Structure Learning of Undirected Graphical Models for Count Data

Nguyen Thi Kim Hue
NGUYEN@STAT.UNIPD.IT
Department of Statistical Sciences
University of Padova
Via C. Battisti, 241-35121 Padova, Italy
Monica Chiogna
MONICA.CHIOGNA2@UNIBO.IT
Department of Statistical Sciences "Paolo Fortunati"
University of Bologna
Via Belle Arti 41-40126 Bologna, Italy

Editor: Barbara Engelhardt

Abstract

Mainly motivated by the problem of modelling biological processes underlying the basic functions of a cell -that typically involve complex interactions between genes- we present a new algorithm, called PC-LPGM, for learning the structure of undirected graphical models over discrete variables. We prove theoretical consistency of PC-LPGM in the limit of infinite observations and discuss its robustness to model misspecification. To evaluate the performance of PC-LPGM in recovering the true structure of the graphs in situations where relatively moderate sample sizes are available, extensive simulation studies are conducted, that also allow to compare our proposal with its main competitors. A biological validation of the algorithm is presented through the analysis of two real data sets.

Keywords: graphical models, undirected graphs, structure learning, sparsity, conditional independence tests

1. Introduction

Current demand for modelling complex interactions between genes, combined with the greater availability of high-dimensional discrete data, possibly showing a large number of zeros and measured on a small number of units, has led to an increased focus on structure learning for discrete data in high dimensional settings.

Various solutions are nowadays available in the literature for learning (sparse) graphical models for discrete data. Höfling and Tibshirani (2009) consider the problem of estimating the parameters as well as the structure of binary-valued Markov networks; Ravikumar et al. (2010) consider the problem of estimating the graph associated with a binary Ising Markov random field; Jalali et al. (2011) consider learning general discrete graphical models, where each variable can take a multiplicity of possible values, and factors can be of order higher than two and Allen and Liu (2013) consider learning graphical models for Poisson counts. To deal with high dimensionality, most methods resort on penalization, which simultaneously performs parameter estimation and model selection.

[^0]In this paper, we concentrate on count data and introduce a simple algorithm for structure learning of undirected graphical models, called PC-LPGM, particularly useful when sparse graphs are under consideration. The algorithm stems from the conditional approach of Allen and Liu (2013), where the neighbourhood of each node is estimated in turn by solving a lasso penalized regression problem and the resulting local structures stitched together to form the global graph. We propose to substitute penalized estimation with a testing procedure on the parameters of the local regressions following the lines of the PC algorithm, see Spirtes et al. (2000). This solution is particularly attractive, since it inherits the potential of the PC algorithm to estimate a sparse graph even if p, the number of variables, is in the hundreds or thousands.

We give a theoretical proof of convergence of PC-LPGM showing that the proposed algorithm consistently estimates the edges of the underlying (sparse) undirected graph, as the sample size $n \rightarrow \infty$. For such proof to be developed, a joint distribution must exist, a condition which might be questionable when relying on a conditional model specification such as the one behind a neighbourhood approach. If one assumes that each variable conditioned on all other variables follows a Poisson distribution, for example, a unique joint distribution compatible with the given conditionals exists provided that conditional dependencies are all negative. As this condition, known as "competitive relationship" among variables, highly limits attractiveness of such specification in applications, we have chosen to develop statistical guarantees for PC-LPGM under the assumption that conditional distributions follow a truncated Poisson law. Such choice admits dependencies richer than those under competitive relationship; see, however, Yang et al. (2013b) for a discussion about its limitations. For the truncated Poisson model, under mild assumptions on the expected Fisher information matrix, and fixing the truncation point $R>0$, convergence is guaranteed for $n \geq O_{p}\left(d^{3} \log p\right)$, where d is the maximum neighbourhood size.

To explore whether it is reasonable to extend the desirable properties of PC-LPGM to the case of conditional Poisson distributions with unrestricted conditional dependencies, a theoretical study and extensive simulations studies are conducted to evaluate statistical properties of the algorithm in such cases.

The paper is organized as follows. After reviewing some essential concepts on undirected graphical models and truncated Poisson models in Section 2, we introduce PC-LPGM algorithm in Section 3. We then provide statistical guarantees in Section 4. A discussion on consistency of the algorithm is offered in Section 5, with special focus on the model specification, the truncated Poisson distribution, and on properties of the algorithm in the setting of conditional Poisson distributions with unrestricted conditional dependencies. This section also explores performances of the algorithm relative to various alternatives. An excursion into the intuitive advantages of the learning strategy adopted by PC-LPGM is taken in Section 6. A validation of the algorithm on two real cases is given in Section 7. Some concluding remarks are presented in Section 8.

2. A Quick Review on Truncated Poisson Undirected Graphical Models

In this section, we review some essential concepts on undirected graphical models and introduce truncated Poisson undirected graphical models.

Consider a p-dimensional random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{p}\right)$ such that each random variable X_{s} corresponds to a node of a graph $G=(V, E)$ with index set $V=\{1,2, \ldots, p\}$. An edge between two nodes s and t will be denoted by (s, t). The neighbourhood of a node $s \in V$ is defined to be the set $N(s)=\{t \in V:(s, t) \in E\}$ consisting of all nodes connected to s. The random vector \mathbf{X} satisfies the pairwise Markov property with respect to G if

$$
X_{s} \Perp X_{t} \mid \mathbf{X}_{V \backslash\{s, t\}}
$$

whenever $(s, t) \notin E$. When all variables $X_{s}, s \in V$, are discrete with positive joint probabilities, as in the case under consideration, the pairwise Markov property coincides with the local and global Markov property, according to which, respectively,

$$
X_{s} \Perp \mathbf{X}_{V \backslash\{N(s) \cup\{s\}\}} \mid \mathbf{x}_{N(s)}
$$

for every $s \in V$, and

$$
\mathbf{X}_{A} \Perp \mathbf{X}_{B} \mid \mathbf{x}_{C}
$$

for any triple of pairwise disjoint subsets $A, B, C \subset V$ such that C separates A and B in G, that is, every path between a node in A and a node in B contains a node in C.

To specify a probabilistic model for \mathbf{X}, we take a conditional approach (see also Arnold et al. (2012)). Assume that each conditional distribution of node X_{s} given other variables $\mathbf{X}_{V \backslash\{s\}}$ follows a Poisson distribution truncated at $R, R>0$, written as $X_{s} \mid \mathbf{x}_{V \backslash\{s\}} \sim$ $\operatorname{TP}\left(\exp \left\{\theta_{s}+\sum_{t \neq s} \theta_{s t} x_{t}\right\}\right)$, with node conditional distribution

$$
\begin{align*}
\mathbb{P}\left(x_{s} \mid \mathbf{x}_{V \backslash\{s\}}\right) & =\frac{\exp \left\{\theta_{s} x_{s}+\sum_{t \neq s} \theta_{s t} x_{t} x_{s}-\log x_{s}!\right\}}{\sum_{k=0}^{R} \exp \left\{\theta_{s} k+k \sum_{t \neq s} \theta_{s t} x_{t}-\log k!\right\}} \\
& =\frac{\exp \left\{\theta_{s} x_{s}+x_{s}\left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}\right\rangle-\log x_{s}!\right\}}{\sum_{k=0}^{R} \exp \left\{\theta_{s} k+k\left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}\right\rangle-\log k!\right\}} \\
& =\exp \left\{\theta_{s} x_{s}+x_{s}\left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}\right\rangle-\log x_{s}!-D\left(\left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}\right\rangle\right)\right\}, \tag{1}
\end{align*}
$$

where $\boldsymbol{\theta}_{s}=\left\{\theta_{s t}, t \in V, t \neq s\right\}$ denotes the set of conditional dependence parameters, $\langle.,$.$\rangle denotes the inner product, and D\left(\left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}\right\rangle\right)=\log \left(\sum_{k=0}^{R} \exp \left\{\theta_{s} k+k\left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}\right\rangle-\right.\right.$ $\log k!\})$.

An application of Proposition 1 in Yang et al. (2015) shows that a valid joint probability distribution function from the above given set of specified conditional distributions can be constructed. By Assumption 1 and Assumption 2 in Section 4.1 of Besag (1974), such distribution defines an undirected graph $G=(V, E)$ in which a missing edge between node s and node t corresponds to the condition $\theta_{s t}=\theta_{t s}=0$. On the other side, one edge between node s and node t implies $\theta_{s t} \equiv \theta_{t s} \neq 0$.

The existence of a joint distribution suggests that the structure of the network might be recovered from observed data within a likelihood approach by mean of a set of statistical tests. Indeed, in an undirected graphical model, the pairwise Markov property infers a collection of full conditional independences encoded in absent edges. For this reason, performing $\binom{|V|}{2}$ pairwise full conditional independence tests yields a method to estimate the graph G. However, such an approach might be impractical even for modestly sized graphs. The existence of the maximum likelihood estimates is, in general, not guaranteed if the
number of observations is small, the basic problem being that the number of parameters in $\boldsymbol{\theta}=\left\{\boldsymbol{\theta}_{s}, s \in V\right\}$ is of the order p^{2}. Hence, the sample size is often not large enough to obtain a good estimator. Moreover, it requires computing complex normalization constants and combinatorial searches through the space of graph structures. For this reason, in what follows, we will exploit the local Markov property, according to which every variable is conditionally independent of the remaining ones given its neighbours. This property suggests that each variable $X_{s}, s \in V$ can be optimally predicted from its neighbour $\mathbf{X}_{N(s)}$.

3. The PC-LPGM Algorithm

We will work within the neighbourhood selection approach. The analysis of this setting is related to the concept of pseudo-likelihood,

$$
P L(\boldsymbol{\theta})=\prod_{s \in V} \mathbb{P}\left(x_{s} \mid \mathbf{x}_{V \backslash\{s\}}\right),
$$

where $\mathbb{P}\left(x_{s} \mid \mathbf{x}_{V \backslash\{s\}}\right)$ is the distribution function of each node conditional distribution. Standard model specifications treat different conditional distributions $\mathbb{P}\left(x_{s} \mid \mathbf{x}_{V \backslash\{s\}}\right)$ as unrelated. In other words, the symmetry of interaction parameters $\theta_{s t}$ and $\theta_{t s}$ is usually not explicitly taken into account (see, however, Peng et al. (2009) for a solution that takes the natural symmetry of coefficients into account in the Gaussian setting).

In this setting, structure learning usually proceeds by disjointly maximizing the single factors in $P L(\boldsymbol{\theta})$. In high-dimensional sparse settings, many up-to-date algorithms are based on solving local convex optimization problems, typically formed by the sum of a loss function, such as the local negative log likelihood, with a sparsity inducing penalty function. Each local penalized estimate $\hat{\boldsymbol{\theta}}_{s}$ is then combined into a single non-degenerate global estimate, possibly employing consensus operators aimed at solving inconsistencies with respect to parameters shared between factors (see, for example, Mizrahi et al., 2014). From empirical studies, it is in most cases easy to check that such algorithms converge, sometimes also reasonably quickly thanks to the possibility of distributing the various maximization tasks. However, it is not immediately clear if convergence can be established theoretically, so that it cannot be given for granted that such algorithms ultimately yield correct graphs.

Our proposal, called PC-LPGM, is a pseudo-likelihood based algorithm that stems from current neighbourhood selection methods for count data (see Allen and Liu, 2013), but substitutes penalization with hypothesis testing. In Section 5 , we will pause on the relative merits of hypothesis testing with respect to penalization. But prodromic to such discussion is the proof, developed in Section 4, that the sequence of tests does indeed converge to the true structure in the limit of infinite observations, regardless of the dimension of the problem.

We consider the same model specification as in (1). In detail, we assume that each node conditional distribution follows a truncated Poisson distribution. As we are only interested in the structure of graph G, without loss of generality we can assume $\theta_{s}=0, s \in V$. In line with the most common solutions, we also treat the conditional distributions $\mathbb{P}_{\boldsymbol{\theta}_{s}}\left(x_{s} \mid \mathbf{x}_{V \backslash\{s\}}\right)$ as unrelated.

In PC-LPGM, neighbours are identified by mean of conditional independence tests built from the conditional models and aimed at identifying the set of non-zero conditional depen-
dence parameters. Tests are based on Wald-type statistics built on exploiting the asymptotic normality of the local maximum likelihood estimators. To face the high computational complexity related to the testing procedure, we employ the PC algorithm, which relies on controlling the number of variables in the conditional sets, a strategy particularly effective when sparse graphs are under consideration.

In what follows, let $\mathbf{X}^{(1)}, \ldots, \mathbf{X}^{(n)}$ be n independent p-random vectors drawn from \mathbf{X}, where $\mathbf{X}^{(i)}=\left(X_{i 1}, \ldots, X_{i p}\right)$; and $\mathbb{X}=\left\{\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}\right\}$ be the collection of n samples drawn from the random vectors $\mathbf{X}^{(1)}, \ldots, \mathbf{X}^{(n)}$, with $\mathbf{x}^{(i)}=\left(x_{i 1}, \ldots, x_{i p}\right), \quad i=1, \ldots, n$. For each $U \subset V$, let \mathbb{X}_{U} be the set of n samples of the $|U|$-random vector $\mathbf{X}_{U}=\left(X_{i}: i \in U\right)$, with $\mathbf{x}_{U}^{(i)}=\left(x_{i j}\right)_{j \in U}, i=1, \ldots, n$. Starting from the complete graph, for each s and $t \in V \backslash\{s\}$ and for any set of variables $\mathbf{S} \subset\{1, \ldots, p\} \backslash\{s, t\}$, we test, at some pre-specified significance level, the null hypothesis $H_{0}: \theta_{s t \mid \mathbf{K}}=0$, with $\mathbf{K}=\mathbf{S} \cup\{s, t\}$. In other words, we test if data support existence of the conditional independence relation $X_{s} \Perp X_{t} \mid \mathbf{X}_{\mathbf{S}}$. If the null hypothesis fails to be rejected, the edge (s, t) is considered to be absent from the graph. A control is operated on the cardinality of the set \mathbf{S} of conditioning variables, which is progressively increased from 0 to $p-2$ or to $m, m<(p-2)$.

Assume

$$
\begin{equation*}
X_{s} \mid \mathbf{x}_{\mathbf{K} \backslash\{s\}} \sim \operatorname{TP}\left(\exp \left\{\sum_{t \in \mathbf{K} \backslash\{s\}} \theta_{s t \mid \mathbf{K}} x_{t}\right\}\right), \quad \forall s \in \mathbf{K} \subset\{1, \ldots, p\} \tag{2}
\end{equation*}
$$

and denote $\boldsymbol{\theta}_{s \mid \mathbf{K}}=\left\{\theta_{s t \mid \mathbf{K}}: t \in \mathbf{K} \backslash\{s\}\right\}$. A rescaled negative node conditional log-likelihood given the conditioning variables $\mathbf{X}_{\mathbf{K} \backslash\{s\}}=\left(X_{k}: k \in \mathbf{K} \backslash\{s\}\right)$ can be written as

$$
\begin{align*}
l\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}, \mathbb{X}_{\{s\}} ; \mathbb{X}_{\mathbf{K} \backslash\{s\}}\right) & =-\frac{1}{n} \log \prod_{i=1}^{n} \mathbb{P}_{\boldsymbol{\theta}_{s \mid \mathbf{K}}}\left(x_{i s} \mid \mathbf{x}_{\mathbf{K} \backslash\{s\}}^{(i)}\right) \tag{3}\\
& =\frac{1}{n} \sum_{i=1}^{n}\left[-x_{i s}\left\langle\boldsymbol{\theta}_{s \mid \mathbf{K}}, \mathbf{x}_{\mathbf{K} \backslash\{s\}}^{(i)}\right\rangle+\log x_{i s}!+D\left(\left\langle\boldsymbol{\theta}_{s \mid \mathbf{K}}, \mathbf{x}_{\mathbf{K} \backslash\{s\}}^{(i)}\right\rangle\right)\right],
\end{align*}
$$

where the scaling factor is taken for later mathematical convenience. The estimate $\hat{\boldsymbol{\theta}}_{s \mid \mathbf{K}}$ of the parameter $\boldsymbol{\theta}_{s \mid \mathbf{K}}$ is determined by minimizing the rescaled negative conditional loglikelihood given in Equation (3), i.e.,

$$
\hat{\boldsymbol{\theta}}_{s \mid \mathbf{K}}=\operatorname{argmin}_{\boldsymbol{\theta}_{s \mid \mathbf{K}} \in \mathbb{R}|\mathbf{K}|-1} l\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}, \mathbb{X}_{\{s\}} ; \mathbb{X}_{\mathbf{K} \backslash\{s\}}\right)
$$

A Wald-type test statistic for the hypothesis $H_{0}: \theta_{s t \mid \mathbf{K}}=0$ can be obtained from asymptotic normality of $\hat{\boldsymbol{\theta}}_{s \mid \mathbf{K}}$,

$$
\sqrt{n}\left(\hat{\boldsymbol{\theta}}_{s \mid \mathbf{K}}-\boldsymbol{\theta}_{s \mid \mathbf{K}}\right) \xrightarrow{\mathrm{d}} N\left(\mathbf{0}, I\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}\right)^{-1}\right),
$$

where $I\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}\right)$ denotes the expected Fisher information matrix,

$$
I\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}\right)=\mathbb{E}_{\boldsymbol{\theta}_{s}}\left[n \frac{\partial^{2} l\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}, X_{s} ; \mathbb{X}_{\mathbf{K} \backslash\{s\}}\right)}{\partial^{2} \boldsymbol{\theta}_{s \mid \mathbf{K}}}\right],
$$

which holds under fairly general regularity conditions. The test statistic for the null hypothesis $H_{0}: \theta_{s t \mid \mathbf{K}}=0$ can be obtained on exploiting the marginal asymptotic normality of the component $\hat{\theta}_{s t \mid \mathbf{K}}$.

In practice, the observed information $J\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}\right)=n \frac{\partial^{2} l\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}, \mathbb{X}_{\{s\}} ; \mathbb{X}_{\mathbf{K} \backslash\{s\}}\right)}{\partial^{2} \boldsymbol{\theta}_{s \mid \mathbf{K}}}$, that is, the second derivative of the negative log-likelihood function, is more conveniently used evaluated at $\hat{\boldsymbol{\theta}}_{s \mid \mathbf{K}}$ as variance estimate of maximum likelihood quantities instead of the expected Fisher information matrix, a modification which comes from the use of an appropriately conditioned sampling distribution for the maximum likelihood estimators. Following this line, the test statistic for the hypothesis $H_{0}: \theta_{s t \mid \mathbf{K}}=0$ is given by

$$
\begin{equation*}
Z_{s t \mid \mathbf{K}}=\frac{\sqrt{n} \hat{\theta}_{s t \mid \mathbf{K}}}{\sqrt{\left[J\left(\hat{\boldsymbol{\theta}}_{s \mid \mathbf{K}}\right)^{-1}\right]_{t t}}} \tag{4}
\end{equation*}
$$

where $[A]_{j j}$ denotes the element in position (j, j) of matrix A. It is readily available that $Z_{s t \mid \mathbf{K}}$ is asymptotically standard normally distributed under the null hypothesis, provided that some general regularity conditions hold (Lehmann, 1986, page 185). Possible inconsistencies with respect to parameters shared between local conditional models are solved by removing edge (s, t) if either $H_{0}: \theta_{s t \mid \mathbf{K}}=0$ or $H_{0}: \theta_{t s \mid \mathbf{K}}=0$ is not rejected.

The conditional independence tests are prone to mistakes. Moreover, incorrectly deleting or retaining an edge would result in changes in the neighbour sets of other nodes, as the graph is updated dynamically. Therefore, the resulting graph is dependent on the order in which the conditional independence tests are performed. To avoid this problem, we employ the solution in Colombo and Maathuis (2014), who developed a modification of the PC algorithm that removes the order-dependence, called PC-stable. In this modification, the neighbours of all nodes are searched for and kept unchanged at each particular cardinality l of the set \mathbf{K}_{s}. As a result, an edge deletion at one level does not affect the conditioning sets of the other nodes, and thus the output is independent on the variable ordering.

The pseudo-code of our algorithm is illustrated in Algorithm 1, where $\operatorname{adj}(\hat{G}, s)=\{t \in$ $V:(s, t) \in \hat{G}\}$ denotes the estimated set of all nodes that are adjacent to s on the graph \hat{G}. We note that the pseudo-code is identical to Algorithm 4.1 in Colombo and Maathuis (2014). Indeed, the difference lies in the statistical procedure used to test the hypothesis at line 15 .

4. Statistical Guarantees

In this section, we address the property of statistical consistency of our algorithm. In detail, we study the limiting behaviour of our estimation procedure as the sample size n, and the model size p go to infinity. In what follows, we derive uniform consistency of our distributed estimators explicitly as a function of the sample size, n, the number of nodes, p, the truncation point R. Moreover, we prove consistency of the graph estimator as a function of the previous quantities and of the maximum neighbourhood size d, by assuming that the true distribution is faithful to the graph. We acknowledge that our results are based on the work of Yang et al. (2012) for exponential family models, combined with ideas coming from Kalisch and Bühlmann (2007). In detail, we borrowed some ideas from the proof of
consistency of estimators in l_{1} regularized local models given in Yang et al. (2012) and we adapted to our setting the ideas of Kalisch and Bühlmann (2007) for proving consistency of the graph estimator.

For the readers' convenience, before stating the main result, we summarize some notation that will be used through out this proof. Given a vector $v \in \mathbb{R}^{p}$, and a parameter $q \in[0, \infty]$, we write $\|u\|_{q}$ to denote the usual l_{q} norm. Given a matrix $A \in \mathbb{R}^{p \times p}$, denote the largest and smallest eigenvalues as $\Lambda_{\max }(A), \Lambda_{\min }(A)$, respectively. We use $\|\|A\|\|_{2}=\sqrt{\Lambda_{\max }\left(A^{T} A\right)}$ to denote the spectral norm, corresponding to the largest singular value of A, and the l_{∞} matrix norm is defined as $\||A|\|_{\infty}=\max _{i=1, \ldots, a} \sum_{j=1}^{a}\left|A_{i, j}\right|$.

```
Algorithm 1 The PC-LPGM algorithm.
    Input: \(n\) independent realizations of the \(p\)-random vector \(\mathbf{X} ; \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(n)}\);
    an ordering \(\operatorname{order}(V)\) on the variables, (and a stopping level \(m\) ).
    Output: An estimated undirected graph \(\hat{G}\).
    Form the complete undirected graph \(\tilde{G}\) on the vertex set \(V\).
    \(l=-1 ; \quad \hat{G}=\tilde{G}\)
    repeat
        \(l=l+1\)
        for all vertices \(s \in V\), do
            let \(\mathbf{K}_{s}=\operatorname{adj}(\hat{G}, s)\)
        end for
        repeat
            Select a (new) ordered pair of nodes \(s, t\) that are adjacent in \(\hat{G}\) such that
            \(\left|\mathbf{K}_{s} \backslash\{t\}\right| \geq l\), using \(\operatorname{order}(V)\).
            repeat
            choose a (new) set \(\mathbf{S} \subset \mathbf{K}_{s} \backslash\{t\}\) with \(|\mathbf{S}|=l\), using \(\operatorname{order}(V)\).
            if \(H_{0}: \theta_{s t \mid \mathbf{S}}=0\) not rejected
                delete edge \((s, t)\) from \(\hat{G}\)
            end if
            until edge \((s, t)\) is deleted or all \(\mathbf{S} \subset \mathbf{K}_{s} \backslash\{t\}\) with \(|\mathbf{S}|=l\) have been considered.
        until all ordered pair of adjacent variables \(s\) and \(t\) such that \(\left|\mathbf{K}_{s} \backslash\{t\}\right| \geq l\) and
            \(\mathbf{S} \subset \mathbf{K}_{s} \backslash\{t\}\) with \(|\mathbf{S}|=l\) have been tested for conditional independence.
    until \(l=m\) or for each ordered pair of adjacent nodes \(s, t:|\operatorname{adj}(\hat{G}, s) \backslash\{t\}|<l\).
```

Remark 1 Let m^{*} be the maximum value reached by lin Algorithm 1. When the maximum number of neighbours that one node is allowed to have is fixed to d, then $m^{*} \in\{d-1, d\}$ (see Kalisch and Bühlmann (2007)). Moreover, as the stopping level m in Algorithm 1 satisfies $m \leq m^{*}$, it holds $m \leq d$.

4.1 Assumptions

We will begin by stating the assumptions that underlie our analysis, and then give a precise statement of the main result.

Denote the population Fisher information and the sample Fisher information matrix corresponding to the covariates in model (2) with $\mathbf{K}=V$ as follows

$$
I_{s}\left(\boldsymbol{\theta}_{s}\right)=-\mathbb{E}_{\boldsymbol{\theta}}\left(\nabla^{2} \log \left(\mathbb{P}_{\boldsymbol{\theta}_{s}}\left(X_{s} \mid \mathbf{X}_{V \backslash\{s\}}\right)\right)\right)
$$

and

$$
Q_{s}\left(\boldsymbol{\theta}_{s}\right)=\nabla^{2} l\left(\boldsymbol{\theta}_{s}, \mathbf{X}_{s} ; \mathbf{X}_{V \backslash\{s\}}\right)
$$

We note that we will consider the problem of maximum likelihood on a closed and bounded $\operatorname{dish} \boldsymbol{\Theta} \subset \mathbb{R}^{(p-1)}$. For $\boldsymbol{\theta}_{s \mid \mathbf{K}} \in \mathbb{R}^{|K|-1}$, we can immerse $\boldsymbol{\theta}_{s \mid \mathbf{K}}$ into $\boldsymbol{\Theta} \subset \mathbb{R}^{(p-1)}$ by zero-pad $\boldsymbol{\theta}_{s \mid \mathbf{K}}$ to include zero weights over $\{V \backslash \mathbf{K}\}$.

Assumption 1 The coefficients $\boldsymbol{\theta}_{s \mid \mathbf{K}} \in \boldsymbol{\Theta}$ for all sets $\mathbf{K} \subset V$ and all $s \in K$ have an upper bound norm, $\max _{s, t, \mathbf{K}}\left|\theta_{s t \mid \mathbf{K}}\right| \leq M, \forall \theta_{s t \mid \mathbf{K}} \neq 0$, and a lower bound norm, $\min _{s, t, \mathbf{K}}\left|\theta_{s t \mid \mathbf{K}}\right| \geq$ $c, \forall \theta_{s t \mid \mathbf{K}} \neq 0$, where $t \in \mathbf{K}$.

Assumption 2 The Fisher information matrix corresponding to the covariates in model (2) with $\mathbf{K}=V$ has bounded eigenvalues; that is, there exists a constant $\lambda_{\min }>0$ such that

$$
\Lambda_{\min }\left(I_{s}\left(\boldsymbol{\theta}_{s}\right)\right) \geq \lambda_{\min }, \forall \boldsymbol{\theta}_{s} \in \boldsymbol{\Theta}
$$

Moreover, we require that

$$
\Lambda_{\max }\left(\mathbb{E}_{\boldsymbol{\theta}}\left(\mathbf{X}_{V \backslash\{s\}}^{T} \mathbf{X}_{V \backslash\{s\}}\right)\right) \leq \lambda_{\max }, \quad \forall s \in V, \forall \boldsymbol{\theta} \in \boldsymbol{\Theta}
$$

where $\lambda_{\max }$ is some constant such that $\lambda_{\max }<\infty$.

The first assumption simply bounds the effects of covariates in all local models. In other words, we consider parameters $\theta_{s t \mid \mathbf{K}}$ belong to a compact set bounded by M. Being the expected value of the rescaled negative log-likelihood twice differentiable, the lower bound on the eigenvalues of the Fisher information matrix in the second assumption guarantees strong convexity in all partial models. Condition on the upper eigenvalue of the covariance matrix guarantees that the relevant covariates do not become overly dependent, a requirement which is commonly adopted in these settings.

4.2 Convergence Guarantees of Local Estimators

We are now ready to consider the question of whether convergence guarantees can be proved in the setting of our interest. Before proving our main theorem, we show some intermediate results of independent interest (see Appendix A for related proofs).

Proposition 2 Assume 1-2 and let $\mathbf{K} \subset V$. Then, for all $s \in \mathbf{K}$ and any $\delta>0$

$$
\mathbb{P}_{\boldsymbol{\theta}}\left(\left\|\nabla l\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}, \mathbf{X}_{\{s\}} ; \mathbf{X}_{\mathbf{K} \backslash\{s\}}\right)\right\|_{\infty} \geq \delta\right) \leq \exp \left\{-c_{1} n \delta^{2}+c_{0} \log d\right\}
$$

$\forall \boldsymbol{\theta}_{\boldsymbol{s} \mid \mathbf{K}} \in \boldsymbol{\Theta}$, when $n \rightarrow \infty$.

Theorem 3 Assume 1-2 and let $\mathbf{K} \subset V$. Then there exists a non-negative decreasing sequence $\epsilon_{n} \rightarrow 0$, such that

$$
\mathbb{P}_{\boldsymbol{\theta}}\left(\left\|\hat{\boldsymbol{\theta}}_{s \mid \mathbf{K}}-\boldsymbol{\theta}_{s \mid \mathbf{K}}\right\|_{2} \leq \epsilon_{n}\right) \geq 1-\exp \left\{-c_{1} n \epsilon_{n}^{2}+c_{0} \log d\right\}-\exp \left\{-c_{2} \frac{n}{d^{2}}+c_{3} \log d\right\},
$$

$\forall s \in \mathbf{K}, \boldsymbol{\theta} \in \boldsymbol{\Theta}$, when $n \rightarrow \infty$.
We now proceed to consider uniform consistency of the local estimators. Let $\hat{\boldsymbol{\theta}}=$ $\left(\hat{\boldsymbol{\theta}}_{1}, \hat{\boldsymbol{\theta}}_{2}, \cdots, \hat{\boldsymbol{\theta}}_{p}\right)^{\top}$ be the array of rowwise local estimators $\hat{\boldsymbol{\theta}}_{s}=\hat{\boldsymbol{\theta}}_{s \mid \mathbf{K}}$ with $\mathbf{K}=V$. We can state the following theorem, which extends Theorem 3 without any additional conditions.

Theorem 4 (uniform consistency) Assume 1-2. Then, $\hat{\boldsymbol{\theta}}$ converges in probability to $\boldsymbol{\theta}$, the true value, as n increases, uniformly in $\boldsymbol{\theta}$.

Proof We have to show that given $\epsilon>0, \mu>0$, there exists an integer n_{0} dependent on ϵ and μ but not on $\boldsymbol{\theta}$, such that for all $n>n_{0}$,

$$
\mathbb{P}_{\boldsymbol{\theta}}\left(\| \| \boldsymbol{\theta}-\hat{\boldsymbol{\theta}} \|_{2} \leq \epsilon\right) \geq 1-\mu
$$

Take $\frac{\epsilon}{p}$ as the number δ_{n}, and the $\frac{\mu}{p}$ to be the $\exp \{-c n\}$ in Theorem 14. Then, for each $s \in V$, there exist n_{s}, such that for all $n>n_{s}$

$$
\mathbb{P}_{\boldsymbol{\theta}}\left(\left\|\hat{\boldsymbol{\theta}}_{s}-\boldsymbol{\theta}_{s}\right\|_{2} \leq \frac{\epsilon}{p}\right) \geq 1-\frac{\mu}{p} .
$$

Let Ω_{s} be the space such that for all $\mathbb{X} \in \Omega_{s}$,

$$
\left\|\hat{\boldsymbol{\theta}}_{s}-\boldsymbol{\theta}_{s}\right\|_{2} \leq \frac{\epsilon}{p}
$$

and $\mathbb{P}_{\boldsymbol{\theta}}\left(\Omega_{s}\right) \geq 1-\frac{\mu}{p}$. Define $n_{0}=\max _{s \in V}\left\{n_{s}\right\}$ and $\Omega=\cap_{s \in V} \Omega_{s}$. Then, for all $\mathbb{X} \in \Omega$,

$$
\begin{aligned}
\|\boldsymbol{\theta}-\hat{\boldsymbol{\theta}}\|_{2} & \leq \sqrt{\sum_{s=1}^{p} \sum_{t \neq s}\left|\theta_{s t}-\hat{\theta}_{s t}\right|^{2}} \\
& =\sqrt{\sum_{s=1}^{p}\left\|\boldsymbol{\theta}_{s}-\hat{\boldsymbol{\theta}}_{s}\right\|_{2}^{2}} \\
& \leq \sqrt{p\left(\frac{\epsilon}{p}\right)^{2}} \\
& \leq \epsilon
\end{aligned}
$$

Moreover, it is easy to prove by induction that

$$
\mathbb{P}_{\boldsymbol{\theta}}(\Omega) \geq 1-p \frac{\mu}{p}=1-\mu
$$

Hence, for all $\mathbb{X} \in \Omega$, we have $\left\|\|\boldsymbol{\theta}-\hat{\boldsymbol{\theta}}\|_{2} \leq \epsilon\right.$, and $\mathbb{P}_{\boldsymbol{\theta}}(\Omega) \geq 1-\mu$. In other words, we have

$$
\mathbb{P}_{\boldsymbol{\theta}}\left(\| \| \boldsymbol{\theta}-\hat{\boldsymbol{\theta}} \|_{2} \leq \epsilon\right) \geq 1-\mu
$$

Remark 5 With suitable modifications, uniform consistency can be proved in the case of Poisson node conditional distributions with "competitive relationships" between variables, that is, with only negative conditional interaction parameters. Analogously, it can be extended to other distributions for count data belonging to the exponential family, such as the Negative Binomial distribution, provided that a joint distribution compatible with the conditional specifications can be constructed.

Remark 6 Convergence of the pseudo likelihood estimator $\hat{\boldsymbol{\theta}}$ might also have been proved by characterizing its asymptotic behaviour in terms of law of large numbers. Indeed, the pseudo likelihood estimator $\hat{\boldsymbol{\theta}}$ can be proved to converge to the true parameter value when some conditions on the parameter space $\boldsymbol{\theta}$ and moments of the variables \boldsymbol{X} are satisfied (see, for example, Theorem 5.7 from Van der Vaart, 2000). It is worth noting that our proof allows to highlight the relative scaling of n, p and R needed to reach convergence.

4.3 Consistency of The Graph Estimator

In what follows, we assume faithfulness of the truncated Poisson node conditional distributions to the graph G. We restrict the parameter space $\boldsymbol{\Theta}$ to the subspace, $\Omega(\boldsymbol{\Theta})$ say, on which the faithfulness condition is guaranteed. We recall that a distribution $P_{\mathbf{X}}$ is said to be faithful to the graph G if

$$
\mathbf{X}_{A} \Perp \mathbf{X}_{B}\left|\mathbf{X}_{C} \Rightarrow A \Perp_{G} B\right| C,
$$

for all disjoint vertex sets A, B, C. It is worth noting that faithfulness of the local distributions guarantees faithfulness of the joint distributions, thanks to the equivalence between local and global Markov property.

Now we state the main result of this work for the consistency of the graph estimate. We note that PC-LPGM employs a modification of the PC algorithm, PC-stable. However, the proof of consistency of the algorithm in Kalisch and Bühlmann (2007) is unchanged.

Theorem 7 Assume 1-2. Denote by $\hat{G}\left(\alpha_{n}\right)$ the estimator resulting from Algorithm 1, and by G the true graph. Then, there exists a numerical sequence $\alpha_{n} \longrightarrow 0$, such that

$$
\mathbb{P}_{\boldsymbol{\theta}}\left(\hat{G}\left(\alpha_{n}\right)=G\right)=1, \forall \boldsymbol{\theta} \in \Omega(\boldsymbol{\Theta}),
$$

when $n \longrightarrow \infty$.
Proof Let $\hat{\theta}_{s t \mid \mathbf{K}}$, and $\theta_{s t \mid \mathbf{K}}^{*}$ denote the estimated and true partial weights between X_{s} and X_{t} given $X_{r}, r \in \mathbf{S}$, where $\mathbf{S}=\mathbf{K} \backslash\{s, t\} \subset\{1, \ldots, p\} \backslash\{s, t\}$. Many partial weights are tested
for being zero during the run of the PC-procedure. For a fixed ordered pair of nodes s, t, the conditioning sets are elements of

$$
K_{s t}^{m}=\{\mathbf{S} \subset\{1, \ldots, p\} \backslash\{s, t\}:|\mathbf{S}| \leq m\}
$$

The cardinality is bounded by

$$
\left|K_{s t}^{m}\right| \leq C p^{m}, \quad \text { for some } 0<C<\infty
$$

Let $E_{s t \mid \mathbf{K}}$ denote type I or type II errors occurring when testing $H_{0}: \theta_{s t \mid \mathbf{K}}=0$. Thus

$$
\begin{equation*}
E_{s t \mid \mathbf{K}}=E_{s t \mid \mathbf{K}}^{I} \cup E_{s t \mid \mathbf{K}}^{I I} \tag{5}
\end{equation*}
$$

in which, for n large enough

- type I error $E_{s t \mid \mathbf{K}}^{I}: Z_{s t \mid \mathbf{K}}>\Phi^{-1}(1-\alpha / 2)$ and $\theta_{s t \mid \mathbf{K}}^{*}=0$;
- type II error $E_{s t \mid \mathbf{K}}^{I I}: Z_{s t \mid \mathbf{K}} \leq \Phi^{-1}(1-\alpha / 2)$ and $\theta_{s t \mid \mathbf{K}}^{*} \neq 0$;
where $Z_{s t \mid \mathbf{K}}$ was defined in (4), and α is a chosen significance level. Consider an arbitrary $\operatorname{matrix} \boldsymbol{\theta}_{\mid \mathbf{K}}=\left\{\boldsymbol{\theta}_{s \mid \mathbf{K}}\right\}_{s \in \mathbf{K}}^{T} \in \Omega(\boldsymbol{\Theta})$, such that $\left|\theta_{s t \mid \mathbf{K}}\right| \geq \delta$, for some $\delta>0$. Let $\boldsymbol{\theta}_{\mid \mathbf{K}}^{0}$ be the matrix that has the same elements as $\boldsymbol{\theta}_{\mid \mathbf{K}}$ except $\theta_{s t \mid \mathbf{K}}=\theta_{s t \mid \mathbf{K}}^{0}=0$. Choose $\alpha_{n}=$ $2\left(1-\Phi\left(n^{b}\right)\right)$, where $0<b<1 / 2$ will be chosen later, then

$$
\begin{align*}
\sup _{s, t, \mathbf{K} \in K_{i j}^{m}} \mathbb{P}_{\boldsymbol{\theta}_{\mid \mathbf{K}}^{0}}\left(E_{s t \mid \mathbf{K}}^{I}\right) & =\sup _{s, t, \mathbf{K} \in K_{s t}^{m}} \mathbb{P}_{\boldsymbol{\theta}_{\mid \mathbf{K}}}\left(\left|\hat{\theta}_{s t \mid \mathbf{K}}\right|>n^{b-1 / 2} \sqrt{\left[J\left(\hat{\boldsymbol{\theta}}_{s \mid \mathbf{K}}\right)^{-1}\right]_{t t}}\right) \\
& =\sup _{s, t, \mathbf{K} \in K_{s t}^{m}} \mathbb{P}_{\boldsymbol{\theta}_{\mid \mathbf{K}}^{0}}\left(\left|\hat{\theta}_{s t \mid \mathbf{K}}-\theta_{s t \mid \mathbf{K}}^{0}\right|>n^{b-1 / 2} \sqrt{\left[J\left(\hat{\boldsymbol{\theta}}_{s \mid \mathbf{K}}\right)^{-1}\right]_{t t}}\right) \\
& \leq \exp \left\{-c_{1} n^{2 b}+c_{0} \log d\right\}+\exp \left\{-c_{2} \frac{n}{d^{2}}+c_{3} \log d\right\} \tag{6}
\end{align*}
$$

using Theorem 14 and the fact that $n^{b-1 / 2} \sqrt{\left[J\left(\hat{\boldsymbol{\theta}}_{s \mid \mathbf{K}}\right)^{-1}\right]_{t t}} \longrightarrow 0$ as $n \longrightarrow \infty$. Furthermore, with the choice of α_{n} above, and $\delta \geq 2 n^{b-1 / 2} \sqrt{\left[J\left(\hat{\boldsymbol{\theta}}_{s \mid \mathbf{K}}\right)^{-1}\right]_{t t}}$,

$$
\begin{aligned}
\sup _{s, t, \mathbf{K} \in K_{s t}^{m}} \mathbb{P}_{\boldsymbol{\theta}_{\mid \mathbf{K}}}\left(E_{s t \mid \mathbf{K}}^{I I}\right) & =\sup _{s, t, \mathbf{K} \in K_{s t}^{m}} \mathbb{P}_{\boldsymbol{\theta}_{\mid \mathbf{K}}}\left(\left|\hat{\theta}_{s t \mid \mathbf{K}}\right| \leq n^{b-1 / 2} \sqrt{\left[J\left(\hat{\boldsymbol{\theta}}_{s \mid \mathbf{K}}\right)^{-1}\right]_{t t}}\right) \\
& =\sup _{s, t, \mathbf{K} \in K_{s t}^{m}} \mathbb{P}_{\boldsymbol{\theta}_{\mid \mathbf{K}}}\left(\left|\theta_{s t \mid \mathbf{K}}\right|-\left|\hat{\theta}_{s t \mid \mathbf{K}}\right| \geq\left|\theta_{s t \mid \mathbf{K}}\right|-n^{b-1 / 2} \sqrt{\left[J\left(\hat{\boldsymbol{\theta}}_{s \mid \mathbf{K}}\right)^{-1}\right]_{t t}}\right) \\
& \leq \sup _{s, t, \mathbf{K} \in K_{s t}^{m}} \mathbb{P}_{\boldsymbol{\theta}_{\mid \mathbf{K}}}\left(\left|\theta_{s t \mid \mathbf{K}}-\hat{\theta}_{s t \mid \mathbf{K}}\right| \geq\left|\theta_{s t \mid \mathbf{K}}\right|-n^{b-1 / 2} \sqrt{\left[J\left(\hat{\boldsymbol{\theta}}_{s \mid \mathbf{K}}\right)^{-1}\right]_{t t}}\right) \\
& \leq \sup _{s, t, \mathbf{K} \in K_{s t}^{m}} \mathbb{P}_{\boldsymbol{\theta}_{\mid \mathbf{K}}}\left(\left|\hat{\theta}_{s t \mid \mathbf{K}}-\theta_{s t \mid \mathbf{K}}\right| \geq n^{\left.b-1 / 2 \sqrt{\left[J\left(\hat{\boldsymbol{\theta}}_{s \mid \mathbf{K}}\right)^{-1}\right]_{t t}}\right)}\right.
\end{aligned}
$$

Finally, by Theorem 3, we then obtain

$$
\begin{equation*}
\sup _{s, t, \mathbf{K} \in K_{s t}^{m}} \mathbb{P}_{\boldsymbol{\theta}_{\mid \mathbf{K}}}\left(E_{s t \mid \mathbf{K}}^{I I}\right) \leq \exp \left\{-c_{1} n^{2 b}+c_{0} \log d\right\}+\exp \left\{-c_{2} \frac{n}{d^{2}}+c_{3} \log d\right\}, \tag{7}
\end{equation*}
$$

as $n \longrightarrow \infty$. Now, by (5)-(7), we get

$$
\begin{aligned}
& \mathbb{P}_{\boldsymbol{\theta}}(\text { a type I or II error occurs in testing procedure }) \\
& \leq \mathbb{P}_{\boldsymbol{\theta}_{\mid \mathbf{K}}}\left(\cup_{s, t, \mathbf{K} \in K_{s t}^{m}} E_{s t \mid \mathbf{K}}\right) \\
& \leq O_{p}\left(p^{m+2}\right) \sup _{s, t, \mathbf{K} \in K_{s t}^{m}} \mathbb{P}_{\boldsymbol{\theta}_{\mid \mathbf{K}}}\left(E_{s t \mid \mathbf{K}}\right) \\
& \leq O_{p}\left(p^{m+2}\right)\left[\exp \left\{-c_{1} n^{2 b}+c_{0} \log d\right\}-\exp \left\{-c_{2} \frac{n}{d^{2}}+c_{3} \log d\right\}\right] \\
& \leq O_{p}\left(\exp \left\{-c_{1} n^{2 b}+c_{0}^{\prime} d \log p\right\}-\exp \left\{-c_{2} \frac{n}{d^{2}}+c_{0}^{\prime} d \log p\right\}\right) \\
& \rightarrow 0
\end{aligned}
$$

as $n \longrightarrow \infty$ provided that $n \geq O_{p}\left(d^{3} \log p\right)$ and b is chosen such that $n^{2 b} \geq O_{p}(d \log p)$.

Remark 8 With the appropriately defined Wald-type Z statistics, consistency of the graph estimator can be proved in the case of Poisson node conditional distributions with "competitive relationships" between variables, that is, with only negative conditional interaction parameters. Analogously, it can be extended to other distributions for count data belonging to the exponential family, such as the Negative Binomial distribution, provided that a joint distribution compatible with the conditional specifications can be constructed.

5. On Consistency of PC-LPGM

Previously derived statistical guarantees are based on the assumption that the node-wise data generating process belongs to the truncated Poisson family of models. Such assumption guarantees the existence of a joint distribution, an ingredient essential to the proof of consistency. Two questions naturally emerge with respect to consistency of the algorithm. The first has to do with the choice of the truncated Poisson distribution instead of other unrestricted alternatives (see Yang et al. (2013a)) that also guarantee a valid joint distribution, and therefore would make the search for a formal proof plausible. The second question has to do with consistency of PC-LPGM when the joint distribution does not exists, as it happens, for example, when conditional Poisson distributions are assumed, but no restrictions are imposed on the conditional interaction parameters. This section focusses on such two issues.

5.1 About The Choice of The Truncated Poisson Distribution

A key feature of the truncated Poisson family of models, beside guaranteeing existence of a joint distribution, is the inclusion of the Poisson distribution as limiting case, reached when
the truncation point R grows to infinity. In fact, other families, such as, for example, the quadratic and the sublinear Poisson ones (Yang et al., 2013a), guarantee existence of a joint distribution. But they do not provide the inclusion property, which is crucial if one wants to explore the effects of a possible model misspecification. Indeed, one could argue that the data generating process is truly Poisson, and that truncation represents an element of model misspecification. In what follows, we will explore the impact of such misspecification.

In standard settings, it is well known that, in presence of model misspecification, the maximum likelihood estimator, instead of converging to the true parameter value, converges to a Kullback-Leibler projection of the data-generating distribution onto the fitted model class. Thus, the maximum likelihood estimator still exhibits a desirable form of robustness to model misspecification. In this section, we theoretically prove that, under suitable assumptions, PC-LPGM based on the truncated Poisson assumption still converges to the true graph even if the data generating process is Poisson. To this aim, some new notation is introduced, which is defined on top of previously defined notation by conveniently adding a superscript P for Poisson distributions and $T P$ for truncated Poisson distributions, when needed.

In what follows, the true conditional distributions are Poisson, i.e.,

$$
\begin{equation*}
X_{s} \mid \boldsymbol{x}_{V \backslash\{s\}} \sim \operatorname{Pois}\left(\lambda^{*}\right), \text { where } \lambda^{*}=\exp \left\{\sum_{t \neq s} \theta_{s t}^{*} x_{t}\right\} . \tag{9}
\end{equation*}
$$

For a generic sample \mathbb{X}, the rescaled \log-likelihood under the true model is given by

$$
\begin{aligned}
\ell_{n}^{P}\left(\boldsymbol{\theta}_{s}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right) & =\frac{1}{n} \sum_{i=1}^{n} \log \mathbb{P}_{\boldsymbol{\theta}_{s}}^{P}\left(x_{i s} \mid \mathbf{x}_{V \backslash\{s\}}^{(i)}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \exp \left\{\sum_{t \neq s} \theta_{s t} x_{i s} x_{i t}-\log x_{i s}!-\exp \left\{\sum_{t \neq s} \theta_{s t} x_{i t}\right\}\right\}
\end{aligned}
$$

Let $\hat{\boldsymbol{\theta}}_{n s}^{P}$ be a maximum likelihood estimator of the rescaled log-likelihood $\ell_{n}^{P}\left(\boldsymbol{\theta}_{s}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)$. Under standard regularity conditions, $\hat{\boldsymbol{\theta}}_{n s}^{P}$ converges to the true parameter $\boldsymbol{\theta}_{s}^{*}$.

We now apply PC-LPGM assuming that the conditional distributions are truncated Poisson, that is

$$
\begin{equation*}
X_{s} \mid \boldsymbol{x}_{V \backslash\{s\}} \sim \operatorname{TPois}(\lambda), \text { where } \lambda=\exp \left\{\sum_{t \neq s} \theta_{s t} x_{t}\right\} . \tag{10}
\end{equation*}
$$

In this way, PC-LPGM is working with a misspecified model. The rescaled log-likelihood under the misspecified model is given by

$$
\begin{aligned}
\ell_{n}^{T P}\left(\boldsymbol{\theta}_{s}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right) & =\frac{1}{n} \sum_{i=1}^{n} \log \frac{\mathbb{P}_{\boldsymbol{\theta}_{s}}^{P}\left(x_{i s} \mid \mathbf{x}_{V \backslash\{s\}}^{(i)}\right)}{F_{i}^{P}\left(R, \boldsymbol{\theta}_{s}\right)} \\
& =\frac{1}{n} \sum_{i=1}^{n} \log \mathbb{P}_{\boldsymbol{\theta}_{s}}^{P}\left(x_{i s} \mid \mathbf{x}_{V \backslash\{s\}}^{(i)}\right)-\frac{1}{n} \sum_{i=1}^{n} \log F_{i}^{P}\left(R, \boldsymbol{\theta}_{s}\right),
\end{aligned}
$$

where $F_{i}^{P}\left(R, \boldsymbol{\theta}_{s}\right)=\mathbb{P}_{\boldsymbol{\theta}_{s}}^{P}\left(x_{i s} \leq R \mid \mathbf{x}_{V \backslash\{s\}}^{(i)}\right)$. Thanks to the inclusion property, it is easy to see that for all $\epsilon_{1}>0$, there exists a $R_{0}>0$ such that, for all $R>R_{0}$, it holds

$$
\begin{equation*}
\left\|\ell_{n}^{T P}\left(\boldsymbol{\theta}_{s}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)-\ell_{n}^{P}\left(\boldsymbol{\theta}_{s}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)\right\|_{2}<\epsilon_{1}, \forall \boldsymbol{\theta}_{s} \in \boldsymbol{\Theta} \tag{11}
\end{equation*}
$$

Fix a R that satisfies Equation (11), where ϵ_{1} is given in Appendix (see proof of Theorem 9), and let $\hat{\boldsymbol{\theta}}_{n s}^{T P}$ be a maximum likelihood estimator of the rescaled log-likelihood $\ell_{n}^{T P}\left(\boldsymbol{\theta}_{s}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)$. In the following theorem, we prove that $\hat{\boldsymbol{\theta}}_{n s}^{T P}$, under suitable conditions, converges to the true parameter $\boldsymbol{\theta}_{s}^{*}$.

Theorem 9 Assume that the log-likelihood function of models (9) and (10) have a unique optimal solution on $\boldsymbol{\Theta}$. Then, $\hat{\boldsymbol{\theta}}_{n s}^{T P}$ converges to the true parameter $\boldsymbol{\theta}_{s}^{*}$ when n tends to infinity provided that $\left|\Lambda_{\min }\left[Q_{s}^{P}\left(\boldsymbol{\theta}_{s}\right)\right]\right|=\left|\Lambda_{\min }\left[\nabla^{2} \ell_{n}^{P}\left(\boldsymbol{\theta}_{s}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)\right]\right|>\lambda_{\text {min }}>0$, for all $\boldsymbol{\theta}_{s} \in \boldsymbol{\Theta}$.

Remark 10 By following the same lines, it is easy to show that Theorem 9 also holds for $\mathbf{K} \subset V$, i.e., under the same conditions of Theorem $9 \hat{\boldsymbol{\theta}}_{n s \mid \mathbf{K}}^{T P}$ converges to the true parameter $\boldsymbol{\theta}_{s \mid \mathbf{K}}^{*}$ when n tends to infinity.

The previous theorem shows that, provided that the truncation point R is large enough, the maximum likelihood estimators derived from the misspecified conditional models are still node-wise consistent. Statistical properties of PC-LPGM, however, hinge on statistical properties of the Z statistic in the conditional models. The following theorem derives the conditions under which the Z statistic derived under the true and the misspecified models are asymptotically equivalent under the null hypothesis, and, therefore, provide the same test results.

Theorem 11 Assume that the log-likelihood function of models (9) and (10) have a unique optimal solution on $\boldsymbol{\Theta}$. Then, the Z statistic $Z_{s t \mid \mathbf{K}}^{T P}$ converges to $Z_{s t \mid \mathbf{K}}^{P}$ when n tends to infinity provided that there exist positive constants $\lambda_{\min }$, and $\lambda_{\max }$ such that

$$
\lambda_{\max }>\Lambda_{\max }\left[Q_{s}^{P}\left(\boldsymbol{\theta}_{s}\right)\right] \geq \Lambda_{\min }\left[Q_{s}^{P}\left(\boldsymbol{\theta}_{s}\right)\right]>\lambda_{\min }>0
$$

and

$$
\lambda_{\max }>\Lambda_{\max }\left[Q_{s}^{T P}\left(\boldsymbol{\theta}_{s}\right)\right] \geq \Lambda_{\min }\left[Q_{s}^{T P}\left(\boldsymbol{\theta}_{s}\right)\right]>\lambda_{\min }>0
$$

for all $\boldsymbol{\theta}_{s} \in \boldsymbol{\Theta}$.
Proof By applying the definition of Z statistic under the null hypothesis $H_{0}: \theta_{\text {st }}=0$, we get

$$
Z_{s t \mid \mathbf{K}}^{P}=\frac{\sqrt{n} \hat{\theta}_{s t \mid \mathbf{K}}^{P}}{\sqrt{\left[J^{P}\left(\hat{\boldsymbol{\theta}}_{s \mid \mathbf{K}}^{P}\right)^{-1}\right]}}=\frac{\hat{\theta}_{t t}^{P}}{\sqrt{\left[Q_{s}^{P}\left(\hat{\theta}_{s t \mid \mathbf{K}}^{P}\right)^{-1}\right]}}
$$

and

$$
Z_{s t \mid \mathbf{K}}^{T P}=\frac{\hat{\theta}_{s t \mid \mathbf{K}}^{T P}}{\sqrt{\left[Q_{s}^{T P}\left(\hat{\boldsymbol{\theta}}_{s \mid \mathbf{K}}^{T P}\right)^{-1}\right]_{t t}}}
$$

It holds

$$
\begin{aligned}
\left|Z_{s t \mid \mathbf{K}}^{P}-Z_{s t \mid \mathbf{K}}^{T P}\right| & =\left|\frac{\hat{\theta}_{s t \mid \mathbf{K}}^{P}}{\sqrt{\left[Q_{s}^{P}\left(\hat{\theta}_{s t \mid \mathbf{K}}^{P}\right)^{-1}\right]_{t t}}}-\frac{\hat{\theta}_{s t \mid \mathbf{K}}^{T P}}{\sqrt{\left[Q_{s}^{T P}\left(\hat{\boldsymbol{\theta}}_{s \mid \mathbf{K}}^{T P}\right)^{-1}\right]_{t t}}}\right| \\
& \leq\left|\frac{\hat{\theta}_{s t \mid \mathbf{K}}^{P}}{\sqrt{\left[Q_{s}^{P}\left(\hat{\theta}_{s t \mid \mathbf{K}}^{P}\right)^{-1}\right]_{t t}}}\right|+\left|\frac{\hat{\theta}_{s t \mid \mathbf{K}}^{T P}}{\sqrt{\left[Q_{s}^{T P}\left(\hat{\boldsymbol{\theta}}_{s \mid \mathbf{K}}^{T P}\right)^{-1}\right]_{t t}}}\right| \\
& \leq \sqrt{\frac{\lambda_{\max }}{p}\left(\left|\hat{\theta}_{s t \mid \mathbf{K}}^{P}\right|+\left|\hat{\theta}_{s t \mid \mathbf{K}}^{T P}\right|\right)} \\
& \rightarrow 0 \text { when } n \rightarrow \infty,
\end{aligned}
$$

since $\hat{\theta}_{s t \mid \mathbf{K}}^{P}, \hat{\theta}_{s t \mid \mathbf{K}}^{T P}$ tend to 0 when $n \rightarrow \infty$; and the truncation point R is large enough (where line 2 to line 3 due to the singular value decomposition of matrices).
As $Z_{s t \mid \mathbf{K}}^{P}$ and $Z_{s t \mid \mathbf{K}}^{T P}$ are asymptotically equivalent, so are results of the tests that they provide when used in PC-LPGM. In other words, when the true model for the conditional distributions is Poisson, under the previously stated conditions, PC-LPGM based on $Z_{s t \mid \mathbf{K}}^{T P}$ leads to the same rejections as the correctly specified PC-LPGM, which is based on the proper test statistics $Z_{s t \mid \mathbf{K}}^{P}$. In practice, extensive simulation studies have shown that fixing a truncation point just equal to the largest observed value guarantees that PC-LPGM under the two specifications (the true Poisson and the misspecified truncated Poisson) leads to the same results (an excerpt of the results produced by such studies is given in Table 3, Appendix D).

5.2 Unrestricted Poisson Conditional Models

Remark 8 in Section 8 guarantees that, in the case of Poisson node conditional distributions, a proof of consistency of PC-LPGM with proper test statistic can be provided in the situation of "competitive relationships" between variables. It is interesting to explore if consistency also holds with unrestricted conditional interaction parameters, a situation for which a theoretical proof is still an unsolved question.

We devote this section to an empirical study of consistency of our proposed algorithm in this setting. We clarify that, in what follows, PC-LPGM works under a correct model specification, i.e., tests are based on the proper $Z_{s t \mid \mathbf{K}}^{P}$ statistic. We aim to measure the ability of PC-LPGM to recover the true structure of the graphs, also in situations where relatively moderate sample sizes are available. As measure of ability, we adopt two measures: PPV that stands for Positive Predictive Value and is defined as TP/(TP+FP); and Sensitivity (Se), defined as TP/(TP+FN), where TP (true positive), FP (false positive), and FN (false negative) refer to the number of inferred edges.

In doing these studies, we also aim to compare PC-LPGM to a number of popular structure learning algorithms. We therefore consider the Local Poisson Graphical Models (LPGM) approach (Allen and Liu, 2013), as implemented in the R package XMRF, and Poisson dependency networks (PDNs) (Hadiji et al., 2015), implemented in the R function learnPDN
(see https://sfb876.tu-dortmund.de/auto?self=\%24eon9ai8e80). It is worth remembering that structure learning for discrete undirected graphical models is usually performed by employing methods for continuous data after proper data transformation. We therefore consider two representatives of approaches based on the Gaussian assumption, that is, variable selection with lasso (VSL) (Meinshausen and Bühlmann, 2006), and the graphical lasso algorithm (GLASSO) (Friedman et al., 2008). Moreover, we consider two structure learning methods dealing with the class of nonparanormal distributions, the nonparanormal-Copula algorithm (NPN-copula) (Liu et al., 2009), and the nonparanormal-SKEPTIC algorithm (NPN-skeptic) (Liu et al., 2012). These last four algorithms are all available in the R package huge.

5.2.1 Data Generation

For two different cardinalities, $p=10$ and $p=100$, we consider three graphs of different structure: (i) a scale-free graph, in which the node degree distribution follows a powerlaw; (ii) a hub graph, where each node is connected to one of the hub nodes; (iii) a random graph, where presence of edges are independent and identically distributed Bernoulli random variables. To construct the scale-free and hub networks, we employed the R package XMRF. For the scale-free network, we assumed a power law with parameter 0.01 for the node degree distribution. For the hub network, we assumed two hub nodes for $p=10$, and 5 hub nodes for $p=100$. To construct the random network, we employed the R package igraph with edge probability 0.2 for $p=10$, and 0.02 for $p=100$. See Figure 1 and 2 for a plot of the three chosen graphs for $p=10$ and $p=100$, respectively.

Figure 1: The graph structures for $p=10$ employed in the simulation studies: (a) scale-free; (b) hub; (c) random graph.

For each graph, 500 data sets were sampled for three sample sizes, $n=200,1000,2000$. To generate the data, we followed the approach in Allen and Liu (2013). Let $\mathbb{X} \in \mathbb{R}^{n \times p}$ be the set of n independent observations of random vector \mathbf{X}. Then, \mathbb{X} is obtained from the following model $\mathbb{X}=\mathbb{Y} W+\epsilon$, where $\mathbb{Y}=\left(y_{s t}\right)$ is an $n \times(p+p(p-2) / 2)$ matrix whose entries $y_{s t}$ are realizations of independent random variables $Y_{s t} \sim \operatorname{Pois}\left(\lambda_{\text {true }}\right)$ and $\epsilon=\left(e_{s t}\right)$ is an $n \times p$ matrix with entries $e_{s t}$ which are realizations of random variables $E_{s t} \sim \operatorname{Pois}\left(\lambda_{\text {noise }}\right)$. Let
W be the adjacency matrix of a given true graph, then the adjacency matrix is encoded by matrix W as $W=\left[I_{p} ; P \odot\left(1_{p} \operatorname{tri}(W)^{T}\right)\right]^{T}$. Here, P is a $p \times(p(p-1) / 2)$ pairwise permutation matrix, \odot denotes the element-wise product, and $\operatorname{tri}(W)$ is the $(p(p-1) / 2) \times 1$ vectorized upper triangular part of W. As in Allen and Liu (2013), we simulated data at two signal-to-noise ratio (SNR) levels. We set $\lambda_{\text {true }}=1$ with $\lambda_{\text {noise }}=5$ for the low SNR level, and $\lambda_{\text {noise }}=0.5$ for the high SNR level.

Figure 2: The graph structures for $p=100$ employed in the simulation studies: (a) scale-free; (b) hub; (c) random graph.

5.2.2 Results

The considered algorithms are listed below, along with specifications, if needed, of tuning parameters. Algorithms for Gaussian data have been used on log transformed data shifted by 1 . Whenever a regularization parameter λ had to be chosen, the StARS algorithm (Liu et al., 2010) was employed, which aims to seek the value of $\lambda \in\left(\lambda_{\text {min }}, \lambda_{\text {max }}\right), \lambda_{\text {opt }}$ say, leading to the most stable set of edges. We refer the reader to Appendix C, for details on the StARS algorithm and its tuning parameters, in particular the variability threshold β, the number of parameters λ, i.e., nlambda, and the number of subsamplings B. It is worth noting that, whenever the graph corresponding to $\lambda_{\text {opt }}$ was empty, we shifted to the first nonempty graph (if it existed) in the decreasing regularization path. We therefore considered:

- PC-LPGM: level of significance of tests 1%;
- LPGM: $\beta=0.05$, nlambda $=10, B=20 ; \frac{\lambda_{\min }}{\lambda_{\max }}=0.01 ; \gamma=0.001$, sth $=0.9$;
- VSL: $\beta=0.1$, nlambda $=10, B=20$;
- GLASSO: $\beta=0.1$, nlambda $=10, B=20$;
- NPN-copula: $\beta=0.1$, nlambda $=10, B=20$;
- NPN-skeptic: $\beta=0.1, n l a m b d a=10, B=20$.

For the two considered vertex cardinalities, $p=10,100$, and for the chosen sample sizes $n=200,1000,2000$, Figure 3 and 4 plot Monte Carlo means of TP, PPV and Se for each of considered method at low $\left(\lambda_{\text {noise }}=5\right)$ and high $\left(\lambda_{\text {noise }}=0.5\right)$ SNR levels. Each value is computed as an average of the 1500 values obtained by simulating 500 samples for each of the three networks. Monte Carlo means (and standard deviations) of the same quantities disaggregated by network type are given in Appendix D, Tables 6 - 9. These results indicate that the PC-LPGM algorithm is consistent and outperforms, on average, Gaussianbased competitors (VSL, GLASSO), nonparanormal-based competitors (NPN-copula, NPNskeptic) as well as the state-of-the-art algorithms that are designed specifically for Poisson graphical models (LPGM, PDN) on average in terms of reconstructing the structure from given data.

When $p=10$, the PC-LPGM algorithm reaches the highest TP value, followed by the PDN and the LPGM algorithms. When $n \geq 1000$, PC-LPGM recovers almost all edges for both low and high SNR levels, see Figure 3. A closer look at the PPV and Se plot provides further insight of the behaviour of considered methods. Among the algorithms with highest PPV, PC-LPGM shows a sensitivity approaching 1 already at the sample size $n=1000$ for both a high and a low SNR level. It is worth noting that, LPGM algorithm was successful only for a high SNR level $\left(\lambda_{\text {nois }}=0.5\right)$.

It is interesting to note that the performance of the PC-LPGM algorithm is far better than that of the competing algorithms employing the Poisson assumption, PDN and LPGM. This might be explained in terms of difference between penalization and restriction of the conditional sets. In the LPGM algorithm, as well as in the PDN algorithm, a prediction model is fitted locally on all other variables, by mean of a series of independent penalized regressions. In the PC-LPGM algorithm, the number of variables in the conditional sets is controlled and progressively increased from 0 to $p-2$ (or to the maximum number of neighbours m). In our simulations, this second strategy appears to be more powerful in the network reconstruction.

The Gaussian based methods (VSL, GLASSO) perform reasonably well, with an inferior score with respect to the leading threesome only for the hub graph at high SNR level (see Table 6, Appendix D). It is worth noting that sophisticated techniques that replace the Gaussian distribution with a more flexible continuous distribution such as the nonparanormal distribution, for example, NPN-copula, NPN-skeptic show slight gains in accuracy over the naive analysis.

Results for the high dimensional setting $(p=100)$ are somehow comparable, as it can be seen in Figure 4. The PC-LPGM outperforms all competing methods, and differences among algorithms are more evident. The TP score of PC-LPGM becomes already reasonable when n approaches 2000 observations. It is worth noting that performances of methods based on l_{1}-regularized regression, LPGM in particular, is, overall, less accurate and more variable in this scenario. An extensive analysis of the results revealed that the graph recovered by LPGM is almost comparable to an empty graph in a number of cases. These poor performances attracted the attention of one Reviewer and of the Action Editor, who asked for "more challenging simulations, and extremely honest comparisons of the results". Table 4 and Table 5 address this request. For the two vertex cardinalities, $p=10$ and $p=100$, the tables report Monte Carlo means of TP, PPV and Se obtained by simulating 500 samples from graphs in Figure 1 for variables with Poisson node conditional distribution

Figure 3: Monte Carlo means of TP, PPV and Se for PC-LPGM; LPGM; PDN; VSL; GLASSO; NPN-copula; NPN-skeptic for networks in Figure $1(p=10)$, sample sizes $n=200$, 1000, 2000, and SNR level $\lambda_{\text {noise }}=0.5$ (a) and $\lambda_{\text {noise }}=5(\mathrm{~b})$.

Figure 4: Monte Carlo means of TP, PPV and Se for PC-LPGM; LPGM; PDN; VSL; GLASSO; NPN-copula; NPN-skeptic for networks in Figure $2(p=100)$, sample sizes $n=200,1000$, 2000, and SNR level $\lambda_{\text {noise }}=0.5$ (a) and $\lambda_{\text {noise }}=5(\mathrm{~b})$.
with mean $\lambda=1$ and levels of noise $\lambda_{\text {noise }}=0.5,5$. For both values of p, sample sizes have been considered also below the limits for convergence. As performances of LPGM are highly dependent on the tuning of its parameters ($\beta, \gamma, s t h$, etc), for this specific algorithm figures in Table 4 and Table 5 refer to the best combination of parameters that we managed to find $\left(B=50\right.$, nlambda $=20, \frac{\lambda_{\text {min }}}{\lambda_{\text {max }}}=0.01, \gamma=10^{-6}$, sth $=0.6, \beta=0.1$ for $p=10$ and $\beta=0.05$ for $p=100$). In other words, we let, to the best of our abilities, LPGM work under a favourable tuning. Performance indicators overall show that competing algorithms still compare unfavourably with PC-LPGM algorithm in most scenarios.

Overall, results seem to demonstrate the good performances of PC-LPGM algorithm in all considered situations.

6. On the Learning Strategy of PC-LPGM

In the previous sections we have presented PC-LPGM, given statistical guarantees, and discussed its consistency with respect to the model specification. In this section, we will further discuss its learning strategy, i.e., hypothesis testing.

The main ingredient that distinguishes PC-LPGM from its potential competitors is the use iterative hypothesis testing instead of penalized estimation. This substitution offers, in our view, a number of possible advantages. Firstly, inheriting the advantages of the PC algorithm, it allows to easily implement sparsity by a control on the number of variables, m, in the conditional sets, avoiding at the same time over-shrinking of small but significant covariate effects. Secondly, it offers computational advantages, especially when sparse networks are the target of inference. Finally, hypothesis testing is scale-invariant, i.e., is not affected by scale transformations of regressors.

The following two empirical studies shed more light on the above mentioned advantages by comparing PC-LPGM with its most natural counterpart, LPGM.

Sparsity and computational costs. In the first study, to guarantee a fair comparison between the two algorithms, we adopted the playground of Section 6, i.e., we worked with Poisson node-conditional distributions and unrestricted dependencies among variables. For two vertex cardinalities, $p=10,100$, and one sample size, $n=1000$, we compared PCLPGM with proper test statistic $Z_{s t \mid \mathbf{K}}^{P}$ and LPGM algorithm in learning a number of random graphs having different edge probability π. In detail, we fixed nine values for π, running from 0.1 to 0.9 for $p=10$, and from 0.01 to 0.09 for $p=100$. Considering that, in this setting, the total number of edges is a random variable with expected value $\pi \frac{p(p-1)}{2}$, we allow, on average, up to 45 edges when $p=10$ and up to 445 when $p=100$. For each value of π, a network was generated and 500 samples were simulated from it as in Section 6.1 at both the high $\left(\lambda_{\text {noise }}=0.5\right)$ and the low $\left(\lambda_{\text {noise }}=5\right)$ SNR level. The two algorithms were tuned as follows

- PC-LPGM: level of significance of tests $1 \% ; m=8$ for $p=10 ; m=3$ for $p=100$;
- LPGM: $\beta=0.05 ; B=50 ; \frac{\lambda_{\text {min }}}{\lambda_{\text {max }}}=0.01 ; \gamma=10^{-6}$, sth $=0.6$, nlambda $=10$.

It is worth noting that, with $p=10$, we avoided limiting the cardinality of the conditional sets, that is, we did not impose any prior knowledge on sparsity of the graph.

Table 1 reports Monte Carlo means of TP, PPV, Se, and running time for the two algorithms in the two cardinality scenarios. The runtime analysis (second) was done on an CPU: $\operatorname{Intel}(\mathrm{R}) \mathrm{Xeon}(\mathrm{R}) \mathrm{CPU} \mathrm{E} 5-4650 \mathrm{v} 3 @ 2.10 \mathrm{GHz}$ on Linux and using R 3.5.1 and 20 cores.

When $p=10$, PC-LPGM performs better than LPGM for almost all values of probability $\pi \leq 0.5$, highlighting the efficiency of PC-LPGM when dealing with sparse graphs. The average of the ratio of the runtime of PC-LPGM over that of LPGM is around 0.33 , showing that PC-LPGM, on average, needs about one third of the time needed to LPGM. When $p=100$, PC-LPGM reaches the highest PPV and Se in almost all cases with comparable runtime when the complexity bound is achieved, say $m \leq 3$. It is worth noting that the computational complexity of PC-LPGM is an exponential function in m. In the worst case, the algorithm is infeasible if p and m are both large. We refer the reader to Kalisch and Bühlmann (2007) for more comments about complexity of PC algorithm.

With the second study, we moved to the truncated Poisson model specification setting. In what follows, we denote by PC-TPGM and TPGM, respectively, our algorithm for the truncated Poisson ($Z_{s t \mid \mathbf{K}}^{T P}$ test statistic) and the Allen and Liu (2013) algorithm under a truncated Poisson model specification. The key difference in working with truncated models instead of their untruncated counterparts is the presence, in the conditional distributions, of the normalization term $\exp D\left(\left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}\right\rangle\right)$, whose estimation impacts on the computational cost. To guarantee a fair comparison, we re-implemented ex-novo the TPGM algorithm and both PC-TPGM and TPGM were based on the same Nelder-Mead optimization algorithm, implemented in the R function optim.

For three vertex cardinalities, i.e., $p=10,50,100$, and one sample size, $n=1000$, three random graphs were generated, each for a given probability π of edge inclusion. In detail, we chose $\pi=0.1,0.2,0.3$ for $p=10 ; \pi=0.02,0.04,0.06$ for $p=50$; and $\pi=0.01,0.02,0.03$ for $p=100$. 500 samples were simulated from each network as in Section 6.1 at both the high $\left(\lambda_{\text {noise }}=0.5\right)$, and the low $\left(\lambda_{\text {noise }}=5\right)$ SNR level. The tuning parameters were selected as previously specified, when needed. As expected, for both algorithms, the ability to reconstruct the true networks -as measured by the previously defined metricswas confirmed to be unaltered over the model specification (Poisson or truncated Poisson), when a sufficiently large truncation point R was fixed. For this reason, in what follows, we report only results on runtime.

Figure 5 compares the runtime of the two algorithms. For completeness, runtimes under the Poisson model specification are also reported, with the familiar acronyms for the algorithms. The figure plots Monte Carlo means (over the 1500 replications) of runtime for each of considered method at high and the low SNR level. As expected, PC-TPGM and TPGM algorithms showed a computational cost higher than the one observed under the Poisson assumption, but superiority of PC-TPGM over TPGM is preserved. Overall, PC-LPGM is the most efficient algorithm, followed by LPGM. For this reason, we advise the user to use, when the working conditions allow (p large), PC-LPGM (or LPGM).

Scaling of variables. Feature scaling is one of the most typical, sometimes mandatory, data preprocessing steps performed prior to downstream analysis. Some form of scaling is typical, for example, in the preprocessing of next generation sequencing data, as shown also in Section 7. One advantage of iterative hypothesis testing versus penalized regression

Table 1: Monte Carlo means of TP, PPV, Se and runtime obtained by simulating 500 samples from two random graphs with $p=10$ and $p=100$ variables with Poisson node conditional distribution and levels of noise $\lambda_{\text {noise }}=0.5,5$. The probability of edge inclusion π runs from 0.1 to 0.9 for $p=10$, and from 0.01 to 0.09 for $p=100$.

$\lambda_{\text {noise }}$	p	π	LPGM				PC-LPGM			
			TP	PPV	Se	time	TP	PPV	Se	time
0.5	10	0.1	7.058	0.649	0.784	8.372	8.401	0.976	0.934	1.577
		0.2	9.390	0.475	0.939	7.823	10.000	0.983	1.000	1.413
		0.3	12.296	0.523	0.946	8.257	12.767	0.987	0.982	1.595
		0.4	21.006	0.873	0.955	7.568	17.490	0.996	0.795	2.465
		0.5	22.298	0.906	0.969	7.332	18.282	0.997	0.795	2.877
		0.6	26.626	0.859	0.918	7.038	17.626	0.997	0.608	2.983
		0.7	28.772	0.848	0.899	7.024	16.850	0.998	0.527	2.889
		0.8	30.800	0.905	0.880	6.096	15.950	0.998	0.456	2.825
		0.9	31.432	0.928	0.827	6.331	14.626	0.998	0.385	2.785
	100	0.01	34.064	0.748	0.946	81.192	36.000	0.927	1.000	8.908
		0.02	9.842	0.934	0.096	53.017	97.444	0.910	0.946	14.065
		0.03	24.700	0.843	0.179	35.820	134.150	0.939	0.972	10.538
		0.04	152.303	0.821	0.841	35.460	173.363	0.954	0.958	13.459
		0.05	188.227	0.337	0.798	39.953	214.367	0.961	0.908	19.874
		0.06	254.077	0.144	0.895	40.525	223.370	0.960	0.787	19.211
		0.07	290.883	0.164	0.871	38.545	220.047	0.954	0.659	21.600
		0.08	306.810	0.146	0.859	37.689	228.437	0.955	0.640	19.789
		0.09	358.010	0.179	0.833	34.979	217.850	0.947	0.507	17.458
5	10	0.1	8.857	0.556	0.984	11.351	6.807	0.958	0.756	1.368
		0.2	8.730	0.897	0.873	10.989	8.500	0.967	0.850	1.254
		0.3	12.593	0.902	0.969	11.032	11.757	0.992	0.904	1.347
		0.4	20.357	0.559	0.925	10.626	16.027	0.998	0.728	2.221
		0.5	21.040	0.566	0.915	10.833	17.667	0.998	0.768	2.518
		0.6	27.000	0.687	0.931	37.942	16.667	0.982	0.575	8.838
		0.7	28.837	0.757	0.901	34.501	16.127	0.997	0.504	8.287
		0.8	30.893	0.828	0.883	26.211	15.120	0.997	0.432	7.734
		0.9	32.117	0.908	0.845	34.305	13.853	0.999	0.365	6.720
	100	0.01	36.000	0.792	1.000	42.504	35.900	0.918	1.000	10.127
		0.02	103.000	0.895	1.000	42.199	96.400	0.902	0.936	11.372
		0.03	137.323	0.892	0.995	40.119	132.870	0.924	0.963	15.444
		0.04	177.193	0.216	0.979	31.798	170.020	0.944	0.939	17.008
		0.05	224.397	0.399	0.951	29.219	207.693	0.954	0.880	17.998
		0.06	244.570	0.474	0.861	29.790	212.047	0.952	0.747	14.699
		0.07	232.533	0.488	0.696	32.580	206.760	0.944	0.619	16.127
		0.08	252.373	0.529	0.707	66.931	213.083	0.945	0.597	33.321
		0.09	228.670	0.452	0.532	69.960	201.286	0.938	0.468	48.612

is invariance with respect to scaling of regressors in conditional models. As regularized methods have different levels of sensitivity to feature scaling, in this section, we will look at one simulated scenario and compare the performance of PC-LPGM and LPGM with respect to scaling. A random network with edge probability equal to 0.3 was generated for $p=10$ nodes. For such network, 500 samples of size $n=1000$ were generated as in Section 6.1 at the high SNR level $\left(\lambda_{\text {noise }}=0.5\right)$. Two variables, X_{1} and X_{6}, were then scaled in turn. The choice of these variables was driven by the size of their neighbourhood. Indeed, we selected the two nodes having, respectively, the smallest and the largest neighbourhood's size $(N(1)=1$ and $N(6)=4)$, where $N(i)$ denotes the number of neighbours of node i. To scale the variables, we multiplied them for a factor k, for different values of k. We then

Figure 5: Monte Carlo means of runtime (in seconds) obtained by simulating 500 samples from one random graph for each probability of edge inclusion π associated to each vertex cardinality $p=10,50,100(\pi=0.1,0.2,0.3$ for $p=10 ; \pi=0.02,0.04,0.06$ for $p=50$; and $\pi=0.01,0.02,0.03$ for $p=100)$. Sample size $n=1000$.
applied PC-LPGM and LPGM algorithm on the scaled data. Results are reported in Table 2.

Table 2: Monte Carlo means of TP, FP, FN, PPV, and Se obtained by simulating 500 samples from one random graph on $p=10$ variables with Poisson node conditional distribution and level of noise $\lambda_{\text {noise }}=0.5$. The probability of edge inclusion is $\pi=0.3$.

		LPGM						PC-LPGM				
i	k	TP	FP	FN	PPV	Se	TP	FP	FN	PPV		
6	$1 / 5$	8.490	9.494	4.510	0.516	0.653	11.690	0.336	1.310	0.974		
	$1 / 2$	10.064	8.986	2.936	0.563	0.774	12.098	0.402	0.902	0.970		
	1	12.296	11.832	0.704	0.523	0.946	11.846	0.056	1.154	0.996		
	5	4.022	0.032	8.978	0.996	0.309	12.248	0.524	0.752	0.962		
	10	4.006	0.090	8.994	0.985	0.308	12.224	0.600	0.776	0.956		
										0.940		
	$1 / 3$	11.278	10.038	1.722	0.540	0.868	12.056	0.358	0.944	0.973		
1	$1 / 2$	12.200	9.794	0.800	0.567	0.938	12.014	0.340	0.986	0.975		
	1	12.296	11.832	0.704	0.523	0.946	11.846	0.056	1.154	0.996		
	5	1.070	0.042	11.930	0.979	0.082	12.892	0.462	0.108	0.968		
	10	1.154	0.398	11.846	0.861	0.089	12.910	0.480	0.090	0.966		
				0.993								

Results show, as expected, invariance of PC-LPGM with respect to all scalings, with high PPV and Se values. On the other side, scale-variance of LPGM is evident, particularly when variance inflation of the regressor is performed $(k=5,10)$. If the predictor is scaled up a lot, the corresponding coefficient is not shrunken by LPGM, increasing the number of false negatives.

7. Real Data Analysis: Inferring Networks from Next Generation Sequencing Data

To make our evaluation of PC-LPGM stronger, we perform some biological validation by applying PC-LPGM (with $m=3$) to two different data sets, one, retrieved from the Cancer Genome Atlas, on level III breast cancer microRNAs (miRNAs) expression; and one, downloaded from the Gene Expression Omnibus (GEO), on olfactory epithelium stem cell. Here, we expect to obtain results coherent with the current biological knowledge.

7.1 Breast Cancer

miRNAs are non-coding RNAs that are transcribed but do not encode proteins. miRNAs have been reported to play a pivotal role in regulating key biological processes, for example, post-transcriptional modifications and translation processes. Some studies revealed that some disease-related miRNAs can indirectly regulate the function of other miRNAs associated with the same phenotype. In this perspective, studying the features of the interaction pattern of miRNAs in some conditions might help understand complex phenotype conditions.

Here, we consider level III breast cancer. Our interest lies in the pattern of interactions among miRNAs, with a particular focus on the existence of hubs. In fact, nodes with atypically high numbers of connections represent sites of signalling convergence with potentially large explanatory power for network behaviour or utility for clinical prognosis and therapy. By applying our algorithm, we expect to obtain results in line with known associations between miRNAs and breast cancer, and possibly gain more understanding of the nature of their effect on other genes. In other words, we expect some miRNAs associated with this phenotype to be the hubs of our estimated structure.

Figure 6: Distribution of four miRNA-Seq: raw data (top), normalized data (bottom).
miRNAs expression, obtained by high-throughput sequencing, was downloaded from The Cancer Genome Atlas (TCGA) portal (https://tcga-data.nci.nih.gov/docs/publicat..ons/ brca_2012/). The raw count data set consisted of 544 patients and 1046 miRNAs. As measurements were zero-inflated and highly skewed, with total count volumes depending on experimental condition, standard preprocessing was applied to the data (see Allen and Liu, 2013). In particular: we normalized the data by the 75% quantile matching (Bullard
et al., 2010); selected top 25% most variable mirRNAs across the data; used a power transform X^{α} for $\alpha \in[0,1]$ with α chosen via the minimum Kolmogorov-Smirnov statistic (Li et al., 2012) giving rise to $\alpha=0.164$. The miRNAs with little variation across the samples were filtered out, leaving 544 patients $(n=544)$ and 261 miRNA $(p=261)$. The effect of preprocessing on four prototype miRNA are shown in Figure 6.

Normalized data was used as input to PC-LPGM. A significance level of 5% resulted in a spare graph, shown in Figure 7 (left).

Figure 7: Breast cancer miRNA network estimated by the PC-LPGM algorithm (left, hub nodes coloured red), and by the NPN-copula algorithm (right, hub nodes coloured green).

We identified ten hub nodes (number of edges greater than 9, this being an arbitrary but contextually appropriate figure) in the network, miR-10b, $-30 \mathrm{a},-143,-375,-145,-210$, $-139,-934,-190 b,-590$. Almost all of them are known to be related to breast cancer (Volinia et al., 2012), providing a biological validation of the potential of the algorithm to recover the sites of the network with high explanatory power. In particular, miR-10b and -210 highly express in breast cancer, when high expression is related to poor prognosis; miR-30a, -143 and -145 appear to be inhibitors of progression, and should therefore be low in patients with good survival (Zhang et al., 2014; Yan et al., 2014). These results play the role of a biological validation of the ability of PC-LPGM to retrieve structures reflecting existing relations among variables.

The reader is referred to Allen and Liu (2013) for results of the application of LPGM to the same data set. A structural comparison shows that PC-LPGM identifies less edges than LPGM and some common hub nodes, such as miR-10b, and miR-375. To evaluate effectiveness of methods based on the Gaussian assumption, which require preliminary data transformation, we ran the NPN-copula algorithm (tuning: $\beta=0.01 ; B=50$) on log transformed data shifted by 1 . Figure 7 (right) shows the resulting graph. This algorithm identified 13 hub nodes: miR-26a-2, -127, -379, -134, -381, -337, -431, -409, -654, -758, -382, $-370,-432$, none of which coincides with those found by PC-LPGM and only one, miR-379, is common to those found by LPGM.

7.2 Olfactory Epithelium Stem Cell

Recently, whole-transcriptome profiling of single cells by RNA sequencing has been developed as a powerful method for discriminating the heterogeneity of cell types and cell states in a complex population (Gadye et al., 2017).

Here, we re-analyse a subset of the data presented in Gadye et al. (2017). We focus on the olfactory sensory neurons lineage, which starts from the horizontal basal cell (HBC) stem cells and through a series of intermediate states generates mature olfactory neurons. Wild-type HBC stem cells were collected by fluorescence- activated cell sorting (FACS), and profiled by single-cell RNA-seq. As before, we also focus on the existence of hub genes on the network of interactions among genes. In fact, the identification of hubs in the gene network could help pinpoint important transcription factors, i.e., genes that regulate the expression of a large number of other genes in the system and could be targeted for follow-up experiments. We therefore expect to obtain results in line with known associations between genes and the developmental trajectory of stem cells, and possibly gain more understanding on the nature of their effect on other genes. In other words, we expect some genes associated with this mechanism to be the hubs of our estimated structure.

Gene expression, obtained by high-throughput sequencing, was downloaded from the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?' acc=GSE99251). The raw count data set consisted of 542 cells and we selected 850 transcription factor genes (the list of transcription factors was downloaded from https:// github.com/diyadas/HBC-regen/tree/master/ref). The data were zero-inflated and highly skewed. We then selected top 20% variables with highest mean to apply the standard preprocessing steps as in Section 7.1. In particular, we normalized the data by 75% quantile matching; selected top 50% most variable mirRNAs across the data; and used a power transform X^{α} (with $\alpha=0.219$). The genes with low mean and little variation across the samples were filtered out, leaving 542 cells $(n=542)$ and 85 genes $(p=85)$. The effect of preprocessing on four prototype genes are shown in Figure 8.

Figure 8: Distribution of RNA-Seq read counts for four genes: raw data (top), normalized data (bottom).

A significance level of 5% resulted in a spare graph by applying PC-LPGM algorithm on the normalized data, as shown in Figure 9.

Figure 9: Olfactory Neuron gene network estimated by the PC-LPGM algorithm (hub nodes coloured green).

We identified four hub nodes, i.e. nodes with more than 9 edges, in the network: Sox11, Ebf1, Elf3, Trp63. Almost all of them are known to be related to the developmental trajectory of stem cells. In particular, Tpr63 is a gene essential to maintain the quiescent state of HBCs. In fact, by knocking out this gene HBCs will differentiate into mature cell types (Fletcher et al., 2017). It is therefore very reassuring that our method identified this gene as a hub node. Sox11 is known to be essential in neurogenesis (Ninkovic et al., 2013). Ebf1 is a transcription factor known to be involved with the later part of the lineage, in the final phase of maturing neurons (Wang et al., 1997; Garel et al., 1997). While there is no specific indication in the literature that Elf3 plays an important role in the olfactory epithelium, this gene is known to be important in other epithelial systems (Tymms et al., 1997). It will be interesting to follow up with experimental validation of the role of this gene.

Gene networks estimated by the LPGM algorithm (tuning: $\beta=0.05 ; B=50 ; \frac{\lambda_{\min }}{\lambda_{\text {max }}}=$ $0.01 ; \gamma=10^{-6}$), and the NPN-copula algorithm (tuning: $\beta=0.05 ; B=50 ; \log$ transformed data shifted by 1) are shown in Figure 10. The LPGM algorithm identified four hub nodes, namely: Sox11, Ebf1, Atf3, Fos, two of which are common to PC-LPGM. The NPN-copula algorithm identified eleven hub nodes, namely: Fos, Egr1, Ebf1, Klf6, Atf3, Ebf2, Fosb, Myt11, Klf4, Tcf712, Nr4a1, one of which is common to PC-LPGM.

In both the case studies that we considered in this Section, the true gene networks are unknown, and so is, to a large extent, knowledge on the underlying biological processes. It is therefore difficult to interpret differences in the results obtained by different algorithms. Based on the observation that the highest level of agreement between results occurs when
comparing PC-LPGM and LPGM outputs, this exercise highlights that methods that correctly exploit discreteness of the data tend to retrieve from data similar information.

Figure 10: Olfactory Neuron gene network estimated by the LPGM algorithm (left, hub nodes coloured green), and by the NPN-copula algorithm (right, hub nodes coloured green).

8. Conclusions

The main contribution of this paper is a careful analysis of the numerical and statistical efficiency of PC-LPGM, a simple method for structure learning of undirected graphical models for count data. A key strategy of our approach is controlling the number of variables in the conditional sets, as done in the PC algorithm. In this way, we control problems of estimation when the number of random variables p is large possibly goes to infinity.

Our main theoretical result on truncated Poisson counts provides sufficient conditions on the set (n, p, d, R) and on the model parameters for the method to succeed in consistently estimating the neighbours of every node in the graph. Precisely, Theorem 7 not only specifies sufficient conditions but it also provides the probability with which the method recovers the true edge set. Indeed, Equation (8) shows that

$$
\begin{aligned}
& \mathbb{P}_{\boldsymbol{\theta}} \text { (a type I or II error occurs in testing procedure) } \\
& \qquad \leq O_{p}\left(\exp \left\{-c_{1} n^{2 b}+c_{0}^{\prime} d \log p\right\}-\exp \left\{-c_{2} \frac{n}{d^{2}}+c_{0}^{\prime} d \log p\right\}\right) .
\end{aligned}
$$

Hence, the right-hand side of the above given equation tends to 0 if $n>O_{p}\left(d^{3} \log p\right)$. Moreover, Proposition 13, and Lemma 12 require

$$
n>\max \left\{O_{p}\left(R^{2} \kappa_{1} \log p\right), O_{p}\left(\kappa_{1}^{2} R^{4} p^{2} \log p\right)\right\}=O_{p}\left(\kappa_{1}^{2} R^{4} p^{2} \log p\right)
$$

Thus, the sufficient condition for convergence becomes

$$
n>\max \left\{O_{p}\left(d^{3} \log p\right), O_{p}\left(\kappa_{1}^{2} R^{4} p^{2} \log p\right)\right\}
$$

Appendix B shows that $\kappa_{1} \leq O_{p}\left(R^{2}\right)$. Hence, the sufficient condition for consistency of PC-LPGM with exponentially decaying error is

$$
n>\max \left\{O_{p}\left(d^{3} \log p\right), O_{p}\left(R^{8} p^{2} \log p\right)\right\} .
$$

When R is fixed, the condition reduces to $n>\max \left\{O_{p}\left(d^{3} \log p\right), O_{p}\left(p^{2} \log p\right)\right\}$. However, it is worth remembering that when the maximum number of neighbours that one node is allowed to have is fixed to d, a limitation is operated on the cardinalities d or $d-1$ of the sets \mathbf{K}. In this situation, the condition for convergence is relaxed to $n>$ $\max \left\{O_{p}\left(d^{3} \log p\right), O_{p}\left(d^{2} \log d\right)\right\}=O_{p}\left(d^{3} \log p\right)($ see Equation (8) and Note 1 for details). This condition is coherent with the sufficient condition for consistent neighbourhood selection in Ising model (see Ravikumar et al. (2010)).

Our simulation results show that the algorithm perform well also when Poisson conditional distributions with no constraints on the interaction parameters are taken as starting point for model specification. The empirical comparison shows that the algorithm outperforms its natural competitors.

Acknowledgments

We thank the action editor and three anonymous reviewers for their careful reading of the manuscript and their many insightful comments and suggestions. We also thank Davide Risso for generously sharing with us his expertise in the area of single-cell data analysis. This work was supported by grant BIRD172830, University of Padova, Italy.

Appendix A. Proofs

In this section, we provide proofs of Proposition 2 and Theorem 3 stated in Section 4 of the main paper. We begin by introducing results for the case $\mathbf{K}=V$. Then, the same results for general case $\mathbf{K} \subset V$ are deduced. The rest of this section is devoted for the proof of Theorem 9 in Section 5 .

Before going into details, we first prove the following Lemma, used in the proof of Theorem 14.

Lemma 12 Assume 2. Then, for any $\delta>0$, we have

$$
\begin{aligned}
\mathbb{P}_{\boldsymbol{\theta}}\left(\Lambda_{\max }\left(\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{X}_{V \backslash\{s\}}^{(i)}\right)^{T} \mathbf{X}_{V \backslash\{s\}}^{(i)}\right) \leq \lambda_{\max }+\delta\right) & \geq 1-\exp \left(-c_{2} \frac{\delta^{2} n}{p^{2}}+c_{3} \log p\right) \\
\mathbb{P}_{\boldsymbol{\theta}}\left(\Lambda_{\min }\left(Q_{s}\left(\boldsymbol{\theta}_{\boldsymbol{s}}\right)\right) \geq \lambda_{\min }-\delta\right) & \geq 1-\exp \left(-c_{2} \frac{\delta^{2} n}{p^{2}}+c_{3} \log p\right)
\end{aligned}
$$

Proof The (j, k) element of the matrix $Z^{n}=Q_{s}\left(\boldsymbol{\theta}_{s}\right)-I_{s}\left(\boldsymbol{\theta}_{s}\right)$ can be written as

$$
\begin{aligned}
Z_{j k}^{n}\left(\boldsymbol{\theta}_{s}\right) & =\frac{1}{n} \sum_{i=1}^{n} D^{\prime \prime}\left(\left\langle\boldsymbol{\theta}_{s}, X_{V \backslash\{s\}}^{(i)}\right\rangle\right) X_{i j} X_{i k}-\mathbb{E}_{\boldsymbol{\theta}}\left(D^{\prime \prime}\left(\left\langle\boldsymbol{\theta}_{s}, X_{V \backslash\{s\}}\right\rangle\right) X_{j} X_{k}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\mathbb{E}_{\boldsymbol{\theta}}\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right)
\end{aligned}
$$

where $Y_{i}=D^{\prime \prime}\left(\left\langle\boldsymbol{\theta}_{s}, X_{V \backslash\{s\}}^{(i)}\right\rangle\right) X_{i j} X_{i k}, i=1, \ldots, n$ are independent and bounded by

$$
\left|Y_{i}\right| \leq \kappa_{1} R^{2}
$$

By the Azuma-Hoeffding inequality (Theorem 2 in Hoeffding, 1963), for any $\epsilon>0$, we have

$$
\mathbb{P}_{\boldsymbol{\theta}}\left(\left(Z_{i j}^{n}\right)^{2} \geq \epsilon^{2}\right)=\mathbb{P}_{\boldsymbol{\theta}}\left(\left|Z_{i j}^{n}\right| \geq \epsilon\right) \leq 2 \exp \left(-\frac{\epsilon^{2} n}{2 \kappa_{1}^{2} R^{4}}\right)
$$

Moreover,

$$
\begin{aligned}
\Lambda_{\min }\left(I_{s}\left(\boldsymbol{\theta}_{s}\right)\right) & =\min _{\|\mathbf{y}\|_{2}=1} \mathbf{y} I_{s}\left(\boldsymbol{\theta}_{s}\right) \mathbf{y}^{T} \\
& =\min _{\|\mathbf{y}\|_{2}=1}\left\{\mathbf{y} Q_{s}\left(\boldsymbol{\theta}_{s}\right) \mathbf{y}^{T}+\mathbf{y}\left(I_{s}\left(\boldsymbol{\theta}_{s}\right)-Q_{s}\left(\boldsymbol{\theta}_{s}\right)\right) \mathbf{y}^{T}\right\} \\
& \leq \mathbf{y} Q_{s}\left(\boldsymbol{\theta}_{s}\right) \mathbf{y}^{T}+\mathbf{y}\left(I_{s}\left(\boldsymbol{\theta}_{s}\right)-Q_{s}\left(\boldsymbol{\theta}_{s}\right)\right) \mathbf{y}^{T}
\end{aligned}
$$

where $\mathbf{y} \in \mathbb{R}^{p-1}$ is an arbitrary vector with unit norm. Hence,

$$
\begin{equation*}
\Lambda_{\min }\left(Q_{s}\left(\boldsymbol{\theta}_{s}\right)\right) \geq \Lambda_{\min }\left(I_{s}\left(\boldsymbol{\theta}_{s}\right)\right)-\max _{\|\mathbf{y}\|_{2}=1} \mathbf{y}\left(I_{s}\left(\boldsymbol{\theta}_{s}\right)-Q_{s}\left(\boldsymbol{\theta}_{s}\right)\right) \mathbf{y}^{T} \geq \lambda_{\min }-\left\|I_{s}\left(\boldsymbol{\theta}_{s}\right)-Q_{s}\left(\boldsymbol{\theta}_{s}\right)\right\|_{2} \tag{12}
\end{equation*}
$$

We now derive a bound on the spectral norm $\left\|\left\|I_{s}\left(\boldsymbol{\theta}_{s}\right)-Q_{s}\left(\boldsymbol{\theta}_{s}\right)\right\|_{2}\right.$. Let $\epsilon=\delta / p$, then

$$
\begin{align*}
\mathbb{P}_{\boldsymbol{\theta}}\left(\| \| I_{s}\left(\boldsymbol{\theta}_{s}\right)-Q_{s}\left(\boldsymbol{\theta}_{s}\right)\| \|_{2} \geq \delta\right) & \leq \mathbb{P}_{\boldsymbol{\theta}}\left(\left(\sum_{j, k \neq s}\left(Z_{j k}^{n}\right)^{2}\right)^{1 / 2} \geq \delta\right) \\
& \leq 2 p^{2} \exp \left\{-\frac{\delta^{2} n}{2 p^{2} \kappa_{1}^{2} R^{4}}\right\} \\
& \leq \exp \left(-c_{2} \frac{\delta^{2} n}{p^{2}}+c_{3} \log p\right) \tag{13}
\end{align*}
$$

From Equation (12) and (13), we have

$$
\mathbb{P}_{\boldsymbol{\theta}}\left(\Lambda_{\min }\left(Q_{s}\left(\boldsymbol{\theta}_{s}\right)\right) \geq \lambda_{\min }-\delta\right) \geq 1-\exp \left(-c_{2} \frac{\delta^{2} n}{p^{2}}+c_{3} \log p\right)
$$

Similarly, we have

$$
\left.\mathbb{P}_{\boldsymbol{\theta}}\left(\Lambda_{\max }\left[\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{X}_{V \backslash\{s\}}^{(i)}\right)^{T} \mathbf{X}_{V \backslash\{s\}}^{(i)}\right] \leq \lambda_{\max }+\delta\right]\right) \geq 1-\exp \left(-c_{2} \frac{\delta^{2} n}{p^{2}}+c_{3} \log p\right)
$$

We now introduce results for the case $\mathbf{K}=V$.

Proposition 13 Assume 1- 2. Then, for any $\delta>0$

$$
\mathbb{P}_{\boldsymbol{\theta}}\left(\left\|\nabla l\left(\boldsymbol{\theta}_{s}, \mathbf{X}_{s} ; \mathbf{X}_{V \backslash\{s\}}\right)\right\|_{\infty} \geq \delta\right) \leq \exp \left\{-c_{1} n \delta^{2}+c_{0} \log p\right\}, \forall \boldsymbol{\theta} \in \boldsymbol{\Theta}
$$

when $n \longrightarrow \infty$.

Proof A rescaled negative node conditional log-likelihood can be written as

$$
\begin{aligned}
l\left(\boldsymbol{\theta}_{s}, \mathbb{X}_{\{s\}} ; \mathbb{X}_{V \backslash\{s\}}\right) & =-\frac{1}{n} \log \prod_{i=1}^{n} \mathbb{P}_{\boldsymbol{\theta}_{s}}\left(x_{i s} \mid \mathbf{x}_{V \backslash\{s\}}^{(i)}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left[-x_{i s}\left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}^{(i)}\right\rangle+\log x_{i s}!+D\left(\left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}^{(i)}\right\rangle\right)\right],
\end{aligned}
$$

The t-partial derivative of the node conditional log-likelihood $l\left(\boldsymbol{\theta}_{s}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)$ is:

$$
W_{t}=\nabla_{t} l\left(\boldsymbol{\theta}_{s}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)=\frac{1}{n} \sum_{i=1}^{n}\left[-x_{i s} x_{i t}+x_{i t} D^{\prime}\left(\left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}^{(i)}\right)\right]\right.
$$

Let $V_{i s}(t)=X_{i s} X_{i t}-X_{i t} D^{\prime}\left(\left\langle\boldsymbol{\theta}_{s}, \mathbf{X}_{V \backslash\{s\}}^{(i)}\right\rangle\right)$. We have,

$$
\begin{align*}
\mathbb{P}_{\boldsymbol{\theta}}\left(\|W\|_{\infty} \geq \delta\right)= & \mathbb{P}_{\boldsymbol{\theta}}\left(\max _{t \in V \backslash\{s\}}\left|\nabla_{t} l\left(\boldsymbol{\theta}_{s}, X_{s} ; \mathbf{X}_{V \backslash\{s\}}\right)\right| \geq \delta\right) \\
= & \mathbb{P}_{\boldsymbol{\theta}}\left(\max _{t \in V \backslash\{s\}}\left|\frac{1}{n} \sum_{i=1}^{n} V_{i s}(t)\right| \geq \delta\right) \\
\leq & p\left[\mathbb{P}_{\boldsymbol{\theta}}\left(\frac{1}{n} \sum_{i=1}^{n} V_{i s}(t) \geq \delta\right)+\mathbb{P}_{\boldsymbol{\theta}}\left(-\frac{1}{n} \sum_{i=1}^{n} V_{i s}(t) \geq \delta\right)\right] \\
\leq & p\left[\frac{\mathbb{E}_{\boldsymbol{\theta}}\left[\prod_{i=1}^{n} \exp \left\{h V_{i s}(t)\right\}\right]}{\exp \{n h \delta\}}+\frac{\mathbb{E}_{\boldsymbol{\theta}}\left[\prod_{i=1}^{n} \exp \left\{-h V_{i s}(t)\right\}\right]}{\exp \{n h \delta\}}\right] \\
= & p\left[\frac{\prod_{i=1}^{n} \mathbb{E}_{\boldsymbol{\theta}}\left[\exp \left\{h V_{i s}(t)\right\}\right]}{\exp \{n h \delta\}}+\frac{\prod_{i=1}^{n} \mathbb{E}_{\boldsymbol{\theta}}\left[\exp \left\{-h V_{i s}(t)\right\}\right]}{\exp \{n h \delta\}}\right] \\
= & p\left[\exp \left\{\sum_{i=1}^{n} \log \mathbb{E}_{\boldsymbol{\theta}}\left[\exp \left\{h V_{i s}(t)\right\}\right]-n h \delta\right\}\right. \\
& \left.+\exp \left\{\sum_{i=1}^{n} \log \mathbb{E}_{\boldsymbol{\theta}}\left[\exp \left\{-h V_{i s}(t)\right\}\right]-n h \delta\right\}\right], \tag{14}
\end{align*}
$$

for some $h>0$. We therefore need to compute

$$
\sum_{i=1}^{n} \log \mathbb{E}_{\boldsymbol{\theta}}\left[\exp \left\{h V_{i s}(t)\right\}\right]
$$

and

$$
\sum_{i=1}^{n} \log \mathbb{E}_{\boldsymbol{\theta}}\left[\exp \left\{-h V_{i s}(t)\right\}\right]
$$

First, we have

$$
\begin{aligned}
\mathbb{E}_{\boldsymbol{\theta}_{s}}\left[\exp \left\{h V_{i s}(t)\right\} \mid \mathbf{x}_{V \backslash\{s\}}^{(i)}\right]= & \sum_{x_{i s}=0}^{R} \exp \left\{h\left[x_{i s} x_{i t}-x_{i t} D^{\prime}\left(\left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}^{(i)}\right\rangle\right)\right]\right. \\
& \left.+x_{i s}\left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}^{(i)}\right\rangle-\log x_{i s}!-D\left(\left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}^{(i)}\right\rangle\right)\right\} \\
= & \sum_{x_{i s}=0}^{R} \exp \left\{x_{i s}\left[h x_{i t}+\left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}^{(i)}\right\rangle\right]-\log x_{i s}!\right. \\
& \left.-h x_{i t} D^{\prime}\left(\left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}^{(i)}\right\rangle\right)-D\left(\left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}^{(i)}\right\rangle\right)\right\} \\
= & \exp \left\{D\left(h x_{i t}+\left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}^{(i)}\right\rangle\right)-D\left(\left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}^{(i)}\right\rangle\right)\right. \\
& \left.-h x_{i t} D^{\prime}\left(\left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}^{(i)}\right\rangle\right)\right\} \\
= & \exp \left\{\frac{h^{2}}{2}\left(x_{i t}\right)^{2} D^{\prime \prime}\left(v h x_{i t}+\left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}^{(i)}\right\rangle\right)\right\},
\end{aligned}
$$

for some $v \in[0,1]$, where we move from line 2 to line 3 by applying $\sum_{x_{i s}=0}^{R} \exp \left\{x_{i s}\left[h x_{i t}+\right.\right.$ $\left.\left.\left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}^{(i)}\right\rangle\right]-\log x_{i s}!-D\left(h x_{i t}+\left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}^{(i)}\right\rangle\right)\right\}=1$, and from line 3 to line 4 by using a Taylor expansion for function $D($.$) at \left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}^{(i)}\right\rangle$.

Therefore,

$$
\begin{align*}
\sum_{i=1}^{n} \log \mathbb{E}_{\boldsymbol{\theta}}\left[\exp \left\{h V_{i s}(t)\right\}\right] & =\sum_{i=1}^{n} \log \mathbb{E}_{\boldsymbol{\theta}_{V \backslash\{s\}}}\left[\mathbb{E}_{\boldsymbol{\theta}_{s}}\left[\exp \left\{h V_{i s}(t)\right\} \mid \mathbf{x}_{V \backslash\{s\}}^{(i)}\right]\right] \\
& =\sum_{i=1}^{n} \log \mathbb{E}_{\boldsymbol{\theta}_{V \backslash\{s\}}}\left[\exp \left\{\frac{h^{2}}{2}\left(X_{i t}\right)^{2} D^{\prime \prime}\left(v h X_{i t}+\left\langle\boldsymbol{\theta}_{s}, \mathbf{X}_{V \backslash\{s\}}^{(i)}\right\rangle\right)\right\}\right] \\
& \leq n \frac{h^{2}}{2} R^{2} \kappa_{1}, \tag{15}
\end{align*}
$$

where $D^{\prime \prime}\left(v h X_{i t}+\left\langle\boldsymbol{\theta}_{s}, \mathbf{X}_{V \backslash\{s\rangle}^{(i)}\right)\right)<\kappa_{1}, \forall \boldsymbol{\theta}_{s} \in \Omega(\boldsymbol{\Theta})\left(\right.$ since $D^{\prime \prime}($.$) is a continuous function, and \Omega(\boldsymbol{\Theta})$ is bounded, see Appendix B for details). Similarly,

$$
\mathbb{E}_{\boldsymbol{\theta}_{s}}\left[\exp \left\{-h V_{i s}(t)\right\} \mid \mathbf{x}_{V \backslash\{s\}}^{(i)}\right]=\exp \left\{\frac{h^{2}}{2}\left(x_{i t}\right)^{2} D^{\prime \prime}\left(-v h x_{i t}+\left\langle\boldsymbol{\theta}_{s}, \mathbf{x}_{V \backslash\{s\}}^{(i)}\right\rangle\right)\right\},
$$

Therefore,

$$
\begin{align*}
\sum_{i=1}^{n} \log \mathbb{E}_{\boldsymbol{\theta}}\left[\exp \left\{-h V_{i s}(t)\right\}\right] & =\sum_{i=1}^{n} \log \mathbb{E}_{\boldsymbol{\theta}_{V \backslash\{s\}}}\left[\mathbb{E}_{\boldsymbol{\theta}_{s}}\left[\exp \left\{-h V_{i s}(t)\right\} \mid \mathbf{x}_{V \backslash\{s\}}^{(i)}\right]\right] \\
& =\sum_{i=1}^{n} \log \mathbb{E}_{\boldsymbol{\theta}_{V \backslash\{s\}}}\left[\exp \left\{\frac{h^{2}}{2}\left(X_{i t}\right)^{2} D^{\prime \prime}\left(-v h X_{i t}+\left\langle\boldsymbol{\theta}_{s}, \mathbf{X}_{V \backslash\{s\}}^{(i)}\right\rangle\right)\right\}\right] \\
& \leq n \frac{h^{2}}{2} R^{2} \kappa_{1} . \tag{16}
\end{align*}
$$

Let $h=\frac{\delta}{R^{2} \kappa_{1}}$, from (14)-(16), we have

$$
\begin{aligned}
\mathbb{P}_{\boldsymbol{\theta}}\left(\|W\|_{\infty} \geq \delta\right) & \leq p\left[\exp \left\{n \frac{h^{2}}{2} R^{2} \kappa_{1}-n h \delta\right\}+\exp \left\{n \frac{h^{2}}{2} R^{2} \kappa_{1}-n h \delta\right\}\right] \\
& =2 p\left[\exp \left\{\frac{-n \delta^{2}}{2 R^{2} \kappa_{1}}\right\}\right] \\
& \leq \exp \left\{-c_{1} n \delta^{2}+c_{0} \log p\right\}
\end{aligned}
$$

Theorem 14 Assume 1-2. Then, there exists a non-negative decreasing sequence $\epsilon_{n} \rightarrow 0$, such that
$\mathbb{P}_{\boldsymbol{\theta}}\left(\left\|\hat{\boldsymbol{\theta}}_{V \backslash\{s\}}-\boldsymbol{\theta}_{V \backslash\{s\}}\right\|_{2} \leq \epsilon_{n}\right) \geq 1-\exp \left\{-c_{1} n \epsilon_{n}^{2}+c_{0} \log p\right\}-\exp \left\{-c_{2} \frac{n}{p^{2}}+c_{3} \log p\right\}, \forall \boldsymbol{\theta} \in \boldsymbol{\Theta}$,
when $n \rightarrow \infty$.
Proof For a fixed design \mathbb{X}, define $G: \mathbb{R}^{p-1} \longrightarrow \mathbb{R}$ as

$$
G\left(\mathbf{u}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)=l\left(\boldsymbol{\theta}_{s}+\mathbf{u}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)-l\left(\boldsymbol{\theta}_{s}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right) .
$$

Then, $G\left(0, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)=0$. Moreover, let $\hat{\mathbf{u}}=\hat{\boldsymbol{\theta}}_{s}-\boldsymbol{\theta}_{s}$, we have $G\left(\hat{\mathbf{u}}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right) \leq 0$.
Given a value $\epsilon>0$, if $G\left(\mathbf{u}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)>0, \forall \mathbf{u} \in \mathbb{R}^{p-1}$ such that $\|\mathbf{u}\|_{2}=\epsilon$, then $\|\hat{\mathbf{u}}\|_{2} \leq \epsilon$, since $G\left(., \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)$ is a convex function. Therefore,

$$
\left.\mathbb{P}_{\boldsymbol{\theta}}\left(\left\|\hat{\boldsymbol{\theta}}_{s}-\boldsymbol{\theta}_{s}\right\|_{2} \leq \epsilon\right) \geq \mathbb{P}_{\boldsymbol{\theta}}\left(G\left(\mathbf{u}, \mathbf{X}_{s} ; \mathbf{X}_{V \backslash\{s\}}\right)>0\right), \forall \mathbf{u} \in \mathbb{R}^{p-1} \text { such that }\|\mathbf{u}\|_{2}=\epsilon\right) .
$$

A Taylor expansion of the rescaled negative node conditional \log-likelihood at $\boldsymbol{\theta}_{\boldsymbol{s}}$ yields

$$
\begin{aligned}
G\left(\mathbf{u}, \mathbf{X}_{s} ; \mathbf{X}_{V \backslash\{s\}}\right) & =l\left(\boldsymbol{\theta}_{s}+\mathbf{u}, \mathbf{X}_{s} ; \mathbf{X}_{V \backslash\{s\}}\right)-l\left(\boldsymbol{\theta}_{s}, \mathbf{X}_{s} ; \mathbf{X}_{V \backslash\{s\}}\right) \\
& \left.=\nabla l\left(\boldsymbol{\theta}_{s}, \mathbf{X}_{s} ; \mathbf{X}_{V \backslash\{s\}}\right)\right) \mathbf{u}^{T}+\frac{1}{2} \mathbf{u}\left[\nabla^{2}\left(l\left(\boldsymbol{\theta}_{s}+v \mathbf{u}, \mathbf{X}_{s} ; \mathbf{X}_{V \backslash\{s\}}\right)\right] \mathbf{u}^{T},\right.
\end{aligned}
$$

for some $v \in[0,1]$. Let

$$
\begin{aligned}
q & =\Lambda_{\min }\left(\nabla^{2}\left(l\left(\boldsymbol{\theta}_{s}+v \mathbf{u}, \mathbf{X}_{s} ; \mathbf{X}_{V \backslash\{s\}}\right)\right)\right) \\
& \geq \min _{v \in[0,1]} \Lambda_{\min }\left(\nabla^{2}\left(l\left(\boldsymbol{\theta}_{s}+v \mathbf{u}, \mathbf{X}_{s} ; \mathbf{X}_{V \backslash\{s\}}\right)\right)\right) \\
& =\min _{v \in[0,1]} \Lambda_{\min }\left[\frac{1}{n} \sum_{i=1}^{n} D^{\prime \prime}\left(\left\langle\boldsymbol{\theta}_{s}+v \mathbf{u}, \mathbf{X}_{V \backslash\{s\}}^{(i)}\right\rangle\right)\left(\mathbf{X}_{V \backslash\{s\}}^{(i)}\right)^{T} \mathbf{X}_{V \backslash\{s\}}^{(i)}\right] .
\end{aligned}
$$

By using Taylor expansion for $D^{\prime \prime}\left(\left\langle\boldsymbol{\theta}_{s}+v \mathbf{u}, \mathbf{X}_{V \backslash\{s\}}^{(i)}\right\rangle\right)$ at $\left\langle\boldsymbol{\theta}_{s}, \mathbf{X}_{V \backslash\{s\}}^{(i)}\right\rangle$, we have

$$
\begin{aligned}
& \left.\frac{1}{n} \sum_{i=1}^{n} D^{\prime \prime}\left(\left\langle\boldsymbol{\theta}_{s}+v \mathbf{u}, \mathbf{X}_{V \backslash\{s\}}^{(i)}\right\rangle\right)\left(\mathbf{X}_{V \backslash\{s\}}^{(i)}\right)^{T} \mathbf{X}_{V \backslash\{s\}}^{(i)}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} D^{\prime \prime}\left(\left\langle\boldsymbol{\theta}_{s}, \mathbf{X}_{V \backslash\{s\}}^{(i)}\right\rangle\right)\left(\mathbf{X}_{V \backslash\{s\}}^{(i)}\right)^{T} \mathbf{X}_{V \backslash\{s\}}^{(i)}+ \\
& \quad \frac{1}{n} \sum_{i=1}^{n} D^{\prime \prime \prime}\left(\left\langle\boldsymbol{\theta}_{s}+v^{\prime} \mathbf{u}, \mathbf{X}_{V \backslash\{s\}}^{(i)}\right\rangle\right)\left[v \mathbf{u}\left(\mathbf{X}_{V \backslash\{s\}}^{(i)}\right)^{T}\right]\left[\left(\mathbf{X}_{V \backslash\{s\}}^{(i)}\right)^{T} \mathbf{X}_{V \backslash\{s\}}^{(i)},\right.
\end{aligned}
$$

for some $v^{\prime} \in[0,1]$. Fixed $\delta=\frac{\lambda_{\text {min }}}{8}$ in Lemma 12. We have

$$
\begin{aligned}
q \geq & \Lambda_{\min }\left[\frac{1}{n} \sum_{i=1}^{n} D^{\prime \prime}\left(\left\langle\boldsymbol{\theta}_{s}, \mathbf{X}_{V \backslash\{s\}}^{(i)}\right\rangle\right)\left(\mathbf{X}_{V \backslash\{s\}}^{(i)}\right)^{T} \mathbf{X}_{V \backslash\{s\}}^{(i)}\right] \\
& -\max _{v^{\prime} \in[0,1]} \Lambda_{\max }\left[\frac{1}{n} \sum_{i=1}^{n}\left|D^{\prime \prime \prime}\left(\left\langle\boldsymbol{\theta}_{s}+v^{\prime} \mathbf{u}, \mathbf{X}_{V \backslash\{s\}}^{(i)}\right\rangle\right)\right|\left[\mathbf{u}\left(\mathbf{X}_{V \backslash\{s\}}^{(i)}\right)^{T}\right]\left[\left(\mathbf{X}_{V \backslash\{s\}}^{(i)}\right)^{T} \mathbf{X}_{V \backslash\{s\}}^{(i)}\right]\right] \\
\geq & \lambda_{\min }-\delta-\max _{v^{\prime} \in[0,1]} \Lambda_{\max }\left[\frac{1}{n} \sum_{i=1}^{n}\left|D^{\prime \prime \prime}\left(\left\langle\boldsymbol{\theta}_{s}+v^{\prime} \mathbf{u}, \mathbf{X}_{V \backslash\{s\}}^{(i)}\right\rangle\right)\right|\left[\mathbf{u}\left(\mathbf{X}_{V \backslash\{s\}}^{(i)}\right)^{T}\right]\left[\left(\mathbf{X}_{V \backslash\{s\}}^{(i)}\right)^{T} \mathbf{X}_{V \backslash\{s\}}^{(i)}\right]\right] \\
\geq & \lambda_{\min }-\delta-\max _{v^{\prime} \in[0,1]}\left|D^{\prime \prime \prime}\left(\left\langle\boldsymbol{\theta}_{V \backslash\{s\}}+v^{\prime} \mathbf{u}, \mathbf{X}_{V \backslash\{s\}}^{(i)}\right\rangle\right)\right|\left|\mathbf{u}\left(\mathbf{X}_{V \backslash\{s\}}^{(i)}\right)^{T}\right| \Lambda_{\max }\left[\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{X}_{V \backslash\{s\}}^{(i)}\right)^{T} \mathbf{X}_{V \backslash\{s\}}^{(i)}\right] \\
\geq & \lambda_{\min }-2 \delta-\kappa_{2} R \sqrt{p}\|\mathbf{u}\|_{2} \lambda_{\max } \\
= & \lambda_{\min }-2 \delta-\kappa_{2} \sqrt{p} R \epsilon \lambda_{\max } \\
> & \frac{\lambda_{\min }}{2}, \quad \operatorname{provided} \operatorname{that} \epsilon<\frac{\lambda_{\min }}{4 \sqrt{p} \lambda_{\max } \kappa_{2} R},
\end{aligned}
$$

with probability at least $1-\exp \left\{-c_{2} \frac{n}{p^{2}}+c_{3} \log p\right\}$, where $\left|D^{\prime \prime \prime}\left(\left\langle\boldsymbol{\theta}_{s}+v^{\prime} \mathbf{u}, \mathbf{X}_{V \backslash\{s\}}^{(i)}\right\rangle\right)\right|<$ $\kappa_{2}, \forall \boldsymbol{\theta}_{s} \in \boldsymbol{\Theta}$ (since $D^{\prime \prime \prime}($.$) is a continuous function, and \boldsymbol{\Theta}$ is bounded, see Appendix B for details).

Let $\delta=\frac{\lambda_{\text {min }}}{4} \epsilon$ in Proposition 13. Then, from Proposition 13, we have

$$
\left.\nabla_{t} l\left(\boldsymbol{\theta}_{s}, \mathbf{X}_{s} ; \mathbf{X}_{V \backslash\{s\}}\right)\right) \geq-\frac{\lambda_{\min }}{4} \epsilon,
$$

with probability at least $1-\exp \left\{-c_{1} n \epsilon^{2}\right\}$. Combining with the inequality of q, we have

$$
\begin{aligned}
G\left(\mathbf{u}, \mathbf{X}_{s} ; \mathbf{X}_{V \backslash\{s\}}\right) & \left.=\nabla l\left(\boldsymbol{\theta}_{s}, \mathbf{X}_{s} ; \mathbf{X}_{V \backslash\{s\}}\right)\right) \mathbf{u}^{T}+\frac{1}{2} \mathbf{u}\left[\nabla^{2}\left(l\left(\boldsymbol{\theta}_{s}+v \mathbf{u}_{s}, \mathbf{X}_{s} ; \mathbf{X}_{V \backslash\{s\}}\right)\right)\right] \mathbf{u}^{T} \\
& >-\frac{\lambda_{\min }}{4} \epsilon^{2}+\frac{\lambda_{\min }}{4} \epsilon^{2}=0
\end{aligned}
$$

with probability at least $1-\exp \left\{-c_{1} n \epsilon^{2}+c_{0} \log p\right\}-\exp \left\{-c_{2} \frac{n}{p^{2}}+c_{3} \log p\right\}$, provided that $\epsilon<$ $\frac{\lambda_{\text {min }}}{4 \sqrt{p} \lambda_{\max } \kappa_{2} R}$. It means that $\|\hat{\mathbf{u}}\|_{2}<\epsilon$.
When $n \rightarrow \infty$ we can choose a non-negative decreasing sequence ϵ_{n} such that $\epsilon_{n}<$ $\frac{\lambda_{\text {min }}}{4 \sqrt{p} \lambda_{\text {max }} \kappa_{2} R}$, then

$$
\mathbb{P}_{\boldsymbol{\theta}}\left(\left\|\hat{\boldsymbol{\theta}}_{V \backslash\{s\}}-\boldsymbol{\theta}_{V \backslash\{s\}}\right\|_{2} \leq \epsilon_{n}\right) \geq 1-\exp \left\{-c_{1} n \epsilon_{n}^{2}+c_{0} \log p\right\}-\exp \left\{-c_{2} \frac{n}{p^{2}}+c_{3} \log p\right\}
$$

when $n \rightarrow \infty$.

Results for $\mathbf{K} \subset V$ are derived as following.
Proposition 2 Assume 1-2 and let $\mathbf{K} \subset V$. Then, for all $s \in \mathbf{K}$ and any $\delta>0$

$$
\mathbb{P}_{\boldsymbol{\theta}}\left(\left\|\nabla l\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}, \mathbf{X}_{\{s\}} ; \mathbf{X}_{\mathbf{K} \backslash\{s\}}\right)\right\|_{\infty} \geq \delta\right) \leq \exp \left\{-c_{1} n \delta^{2}+c_{0} \log d\right\}
$$

$\forall \boldsymbol{\theta}_{\boldsymbol{s} \mid \mathbf{K}} \in \boldsymbol{\Theta}$, when $n \rightarrow \infty$.
Proof The proof of Proposition 2 follows the lines of Proposition 13. We note that the set of explanatory variables $\mathbf{X}_{\mathbf{K} \backslash\{s\}}$ in the generalized linear model X_{s} given $\mathbf{X}_{\mathbf{K} \backslash\{s\}}$ does not include variables X_{t}, with $t \in V \backslash \mathbf{K}$. Suppose we zero-pad the true parameter $\boldsymbol{\theta}_{s \mid \mathbf{K}} \in \mathbb{R}^{|\mathbf{K}|-1}$ to include zero weights over $V \backslash \mathbf{K}$, then the resulting parameter would lie in $\mathbb{R}^{|p-1|}$.

Moreover, when the maximum number of neighbours that one node is allowed to have is fixed, a control is operated on the cardinality of the set $\mathbf{K},|\mathbf{K}| \leq m+2 \leq d+1$. In this case, parameters $\theta_{s t \mid \mathbf{K}}$ are estimated from models that are restricted on subsets of variables with their cardinalities less than or equal to d. Therefore, p in Proposition 13 is replaced by d. In detail, for all $s \in \mathbf{K}$ and any $\delta>0$

$$
\mathbb{P}_{\boldsymbol{\theta}}\left(\left\|\nabla l\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}, \mathbf{X}_{\{s\}} ; \mathbf{X}_{\mathbf{K} \backslash\{s\}}\right)\right\|_{\infty} \geq \delta\right) \leq \exp \left\{-c_{1} n \delta^{2}+c_{0} \log d\right\}
$$

$$
\forall \boldsymbol{\theta}_{s \mid \mathrm{K}} \in \Theta .
$$

We take the same way as in the proof of Theorem 14 to prove Theorem 3
Theorem 3 Assume 1- 2 and let $\mathbf{K} \subset V$. Then, there exists a non-negative decreasing sequence $\epsilon_{n} \rightarrow 0$, such that

$$
\mathbb{P}_{\boldsymbol{\theta}}\left(\left\|\hat{\boldsymbol{\theta}}_{s \mid \mathbf{K}}-\boldsymbol{\theta}_{s \mid \mathbf{K}}\right\|_{2} \leq \epsilon_{n}\right) \geq 1-\exp \left\{-c_{1} n \epsilon_{n}^{2}+c_{0} \log d\right\}-\exp \left\{-c_{2} \frac{n}{d^{2}}+c_{3} \log d\right\}
$$

$\forall s \in \mathbf{K}, \boldsymbol{\theta} \in \boldsymbol{\Theta}$, when $n \rightarrow \infty$.
Proof Let $\hat{\mathbf{u}}=\hat{\boldsymbol{\theta}}_{s \mid \mathbf{K}}-\boldsymbol{\theta}_{s \mid \mathbf{K}}$, and define $G: \mathbb{R}^{|\mathbf{K}|-1} \longrightarrow \mathbb{R}$ as

$$
G\left(\hat{\mathbf{u}}, \mathbb{X}_{\{s\}} ; \mathbb{X}_{\mathbf{K} \backslash\{s\}}\right)=l\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}+\hat{\mathbf{u}}, \mathbb{X}_{\{s\}} ; \mathbb{X}_{\mathbf{K} \backslash\{s\}}\right)-l\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}, \mathbb{X}_{\{s\}} ; \mathbb{X}_{\mathbf{K} \backslash\{s\}}\right)
$$

Similar to Theorem 14, we have

$$
\left.\mathbb{P}_{\boldsymbol{\theta}}\left(\left\|\hat{\boldsymbol{\theta}}_{s \mid \mathbf{K}}-\boldsymbol{\theta}_{s \mid \mathbf{K}}\right\|_{2} \leq \epsilon\right) \geq \mathbb{P}_{\boldsymbol{\theta}}\left(G\left(\mathbf{u}, \mathbf{X}_{s} ; \mathbf{X}_{\mathbf{K} \backslash\{s\}}\right)>0\right), \forall \mathbf{u} \in \mathbb{R}^{|\mathbf{K}|} \text { such that }\|\mathbf{u}\|_{2}=\epsilon\right) .
$$

Recall the conditional rescaled negative log-likelihood function:

$$
l\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}, \mathbf{X}_{\{s\}} ; \mathbf{X}_{\mathbf{K} \backslash\{s\}}\right)=\frac{1}{n} \sum_{i=1}^{n}\left[-X_{i s}\left\langle\boldsymbol{\theta}_{s \mid \mathbf{K}}, \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right\rangle+D\left(\left\langle\boldsymbol{\theta}_{s \mid \mathbf{K}}, \mathbf{X}_{\mathbf{K} \backslash s\}}^{(i)}\right\rangle\right)\right] .
$$

By its Taylor expansion at $\boldsymbol{\theta}_{s \mid \mathbf{K}}$, we have

$$
\begin{aligned}
G(\mathbf{u}) & =l\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}+\mathbf{u}, \mathbf{X}_{\{s\}} ; \mathbf{X}_{\mathbf{K} \backslash\{s\}}\right)-l\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}, \mathbf{X}_{\{s\}} ; \mathbf{X}_{\mathbf{K} \backslash\{s\}}\right) \\
& =\nabla l\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}, \mathbf{X}_{\{s\}} ; \mathbf{X}_{\mathbf{K} \backslash\{s\}}\right) \mathbf{u}^{T}+\frac{1}{2} \mathbf{u}\left[\nabla^{2}\left(l\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}+v \mathbf{u}, \mathbf{X}_{\{s\}} ; \mathbf{X}_{\mathbf{K} \backslash\{s\}}\right)\right)\right] \mathbf{u}^{T} .
\end{aligned}
$$

Let

$$
\begin{aligned}
q & =\Lambda_{\min }\left(\nabla^{2}\left(l\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}+v \mathbf{u}, \mathbf{X}_{\{s\}} ; \mathbf{X}_{\mathbf{K} \backslash\{s\}}\right)\right)\right) \\
& \geq \min _{v \in[0,1]} \Lambda_{\min }\left(\nabla^{2}\left(l\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}+v \mathbf{u}, \mathbf{X}_{\{s\}} ; \mathbf{X}_{\mathbf{K} \backslash\{s\}}\right)\right)\right) \\
& =\min _{v \in[0,1]} \Lambda_{\min }\left[\frac{1}{n} \sum_{i=1}^{n} D^{\prime \prime}\left(\left\langle\boldsymbol{\theta}_{s \mid \mathbf{K}}+v \mathbf{u}, \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right\rangle\right)\left(\mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right)^{T} \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right] .
\end{aligned}
$$

By using Taylor expansion of $D^{\prime \prime}\left(\left\langle\boldsymbol{\theta}_{s \mid \mathbf{K}}+v \mathbf{u}, \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right\rangle\right)$ at $\left\langle\boldsymbol{\theta}_{\boldsymbol{s} \mid \mathbf{K}}, \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right\rangle$, we have

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} D^{\prime \prime}\left(\left\langle\boldsymbol{\theta}_{s \mid \mathbf{K}}+v \mathbf{u}, \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right\rangle\right)\left(\mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right)^{T} \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)} \\
& =\frac{1}{n} \sum_{i=1}^{n} D^{\prime \prime}\left(\left\langle\boldsymbol{\theta}_{s \mid \mathbf{K}}, \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right\rangle\right)\left(\mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right)^{T} \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)} \\
& \quad+\frac{1}{n} \sum_{i=1}^{n} D^{\prime \prime \prime}\left(\left\langle\boldsymbol{\theta}_{s \mid \mathbf{K}}+v^{\prime} \mathbf{u}, \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right\rangle\right)\left[v \mathbf{u}\left(\mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right)^{T}\right]\left[\left(\mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right)^{T} \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right] .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
q \geq & \Lambda_{\min }\left[\frac{1}{n} \sum_{i=1}^{n} D^{\prime \prime}\left(\left\langle\boldsymbol{\theta}_{s \mid \mathbf{K}}, \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right\rangle\right)\left(\mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right)^{T} \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right] \\
& -\max _{v^{\prime} \in[0,1]} \Lambda_{\max }\left[\frac{1}{n} \sum_{i=1}^{n}\left|\frac{1}{n} \sum_{i=1}^{n} D^{\prime \prime \prime}\left(\left\langle\boldsymbol{\theta}_{s \mid \mathbf{K}}+v^{\prime} \mathbf{u}, \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right\rangle\right)\right|\left[v \mathbf{u}\left(\mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right)^{T}\right]\left(\mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right)^{T} \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right] \\
\geq & \lambda_{\min }-\delta-\max _{v^{\prime} \in[0,1]} \Lambda_{\max }\left[\frac{1}{n} \sum_{i=1}^{n}\left|D^{\prime \prime \prime}\left(\left\langle\boldsymbol{\theta}_{s \mid \mathbf{K}}+v^{\prime} \mathbf{u}, \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right)\right)\right|\left[v \mathbf{u}\left(\mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right)^{T}\right]\left(\mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right)^{T} \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right] \\
\geq & \lambda_{\min }-2 \delta-\kappa_{2} \sqrt{p} R \epsilon \lambda_{\max }
\end{aligned}
$$

The second and third inequality are due to well-known results on eigenvalue inequalities for a matrix and its submatrix (see, for example, Johnson and Robinson, 1981). Here,

$$
Q_{s \mid \mathbf{K}}\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}\right)=\frac{1}{n} \sum_{i=1}^{n} D^{\prime \prime}\left(\left\langle\boldsymbol{\theta}_{s \mid \mathbf{K}}, \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right\rangle\right)\left(\mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right)^{T} \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}
$$

is a sub-matrix of the Hessian matrix $Q_{s}\left(\boldsymbol{\theta}_{s}\right)$. Hence,

$$
\Lambda_{\min }\left[\frac{1}{n} \sum_{i=1}^{n} D^{\prime \prime}\left(\left\langle\boldsymbol{\theta}_{s \mid \mathbf{K}}, \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right\rangle\right)\left(\mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right)^{T} \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right] \geq \Lambda_{\min }\left(Q_{s}\left(\boldsymbol{\theta}_{s}\right)\right) \geq \lambda_{\min }-\delta
$$

Similarly, for the matrix $\left(\mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right)^{T} \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}$, we have

$$
\begin{aligned}
& \max _{v^{\prime} \in[0,1]} \Lambda_{\max }\left[\frac{1}{n} \sum_{i=1}^{n}\left|D^{\prime \prime \prime}\left(\left\langle\boldsymbol{\theta}_{s \mid \mathbf{K}}+v^{\prime} \mathbf{u}, \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right\rangle\right)\right|\left[v \mathbf{u}\left(\mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right)^{T}\right]\left(\mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right)^{T} \mathbf{X}_{\mathbf{K} \backslash\{s\}}^{(i)}\right. \\
& \leq \kappa_{2} \sqrt{p} R \epsilon \lambda_{\max }+\delta
\end{aligned}
$$

Then, by performing the same analysis as in the proof of Theorem 14 and Proposition 13, we get the result.

Note 1 In the proof of Theorem 3, we only require the uniform convergence of a submatrix (restricted on $K), Q_{s \mid \mathbf{K}}\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}\right)$, of the sample Fisher information matrix $Q_{s}\left(\boldsymbol{\theta}_{s}\right)$. Therefore, when the maximum neighbourhood size is known, $|\mathbf{K}| \leq m+2 \leq d+1$, we have convergence provided that $n>O_{p}\left(\kappa_{1} R^{4} d^{2} \log d\right)$. In detail, let $I_{s \mid \mathbf{K}}\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}\right)$ be the submatrix of $I_{s}\left(\boldsymbol{\theta}_{s}\right)$ indexed in \mathbf{K}, Equation (13) becomes

$$
\begin{aligned}
\mathbb{P}_{\boldsymbol{\theta}}\left(| |\left|I_{s \mid \mathbf{K}}\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}\right)-Q_{s \mid \mathbf{K}}\left(\boldsymbol{\theta}_{s \mid \mathbf{K}}\right)\right| \|_{2} \geq \delta\right) & \leq \mathbb{P}_{\boldsymbol{\theta}}\left(\left(\sum_{j, k \in \mathbf{K} \backslash\{s\}}\left(Z_{j k}^{n}\right)^{2}\right)^{1 / 2} \geq \delta\right) \\
& \leq 2 m^{2} \exp \left\{-\frac{\delta^{2} n}{2 m^{2} \kappa_{1}^{2} R^{4}}\right\} \\
& \leq \exp \left\{-c_{2} \frac{n \delta^{2}}{d^{2}}+c_{3} \log d\right\} .
\end{aligned}
$$

Theorem 9 Assume that the log-likelihood function of models (9) and (10) have unique optimal solution on $\boldsymbol{\Theta}$. Then, $\hat{\boldsymbol{\theta}}_{n s}^{T P}$ converges to the true parameter $\boldsymbol{\theta}_{s}^{*}$ when n tends to infinity provided that $\left|\Lambda_{\min }\left[Q_{s}^{P}\left(\boldsymbol{\theta}_{s}\right)\right]\right|=\left|\Lambda_{\min }\left[\nabla^{2} \ell_{n}^{P}\left(\boldsymbol{\theta}_{s}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)\right]\right|>\lambda_{\min }>0$, for all $\boldsymbol{\theta}_{s} \in \boldsymbol{\Theta}$.

Proof We prove Theorem 9 by contradiction. Indeed, assume that $\hat{\boldsymbol{\theta}}_{n s}^{T P}$ does not converge to $\boldsymbol{\theta}_{s}^{*}$. Then, $\exists \epsilon_{0}$ and $\forall n$ there exists $n_{0}>n$ such that $\left\|\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}-\boldsymbol{\theta}_{s}^{*}\right\|_{2} \geq \epsilon_{0}$. Moreover, $\hat{\boldsymbol{\theta}}_{n s}^{P}$ converges to $\boldsymbol{\theta}_{s}^{*}$, then, for $\epsilon_{0}>0$, there exist $n_{1}>0$ such that $\forall n \geq n_{1}$,

$$
\left\|\hat{\boldsymbol{\theta}}_{n s}^{P}-\boldsymbol{\theta}_{s}^{*}\right\|_{2} \leq \frac{1}{2} \epsilon_{0}
$$

Fix $n_{0}>n_{1}$ then, using Taylor expansion for $\ell_{n_{0}}^{P}\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)$ at $\boldsymbol{\theta}_{n_{0} s}^{P}$, we have

$$
\begin{aligned}
\ell_{n_{0}}^{P}\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)= & \ell_{n_{0}}^{P}\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{P}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)+\nabla \ell_{n_{0}}^{P}\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{P}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}-\hat{\boldsymbol{\theta}}_{n_{0} s}^{P}\right)^{T} \\
& +\frac{1}{2}\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}-\hat{\boldsymbol{\theta}}_{n_{0} s}^{P}\right) \nabla^{2} \ell_{n_{0}}^{P}\left(\boldsymbol{\theta}_{s}^{\prime}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}-\hat{\boldsymbol{\theta}}_{n_{0} s}^{P}\right)^{T} \\
= & \ell_{n_{0}}^{P}\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{P}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)+\frac{1}{2}\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}-\hat{\boldsymbol{\theta}}_{n_{0} s}^{P}\right) \nabla^{2} \ell_{n_{0}}^{P}\left(\boldsymbol{\theta}_{s}^{\prime}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}-\hat{\boldsymbol{\theta}}_{n_{0} s}^{P}\right)^{T}
\end{aligned}
$$

where $\boldsymbol{\theta}_{s}^{\prime}=\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}+v\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{P}-\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}\right)$, for some $v \in[0,1]$. Hence,

$$
\begin{align*}
& \left\|\ell_{n_{0}}^{P}\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)-\ell_{n_{0}}^{P}\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{P}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)\right\|_{2} \tag{17}\\
& =\frac{1}{2}\left\|\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}-\hat{\boldsymbol{\theta}}_{n_{0} s}^{P}\right) \nabla^{2} \ell_{n_{0}}^{P}\left(\boldsymbol{\theta}_{s}^{\prime}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}-\hat{\boldsymbol{\theta}}_{n_{0} s}^{P}\right)^{T}\right\|_{2} \\
& \geq \frac{1}{2}\left|\Lambda_{\min }\left[\nabla^{2} \ell_{n_{0}}^{P}\left(\boldsymbol{\theta}_{s}^{\prime}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)\right]\right|\left\|\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}-\hat{\boldsymbol{\theta}}_{n_{0} s}^{P}\right)\right\|_{2}^{2} \\
& =\frac{1}{8} \lambda_{\min }\left(\left\|\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}-\boldsymbol{\theta}_{0}\right\|_{2}-\left\|\hat{\boldsymbol{\theta}}_{n_{0} s}^{P}-\boldsymbol{\theta}_{s}^{*}\right\|_{2}\right)^{2} \\
& \geq \frac{1}{8} \lambda_{\min } \epsilon_{0}^{2} .
\end{align*}
$$

Choose $\epsilon_{1}=\frac{1}{16} \lambda_{\text {min }} \epsilon_{0}^{2}$ in Equation (11), then

$$
\begin{equation*}
\left\|\ell_{n_{0}}^{T P}\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)-\ell_{n_{0}}^{P}\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)\right\|_{2}<\frac{1}{16} \lambda_{m i n} \epsilon_{0}^{2} \tag{18}
\end{equation*}
$$

From Equation 17 and 18, we have

$$
\begin{aligned}
& \left\|\ell_{n_{0}}^{T P}\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)-\ell_{n_{0}}^{P}\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{P}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)\right\|_{2} \\
& \geq\left\|\ell_{n_{0}}^{P}\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)-\ell_{n_{0}}^{P}\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{P}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)\right\|_{2} \\
& \quad-\left\|\ell_{n_{0}}^{T P}\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)-\ell_{n_{0}}^{P}\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)\right\|_{2} \\
& >\frac{1}{8} \lambda_{\min } \epsilon_{0}^{2}-\frac{1}{16} \lambda_{\min \epsilon_{0}^{2}} \\
& =\frac{1}{16} \lambda_{\min } \epsilon_{0}^{2} \\
& >\left\|\ell_{n_{0}}^{T P}\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)-\ell_{n_{0}}^{P}\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)\right\|_{2} .
\end{aligned}
$$

It is easy to see that $\ell_{n_{0}}^{T P}\left(\boldsymbol{\theta}_{s}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)>\ell_{n_{0}}^{P}\left(\boldsymbol{\theta}_{s}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)$ for all $\boldsymbol{\theta}_{s} \in \boldsymbol{\Theta}$. Therefore,

$$
\ell_{n_{0}}^{P}\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{T P}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)>\ell_{n_{0}}^{P}\left(\hat{\boldsymbol{\theta}}_{n_{0} s}^{P}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)
$$

contradict to $\hat{\boldsymbol{\theta}}_{n_{0} s}^{P}$ is the maximum likelihood estimate of $\ell_{n_{0}}^{P}\left(\boldsymbol{\theta}_{s}, \mathbb{X}_{s} ; \mathbb{X}_{V \backslash\{s\}}\right)$.

Appendix B. A Bound on The Second and Third Derivative of The Log Normalizing Term $D($.

Here, we derive bounds κ_{1} and κ_{2} for the second and third derivative of the log normalizing term $D($.$) , that is, D^{\prime \prime}\left(v h X_{i t}+\left\langle\boldsymbol{\theta}_{s}, \mathbf{X}_{V \backslash\{s\}}^{(i)}\right\rangle\right)$, and $D^{\prime \prime \prime}\left(v h X_{i t}+\left\langle\boldsymbol{\theta}_{s}, \mathbf{X}_{V \backslash\{s\}}^{(i)}\right\rangle\right)$. For the sake of simplicity, we write

$$
D(x)=\log \left(\sum_{k=0}^{R} \exp \{k x-\log k!\}\right),
$$

which we consider on a compact set $U \subset \mathbb{R}$. The first and second derivative of $D($.$) is$

$$
\begin{aligned}
D^{\prime}(x) & =\frac{\sum_{k=0}^{R} \exp \{k x-\log k!\} k}{\sum_{k=0}^{R} \exp \{k x-\log k!\}} \\
D^{\prime \prime}(x) & =\frac{\sum_{k=0}^{R} \exp \{k x-\log k!\} k^{2} \sum_{k=0}^{R} \exp \{k x-\log k!\}-\left(\sum_{k=0}^{R} \exp \{k x-\log k!\} k\right)^{2}}{\left(\sum_{k=0}^{R} \exp \{k x-\log k!\}\right)^{2}} \\
& =\frac{\sum_{k, h=0}^{R} \exp \{k x-\log k!\} \exp \{h x-\log h!\}\left(k^{2}-k h\right)}{\sum_{k, h=0}^{R} \exp \{k x-\log k!\} \exp \{h x-\log h!\}} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left|D^{\prime \prime}(x)\right| & =\left|\frac{\sum_{k, h=0}^{R} \exp \{k x-\log k!\} \exp \{h x-\log h!\}\left(k^{2}-k h\right)}{\sum_{k, h=0}^{R} \exp \{k x-\log k!\} \exp \{h x-\log h!\}}\right| \\
& \leq \frac{\sum_{k, h=0}^{R} \exp \{k x-\log k!\} \exp \{h x-\log h!\}\left|k^{2}-k h\right|}{\sum_{k, h=0}^{R} \exp \{k x-\log k!\} \exp \{h x-\log h!\}} \\
& \leq 2 R^{2} \frac{\sum_{k, h=0}^{R} \exp \{k x-\log k!\} \exp \{h x-\log h!\}}{\sum_{k, h=0}^{R} \exp \{k x-\log k!\} \exp \{h x-\log h!\}} \\
& =2 R^{2} .
\end{aligned}
$$

Therefore, $\kappa_{1} \leq O_{p}\left(R^{2}\right)$. Similarly,

$$
D^{\prime \prime \prime}(x)=\frac{N(x)}{\left(\sum_{k=0}^{R} \exp \{k x-\log k!\}\right)^{4}}
$$

where

$$
\begin{aligned}
N(x)= & \left(\sum_{k=0}^{R} \exp \{k x-\log k!\} k^{3} \sum_{k=0}^{R} \exp \{k x-\log k!\}+\sum_{k=0}^{R} \exp \{k x-\log k!\} k^{2}\right. \\
& \left.\sum_{k=0}^{R} \exp \{k x-\log k!\} k-2 \sum_{k=0}^{R} \exp \{k x-\log k!\} k \sum_{k=0}^{R} \exp \{k x-\log k!\} k^{2}\right) \\
& \left(\sum_{k=0}^{R} \exp \{k x-\log k!\}\right)^{2}-\left(\sum_{k=0}^{R} \exp \{k x-\log k!\} k^{2} \sum_{k=0}^{R} \exp \{k x-\log k!\}\right. \\
& \left.-\left(\sum_{k=0}^{R} \exp \{k x-\log k!\} k\right)^{2}\right) 2 \sum_{k=0}^{R} \exp \{k x-\log k!\} \sum_{k=0}^{R} \exp \{k x-\log k!\} k \\
= & \sum_{k, h, r, t=0}^{R} \exp \{k x-\log k!\} \exp \{h x-\log h!\} \exp \{r x-\log r!\} \exp \{t x-\log t!\} \\
& \left(k^{3}-k h^{2}-2 k^{2} t+2 k h t\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left|D^{\prime \prime \prime}(x)\right| & \leq 6 R^{3} \frac{\sum_{k, h, r, t=0}^{R} \exp \{k x-\log k!\} \exp \{h x-\log h!\} \exp \{r x-\log r!\} \exp \{t x-\log t!\}}{\sum_{k, h, r, t=0}^{R} \exp \{k x-\log k!\} \exp \{h x-\log h!\} \exp \{r x-\log r!\} \exp \{t x-\log t!\}} \\
& =6 R^{3} .
\end{aligned}
$$

Therefore, $\kappa_{2} \leq O_{p}\left(R^{3}\right)$.

Appendix C. The StARS Algorithm

The StARS algorithm introduced in Liu et al. (2010), aims to seek the value of λ leading to the most stable set of edges. More precisely, it considers a range $\Lambda=\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ of values for λ, and fixes a number $n_{B}, 1<n_{B}<n$ of observations in one sample. Then, B samples of size $n_{B}, S_{1}, \ldots, S_{B}$, are generated from $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$. For each $\lambda \in \Lambda$, the graph is estimated by solving a lasso problem. Let $A_{\lambda}^{n_{p}}\left(S_{1}\right), \ldots, A_{\lambda}^{n_{p}}\left(S_{B}\right)$ be estimated adjacency matrices of the graph in the subsamples. The stability of one edge can be estimated by

$$
\epsilon_{s, t}^{n_{B}}(\lambda)=2 \psi_{s, t}^{n_{B}}(\lambda)\left(1-\psi_{s, t}^{n_{B}}(\lambda)\right),
$$

where $\psi_{s, t}^{n_{B}}(\lambda)=\frac{1}{B} \sum_{i=1}^{B} A_{\lambda}^{n_{B}}\left(S_{i}\right)_{s t}$ is the estimated probability of one edge between nodes s and t. The optimal value $\lambda_{\text {opt }}$ is defined as the largest value that maximizes the total stability

$$
\bar{D}_{n_{B}}(\lambda)=\sup _{0 \leq \rho \leq \lambda} \sum_{s<t} \epsilon_{s, t}^{n_{B}}(\sigma) /\binom{p}{2},
$$

smaller than an upper bound $\beta, \lambda_{\text {opt }}=\sup \left\{\lambda: \bar{D}_{B}(\lambda) \leq \beta\right\}$.

Appendix D. Simulation Study Results

About the choice of the truncated Poisson distribution. Table 3 reports TP, FP, FN, PPV, and Se for PC-LPGM obtained by simulating 500 data sets of size $n=1000$ from unrestricted Poisson conditional models. Data were generated as in Section 5.2 of the main paper, at both high $\left(\lambda_{\text {noise }}=0.5\right)$ and low $\left(\lambda_{\text {noise }}=5\right)$ SNR level. Results refer to random graphs of $p=10$ variables with varying probability of edge inclusion π. Here, PC-LPGM is run with the proper test statistic, i.e., $Z_{s t \mid \mathbf{K}}^{P}$ and with the misspecified one, i.e., $Z_{s t \mid \mathbf{K}}^{T P}$. When $Z_{s t \mid \mathbf{K}}^{T P}$ is used, the truncation point R is fixed to be equal to the largest observation.

Table 3: Monte Carlo means of TP, FP, FN, PPV, and Se obtained by simulating 500 samples of size $n=1000$ from random graphs on $p=10$ variables with Poisson node conditional distribution and level of noise $\lambda_{\text {noise }}=0.5,5$. The probability of edge inclusion π runs from 0.1 to 0.4 .

			$Z_{s t \mid \mathbf{K}}^{T P}$							$Z_{s t \mid \mathbf{K}}^{P}$	
$\lambda_{\text {noise }}$	π	TP	FP	FN	PPV	Se	TP	FP	FN	PPV	Se
0.5	0.1	8.390	0.240	0.610	0.975	0.932	8.380	0.233	0.620	0.975	0.931
	0.2	9.970	0.287	0.030	0.975	0.997	9.970	0.287	0.030	0.975	0.997
	0.3	12.837	0.153	0.163	0.989	0.987	12.837	0.153	0.163	0.989	0.987
	0.4	17.387	0.117	4.613	0.994	0.790	17.460	0.113	4.540	0.994	0.794
	0.1	6.747	0.367	2.253	0.955	0.750	6.747	0.370	2.253	0.955	0.750
	0.2	8.470	0.293	1.530	0.970	0.847	8.450	0.293	1.550	0.970	0.845
	0.3	11.283	0.080	1.717	0.993	0.868	11.757	0.097	1.243	0.992	0.904
	0.4	13.143	0.025	8.857	0.998	0.597	16.029	0.029	5.971	0.998	0.729

Unrestricted Poisson conditional models. Table 6 to Table 9 report TP, FP, FN, PPV and Se for each of methods considered in Section 5.2 of the main paper. Two different graph dimensions, $p=10,100$, and three graph structures (see Figure 1 and Figure 2 of the main paper) are considered at one low $\left(\lambda_{\text {noise }}=5\right)$ and one high $\left(\lambda_{\text {noise }}=0.5\right)$ SNR levels.
Table 4: Monte Carlo means of TP, PPV and Se obtained by simulating 500 samples from graphs in Figure 1 with $p=10$ variables with Poisson node conditional distribution with mean $\lambda=1$ and levels of noise $\lambda_{\text {noise }}=0.5,5$.

$\lambda_{\text {noise }}$	type	n	PC-LPGM			LPGM			VSL			NPN-copula		
			TP	PPV	Se									
0.5	scalefree	50	2.440	0.932	0.271	1.949	0.962	0.217	2.437	0.865	0.271	2.577	0.874	0.286
		100	5.000	0.956	0.556	2.354	0.988	0.262	2.927	0.976	0.325	2.880	0.983	0.320
		200	7.953	0.975	0.884	4.493	0.986	0.499	4.625	0.996	0.514	5.073	0.996	0.564
		1000	9.000	0.982	1.000	7.873	0.890	0.875	4.954	1.000	0.550	5.377	1.000	0.597
		2000	9.000	0.982	1.000	8.417	0.759	0.935	5.566	1.000	0.618	6.055	1.000	0.673
	Hub	50	2.103	0.902	0.263	1.933	0.926	0.242	2.237	0.809	0.280	2.287	0.839	0.286
		100	4.237	0.947	0.530	2.828	0.957	0.353	2.713	0.950	0.339	2.817	0.960	0.352
		200	7.160	0.971	0.895	4.497	0.914	0.562	4.316	0.995	0.540	4.636	0.996	0.580
		1000	8.000	0.976	1.000	7.863	0.717	0.983	5.908	1.000	0.739	6.000	1.000	0.750
		2000	8.000	0.980	1.000	7.990	0.729	0.999	7.110	1.000	0.889	7.006	1.000	0.876
	Random	50	1.824	0.875	0.203	1.805	0.945	0.201	2.343	0.808	0.260	2.310	0.822	0.257
		100	3.826	0.939	0.425	2.483	0.974	0.276	2.680	0.952	0.298	2.863	0.958	0.318
		200	6.930	0.976	0.770	3.920	0.981	0.436	3.510	0.993	0.439	3.934	0.995	0.492
		1000	8.963	0.980	0.996	7.320	0.875	0.813	3.190	1.000	0.399	3.434	1.000	0.429
		2000	9.000	0.981	1.000	8.320	0.767	0.924	2.952	1.000	0.369	3.356	1.000	0.420
5	scalefree	50	0.711	0.530	0.079	0.723	0.615	0.080	1.053	0.418	0.117	1.177	0.404	0.131
		100	1.110	0.733	0.123	1.057	0.849	0.117	1.467	0.594	0.163	1.527	0.608	0.170
		200	1.875	0.848	0.208	1.315	0.979	0.146	1.934	0.797	0.215	2.012	0.840	0.224
		1000	8.000	0.964	0.889	4.609	0.996	0.512	3.212	0.999	0.357	3.302	0.999	0.367
		2000	8.977	0.974	0.997	8.133	1.000	0.904	4.238	1.000	0.471	4.408	1.000	0.490
	Hub	50	0.733	0.555	0.092	0.816	0.717	0.102	1.090	0.368	0.136	1.013	0.357	0.127
		100	1.074	0.710	0.134	1.157	0.828	0.145	1.303	0.533	0.163	1.343	0.554	0.168
		200	1.770	0.860	0.221	1.258	0.979	0.157	1.784	0.744	0.223	1.880	0.765	0.235
		1000	7.143	0.959	0.893	5.863	0.996	0.733	3.152	1.000	0.394	3.168	1.000	0.396
		2000	7.980	0.970	0.998	7.030	0.990	0.879	3.900	1.000	0.488	4.026	1.000	0.503
	Random	50	0.633	0.517	0.070	0.842	0.682	0.094	1.043	0.410	0.116	1.073	0.392	0.119
		100	1.137	0.708	0.126	1.177	0.849	0.131	1.547	0.606	0.172	1.553	0.597	0.173
		200	1.776	0.840	0.197	1.291	0.970	0.143	1.800	0.757	0.225	1.980	0.801	0.248
		1000	7.517	0.969	0.835	5.123	0.996	0.569	3.042	0.997	0.380	3.164	0.998	0.396
		2000	8.903	0.970	0.989	7.890	0.998	0.877	3.665	1.000	0.458	3.785	1.000	0.473

Table 5: Monte Carlo means of TP, PPV and Se obtained by simulating 500 samples from graphs in Figure 1 with $p=100$

$\lambda_{\text {noise }}$	type	n	PC-LPGM			LPGM			VSL			NPN-copula		
			TP	PPV	Se									
0.5	Scalefree	100	18.880	0.918	0.191	7.920	0.831	0.080	9.580	0.938	0.097	10.600	0.952	0.107
		200	54.236	0.958	0.548	40.446	0.863	0.409	63.915	0.760	0.646	65.647	0.797	0.663
		1000	98.082	0.977	0.991	88.196	0.882	0.891	94.438	0.999	0.954	94.571	1.000	0.955
		2000	98.994	0.977	1.000	89.862	0.981	0.908	96.821	1.000	0.978	97.375	1.000	0.984
	Hub	100	1.918	0.483	0.020	20.020	0.562	0.211	3.850	0.306	0.041	4.200	0.337	0.044
		200	7.340	0.729	0.077	46.835	0.627	0.493	16.643	0.427	0.175	18.491	0.451	0.195
		1000	81.360	0.952	0.856	83.350	0.803	0.877	29.651	0.998	0.312	37.746	0.999	0.397
		2000	94.788	0.959	0.998	94.975	0.548	1.000	69.263	1.000	0.729	77.833	1.000	0.819
	Random	100	17.150	0.901	0.157	13.130	0.815	0.120	9.890	0.918	0.091	10.030	0.941	0.092
		200	52.640	0.957	0.483	48.970	0.774	0.449	67.032	0.735	0.615	70.520	0.769	0.647
		1000	107.237	0.983	0.984	96.360	0.788	0.884	102.676	0.999	0.942	104.820	0.999	0.962
		2000	107.237	0.983	0.984	96.360	0.788	0.884	106.836	1.000	0.980	107.376	1.000	0.985
5	Scalefree	100	1.063	0.323	0.011	2.860	0.299	0.029	2.630	0.198	0.027	2.730	0.214	0.028
		200	3.688	0.560	0.037	1.106	0.821	0.011	9.316	0.332	0.094	10.012	0.359	0.101
		1000	60.578	0.939	0.612	52.072	0.973	0.526	14.844	0.998	0.150	17.124	0.998	0.173
		2000	92.632	0.959	0.936	55.340	0.998	0.559	24.579	1.000	0.255	33.672	1.000	0.335
	Hub	100	0.326	0.139	0.003	3.210	0.363	0.034	1.080	0.066	0.011	1.130	0.073	0.012
		200	0.941	0.246	0.010	15.092	0.451	0.159	3.392	0.143	0.036	3.392	0.150	0.036
		1000	16.580	0.807	0.175	39.208	0.876	0.413	7.424	0.884	0.078	8.440	0.895	0.089
		2000	49.210	0.920	0.518	67.042	0.759	0.706	8.983	0.996	0.095	9.797	0.998	0.103
	Random	100	1.065	0.278	0.010	3.940	0.309	0.036	2.840	0.208	0.026	3.310	0.195	0.030
		200	3.739	0.564	0.034	1.290	0.775	0.012	10.548	0.353	0.097	11.064	0.382	0.102
		1000	64.270	0.941	0.590	61.990	0.961	0.569	14.741	0.999	0.135	16.333	0.999	0.150
		2000	101.457	0.962	0.931	67.477	1.000	0.619	26.038	1.000	0.239	30.340	1.000	0.278

STRUCTURE LEARING OF UNDIRECTED GRAPHICAL MODELS

Table 6: Simulation results from 500 replicates of the undirected graphs shown in Figure 1 of the main paper for $p=10$ variables with Poisson node conditional distribution and level of noise $\lambda_{\text {noise }}=0.5$. Monte Carlo means (standard deviations) are shown for TP, FP, FN, PPV and Se.

Graph	n	Algorithm	TP	FP	FN	PPV	Se
Scale-free	200	PC-LPGM	6.838 (1.152)	0.048 (0.230)	2.163 (1.152)	0.994 (0.208)	0.760 (0.169)
		LPGM	4.732 (1.407)	0.384 (0.644)	4.268 (1.407)	0.941 (0.097)	0.526 (0.156)
		PDN	5.872 (0.741)	0.182 (0.430)	3.128 (0.741)	0.972 (0.065)	0.652 (0.082)
		VSL	4.625 (2.056)	0.034 (0.181)	4.375 (2.056)	0.996 (0.021)	0.514 (0.228)
		GLASSO	4.502 (1.961)	0.023 (0.151)	4.498 (1.961)	0.997 (0.018)	0.500 (0.218)
		NPN-copula	5.073 (2.169)	0.034 (0.191)	3.927 (2.169)	0.996 (0.023)	0.564 (0.241)
		NPN-skeptic	5.030 (2.177)	0.039 (0.230)	3.970 (2.177)	0.994 (0.023)	0.559 (0.242)
	1000	PC-LPGM	9.000 (0.000)	0.071 (0.258)	0.000 (0.000)	0.993 (0.026)	1.000 (0.000)
		LPGM	5.780 (1.253)	0.692 (2.730)	3.220 (1.253)	0.964 (0.135)	0.642 (0.139)
		PDN	5.780 (0.661)	0.000 (0.000)	3.220 (0.661)	1.000 (0.000)	0.642 (0.073)
		VSL	4.954 (2.246)	0.000 (0.000)	4.046 (2.246)	1.000 (0.000)	0.550 (0.250)
		GLASSO	4.889 (2.234)	0.000 (0.000)	4.111 (2.234)	1.000 (0.000)	0.543 (0.248)
		NPN-copula	$5.377(2.451)$	$0.000(0.000)$	3.623 (2.451)	$1.000(0.000)$	$0.597(0.272)$
		NPN-skeptic	5.232 (2.609)	0.000 (0.000)	3.768 (2.069)	$1.000(0.000)$	$0.581(0.290)$
	2000	PC-LPGMC	9.000 (0.000)	0.071 (0.278)	0.000 (0.000)	0.993 (0.027)	1.000 (0.000)
		LPGM	7.660 (1.611)	5.180 (4.482)	1.340 (1.611)	0.703 (0.238)	0.851 (0.179)
		PDN	5.658 (0.581)	0.000 (0.000)	3.342 (0.581)	1.000 (0.000)	0.629 (0.065)
		VSL	5.566 (2.381)	0.000 (0.000)	3.434 (2.381)	1.000 (0.000)	0.618 (0.265)
		GLASSO	5.573 (2.381)	0.000 (0.000)	3.427 (2.381)	1.000 (0.000)	0.619 (0.265)
		NPN-copula	6.055 (2.509)	0.000 (0.000)	2.945 (2.509)	1.000 (0.000)	$0.673(0.279)$
		NPN-skeptic	$5.945(2.710)$	$0.000(0.000)$	$3.055(2.710)$	$1.000(0.000)$	$0.661(0.301)$
Hub	200	PC-LPGM	6.618 (1.042)	0.104 (0.132)	1.382 (1.042)	0.986 (0.042)	0.827 (0.130)
		LPGM	3.072 (1.124)	0.136 (0.505)	4.928 (1.124)	0.975 (0.077)	0.384 (0.144)
		PDN	6.680 (0.700)	0.560 (0.769)	1.320 (0.700)	0.926 (0.099)	0.835 (0.088)
		VSL	4.316 (1.933)	0.030 (0.171)	3.684 (1.933)	0.995 (0.033)	0.540 (0.242)
		GLASSO	4.212 (1.903)	0.028 (0.177)	3.788 (1.903)	0.995 (0.033)	0.527 (0.238)
		NPN-copula	4.636 (1.936)	0.024 (0.166)	3.364 (1.936)	0.996 (0.026)	0.580 (0.242)
		NPN-skeptic	4.506 (2.009)	0.032 (0.187)	3.494 (2.009)	0.995 (0.028)	0.563 (0.251)
	1000	PC-LPGM	8.000 (0.000)	0.122 (0.345)	0.000 (0.000)	0.987 (0.038)	1.000 (0.000)
		LPGM	$4.392(2.669)$	1.452 (2.201)	3.608 (2.669)	0.885 (0.169)	$0.549(0.334)$
		PDN	7.128 (0.395)	0.000 (0.000)	0.872 (0.395)	1.000 (0.000)	$0.891(0.049)$
		VSL	5.908 (1.920)	0.000 (0.000)	2.092 (1.920)	1.000 (0.000)	$0.739(0.240)$
		GLASSO	$5.842(1.907)$	$0.000(0.000)$	2.158 (1.907)	1.000 (0.000)	$0.730(0.238)$
		NPN-copula	$6.000(2.094)$	$0.000(0.000)$	$2.000(2.094)$	$1.000(0.000)$	$0.750(0.262)$
		NPN-skeptic	5.818 (2.337)	0.000 (0.000)	2.182 (2.337)	1.000 (0.000)	0.727 (0.292)
	2000	PC-LPGM	8.000 (0.000)	0.132 (0.373)	0.000 (0.000)	0.986 (0.040)	1.000 (0.000)
		LPGM	6.252 (2.688)	2.480 (1.904)	1.748 (2.688)	0.790 (0.151)	0.782 (0.336)
		PDN	7.216 (0.488)	0.000 (0.000)	0.784 (0.488)	1.000 (0.000)	0.902 (0.061)
		VSL	7.110 (1.680)	0.000 (0.000)	0.890 (1.680)	1.000 (0.000)	0.889 (0.210)
		GLASSO	7.068 (1.681)	0.000 (0.000)	0.932 (1.681)	1.000 (0.000)	$0.884(0.210)$
		NPN-copula	$7.006(2.030)$	$0.000(0.000)$	$0.994(2.030)$	$1.000(0.000)$	$0.876(0.254)$
		NPN-skeptic	6.794 (2.272)	0.000 (0.000)	1.206 (2.272)	1.000 (0.000)	$0.849(0.284)$
	200	PC-LPGM	5.492 (1.581)	0.052 (0.231)	2.508 (1.581)	0.991 (0.039)	0.687 (0.198)
		LPGM	3.500 (1.120)	0.244 (0.531)	4.500 (1.120)	0.950 (0.107)	0.438 (0.140)
		PDN	4.800 (0.752)	2.362 (0.817)	3.200 (0.752)	0.675 (0.085)	0.600 (0.094)
		VSL	3.510 (1.655)	0.034 (0.202)	4.490 (1.655)	0.993 (0.040)	0.439 (0.207)
		GLASSO	3.464 (1.601)	0.026 (0.171)	4.536 (1.601)	0.995 (0.036)	0.433 (0.200)
		NPN-copula	3.934 (1.823)	0.028 (0.165)	4.066 (1.823)	0.995 (0.030)	0.492 (0.228)
		NPN-skeptic	3.826 (1.859)	0.030 (0.182)	4.174 (1.859)	0.995 (0.031)	0.478 (0.232)

Table 6 - continued from previous page

Graph	n	Algorithm	TP	FP	FN	PPV	Se
Random	1000	PC-LPGM	8.000 (0.000)	0.078 (0.283)	0.000 (0.000)	0.991 (0.031)	1.000 (0.000)
		LPGM	5.748 (1.989)	3.584 (3.752)	2.252 (1.989)	0.758 (0.244)	0.718 (0.249)
		PDN	5.066 (0.753)	2.164 (0.634)	2.934 (0.753)	0.703 (0.068)	0.633 (0.094)
		VSL	3.190 (1.963)	0.000 (0.000)	4.810 (1.963)	1.000 (0.000)	0.399 (0.245)
		GLASSO	3.110 (1.897)	0.000 (0.000)	4.890 (1.897)	1.000 (0.000)	0.389 (0.237)
		NPN-copula	3.434 (2.257)	0.000 (0.000)	4.566 (2.257)	1.000 (0.000)	0.429 (0.282)
		NPN-skeptic	3.358 (2.351)	0.000 (0.000)	4.642 (2.351)	1.000 (0.000)	0.420 (0.294)
	2000	PC-LPGM	8.000 (0.000)	0.048 (0.214)	0.000 (0.000)	0.995 (0.024)	1.000 (0.000)
		LPGM	7.484 (1.073)	6.256 (2.369)	0.516 (1.073)	0.576 (0.140)	0.936 (0.134)
		PDN	5.068 (0.730)	2.082 (0.716)	2.932 (0.730)	0.713 (0.080)	0.634 (0.091)
		VSL	2.952 (2.011)	0.000 (0.000)	5.048 (2.011)	1.000 (0.000)	0.369 (0.251)
		GLASSO	2.828 (1.886)	0.000 (0.000)	5.172 (1.886)	1.000 (0.000)	0.353 (0.236)
		NPN-copula	3.356 (2,261)	0.000 (0.000)	4.644 (2.261)	1.000 (0.000)	0.420 (0.283)
		NPN-skeptic	3.384 (2.321)	0.000 (0.000)	4.616 (2.321)	1.000 (0.000)	0.423 (0.290)

Table 7: Simulation results from 500 replicates of the undirected graphs shown in Figure 1 of the main paper for $p=10$ variables with Poisson node conditional distribution and level of noise $\lambda_{\text {noise }}=5$. Monte Carlo means (standard deviations) are shown for TP, FP, FN, PPV and Se.

Graph	n	Algorithm	TP	FP	FN	PPV	Se
Scale-free	200	PC-LPGM	2.136 (1.617)	0.744 (0.927)	6.864 (1.617)	0.756 (0.267)	0.237 (0.180)
		LPGM	1.628 (1.249)	1.920 (1.885)	7.372 (1.249)	0.524 (0.336)	0.181 (0.139)
		PDN	3.824 (1.221)	4.200 (1.655)	5.176 (1.221)	0.486 (0.164)	0.425 (0.136)
		VSL	1.934 (1.142)	0.658 (0.927)	7.066 (1.142)	0.797 (0.277)	0.215 (0.127)
		GLASSO	1.914 (1.119)	0.660 (0.937)	7.086 (1.119)	0.796 (0.278)	0.213 (0.124)
		NPN-copula	2.012 (1.214)	0.550 (0.924)	6.988 (1.214)	0.840 (0.260)	0.224 (0.135)
		NPN-skeptic	1.832 (1.302)	0.568 (0.927)	7.168 (1.302)	0.821 (0.237)	0.204 (0.145)
	1000	PC-LPGM	8.590 (0.764)	1.060 (0.926)	0.410 (0.764)	0.898 (0.084)	0.954 (0.085)
		LPGM	4.352 (1.818)	2.020 (1.699)	4.648 (1.818)	0.719 (0.198)	0.484 (0.202)
		PDN	6.148 (0.865)	0.366 (0.604)	2.852 (0.865)	0.948 (0.082)	0.683 (0.096)
		VSL	3.212 (1.742)	0.008 (0.089)	5.788 (1.742)	0.999 (0.015)	0.357 (0.194)
		GLASSO	3.194 (1.734)	0.008 (0.089)	5.806 (1.734)	0.997 (0.015)	0.355 (0.193)
		NPN-copula	3.302 (1.722)	0.004 (0.063)	5.698 (1.722)	0.999 (0.017)	0.367 (0.191)
		NPN-skeptic	3.058 (1.867)	0.004 (0.063)	5.942 (1.867)	0.999 (0.017)	0.340 (0.207)
	2000	PC-LPGM	8.996 (0.063)	1.118 (1.017)	0.004 (0.063)	0.898 (0.085)	1.000 (0.007)
		LPGM	4.828 (1.812)	2.320 (2.006)	4.172 (1.812)	0.720 (0.178)	0.536 (0.201)
		PDN	6.258 (0.803)	0.020 (0.140)	2.742 (0.803)	0.997 (0.020)	0.695 (0.089)
		VSL	4.238 (1.984)	0.000 (0.000)	4.762 (1.984)	1.000 (0.000)	0.471 (0.220)
		GLASSO	4.222 (1.975)	0.000 (0.000)	4.778 (1.975)	1.000 (0.000)	0.469 (0.219)
		NPN-copula	4.408 (1.931)	0.000 (0.000)	4.592 (1.931)	1.000 (0.000)	0.490 (0.215)
		NPN-skeptic	4.198 (2.102)	0.000 (0.000)	4.802 (2.102)	1.000 (0.000)	0.466 (0.234)
	200	PC-LPGM	2.132 (1.535)	0.650 (0.830)	5.868 (1.535)	0.768 (0.278)	0.267 (0.192)
		LPGM	1.588 (1.363)	2.188 (2.212)	6.412 (1.363)	0.224 (0.334)	0.099 (0.170)
		PDN	3.366 (1.265)	4.876 (1.726)	4.634 (1.265)	0.416 (0.164)	0.421 (0.158)
		VSL	1.784 (1.002)	0.896 (1.236)	6.216 (1.002)	0.744 (0.300)	0.223 (0.125)
		GLASSO	1.766 (1.003)	0.890 (1.225)	6.234 (1.003)	0.744 (0.301)	0.221 (0.125)
		NPN-copula	1.880 (1.073)	0.806 (1.109)	6.120 (1.073)	0.765 (0.297)	0.235 (0.134)
		NPN-skeptic	1.694 (1.157)	0.842 (1.176)	6.306 (1.157)	0.738 (0.294)	0.212 (0.145)

Table 7 - continued from previous page

Graph	n	Algorithm	TP	FP	FN	PPV	Se
Hub	1000	PC-LPGM	7.608 (0.586)	1.150 (0.985)	0.392 (0.586)	0.879 (0.095)	0.951 (0.073)
		LPGM	4.268 (1.175)	2.636 (1.733)	3.732 (1.751)	0.636 (0.188)	0.534 (0.219)
		PDN	6.594 (0.864)	0.782 (0.914)	1.406 (0.864)	0.897 (0.116)	0.824 (0.108)
		VSL	3.152 (1.628)	0.012 (0.109)	4.848 (1.628)	1.000 (0.019)	0.394 (0.203)
		GLASSO	3.142 (1.620)	0.012 (0.109)	4.858 (1.620)	1.000 (0.019)	0.393 (0.202)
		NPN-copula	3.168 (1.647)	0.006 (0.077)	4.832 (1.647)	1.000 (0.016)	0.396 (0.206)
		NPN-skeptic	2.990 (1.737)	0.010 (0.100)	5.010 (1.737)	0.998 (0.021)	0.374 (0.217)
	2000	PC-LPGM	7.998 (0.045)	1.160 (0.998)	0.002 (0.045)	0.883 (0.092)	1.000 (0.006)
		LPGM	4.612 (2.231)	2.708 (1.901)	3.388 (2.231)	0.632 (0.234)	0.576 (0.279)
		PDN	7.158 (0.421)	0.046 (0.210)	0.842 (0.421)	0.994 (0.027)	0.895 (0.053)
		VSL	3.900 (1.823)	0.000 (0.000)	4.100 (1.823)	1.000 (0.000)	$0.488(0.228)$
		GLASSO	3.874 (1.815)	0.000 (0.000)	4.126 (1.815)	1.000 (0.000)	0.484 (0.227)
		NPN-copula	4.026 (1.881)	0.000 (0.000)	3.974 (1.881)	1.000 (0.000)	0.503 (0.235)
		NPN-skeptic	3.730 (2.044)	0.000 (0.000)	4.270 (2.044)	1.000 (0.000)	0.466 (0.255)
Random	200	PC-LPGM	1.685 (1.437)	0.740 (0.973)	6.315 (1.437)	0.716 (0.305)	0.211 (0.180)
		LPGM	1.552 (1.189)	2.264 (2.553)	6.448 (1.189)	0.513 (0.349)	0.194 (0.149)
		PDN	3.204 (1.038)	4.904 (1.507)	4.796 (1.038)	0.402 (0.137)	0.400 (0.130)
		VSL	1.800 (1.103)	0.850 (1.295)	6.200 (1.103)	0.757 (0.310)	0.225 (0.138)
		GLASSO	1.805 (1.115)	0.845 (1.300)	6.195 (1.113)	0.758 (0.309)	0.226 (0.139)
		NPN-copula	1.980 (1.194)	0.735 (1.184)	6.020 (1.194)	0.801 (0.281)	0.248 (0.149)
		NPN-skeptic	1.795 (1.213)	0.830 (1.265)	6.205 (1.213)	0.752 (0.291)	0.224 (0.152)
	1000	LRTPC	7.470 (0.779)	0.980 (1.044)	0.530 (0.779)	0.895 (0.101)	0.934 (0.097)
		LPGM	3.724 (1.660)	1.872 (1.850)	4.276 (1.660)	0.704 (0.250)	0.466 (0.207)
		PDN	4.816 (0.709)	2.600 (0.823)	3.184 (0.709)	0.653 (0.081)	0.602 (0.089)
		VSL	3.042 (1.588)	0.016 (0.126)	4.958 (1.588)	0.997 (0.027)	0.380 (0.198)
		GLASSO	3.018 (1.563)	0.016 (0.126)	4.982 (1.563)	0.997 (0.027)	0.377 (0.195)
		NPN-copula	3.164 (1.588)	0.008 (0.089)	4.836 (1.588)	0.998 (0.017)	0.396 (0.199)
		NPN-skeptic	2.972 (1.699)	0.010 (0.100)	5.028 (1.699)	0.998 (0.022)	0.372 (0.212)
	2000	LRTPC	8.000 (0.000)	0.848 (0.944)	0.000 (0.000)	0.914 (0.089)	1.000 (0.000)
		LPGM	3.572 (1.533)	1.424 (1.304)	4.428 (1.533)	0.758 (0.191)	$0.446(0.192)$
		PDN	5.044 (0.732)	2.348 (0.645)	2.956 (0.732)	0.685 (0.065)	$0.630(0.091)$
		VSL	3.665 (1.803)	0.000 (0.000)	4.335 (1.803)	1.000 (0.000)	0.458 (0.225)
		GLASSO	3.640 (1.791)	0.000 (0.000)	4.360 (1.791)	1.000 (0.000)	0.455 (0.224)
		NPN-copula	3.785 (1.823)	0.000 (0.000)	4.215 (1.823)	1.000 (0.000)	0.473 (0.228)
		NPN-skeptic	3.610 (2.044)	0.000 (0.000)	4.390 (2.044)	1.000 (0.000)	0.451 (0.256)

Table 8: Simulation results from 500 replicates of the undirected graphs shown in Figure 2 of the main paper for $p=100$ variables with Poisson node conditional distribution and level of noise $\lambda_{\text {noise }}=0.5$. Monte Carlo means (standard deviations) are shown for TP, FP, FN, PPV and Se.

Graph	n	Algorithm	TP	FP	FN	PPV	
	200	PC-LPGM	$61.585(4.316)$	$8.490(2.887)$	$37.415(4.216)$	$0.880(0.038)$	$0.622(0.044)$
		LPGM	$5.564(8.084)$	$0.824(5.594)$	$93.436(8.084)$	$0.985(0.067)$	$0.056(0.082)$
		PDN	$53.080(3.283)$	$26.007(4.942)$	$45.920(3.283)$	$0.673(0.052)$	$0.536(0.033)$
		VSL	$63.915(6.489)$	$22.308(13.433)$	$35.085(6.489)$	$0.760(0.095)$	$0.646(0.066)$
		GLASSO	$62.755(6.306)$	$22.642(13.114)$	$36.245(6.306)$	$0.754(0.097)$	$0.634(0.064)$
		NPN-copula	$65.647(5.734)$	$18.345(11.701)$	$33.352(5.734)$	$0.797(0.088)$	$0.663(0.058)$
		NPN-skeptic	$64.343(6.316)$	$22.918(15.323)$	$34.657(6.316)$	$0.759(0.102)$	$0.650(0.064)$

Nguyen and Chiogna

Table 8 - continued from previous page

Graph	n	Algorithm	TP	FP	FN	PPV	Se
Scale-free	1000	PC-LPGM	98.580 (0.610)	9.589 (2.982)	0.420 (0.610)	0.912 (0.025)	0.996 (0.006)
		LPGM	51.520 (11.263)	0.012 (0.109)	47.480 (11.263)	1.000 (0.002)	0.520 (0.114)
		PDN	65.357 (1.871)	0.050 (0.218)	33.643 (1.871)	0.999 (0.003)	0.660 (0.019)
		VSL	94.438 (2.316)	0.089 (0.286)	4.562 (2.316)	0.999 (0.003)	0.954 (0.023)
		GLASSO	93.830 (2.507)	0.161 (0.393)	5.170 (2.507)	0.998 (0.004)	0.948 (0.025)
		NPN-copula	94.571 (2.159)	0.054 (0.226)	4.429 (2.159)	1.000 (0.002)	$0.955(0.022)$
		NPN-skeptic	94.277 (2.089)	$0.134(0.342)$	4.723 (2.089)	$0.999(0.004)$	$0.952(0.021)$
	2000	PC-LPGMC	99.000 (0.000)	9.759 (3.134)	0.000 (0.000)	0.911 (0.026)	1.000 (0.000)
		LPGM	54.185 (2.379)	0.010 (0.100)	44.815 (2.379)	1.000 (0.002)	0.547 (0.024)
		PDN	64.370 (1.560)	0.000 (0.000)	34.630 (1.560)	1.000 (0.000)	0.650 (0.016)
		VSL	96.821 (1.422)	0.000 (0.000)	2.179 (1.422)	1.000 (0.000)	0.978 (0.014)
		GLASSO	96.518 (1.577)	0.000 (0.000)	2.482 (1.577)	1.000 (0.000)	0.975 (0.016)
		NPN-copula	97.375 (1.402)	0.000 (0.000)	1.625 (1.402)	1.000 (0.000)	0.984 (0.014)
		NPN-skeptic	97.214 (1.423)	0.009 (0.000)	1.786 (1.423)	1.000 (0.000)	0.982 (0.014)
Hub	200	PC-LPGM	13.393 (2.484)	14.518 (4.082)	81.607 (2.484)	0.486 (0.084)	0.141 (0.026)
		LPGM	4.344 (4.368)	5.840 (9.239)	90.656 (4.368)	0.426 (0.330)	0.046 (0.046)
		PDN	19.340 (3.834)	84.747 (5.935)	75.660 (3.834)	0.186 (0.038)	0.204 (0.040)
		VSL	16.643 (6.546)	26.982 (17.330)	78.357 (6.546)	0.427 (0.128)	0.175 (0.069)
		GLASSO	15.991 (6.361)	25.518 (16.665)	79.009 (6.361)	0.434 (0.135)	0.168 (0.067)
		NPN-copula	18.491 (6.864)	26.625 (16.889)	76.509 (6.864)	0.451 (0.121)	0.195 (0.072)
		NPN-skeptic	17.473 (7.408)	31.348 (22.170)	77.527 (7.408)	0.406 (0.123)	0.184 (0.078)
	1000	PC-LPGM	84.794 (3.416)	25.238 (5.079)	10.206 (3.416)	0.772 (0.036)	0.893 (0.036)
		LPGM	4.555 (6.512)	0.910 (1.349)	90.445 (6.512)	0.792 (0.324)	0.048 (0.069)
		PDN	78.487 (3.585)	19.650 (4.209)	16.513 (3.585)	0.800 (0.041)	0.826 (0.038)
		VSL	29.651 (12.504)	0.063 (0.303)	65.349 (12.504)	0.998 (0.010)	0.312 (0.132)
		GLASSO	29.341 (12.233)	0.056 (0.262)	65.659 (12.233)	0.998 (0.009)	0.309 (0.129)
		NPN-copula	37.746 (15.112)	0.048 (0.248)	57.254 (15.112)	0.999 (0.004)	$0.397(0.159)$
		NPN-skeptic	35.476 (16.277)	0.119 (0.412)	59.524 (16.277)	0.998 (0.007)	0.373 (0.171)
	2000	PC-LPGM	94.949 (0.221)	26.942 (5.566)	0.051 (0.221)	0.781 (0.036)	0.999 (0.002)
		LPGM	7.145 (9.369)	0.625 (0.805)	87.855 (9.369)	0.620 (0.478)	0.075 (0.099)
		PDN	93.073 (1.205)	1.113 (1.094)	1.927 (1.205)	0.988 (0.012)	0.980 (0.013)
		VSL	69.263 (15.639)	0.013 (0.113)	25.737 (15.639)	1.000 (0.001)	0.729 (0.165)
		GLASSO	68.647 (14.931)	0.013 (0.113)	26.353 (14.931)	1.000 (0.001)	0.723 (0.157)
		NPN-copula	77.833 (8.985)	0.000 (0.000)	17.167 (8.895)	1.000 (0.000)	0.819 (0.095)
		NPN-skeptic	74.987 (9.809)	0.013 (0.000)	20.013 (8.985)	1.000 (0.001)	0.789 (0.103)
Random	200	PC-LPGM	62.432 (5.030)				0.573 (0.046)
		LPGM	8.190 (2.370)	$0.120(0.326)$	100.810 (2.370)	$0.987(0.036)$	0.075 (0.025)
		PDN	52.007 (3.302)	32.167 (5.283)	56.993 (3.302)	0.619 (0.049)	0.477 (0.030)
		VSL	67.032 (8.241)	26.932 (15.060)	41.968 (8.241)	0.735 (0.100)	0.615 (0.076)
		GLASSO	64.736 (8.543)	25.440 (15.001)	44.264 (8.543)	0.742 (0.106)	0.594 (0.078)
		NPN-copula	70.520 (7.514)	23.344 (13.387)	38.480 (7.514)	0.769 (0.091)	0.647 (0.069)
		NPN-skeptic	68.956 (8.123)	29.956 (18.522)	40.044 (8.123)	0.722 (0.105)	0.633 (0.075)
	1000	PC-LPGM	105.748 (1.504)	8.752 (2.939)	3.252 (1.504)	0.924 (0.024)	0.970 (0.014)
		LPGM	43.800 (31.795)	0.300 (0.593)	65.200 (31.795)	0.996 (0.009)	0.402 (0.292)
		PDN	63.020 (2.491)	9.470 (1.332)	45.980 (2.491)	0.870 (0.016)	0.578 (0.023)
		VSL	102.676 (3.506)	0.136 (4.123)	6.324 (3.506)	0.999 (0.003)	0.942 (0.032)
		GLASSO	101.904 (4.123)	0.152 (0.142)	7.096 (4.123)	0.999 (0.004)	$0.935(0.038)$
		NPN-copula	104.820 (2.159)	0.104 (0.319)	4.180 (2.159)	0.999 (0.003)	$0.962(0.020)$
		NPN-skeptic	104.392 (2.237)	0.192 (0.424)	4.608 (2.237)	0.998 (0.004)	0.958 (0.021)
	2000	PC-LPGM	106.724 (1.212)	8.664 (2.855)	2.276 (1.212)	0.925 (0.023)	0.979 (0.011)
		LPGM	69.900 (7.493)	0.280 (0.577)	39.100 (7.493)	0.996 (0.008)	0.641 (0.069)

Table 8 - continued from previous page

| Graph | n | Algorithm | TP | FP | FN | PPV | |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| | | PDN | $62.850(2.243)$ | $9.230(1.439)$ | $46.150(2.243)$ | $0.872(0.018)$ | $0.577(0.021)$ |
| | | VSL | $106.836(1.365)$ | $0.000(0.000)$ | $2.164(1.365)$ | $1.000(0.000)$ | $0.980(0.013)$ |
| | | GLASSO | $106.884(1.350)$ | $0.000(0.000)$ | $2.116(1.350)$ | $1.000(0.000)$ | $0.981(0.012)$ |
| | | NPN-copula | $107.376(1.253)$ | $0.000(0.000)$ | $1.624(1.253)$ | $1.000(0.000)$ | $0.985(0.011)$ |
| | | NPN-skeptic | $107.124(1.322)$ | $0.000(0.000)$ | $1.876(1.322)$ | $1.000(0.000)$ | $0.983(0.012)$ |

Table 9: Simulation results from 500 replicates of the undirected graphs shown in Figure 2 of the main paper for $p=100$ variables with Poisson node conditional distribution and level of noise $\lambda_{\text {noise }}=5$. Monte Carlo means (standard deviations) are shown for TP, FP, FN, PPV and Se.

Graph	n	Algorithm	TP	FP	FN	PPV	Se
Scale-free	200	PC-LPGM	7.780 (2.843)	14.470 (3.705)	91.220 (2.843)	0.348 (0.100)	0.079 (0.029)
		LPGM	10.188 (4.126)	65.352 (20.496)	88.812 (4.126)	0.152 (0.127)	0.103 (0.042)
		PDN	13.457 (3.164)	94.817 (6.073)	85.543 (3.164)	0.125 (0.030)	0.136 (0.032)
		VSL	9.316 (4.895)	22.496 (16.852)	89.684 (4.895)	0.332 (0.119)	0.094 (0.049)
		GLASSO	9.052 (4.775)	21.372 (16.016)	89.948 (4.775)	0.336 (0.120)	0.091 (0.048)
		NPN-copula	10.012 (5.255)	21.924 (16.439)	88.988 (5.255)	0.359 (0.135)	0.101 (0.053)
		NPN-skeptic	9.868 (5.979)	27.424 (24.698)	89.132 (5.979)	0.320 (0.132)	0.100 (0.060)
	1000	PC-LPGM	75.130 (4.420)	24.805 (4.647)	23.870 (4.420)	0.753 (0.038)	0.759 (0.045)
		LPGM	1.480 (1.696)	1.892 (3.146)	97.520 (1.696)	0.574 (0.412)	0.015 (0.017)
		PDN	52.827 (3.386)	31.153 (5.108)	46.173 (3.386)	0.630 (0.049)	0.534 (0.034)
		VSL	14.844 (6.389)	0.044 (0.224)	84.156 (6.389)	0.998 (0.013)	0.150 (0.065)
		GLASSO	14.936 (6.455)	0.044 (0.224)	84.064 (6.455)	0.998 (0.013)	0.151 (0.065)
		NPN-copula	17.124 (7.494)	0.040 (0.196)	81.876 (7.494)	0.998 (0.009)	0.173 (0.076)
		NPN-skeptic	16.708 (8.088)	0.116 (0.419)	82.292 (8.088)	0.996 (0.014)	0.169 (0.082)
	2000	PC-LPGMC	96.400 (1.515)	26.500 (5.147)	2.600 (1.514)	0.786 (0.033)	0.974 (0.015)
		LPGM	$2.800(2.138)$	$1.004(1.455)$	$96.200(2.138)$	0.785 (0.266)	$0.028(0.022)$
		PDN	67.917 (2.591)	4.413 (2.140)	31.083 (2.591)	0.939 (0.029)	$0.686(0.026)$
		VSL	$24.579(11.580)$	$0.000(0.000)$	74.421 (11.580)	1.000 (0.000)	$0.255(0.117)$
		GLASSO	$25.733(12.171)$	$0.000(0.000)$	$73.267(12.171)$	$1.000(0.000)$	$0.264(0.123)$
		NPN-copula	$33.672(14.879)$	$0.000(0.000)$	$65.328(14.879)$	$1.000(0.000)$	$0.335(0.150)$
		NPN-skeptic	32.267 (15.750)	0.000 (0.000)	66.733 (15.750)	1.000 (0.000)	$0.321(0.159)$
Hub	200	PC-LPGM	2.690 (1.705)	13.600 (4.476)	92.310 (1.705)	0.166 (0.101)	0.028 (0.018)
		LPGM	0.444 (1.175)	34.632 (33.612)	94.556 (1.175)	0.046 (0.152)	0.005 (0.012)
		PDN	6.630 (2.373)	103.063 (4.902)	88.370 (2.373)	0.060 (0.021)	0.070 (0.025)
		VSL	3.392 (2.233)	23.688 (15.017)	91.608 (2.233)	0.143 (0.097)	0.036 (0.024)
		GLASSO	3.304 (2.139)	22.964 (14.511)	91.696 (2.139)	0.145 (0.099)	0.035 (0.023)
		NPN-copula	3.392 (2.189)	21.852 (13.797)	91.608 (2.189)	0.150 (0.097)	$0.036(0.023)$
		NPN-skeptic	3.108 (2.297)	23.476 (19.474)	91.892 (2.297)	0.134 (0.091)	0.033 (0.024)
	1000	PC-LPGM		24.635 (5.206)	65.475 (3.837)	0.548 (0.029)	
		LPGM	$0.892(2.246)$	$1.076(2.639)$	94.108 (2.246)	$0.439(0.389)$	$0.009(0.012)$
		PDN	23.427 (3.516)	84.433 (5.305)	71.573 (3.316)	0.217 (0.033)	$0.247(0.037)$
		VSL	7.424 (4.075)	1.428 (2.091)	87.576 (4.075)	0.884 (0.137)	0.078 (0.043)
		GLASSO	7.364 (4.053)	1.424 (2.095)	87.636 (4.053)	0.883 (0.138)	0.078 (0.043)
		NPN-copula	8.440 (4.399)	1.392 (2.018)	86.560 (4.399)	0.895 (0.126)	0.089 (0.046)
		NPN-skeptic	8.208 (4.629)	1.804 (2.291)	86.792 (4.629)	0.860 (0.134)	0.086 (0.049)
	2000	PC-LPGM	65.025 (4.253)	29.855 (5.473)	29.975 (4.253)	0.687 (0.041)	0.684 (0.045)

Table 9 - continued from previous page

Graph	n	Algorithm	TP	FP	FN	PPV	Se
		LPGM	0.392 (0.796)	1.712 (1.971)	94.608 (0.796)	0.187 (0.339)	0.004 (0.008)
		PDN	49.100 (4.566)	54.997 (5.883)	45.900 (4.566)	0.472 (0.047)	0.517 (0.048)
		VSL	8.983 (6.782)	0.068 (0.284)	86.017 (6.782)	0.996 (0.018)	0.095 (0.071)
		GLASSO	8.924 (6.748)	0.068 (0.284)	86.076 (6.748)	0.996 (0.018)	0.094 (0.071)
		NPN-copula	9.797 (7.547)	0.042 (0.241)	85.203 (7.547)	0.998 (0.012)	0.103 (0.079)
		NPN-skeptic	9.305 (7.052)	0.068 (0.284)	85.695 (7.052)	0.995 (0.020)	0.098 (0.074)
Random	200	PC-LPGM	8.040 (2.884)	14.805 (3.878)	100.960 (2.884)	0.350 (0.093)	0.074 (0.026)
		LPGM	10.592 (4.318)	69.316 (25.767)	98.408 (4.318)	0.175 (0.189)	0.097 (0.040)
		PDN	13.573 (2.989)	94.750 (5.987)	95.427 (2.989)	0.126 (0.029)	0.125 (0.027)
		VSL	10.548 (5.213)	22.848 (15.701)	98.452 (5.213)	0.353 (0.119)	0.097 (0.048)
		GLASSO	10.160 (5.075)	21.460 (14.871)	98.840 (5.075)	0.358 (0.119)	0.093 (0.047)
		NPN-copula	11.064 (5.327)	22.136 (16.599)	97.936 (5.327)	0.382 (0.131)	0.102 (0.049)
		NPN-skeptic	10.648 (6.242)	26.632 (23.376)	98.352 (6.642)	0.341 (0.134)	0.098 (0.057)
	1000	PC-LPGM	81.055 (4.632)	23.665 (4.941)	27.945 (4.632)	0.775 (0.038)	0.744 (0.042)
		LPGM	1.776 (2.675)	3.196 (5.107)	107.224 (2.675)	0.397 (0.401)	0.016 (0.025)
		PDN	53.207 (3.471)	33.383 (10.084)	55.793 (3.471)	0.616 (0.046)	0.488 (0.032)
		VSL	14.741 (6.294)	0.022 (0.148)	94.259 (6.294)	0.999 (0.006)	0.135 (0.058)
		GLASSO	14.741 (6.291)	0.022 (0.148)	94.259 (6.291)	0.999 (0.006)	0.135 (0.058)
		NPN-copula	16.333 (7.249)	0.022 (0.148)	92.667 (7.249)	0.999 (0.005)	0.150 (0.067)
		NPN-skeptic	15.178 (7.307)	0.044 (0.296)	93.822 (7.307)	0.998 (0.011)	0.139 (0.067)
	2000	PC-LPGM	104.010 (1.992)	24.370 (4.706)	4.990 (1.992)	0.811 (0.029)	0.954 (0.018)
		LPGM	1.995 (1.800)	1.260 (1.825)	107.005 (1.880)	0.671 (0.360)	0.018 (0.017)
		PDN	65.093 (2.892)	12.297 (1.837)	43.907 (2.892)	0.841 (0.021)	0.597 (0.027)
		VSL	26.038 (12.457)	0.000 (0.000)	82.962 (12.457)	1.000 (0.000)	0.239 (0.114)
		GLASSO	26.327 (12.487)	0.000 (0.000)	82.673 (12.487)	1.000 (0.000)	0.242 (0.115)
		NPN-copula	30.340 (14.496)	0.000 (0.000)	78.660 (14.496)	1.000 (0.000)	0.278 (0.133)
		NPN-skeptic	28.474 (14.777)	0.000 (0.000)	80.526 (14.777)	1.000 (0.000)	0.261 (0.136)

References

G. Allen and Z. Liu. A local Poisson graphical model for inferring networks from sequencing data. NanoBioscience, IEEE Transactions on, 12(3):189-198, 2013.
B. C. Arnold, E. Castillo, and J-M S. Alegria. Conditionally specified distributions, volume 73. Springer Science \& Business Media, 2012.
J. Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society. Series B (Methodological), pages 192-236, 1974.
J. H. Bullard, E. Purdom, K. D. Hansen, and S. Dudoit. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics, 11(1):94, 2010.
D. Colombo and M. H. Maathuis. Order-independent constraint-based causal structure learning. Journal of Machine Learning Research, 15(1):3741-3782, 2014.
R. B. Fletcher, D. Das, L. Gadye, K. N. Street, A. Baudhuin, A. Wagner, M. B. Cole, Q. Flores, Y. G. Choi, N. Yosef, et al. Deconstructing olfactory stem cell trajectories at single-cell resolution. Cell stem cell, 20(6):817-830, 2017.
J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432-441, 2008.
L. Gadye, D. Das, M. A. Sanchez, K. Street, A. Baudhuin, A. Wagner, M. B. Cole, Y. G. Choi, N. Yosef, E. Purdom, et al. Injury activates transient olfactory stem cell states with diverse lineage capacities. Cell Stem Cell, 21(6):775-790, 2017.
S. Garel, F. Marín, M. G. Mattéi, C. Vesque, A. Vincent, and P. Charnay. Family of Ebf/Olf-1-related genes potentially involved in neuronal differentiation and regional specification in the central nervous system. Developmental dynamics: an official publication of the American Association of Anatomists, 210(3):191-205, 1997.
F. Hadiji, A. Molina, S. Natarajan, and K. Kersting. Poisson dependency networks: Gradient boosted models for multivariate count data. Machine Learning, 100(2-3):477-507, 2015.
W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American statistical association, 58(301):13-30, 1963.
H. Höfling and R. Tibshirani. Estimation of sparse binary pairwise Markov networks using pseudo-likelihoods. Journal of Machine Learning Research, 10(4):883-906, 2009.
A. Jalali, P. Ravikumar, V. Vasuki, and S. Sanghavi. On learning discrete graphical models using group-sparse regularization. In International Conference on Artificial Intelligence and Statistics, pages 378-387, 2011.
C. R. Johnson and H. A. Robinson. Eigenvalue inequalities for principal submatrices. Linear Algebra and its Applications, 37:11-22, 1981.
M. Kalisch and P. Bühlmann. Estimating high-dimensional directed acyclic graphs with the PC-algorithm. Journal of Machine Learning Research, 8(3):613-636, 2007.
E. L. Lehmann. Testing statistical hypotheses (2nd ed). New York, NY: Wiley, 1986.
J. Li, D. M. Witten, I. M. Johnstone, and R. Tibshirani. Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics, 13(3):523-538, 2012.
H. Liu, J. Lafferty, and L. Wasserman. The nonparanormal: Semiparametric estimation of high dimensional undirected graphs. Journal of Machine Learning Research, 10(10): 2295-2328, 2009.
H. Liu, K. Roeder, and L. Wasserman. Stability approach to regularization selection (StARS) for high dimensional graphical models. In Advances in neural information processing systems, pages 1432-1440, 2010.
H. Liu, F. Han, M. Yuan, J. Lafferty, and L. Wasserman. The nonparanormal Skeptic. arXiv preprint arXiv:1206.6488, 2012.
N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the lasso. The Annals of Statistics, pages 1436-1462, 2006.
Y. D. Mizrahi, M. Denil, and N. de Freitas. Distributed parameter estimation in probabilistic graphical models. In Advances in Neural Information Processing Systems, pages 17001708, 2014.
J. Ninkovic, A. Steiner-Mezzadri, M. Jawerka, U. Akinci, G. Masserdotti, S. Petricca, J. Fischer, A. von Holst, J. Beckers, C. D. Lie, et al. The BAF complex interacts with Pax6 in adult neural progenitors to establish a neurogenic cross-regulatory transcriptional network. Cell stem cell, 13(4):403-418, 2013.
J. Peng, P. Wang, N. Zhou, and J. Zhu. Partial correlation estimation by joint sparse regression models. Journal of the American Statistical Association, 104(486):735-746, 2009.
P. Ravikumar, M. J. Wainwright, and J. D. Lafferty. High-dimensional Ising model selection using l_{1}-regularized logistic regression. The Annals of Statistics, 38(3):1287-1319, 06 2010.
P. Spirtes, C. N Glymour, and R. Scheines. Causation, prediction, and search. MIT press, 2000.
M. J. Tymms, Annie YN Ng, R. S. Thomas, B. C. Schutte, J. Zhou, H. J. Eyre, G. R. Sutherland, A. Seth, M. Rosenberg, T. Papas, et al. A novel epithelial-expressed ETS gene, ELF3: human and murine cDNA sequences, murine genomic organization, human mapping to $1 q 32.2$ and expression in tissues and cancer. Oncogene, 15(20):2449, 1997.
A. W. Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.
S. Volinia, M. Galasso, M. E. Sana, T. F. Wise, J. Palatini, K. Huebner, and C. M. Croce. Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. National Academy of Sciences, 109(8):3024-3029, 2012.
S. S. Wang, R. YL Tsai, and R. R. Reed. The characterization of the Olf-1/Ebf-like HLH transcription factor family: implications in olfactory gene regulation and neuronal development. Journal of Neuroscience, 17(11):4149-4158, 1997.
X. Yan, X. Chen, H. Liang, T. Deng, W. Chen, S. Zhang, M. Liu, X. Gao, Y. Liu, and C. Zhao. miR-143 and miR-145 synergistically regulate ERBB3 to suppress cell proliferation and invasion in breast cancer. Molecular Cancer, 13(1):220, 2014.
E. Yang, G. Allen, Z. Liu, and P. K. Ravikumar. Graphical models via generalized linear models. In Advances in Neural Information Processing Systems, pages 1358-1366, 2012.
E. Yang, P. Ravikumar, G. Allen, and Z. Liu. On poisson graphical models. In Advances in Neural Information Processing Systems, pages 1718-1726, 2013 a.
E. Yang, P. Ravikumar, G. Allen, and Z. Liu. On Poisson graphical models. In Advances in Neural Information Processing Systems, pages 1718-1726, 2013 b.
E. Yang, P. Ravikumar, G. I. Allen, and Z. Liu. Graphical models via univariate exponential family distributions. Journal of Machine Learning Research, 16(1):3813-3847, 2015.
N. Zhang, X. Wang, Q. Huo, M. Sun, C. Cai, Z. Liu, G. Hu, and Q. Yang. MicroRNA-30a suppresses breast tumor growth and metastasis by targeting metadherin. Oncogene, 33 (24):3119-3128, 2014.

[^0]: (C)2021 Nguyen Thi Kim Hue and Monica Chiogna.

 License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at http://jmlr.org/papers/v22/18-401.html

