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Abstract

This paper considers a decentralized online submodular maximization problem over time-
varying networks, where each agent only utilizes its own information and the received
information from its neighbors. To address the problem, we propose a decentralized Meta-
Frank-Wolfe online learning method in the adversarial online setting by using local com-
munication and local computation. Moreover, we show that an expected regret bound of
O(
√
T ) is achieved with (1− 1/e) approximation guarantee, where T is a time horizon. In

addition, we also propose a decentralized one-shot Frank-Wolfe online learning method in
the stochastic online setting. Furthermore, we also show that an expected regret bound
O(T 2/3) is obtained with (1 − 1/e) approximation guarantee. Finally, we confirm the
theoretical results via various experiments on different datasets.

Keywords: Expected Regret Bound, Frank-Wolfe Algorithm, Submodular Maximization.

1. Introduction

Submodular function optimization problems have received significant interest since they
have found many applications in machine learning and related areas. For example, vari-
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ation inference (Djolonga and Krause, 2014), diversity (Kulesza and Taskar, 2012), data
summarization (Lin and Bilmes, 2011; Mirzasoleiman et al., 2013), influence maximization
(Domingos and Richardson, 2001; Kempe et al., 2003), structured sparsity (Bach, 2010),
dictionary learning (Krause and Cevher, 2010; Das and Kempe, 2011), and variable selection
(Krause and Guestrin, 2005) etc. In order to solve such problems, we need to design effective
optimization algorithms to find optimal solutions. However, the submodular optimization is
a class of non-convex optimization problems. Moreover, finding a global optimum for non-
convex optimization problems is NP-hard in general (Murty and Kabadi, 1987). Therefore,
the design of optimization algorithms for submodular optimization is a challenging problem.

In submodular optimization, submodular functions can be minimized exactly (Iwata
et al., 2001) and maximized approximately (Krause and Golovin, 2012; Nemhauser et al.,
1978) in polynomial time. Classical results in submodular optimization have been mainly
based on combinatorial techniques such as the greedy algorithms (Nemhauser et al., 1978;
Nemhauser and Wolsey, 1978; Fisher et al., 1978). Recently, Bach (2015) demonstrated
that the submodular set function can be extended to the continuous function in the con-
text of minimization. Based on this method, various variants of submodular optimization
algorithms were proposed in recent years (Hassani et al., 2017; Bian et al., 2017). Specially,
Mokhtari et al. (2018a) proposed a stochastic continuous greedy algorithm with (1 − 1/e)
approximation guarantee for stochastic submodular maximization, which is introduced by
Karimi et al. (2017). In addition, Chen et al. (2018a) proposed a Meta-Frank-Wolfe algo-
rithm that achieves a square-root regret bound with (1− 1/e) approximation guarantee for
online continuous submodular maximization, where the full gradient is available. Further-
more, the regret bound of O(

√
T ) with a weaker 1/2 approximation is also achieved by an

online stochastic gradient method, where T is a time horizon. Furthermore, Chen et al.
(2018b) extended the Meta-Frank-Wolfe method that only uses the estimates of stochastic
gradient, and showed that a (1 − 1/e)-regret bound of O(

√
T ) can be achieved under the

adversarial online setting. Despite these progresses, however, the works cited above are
implemented in a centralized manner.

For the “big-data” challenge, optimization algorithms have been sought for coping with
high-dimensional optimization problems (Cevher et al., 2014). Moreover, since these mas-
sive data are dispersed over the nodes of networks, decentralized optimization algorithms
are effective tools for tackling large-scale learning tasks, where the nodes can use the compu-
tation power in a cooperative manner (Sayed et al., 2013). Therefore, how to design efficient
decentralized algorithms is desirable (Boyd et al., 2011). For these reasons, Mokhtari et al.
(2018b) proposed decentralized continuous greedy optimization methods over networks for
submodular maximization with (1−1/e) approximation guarantee via local communication
and local computation. In this work, the authors assumed that the objective functions are
unchanged with time. However, the objective functions change with time in many real-
world scenarios (Chen et al., 2018b). To the best of our knowledge, the decentralized online
variants over time-varying networks for submoudlar maximization are barely investigated.
For this reason, we focus on the design and analysis of decentralized online learning al-
gorithms. Recently, Yan et al. (2013) proposed a distributed online projected subgradient
descent algorithm for online convex optimization problems, and showed that the square-root
regret and logarithmic regret are achieved for convex and strongly convex objective func-
tions, respectively. Based on dual subgradient averaging, Hosseini et al. (2016) proposed
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a distributed online algorithm over networks and established a regret bound of O(
√
T ).

Shahrampour and Jadbabaie (2018) proposed a distributed mirror descent algorithm for
online convex optimization in dynamic environments. Additionally, Zhang et al. (2017)
proposed a projection-free distributed online learning algorithm and showed that the regret
bound of O(T 3/4) is achieved. Recently, Zhang et al. (2019a) proposed a distributed con-
ditional gradient algorithm for online learning. Moreover, the regret bound of O(

√
T ) is

obtained. The works cited above aim to solve online convex optimization problems, where
the objective functions are convex. Moreover, these algorithms need to compute exact gradi-
ents of the objective function. For high-dimensional data, however, the computations of the
exact gradients becomes expensive prohibitively. Furthermore, the close-form of the exact
gradients may not exist in some cases. To avoid these issues, the decentralized online vari-
ants, which use the projection-free technique and stochastic gradient estimates, are desired.
However, how to design and analyze these variants for online submodular maximization
remains an open problem.

In this paper, we fill this gap and present some decentralized learning algorithms over
time-varying networks for online submodular maximization. In these algorithms, we replace
the exact gradients with stochastic estimates of the gradients. Moreover, each agent can
exchange information with its neighbors. Furthermore, we also use the Frank-Wolfe tech-
nique to avoid projections, which are prohibitive when dealing with the high-dimensional
data. The main contributions of this paper are as follows:

• We present a decentralized Meta-Frank-Wolfe online learning method over time-varying
networks for submodular maximization in the adversarial online setting, where each
agent only utilizes its own local information and the received information from its
neighbors. Moreover, each agent has access only to stochastic gradient estimates at
each iteration.

• We also show that the decentralized Meta-Frank-Wolfe online learning method can
achieve (1−1/e)-regret with a bound O(

√
T ) via a careful estimate of gradients, where

T denotes a time horizon.

• We propose a decentralized one-shot Frank-Wolfe online learning method over time-
varying networks for submodular maximization in the stochastic online setting, where
each agent uses local communication and local computation. Moreover, each agent
has access only to a single stochastic estimate of gradient at each iteration.

• We also show that the decentralized one-shot Frank-Wolfe online learning method can
achieve (1− 1/e)-regret with a bound O(T 2/3).

The remainder of this paper is organized as follows. The related works are reviewed in
Section 2. In Section 3, we present some notations and mathematical background, which are
used in the paper. We describe the decentralized online submodular maximization problem
of our interest, design the online learning methods, and give some assumptions in Section
4. The main results of this paper are provided in Section 5. In Section 6, we analyze
the performance of our proposed algorithms and provide the detailed proofs of the main
results. In Section 7, we evaluate the performance of the proposed algorithms by numerical
experiments on different datasets. Finally, we conclude this paper in Section 8.
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2. Related Work

The framework of decentralized online convex optimization was introduced by Yan et al.
(2013), in which the distributed online projected subgradient descent was proposed and
showed logarithmic regret for strongly convex objective functions and square-root regret
for convex objective functions. However, the projection operation can be prohibitive when
dealing with high-dimensional data. For this reason, the distributed online conditional
gradient algorithm was proposed by Zhang et al. (2017), in which the projection step was
eschewed by exploiting the Frank-Wolfe technique. These works mainly focused on convex
objective functions. To the best of our knowledge, the distributed online variant of con-
ditional gradient over time-varying networks for non-convex objective functions is barely
known.

The variance reduction method was introduced by Johnson and Zhang (2013) and inde-
pendently proposed by Mahdavi et al. (2013) for accelerating stochastic gradient descent.
Recently, stochastic variance reduction was used for non-convex optimization (Allen-Zhu
and Hazan, 2016). Additionally, Reddi et al. (2016) also applied the stochastic variance
reduction method to nonconvex optimization. Hazan and Luo (2016) proposed a projection-
free stochastic optimization algorithm for convex optimization problems by using the vari-
ance reduction method. Mokhtari et al. (2018a) proposed a stochastic conditional gradient
algorithm with (1− 1/e) approximation guarantee for stochastic submodular maximization
by exploiting a different variance reduction method. Mokhtari et al. (2018b) also proposed
a decentralized projection-free algorithm with (1 − 1/e) approximation guarantee for dis-
tributed submodular maximization via this variance reduction method. However, the works
cited above applied these variance reduction methods to convex optimization or submodular
optimization, where the objective functions are unchanged with time.

Our paper is the first to provide the decentralized online algorithms for distributed online
submodular maximization via the variance reduction methods, where the objective functions
change with time. Indeed, Nemhauser et al. (1978) proposed a centralized greedy algorithm
with tight approximation guarantee for maximizing submodular set functions. Moreover,
its variants are studied (Feige et al., 2011; Mirzasoleiman et al., 2016; Feldman et al., 2017).
However, these methods cannot scale to massive data sets since they are sequential in na-
ture. For this reason, MapReduce style methods were proposed (Mirzasoleiman et al., 2013;
Mirrokni and Zadimoghaddam, 2015). Recently, Bach (2015) extended discrete domain
to continuous domain for submodular functions. Hassani et al. (2017) proposed projected
gradient algorithms with 1/2 approximation guarantee for maximizing continuous submod-
ular functions. Moreover, Bian et al. (2017) proposed a Frank-Wolfe variant for continuous
submodular maximization with (1− 1/e) approximation guarantee. Recently, Mokhtari et
al. (2018a) proposed a stochastic gradient method with (1− 1/e) approximation guarantee
by using Frank-Wolfe technique. Decentralized conditional gradient algorithms were intro-
duced by Mokhtari et al. (2018b). Besides, Zhang et al. (2019b) proposed quantized Frank-
Wolfe algorithms to solve constrained optimization problems. Zhuo et al. (2019) presented
an asynchronous stochastic Frank-Wolfe algorithm for solving an optimization problems
with a nuclear norm constraint. For the online setting, Chen et al. (2018a) proposed an
online variant of Frank-Wolfe for online submodular maximization and showed that a regret
bound of O(

√
T ) is achieved with (1 − 1/e) approximation guarantee. Furthermore, Chen
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et al. (2018b) also proposed stochastic conditional gradient online optimization algorithms
and showed that the regret bound O(

√
T ) is achieved with (1 − 1/e) approximation guar-

antee. Zhang et al. (2019c) proposed three online submodular maximization algorithms,
i.e., Mono-Frank-Wolfe, Bandit-Frank-Wolfe, and Responsive-Frank-Wolfe. Moreover, the
(1− 1/e)-regret bounds of O(T 4/5) and O(T 8/9) was also achieved, respectively. However,
these methods mainly focus on centralized computational architectures for submodular max-
imization.

3. Preliminaries

In this section, we first provide some notations, which are used in this paper. Moreover, we
also present mathematical background for submodular functions.

3.1 Notations

In this paper, all vectors are all column vectors. We use boldface to denote the vector
with suitable dimension and use normal font to denote scalars. We use the notations R
and R+ to denote the sets of real numbers and non-negative real numbers, respectively.
Moreover, the notations Rd and Rd+ denote the real vector and non-negative real vector
with dimension d, respectively. The notation RN×N denotes the real matrix of size N ×N .
The notation ‖x‖ denotes the standard Euclidean norm of a vector x. We use the notations
xT and AT to denote the transpose operation of a vector x and a matrix A, respectively.
The notation 〈x,y〉 denotes the inner product of vectors x and y. We use the notations I
and 1 to denote the identity matrix and a vector that all entries are 1 with suitable size,
respectively. Moreover, we use E[X] to denote the expectation of a random variable X.
The notation ⊗ denotes the Kronecker product. In addition, the notations � and � denote
coordinate-wise inequalities, respectively.

3.2 Mathematical Background

In this subsection, we provide some precise definitions for submodular functions. We first
introduce the definition of submodular set functions. Given a ground set V , which consists
of d elements. For all A,B ⊆ V , a set function f : 2V → R+ satisfies the following relation,

f (A) + f (B) ≥ f (A ∩B) + f (A ∪B) , (1)

then the set function f is called submodular. Furthermore, the notion of submodularity
can be extended to continuous domain. Given a subset X in Rd+, which is of the form

X =
∏d
i=1Xi. Moreover, each set Xi is a compact subset of R+ for i = 1, . . . , d. A

continuous function F : X → R+ is called submodular if for all x,y ∈ X , we have

F (x) + F (y) ≥ F (x ∨ y) + F (x ∧ y) , (2)

where x ∨ y := max {x,y} (coordinate-wise) and x ∧ y := min {x,y} (coordinate-wise). In
this paper, we focus on the monotone and DR-submodular continuous function. Formally, a
continuous submodular function F is called monotone on X if x � y, we have F (x) ≤ F (y)
for all x,y ∈ X . Moreover, a differentiable continuous submodular function F is DR-
submodular if x � y, we have ∇F (x) � ∇F (y) for all x,y ∈ X . Namely, ∇F (·) is an
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antitone mapping. Furthermore, DR-submodularity of function F implies that the function
F is concave in positive directions, i.e., we have

F (y) ≤ F (x) + 〈∇F (x) ,y − x〉 (3)

for all x,y ∈ X . In addition, when a continuous function F is twice differentiable, the
function F is submodular if and only if all off-diagonal components of its Hessian matrix
are non-positive. Formally, for all x ∈ X , we obtain

∀ i 6= j,
∂2F (x)

∂xi∂xj
≤ 0. (4)

Furthermore, if the function F is DR-submodular, then all elements of its Hessian matrix
are non-positive. Formally, for all x ∈ X , we have

∂2F (x)

∂xi∂xj
≤ 0. (5)

In addition, the twice differentiability of the function F implies that the submodular
function F is smooth. Furthermore, a continuous submodular function F is L-smooth if for
all x,y ∈ X , we have

F (y) ≤ F (y) + 〈∇F (x) ,y − x〉+
L

2
‖y − x‖2 , (6)

which implies that
‖∇F (x)−∇F (y)‖ ≤ L ‖x− y‖ . (7)

In this section, we present some basic notations and concepts. The formulation of our
problem is described, and then we propose some efficient algorithms for this problem in the
next section.

4. Problem Formulation, Algorithms Design, and Assumptions

In this section, we first formally introduce the problem of our interest, and then design
decentralized online learning algorithms to solve the problem. Finally, in order to analyze
the performance of the proposed algorithms, we also provide some standard assumptions.

4.1 Problem Formulation

In this paper, we consider a decentralized online optimization problem in time-varying
networks, which is defined formally as follows: A graph G (t) = (V, E (t)) is used to denote a
time-varying network, where V = {1, . . . , N} denotes the set of agents (nodes) and E (t) ⊂
V × V is the set of edges at time t. Let (i, j) ∈ E (t) denote an edge from agent i to
agent j at time t. We use notation Ni (t) to denote the set of neighbors of agent i at
time t, where the agent i can directly communicate with the agent j ∈ V. Formally,
Ni (t) = {j ∈ V| (i, j) ∈ E (t)}. In this paper, we assume that Ni (t) contains agent i itself.
Furthermore, we also assume that each agent has only access to its local information and
can receive the information from its neighbors. In decentralized online optimization, each

6



Projection-free Decentralized Online Learning for Submodular Maximization

agent i ∈ V first chooses a decision point xi (t) from the constraint set K ⊂ Rd+ at each
iteration t = 1, . . . , T , where T denotes a time horizon. In response, the adversary replies a
function Ft,i : K → R+ and the agent i receives the reward Ft,i (xi (t)). Therefore, the goal
is to maximize the following decentralized online optimization problem,

max
x∈K

F (x) :=
1

N

T∑
t=1

N∑
i=1

Ft,i (x) , (8)

where Ft,i : K → R+ is a submodular function, K is a constraint set. Note that the reward
function Ft,i becomes available to agent i ∈ V only after the agent has chosen an action
at each iteration t ∈ {1, . . . , T}. However, each agent can guide their choice by using the
information of previously seen functions. This scenario is known as the adversarial online
setting, which has an arbitrary sequence of functions {Ft,1, . . . , Ft,N}Tt=1. In the adversarial
setting, the adversarial regret of agent i ∈ V with respect to any fixed choice x ∈ K in
hindsight is defined as

α-RT (xi,x) := α sup
x∈K

1

N

T∑
t=1

N∑
j=1

Ft,j (x)− 1

N

T∑
t=1

N∑
j=1

Ft,j (xi (t)) , (9)

which is called α-regret for decentralized adversarial maximization problems. In the defini-
tion of α-regret, α is a non-negative constant. The goal is to design efficient decentralized
algorithms over time-varying networks so that the upper bounded of α-regret of the algo-
rithms are sublinear in T , i.e., limT→∞ α-RT /T = 0.

If the reward functions of agent i ∈ V are the expectation of Ft,i (x) = Fi (x, ωt), where
ωt is chosen independent and identically distributed from an unknown distribution D, i.e.,
Fi (x) := Eωt∼D [Ft,i (x)]. This scenario is known as the stochastic online setting. In the
stochastic online setting, the goal of each agent i ∈ V is to maximize the α-stochastic regret,
which is defined as

α-SRT (xi,x) := T · α sup
x∈K

1

N

N∑
j=1

Fj (x)− 1

N

T∑
t=1

N∑
j=1

Fj (xi (t)) . (10)

Note that the best approximation guarantee is (1− 1/e) for problem (8) by using cen-
tralized online methods. In this paper, we will design decentralized online algorithms that
can achieve the same approximation guarantee by using local communication and local
computation.

4.2 Algorithms Design

In this subsection, we first propose a decentralized online learning method over time-varying
networks in adversarial online setting. The goal is to solve the problem (8) in a decentralized
and cooperative way with (1 − 1/e) approximation guarantee. At each iteration t, each
agent i only knows its local information and receives the information from its neighbors.
Moreover, since the size of data is huge, we eschew the projection step by using Frank-Wolfe
technique, which is a more efficient linear optimization step. Thus, each agent i can use
local information xi (t) ,di (t) ∈ Rd+ and can receive the information from its neighbors,
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Algotithm 1 Decentralized Meta Frank-Wolfe Learning over Time-Varying Networks

Input: Maximum time horizon T ; doubly stochastic matrix A (t) = [aij (t)] ∈ RN×N ;
the number of agents N ; parameters ηt and γt.

Output:{xi (t) : 1 ≤ t ≤ T} for i ∈ {1, . . . , N}
1: Initialize online linear optimization oracle Q(1)

i , . . . ,Q(K)
i , i ∈ {1, . . . , N}

2: Initialize x
(0)
i (t) = 0 and d

(0)
i (t) = 0

3: Initialize x
(0)
j (t) = 0 and d

(0)
j (t) = 0 for all j ∈ Ni (t)

4: for t = 1, . . . , T do

5: for each agent i = 1, . . . , N do

6: for k = 1, . . . ,K do

7: Obtain v
(k)
i (t) by using the oracle Q(k)

i in iteration t− 1

8: Update the variable x
(k+1)
i (t) =

∑
j∈Ni(t)

aij (t)x
(k)
j (t) + 1

Kv
(k)
i (t)

9: Exchange the variable x
(k+1)
i (t) with neighbors j ∈ Ni (t)

10: Compute g
(k)
i (t) = (1− ηk)g

(k−1)
i (t) + ηk∇̂Ft,i

(
x
(k)
i (t)

)
11: Compute d

(k)
i (t) = (1− γk)

∑
j∈Ni(t)

aij (t)d
(k−1)
j (t) + γkg

(k)
i (t)

12: Exchange the variable d
(k)
i (t) with the neighbors j ∈ Ni (t)

13: Feedback 〈d(k)
i (t) ,v〉 to the oracle Q(k)

i

14: end for

15: Play xi (t) = x
(K+1)
i (t), then obtain the value Ft,i (xi (t)) and the

unbiased estimate of ∇Ft,i
16: end for

17: end for

where di (t) denotes the surrogate of the gradient vector of agent i at iteration t. In this
paper, we combine the consensus technique, Frank-Wolfe technique, and variance reduction
technique to design the decentralized online learning methods. In the adversarial online
setting, the proposed algorithm is summarized in Algorithm 1.

In Algorithm 1, we update the estimate xi (t) of agent i ∈ V by running K distributed

Frank-Wolfe steps. The linear optimization oracle Q(k)
i is an efficient procedure and can

return a vector v
(k)
i (t) in iteration t− 1 for i = 1, . . . , N and k = 1, . . . ,K. Moreover, the

weight that agent i assigns to agent j at iteration t is denoted by aij (t). At each iteration

t ∈ {1, . . . , T}, the approximate gradient vector of agent i, d
(k)
i (t), is updated by using

local gradient and the gradient information from the neighbors j ∈ Ni (t), i.e.,

d
(k)
i (t) := (1− γk)

∑
j∈Ni(t)

aij (t)d
(k−1)
j (t) + γkg

(k)
i (t) , (11)
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where γk ∈ [0, 1] denotes the step size and

g
(k)
i (t) = (1− ηk)g

(k−1)
i (t) + ηk∇̂Ft,i

(
x
(k)
i (t)

)
with parameter ηk ∈ [0, 1]. Moreover, the update rule of estimate of agent i is defined as

x
(k+1)
i (t) :=

∑
j∈Ni(t)

aij (t)x
(k)
j (t) +

1

K
v
(k)
i (t) . (12)

Furthermore, the estimate of agent i is obtained at each iteration t by setting xi (t) :=

x
(K+1)
i (t) for all i ∈ {1, . . . , N}.

In the stochastic online setting, we propose a decentralized one-shot Frank-Wolfe online
learning method for solving the problem (8). In our proposed algorithm, we use one Frank-
Wolfe step at each iteration to avoid the projection step. Moreover, the proposed algorithm
only needs to estimate the gradient and can be executed without any linear optimization
oracle. Furthermore, the approximation of gradient vector is given by

di (t) := (1− γt)
∑

j∈Ni(t)

aij (t)dj (t− 1) + γt∇̂Ft,i (xi (t)) , (13)

where γt ∈ [0, 1] is the step size. By using the approximate gradient vector di (t), the
local ascent direction vi (t) of each agent i ∈ V is obtained by solving the following linear
programming,

vi (t) := arg max
v∈K
〈di (t) ,v〉. (14)

Finally, using the local ascent directions vi (t), each agent i updates its estimate as follows,

xi (t+ 1) =
∑

j∈Ni(t)

aij (t)xj (t) +
1

T
vi (t) , (15)

where T denotes the time horizon. The detailed description of the proposed algorithm is
summarized in Algorithm 2.

Remark: When N = 1 in Algorithms 1 and 2, there exist only one agent i. Moreover,
let aij (t) = aii (t) = 1 for all t ∈ {1, . . . , T} since i = j. Furthermore, the set of neighbors
of agent i, Ni (t), only contains agent i itself. Then, Algorithms 1 and 2 respectively reduce
to Meta-Frank-Wolfe and One-Shot Frank-Wolfe algorithms (Chen et al., 2018b), which are
all implemented in the centralized setting.

4.3 Assumptions

In this subsection, we adopt some assumptions to analyze the performance of the proposed
algorithms. Since each agent can exchange information with its neighbors, we model the
communication between agents by a stochastic matrix A (t) = [aij (t)] ∈ RN×N , which
satisfies the following Assumption 1.
Assumption 1 For all i, j ∈ V and t ∈ {1, . . . , T}, aij (t) ≥ µ with µ ∈ (0, 1) if (i, j) ∈
E (t), and aij (t) = 0 if (i, j) /∈ E (t). Moreover, we assume that aii (t) ≥ µ for all i ∈ V

9
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Algotithm 2 Decentralized One-Shot Frank-Wolfe Learning over Time-Varying Networks

Input: Maximum time horizon T ; doubly stochastic matrix A (t) = [aij (t)] ∈ RN×N ;
the number of agents N ; step sizes γt.

Output:{xi (t) : 1 ≤ t ≤ T} for i ∈ {1, . . . , N}
1: Initialize x

(0)
i (1) = 0 and d

(0)
i (t) = 0

2: Initialize x
(0)
j (t) = 0 and d

(0)
j (t) = 0 for all j ∈ Ni (t)

3: for t = 1, . . . , T do

4: for each agent i = 1, . . . , N do

5: Play xi (t), then obtain the value Ft,i (xi (t)) and the unbiased estimate

of ∇Ft,i
6: Compute di (t) = (1− γt)

∑
j∈Ni(t)

aij (t)dj (t− 1) + γt∇̂Ft,i (xi (t))

7: Exchange the variable di (t) with the neighbors j ∈ Ni (t)

8: Evaluate vi (t) = arg maxv∈K〈di (t) ,v〉
9: Update the variable xi (t+ 1) =

∑
j∈Ni(t)

aij (t)xj (t) + 1
T vi (t)

10: Exchange the variable xi (t+ 1) with neighbors j ∈ Ni (t)

11: end for

12: end for

and t. Furthermore, the adjacency matrix A (t) with elements aij (t) satisfies the following
conditions for all t ≥ 0,

N∑
i=1

aij (t) =
N∑
j=1

aij (t) = 1. (16)

From Assumption 1, we can see that the significant weights are assigned to the estimate of
each agent and the estimates of its neighbors. Moreover, the zero weights are assigned to
the neighbors j ∈ V of agent i when the estimates xj (t) are not available at iteration t.
Assumption 2 The constraint set K is convex and compact. Furthermore, the diameter
and radius of the set K are D := supx,y∈K ‖x− y‖ and R := supx∈K ‖x‖, respectively.
Assumption 3 In the adversarial setting, each local function Ft,i is monotone, DR-
submodular and L-smooth. In the stochastic setting, the expected local function of each
agent Fi also is monotone, DR-submodular and L-smooth. Furthermore, the gradients of
Ft,i and Fi are uniformly bounded, respectively, i.e., ‖∇Ft,i (x)‖ ≤ G and ‖∇Fi (x)‖ ≤ G
for all x ∈ Rd+ and i ∈ V.

Note that the objective functions Ft =
∑N

i=1 Ft,i and F =
∑N

i=1 Fi are NL-smooth.
Moreover, Assumption 3 implies that the functions Ft,i and Fi are G-Lipschitz. In addition,
we also adopt the following assumption on the connectively of graph G (t).
Assumption 4 There exists a constant B ≥ 1 such that for every B consecutive rounds,
agent i ∈ V can receive information from its neighboring agent j ∈ Ni (t) at least once.
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From Assumption 4, we can see that the graph
(
V,
⋃
l=0,...,B−1 E

(
t + l

))
is strongly con-

nected, which ensures that each agent can receive information from other agents directly
and indirectly.
Assumption 5 In the adversarial online setting, the estimate of gradient ∇Ft,i is un-
biased for all i ∈ V, i.e., E[∇Ft,i (x) − ∇̂Ft,i (x)] = 0. Moreover, the variance of the
estimate gradient is bounded for all i ∈ V, i.e., E[‖∇Ft,i (x) − ∇̂Ft,i (x) ‖2] ≤ σ2. In
the stochastic online setting, the estimate of gradient ∇Fi is unbiased for all i ∈ V, i.e.,
E[∇Fi (x) − ∇̂Fi (x)] = 0. Furthermore, the variance of the estimate gradient is bounded
for all i ∈ V, i.e., E[‖∇Fi (x)− ∇̂Fi (x) ‖2] ≤ σ2.

In this section, we propose some decentralized online learning algorithms to solve the
problem of our interest. Moreover, we also adopt some assumptions to analyze the perfor-
mance of the proposed algorithms. In the next section, we will present the main results of
this paper.

5. Main Results

In this section, we present the main results of this paper. In adversarial online setting, we
establish a regret bound in expectation as follows.

Theorem 1 Let Assumptions 1-5 hold. Suppose that the regret of linear optimization oracle
is at most RεT for all i ∈ {1, . . . , N}. Furthermore, assume that x∗ is a globally optimal
solution of problem (8). The sequences {xi (t)} and {di (t)} are generated by Algorithm
1 for all i ∈ {1, . . . , N} and t ∈ {1, . . . , T}. By choosing step sizes as ηk = 2/K2/3 and
γk = 1/K1/2, we have(

1− 1

e

)
-RT (xj ,x

∗) ≤
(
LD2

2
+
GNDν

1− β
+
LND2ν

1− β

)
· T
K

+RεT

+

(
GD + LD2 +

NDν
√

2 (σ2 +G2)

1− β

)
· T

K1/2

+
LD2

√
3 + 3

√
2Nν/ (1− β)
√

2
· T

K2/3

+

GD +
√

2σD +
LD2

√
3 + 3

√
2Nν/ (1− β)
√

2

 · T

K1/3
,

(17)

where RT (xj ,x
∗) = E [RT (xj ,x

∗)].

The proof can be found in the next section. From Theorem 1, we choose the online linear
optimization oracle as Regularized-Follow-The-Leader (RFTL) (Cohen and Hazan, 2015),
then RεT = O(

√
T ). Moreover, setting K = T 3/2, the square-root regret O(

√
T ) is obtained

by Algorithm 1, which implies that (1− 1/e) -RT (xj ,x
∗) /T ≤ O(1/

√
T ). Therefore, after

O(1/ε2) rounds of communication, the (1 − 1/e − ε) approximation ratio can be achieved,
where ε is a positive constant.

In the stochastic online setting, we also establish the regret bound in expectation for
Algorithm 2, which is stated as follows.
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Theorem 2 Let Assumptions 1-5 hold. Suppose that x∗ is a globally optimal solution of
problem (8). The sequences {xi (t)} and {di (t)} are generated by Algorithm 2 for all i ∈
{1, . . . , N} and t ∈ {1, . . . , T}. Moreover, let the step sizes be ηt = 2/T 2/3 and γt = 1/T 1/2.
Then, we have(

1− 1

e

)
-SRT (xj ,x

∗) ≤

(
GD +

LD2

2
+
Nν
√
σ2 +G2

√
2 (1− β)

)
· T 1/2

+

√2σD

2
+
LD2

√
3 + 3

√
2Nν/ (1− β)

2
√

2

 · T 2/3

+
LD2

√
3 + 3

√
2Nν/ (1− β)

2
√

2
· T 1/3 +

LD2

2

+
LND2ν

2 (1− β)
+
GNDν

1− β
,

(18)

where SRT (xj ,x
∗) = E [SRT (xj ,x

∗)].

The proof can be found in the next section. From Theorem 2, we can see that the regret
bound of O(T 2/3) by choosing appropriate step sizes, then (1− 1/e) -SRT (xj ,x

∗) /T ≤
O(1/T 1/3). Therefore, after O(1/ε3) rounds of communication, the (1 − 1/e − ε) approxi-
mation ratio can be achieved.

In this section, we establish the regret bounds in the adversarial and stochastic online
settings, respectively. The detailed proofs of the main results are given in the next section.

6. Performance Analysis

In this section, we analyze the performance of the proposed algorithms in the adversarial
and stochastic online settings, respectively. Moreover, we also provide the detailed proof
of main results of this paper. First, we study the convergence property of Algorithm 1.
Afterwards, the performance of Algorithm 2 is also studied.

6.1 Adversarial Online Setting

We first analyze the performance of Algorithm 1 under the adversarial online setting. For
this purpose, we introduce an auxiliary vector for all k = 1, . . . ,K as follows,

x̄(k) (t) :=
1

N

N∑
i=1

x
(k)
i (t) . (19)

Moreover, we establish an upper bound of the distance between x̄(k+1) (t) and x̄(k) (t), i.e.,

Lemma 3 Let Assumptions 1, 2, and 4 hold. The sequence {x(k)
i (t)} is generated by

Algorithm 1. For all t ∈ {1, . . . , T} and k = 1, . . . ,K, we have∥∥∥x̄(k+1) (t)− x̄(k) (t)
∥∥∥ ≤ D

K
. (20)
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Proof According to the definition of x̄(k) (t) and Eq. (12), we have

x̄(k+1) (t) =
1

N

N∑
i=1

x̄
(k+1)
i (t)

=
1

N

N∑
i=1

∑
j∈Ni(t)

aij (t)x
(k)
j (t) +

1

K

1

N

N∑
i=1

v
(k)
i (t)

=
1

N

N∑
i=1

N∑
j=1

aij (t)x
(k)
j (t) +

1

K

1

N

N∑
i=1

v
(k)
i (t)

=
1

N

N∑
j=1

x
(k)
j (t)

N∑
i=1

aij (t) +
1

K

1

N

N∑
i=1

v
(k)
i (t)

=
1

N

N∑
j=1

x
(k)
j (t) +

1

K

1

N

N∑
i=1

v
(k)
i (t)

= x̄(k) (t) +
1

K

1

N

N∑
i=1

v
(k)
i (t) ,

(21)

where the fifth equality is due to
∑N

i=1 aij (t) = 1, in the last equality we have used the

definition of x̄(k) (t). From Assumption 2, we have
∥∥v(k)

i (t)
∥∥ ≤ D since v

(k)
i (t) ∈ K for all

i, k, t. Thus, we obtain

∥∥∥x̄(k+1) (t)− x̄(k) (t)
∥∥∥ ≤ 1

K

1

N

N∑
i=1

∥∥∥v(k)
i (t)

∥∥∥
≤ D

K
.

(22)

The lemma is proved completely.

In order to prove the main results of this paper, we also introduce a matrix, which is
defined as follows:

Φ (s : t) := A (s)A (s+ 1) · · ·A (t− 1)A (t) .

Moreover, the i-th row and the j-th column of Φ (s : t) is denoted by [Φ (s : t)]ij . From
Assumptions 1 and 4, we have the following result, which is presented in Nedić et al. (2008)
(Corollary 1). ∣∣∣∣[Φ (s : t)]ij −

1

N

∣∣∣∣ ≤ νβt−s+1, (23)

where ν =
(
1− µ

4N2

)−2
and β =

(
1− µ

4N2

)1/B
.

Next, an upper bound the sum of the distance between the local estimate x
(k)
i (t) and

x̄(k) (t) is established as follows.
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Lemma 4 Let Assumptions 1, 2, and 4 hold. The sequence {x(k)
i (t)} is generated by

Algorithm 1. For all t ∈ {1, . . . , T} and k = 1, . . . ,K, we have√√√√ N∑
i=1

∥∥∥x(k)
i (t)− x̄(k) (t)

∥∥∥2 ≤ N
√
NDν

K (1− β)
. (24)

Proof We introduce two auxiliary vectors as follows:

x(k) (t) :=
[
x
(k)
1 (t) ; . . . ;x

(k)
N (t)

]
∈ RNd+

and

v(k) (t) :=
[
v
(k)
1 (t) ; . . . ;v

(k)
N (t)

]
∈ RNd+ .

Following on from Eq. (12), we have

x(k+1) (t) = (A (t)⊗ I)x(k) (t) +
1

K
v(k) (t) , (25)

where the notation ⊗ denotes the Kronecker product, I denotes the identity matrix of size
d× d. By using Eq. (25) recursively, we obtain

x(k) (t) =
1

K

k−1∑
s=0

(Φ (s+ 1 : k − 1)⊗ I)v(s) (t) , (26)

where we have used the fact x
(0)
i (t) = 0 for all i = 1, . . . , N . In both sides of Eq. (26), we

multiply by the matrix (11
T

N ⊗ I), and then we have

(
11T

N
⊗ I
)
x(k) (t) =

1

K

k−1∑
s=0

((
11T

N
Φ (s+ 1 : k − 1)

)
⊗ I
)
v(k) (t) . (27)

We define a variable x̃(k) (t) as

x̃(k) (t) :=
[
x̄(k) (t) ; . . . ; x̄(k) (t)

]
∈ RNd+ .

From the definition of x̄(k) (t) in Eq. (19), we have

x̃(k) (t) =

(
11T

N
⊗ I
)
x(k) (t) . (28)

Since the matrix A (t) is doubly stochastic, we have 11TA (t) = 11T. Thus, Eq. (28) can
be rewritten as

x̃(k) (t) =
1

K

k−1∑
s=0

(
11T

N
⊗ I
)
v(s) (t) . (29)
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Combining Eqs. (26) and (29), we obtain∥∥∥x(k) (t)− x̃(k) (t)
∥∥∥ =

1

K

∥∥∥∥∥
k−1∑
s=0

(
(Φ (s+ 1 : k − 1)⊗ I)− 11T

N
⊗ I
)
v(s) (t)

∥∥∥∥∥
=

1

K

∥∥∥∥∥
k−1∑
s=0

((
Φ (s+ 1 : k − 1)− 11T

N

)
⊗ I
)
v(k) (t)

∥∥∥∥∥
≤ 1

K

k−1∑
s=0

∥∥∥∥Φ (s+ 1 : k − 1)− 11T

N

∥∥∥∥∥∥∥v(k) (t)
∥∥∥

≤
√
ND

K

k−1∑
s=0

∥∥∥∥Φ (s+ 1 : k − 1)− 11T

N

∥∥∥∥ ,

(30)

where in the first inequality we have used the Cauchy-Schwarz inequality, the last inequality

follows from the norm equivalence
∥∥v(k) (t)

∥∥ ≤ √N ∥∥∥v(k)
i (t)

∥∥∥ ≤ √ND. In addition, from

the property of the matrix norms (Golub and Van Loan, 2013) (see Eq. (2.3.8)), we have∥∥∥∥Φ (s+ 1 : k − 1)− 11T

N

∥∥∥∥ ≤ N max
i,j

∣∣∣∣[Φ (s+ 1 : k − 1)]ij −
1

N

∣∣∣∣
≤ Nνβk−s−1,

(31)

where the last inequality holds due to Eq. (23). Plugging Eq. (31) into Eq. (30), we obtain

∥∥∥x(k) (t)− x̃(k) (t)
∥∥∥ ≤ N

√
NDν

K

k−1∑
s=0

βk−1−s

≤ N
√
NDν

K (1− β)
,

(32)

where the last inequality follows from

k−1∑
s=0

βk−1−s ≤
∞∑
s=0

βk−1−s = 1/(1− β)

for 0 < β < 1. Since

N∑
i=1

∥∥∥x(k)
i (t)− x̄(k) (t)

∥∥∥2 =
∥∥∥x(k) (t)− x̃(k) (t)

∥∥∥2 ,
the statement of the lemma is obtained completely.

In addition, we also define the following auxiliary variable,

d̄(k) (t) :=
1

N

N∑
i=1

d
(k)
i (t) . (33)

Next, we establish an upper bound of the sum of the expected distance between the vectors

d
(k)
i (t) and d̄(k) (t) for all i = 1, . . . , N , which is given as follows.
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Lemma 5 Let Assumption 1, 3, and 4 hold. The sequences {x(k)
i (t)} and {d(k)

i (t)} are
generated by Algorithm 1. For all t ∈ {1, . . . , T} and k = 1, . . . ,K, we have√√√√ N∑

i=1

E
[∥∥∥d(k)

i (t)− d̄(k) (t)
∥∥∥2] ≤ Nνγk

√
2N (σ2 +G2)

1− β (1− γk)
. (34)

Proof We define some auxiliary variables as

d(k) (t) :=
[
d
(k)
1 (t) ; . . . ;d

(k)
N (t)

]
∈ RNd+

and
g(k) (t) :=

[
g
(k)
1 (t) ; . . . ;g

(k)
N (t)

]
∈ RNd+ .

According to Eq. (11), we have

d(k) (t) = (1− γk) (A (t)⊗ I)d(k−1) (t) + γkg
(k) (t) , (35)

where Ft
(
x(k) (t)

)
:=
∑N

i=1 Ft,i

(
x
(k)
i (t)

)
. Since d(0) (t) = 0, we use Eq. (35) recursively to

obtain the following equality,

d(k) (t) = γk

k∑
s=1

(
(1− γk)k−s Φ (s+ 1 : k)⊗ I

)
g(s) (t) . (36)

Multiplying the matrix (11
T

N ⊗ I) in both sides of Eq. (36), we have

d̂(k) (t) = γk

k∑
s=0

(1− γk)k−s
(
11T

N
⊗ I
)
g(s) (t) , (37)

where d̂(k) (t) :=
[
d̄(k) (t) ; . . . ; d̄(k) (t)

]
∈ RNd. Therefore, according to Eqs. (36) and (37),

we obtain∥∥∥d(k) (t)− d̂(k) (t)
∥∥∥ = γk

∥∥∥∥∥
k∑
s=1

(1− γk)k−s
((

Φ (s+ 1 : k)− 11T

N

)
⊗ I
)
g(s) (t)

∥∥∥∥∥
≤ γk

k∑
s=1

(1− γk)k−s
∥∥∥∥Φ (s+ 1 : k)− 11T

N

∥∥∥∥∥∥∥g(s) (t)
∥∥∥

≤ Nνγk
k∑
s=1

(1− γk)k−s βk−s
∥∥∥g(s) (t)

∥∥∥ ,
(38)

where the first inequality follows from the Cauchy-Schwarz inequality, the last inequality is
due to Eq. (31), i.e.,

∥∥Φ (s+ 1 : k)−
(
11T

)
/N
∥∥ ≤ Nνβk−s. Taking expectation on both

sides of Eq. (38), we have

E
[∥∥∥d(k) (t)− d̂(k) (t)

∥∥∥] ≤ V νγk k∑
s=1

(β (1− γk))k−s E
[∥∥∥g(s) (t)

∥∥∥] . (39)
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In order to establish the upper bound of E
[∥∥d(k) (t)− d̂(k) (t)

∥∥], we need to bound the term

E
[∥∥g(s) (t)

∥∥]. To this end, we first have∥∥∥∇̂Ft,i (x(s)
i (t)

)∥∥∥2 =
∥∥∥∇̂Ft,i (x(s)

i (t)
)
−∇Ft,i

(
x
(s)
i (t)

)
+∇Ft,i

(
x
(s)
i (t)

)∥∥∥2
≤
∥∥∥∇̂Ft,i (x(s)

i (t)
)
−∇Ft,i

(
x
(s)
i (t)

)∥∥∥2 +
∥∥∥∇Ft,i (x(s)

i (t)
)∥∥∥2

+ 2
∥∥∥∇̂Ft,i (x(s)

i (t)
)
−∇Ft,i

(
x
(s)
i (t)

)∥∥∥∥∥∥∇Ft,i (x(s)
i (t)

)∥∥∥
≤ 2

(∥∥∥∇̂Ft,i (x(s)
i (t)

)
−∇Ft,i

(
x
(s)
i (t)

)∥∥∥2 +
∥∥∥∇Ft,i (x(s)

i (t)
)∥∥∥2) ,

(40)
where in the first inequality we have used the Cauchy-Schwarz inequality, the last inequality
follows from the inequality 2ab ≤ a2 + b2. Taking the expectation on both sides of (40) and

using the relation
∥∥∇Ft,i(x(s)

i (t)
)∥∥ ≤ G for all s = 1, . . . ,K, we obtain

E
[∥∥∥∇̂Ft,i (x(s)

i (t)
)∥∥∥2] ≤ 2

(
σ2 +G2

)
(41)

for all s = 1, . . . ,K. Since g
(0)
i (t) = 0, we have

E
[∥∥∥g(1)

i (t)
∥∥∥2 |x(1)

i (t)

]
= η2kE

[
∇̂Ft,i

(
x
(1)
i (t)

)
|x(1)
i (t)

]
≤ 2η2k

(
σ2 +G2

)
≤ 2

(
σ2 +G2

)
.

Taking the expectation on the above inequality, we also obtain

E
[∥∥∥g(1)

i (t)
∥∥∥2] ≤ 2

(
σ2 +G2

)
.

We assume that the inequality E
[∥∥g(k−1)

i (t)
∥∥2] ≤ 2

(
σ2 +G2

)
holds for k ∈ {1, . . . ,K}.

Then, we next prove that the inequality E
[∥∥g(k)

i (t)
∥∥2] ≤ 2

(
σ2 +G2

)
holds for k ∈

{1, . . . ,K}. According to the definition of g
(k)
i (t), we have∥∥∥g(k)

i (t)
∥∥∥2 =

∥∥∥(1− ηk)g
(k−1)
i (t) + ηk∇̂Ft,i

(
x
(k)
i (t)

)∥∥∥2
= (1− ηk)2

∥∥∥g(k−1)
i (t)

∥∥∥2 + η2k

∥∥∥∇̂Ft,i (x(k)
i (t)

)∥∥∥2
+ 2ηk (1− ηk) 〈g

(k−1)
i (t) , ∇̂Ft,i

(
x
(k)
i (t)

)
〉

≤ (1− ηk)2
∥∥∥g(k−1)

i (t)
∥∥∥2 + η2k

∥∥∥∇̂Ft,i (x(k)
i (t)

)∥∥∥2
+ 2ηk (1− ηk)

∥∥∥g(k−1)
i (t)

∥∥∥∥∥∥∇̂Ft,i (x(k)
i (t)

)∥∥∥ ,
(42)

where the last inequality follows from the Cauchy-Schwartz inequality. Taking the expec-

tation on both sides of Eq. (42) with respect to x
(k)
i (t), we obtain

E
[∥∥∥g(k)

i (t)
∥∥∥2 | x(k)

i (t)

]
≤ (1− ηk)2

∥∥∥g(k−1)
i (t)

∥∥∥2 + η2kE
[∥∥∥∇̂Ft,i (x(k)

i (t)
)∥∥∥2]

+ 2ηk (1− ηk)
∥∥∥g(k−1)

i (t)
∥∥∥E [∥∥∥∇̂Ft,i (x(k)

i (t)
)∥∥∥ | x(k)

i (t)
]
.

(43)
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In addition, using the inequality E[‖x‖] ≤
√

E[‖x‖2] and Eq. (41), we have

E
[∥∥∥∇̂Ft,i (x(k)

i (t)
)∥∥∥] ≤√2 (σ2 +G2). (44)

Plugging Eq. (44) into Eq. (43), we obtain

E
[∥∥∥g(k)

i (t)
∥∥∥2 | x(k)

i (t)

]
≤ (1− ηk)2

∥∥∥g(k−1)
i (t)

∥∥∥2 + 2η2k
(
σ2 +G2

)
+ 2
√

2 (σ2 +G2)ηk (1− ηk)
∥∥∥g(k−1)

i (t)
∥∥∥ . (45)

Taking the expectation on both sides of the above inequality, we have

E
[∥∥∥g(k)

i (t)
∥∥∥2] ≤ (1− ηk)2 E

[∥∥∥g(k−1)
i (t)

∥∥∥2]+ 2η2k
(
σ2 +G2

)
+ 2
√

2 (σ2 +G2)ηk (1− ηk)E
[∥∥∥g(k−1)

i (t)
∥∥∥]

≤ 2 (1− ηk)2
(
σ2 +G2

)
+ 2η2k

(
σ2 +G2

)
+ 4

(
σ2 +G2

)
ηk (1− ηk)

= 2
(
σ2 +G2

)
,

(46)

where the last inequality follows from the induction. From Eq. (46) and using the inequality
E[‖x‖] ≤

√
E[‖x‖2], we have

E
[∥∥∥g(k) (t)

∥∥∥] ≤√2N (σ2 +G2), (47)

where in the last inequality we have used the definition of g(k) (t). Plugging Eq. (47) into
Eq. (39), we obtain

E
[∥∥∥d(k) (t)− d̂(k) (t)

∥∥∥] ≤ Nνγk√2N (σ2 +G2)

k∑
s=1

(β (1− γk))k−s

≤
Nνγk

√
2N (σ2 +G2)

1− β (1− γk)
.

(48)

Since
∥∥d(k) (t) − d̂(k) (t)

∥∥2 =
∑N

i=1

∥∥d(k)
i (t) − d̄(k) (t)

∥∥2, the conclusion of the lemma is
obtained.

Furthermore, we also have the following lemma, which establishes an upper bound of
the sum of the distance between the vectors ∇Ft,i and gki (t) for all i ∈ V.

Lemma 6 Let Assumptions 1-5 hold. The sequences {x(k)
i (t)} and {g(k)

i (t)} are generated
by Algorithm 1. For all t ∈ {1, . . . , T}, i ∈ V and k = 1, . . . ,K, we set ηk = 2/K2/3 and
have

E

[
N∑
i=1

∥∥∥∇Ft,i (x(k)
i (t)

)
− g

(k)
i (t)

∥∥∥2] ≤ (1− 2

K2/3

)k
NG2 +

3κNL2D2

2K4/3

+
4Nσ2 + 3κNL2D2

2K2/3
,

(49)

where κ := 1 + 2N2ν2/ (1− β)2.
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Proof According to the update rule of g
(k)
i (t), we have

∥∥∥∇Ft,i (x(k)
i (t)

)
− g

(k)
i (t)

∥∥∥2 =
∥∥∥∇Ft,i (x(k)

i (t)
)
− (1− ηk)g

(k−1)
i (t)− ηk∇̂Ft,i

(
x
(k)
i (t)

)∥∥∥2
=
∥∥∥ηk (∇Ft,i (x(k)

i (t)
)
− ∇̂Ft,i

(
x
(k)
i (t)

))
+ (1− ηk)

(
∇Ft,i

(
x
(k)
i (t)

)
−∇Ft,i

(
x
(k−1)
i (t)

))
+ (1− ηk)

(
∇Ft,i

(
x
(k−1)
i (t)

)
− g

(k−1)
i (t)

)∥∥∥2 ,
(50)

where we have added and subtracted the term (1− ηk)∇Ft,i
(
x
(k−1)
i (t)

)
in the last equality.

Let Ft,k denote all the information of random variables generated by Algorithm 1 up to
time k and iteration t. Thus, taking the expectation on both sides of (50) with respect to
Ft,k and using some algebraic manipulations, we have

E
[∥∥∥∇Ft,i (x(k)

i (t)
)
− g

(k)
i (t)

∥∥∥2 | Ft,k] ≤ η2kE [∥∥∥∇Ft,i (x(k)
i (t)

)
− ∇̂Ft,i

(
x
(k)
i (t)

)∥∥∥2 | Ft,k]
+ (1− ηk)2 E

[∥∥∥∇Ft,i (x(k)
i (t)

)
−∇Ft,i

(
x
(k−1)
i (t)

)∥∥∥2 | Ft,k]
+ (1− ηk)2 E

[∥∥∥∇Ft,i (x(k−1)
i (t)

)
− g

(k−1)
i (t)

∥∥∥2]+ 2 (1− ηk)2

× E
[〈
∇Ft,i

(
x
(k)
i (t)

)
−∇Ft,i

(
x
(k−1)
i (t)

)
,∇Ft,i

(
x
(k−1)
i (t)

)
− g

(k−1)
i (t)

〉
| Ft,k

]
,

(51)
where the inequality follows from the fact that ∇̂Ft,i is an unbiased estimate of ∇Ft,i.
Taking the expectation on both sides of Eq. (51), we obtain

E
[∥∥∥∇Ft,i (x(k)

i (t)
)
− g

(k)
i (t)

∥∥∥2] ≤ η2kE [∥∥∥∇Ft,i (x(k)
i (t)

)
− ∇̂Ft,i

(
x
(k)
i (t)

)∥∥∥2]
+ (1− ηk)2 E

[∥∥∥∇Ft,i (x(k)
i (t)

)
−∇Ft,i

(
x
(k−1)
i (t)

)∥∥∥2]
+ (1− ηk)2 E

[∥∥∥∇Ft,i (x(k−1)
i (t)

)
− g

(k−1)
i (t)

∥∥∥2]+ 2 (1− ηk)2

× E
[〈
∇Ft,i

(
x
(k)
i (t)

)
−∇Ft,i

(
x
(k−1)
i (t)

)
,∇Ft,i

(
x
(k−1)
i (t)

)
− g

(k−1)
i (t)

〉]
.

(52)

Following on from the Young’s inequality, we give

2
〈
∇Ft,i

(
x
(k)
i (t)

)
−∇Ft,i

(
x
(k−1)
i (t)

)
,∇Ft,i

(
x
(k−1)
i (t)

)
− g

(k−1)
i (t)

〉
≤ ρk

∥∥∥∇Ft,i (x(k−1)
i (t)

)
− g

(k−1)
i (t)

∥∥∥2 +
1

ρk

∥∥∥∇Ft,i (x(k)
i (t)

)
−∇Ft,i

(
x
(k−1)
i (t)

)∥∥∥2
≤ ρk

∥∥∥∇Ft,i (x(k−1)
i (t)

)
− g

(k−1)
i (t)

∥∥∥2 +
L2

ρk

∥∥∥x(k)
i (t)− x

(k−1)
i (t)

∥∥∥2 ,
(53)
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where in the last inequality we have used the fact that the function Ft,i is L-smooth.
Plugging Eq. (53) into Eq. (52), we have

E
[∥∥∥∇Ft,i (x(k)

i (t)
)
− g

(k)
i (t)

∥∥∥2] ≤ η2kσ2 + (1− ηk)2
(
1 + ρ−1k

)
L2E

[∥∥∥x(k)
i (t)− x

(k−1)
i (t)

∥∥∥2]
+ (1− ηk)2 (1 + ρk)E

[∥∥∥∇Ft,i (x(k−1)
i (t)

)
− g

(k−1)
i (t)

∥∥∥2] ,
(54)

where we use Assumption 5 to obtain the above inequality. Summing up both sides of Eq.
(54) and setting ρk = ηk/2, we obtain

E

[
N∑
i=1

∥∥∥∇Ft,i (x(k)
i (t)

)
− g

(k)
i (t)

∥∥∥2] ≤ Nη2kσ2
+ L2

(
1 + 2η−1k

)
E

[
N∑
i=1

∥∥∥x(k)
i (t)− x

(k−1)
i (t)

∥∥∥2]

+ (1− ηk)E

[
N∑
i=1

∥∥∥∇Ft,i (x(k−1)
i (t)

)
− g

(k−1)
i (t)

∥∥∥2] .
(55)

To bound Eq. (55), we need to estimate the term E[
∑N

i=1 ‖x
(k)
i (t)− x

(k−1)
i (t) ‖2]. For this

purpose, using the Cauchy-Schwarz inequality, we have

N∑
i=1

∥∥∥x(k)
i (t)− x

(k−1)
i (t)

∥∥∥2 ≤ N∑
i=1

3

[∥∥∥x(k)
i (t)− x̄(k) (t)

∥∥∥2 +
∥∥∥x̄(k−1) (t)− x̄(k−1) (t)

∥∥∥2]

+ 3

N∑
i=1

∥∥∥x̄(k−1) (t)− x̄
(k−1)
i (t)

∥∥∥2
≤ 3N3ν2D2

K2 (1− β)2
+

3ND2

K2
+

3N3ν2D2

K2 (1− β)2

=
3ND2

K2

(
1 +

2N2ν2

(1− β)2

)
,

(56)

where the last inequality is due to Lemma 3 and Lemma 4. Plugging Eq. (56) into Eq.
(55), we obtain

E

[
N∑
i=1

∥∥∥∇Ft,i (x(k)
i (t)

)
− g

(k)
i (t)

∥∥∥2] ≤ Nη2kσ2 +
(
1 + 2η−1k

) 3NL2D2

K2

(
1 +

2N2ν2

(1− β)2

)

+ (1− ηk)E

[
N∑
i=1

∥∥∥∇Ft,i (x(k−1)
i (t)

)
− g

(k−1)
i (t)

∥∥∥2] .
(57)
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Let ∆
(k)
i (t) :=

∥∥∇Ft,i(x(k)
i (t)

)
− g

(k)
i (t)

∥∥2 and set ηk = 2/K2/3. Thus, we obtain

E

[
N∑
i=1

∆
(k)
i (t)

]
≤
(

1− 2

K2/3

)
E

[
N∑
i=1

∆
(k−1)
i (t)

]
+

4Nσ2

K4/3
+

3κNL2D2

K2
+

3κNL2D2

K4/3
,

(58)
where κ := (1 + 2N2ν2/ (1− β)2). From Eq. (58), we also have

E

[
N∑
i=1

∆
(k)
i (t)

]
≤
(

1− 2

K2/3

)k
E

[
N∑
i=1

∆
(0)
i (t)

]

+

(
4Nσ2

K4/3
+

3κNL2D2

K2
+

3κNL2D2

K4/3

) k−1∑
s=0

(
1− 2

K2/3

)s
≤
(

1− 2

K2/3

)k
E

[
N∑
i=1

∆
(0)
i (t)

]
+

2Nσ2

K2/3
+

3κNL2D2

2K4/3
+

3κNL2D2

2K2/3

≤
(

1− 2

K2/3

)k
NG2 +

2Nσ2

K2/3
+

3κNL2D2

2K4/3
+

3κNL2D2

2K2/3
,

(59)

where the second inequality follows from the relation
∑k−1

s=0

(
1− 2/K2/3

)s ≤ K2/3

2 . There-
fore, the lemma is obtained.

With Lemma 6 in place, we also establish an upper bound of the expected distance
between the vector d̄(k) (t) and the gradient of the objective function ∇Ft, which is stated
in the following lemma.

Lemma 7 Let Assumptions 1-5 hold. The sequences {xi (t)} and {di (t)} are generated by
Algorithm 1. For all k ∈ {1, . . . ,K} and i ∈ {1, . . . , N}, we have

E

[∥∥∥∥∥d̄(k) (t)− 1

N

N∑
i=1

∇Ft,i
(
x̄(k) (t)

)∥∥∥∥∥
]
≤ (1− γk)kG+

(1− γk)LD
Kγk

+
LNDν

K (1− β)

+G

(
1− 2

K2/3

)k/2
+
LD
√

3κ√
2K2/3

+
σ
√

2

K1/3
+
LD
√

3κ√
2K1/3

,

(60)

where κ := 1 + 2N2ν2/ (1− β)2.

Proof From the update rule in Eq. (11), we have

N∑
i=1

d
(k)
i (t) = (1− γk)

N∑
i=1

N∑
j=1

aij (t)d
(k−1)
j (t) + γk

N∑
i=1

g
(k)
i (t)

= (1− γk)
N∑
j=1

d
(k−1)
j (t)

N∑
i=1

aij (t) + γk

N∑
i=1

g
(k)
i (t)

= (1− γk)
N∑
j=1

d
(k−1)
j (t) + γk

N∑
i=1

g
(k)
i (t) ,

(61)
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where the last equality follows from the relation
∑N

i=1 aij (t) = 1. According to the above
equality (61), we obtain

∥∥∥∥∥
N∑
i=1

d
(k)
i (t)−

N∑
i=1

∇Ft,i
(
x̄(k) (t)

)∥∥∥∥∥
=

∥∥∥∥∥∥(1− γk)
N∑
j=1

d
(k−1)
j (t) + γk

N∑
i=1

g
(k)
i (t)−

N∑
i=1

∇Ft,i
(
x̄(k) (t)

)∥∥∥∥∥∥
=

∥∥∥∥∥∥(1− γk)
N∑
j=1

d
(k−1)
j (t)− (1− γk)

N∑
i=1

∇Ft,i
(
x̄(k−1) (t)

)

+ (1− γk)
N∑
i=1

∇Ft,i
(
x̄(k−1) (t)

)
+ γk

N∑
i=1

g
(k)
i (t)−

N∑
i=1

∇Ft,i
(
x̄(k) (t)

)∥∥∥∥∥
=

∥∥∥∥∥∥(1− γk)

 N∑
j=1

d
(k−1)
j (t)−

N∑
i=1

∇Ft,i
(
x̄(k−1) (t)

)
+ (1− γk)

(
N∑
i=1

∇Ft,i
(
x̄(k−1) (t)

)
−

N∑
i=1

∇Ft,i
(
x̄(k) (t)

))

+ γk

(
N∑
i=1

g
(k)
i (t)−

N∑
i=1

∇Ft,i
(
x̄(k) (t)

))∥∥∥∥∥∥
≤ (1− γk)

∥∥∥∥∥∥
N∑
j=1

d
(k−1)
j (t)−

N∑
i=1

∇Ft,i
(
x̄(k−1) (t)

)∥∥∥∥∥∥
+ (1− γk)

∥∥∥∥∥
N∑
i=1

∇Ft,i
(
x̄(k−1) (t)

)
−

N∑
i=1

∇Ft,i
(
x̄(k) (t)

)∥∥∥∥∥
+ γk

∥∥∥∥∥
N∑
i=1

g
(k)
i (t)−

N∑
i=1

∇Ft,i
(
x̄(k) (t)

)∥∥∥∥∥
≤ (1− γk)

∥∥∥∥∥∥
N∑
j=1

d
(k−1)
j (t)−

N∑
i=1

∇Ft,i
(
x̄(k−1) (t)

)∥∥∥∥∥∥
+ (1− γk)

∥∥∥∥∥
N∑
i=1

∇Ft,i
(
x̄(k−1) (t)

)
−

N∑
i=1

∇Ft,i
(
x̄(k) (t)

)∥∥∥∥∥
+ γk

∥∥∥∥∥
N∑
i=1

g
(k)
i (t)−

N∑
i=1

∇Ft,i
(
x
(k)
i (t)

)∥∥∥∥∥
+ γk

∥∥∥∥∥
N∑
i=1

∇Ft,i
(
x
(k)
i (t)

)
−

N∑
i=1

∇Ft,i
(
x̄(k) (t)

)∥∥∥∥∥ ,

(62)
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where we have used the triangle inequality in the first inequality and the last inequality.
Furthermore, since the functions Ft,i are L-smooth, we obtain

∥∥∥∥∥
N∑
i=1

d
(k)
i (t)−

N∑
i=1

∇Ft,i
(
x̄(k) (t)

)∥∥∥∥∥ ≤ (1− γk)

∥∥∥∥∥∥
N∑
j=1

d
(k−1)
j (t)−

N∑
i=1

∇Ft,i
(
x̄(k−1) (t)

)∥∥∥∥∥∥
+ (1− γk)L

N∑
i=1

∥∥∥x̄(k−1) (t)− x̄(k) (t)
∥∥∥

+ γkL
N∑
i=1

∥∥∥x(k)
i (t)− x̄(k) (t)

∥∥∥
+ γk

∥∥∥∥∥
N∑
i=1

g
(k)
i (t)−

N∑
i=1

∇Ft,i
(
x
(k)
i (t)

)∥∥∥∥∥
≤ (1− γk)

∥∥∥∥∥∥
N∑
j=1

d
(k−1)
j (t)−

N∑
i=1

∇Ft,i
(
x̄(k−1) (t)

)∥∥∥∥∥∥
+

(1− γk)LND
K

+
γkLN

2Dν

K (1− β)

+ γk

∥∥∥∥∥
N∑
i=1

g
(k)
i (t)−

N∑
i=1

∇Ft,i
(
x
(k)
i (t)

)∥∥∥∥∥ ,
(63)

where the first inequality follows from the triangle inequality, the last inequality follows
from the Cauchy-Schwarz inequality and lemmata 3 and 4. To bound the expectation of

the left term in Eq. (47), i.e., E[‖
∑N

i=1 d
(k)
i (t)−

∑N
i=1∇Ft,i(x̄(k)(t))‖], we need to bound the

term E[‖
∑N

i=1 g
(k)
i (t) −

∑N
i=1∇Ft,i(x

(k)
i (t))‖]. To this end, applying the Cauchy-Schwarz

inequality, we first have

E

[∥∥∥∥∥
N∑
i=1

g
(k)
i (t)−

N∑
i=1

∇Ft,i
(
x
(k)
i (t)

)∥∥∥∥∥
]

≤
√
NE

( N∑
i=1

∥∥∥g(k)
i (t)−∇Ft,i

(
x
(k)
i (t)

)∥∥∥2)1/2


≤
√
N

(
E

[
N∑
i=1

∥∥∥g(k)
i (t)−∇Ft,i

(
x
(k)
i (t)

)∥∥∥2])1/2

,

(64)
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where the last inequality follows from the Jensen’s inequality. Furthermore, according to
Lemma 6 and Eq. (64), we have

E

[
N∑
i=1

∥∥∥g(k)
i (t)−∇Ft,i

(
x
(k)
i (t)

)∥∥∥2]

≤
√
N

((
1− 2

K2/3

)k
NG2 +

3κNL2D2

2K4/3
+

4Nσ2 + 3κNL2D2

2K2/3

)1/2

.

(65)

Using the inequality
∑N

i=1 r
2
i ≤ (

∑N
i=1 ri)

2, we have

E

[
N∑
i=1

∥∥∥g(k)
i (t)−∇Ft,i

(
x
(k)
i (t)

)∥∥∥2] ≤ NG(1− 2

K2/3

)k/2
+
NLD

√
3κ√

2K2/3

+
Nσ
√

2

K1/3
+
NLD

√
3κ√

2K1/3
.

(66)

Taking the expectation of both sides in Eq. (63) and using the expression (66), we obtain

E

[∥∥∥∥∥
N∑
i=1

d
(k)
i (t)−

N∑
i=1

∇Ft,i
(
x̄(k) (t)

)∥∥∥∥∥
]
≤ (1− γk)LND

K
+
γkLN

2Dν

K (1− β)

+ (1− γk)E

∥∥∥∥∥∥
N∑
j=1

d
(k−1)
j (t)−

N∑
i=1

∇Ft,i
(
x̄(k−1) (t)

)∥∥∥∥∥∥


+ γkNG

(
1− 2

K2/3

)k/2
+
γkNLD

√
3κ√

2K2/3
+
γkNσ

√
2

K1/3
+
γkNLD

√
3κ√

2K1/3
.

(67)

Furthermore, multiplying both sides of Eq. (67) by 1/N and applying the resulted expres-
sion recursively, we have

E

[∥∥∥∥∥ 1

N

N∑
i=1

d
(k)
i (t)− 1

N

N∑
i=1

∇Ft,i
(
x̄(k) (t)

)∥∥∥∥∥
]
≤
[

(1− γk)LD
K

+
γkLNDν

K (1− β)

] k−1∑
s=0

(1− γk)s

+ (1− γk)k
∥∥∥∥∥ 1

N

N∑
i=1

d
(0)
i (t)− 1

N

N∑
i=1

∇Ft,i
(
x̄(0) (t)

)∥∥∥∥∥
+ γk

[
G

(
1− 2

K2/3

)k/2
+
LD
√

3κ√
2K2/3

+
σ
√

2

K1/3
+
LD
√

3κ√
2K1/3

]
k−1∑
s=0

(1− γk)s

≤ (1− γk)kG+
(1− γk)LD

Kγk
+

LNDν

K (1− β)

+G

(
1− 2

K2/3

)k/2
+
LD
√

3κ√
2K2/3

+
σ
√

2

K1/3
+
LD
√

3κ√
2K1/3

,

(68)
where the last inequality follows from the inequality

∑k−1
s=0(1− γk)s ≤ 1/γk. Therefore, the

statement of the lemma is proved completely.
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With Lemma 7 in place, we now start to prove Theorem 1.
Proof of Theorem 1. Since the functions Ft,i are L-smooth, we have

1

N

N∑
i=1

Ft,i

(
x̄(k+1) (t)

)
≥ 1

N

N∑
i=1

Ft,i

(
x̄(k) (t)

)
− L

2

∥∥∥x̄(k+1) (t)− x̄(k) (t)
∥∥∥2

+
1

N

〈
N∑
i=1

∇Ft,i
(
x̄(k) (t)

)
, x̄(k+1) (t)− x̄(k) (t)

〉

=
1

N

N∑
i=1

Ft,i

(
x̄(k) (t)

)
− L

2K2

∥∥∥∥∥ 1

N

N∑
i=1

v
(k)
i (t)

∥∥∥∥∥
2

+
1

K

〈
1

N

N∑
i=1

∇Ft,i
(
x̄(k) (t)

)
,

1

N

N∑
i=1

v
(k)
i (t)

〉

≥ 1

N

N∑
i=1

Ft,i

(
x̄(k) (t)

)
− LD2

2K2

+
1

K

〈
1

N

N∑
i=1

∇Ft,i
(
x̄(k) (t)

)
,

1

N

N∑
i=1

v
(k)
i (t)

〉
,

(69)

where the last inequality follows from the relation ‖(1/N)
∑N

i=1 v
(k)
i (t) ‖2 ≤ D2 and Eq.

(21). Setting v̄(k) (t) := (1/N)
∑N

i=1 v
(k)
i (t) and Ft := (1/N)

∑N
i=1 Ft,i. By adding and

subtracting 〈d̄(k) (t) , v̄(k) (t)〉 in the last term of the right side of Eq. (69), we obtain

〈
1

N

N∑
i=1

∇Ft,i
(
x̄(k) (t)

)
,

1

N

N∑
i=1

v
(k)
i (t)

〉
=
〈
∇Ft

(
x̄(k) (t)

)
, v̄(k) (t)

〉
=
〈
∇Ft

(
x̄(k) (t)

)
− d̄(k) (t) , v̄(k) (t)

〉
+
〈
d̄(k) (t) , v̄(k) (t)

〉
=
〈
∇Ft

(
x̄(k) (t)

)
− d̄(k) (t) , v̄(k) (t)

〉
+
〈
d̄(k) (t) ,x∗

〉
+
〈
d̄(k) (t) , v̄(k) (t)− x∗

〉
=
〈
∇Ft

(
x̄(k) (t)

)
− d̄(k) (t) , v̄(k) (t)− x∗

〉
+
〈
∇Ft

(
x̄(k) (t)

)
,x∗
〉

+
〈
d̄(k) (t) , v̄(k) (t)− x∗

〉
,

(70)
where we have added and subtracted the term 〈d̄(k) (t) , v̄(k) (t)〉 to obtain the second equal-
ity, the third equality is obtained by adding and subtracting the term 〈d̄(k) (t) ,x∗〉, in the
last equality we have added and subtracted the term 〈∇Ft

(
x̄(k) (t)

)
,x∗〉. Since the sub-

modular functions Ft,i are monotonic and concave along non-negative directions, we obtain
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Ft,i (x∗)− Ft,i
(
x̄(k) (t)

)
≤ Ft,i

(
x∗ ∨ x̄(k) (t)

)
− Ft,i

(
x̄(k) (t)

)
≤
〈
∇Ft,i

(
x̄(k) (t)

)
,x∗ ∨ x̄(k) (t)− x̄(k) (t)

〉
=
〈
∇Ft,i

(
x̄(k) (t)

)
,
(
x∗ − x̄(k) (t)

)
∨ 0
〉

≤
〈
∇Ft,i

(
x̄(k) (t)

)
,x∗
〉
.

(71)

Following on from the definition of Ft and using the above inequality (71), we also have

Ft (x∗)− Ft
(
x̄(k) (t)

)
≤
〈
∇Ft

(
x̄(k) (t)

)
,x∗
〉
. (72)

Plugging Eq. (72) into Eq. (70), we obtain

〈
∇Ft

(
x̄(k) (t)

)
, v̄(k) (t)

〉
≥
〈
∇Ft

(
x̄(k) (t)

)
− d̄(k) (t) , v̄(k) (t)− x∗

〉
+
〈
d̄(k) (t) , v̄(k) (t)− x∗

〉
+
(
Ft (x∗)− Ft

(
x̄(k) (t)

))
.

(73)

In addition, by the Cauchy-Schwarz inequality, we have

〈
∇Ft

(
x̄(k) (t)

)
− d̄(k) (t) , v̄(k) (t)− x∗

〉
≥ −

∥∥∥∇Ft (x̄(k) (t)
)
− d̄(k) (t)

∥∥∥∥∥∥v̄(k) (t)− x∗
∥∥∥

≥ −D
∥∥∥∇Ft (x̄(k) (t)

)
− d̄(k) (t)

∥∥∥ ,
(74)

where the last inequality follows from the fact that (v̄(k) (t)− x∗) ∈ K. Plugging Eq. (74)
into Eq. (73), we obtain

〈
∇Ft

(
x̄(k) (t)

)
, v̄(k) (t)

〉
≥ −D

∥∥∥∇Ft (x̄(k) (t)
)
− d̄(k) (t)

∥∥∥
+
〈
d̄(k) (t) , v̄(k) (t)− x∗

〉
+
(
Ft (x∗)− Ft

(
x̄(k) (t)

))
.

(75)

Substituting Eq. (75) into Eq. (69), we have

1

N

N∑
i=1

Ft,i

(
x̄(k+1) (t)

)
≥ 1

N

N∑
i=1

Ft,i

(
x̄(k) (t)

)
− LD2

2K2

− D

K

∥∥∥∇Ft (x̄(k) (t)
)
− d̄(k) (t)

∥∥∥
+

1

K

〈
d̄(k) (t) , v̄(k) (t)− x∗

〉
+

1

K

(
Ft (x∗)− Ft

(
x̄(k) (t)

))
.

(76)
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By adding and subtracting the term (1/N)
∑N

i=1 Ft,i (x∗) in both sides of Eq. (76) and
using some algebraic manipulations, we obtain

1

N

N∑
i=1

Ft,i (x∗)− 1

N

N∑
i=1

Ft,i

(
x̄(k+1) (t)

)
≤
(

1− 1

K

)[
1

N

N∑
i=1

Ft,i (x∗)− 1

N

N∑
i=1

Ft,i

(
x̄(k) (t)

)]

+
D

K

∥∥∥∇Ft (x̄(k) (t)
)
− d̄(k) (t)

∥∥∥
− 1

K

〈
d̄(k) (t) , v̄(k) (t)− x∗

〉
+
LD2

2K2
.

(77)

Therefore, using the relation (77) recursively, we have

1

N

N∑
i=1

Ft,i (x∗)− 1

N

N∑
i=1

Ft,i

(
x̄(K+1) (t)

)
≤
(

1− 1

K

)K [ 1

N

N∑
i=1

Ft,i (x∗)− 1

N

N∑
i=1

Ft,i

(
x̄(1) (t)

)]

+
D

K

K∑
k=1

∥∥∥∇Ft (x̄(k) (t)
)
− d̄(k) (t)

∥∥∥
− 1

K

K∑
k=1

〈
d̄(k) (t) , v̄(k) (t)− x∗

〉
+
LD2

2K
.

(78)

Since x
(K+1)
i (t) = xi (t) in iteration t, we obtain

1

N

N∑
i=1

Ft,i (x∗)− 1

N

N∑
i=1

Ft,i (x̄ (t)) ≤ 1

e

[
1

N

N∑
i=1

Ft,i (x∗)− 1

N

N∑
i=1

Ft,i

(
x̄(1) (t)

)]

+
D

K

K∑
k=1

∥∥∥∇Ft (x̄(k) (t)
)
− d̄(k) (t)

∥∥∥
− 1

K

K∑
k=1

〈
d̄(k) (t) , v̄(k) (t)− x∗

〉
+
LD2

2K

≤ 1

e

(
1

N

N∑
i=1

Ft,i (x∗)− 1

N

N∑
i=1

Ft,i (0)

)

+
D

K

K∑
k=1

∥∥∥∇Ft (x̄(k) (t)
)
− d̄(k) (t)

∥∥∥
− 1

K

K∑
k=1

〈
d̄(k) (t) , v̄(k) (t)− x∗

〉
+
LD2

2K
.

(79)
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Furthermore, according to the fact that Ft,i(0) ≥ 0 for all i ∈ V and t ∈ {1, . . . , T}, we have

(
1− 1

e

)
1

N

N∑
i=1

Ft,i (x∗)− 1

N

N∑
i=1

Ft,i (x̄ (t)) ≤ 1

K

K∑
k=1

〈
d̄(k) (t) ,x∗ − v̄(k) (t)

〉
+
LD2

2K

+
D

K

K∑
k=1

∥∥∥∇Ft (x̄(k) (t)
)
− d̄(k) (t)

∥∥∥ . (80)

Using the following relation〈
N∑
i=1

d
(k)
i (t),

N∑
i=1

v
(k)
i (t)

〉
=

N∑
i=1

N∑
j=1

〈
d
(k)
i (t),v

(k)
j (t)

〉

=

N∑
j=1

〈
N∑
i=1

d
(k)
i (t),v

(k)
j (t)

〉
,

the term 〈d̄(k) (t) ,x∗ − v̄(k) (t)〉 can be rewritten as

〈
d̄(k) (t) ,x∗ − v̄(k) (t)

〉
=

〈
1

N

N∑
i=1

d
(k)
i (t) ,x∗ − 1

N

N∑
i=1

v
(k)
i (t)

〉

=
1

N2

N∑
j=1

〈
N∑
i=1

d
(k)
i (t) ,x∗ − v

(k)
j (t)

〉

=
1

N

N∑
j=1

〈(
1

N

N∑
i=1

d
(k)
i (t)− d

(k)
j (t)

)
,x∗ − v

(k)
j (t)

〉

+
1

N

N∑
j=1

〈
d
(k)
j (t) ,x∗ − v

(k)
j (t)

〉

≤ 1

N

N∑
j=1

∥∥∥∥∥ 1

N

N∑
i=1

d
(k)
i (t)− d

(k)
j (t)

∥∥∥∥∥∥∥∥x∗ − v
(k)
j (t)

∥∥∥
+

1

N

N∑
j=1

〈
d
(k)
j (t) ,x∗ − v

(k)
j (t)

〉

≤ D

N

N∑
j=1

∥∥∥∥∥ 1

N

N∑
i=1

d
(k)
i (t)− d

(k)
j (t)

∥∥∥∥∥
+

1

N

N∑
j=1

〈
d
(k)
j (t) ,x∗ − v

(k)
j (t)

〉

(81)

where the first inequality follows from the Cauchy-Schwarz inequality, the last inequality

follows from the fact that (x∗ − v
(k)
j (t)) ∈ K for all j ∈ V. Thus, plugging Eq. (81) into
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Eq. (80), we have(
1− 1

e

)
1

N

N∑
i=1

Ft,i (x∗)− 1

N

N∑
i=1

Ft,i (x̄ (t)) ≤ 1

KN

K∑
k=1

N∑
j=1

〈
d
(k)
j (t) ,x∗ − v

(k)
j (t)

〉
+
LD2

2K

+
D

K

K∑
k=1

∥∥∥∇Ft (x̄(k) (t)
)
− d̄(k) (t)

∥∥∥
+

1

K

K∑
k=1

D

N

N∑
j=1

∥∥∥∥∥ 1

N

N∑
i=1

d
(k)
i (t)− d

(k)
j (t)

∥∥∥∥∥ .
(82)

Summing up Eq. (82) over t from 1 to T , we obtain(
1− 1

e

)
1

N

T∑
t=1

N∑
i=1

Ft,i (x∗)− 1

N

T∑
t=1

N∑
i=1

Ft,i (x̄ (t)) ≤ TLD2

2K

+
1

KN

K∑
k=1

N∑
j=1

T∑
t=1

〈
d
(k)
j (t) ,x∗ − v

(k)
j (t)

〉

+
D

K

K∑
k=1

T∑
t=1

∥∥∥∇Ft (x̄(k) (t)
)
− d̄(k) (t)

∥∥∥
+

D

KN

N∑
j=1

K∑
k=1

T∑
t=1

∥∥∥∥∥ 1

N

N∑
i=1

d
(k)
i (t)− d

(k)
j (t)

∥∥∥∥∥ .

(83)

According to Algorithm 1 and the definition of the regret, we can see that

T∑
t=1

〈
d
(k)
j (t) ,x∗ − v

(k)
j (t)

〉
≤ RεT (84)

for all j ∈ {1, . . . , N}. Plugging Eq. (84) into Eq. (83), we have(
1− 1

e

)
1

N

T∑
t=1

N∑
i=1

Ft,i (x∗)− 1

N

T∑
t=1

N∑
i=1

Ft,i (x̄ (t)) ≤ TLD2

2K
+RεT

+
D

K

K∑
k=1

T∑
t=1

∥∥∥∇Ft (x̄(k) (t)
)
− d̄(k) (t)

∥∥∥
+

D

KN

N∑
j=1

K∑
k=1

T∑
t=1

∥∥∥∥∥ 1

N

N∑
i=1

d
(k)
i (t)− d

(k)
j (t)

∥∥∥∥∥ .
(85)

Since the functions Ft,i are G-Lipschitz for all t ∈ {1, . . . , T} and i ∈ {1, . . . , N}, we know
that ∣∣∣∣∣ 1

N

N∑
i=1

Ft,i (x̄ (t))− 1

N

N∑
i=1

Ft,i (xj (t))

∣∣∣∣∣ ≤ G

N

N∑
i=1

‖x̄ (t)− xj (t)‖ ≤ GNDν

K (1− β)
, (86)
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where in the last inequality we have used Eq. (24) in Lemma 4 and the Cauchy-Schwarz
inequality. Plugging Eq. (86) into Eq. (85), we obtain

(
1− 1

e

)
1

N

T∑
t=1

N∑
i=1

Ft,i (x∗)− 1

N

T∑
t=1

N∑
i=1

Ft,i (xj (t)) ≤ TLD2

2K
+RεT +

TGNDν

K (1− β)

+
D

K

K∑
k=1

T∑
t=1

∥∥∥∇Ft (x̄(k) (t)
)
− d̄(k) (t)

∥∥∥
+

D

KN

N∑
j=1

K∑
k=1

T∑
t=1

∥∥∥∥∥ 1

N

N∑
i=1

d
(k)
i (t)− d

(k)
j (t)

∥∥∥∥∥ .
(87)

Taking expectation in Eq. (87), we have

(
1− 1

e

)
1

N

T∑
t=1

N∑
i=1

E [Ft,i (x∗)]− 1

N

T∑
t=1

N∑
i=1

E [Ft,i (xj (t))] ≤ TLD2

2K
+RεT +

TGNDν

K (1− β)

+
D

K

K∑
k=1

T∑
t=1

E
[∥∥∥∇Ft (x̄(k) (t)

)
− d̄(k) (t)

∥∥∥]
+

D

KN

N∑
j=1

K∑
k=1

T∑
t=1

E

[∥∥∥∥∥ 1

N

N∑
i=1

d
(k)
i (t)− d

(k)
j (t)

∥∥∥∥∥
]
.

(88)
Furthermore, we also have

1

N

N∑
j=1

E

[∥∥∥∥∥ 1

N

N∑
i=1

d
(k)
i (t)− d

(k)
j (t)

∥∥∥∥∥
]
≤ 1√

N

√√√√√E

∥∥∥∥∥ 1

N

N∑
i=1

d
(k)
i (t)− d

(k)
j (t)

∥∥∥∥∥
2


≤
γkNν

√
2 (σ2 +G2)

1− β (1− γk)
,

(89)

where in the first inequality we have used the Cauchy-Schwarz inequality and the last
inequality follows from Eq. (34) in Lemma 5. Moreover, plugging Eq. (60) in Lemma 7
and Eq. (89) into Eq. (88), we obtain

(
1− 1

e

)
1

N

T∑
t=1

N∑
i=1

E [Ft,i (x∗)]− 1

N

T∑
t=1

N∑
i=1

E [Ft,i (xj (t))] ≤ TLD2

2K
+RεT +

TGNDν

K (1− β)

+
D

K

K∑
k=1

T∑
t=1

[
(1− γk)kG+

(1− γk)LD
Kγk

+
LNDν

K (1− β)
+G

(
1− 2

K2/3

)k/2

+
LD
√

3κ√
2K2/3

+
σ
√

2

K1/3
+
LD
√

3κ√
2K1/3

]
+
D

K

K∑
k=1

T∑
t=1

γkNν
√

2 (σ2 +G2)

1− β (1− γk)
.

(90)
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Setting γk = 1/
√
K for all k = 1, . . . ,K and using Eq. (90), we have(

1− 1

e

)
1

N

T∑
t=1

N∑
i=1

E [Ft,i (x∗)]− 1

N

T∑
t=1

N∑
i=1

E [Ft,i (xj (t))] ≤ TLD2

2K
+RεT +

TGNDν

K (1− β)

+
TD

K

K∑
k=1

[(
1− 1

K1/2

)k
G+

LD

K1/2
+

LNDν

K (1− β)
+G

(
1− 2

K2/3

)k/2

+
LD
√

3κ√
2K2/3

+
σ
√

2

K1/3
+
LD
√

3κ√
2K1/3

]
+
TNDν

K

K∑
k=1

√
2 (σ2 +G2)

K1/2 (1− β)

≤ TLD2

2K
+
GNDTν

K (1− β)
+
GDT

K1/2
+
LD2T

K1/2
+
LND2Tν

K (1− β)
+
GDT

K1/3

+
LD2T

√
3κ√

2K2/3
+
σDT

√
2

K1/3
+
LD2T

√
3κ√

2K1/3
+
NDTν

√
2 (σ2 +G2)

K1/2 (1− β)
+RεT ,

(91)
where the last inequality follows from the inequalities

K∑
k=1

(1− 1/K1/2) ≤
∞∑
k=0

(1− 1/K1/2) = K1/2

and
K∑
k=1

(1− 2/K2/3)k/2 ≤
∞∑
k=0

(1− 2/K2/3)k/2 =
1

1− (1− 2/K2/3)1/2
≤ K2/3.

In addition, since κ = (1 + 2N2ν2/ (1− β)2), we have
√
κ ≤ 1 +

√
2Nν/(1 − β). There-

fore, combining the result and the expression (91), the statement of Theorem 1 is proved
completely.

6.2 Stochastic Online Setting

In this subsection, we analyze the performance of Algorithm 2. Furthermore, we also provide
the detailed proof of Theorem 2.

Proof of Theorem 2. According to the smoothness of the functions Ft,i for all i ∈
{1, . . . , N} and t ∈ {1, . . . , T}, and using the expression (15), we have

1

N

N∑
i=1

Fi (x̄ (t+ 1)) ≥ 1

N

N∑
i=1

Fi (x̄ (t))− L

2T 2

∥∥∥∥∥ 1

N

N∑
i=1

vi (t)

∥∥∥∥∥
2

+
1

T

〈
1

N

N∑
i=1

∇Fi (x̄ (t)) ,
1

N

N∑
i=1

vi (t)

〉

≥ 1

N

N∑
i=1

Fi (x̄ (t))− LD2

2T 2

+
1

T

〈
1

N

N∑
i=1

∇Fi (x̄ (t)) ,
1

N

N∑
i=1

vi (t)

〉
,

(92)
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where we use the relation ‖(1/N)
∑N

i=1 vi(t)‖ ≤ D2 to obtain the last inequality. To bound

the relation (92), we first establish the bound of the term 〈 1N
∑N

i=1∇Fi (x̄ (t)) , 1
N

∑N
i=1 vi (t)〉.

Thus, adding and subtracting the term 〈(1/N)
∑N

i=1 di (t) , (1/N)
∑N

i=1 vi (t)〉, we obtain

〈
1

N

N∑
i=1

∇Fi (x̄ (t)) ,
1

N

N∑
i=1

vi (t)

〉
=

〈
1

N

N∑
i=1

di (t) ,
1

N

N∑
i=1

vi (t)

〉

+

〈
1

N

N∑
i=1

∇Fi (x̄ (t))− 1

N

N∑
i=1

di (t) ,
1

N

N∑
i=1

vi (t)

〉

=
1

N2

N∑
j=1

〈
N∑
i=1

di (t) ,vj (t)

〉
+

〈
1

N

N∑
i=1

∇Fi (x̄ (t))− 1

N

N∑
i=1

di (t) ,
1

N

N∑
i=1

vi (t)

〉

=
1

N

N∑
j=1

〈(
1

N
di (t)− dj (t)

)
,vj (t)

〉
+

1

N

N∑
j=1

〈dj (t) ,vj (t)〉

+

〈
1

N

N∑
i=1

∇Fi (x̄ (t))− 1

N

N∑
i=1

di (t) ,
1

N

N∑
i=1

vi (t)

〉
,

(93)
where the second equality is obtained by using the following equality,

〈
N∑
i=1

di (t) ,
N∑
i=1

vi (t)

〉
=

N∑
i=1

N∑
j=1

〈di (t) ,vj (t)〉 =
N∑
j=1

〈
N∑
i=1

di (t) ,vj (t)

〉
,

in the last equality we have added and subtracted the term (1/N)
∑N

j=1〈dj (t) ,vj (t)〉. Since
vi(t) = arg maxv∈K〈di(t),v〉, we obtain 〈di(t),vi(t)〉 ≥ 〈di(t),x∗〉 for all i ∈ {1, . . . , N}.
Therefore, plugging the result into Eq. (93), we have

〈
1

N

N∑
i=1

∇Fi (x̄ (t)) ,
1

N

N∑
i=1

vi (t)

〉
≥ 1

N

N∑
j=1

〈(
1

N
di (t)− dj (t)

)
,vj (t)

〉

+
1

N

N∑
j=1

〈dj (t) ,x∗〉+

〈
1

N

N∑
i=1

∇Fi (x̄ (t))− 1

N

N∑
i=1

di (t) ,
1

N

N∑
i=1

vi (t)

〉

=
1

N

N∑
j=1

〈(
1

N
di (t)− dj (t)

)
,vj (t)

〉
+

1

N

N∑
j=1

〈
dj (t)− 1

N

N∑
i=1

di (t) ,x∗

〉

+
1

N2

N∑
j=1

〈
N∑
i=1

di (t) ,x∗

〉
+

〈
1

N

N∑
i=1

∇Fi (x̄ (t))− 1

N

N∑
i=1

di (t) ,
1

N

N∑
i=1

vi (t)

〉
,

(94)
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where we add and subtract the term (1/N2)
∑N

j=1〈
∑N

i=1 di (t) ,x∗〉 in the last equality.

Furthermore, adding and subtracting the term 1/N2
∑N

j=1〈
∑N

i=1∇Fi (x̄ (t)) ,x∗〉, we have〈
1

N

N∑
i=1

∇Fi (x̄ (t)) ,
1

N

N∑
i=1

vi (t)

〉
≥ 1

N

N∑
j=1

〈(
1

N
di (t)− dj (t)

)
,vj (t)

〉

+
1

N

N∑
j=1

〈
dj (t)− 1

N

N∑
i=1

di (t) ,x∗

〉
+

1

N2

N∑
j=1

〈
N∑
i=1

∇Fi (x̄ (t)) ,x∗

〉

+
1

N2

N∑
j=1

〈
N∑
i=1

di (t)−
N∑
i=1

∇Fi (x̄ (t)) ,x∗

〉

+

〈
1

N

N∑
i=1

∇Fi (x̄ (t))− 1

N

N∑
i=1

di (t) ,
1

N

N∑
i=1

vi (t)

〉

=
1

N

N∑
j=1

〈(
1

N
di (t)− dj (t)

)
,vj (t)− x∗

〉
+

1

N

〈
N∑
i=1

∇Fi (x̄ (t)) ,x∗

〉

+
1

N

〈
N∑
i=1

di (t)−
N∑
i=1

∇Fi (x̄ (t)) ,x∗ − 1

N

N∑
i=1

vi (t)

〉
.

(95)
Plugging Eq. (95) into Eq. (92), we have

1

N

N∑
i=1

Fi (x̄ (t+ 1)) ≥ 1

N

N∑
i=1

Fi (x̄ (t)) +
1

NT

〈
N∑
i=1

∇Fi (x̄ (t)) ,x∗

〉
− LD2

2T 2

+
1

NT

N∑
j=1

〈(
1

N
di (t)− dj (t)

)
,vj (t)− x∗

〉

+
1

NT

〈
N∑
i=1

di (t)−
N∑
i=1

∇Fi (x̄ (t)) ,x∗ − 1

N

N∑
i=1

vi (t)

〉
.

(96)

Similar to the relation (71), we obtain〈
1

N

N∑
i=1

∇Fi (x̄ (t)) ,x∗

〉
≥ 1

N

N∑
i=1

Fi (x∗)− 1

N

N∑
i=1

Fi (x̄ (t)) . (97)

Plugging Eq. (97) into Eq. (96), we have

1

N

N∑
i=1

Fi (x̄ (t+ 1)) ≥ 1

N

N∑
i=1

Fi (x̄ (t)) +
1

T

(
1

N

N∑
i=1

Fi (x∗)− 1

N

N∑
i=1

Fi (x̄ (t))

)

+
1

NT

N∑
j=1

〈(
1

N
di (t)− dj (t)

)
,vj (t)− x∗

〉
− LD2

2T 2

+
1

NT

〈
N∑
i=1

di (t)−
N∑
i=1

∇Fi (x̄ (t)) ,x∗ − 1

N

N∑
i=1

vi (t)

〉
.

(98)

33



Zhu, Wu, Zhang, Zheng, and Li

Furthermore, by using the Cauchy-Schwarz inequality, we give

1

N

N∑
i=1

Fi (x̄ (t+ 1)) ≥ 1

N

N∑
i=1

Fi (x̄ (t)) +
1

T

(
1

N

N∑
i=1

Fi (x∗)− 1

N

N∑
i=1

Fi (x̄ (t))

)

− 1

NT

N∑
j=1

∥∥∥∥ 1

N
di (t)− dj (t)

∥∥∥∥ ‖vj (t)− x∗‖ − LD2

2T 2

− 1

NT

∥∥∥∥∥
N∑
i=1

di (t)−
N∑
i=1

∇Fi (x̄ (t))

∥∥∥∥∥
∥∥∥∥∥x∗ − 1

N

N∑
i=1

vi (t)

∥∥∥∥∥ .
(99)

Since vi (t) ∈ K for all i ∈ V, we know that (1/N)
∑N

i=1 vi (t) ∈ K. Therefore, ‖vj (t)− x∗‖ ≤
D and ‖(1/N)

∑N
i=1 vi (t)−x∗‖ ≤ D. Furthermore, subtracting the term (1/N)

∑N
i=1 Fi(x

∗)
on both sides of Eq. (99) and using some algebraic manipulations, we have

1

N

N∑
i=1

Fi (x∗)− 1

N

N∑
i=1

Fi (x̄ (t+ 1)) ≤
(

1− 1

T

)(
1

N

N∑
i=1

Fi (x∗)− 1

N

N∑
i=1

Fi (x̄ (t))

)

+
1

NT

N∑
j=1

∥∥∥∥ 1

N
di (t)− dj (t)

∥∥∥∥ ‖vj (t)− x∗‖+
LD2

2T 2

+
1

NT

∥∥∥∥∥
N∑
i=1

di (t)−
N∑
i=1

∇Fi (x̄ (t))

∥∥∥∥∥
∥∥∥∥∥x∗ − 1

N

N∑
i=1

vi (t)

∥∥∥∥∥
≤
(

1− 1

T

)(
1

N

N∑
i=1

Fi (x∗)− 1

N

N∑
i=1

Fi (x̄ (t))

)

+
D

NT

N∑
j=1

∥∥∥∥ 1

N
di (t)− dj (t)

∥∥∥∥+
LD2

2T 2

+
D

NT

∥∥∥∥∥
N∑
i=1

di (t)−
N∑
i=1

∇Fi (x̄ (t))

∥∥∥∥∥ .
(100)

Applying the above relation (100) recursively, we obtain

1

N

N∑
i=1

Fi (x∗)− 1

N

N∑
i=1

Fi (x̄ (t+ 1)) ≤
(

1− 1

T

)t( 1

N

N∑
i=1

Fi (x∗)− 1

N

N∑
i=1

Fi (x̄ (1))

)

+
D

NT

t∑
τ=1

N∑
j=1

∥∥∥∥ 1

N
di (τ)− dj (τ)

∥∥∥∥+
t∑

τ=1

(
1− 1

T

)τ LD2

2T 2

+
D

NT

t∑
τ=1

∥∥∥∥∥
N∑
i=1

di (τ)−
N∑
i=1

∇Fi (x̄ (τ))

∥∥∥∥∥ .
(101)
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Since (1− 1/T )T ≤ 1/e and
∑t

τ=1(1− 1/T )τ ≤ T , we have

1

N

N∑
i=1

Fi (x∗)− 1

N

N∑
i=1

Fi (x̄ (t+ 1)) ≤ 1

e

1

N

N∑
i=1

Fi (x∗) +
LD2

2T

+
D

NT

t∑
τ=1

N∑
j=1

∥∥∥∥ 1

N
di (τ)− dj (τ)

∥∥∥∥
+

D

NT

t∑
τ=1

∥∥∥∥∥
N∑
i=1

di (τ)−
N∑
i=1

∇Fi (x̄ (τ))

∥∥∥∥∥ .
(102)

Moreover, similar to the expressions (34) and (60) in lemmata 5 and 7, and taking the
expectation on both sides of Eq. (102), we obtain(

1− 1

e

)
1

N

N∑
i=1

E [Fi (x∗)]− 1

N

N∑
i=1

E [Fi (x̄ (t+ 1))] ≤ NDν

T

t∑
τ=1

γt
√

2 (σ2 +G2)

1− β (1− γt)
+
LD2

2T

+
D

T

t∑
τ=1

(
(1− γt)τ G+

(1− γt)LD
Tγt

+
LNDν

T (1− β)
+
LD
√

3κ√
2T 2/3

+

√
2σ

T 1/3
+
LD
√

3κ√
2T 1/3

)
.

(103)
Setting γt = 1/

√
T , and summing up the inequality (103) from t = 1 to t = T , we have(

1− 1

e

)
1

N

T∑
t=1

N∑
i=1

E [Fi (x∗)]− 1

N

T∑
t=1

N∑
i=1

E [Fi (x̄ (t+ 1))] ≤ Nν
√
σ2 +G2

√
2 (1− β)

√
T +

LD2

2

+GD
√
T +

LD2

2

√
T +

LND2ν

2 (1− β)
+
LD2
√

3κ

2
√

2
T 1/3 +

√
2σD

2
T 2/3 +

LD2
√

3κ

2
√

2
T 2/3.

(104)
Since the functions Fi are G-Lipschitz for all t ∈ {1, . . . , T} and i ∈ {1, . . . , N}, we obtain∣∣∣∣∣ 1

N

N∑
i=1

Fi (x̄ (t))− 1

N

N∑
i=1

Fi (xj (t))

∣∣∣∣∣ ≤ G

N

N∑
i=1

‖x̄ (t)− xj (t)‖ ≤ GNDν

T (1− β)
. (105)

Combining Eqs. (104) and (105), we have(
1− 1

e

)
1

N

T∑
t=1

N∑
i=1

E [Fi (x∗)]− 1

N

T∑
t=1

N∑
i=1

E [Fi (xj (t+ 1))] ≤ Nν
√
σ2 +G2

√
2 (1− β)

√
T +

LD2

2

+GD
√
T +

LD2

2

√
T +

LND2ν

2 (1− β)
+
LD2
√

3κ

2
√

2
T 1/3 +

√
2σD

2
T 2/3 +

LD2
√

3κ

2
√

2
T 2/3 +

GNDν

1− β
.

(106)
Furthermore, since κ = (1 + 2N2ν2/ (1− β)2), we know that

√
κ ≤ 1 +

√
2Nν/(1 − β).

Plugging the result into Eq. (106), and after some algebraic manipulations, we prove the
Theorem 2 completely.

In this section, we present the proofs of the main results in detail. The performance
evaluation of the proposed algorithms are provided in the next section.
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7. Numerical Experiments

In this section, the performance of the proposed algorithms are evaluated by numerical
experiments on two datasets.

In the experiments, we use two datasets, i.e., MovieLens and Jester. MovieLens dataset
contains 1, 000, 000 ratings through 6, 000 users for 4, 000 movies. Moreover, the rating
range is [1, 5]. Jester dataset consists of 73, 421 rating though 73, 421 users for 100 jokes.
The rating range is [−10, 10]. In order to ensure that the ratings are non-negative, the
rating range is re-scaled into the range [0, 20]. In addition, we assume that the data is
dispersed equally over the agents of networks.

For our experiments, we use ru,m and ru,j to represent the rating of user u for the the
movie m in MovieLens dataset and the joke j in Jester dataset, respectively. Moreover, we
split all users into disjoint sets S1,S2, . . . ,ST . Each set contains Um users in MovieLens
dataset and Uj in Jester dataset. Furthermore, each agent i ∈ V has access to the data of St
for all t ∈ {1, . . . , T}. Therefore, each subset is denoted by Si,t. For the sake of description,
we use v to denote m in MovieLens dataset or j in Jester dataset. The facility location
objective function, which is associated to each user u, is given by φu (Sv) = maxv∈Sv ru,v,
where Sv represents any subset of the movies in MovieLens dataset or the jokes in Jester
dataset. In other words, Sv ∈ Bm := {1, . . . , 4000} for v = m and Sv ∈ Bj := {1, . . . , 600}
for v = j. Moreover, we use the notation Bv to denote Bm in MovieLens dataset or Bj
in Jester dataset. Therefore, we associate to each agent i an objective function, which is
defined as follows:

fi,t (Sv) :=
∑
u∈Si,t

φ (Sv) .

Following on from Iyer et al. (2014), we obtain the multilinear extension of fi,t (Sv) as
follows:

Fi,t (x) =
∑
u∈Si,t

|Bv |∑
`=1

ru,v`uxv`u

`−1∏
~=1

(
1− xv~u

)
for all x ∈ [0, 1]|Bv |, where |Bv| is the cardinal number of the set Bv. Moreover, v1u, . . . , v

|Bv |
u

denotes a permutation of 1, . . . , |Bv| and satisfies the condition ru,v1u ≥ · · · ≥ r
u,v

|Bv |
u

. In

addition, we set Um = 5 in MovieLens dataset and Uj = 5 in Jester dataset, respectively.
Moreover, the constraint set is

{
x ∈ [0, 1]|Bv | : 1Tx ≤ 1

}
.

Firstly, we compare Algorithm 1 (DMFW) and Algorithm 2 (DOSFW) with the dis-
tributed online learning algorithm, i.e., DOGD, which is proposed in Yan et al. (2013). In
this experiment, we set N = 100. Moreover, Algorithm 1 (DMFW), Algorithm 2 (DOSFW)
and DOGD run on the complete graph, where each node is connected with other nodes. As
shown in Figure 1, the smallest average regret is obtained by DMFW. In other words, the
performance of DMFW is better than DOSFW and DOGD.

How the number of nodes affects the performance of Algorithm 1 is investigated on
MovieLens and Jester datasets in the second experiment. The results is summarized in Fig-
ure 2. From Figure 2, we can observe that the average regret decrease more slowly as the
number of nodes increases. Therefore, the theoretical results are confirmed by the experi-
mental results. Compared with the centralized MFW (Chen et al., 2018b), the comparable
results can be obtained by Algorithm 1, which is implemented in a decentralized way.

36



Projection-free Decentralized Online Learning for Submodular Maximization

0 100 200 300 400 500 600 700

Iteration index

0

5

10

15

20

(1
-1

/e
)-

re
g

re
t 

/ 
T

(a) MovieLens

DOSFW

DOGD

DMFW

0 100 200 300 400 500

Iteration index

0

5

10

15

(1
-1

/e
)-

re
g

re
t 

/ 
T

(b) Jester

DOSFW

DOGD

DMFW

Figure 1: Comparison of DMFW, DOSFW, and DOGD on the MovieLens and Jester
datasets.
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Figure 2: Comparison of DMFW with different number of nodes on the MovieLens and
Jester datasets.

In the third experiment, we investigate how the network topology affects the performance
of Algorithm 1 on the MovieLens and Jester datasets with 100 nodes. To this end, we
construct three types of network topologies, i.e., complete graph, cycle graph, and Watts-
Strogatz. The experimental results are summarized in Figure 3. Compared with the cycle
graph and Watts-Strogatz, the complete graph leads to slightly faster convergence. In other
words, the better connectivity can improve convergence rate of Algorithm 1.
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Figure 3: Comparison of Algorithm 1 with fixed 100 nodes and different network topology
on the MovieLens and Jester datasets.

8. Conclusion

In this paper, we have considered the distributed online submodular optimization problems
over networks, where each agent has only access to its own submodular function. For
the adversarial online setting, we have proposed a distributed Meta-Frank-Wolfe online
learning algorithm to solve the optimization problems using local communication and local
computation. We have also showed that the proposed algorithm can achieve a expected
square-root regret bound with (1 − 1/e) approximation guarantee. Additionally, we have
proposed a distributed one-shot Frank-Wolfe online learning algorithm for the stochastic
online setting. Furthermore, we have also showed that the proposed algorithm can achieve
an expected regret bound of O(T 2/3) with (1 − 1/e) approximation guarantee, where T
is a time horizon. Finally, we have confirmed the theoretical results by various numerical
experiments.
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