 1.152 0.002 0.059 0.005 0.118
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CSTM takes 7.941 × 1875/60/24 = 10.34 days. Whether this time is worthwhile depends on
practical considerations such as the importance of classification accuracy. One can also reduce the
computational time by reducing the number of candidate models by increasing the lower limit τ
or decreasing the maximum number of shared topics hS,max. Once the optimal CSTM model is
chosen, prediction of class labels for the test documents takes much less time. In the semisupervised
case with ϕ = 20%, predicting the class labels for 7,532 test documents takes 0.981× 35 = 34.33
minutes. Because the prediction can be done independently across documents, on average predicting
the class label for one document takes 34.33× 60/7532 = 0.27 seconds.

5.7 Robustness check

The hyperparameter α governs the prior distribution of a document’s topic probabilities and can be
seen as the pseudo count of topic k in a document. In addition to setting α = 0.5, we also consider
setting α = 0.1 or α = 1. The hyperparameter β governs the prior distribution of a topic’s word
probabilities, where βv can be seen as the pseudo count for word v and

∑V
v=1 βv can be seen as

the total pseudo count for all words. When βv = 0.1 for v = 1, · · · , V , the total pseudo count is
0.1V . We also consider two alternative specifications of β where the total pseudo count is again
0.1V but the distribution of the pseudo counts over words varies with the word counts in the training
documents. In the first alternative specification, we set βv ∝ cv, where cv denotes the count of the
vth word in the training documents. Since the distribution of the original word counts could be very
skewed, we also consider a second alternative specification that is less skewed: βv ∝

√
cv.

For varying values of the fraction of labeled training documents ϕ, under each setting of α and
β, Table 12 presents the selected values of hj and hS , as well as the classification accuracy of test
documents. For each value of ϕ, the selected values of hj and hS are the same, and the classification
accuracy of test documents is similar under different settings of α and β. For each value of ϕ, the
maximum absolute difference in classification accuracy among the nine settings is less than 2%.
These results demonstrate that CSTM’s performance is robust to different settings of α and β.

6. Discussion

While early research on text classification and summarization has focused on using term frequencies,
topic models have opened new paths and proved to be useful. When the basic topic model LDA is
applied to all documents without reference to their class labels, all of the topics are shared across
classes. The extracted topics are noisy, do not have strong discriminating power between classes,
and provide poor class-specific summaries. The LDA per class approach applies LDA separately to
documents within each class, and all of the topics are class-specific. However, common contents
appearing across classes may appear in different sets of topics under each class, which adds confusion
between classes and is not helpful for class discrimination. In addition, the meanings of the extracted
topics have to be manually checked in order to remove topics associated with common contents and
keep the remaining ones for class-specific summaries.

CSTM serves as an intermediate model between the above two extremes, with both topics that
are shared across classes and topics that are class-specific. Since the shared topics have accounted
for common contents appearing across classes, the extracted class-specific topics allow for stronger
discriminating power and automatically provide better class-specific text summaries.

Compared with the existing supervised topic models such as sLDA, DiscLDA and labeled
LDA, CSTM is flexible enough to capture content similarities and differences across classes and is
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Table 12: Classification Accuracy of Test Documents Under Different Settings of α and β
ϕ Selected hj and hS β α = 0.1 α = 0.5 α = 1

10% all hj = 1, hs = 5
βv = 0.1 68.25% 68.95% 69.25%
βv ∝ cv 68.76% 67.88% 67.32%
βv ∝

√
cv 67.43% 67.41% 67.23%

20% all hj = 1, hs = 5
βv = 0.1 75.77% 75.84% 75.63%
βv ∝ cv 75.09% 74.94% 75.60%
βv ∝

√
cv 74.76% 75.96% 76.22%

30% all hj = 1, hs = 5
βv = 0.1 76.15% 76.45% 76.31%
βv ∝ cv 76.42% 76.32% 76.48%
βv ∝

√
cv 76.49% 77.22% 76.53%

40% all hj = 1, hs = 5
βv = 0.1 77.81% 78.88% 78.72%
βv ∝ cv 79.82% 78.07% 77.34%
βv ∝

√
cv 78.26% 79.52% 78.54%

50% all hj = 1, hs = 5
βv = 0.1 79.26% 80.50% 80.37%
βv ∝ cv 79.99% 79.66% 80.24%
βv ∝

√
cv 80.76% 80.15% 79.56%

60% all hj = 1, hs = 5
βv = 0.1 80.11% 81.47% 81.51%
βv ∝ cv 80.71% 81.53% 80.80%
βv ∝

√
cv 81.27% 80.87% 81.77%

70% all hj = 1, hs = 5
βv = 0.1 83.24% 82.73% 82.69%
βv ∝ cv 83.42% 83.31% 82.62%
βv ∝

√
cv 82.67% 82.79% 82.58%

80% all hj = 1, hs = 10
βv = 0.1 83.71% 83.90% 84.26%
βv ∝ cv 82.87% 84.15% 84.32%
βv ∝

√
cv 83.94% 83.48% 84.12%

90% all hj = 1, hs = 10
βv = 0.1 84.87% 85.01% 85.25%
βv ∝ cv 83.89% 85.31% 84.73%
βv ∝

√
cv 84.63% 85.39% 84.72%

100% all hj = 1, hs = 10
βv = 0.1 85.67% 85.65% 85.49%
βv ∝ cv 85.28% 84.66% 86.20%
βv ∝

√
cv 85.67% 86.10% 86.26%

parsimonious enough to have good generalization ability. CSTM is also a promising approach for
text classification and summarization in the semisupervised scenario.
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Appendix A: Full posterior distribution for LDA

Throughout the article, we adopt the following notations: θd = (θd,1, ..., θd,K)> denotes the topic
probabilities for document d, and φk = (φk,1, ..., φk,V )> denotes the word probabilities for topic
k; wd,n is the nth word in document d, zd,n indicates the topic associated with it, and wd =
(wd,1, ..., wd,Nd)

> and zd = (zd,1, ..., zd,Nd)
> are the vector forms of the words and topics indicators,

respectively. We let z = {z1, ...,zD} and w = {w1, ...,wD} denote the collection of these
indicator and word vectors for all training documents. Finally, we denote Θ = {θ1, ...,θD} and
Φ = {φ1, ...,φK}.

According to the generative process of LDA in Figure 1, the full posterior distribution of
(Θ,Φ, z) is as follows.

f (Θ,Φ, z|w, α,β) ∝ f (Θ|α) f (Φ|β) f (w, z|Θ,Φ)

∝

(
D∏
d=1

K∏
k=1

θα−1
d,k

)(
K∏
k=1

V∏
v=1

φβv−1
k,v

){
D∏
d=1

Nd∏
n=1

(
θd,zd,nφzd,n,wd,n

)}

∝

(
D∏
d=1

K∏
k=1

θ
α+n

(1)
d,k−1

d,k

)(
K∏
k=1

V∏
v=1

φ
βv+n

(2)
k,v−1

k,v

)
,

(3)

where n(1)
d,k =

∑Nd
n=1 I(zd,n = k) denotes the number of words in document d that are associated

with topic k, n(2)
k,v =

∑D
d=1

∑Nd
n=1 I(zd,n = k & wd,n = v) denotes the number of times the vth

word in the dictionary is associated with topic k in the training documents. Here I(·) is the general
indicator function.

Appendix B: Full posterior distribution for CSTM

CSTM partitions latent topics into hj class-specific ones associated with each class j (j = 1, ..., J),
and hS “shared” topics. LetHj be the set of indexes for topics specific to class j (j = 1, ..., J), let
HC = ∪Jj=1Hj denote the set of all class-specific topics, and letHS denote the set of shared topics.
Each document in class j is a probabilistic mixture of topics in the subset Λj = Hj ∪HS . The total
number of topics is K =

∑J
j=1 hj + hS . Let η = (η1, · · · , ηJ)> denote the probabilities for the J

classes. Let yd ∈ {1, 2, · · · , J} denote the class label for document d, and let y = {y1, · · · , yD}.
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According to the generative process of CSTM in Figure 4, the joint distribution of (η,y,Θ,Φ, z,w)
given (α,β, γ) is

f (η,y,Θ,Φ, z,w|α,β, γ)

∝f (η|γ)
K∏
k=1

f (φk|β)
D∏
d=1

{
f (yd|η) f (θd|α, yd)

Nd∏
n=1

[f (zd,n|θd) f (wd,n|Φ, zd,n)]

}

∝

 J∏
j=1

ηγ−1
j

( K∏
k=1

V∏
v=1

φβv−1
k,v

)
D∏
d=1

ηyd
Γ((hyd + hS)α)

[Γ(α)]hyd+hS

∏
k∈Λyd

θα−1
d,k

 Nd∏
n=1

(
θd,zd,nφzd,n,wd,n

)
∝

 J∏
j=1

η
γ+Mj−1
j

( K∏
k=1

V∏
v=1

φ
βv+n

(2)
k,v−1

k,v

)
D∏
d=1

Γ((hyd + hS)α)

[Γ(α)]hyd+hS

∏
k∈Λyd

θ
α+n

(1)
d,k−1

d,k

 .

(4)

Here Mj is the number of training documents in class j.

In the semi-supervised scenario, only part of the class labels in y are known. Without loss of
generality, assume that the class labels are known for the first D1 documents, and unknown for the
remaining D −D1 documents. Hence, the set of observed class labels is yobs = {y1, ..., yD1}, and
the set of unknown class labels is ymis = {yD1+1, ..., yD}. Correspondingly, Mj can be written as
the sum of Mobs

j , the number of labeled training documents in class j, and Mmis
j , the number of

unlabeled training documents in class j. Similarly, n(2)
k,v, the number of times the vth word in the

dictionary is associated with topic k, can also be written as the sum of n(2) obs
k,v and n(2) mis

k,v which are
calculated respectively using the labeled and unlabeled training documents.

The full posterior distribution of (η,ymis,Θ,Φ, z) is proportional to (4), and can be written as

f
(
η,ymis,Θ,Φ, z|yobs,w, α,β, γ

)
∝

 J∏
j=1

η
γ+Mobs

j −1

j

K∏
k=1

V∏
v=1

φ
βv+n

(2) obs
k,v −1

k,v

D1∏
d=1

∏
k∈Λyd

θ
α+n

(1)
d,k−1

d,k


 J∏
j=1

η
Mmis
j

j

K∏
k=1

V∏
v=1

φ
n
(2) mis
k,v

k,v

D∏
d=D1+1

Γ((hyd + hS)α)

[Γ(α)]hyd+hS

∏
k∈Λyd

θ
α+n

(1)
d,k−1

d,k

 ,

(5)

where the two terms in the product are related to the labeled and unlabeled training documents.
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Appendix C: Details of the Gibbs Sampling algorithm for CSTM

Let n(2) obs
k,. =

∑V
v=1 n

(2) obs
k,v and n(2) mis

k,. =
∑V

v=1 n
(2) mis
k,v . Although Θ and Φ can be integrated out

from (5) similar to the LDA model, yielding the marginal posterior distribution

f
(
η,ymis, z|yobs,w, α,β, γ

)
∝

 J∏
j=1

η
γ+Mobs

j +Mmis
j −1

j


D∏
d=1

∏K
k=1 Γ(α+ n

(1)
d,k)

Γ (Kα+Nd)


D∏

d=D1+1

Γ((hyd + hS)α)

[Γ(α)]hyd+hS
K∏
k=1

∏V
v=1 Γ(βv + n

(2) obs
k,v + n

(2) mis
k,v )

Γ
(∑V

v=1 βv + n
(2) obs
k,. + n

(2) mis
k,.

)
 ,

(6)

this distribution is very difficult to sample from. The reason is that for a document d with class label
yd unknown, the possible values that zd,n (n = 1, ..., Nd) can take depends on the value of yd; hence
yd and all elements of zd need to be sampled together. But zd is a Nd-dimensional discrete vector
with (hyd + hS)Nd possible values, making such sampling extremely expensive or even impossible.
Therefore collapsed Gibbs sampling cannot be applied.

We propose to use a Gibbs sampling algorithm instead. The class probabilities η are updated
using its full conditional distribution

f(η | ·) ∝
J∏
j=1

η
γ+Mobs

j +Mmis
j −1

j , (7)

which is a Dirichlet distribution with parameters {γ + Mobs
j + Mmis

j }Jj=1. For d = 1, ..., D and
n = 1, ..., Nd, the topic indicator zd,n is updated using its full conditional distribution

f(zd,n = k | ·) ∝ θd,kφk,wd,n , k ∈ Λyd , (8)

which can be easily derived from (4). For k = 1, ...,K, φk is updated using its full conditional
distribution

f(φk | ·) ∝
V∏
v=1

φ
βv+n

(2) obs
k,v +n

(2) mis
k,v −1

k,v , (9)

which is a Dirichlet distribution with parameters {βv + n
(2) obs
k,v + n

(2) mis
k,v }Vv=1. For each document

d ∈ {1, · · · , D1} whose class label is known to be j, the nonzero elements of θd can be updated
using their full conditional distribution

f
(
{θd,k, k ∈ Λj}

∣∣∣·) ∝ ∏
k∈Λj

(θd,k)
α+n

(1)
d,k−1, (10)

which is a Dirichlet distribution with parameters {α+ n
(1)
d,k}k∈Λj .

The most complicated step involves drawing yd and θd together for any document d ∈ {D1 +
1, ..., D} with yd unknown. The conditional posterior distribution of (yd,θd) given η and Φ can be
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derived from (4) by summing over all possible values of zd,

f(yd,θd | η,Φ,yobs,w, α, β, γ)

∝ηyd
Γ((hyd + hS)α)

[Γ(α)]hyd+hS

∏
k∈Λyd

(θd,k)
α−1

Nd∏
n=1

∑
k∈Λyd

(
θd,kφk,wd,n

)
.

(11)

This distribution is difficult to sample from.
We propose to use the following Metropolis-Hastings algorithm. The marginal proposal distribu-

tion of yd is given by q(yd) ∼Multi(η∗), where η∗ = (Mobs
1 /D1, ...,M

obs
J /D1) are the class pro-

portions in the documents with known class labels. In the conditional proposal distribution of θd given
yd, to approximate the conditional distribution of θd given yd implied by (11), we assume each word
wd,n is assigned to each topic k ∈ Λyd with proportion φk,wd,n/

∑
k′∈Λyd

φk′,wd,n . This is equivalent
to approximating the weighted arithmetic mean of θd,k with weights φk,wd,n/

∑
k′∈Λyd

φk′,wd,n using
the corresponding weighted geometric mean. Since these weights are often highly unequal across
topics, the approximation is not accurate. Hence we introduce a tuning parameter ξ to adjust the
weight in the proposal distribution for information coming from such approximation, in order to
achieve a reasonable acceptance rate. The resulting conditional proposal distribution for θd is

q(θd | yd, ·) ∝
∏

k∈Λyd

θα−1
d,k

 Nd∏
n=1

∏
k∈Λyd

θ

φk,wd,n∑
k′∈Λyd

φk′,wd,n
d,k


ξ

∝
∏

k∈Λyd

θ

α+ξ
∑Nd
n=1

(
φk,wd,n∑

k′∈Λyd
φk′,wd,n

)
−1

d,k .

(12)

This is a Dirichlet distribution with parameters{
α+ ξ

Nd∑
n=1

(
φk, wd,n∑

k′∈Λyd
φk′,wd,n

)}
k∈Λyd

.

The joint proposal distribution for (yd,θd) is given by q(yd)q(θd | yd, ·). The acceptance ratio can
be calculated correspondingly.

We treat the supervised scenario as a special case of the semi-supervised scenario, in which
D1 = D and the Metropolis-Hastings step is omitted.

Appendix D: Addressing the non-identifiability issue with CSTM

We illustrate the solution for topics within anHj , and the solution is similar for topics withinHs.
We first run the MCMC algorithm in Section 4.1 without addressing the identifiability problem.

After B burn-in iterations, G posterior samples of Φ, Φ(1), ...,Φ(G), are obtained. The word
probability of a topic k ∈Hj on any word v is estimated as 1

G

∑G
g=1 φ

(g)
k,v, and can be normalized to

be

pk,v =
1
G

∑G
g=1 φ

(g)
k,v∑

k′∈Hj

(
1
G

∑G
g=1 φ

(g)
k′,v

) ,
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such that the sum over all topics inHj is one. We then find the word with smallest entropy based on
the normalized probabilities,

vj = argminv

− ∑
k∈Hj

pk,v log pk,v

 , (13)

which can be treated as the most discriminative word for topics withinHj .
We then order topics withinHj by their estimated word probabilities on vj as:

p
k
(j)
1 ,vj

> · · · > p
k
(j)
hj
,vj
, (14)

where {k(j)
1 , ..., k

(j)
hj
} forms a permutation ofHj . In later MCMC iterations, in the step for sampling

Φ, we will impose the constraint

φ
k
(j)
1 ,vj

> · · · > φ
k
(j)
hj
,vj
. (15)

Details are as follows.
For k ∈Hj and v = 1, ..., V , let βk,v = βv + n

(1)
k,v + n

(1) mis
k,v . According to (9), in the step for

sampling Φ, the marginal distribution of φk,vj isBeta(βk,vj ,
∑V

v=1 βk,v−βk,vj ), and the conditional
distribution of the remaining elements of φk given φk,vj is

(1− φk,vj )Dir(βk,1, ..., βk,vj−1, βk,vj+1, ..., βk,V ). (16)

We first sample φk,vj , the word probabilities on the discriminative word vj , for k ∈ Hj with the
constraint (15). In particular, φ

k
(j)
1 ,vj

is generated from Beta(β
k
(j)
1 ,vj

,
∑V

v=1 βk(j)1 ,v
− β

k
(j)
1 ,vj

); then

for i = 2, ..., hj , φk(j)i ,vj
is generated from Beta(β

k
(j)
i ,vj

,
∑V

v=1 βk(j)i ,v
− β

k
(j)
i ,vj

) truncated over
the interval 0 < φ

k
(j)
i ,vj

< φ
k
(j)
i−1,vj

. After sampling φk,vj , probabilities on words other than vj for

k ∈Hj are sampled using (16).

Appendix E: Prediction of class labels under CSTM

We first discuss how to use a single sample of (η,Φ) to predict the class probabilities for a validation
or test document d.

Conditional on yd = j, if we can get estimates of the topic probabilities, θ̂d,k for k ∈ Λj , then
the likelihood of observing wd can be estimated as

f̂j(wd) =

Nd∏
n=1

∑
k∈Λj

θ̂d,kφk,wd,n

 . (17)

According to the Bayes rule, the normalized value

q̂d,j =
ηj f̂j(wd)∑
j′ ηj′ f̂j′(wd)
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can be treated as the probability that document d belongs to class j.
We now discuss estimation of the topic probabilities given yd = j in detail. Treating the topic

indicators zd as missing data and treating η and Φ as fixed, we can apply the EM algorithm (Dempster
et al., 1977) to get θ̂d,k for k ∈ Λj . The complete-data log-likelihood function is

log fj(wd, zd) =

Nd∑
n=1

∑
k∈Λj

I(zd,n = k)
(
log θd,k + log φk,wd,n

) . (18)

The EM algorithm starts with an initial set of values: θ[0]
d,k = 1/(hj + hS) for k ∈ Λj . Let θ[t]

d,k be
the estimate of θd,k at the t’th iteration, and iteration t+ 1 of EM proceeds as follows.

1. (E-step) Find the conditional expectation of I(zd,n = k) for k ∈ Λj given θ[t]
d,k and the

observed data. It can be easily derive that this is equal to

Pr[t](zd,n = k) =
θ

[t]
d,kφk,wd,n∑

k′∈Λj θ
[t]
d,k′φk′,wd,n

.

2. (M-step) Determine θ[t+1]
d,k for k ∈ Λj by maximizing

Nd∑
n=1

∑
k∈Λj

{
Pr[t](zd,n = k) log θd,k

}

subject to the constraint
∑

k∈Λj θd,k = 1. We can easily derive that

θ
[t+1]
d,k =

Nd∑
n=1

Pr[t](zd,n = k).

In order to save computational time, we only run the EM algorithm for a few (R1) iterations.
In the cross-validation procedure, when using a chain with R posterior samples to predict the

class labels for the validation documents, we only use R2 posterior samples of (η,Φ) (R2 < R), and
assign document d to the class with maximum average value of q̂d,j .

After a candidate model is chosen, we have five selected chains (from the five-fold cross-
validation), with R posterior samples in each chain. For an unlabeled training document d, we use
the posterior samples of ymis to assign it to the class with maximum value of

∑5
c=1

∑R
r=1 I(y

(c,r)
d =

j)/(5R), where y(c,r)
d is the value of yd in the rth sample of the cth chain. For a test document d, we

use R2 posterior samples of (η,Φ) from each chain to assign it to the class with maximum value of∑5
c=1

∑R2
r=1 q̂

(c,r)
d,j /(5R2), where q̂(c,r)

d,j is the calculated value of q̂d,j for the rth sample of the cth
chain.

We set R1 = 5 and R2 = 5. Experiments show that using larger value of R1 or R2 does not
make much difference (results unreported).
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Appendix F: Details of the modified CCS approach

In the modified CCS approach, we consider using words or phrases as the analysis units. Let
cd,v denote the count that the vth term (word or phrase) in the dictionary appears in document d.
Following Jia et al. (2014), these counts are L2-normalized across labeled training documents to

give features xd,v = cd,v/
√∑D1

d′=1 c
2
d′,v (d = 1, · · · , D1). Let xd = (xd,1, · · · , xd,V )>. To learn a

sparse classifier, a separate L1 penalized binary logistic regression is trained for each class using the
fraction ϕ of labeled training documents:

(âj , b̂j) = argmin
bj ,aj

{
−

D1∑
d=1

log
(

1 + exp
(

(1− 2I(yd = j))
(
aj + b>j xd

)))
+λj

V∑
v=1

|bj,v|
}
,

(19)

where aj and bj = (bj,1, · · · , bj,V )> (j = 1, · · · , J) are the intercept and coefficients of xd, and
λj is a tuning parameter. Rather than selecting λj to achieve a desired prespecified number of
selected features as in Jia et al. (2014), we follow Genkin et al. (2007) and Ifrim et al. (2008) to use
ten-fold cross-validation to select λj that minimizes the misclassification rate. Features selected by
at least one binary logistic regression are collected, and a multinomial logistic model for all classes is
retrained on these features. The resulting model is used to predict class labels for unlabeled training
or test documents.

We use the improved GLMNET algorithm (Yuan et al., 2012) to train penalized binary logistic
regression, and use the limited memory BFGS (Liu and Nocedal, 1989) algorithm to train multinomial
logistic regression. Both algorithms are implemented in the scikit-learn package in Python, and can
handle the case when the number of features exceeds the number of observations, which is very
common in text classification.

We also tried predicting with the class that has maximum predicted value over all binary logistic
regressions, but less classification accuracy is achieved. Using Lasso rather than the L1 penalized
logistic regression, as suggested by Jia et al. (2014), also achieves less classification accuracy.

Appendix G: Monte Carlo simulations under the supervised scenario

As discussed in Section 5.4, the CSTM is able to capture subtle differences between classes. In this
Section, we further use Monte Carlo simulations to help better understand in what circumstances the
CSTM outperforms the competing approaches under the supervised scenario.

G.1 Data generation processes

We set the number of documents to be D = 500, the number of words in the dictionary to be
V = 1000, and the number of topics to be K = 10. The number of words in each document d, Nd,
follows a discrete uniform distribution from 40 to 60. We set up different variants of two types of
data generation processes (DGPs): CSTM and DiscLDA. The details are as follows.
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CSTM1. The word probabilities for each topic k (k = 1, · · · ,K) are independently generated
from a Dirichlet distribution: φk ∼ Dir(βk), where βk = (βk,1, · · · , βk,V )>, with

βk,v =

{
β̃ if v ∈ {90(k − 1) + 1, · · · , 90k},
1 otherwise.

If β̃ > 1, for each topic, there is a set of 90 distinct words that on average have larger probabilities
under the topic. The larger β̃ is, the larger distinction there is between the topics. If β̃ = 1, then
on average there is no distinction between the topics. However, because φk’s are generated from
Dir(βk) rather than being fixed to be βk, there will still be some distinction between the topics
even when β̃ = 1. Each of the last 100 words has the same average probability under any topic, and
therefore, on average, these words are noise with no distinction between the topics.

We set the number of classes to be J = 5, the class-specific topics to beHj = {j} (j = 1, · · · , 5),
and the shared topics to beHS = {6, 7, 8, 9, 10}. We generate the class label for each document, yd,
randomly from 1 to 5. For each document in class j (j = 1, · · · , 5), we generate the value of θd by
drawing the probabilities over topics in Λj = (j, 6, 7, 8, 9, 10) from Dir(α̃, 1, 1, 1, 1, 1), and setting
the probabilities over other topics to zero.

Given Nd, θd and φk’s, the words in document d are generated as usual: for n = 1, · · · , Nd, a
topic is chosen from zd,n ∼Multi(θd), and a word is chosen from wd,n ∼Multi(φzd,n).

Note that the average probability for a class-specific topic in each document is α̃/(α̃+ 5). The
larger α̃ is, the larger average probability of a class-specific topic there is in each document, and the
higher the average classification accuracy can be. Also, the larger β̃ is, the larger distinction there is
between the five class-specific topics, and the higher the average classification accuracy can be.

CSTM2. To reduce the distinction between the class-specific topics and therefore the distinction
between classes, we allow the words with possibly larger average probabilities under different topics
to have overlap. Specifically, we set

β1,v =

{
β̃ if v ∈ {1, · · · , 100},
1 otherwise;

β2,v =

{
β̃ if v ∈ {51, · · · , 150},
1 otherwise;

β3,v =

{
β̃ if v ∈ {151, · · · , 250},
1 otherwise;

β4,v =

{
β̃ if v ∈ {201, · · · , 300},
1 otherwise;

βk,v =

{
β̃ if v ∈ {100(k − 5) + 301, · · · , 100(k − 5) + 400},
1 otherwise

(k = 5, · · · , 10).

There is overlap between the words with possibly larger average probabilities under topics 1 and 2,
or under topics 3 and 4.

All other components of the DGP are the same as in CSTM1.

CSTM3. We consider a setting where the numbers of class-specific topics are different among
classes. We set the number of classes to be J = 3, and the class-specific topics to beH1 = {1, 3},
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H2 = {2, 4} and H3 = {5}. The shared topics are again HS = {6, 7, 8, 9, 10}. We generate the
class label for each document randomly from 1 to 3. For each document in class 1 (or class 2), we
generate the value of θd by drawing the probabilities over topics in Λ1 = (1, 3, 6, 7, 8, 9, 10) (or
Λ2 = (2, 4, 6, 7, 8, 9, 10)) from Dir(α̃, α̃, 1, 1, 1, 1, 1), and setting the probabilities over other topics
to zero. For each document in class 3, we generate the value of θd by drawing the probabilities over
topics in Λ3 = (5, 6, 7, 8, 9, 10) from Dir(α̃, 1, 1, 1, 1, 1), and setting the probabilities over other
topics to zero.

All other components of the DGP are the same as in CSTM1. The relationship between the
classification accuracy and the values of α̃ and ψ̃ is similar to what is discussed for DiscLDA1.

CSTM4. We generate the topics’ word probabilities (φk’s) as in CSTM2. All other components
of the DGP are the same as in CSTM3.

DiscLDA1. In this DGP, we use the DiscLDA model described in Section 3.2. The topics’ word
probabilities, φk’s, are generated as in CSTM1. We set the number of classes to be J = 5, and the
dimension for the underlying Drichlet variables to be L = 6. The class-specific linear transformation
matrices T j’s are generated as follows. We first define a 10× 6 class-specific matrix for each class
j, ψj , for which the element in row j and column 1 equals ψ̃ and the other elements equal 1. For
l = 1, · · · , L, the lth column of T j is generated independently from a Dirichlet distribution with
parameter given by the lth column of ψj .

For each document, a 6-dimensional variable ξd is generated from Dir(α̃, 1, 1, 1, 1, 1), the class
label yd is randomly drawn from 1 to 5, and then the vector of topic probabilities, θd, is calculated as
θd = T ydξd. Given Nd, θd and φk’s, the words in document d are generated as usual.

For a document in class j, the topic probability for topic k equals T jk,1ξd,1 + T jk,2ξd,2 + · · · +
T jk,6ξd,6. From the generation process for T j , we can derive that, for a given class j, the average

value of T jk,1 equals ψ̃/(ψ̃ + 9) if k = j, and equals 1/(ψ̃ + 9) otherwise, and that the average value

of T jk,l (l = 2, · · · , 6) equals 1/10 for any k. Therefore, when ψ̃ > 1, on average documents in class
j have larger probabilities over topic j than over other topics. The larger ψ̃ is, the higher the average
classification accuracy can be. When ψ̃ = 1, on average each document is evenly distributed over
different topics, and the classes cannot be well discriminated. However, because T j’s are randomly
generated rather than being fixed to be ψj , there will still be some class discrimination even when
ψ̃ = 1.

Note that the average value of ξd,1 equals α̃/(α̃+ 5) and the average value of ξd,l (l = 2, · · · , 6)
equals 1/(α̃+ 5). With given values of β̃ and ψ̃ > 1, the larger α̃ is, the larger average probability
documents in class j have over topic j, and the higher the average classification accuracy can be.
Also, with given values of α̃ and ψ̃ > 1, the larger β̃ is, the more distinction between the topics, and
the higher the average classification accuracy can be.

DiscLDA2. We generate the topics’ word probabilities as in CSTM2. All other components of
the DGP are the same as in DiscLDA1.

DiscLDA3. Similar to CSTM3, we set the number of classes to be J = 3. We set the dimension
for the underlying Drichlet variables to be L = 7. The class-specific linear transformation matrices
T j are generated as follows. For class 1, we define a 10× 7 matrix ψ1, for which the element in row
1 and column 1 and the element in row 3 and column 2 both equal ψ̃, and the other elements equal
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Figure 8: A set of generated values of φ1 and φ2 under CSTM1.

1. For class 2, we define a 10× 7 matrix ψ2, for which the element in row 2 and column 1 and the
element in row 4 and column 2 both equal ψ̃, and the other elements equal 1. For class 3, we define a
10× 7 matrix ψ3, for which the element in row 5 and column 1 equals ψ̃, and the other elements
equal 1.

For each document, a 7-dimensional variable ξd is generated from Dir(α̃, α̃, 1, 1, 1, 1, 1), the
class label yd is randomly drawn from 1 to 3, and then the vector of topic probabilities, θd, is
calculated as θd = T ydξd. All other components of the DGP are the same as in DiscLDA1.

Similar to the discussion for DiscLDA1, we can easily derive that, when ψ̃ > 1, on average
documents in class 1 have larger probabilities over topics 1 and 3 than over other topics, on average
documents in class 2 have larger probabilities over topics 2 and 4 than over other topics, and on
average documents in class 3 have larger probabilities over topic 5 than over other topics. The
relationship between the classification accuracy and the values of α̃, β̃ and ψ̃ is similar to what is
discussed for DiscLDA1.

DiscLDA4. We generate the topics’ word probabilities as in CSTM2. All other components of
the DGP are the same as in DiscLDA3.

G.2 Simulation results

We generate 100 datasets under each DGP. In each dataset, the documents are randomly splitted into
a training set with 300 documents, and a test set with 200 documents.

We first set α̃ = 5 and β̃ = 3, and consider ψ̃ = 20 or ψ̃ = 1. As an illustration, Figure 8 shows
one set of generated values of φ1 and φ2 under CSTM1. We can see that there are differences in
word probabilities for the two class-specific topics, but these differences are blurred by some noise.
Therefore the distinction between classes is not clear-cut.
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Table A1 presents the average classification accuracy of test documents for the supervised CSTM
and its competitors under different DGPs. As expected, under the DiscLDA DGPs, the average
classification accuracy is higher when ψ̃ = 20 than when ψ̃ = 1. Under all DGPs, CSTM outperforms
all of its competitors. The average classification accuracy achieved by CSTM is higher than the
highest average classification accuracy achieved by its competitors by 8.85% to 21.85%. Whether
there is overlap between the words with larger average probabilities under different topics does not
seem to matter much for the performance of the methods (e.g., the row of average classification
accuracy when the DGP is CSTM1 is not much different from that when the DGP is CSTM2).
Therefore, in future comparisons in this section, we only consider the case when φk’s are generated
as in CSTM1.

Table A1: Average classification accuracy of test documents for the supervised CSTM and its
competitors under different DGPs, with α̃ = 5 and β̃ = 3.

DGP CSTM LDA+ LDA Modified CCS sLDA DiscLDA labeled
RF SVM per-class word phrase LDA

CSTM1 0.801 0.264 0.319 0.216 0.448 0.520 0.506 0.589 0.411
CSTM2 0.794 0.268 0.326 0.216 0.436 0.513 0.504 0.575 0.402
CSTM3 0.903 0.529 0.588 0.354 0.613 0.691 0.788 0.756 0.573
CSTM4 0.897 0.523 0.581 0.350 0.597 0.669 0.790 0.743 0.562

DiscLDA1 (ψ̃ = 20) 0.561 0.211 0.249 0.216 0.298 0.358 0.323 0.362 0.279
DiscLDA2 (ψ̃ = 20) 0.560 0.215 0.240 0.213 0.292 0.350 0.317 0.360 0.279
DiscLDA3 (ψ̃ = 20) 0.532 0.340 0.355 0.343 0.369 0.413 0.400 0.411 0.374
DiscLDA4 (ψ̃ = 20) 0.520 0.338 0.352 0.339 0.373 0.415 0.403 0.412 0.377
DiscLDA1 (ψ̃ = 1) 0.473 0.314 0.322 0.310 0.342 0.378 0.219 0.372 0.346
DiscLDA2 (ψ̃ = 1) 0.473 0.315 0.325 0.312 0.341 0.377 0.225 0.373 0.347
DiscLDA3 (ψ̃ = 1) 0.495 0.337 0.348 0.337 0.368 0.406 0.355 0.397 0.370
DiscLDA4 (ψ̃ = 1) 0.497 0.338 0.346 0.339 0.366 0.405 0.350 0.399 0.371

Table A2 presents the average classification accuracy of test documents when α̃ = 1 and β̃ = 1.
As expected, with smaller values for α̃ and β̃, the classification accuracy is lower than that in
Table A1. With α̃ = 1 and β̃ = 1, the distinction between classes is very small, and the classification
problem seems to be hard for any method. The advantage of the CSTM over its competitors is much
less than that in Table A1. The average classification accuracy achieved by CSTM is higher than the
highest average classification accuracy achieved by its competitors by 2.73% to 7.35%.

Table A2: Average classification accuracy of test documents for the supervised CSTM and its
competitors under different DGPs, with α̃ = 1 and β̃ = 1.

DGP CSTM LDA+ LDA Modified CCS sLDA DiscLDA labeled
RF SVM per-class word phrase LDA

CSTM1 0.294 0.201 0.206 0.207 0.206 0.231 0.218 0.223 0.219
CSTM3 0.476 0.338 0.341 0.335 0.359 0.403 0.368 0.401 0.362

DiscLDA1 (ψ̃ = 20) 0.273 0.205 0.194 0.202 0.202 0.228 0.220 0.210 0.214
DiscLDA3 (ψ̃ = 20) 0.380 0.342 0.337 0.331 0.336 0.350 0.349 0.346 0.347
DiscLDA1 (ψ̃ = 1) 0.236 0.206 0.206 0.200 0.197 0.208 0.203 0.205 0.201
DiscLDA3 (ψ̃ = 1) 0.381 0.343 0.332 0.336 0.335 0.354 0.343 0.354 0.345
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Table A3 presents the average classification accuracy when β̃ = 3, the same as for Table A1, and
α̃ is increased to 15. Table A4 presents the average classification accuracy when α̃ = 5, the same as
for Table A1, and β̃ is increased to 10. As expected, the average classification accuracy in Tables A3
and A4 is higher than that in Table A1, except under the DiscLDA DGPs with ψ̃ = 1. CSTM again
outperforms all of its competitors. However, when there is very high distinction between classes
and the classification problem is easy (e.g., when the DGP is CSTM3 in Table A3 or Table A4), the
advantage of the CSTM over the best of its competitors is small.

Table A3: Average classification accuracy of test documents for the supervised CSTM and its
competitors under different DGPs, with α̃ = 15 and β̃ = 3.

DGP CSTM LDA+ LDA Modified CCS sLDA DiscLDA labeled
RF SVM per-class word phrase LDA

CSTM1 0.978 0.407 0.443 0.219 0.630 0.711 0.905 0.899 0.701
CSTM3 0.988 0.689 0.685 0.355 0.750 0.816 0.968 0.942 0.801

DiscLDA1 (ψ̃ = 20) 0.775 0.256 0.318 0.221 0.395 0.477 0.501 0.522 0.352
DiscLDA3 (ψ̃ = 20) 0.697 0.347 0.400 0.332 0.445 0.503 0.499 0.520 0.408
DiscLDA1 (ψ̃ = 1) 0.322 0.210 0.201 0.199 0.215 0.237 0.234 0.243 0.224
DiscLDA3 (ψ̃ = 1) 0.435 0.344 0.350 0.325 0.359 0.382 0.364 0.369 0.348

Table A4: Average classification accuracy of test documents for the supervised CSTM and its
competitors under different DGPs, with α̃ = 5 and β̃ = 10.

DGP CSTM LDA+ LDA Modified CCS sLDA DiscLDA labeled
RF SVM per-class word phrase LDA

CSTM1 0.967 0.356 0.391 0.236 0.742 0.820 0.880 0.946 0.897
CSTM3 0.988 0.665 0.678 0.386 0.836 0.891 0.980 0.979 0.935

DiscLDA1 (ψ̃ = 20) 0.770 0.314 0.346 0.222 0.446 0.524 0.543 0.617 0.425
DiscLDA3 (ψ̃ = 20) 0.757 0.399 0.478 0.339 0.495 0.550 0.577 0.576 0.426
DiscLDA1 (ψ̃ = 1) 0.347 0.191 0.212 0.206 0.225 0.251 0.237 0.257 0.222
DiscLDA3 (ψ̃ = 1) 0.493 0.325 0.358 0.335 0.362 0.384 0.385 0.393 0.366

To summarize, when viewing the data as generated from a topic model, the advantage of the
CSTM over its competitors is largest when (1) differences between classes in topic probabilities are
moderate, and (2) where topic probabilities do differ between classes, differences between topics
in word probabilities are moderate. Otherwise, the advantage of the CSTM over its competitors is
limited.

Appendix H: Candidate models under different settings of τ and hS,max
We use ϕ = 20% as an example. Let τ vary from max(1/J, 0.3) to 0.8, with an increment of
0.05. Let hS,max take values among {1, 2, 3, 4} and then 5 to min(KLDA −

∑J
j=1 hj , 20), with an

increment of 5. Table A5 shows the candidate values for hj’s and hS obtained under each setting
of τ and hS,max, as well as the accuracy of each candidate model on classifying unlabeled training
documents and test documents.

The values of hj’s are determined by τ . With the increase of τ , hj’s become smaller and thus
the candidate model becomes simpler. When τ reaches certain value that is large enough (e.g., 0.35
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in our example), all hj’s equal to 1. The value of hS is determined by hS,max, which is in turn
determined by KLDA and

∑J
j=1 hj . In our example, given the same value of hS,max, as τ increases

(or as the model becomes simpler), the classification accuracy increases; given the same value of τ ,
as hS,max increases (or as the model becomes more complicated), the classification accuracy first
increases and then decreases. The best classification accuracy is given by τ ≥ 0.35 and hS,max = 5.

Table A5: The Candidate Models and Their Accuracy under Different Settings for τ and hS,max.
Setting Candidate Model Classification Accuracy

τ hS,max h′js hS unlabeled train test

0.3

1

h1 = h2 = h18 = 2,
other hj’s=1

1 67.3% 66.52%
2 2 67.81% 67.11%
3 3 68.55% 69.04%
4 4 70.19% 69.5%
5 5 70.87% 70.81%

10 10 69.33% 68.63%
15 15 67.66% 67.02%
20 20 65.51% 65.58%

0.35-0.8

1

all hj’s=1

1 72.19% 72.74%
2 2 72.91% 73.17%
3 3 73.84% 73.91%
4 4 74.03% 74.82%
5 5 74.5% 75.84%

10 10 73.2% 74.91%
15 15 70.14% 70.62%
20 20 69.82% 68.73%

Appendix I: Performance of LDA and CSTM using bigrams or trigrams

Table A6 shows the classification accuracy of LDA and CSTM on unlabeled training documents and
test documents, using bigrams or trigrams as the basis analysis units. Compared with Table 4 and
5, we see that the classification accuracy using bigrams or trigrams as the basic analysis units are
generally slightly worse than that using words as the basic analysis units.

Table A6: Classification Accuracy of Unlabeled Training Documents and Test Documents Using
Bigrams and Trigrams.

ϕ
Unlabeled Training Documents Test Documents

CSTM LDA+RF LDA+SVM CSTM LDA+RF LDA+SVM
10% 60.93% 61.36% 54.30% 62.41% 58.81% 51.27%
20% 73.95% 66.19% 57.61% 74.65% 62.15% 56.70%
30% 75.48% 67.32% 61.70% 75.44% 63.13% 58.75%
40% 78.69% 68.68% 63.40% 78.29% 64.80% 61.10%
50% 80.17% 70.33% 64.64% 80.51% 67.38% 63.01%
60% 80.32% 71.00% 67.20% 80.92% 68.05% 64.02%
70% 81.67% 71.37% 67.56% 82.50% 68.67% 65.56%
80% 82.26% 71.23% 68.47% 83.36% 69.23% 66.33%
90% 82.88% 72.32% 71.81% 83.60% 70.13% 68.04%

100% − − − 84.36% 70.47% 68.70%
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Appendix J: Text summaries for each class under LDA and the modified CCS
approach

See Table A7 and Table A8.

Table A7: Top Ten Words with Highest Probabilities Under The Leading Topic for Each Class When
ϕ = 20% (LDA)

Class Top Ten Words with Highest Probabilities

comp.graphics
organization,lines,subject,university,thanks,anyone,please,
know,email,would

comp.os.ms-windows.misc dont,would,like,writes,get,one,re,think,lines,article
comp.sys.ibm.pc.hardware card,SCSI,video,bit,Mac,monitor,memory,MHZ,MB,bus
comp.sys.mac.hardware card,SCSI,video,bit,Mac,monitor,memory,MHZ,MB,bus

comp.windows.x
window,server,subject,motif,using,widget,use,application,
set,problem

misc.forsale
sale,lines,organization,subject,price,new,offer,printer,
shipping,sell

rec.autos car,cars,engine,speed,oil,dealer,miles,new,drive,driving
rec.motorcycles bike,DOD,ride,riding,motorcycle,bikes,BMW,dog,helmet,front
rec.sport.baseball year,baseball,game,last,team,runs,games,players,win,hit
rec.sport.hockey team,game,hockey,play,NHL,games,season,players,go,period

sci.crypt
key,encryption,chip,clipper,government,keys,security,use,
system,technology

sci.electronics radio,use,audio,radar,output,power,input,signal,detector,circuit

sci.med
gordon,banks,pain,doctor,medical,treatment,patients,soon,
medicine,Candida

sci.space space,NASA,launch,earth,moon,orbit,satellite,lunar,shuttle,first

talk.politics.guns
gun,guns,control,crime,weapons,firearms,police,criminals,
handgun,public

talk.politics.mideast
Turkish,Armenian,Armenia,Turks,Turkey,people,genocide,
world,Greek,war

talk.politics.misc one,would,people,may,many,us,even,also,must,question
alt.atheism one,would,people,may,many,us,even,also,must,question

soc.religion.christian
God,Jesus,Bible,church,Christian,Christ,Christians,faith,
one,Gods

talk.religion.misc one,would,people,may,many,us,even,also,must,question

Appendix K: An analysis of the Reuters dataset

Reuters-215783 is another benchmark dataset for text classification. The original dataset contains
structured information about newswire articles. Each article is associated with multiple labels.
The original collection contains 21,578 documents, including documents without labels or with
typographical errors. A subset of the collection including only documents with labels and without
typographical errors, usually referred to as “ModApte” split, is widely used (Erenel et al., 2011;
Napoletano et al., 2012; Sciarrone, 2013; Al-Salemi et al., 2015). The “ModApte” split uses 9,603
articles before April 7, 1987 as the training set, and uses 3,299 articles after this date as the test set.
A further step is to focus only on classes that have at least one document in both the training set and

3. http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
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Table A8: Top Ten Entering Phrases for the Modified CCS When ϕ = 20%

Class Top Ten Entering Phrases

comp.graphics
Robert JC Kyanko,normals,Crowe,slices,VGA graphics mode,
mpeg,Birmingham, orientations,graphics library,point polygon

comp.os.ms-windows.misc
plus Windows problems,WinBench,Steve Gibson,Windows operating,
Windows, prodigy services,Speedisk,Windows operating system,
WinBench results,re win

comp.sys.ibm.pc.hardware
Gordon Lang subject,Stephen Husak,gateway,controller,VESA
localbus,hard drive, double warranty,card,controller,ns ns

comp.sys.mac.hardware
Centris,price drop,PowerBook,reconditioned,Apple,Gary Snow,
internal hard, use VGA,Duo Dock,grab hold

comp.windows.x
Motif,pixmap,use Motif,Motif Window,building XR,flags,program
produces, hints,program entry,teleuse UIMX

misc.forsale
custom resume,forsale,shipping,sale,answering machine,sale articleid,
Radley, transferable,need sell,patwrscom

rec.autos
re top reasons,re integra,love cr humor,car may,subject re integra,
top reasons, top reasons love,re dumbest automotive,car,
cr humor impaired

rec.motorcycles
drinking riding,re speeding ticket,tools tools,Woodward,helmetless,
protective, protective gear,riding,ticket CHP,backpack

rec.sport.baseball
Rockies,Su writes,designated hitter rule,baseball,opening day,new
uniforms, young catchers,national league,Internet comes,home runs

rec.sport.hockey
Colons,cup organization,years biggest worst,worst opinion,biggest
worst, first round pick,many Europeans NHL,years biggest,two thrown
game, re many Europeans

sci.crypt
encryption scheme,clipper chip encryptionlist,key,hard drive security,
chip encryption organization,scicrypt,Carl Ellison,encryption,
drive security,security

sci.electronics
radarjust,radio car,radarjust work,help ultralong timing,Jacobs
ladder, police radarjust,help ultralong,power line balls,subject re zero,
police radarjust work

sci.med
jiggers,univ Pittsburgh,Gordon Banks,univ Pittsburgh computer,
Dan Wallach, Pittsburgh computer science,Pittsburgh computer,
aspirin,smokers lungs, organization univ Pittsburgh

sci.space
space faq,NASA,orbit,re space food,distribution sci,space,
space station, space research spin,nuclear waste organization,
re space research

talk.politics.guns
deer hunting,smuggle,make guns,hell TV news,weapon ban,
Clements, Ray Clements,subject re gun,Manes writes,
Aaron Ray Clements

talk.politics.mideast
Arabs,Serdar Argic,re Islam borders,Argic distribution,Islam
borders, Serdar Argic distribution,Argic distribution world,
Israelis,Panos,Argic

talk.politics.misc
deane subject,white males,someone may,David Matthew,Bill
Riggs, top ten reasons,tax evasion,protect consumers,
reasons aid Russians, insurance commissioner

alt.atheism
atheists would,Nanci Ann,re Americans evolution,Jon Livesey,
atheism, women organization,Americans evolution,Livesey,
Keith Allan,subject re political

soc.religion.christian
organization Kulikauskas,Kulikauskas,Christianity,rushing angels,
Christ, Kulikauskas home,environmentalism,Kulikauskas subject,
Jesus name,angels fear

talk.religion.misc
biblical contradictions organization,basis values,morality
organization, re food,question popular morality,Joslin,lexicon,
contradictions organization, question popular,re question pop
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the test set. After this step, the dataset has 90 classes with a training set of 7,769 articles and a test
set of 3,019 articles.

Because the CSTM can only deal with single-label classification problems, we further modify
the dataset using the following steps. First, for each document, we only retain its first class label.
After this, we find both the training set and the test set have uneven numbers of documents across
the classes. Figure 9 shows the barplot of the number of training documents in each class. The top
eight classes account for 87% of all documents. Therefore, we only focus on the top eight classes
in the subsequent analysis. This leads to a final training set of 6,486 documents and a test set of
2,545 documents. Table A9 shows the retained eight classes and the numbers of training and test
documents in each class.

Figure 9: Barplot of the number of training documents in each class.

Table A9: Retained Classes and The Numbers of Training and Test Documents in Each Class
Class Number Class Name No. Training No. Test

1 earn 2877 1087
2 acq 1634 716
3 money-fx 537 179
4 grain 430 148
5 crude 359 180
6 trade 323 105
7 interest 203 87
8 ship 123 43

We follow the common practices in text mining to remove numbers, punctuations and stopwords
in Reuters-Truncated data, in the same way as what we did for 20 Newsgroup group dataset. After
preprocessing, there are 59,773 unique words appearing in the training documents, which constitute
the dictionary. We then compare the classification accuracy of test documents for the supervised
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CSTM and its competitors. For each model, we follow similar steps discussed in Section 5 for model
training, selection, and prediction. The selected CSTM model has hj = 3 class-specific topics for
each class, and hS = 20 shared topics. The selected number of topics for LDA, sLDA, and DiscLDA
are 81, 50, and 71, respectively. For labeled LDA, there are again one class-specific topic for each
class and one common topic, resulting in a total of 9 topics. Table A10 displays the results. We find
that CSTM slightly outperforms all the other methods.

Table A10: The Classification Accuracy of Test Documents for Supervised CSTM and Its Competi-
tors in Reuters-Truncated Data

Method
Classification

Accuracy
CSTM 94.18%

Two-stage
LDA+RF 89.86%

LDA+SVM 90.33%
per-class LDA 5.81%

Modified CCS
word 91.00%

phrase 91.51%
sLDA 92.30%

DiscLDA 86.40%
labeled LDA 20.19%
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