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Abstract
We propose a bilevel optimization strategy for selecting the best hyperparameter value for the
nonsmooth `p regularizer with 0 < p ≤ 1. The concerned bilevel optimization problem has a
nonsmooth, possibly nonconvex, `p-regularized problem as the lower-level problem. Despite the
recent popularity of nonconvex `p-regularizer and the usefulness of bilevel optimization for selecting
hyperparameters, algorithms for such bilevel problems have not been studied because of the difficulty
of `p-regularizer.

Our contribution is the proposal of the first algorithm equipped with a theoretical guarantee for
finding the best hyperparameter of `p-regularized supervised learning problems. Specifically, we
propose a smoothing-type algorithm for the above mentioned bilevel optimization problems and
provide a theoretical convergence guarantee for the algorithm. Indeed, since optimality conditions
are not known for such bilevel optimization problems so far, new necessary optimality conditions,
which are called the SB-KKT conditions, are derived and it is shown that a sequence generated by
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the proposed algorithm actually accumulates at a point satisfying the SB-KKT conditions under
some mild assumptions. The proposed algorithm is simple and scalable as our numerical comparison
to Bayesian optimization and grid search indicates.
Keywords: Hyperparameter optimization, bilevel optimization, `p-regularizer, smoothing method,

1. Introduction

Hyperparameters are parameters that are set manually outside of a learning algorithm in the context
of machine learning. Hyperparameters often play important roles in exhibiting a high prediction
performance. For example, a regularization parameter controls a trade-off between the regularization
(that is, model complexity) and the training set error (that is, empirical error). If the hyperparameters
are tuned properly, the predictive performance of learning algorithms will be increased.

Hyperparameter optimization or learning is the task of finding (near) optimal values of hyperpa-
rameters. There are mainly a few methods currently in use for supervised learning. The most popular
one would be grid search. The method is to divide the space of possible hyperparameter values
into regular intervals (a grid), train a learning model using training data for all values on the grid
sequentially or preferably in parallel, and choose the best one with the highest prediction accuracy
tested on validation, for example, by using cross validation.

There are other techniques for hyperparameter optimization; random search that evaluates learn-
ing models for randomly sampled hyperparameter values or more sophisticated method called
Bayesian optimization (Mockus et al., 1978). To find a classifier/regressor with good prediction
performance, it is reasonable to minimize the validation error in terms of hyperparameters. However
we do not know the explicit form of the validation error function, say f̄ , represented with hyperparam-
eter, while we are able to compute the validation error of a classifier/regressor obtained with given
hyperparameters λ, namely, f̄(λ). For such a black-box (meaning unknown) objective function f̄ ,
Bayesian optimization algorithms use previous observational values f̄(λ) at some hyperparameter
values λ to determine the next point λ+ to evaluate f̄(λ+). This is based on the assumption that
the function f̄ is described by a Gaussian process as a prior. There are still essential questions
unresolved; how to select a kernel for the Gaussian process, how to select the range of values to
search in, and lots of implementation details. As regards a comprehensive survey of hyperparameter
optimization, we refer to the article (Feurer and Hutter, 2019).

Bilevel optimization is a more direct approach for finding a best set of hyperparameter values. A
bilevel optimization problem consists of two-level optimization problems; the upper-level problem
minimizes the validation error in terms of hyperparameters and the lower-level problem finds a best
fit line for training data combined with a regularizer using given hyperparameter values. Actually,
the spirit of bilevel optimization underlies the methods introduced above. As mentioned below,
some existing works pointed out the usefulness of the bilevel formulation for some classes of
hyperparameters. However, there is still a lot of room to pursue the bilevel approach further, in
particular, for hyperparameter optimization of nonsmooth regularizers.

1.1 Our Contribution

The purpose of this paper is to provide a bilevel optimization approach for finding a best set of
hyperparameter values for the nonsmooth `p (p ≤ 1) regularizer. The nonsmooth bilevel optimization
approaches examined here are entirely novel in the field of mathematical optimization too. In recent
years, research on sparse optimization using nonconvex nonsmooth regularizers has been actively
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conducted in machine learning (Gong et al., 2013; Hu et al., 2017), signal/image processing (Chen
et al., 2010; Hintermüller and Wu, 2013; Wen et al., 2017; Marjanovic and Solo, 2013), and
continuous optimization (Ge et al., 2011; Lai and Wang, 2011; Bian and Chen, 2013; Chen et al., 2014;
Bian et al., 2015; Bian and Chen, 2017). In particular, for the purpose of finding a sparse solution,
the `p-regularizer with 0 < p < 1 is reported to be effective in wide applications such as matrix
completion (Marjanovic and Solo, 2012), de-noising (Marjanovic and Solo, 2013), compressing
sensing (Zheng et al., 2016; Wen et al., 2016; Weng et al., 2016), CT (computed tomography)
reconstruction (Miao and Yu, 2016), machine learning (Xu et al., 2012) and so on. Refer to the survey
article (Wen et al., 2018) concerning nonconvex regularizers including the `p-regularizer, and also see
references therein. In spite of plenty of researches supporting the efficiency of the `p-regularizer, there
exist fewer studies on bilevel optimization approaches to hyperparameter learning or optimization
of this regularizer. A possible specific reason is that tractable optimality conditions for the arising
bilevel problem have not been developed yet because of the `p-regularizer’s nonsmoothness or high
nonconvexity when p < 1. Moreover, there are no practical algorithms ensured of convergence to a
meaningful point for that nonsmooth bilevel problem.

Our contribution in this paper is the proposal of an algorithm with a theoretical convergence
guarantee for solving an `p-hyperparameter optimization problem, namely, the problem of finding
the best hyperparameter of an `p-regularized supervised learning problem. Specifically, we first
formulate it as a bilevel optimization problem with a nonsmooth and nonconvex lower-level problem
having the `p-regularizer. Since no optimality conditions have been explored adequately for such
bilevel problems so far, we develop new optimality conditions, named scaled bilevel KKT (SB-KKT)
conditions. As a matter of fact, the SB-KKT conditions can be cast as an extension of the scaled
first-order optimality conditions for some class of non-Lipschitz optimization problems originally
given in the articles (Chen et al., 2010, 2013; Bian and Chen, 2017). We prove that these conditions
are nothing but necessary optimality conditions for the one-level optimization problem acquired by
replacing the lower-level problem with its scaled first-order optimality conditions. We moreover
propose an iterative algorithm for solving the bilevel optimization problem with a nonsmooth and
nonconvex lower-level problem. One natural way for tackling such a problem would be formulating it
as a one-level problem by replacing its lower-level-problem constraints with the first-order optimality
condition formed by the subdifferential (that is, the set of subgradients) of the `p-regularizer. However,
it is still nontrivial how we solve the resulting one-level problem with point-to-set mapping constraints.
To avoid this difficulty, we apply a smoothing technique for the `p-regularizer, which enables us to
make use of a gradient of the smoothed regularizer. As a result, we obtain a one-level problem whose
constraints are represented in terms of only smooth equations and inequalities. In the presented
smoothing algorithm, we generate a sequence of KKT solutions of the smoothed problems while
we control the degree of smoothing approximation. We will prove that a sequence generated by this
algorithm accumulates at a point satisfying the SB-KKT conditions under some mild assumptions.
Numerical experiments support the scalability of our algorithm compared to Bayesian optimization
and grid search. Finally, we discuss extension of the SB-KKT conditions and the proposed algorithm
to other regularizers such as SCAD and MCP.

1.2 Related Work on Bilevel Approach

Most existing bilevel optimization models assume convexity and/or smoothness for all functions or
at least once differentiability for the lower-level objective functions. If it is not once differentiable,
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we need to overcome the difficulty of selecting a subgradient to guarantee descent of the upper-level
gradient when solving such a problem.

Bilevel Formulations for Hyperparameter Opt. There are no existing works on bilevel hyper-
parameter optimization approach for our model and existing works are restricted to smooth and
convex machine learning models. A pioneer work in the line was by Bennett et al. (2006, 2008).
They formulated the selection technique of cross-validation for support vector regression as a bilevel
optimization problem, equivalently transformed it into a one-level nonconvex optimization problem
whose constraints are the Karush-Kuhn-Tucker (KKT) optimality conditions of the lower-level
problem and proposed two approaches to solve the nonconvex problem. Moore et al. (2009, 2011)
gave a bilevel optimization formulation for a nonsmooth and convex machine learning model, support
vector regression (SVR), while their proposed algorithms assume that the lower-level objective
functions are at least once differentiable. Pedregosa (2016) gave a bilevel optimization formulation
for more general supervised learning problems, but the assumption of differentiability has been still
imposed for all functions. More recently, Franceschi et al. (2018) gave a unified bilevel perspective
on hyperparameter optimization and meta learning, and presented a gradient-based algorithm using
automatic differentiation techniques, which assumes the smoothness of the lower-level objective
function.

Bilevel Optimization Algorithms As far as we investigated, the convergence analysis for bilevel
problems with nonconvex nonsmooth regularizers has not been studied before. Many studies on
bilevel optimization in optimization community transform bilevel optimization problems into the
one-level formulations via the first-order optimality conditions for lower-level problems by assuming
the differentiability of the functions, and focus on investigating theoretical properties for constraint
qualifications and optimality conditions. See, for example, (Ye and Zhu, 1995; Dempe et al., 2006;
Dempe and Zemkoho, 2011, 2013; Dempe et al., 2015). Recently, Ochs et al. (2016) proposed
techniques for solving bilevel optimization problems with non-smooth “convex” lower level problems.
They considered a gradient-based method for the optimization problem obtained by substituting a
smoothly approximated solution mapping of the lower-level problem into the upper level problem.
However, theoretical analysis concerning the limiting behavior of the derivatives of the approximated
solution mappings was left to future work and the proposed method was written to be heuristic in
the paper. Kunisch and Pock (2013) and Rosset (2009) considered bilevel optimization problems
having the `p-regularizer, which are similar to our problem, but the p was mainly restricted to 1
or 2. Especially, the case of p = 0.5 only appears in the numerical experiments in Kunisch and
Pock (2013) without any theoretical support, though some convergence analysis is shown for the
semismooth Newton algorithms for the case of p = 1.

Another stream of bilevel algorithms is based on the reformulation as one-level problem by
replacing the lower-level problem with a dynamical system, which arises in an iterative algorithm such
as proximal gradient-type methods for solving the lower-level problem. The approach is employed
for hyperparameter optimization by, for example, Lorraine et al. (2020), Franceschi et al. (2017,
2018), Maclaurin et al. (2015), and Shaban et al. (2019). In their theoretical analysis, nonconvex and
nonsmooth functions, which we will handle in this paper, are not supposed to be contained by the
lower-level objective one.

Notations. In this paper, we often denote a vector z ∈ Rd by z = (z1, z2, . . . , zd)
> and write

lim`∈L→∞ z
` = z∗ to represent that, given a sequence {z`}, a subsequence {z`}`∈L with L ⊆
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{1, 2, . . . , } converges to z∗. The `-th vector z` ∈ Rd is often represented as z` := (z`1, z
`
2, . . . , z

`
d)
>.

We also denote the d-dimensional non-negative (positive) orthants by Rd+(++) := {z ∈ Rd | zi ≥
(>)0 (i = 1, 2, . . . , d)}. For a set of vectors {vi}i∈I ⊆ Rm with I := {i1, i2, . . . , ip}, we define
(vi)i∈I := (vi1 ,vi2 , . . . ,vip) ∈ Rm×p. We denote the sign function by sgn : R → {−1, 0,+1},
that is, sgn(x) := 1 (x > 0), 0 (x = 0), and −1 (x < 0) for any x ∈ R.

For a differentiable function h : Rn → R, we denote the gradient function from Rn to Rn

by ∇h, that is, ∇h(x) := (∂h(x)
∂x1

, . . . , ∂h(x)
∂xn

)> ∈ Rn for x ∈ Rn, where ∂h(x)
∂xi

stands for the
partial differential of h with respect to xi for i = 1, 2, . . . , n. To express the gradient of h with
respect to a sub-vector x̃ := (xi)

>
i∈I of x with I := {i1, i2, . . . , ip} ⊆ {1, 2, . . . , n}, we write

∇x̃h(x) :=
(
∂h(x)
∂xi1

, ∂h(x)
∂xi2

, . . . , ∂h(x)
∂xip

)>
∈ R|I|. We often write ∇g(x)|x=x̄ (∇x̃g(x)|x=x̄) or

∇h(x̄) (∇x̃h(x̄)) to represent the (partial) gradient value of g at x = x̄. Moreover, when h is
twice differentiable, we denote the Hessian of h by ∇2h : Rn → Rn×n, that is, ∇2h(x) :=(
∂2h(x)
∂xi∂xj

)
1≤i,j≤n

∈ Rn×n.

Organization of the Paper The rest of this paper is organized as follows: In Section 2, we describe
our problem setting precisely. In Section 3, we propose a smoothing algorithm for solving the targeted
problem. In Section 4, we present new necessary optimality conditions of the problem, already
refereed to as the SB-KKT conditions. We also conduct the convergence analysis of the proposed
smoothing algorithm. In Section 5, we examine the efficiency of the proposed algorithm by means
of numerical experiments using real data sets. In Section 6, we discuss extension of the proposed
algorithm to other classes of problems. Finally, in Section 7, we conclude this paper. In Appendix,
we provide some proofs omitted in the main part together with other supplementary materials.

2. Formulation

We consider the following bilevel optimization problem with a nonsmooth, possibly nonconvex,
lower-level problem:

min
w∗λ,λ

f(w∗λ) s.t. w∗λ ∈ argmin
w∈Rn

(
g(w) +

r∑
i=1

λiRi(w)

)
, λ ≥ 0. (1)

Suppose that f : Rn → R is once continuously differentiable, λ := (λ1, λ2, . . . , λr)
> ∈ Rr,

R1(w) := ‖w‖pp =
∑n

i=1 |wi|p (0 < p ≤ 1), and the functions R2, · · · , Rr, and g are twice contin-
uously differentiable functions. We call the whole problem (1) and minw∈Rn g(w) +

∑r
i=1 λiRi(w)

the upper- and lower-level problem, respectively. To make our notation simple, we often use the
function

G(w, λ̄) := g(w) +
r∑
i=2

λiRi(w),

with λ̄ := (λ2, . . . , λr)
> ∈ Rr−1 for expressing the lower-level problem as

min
w∈Rn

G(w, λ̄) + λ1R1(w).

Note that the function R1 is nonconvex when p < 1 and nonsmooth, though some differentiability is
assumed for other terms. We also remark that the proposed smoothing algorithm can be tailored to
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problems that contain multiple nonsmooth regularizers as long as suitable smoothing functions (see
Section 3 for the definition) are found. Nonetheless, it is unclear whether the theoretical analysis can
be established under such a setting.

2.1 Examples of Functions g,
∑r

i=1 λiRi, and f

When using the following loss function as the function g:

• g(w) =
∑mtr

i=1 (ỹi − x̃>i w)2 for training samples (ỹi, x̃i) ∈ R× Rn, i = 1, · · · ,mtr

• g(w) =
∑mtr

i=1 log(1 + exp(−ỹix̃>i w)) for training samples (ỹi, x̃i) ∈ {+1,−1} × Rn, i =
1, · · · ,mtr,

the lower-level optimization problem in (1) corresponds to minimizing the `2-loss function for
regression and the logistic-loss function for binary classification, respectively, combined with some
regularization including ‖w‖pp for a given hyperparameter vector λ. This type of problem whose
regularizer includes ‖w‖pp is called a sparse optimization problem. Various well-known sparse
regularizers can be expressed by

∑r
i=1 λiRi(w). For example,

? `1 regularizer: λ1‖w‖1,

? elastic net regularizer: λ1‖w‖1 + λ2‖w‖22,

? nonconvex regularizer: λ1‖w‖qq with 0 < q < 1.

What we want to do is to find the best hyperparameter values of λ which lead to small validation
error. The upper-level problem can find such values for λ. By setting the same loss function
with g for f but defined by validation samples (ŷj , x̂j), j = 1, · · · ,mval, the upper-level problem
finds the best hyperparameter values which minimize the validation error, which is defined by
f(w) =

∑mval
i=1 (ŷi − x̂>i w)2 for the `2-loss or f(w) =

∑mval
i=1 log(1 + exp(−ŷix̂>i w)) for the

logistic-loss.

3. Smoothing Method for Nonconvex Nonsmooth Bilevel Program

For problem (1), one may think of the one-level problem obtained by replacing the lower problem
constraint with its first-order optimality condition (Rockafellar and Wets, 2009, 10.1 Theorem)
represented in terms of (general) subgradient1, namely,

min
w,λ

f(w) s.t. 0 ∈ ∂w(G(w, λ̄) + λ1R1(w)), λ ≥ 0. (2)

Notice that G(w, λ̄) + λ1R1(w) is not convex with respect to w generally. Hence, the feasible
region of (2) can be larger than that of the original problem (1) because not only the global optimal
solutions of the lower-level problem but also its local optimal solutions are feasible solutions for
(2). In that sense, problem (2) is modified from the original one, but solving it may lead to better
prediction performance because the best hyperparameter λ is searched in the wider space and above
all, there is no way to solve the bilevel optimization problem (1) as it is.

1. For precise definitions of a subgradient of a nonconvex function, see Appendix A.2 in this paper or Chapter 8 of the
book (Rockafellar and Wets, 2009).
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3.1 Smoothing method

In our approach for tackling problem (1), we will use the smoothing method, which is one of the
most powerful methodologies developed for solving nonsmooth equations, nonsmooth optimization
problems, and so on. Fundamentally, the smoothing method solves smoothed optimization problems
or equations sequentially to produce a sequence converging to a point that satisfies some optimality
conditions of the original nonsmooth problem. The smoothed problems solved therein are obtained
by replacing the nonsmooth functions with so-called smoothing functions.

Let ϕ0 : Rn → R be a nonsmooth function. Then, we say that ϕ : Rn×R+ → R is a smoothing
function of ϕ0 when (i) ϕ(·, ·) is continuous and ϕ(·, µ) is continuously differentiable for any µ > 0;
(ii) limw̃→w,µ→0+ ϕ(w̃, µ) = ϕ0(w) for any w ∈ Rn. In particular, we call µ ≥ 0 a smoothing
parameter. For more details on smoothing methods, see the comprehensive survey article (Chen,
2012) and also relevant articles (Nesterov, 2005; Beck and Teboulle, 2012).

3.2 Our approach

We propose a smoothing based method for solving (1). In the method, we replace the nonsmooth,
possibly nonconvex, term R1(w) = ‖w‖pp in (1) by the following smoothing function:

ϕµ(w) :=

n∑
i=1

(w2
i + µ2)

p
2 .

We then have the following bilevel problem approximating the original one (1):

min
w∗λ,λ

f(w∗λ) s.t. w∗λ ∈ argmin
w∈Rn

(
G(w, λ̄) + λ1ϕµ(w)

)
, λ ≥ 0

which naturally leads to the following one-level problem:

min
w,λ

f(w)

s.t. ∇wG(w, λ̄) + λ1∇ϕµ(w) = 0
λ ≥ 0.

(3)

Note that problem (3) is smooth since the function ϕµ is twice continuously differentiable 2 when
µ 6= 0. Hence, we can consider the Karush-Kuhn-Tucker (KKT) conditions for this problem.

Let us explain the proposed method in detail. To this end, for a parameter ε̂ > 0, we define an
ε̂-approximate KKT point for problem (3). We say that (w,λ, ζ,η) ∈ Rn × Rr × Rn × Rr is an ε̂-
approximate KKT point for (3) if there exists a vector (ε1, ε2, ε3, ε4, ε5) ∈ Rn×R×Rr−1×Rn×R
such that

∇f(w) +
(
∇2
wwG(w, λ̄) + λ1∇2ϕµ(w)

)
ζ = ε1, (4)

∇ϕµ(w)>ζ − η1 = ε2, (5)

∇Ri(w)>ζ − ηi = (ε3)i (i = 2, 3, . . . , r), (6)

∇wG(w, λ̄) + λ1∇ϕµ(w) = ε4, (7)

0 ≤ λ, 0 ≤ η, λ>η = ε5, (8)

2. Huber’s function (Beck and Teboulle, 2012) is a popular smoothing function of R1(·), but is not twice continuously
differentiable.
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Algorithm 1 Smoothing Method for Nonsmooth Bilevel Program

Require: Choose µ0 6= 0, β1, β2 ∈ (0, 1) and ε̂0 ≥ 0. Set k ← 0.
1: repeat
2: Find an ε̂k-approximate KKT point (wk+1,λk+1, ζk+1,ηk+1) for problem (3) with µ = µk.
3: Update the smoothing and error parameters by µk+1 ← β1µk and ε̂k+1 ← β2ε̂k.
4: k ← k + 1.
5: until convergence of (wk,λk, ζk,ηk).

and
‖(ε1, ε2, ε3, ε4, ε5)‖ ≤ ε̂,

where ∇2
wwG(w, λ̄) is the Hessian of G with respect to w. Notice that an ε̂-approximate

KKT point is nothing but a KKT point3 for problem (3) if ε̂ = 0. Hence, ζ ∈ Rn and η ∈ Rr
are regarded as approximate Lagrange multiplier vectors corresponding to the equality constraint
∇wG(w, λ̄) + λ1∇ϕµ(w) = 0 and the inequality constraints λ ≥ 0, respectively. The proposed
algorithm produces a sequence of ε̂-approximate KKT points for problem (3) while decreasing the
values of ε̂ and µ to 0. Precisely, it is described as in Algorithm 1.

Though, in Algorithm 1, we do not designate any means for computing an ε̂-approximate KKT
point for (3), sequential quadratic programming (SQP) methods (Nocedal and Wright, 2006) are
promising candidates. However, since such SQP methods are designed for solving general constrained
problems, we may develop more efficient algorithms by exploiting structure of individual problems.
This issue will be discussed later in Section 5. See also Appendix B. As for practical stopping criteria
of Algorithm 1, we make use of the scaled bilevel SB-KKT conditions studied in the subsequent
section.

4. Theoretical Results

In this section, we will prove the global convergence of Algorithm 1 by investigating an accumulation
point of a sequence generated by that algorithm. For this purpose, in Section 4.1, we first present
new optimality conditions for the original bilevel problem (1), named scaled bilevel KKT (SB-KKT)
conditions. Moreover, in Section 4.2, we prove that any accumulation point of a sequence generated
by Algorithm 1 actually satisfies the SB-KKT conditions under some assumptions.

Throughout the section, we often use the following notations for w ∈ Rn:

I(w) := {i ∈ {1, 2, . . . , n} | wi = 0}, |w|p := (|w1|p, |w2|p, . . . , |wn|p)> .

4.1 SB-KKT Conditions

Now, we define the SB-KKT conditions for problem (1):

Definition 1 We say that the scaled bilevel Karush-Kuhn-Tucker (SB-KKT) conditions hold at
(w∗,λ∗) ∈ Rn × Rr for problem (1) when there exists a pair of vectors (ζ∗,η∗) ∈ Rn × Rr such

3. Note that (5) and (6) with (ε2, (ε3)2, . . . , (ε3)r) = 0 can be obtained from

∇λf(w) +∇λ
((
∇wG(w, λ̄) + λ1∇ϕµ(w)

)>
ζ
)
− η = 0.
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that

W 2
∗∇f(w∗) +H(w∗,λ∗)ζ∗ = 0, (9)

W∗∇wG(w∗, λ̄∗) + pλ∗1|w∗|p = 0, (10)

p
∑

i/∈I(w∗) sgn(w∗i )|w∗i |p−1ζ∗i = η∗1, (11)

ζ∗i = 0 (i ∈ I(w∗)), (12)

∇Ri(w∗)>ζ∗ = η∗i (i = 2, 3, . . . , r), (13)

0 ≤ λ∗, 0 ≤ η∗, (λ∗)>η∗ = 0, (14)

whereW∗ := diag(w∗). Here, we write

H(w,λ) := W 2∇2
wG(w, λ̄) + λ1p(p− 1)diag(|w|p)

with W := diag(w) for w ∈ Rn and λ ∈ Rr. In particular, we call a point (w∗,λ∗) ∈ Rn × Rr
satisfying the above conditions (9)–(14) an SB-KKT point for problem (1).

In fact, (0,λ∗) is a trivial SB-KKT point for any λ∗. This can be checked by setting (ζ∗,η∗) =
(0,0) in the conditions (9)–(14). Experimentally, started from a point apart from such a trivial point,
Algorithm 1 finds non-trivial SB-KKT points in many cases.

We next prove that the SB-KKT conditions are necessary optimality conditions for a certain
one-level problem. For this purpose, we derive the scaled first-order necessary condition (Chen et al.,
2010) for the lower-level problem in (1):

min
w∈Rn

G(w, λ̄) + λ1‖w‖pp. (15)

We say that the scaled first-order necessary condition of (15) holds at w∗ if

W∗∇wG(w∗, λ̄) + pλ1|w∗|p = 0. (16)

Indeed, a local optimum w∗ of (15) satisfies the above condition. This fact can be verified easily by
following the proof of Theorem 2.1 in the article (Chen et al., 2010). The above scaled condition
was originally presented in the articles (Chen et al., 2010, 2013; Bian and Chen, 2017) for some
optimization problems admitting non-Lipschitz functions.

As in deriving (2), we obtain the following one-level problem by replacing the lower problem in
(1) with the scaled first-order necessary condition (16):

min
w,λ

f(w) s.t. W∇wG(w, λ̄) + pλ1|w|p = 0, λ ≥ 0. (17)

As well as (2), the feasible region of (17) includes not only the global optimal solution of the
lower-level problem in the original problem (1) but also its local solutions. Notice that the above
problem is still nonsmooth due to the existence of |w|p.

The following theorem states that the SB-KKT conditions are necessary optimality conditions
for (17). Here, we just give an outline of the proof and defer its detail to Appendix A.1.

Theorem 2 Let (w∗,λ∗) ∈ Rn × Rr be a local optimum of (17). Then, (w∗,λ∗) together with
some vectors ζ∗ ∈ Rn and η∗ ∈ Rr satisfies the SB-KKT conditions (9)–(14) under an appropri-
ate constraint qualification concerning the constraints ∂G(w,λ̄)

∂wi
+ p sgn(wi)λ1|wi|p−1 = 0 (i /∈

I(w∗)), wi = 0 (i ∈ I(w∗)), and λ ≥ 0.

9
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Sketch of the proof: Notice that (w∗,λ∗) is a local optimum of the following problem:

min
w,λ

f(w)

s.t.
∂G(w, λ̄)

∂wi
+ p sgn(wi)λ1|wi|p−1 = 0 (i /∈ I(w∗))

wi = 0 (i ∈ I(w∗))
λ ≥ 0.

(18)

This is because (w∗,λ∗) is also feasible to (18) and the feasible region of (17) is larger than that of
(18). Hence, the KKT conditions hold at (w∗,λ∗) for (18) in the presence of a constraint qualification.
Finally, these KKT conditions can be equivalently transformed into the desired SB-KKT conditions.
�

In the next section, we will study convergence analysis of Algorithm 1 to an SB-KKT point.
Before proceeding to the convergence analysis, let us see the relationship between the two one-level
problems (2) and (17). The following lemma concerns the feasible regions of (2) and (17).

Lemma 3 For w ∈ Rn and λ ∈ Rr+, if 0 ∈ ∂w(G(w, λ̄) + λ1R1(w)), then W∇wG(w, λ̄) +
pλ1|w|p = 0. In particular, when p < 1, the converse is also true.

Proof See Appendix A.2.

In view of the above lemma, we find that the feasible region of (17) is larger than that of (2) in
general. However, for the case of p < 1, we also see that these two regions are identical. These
relationships are summarized as in the following diagram.

Feasible region of (1) ⊆ Feasible region of (2)
{
⊆p=1

=p<1

}
Feasible region of (17)

From this observation and Theorem 2, we can derive the following theorem immediately:

Theorem 4 Let p < 1 and (w∗,λ∗) ∈ Rn × Rr be a local optimum of (2). Then, (w∗,λ∗)
together with some vectors ζ∗ ∈ Rn and η∗ ∈ Rr satisfies the SB-KKT conditions (9)–(14) under an
appropriate constraint qualification concerning the constraints ∂G(w,λ̄)

∂wi
+ p sgn(wi)λ1|wi|p−1 =

0 (i /∈ I(w∗)), wi = 0 (i ∈ I(w∗)), and λ ≥ 0.

4.2 Convergence of Algorithm 1 to an SB-KKT Point

Hereafter, for convenience of explanation, we suppose that an ε̂k−1-approximate KKT point
(wk,λk, ζk,ηk) is a solution satisfying conditions (4)-(8) with

(ε1, ε2, ε3, ε4, ε5) = (εk−1
1 , εk−1

2 , εk−1
3 , εk−1

4 , εk−1
5 ),

where {(εk1, εk2, εk3, εk4, εk5)} is a sequence that converges to zero as k →∞.
Moreover, we suppose that the algorithm is well-defined in the sense that an ε̂k-approximate

KKT point of (3) is found in Step 2 at every iteration, and it generates an infinite number of iteration
points. In addition, we make the following assumptions:

Assumption A: Let {(wk,λk, ζk,ηk)} ⊆ Rn × Rr × Rn × Rr be a sequence produced by the
proposed algorithm. Then, the following properties hold:

10
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A1: lim inf
k→∞

λk1 > 0.

A2: The sequence {(wk,λk, ζk,ηk)} is bounded.

A3: Let p = 1 and (w∗,λ∗) be an arbitrary accumulation point of the sequence {(wk,λk)}. It
then holds that λ∗1 6=

∣∣∣∂G(w∗,λ̄∗)
∂wi

∣∣∣ for any i ∈ I(w∗).

Assumption A1 means that the `p-regularization term, that is, the function R1 works effectively. We
will discuss Assumption A2 at the end of this section. Specifically, we will prove that under certain
conditions, the Lagrange multiplier part {ζk,ηk)} is actually bounded. Assumption A3 is a technical
assumption for the case of p = 1. It indicates that, for all i ∈ I(w∗), zero is not situated on the
boundary of the subdifferential of G(w,λ) + λ‖w‖1 w.r.t. wi. Interestingly, for the case of p < 1,
we can establish the convergence of Algorithm 1 in the absence of A3.

Under the presence of these assumptions, our goal is to prove the following convergence theorem,
which motivates us to make a stopping criterion of the algorithm based on the SB-KKT conditions in
the numerical experiments we will conduct later.

Theorem 5 Suppose that Assumptions A1–A3 hold. Then, any accumulation point of {(wk,λk, ζk,ηk)}
generated by Algorithm 1 satisfies the SB-KKT conditions (9)–(14) for problem (1).

We will prove this theorem by showing that passing the approximate KKT conditions (4)-(8) to
the limit yields the SB-KKT conditions. For this purpose, in particular, we have to examine how
∇ϕµk(wk) and ∇2ϕµk(wk) behave in the limit. We remark that each component of∇ϕµ(w) and
each diagonal one of∇2ϕµ(w) are expressed as

(∇ϕµ(w))i = pwi(w
2
i + µ2)

p
2
−1, (19)

(∇2ϕµ(w))ii = p(w2
i + µ2)

p
2
−1 + p(p− 2)w2

i (w
2
i + µ2)

p
2
−2 (20)

for i = 1, 2, . . . , n, µ > 0, and w ∈ Rn. Note that all the off-diagonal components of ∇2ϕµ(w) are
zeros. We present the following proposition, whose proof is given in Appendix A.3.

Proposition 6 Let w∗ be the point defined in A3. Then, we have

lim
k→∞

Wk∇ϕµk−1
(wk) = p|w∗|p, (21)

lim
k→∞

W 2
k∇2ϕµk−1

(wk) = p(p− 1)diag(|w∗|p), (22)

whereWk := diag(wk) for each k.

Next, we prove that, for i ∈ I(w∗), the i-th diagonal component of (∇2ϕµk−1
(wk))ii diverges.

The key of its proof is the approach speed of wi (i ∈ I(w∗)) towards zeros compared with that of
the smoothing parameter µk−1. Actually, according to the next lemma, µk−1 gradually approaches
0 with the speed not faster than maxi∈I(w∗) |wki |

1
2−p . The proof will be given in Appendix A.4.

Remarkably, when p < 1, it holds true in the absence of Assumption A3.

Lemma 7 Suppose that Assumptions A1–A3 hold. Let (w∗,λ∗) be an arbitrary accumulation
point of {(wk,λk)} and {(wk,λk)}k∈K(⊆ {(wk,λk)}) be an arbitrary subsequence converging
to (w∗,λ∗). Then, there exists some γ > 0 such that

µ2
k−1 ≥ γ|wki |

2
2−p (i ∈ I(w∗))

for all k ∈ K sufficiently large.

11
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From the above lemma, we can derive the following proposition.

Proposition 8 Suppose that Assumptions A1–A3 hold. Letw∗ be an arbitrary accumulation point of
the sequence {wk} and {wk}k∈K(⊆ {wk}) be an arbitrary subsequence converging to w∗. Then,
for any i ∈ I(w∗),

lim
k∈K→∞

∣∣∣(∇2ϕµk−1
(wk))ii

∣∣∣ =∞.

Proof Choose i ∈ I(w∗) arbitrarily. Note that

lim
k∈K→∞

|wki | = w∗i = 0. (23)

By Lemma 7, there is some γ > 0 such that

µ2
k−1 ≥ γ|wki |

2
2−p (24)

for all k ∈ K sufficiently large. In view of this fact, we have, for all k ∈ K large enough,

µ2
k−1 + (p− 1)(wki )2 ≥ γ|wki |

2
2−p + (p− 1)|wki |2

= |wki |
2

2−p (γ + (p− 1)|wki |
2− 2

2−p )

≥ 0, (25)

where the second inequality can be verified by noting that γ + (p− 1)|wki |
2− 2

2−p > 0 holds for all

k ∈ K sufficiently large because γ > 0 and (p−1) limk∈K→∞ |wki |
2− 2

2−p = (p−1)|w∗i |
2− 2

2−p = 0.
Furthermore, notice that

|wki |
2

2−p ≥ |wki |2

holds for all k ∈ K sufficiently large because 1 < 2
2−p ≤ 2 and |wki | < 1 for all k ∈ K large enough

by (23). Relation (24) then implies
µ2
k−1 ≥ γ|wki |2. (26)

From expression (20), it follows that∣∣∣(∇2ϕµk−1
(wk))ii

∣∣∣ = p
∣∣∣((wki )2 + µ2

k−1)
p
2
−2
(

(wki )2 + µ2
k−1 + (p− 2)(wki )2

)∣∣∣
= p

∣∣∣((wki )2 + µ2
k−1)

p
2
−2(µ2

k−1 + (p− 1)(wki )2)
∣∣∣

= p((wki )2 + µ2
k−1)

p
2
−2
(
µ2
k−1 + (p− 1)(wki )2

)
≥ p

(
1 +

1

γ

) p
2
−2

µp−4
k−1

(
µ2
k−1 + (p− 1)(wki )2

)
= p

(
1 +

1

γ

) p
2
−2

µp−2
k−1

(
1 + (p− 1)

(wki )2

µ2
k−1

)
, (27)

where the third equality follows from (25) and the first inequality comes from (26) and p
2 − 2 < 0.

Moreover, by (24), we see µ2(2−p)
k−1 /γ2−p ≥ (wki )2 and thus have

µ2−2p
k−1

γ2−p ≥
(wki )2

µ2
k−1

.

12
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By this inequality, it holds that

lim
k∈K→∞

∣∣∣∣∣(wki )2

µ2
k−1

∣∣∣∣∣
{

= 0 (p < 1)

≤ 1
γ (p = 1).

Thus, we obtain

lim
k∈K→∞

(p− 1)

∣∣∣∣∣(wki )2

µ2
k−1

∣∣∣∣∣ = 0,

which together with (27) and limk→∞ µ
p−2
k−1 =∞ implies

lim
k∈K→∞

∣∣∣(∇2ϕµk−1
(wk))ii

∣∣∣ =∞.

Since i ∈ I(w∗) was arbitrarily chosen, the proof is complete.

Now, we are ready to prove Theorem 5 using Propositions 6 and 8.

Proof of Theorem 5

Consider the ε̂k−1-approximate KKT conditions (4), (6), and (7) with (w,λ, ζ,η) = (wk,λk, ζk,ηk)
and (ε1, ε3, ε5) = (εk−1

1 , εk−1
3 , εk−1

5 ). Let (w∗,λ∗, ζ∗,η∗) be an arbitrary accumulation point of
{(wk,λk, ζk,ηk)}. By taking a subsequence if necessary, without loss of generality, we can suppose
that

lim
k→∞

(wk,λk, ζk,ηk) = (w∗,λ∗, ζ∗,η∗). (28)

To show the desired result, it suffices to prove that (w∗,λ∗, ζ∗,η∗) satisfies (9)–(14). Now, we give
the proof by three blocks as follows:

Proof of conditions (9), (10), (13) and (14): As for (9) and (10), multiplying (4) and (7) with
(w,λ, ζ,η) = (wk,λk, ζk,ηk) byW 2

k andWk on the left, respectively, we obtain

W 2
k∇f(wk) +W 2

k

(
∇2
wwG(wk, λ̄k) + λk1∇2ϕµk−1

(wk)
)
ζk = W 2

k ε
k−1
1 ,

Wk∇wG(wk, λ̄k) + λk1Wk∇ϕµk−1
(wk) = Wkε

k−1
4 .

Note that the functions∇f ,∇2
wwG, and∇wG are continuous and let k →∞ in the above equations.

Then, using (21) and (22) in Proposition 6 together with µk−1 → 0, (εk−1
1 , εk−1

4 )→ (0,0) as
k →∞, we get (9) and (10), that is to say,

W 2
∗∇f(w∗) +H(w∗,λ∗)ζ∗ = 0,

W∗∇wG(w∗, λ̄∗) + pλ∗1|w∗|p = 0.

Conditions (13) and (14) are obtained by driving k to ∞ in (6) and (8) with (w,λ, ζ,η) =
(wk,λk, ζk,ηk).

Proof of condition (12): Choose i ∈ I(w∗) arbitrarily. Note that the continuity of the functions
∇2
wwG and∇f . Then, from (28) and condition (4) with (w,λ, ζ) = (wk,λk, ζk), {λk1

(
∇2ϕµk−1

(wk)
)
ii
ζki }

is bounded. On the other hand, recall that {(∇2ϕµk−1
(wk))ii} is unbounded from Proposition 8 and

13
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limk→∞ λ
k
1 = λ∗1 > 0 from Assumption A1. Thus, we get limk→∞ ζ

k
i = 0. Since the index i was

chosen from I(w∗) arbitrarily, we conclude condition (12).

Proof of condition (11): We begin with proving

lim
k→∞

∑
i∈I(w∗)

wki ((wki )2 + µ2
k−1)

p
2
−1ζki = 0. (29)

Choose i ∈ I(w∗) arbitrarily again. Note that by Lemma 7, there exists some γ > 0 such that

µ2
k−1 ≥ γ|wki |

2
2−p (30)

for all k sufficiently large. In what follows, we consider sufficiently large k so that the inequality
(30) holds. Then, by 0 < p ≤ 1, we get

µ2−p
k−1

γ
2−p
2

≥ |wki |.

We then have ∣∣∣wki ((wki )2 + µ2
k−1)

p
2
−1ζki

∣∣∣ ≤ ∣∣∣wki µ2( p
2
−1)

k−1 ζki

∣∣∣
≤
µ2−p
k−1

γ
2−p
2

µ
2( p

2
−1)

k−1

∣∣∣ζki ∣∣∣
= γ

p
2
−1
∣∣∣ζki ∣∣∣ . (31)

Relation (31) and condition (12), which was proved above, imply

lim
k→∞

∣∣∣wki ((wki )2 + µ2
k−1)

p
2
−1ζki

∣∣∣ = 0

and hence summing up this equation over I(w∗) gives the desired expression (29).
Next, by using (28), µk−1 → 0 (k → ∞), w∗i 6= 0 (i /∈ I(w∗)), and w∗i = sgn(w∗i )|w∗i |, we

obtain

lim
k→∞

∑
i/∈I(w∗)

wki ((wki )2 + µ2
k−1)

p
2
−1ζki

=
∑

i/∈I(w∗)

sgn(w∗i )|w∗i |p−1ζ∗i . (32)

Combining (29) and (32) with (19) yields

lim
k→∞

∇ϕµk−1
(wk)>ζk

= lim
k→∞

p
n∑
i=1

wki ((wki )2 + µ2
k−1)

p
2
−1ζki

= p lim
k→∞

 ∑
i∈I(w∗)

wki ((wki )2 + µ2
k−1)

p
2
−1ζki +

∑
i/∈I(w∗)

wki ((wki )2 + µ2
k−1)

p
2
−1ζki


= p

∑
i/∈I(w∗)

sgn(w∗i )|w∗i |p−1ζ∗i ,
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which together with driving k to∞ in condition (5) with (w,λ, ζ,η) = (wk,λk, ζk,ηk) implies

p
∑

i/∈I(w∗)

sgn(w∗i )|w∗i |p−1ζ∗i = η∗1,

where we use η∗1 = limk→∞ η
k
1 . This is nothing but condition (11). Consequently, the proof of

Theorem 5 is complete. �

Boundedness of the Lagrange-multiplier Sequence

In Assumption A2, we suppose that the Lagrange multiplier sequence {(ζk,ηk)} is bounded. One
may ask when this condition holds. In many optimization algorithms, boundedness properties of
relevant Lagrange multiplier sequences are shown to be true under suitable constraint qualifications.
In fact, we can verify the boundedness of {(ζk,ηk)} under the presence of linearly constraint-like
qualifications as follows:

A4: Let (w∗,λ∗) ∈ Rn × Rr be an arbitrary accumulation point of the sequence {(wk,λk)}. Let

I(λ∗) := {i ∈ {1, 2, . . . , r} | λ∗i = 0}.

Then, the linearly independent constraint qualification (LICQ) holds at (w,λ) = (w∗,λ∗)

for the constraints Φi(w,λ) :=∂G(w,λ̄)
∂wi

+p sgn(wi)λ1|wi|p−1 = 0 (i /∈ I(w∗)), wi = 0 (i ∈
I(w∗)), and λ ≥ 0, that is to say, the gradient vectors for the active constraints{
{∇Φi(w

∗,λ∗)}i/∈I(w∗) ,
{
∇(w,λ)wi|w=w∗

}
i∈I(w∗) ,

{
∇(w,λ)λi|λ=λ∗

}
i∈I(λ∗)

}
⊆ Rn+r

are linearly independent.

Proposition 9 Suppose that Assumptions A1, A3, and A4 hold. Additionally, suppose that the
sequence {(wk,λk)} is bounded. Let {(ζk,ηk)} ⊆ Rn × Rr be a sequence of the accompanying
Lagrange multiplier vectors which satisfy the KKT conditions (4)–(8). Then, {(ζk,ηk)} is bounded.

Proof We derive contradiction by supposing that {(ζk,ηk)} is unbounded. For details, see Ap-
pendix A.5.

5. Numerical Experiments

In this section, we investigate the performance of Algorithm 1 through comparison to other hyperpa-
rameter learning methods such as Bayesian optimization (Mockus et al., 1978) and gridsearch. All
the experiments are conducted on a personal computer with Intel Core i7-8559U CPU @ 2.70GHz,
16.00 GB memory. Algorithm 1 and the other competitor algorithms are implemented with MATLAB
R2020a.

Two kinds of bilevel problems relevant to linear regression with real data are solved. The first
problem handles a single hyperparameter related to the `p-regularizer, while the second one does
multiple hyperparameters.
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5.1 Linear regression bilevel problem with a single `p hyperparameter

In this section, we solve the following bilevel problem regarding squared linear regression problem
with a single `p hyperparameter.

min
w,λ

‖Avalw − bval‖22
s.t. w ∈ argmin

ŵ

(
‖Atrŵ − btr‖22 + exp(λ1)‖ŵ‖pp

)
,

(33)

where p ∈ (0, 1] and (Atxt, btxt) ∈ Rmtxt×n × Rmtxt for txt ∈ {val, tr}. Notice that the form of
the above problem slightly differs from that of (1) in that λi is replaced with exp(λi) for each i. This
is because positive hyperparameters, in particular λ1, are actually desirable as outputs. With this
manipulation, the nonnegative constraint exp(λi) ≥ 0, which corresponds to λi ≥ 0 in (1), is clearly
fulfilled and thus removed.

For the sake of examining the accuracy of solutions obtained by solving the above problem, we
use ‖Atew− bte‖22 as a test error function, whereAte ∈ Rmte×n and bte ∈ Rmte . The data matrices
and vectorsA{val,tr,te}, b{val,tr,te} are taken from UCI machine learning repository (Lichman et al.,
2013): Facebook Comment Volume (m̄ = 40949, n = 53), Insurance Company Benchmark
(m̄ = 9000, n = 85), Student Performance for a math exam (m̄ = 395, n = 272)4, BodyFat
(m̄ = 336, n = 14), and CpuSmall (m̄ = 8192, n = 12) are from UCI machine learning repository
Lichman et al. (2013). The m̄ samples are divided into 3 groups (training, validation and test samples)
with the same sample size dm̄/3e. Hence, m{val,tr,te} = dm̄/3e.

5.1.1 EXPERIMENTAL CONDITIONS

Method for solving the smoothed subproblem (3): Algorithm 1 requires an ε̂-approximate KKT
point of (3) in Step 2 at every iteration. To compute such a point, we present an algorithm using
implicit functions. Several past works also employed similar approaches based on implicit functions
for hyperparameter optimization. For example, see the articles (Maclaurin et al., 2015; Pedregosa,
2016; Franceschi et al., 2018).

We only explain the algorithmic framework of the proposed implicit function based method,
leaving the precise description to Algorithm B.1 in Appendix B.1. At every iteration, Algorithm B.1
locally represents problem (3) as problem having the hyperparameter λ as variables by means of
implicit functions defined over the λ-space. The implicit function, say w(·), is defined on some
open set U and expresses a solution set for the smoothed lower-level problem minw∈Rn G(w, λ̄) +
λ1ϕµ(w). Namely, we have ∇wG(w(λ), λ̄) + λ1∇ϕµ(w(λ)) = 0 for all λ ∈ U . We then solve
the reformulated problem (3) that is described in terms of λ by the quasi-Newton method (Nocedal
and Wright, 2006). Note that, though it is difficult in general to know the concrete form of the implicit
function w(·), we can compute the gradient ∇w in virtue of the implicit function theorem, which
enables us to perform gradient based methods like the quasi-Newton method for solving problems
that are described in terms of w(·).

Actually, the efficiency of this approach relies on how rapidly and accurately w(λ) is computed
for a given λ. To this end, we employ a certain modified Newton method, which was originally
proposed by Lai and Wang (2011). See Appendix B.2 for details.

4. The original dataset has n = 32, but the feature size is increased by adding new features: interaction effects generated
by pairwise products among some features for each sample.
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Moreover, as a starting point of the algorithm, we use a solution of the smoothed problem (3) at
the previous iteration of Algorithm 1, aiming for the so-called hot-start effect.

Other algorithms for comparison: For the sake of comparison, we also implement Bayesian
optimization and the gridsearch method. We use bayesopt in MATLAB with “MaxObjec-
tiveEvaluations=30” for Bayesian optimization. In gridsearch, we search for the best value of
‖Avalw − bval‖22 among 30 grids λ = 10−4, 10−4+ 8

29 , · · · , 104− 8
29 , 104 for problem (33). At each

iteration of bayesopt and gridsearch, we make use of Matlab built-in solver fmincon so as to
solve the lower-level problem of (33) with a given λ.

Parameter setting and termination criteria: The smoothing parameter in Algorithm 1 is initial-
ized as µ0 = 1 and updated by µk+1 = min(0.9µk, 10µ1.3

k ). The smoothed subproblem (3) is solved
as exactly as possible by fixing (ε̂0, β0) to (10−6, 1). As for the termination criteria of Algorithm 1,
writing a resulting solution as w∗, we stop it if the SB-KKT conditions (9), (10) and (11) are within
the error of ε := 10−3. We also check whether the other SB-KKT conditions (12)-(14) are satisfied.
The default setting of bayesopt is employed. Time limits of all the algorithms are set to 600
seconds.

5.1.2 NUMERICAL RESULTS FOR PROBLEM (33) WITH FIXED DATA SIZE

We first show the results of applying the three algorithms to problem (33) with p = 1, 0.8, 0.5. The
algorithms are run for 5 times from different starting points (λ0,w0) generated in the manner that
λ0 is set to 0 and w0 is chosen randomly from [−5, 5]n. All the results are summarized in Table 1,
where the value Errte indicates the averaged values of ‖Atew − bte‖2 over 5 runs. The value Errval

stands for the averaged value of ‖Avalw − bval‖2. The value “sparsity” means the ratio of zero
elements in the obtained solution w ∈ Rn, namely, sparsity = |{i | wi = 0}| /n and hence, the
solution with sparsity≈ 1 is very sparse. We denote by time(sec) the spent time from the start to the
termination. In the experiments, for each i, we regarded wi as zero if |wi| ≤ 10−4 max1≤i≤n |wi|.
The best (smallest) values of Err{te,val} and time(sec), among the three algorithms are displayed in
bold.

From the table, there are significant differences in time(sec) of the three algorithms, while Errte

and Errval seem comparative. In particular, Algorithm 1 tends to be the fastest. Indeed, it attains the
best values in time(sec) for 10 out of 15 problem-instances, seven of which moreover achieve the best
values in Errval. For example, for Facebook with p = 1, it computes a solution with Errval = 6.474
by about 17 seconds, while bayesopt and gridsearch do solutions with Errval ≥ 6.476 after
spending more than 40 seconds. Thus, Algorithm 1 is likely to be the most effective among the
three on seeking (w,λ) with good Errval. As pointed out by a reviewer, bayesopt actually found
the final solutions or close solutions earlier than the recorded time on the table. Nonetheless, in
many instances, Algorithm 1 reached the final solution more quickly than bayesopt found such a
solution. We refer readers to Table C.1 in Appendix C, which shows the first time of bayesopt
for finding a solution which attains the final best observed objective value, namely, validation value.
Also see Figure C.1 that depicts the time-series of the best observed objective value of bayesopt
for the problem organized with the data sets of Student and CpuSmall.

From the values of sparsity, the problems with smaller p tends to output sparser solutions. For
example, Algorithm 1 outputs a solution with sparsity ≥ 0.9 for Facebook with p = 0.5, while
sparsity ≤ 0.3 for p = 0.8, 1. Nevertheless, sparsity of Algorithm 1 is 0.00 for BodyFat with
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p = 0.8, while sparsity = 0.7, 0.07 for p = 0.5, 1, respectively. In this case, Algorithm 1 might fall
into a local optimum with small Eval at the expense of sparsity.

5.1.3 PERFORMANCE WITH VARIED DATA SIZE

Changing the data sizes of Student and Facebook datasets, we make comparison of the performances
of Algorithm 1, bayesopt, and gridsearch.

We first examine how Errte, Errval, and time(sec) of the three algorithms change against the
sample size, m̂, of Facebook. The sample size m̂ is increased from 1

2m̄ to m̄ by 1
10m̄ with

m̄ ≈ 40000. We apply the algorithms using `0.8 regularizer to these problems with a varied
sample size. The obtained results are depicted in Figure 1. Figures 1a and 1b indicates that the
computed test and validation values Errte and Errval behave analogously as m̂ increases. There are
no crucial differences among those values. However, from Figure 1c, computation time, time(sec),
of bayesopt grows more rapidly than the others. This may be because bayesopt has to search
a wider region as the sample size grows. In contrast, the values of time(sec) of Algorithm 1 and
gridsearch grow moderately. In particular, Algorithm 1 is the fastest for most cases.

(a) Errte vs scaled sample size m̂/m̄ (b) Errval vs scaled sample size m̂/m̄

(c) time(sec) vs scaled sample size m̂/m̄

Figure 1: Performance of Algorithm 1, bayesopt, and gridsearch using `0.8 regularizer for Facebook with
fixed feature size n = 53 and varying sample size m̂ (m̄ = 40949); Alg.1: Algorithm 1, bayes: bayesopt,
grid: gridsearch

Next, we investigate the performances of the algorithms by varying the feature size, n̂, of Student.
As in the above experiment, we use `0.8 regularizer. The feature size n̂ is increased from 1

2n to

18
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n by 1
10n with n = 272. The obtained results are shown in Figure 2. Algorithm 1 successfully

attains better values in all time(sec), Errte, and Errval than bayesopt and gridsearch for n ≥ 0.7n̂.
From Figures 2a and 2b, bayesopt seems stuck in a local optimum with larger Errval and Errte for
n ≥ 0.8n̂. From Figure 2c, time(sec) for bayesopt and gridsearch grow more rapidly than ours as
n̂ increases.

The above two experiments suggest that, compared with gridsearch and Bayesian optimization,
Algorithm 1 is unlikely to be affected by growth of the data size.

(a) Errte vs scaled feature size n̂/n (b) Errval vs scaled feature size n̂/n

(c) time(sec) vs scaled feature size n̂/n

Figure 2: Performance of Algorithm 1, bayesopt, and gridsearch using `0.8 regularizer for Student with
varying feature size n̂ (n = 272) and fixed sample size m̄ = 395; Alg.1: Algorithm 1, bayes: bayesopt,
grid: gridsearch
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5.1.4 PERFORMANCE AS THE SMOOTHING PARAMETER µ DECREASES

We examine impact of the smoothing parameter µ on test error of solutions of the smoothed
subproblems (3). Figures 3a-3c depict the growth behavior of the test error in the final stage of
Algorithm 1 for the problems of Facebook, BodyFat, and Insurance.

From the figures, the test errors for the three problems do not vary significantly. Taking into
account that the smoothed subproblem (3) is more difficult as µ becomes smaller, it may be good
strategy to stop the algorithm earlier than convergence to a SB-KKT point. This is also indicated
by the fact that, around µ = 0.01, the algorithm attains solutions with better test errors than the
solutions upon termination for Facebook and BodyFat.

(a) Facebook
(b) BodyFat

(c) Insurance

Figure 3: Change of test error for `0.8 regularizer as µ decreases; The horizontal axis: a smoothing parameter
µ; The vertical axes: test error

5.2 Linear regression problem with multiple hyperparameters

Next, we solve the following problem that possesses multiple hyperparameters:

min
w,λ

‖Avalw − bval‖22

s.t. w ∈ argmin
ŵ

(
‖Atrŵ − btr‖22 + exp(λ1)‖ŵ‖pp + ŵ>C(λ̄)ŵ

)
,

(34)

where C(λ̄) := Diag(exp(λi))
n+1
i=2 being positive definite and A{val,tr,te} and b{val,tr,te} are the

ones used in the previous experiments in Section 5.1.
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5.2.1 EXPERIMENTAL CONDITIONS

We set p = 0.5 in problem (34). The experimental conditions are almost the same as those for
problem (33). The main differences are as follows: We make comparison of Bayesian Opti-
mization bayesopt with “MaxObjectiveEvaluations=300” and Algorithms 1 using the two al-
gorithms for solving subproblems (3): The first one is the implicit function approach as in the
previous experiments and the second one is fmincon, where we opt for the SQP method and set
“MaxIterations= 107”. Though we also implemented gridsearch seeking a solution over 30n grids
λ ∈ {10−4, 10−4+ 8

29 , · · · , 104− 8
29 , 104}n, the obtained results were actually quite poor because the

number of grids, which was larger than 3010, was too huge to search. We thus omit those results
with gridsearch. Finally, according to the observation in the last experiment in Subsection 5.1.4, we
terminate Algorithm 1 when µk ≤ 0.01.

5.2.2 NUMERICAL RESULTS FOR PROBLEM (34)

Table 2 summarizes the obtained results of applying the two types of Algorithms 1 and bayesopt
to problem (34). In the table, we denote by ]λ the number of hyperparameters λ in each problem.
Moreover, Alg.1-A stands for Algorithm 1 using the implicit function approach and Alg.1-B does the
one using fmincon. The hyphens “–” in the line of Facebook for Alg.1-B indicate that fmincon,
which is used in Alg.1-B, terminates with an infeasible solution of the smoothed problem (3).

From the table, compared with the results for the single-hyperparameter bilevel problem (33),
bayesopt does not work well. For four out of the five problems, it cannot terminate within the
time-limit 600 seconds. The qualities of the output solutions of bayesopt upon termination are
also not good in values of Errval and Errte. For the sake of completeness, as well as the previous
experiment, we examined the first time when the best observed objective values, that is, validation
values of bayesopt were found. Refer to Table C.2 in Appendix C. Also see Figure C.2 for graphs
depicting the time-series of the best observed objective values concerning the data sets of Student
and CpuSmall.

In contrast to bayesopt, the two Algorithms 1 with different subroutines show better per-
formance. There are notable differences between performances of Alg.1-A and Alg.1-B. While
Alg.1-A seems to fall into non-sparse solutions, but with good Err{te,val} for Insurance, BodyFat,
and CpuSmall, Alg.1-B finds good solutions balancing in sparsity, Errte, and Errval for all the same
data sets. This may be because Alg.1-A computes a solution of problem (3) by remaining in the
feasible set, namely, the solution set of the smoothed lower level problem. This behavior may cause
Alg.1-A to miss a chance of broadly seeking sparse solutions. Meanwhile, Alg.1-B using the SQP
method in fmincon tends to approach a solution of (3) from the outside of the feasible set, which
often leads to a good solution even in sparsity.
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6. Discussion on extension to other nonsmooth regularizers

In this section, we discuss the extension of the SB-KKT conditions from hyperparameter optimization
of `p-regularizers to those of other nonsmooth and nonconvex regularizers. Let Θ : [0,∞)→ [0,∞)
be a function such that it is concave and continuously differentiable on (0,∞) and Θ(0) = 0. Many
sparse regularizers are representable in terms of Θ. Indeed,

∑n
i=1 Θ(|wi|) reduces to the `p- and

log-regularizers, SCAD, and MCP by selecting Θ appropriately as follows. Here, a > 1, b > 0, and
γ > 0 are prefixed parameters and x ≥ 0. The continuous differentiability of Θ for SCAD and MCP
can be confirmed in view of the formula of Θ′:

• `p-regularizer (p ≤ 1) if Θ(x) := xp;

• log-regularizer (Candes et al., 2008) if Θ(x) :=
1

log(1 + γ)
log(1 + γx);

• SCAD (Fan and Li, 2001) if

Θ(x) :=


bx if x ≤ b

−x
2 − 2abx+ b2

2(a− 1)
if b ≤ x ≤ ab

(a+ 1)b2

2
otherwise.

The first-order derivative is

Θ′(x) =


b if x ≤ b

−x− ab
a− 1

if b ≤ x ≤ ab

0 otherwise;

• MCP (Zhang et al., 2010) if

Θ(x) :=


bx− x2

2a
if x ≤ ab

ab2

2
otherwise.

The first-order derivative is

Θ′(x) =

{
b− x

a
if x ≤ ab

0 otherwise.

Consider the following extended formulation from problem (1):

min
w∗λ,λ

f(w∗λ) s.t. w∗λ ∈ argmin
w∈Rn

(
G(w, λ̄) + λ1

n∑
i=1

Θ(|wi|)

)
, λ ≥ 0.

Any local optimum w of the lower-level problem in the above satisfies

∂G(w,λ̄)
∂wi

+ sgn(wi)λ1Θ′(|wi|) = 0 for i ∈ {1, 2, . . . , n} \ I(w), (35)

wi = 0 for i ∈ I(w), (36)
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which actually correspond with the scaled first order condition (16) after transformations when Θ is
chosen to be the `p-regularizer. We then obtain the following one-level problem that corresponds to
(17)

min
w,λ

f(w) s.t. λ ≥ 0, w satisfies (35) and (36). (37)

The following theorem states the SB-KKT conditions for (37), which are the extended version of
Theorem 2. Since its proof can be obtained via straightforward extension of that of Theorem 2 by
noting the relation (Θ(|x|),Θ′(|x|),Θ′′(|x|)) =

(
|x|p, sgn(x)p|x|p−1, p(p− 1)|x|p−2

)
for x 6= 0

when Θ(x) = xp for x ≥ 0, we omit it.

Theorem 10 Let (w∗,λ∗) ∈ Rn × Rr be a local optimum of (37). Suppose that Θ is twice
continuously differentiable at |w∗i | for i /∈ I(w∗). Then, (w∗,λ∗) together with some vectors
ζ∗ ∈ Rn and η∗ ∈ Rr satisfies the following conditions under an appropriate constraint qualification
concerning the constraints ∂G(w,λ̄)

∂wi
+ λ1sgn(wi)Θ

′(|wi|) = 0 (i /∈ I(w∗)), wi = 0 (i ∈ I(w∗)) ,
and λ ≥ 0:

∇f(w∗) +
∑

i/∈I(w∗)Hi(w
∗,λ∗)ζ∗i = 0, (38)

∂G(w∗,λ̄∗)
∂wi

+ λ∗1sgn(w∗i )Θ
′(|w∗i |) = 0 (i /∈ I(w∗)), (39)∑

i/∈I(w∗) sgn(w∗i )Θ
′(|w∗i |)ζ∗i = η∗1,

ζ∗i = 0 (i ∈ I(w∗)), (40)

∇Ri(w∗)>ζ∗ = η∗i (i = 2, 3, . . . , r),

0 ≤ λ∗, 0 ≤ η∗, (λ∗)>η∗ = 0,

where

Hi(w,λ) := ∇w
(
∂G(w, λ̄)

∂wi

)
+ λ1sgn(wi)Θ

′′(|wi|)ei ∈ Rn (i /∈ I(w∗)).

When Θ(x) = xp with x ≥ 0 and 0 < p ≤ 1, conditions (38) and (39) premultiplied by diag(w∗)2

and diag(w∗), respectively, are equivalent to (9) and (10) under the presence of (40) and w∗i =
0 (i ∈ I(w∗)). The above theorem is different from Theorem 2 in that Θ is additionally assumed
to be C2 at |w∗i | for i /∈ I(w∗). This is due to the existence of the term Θ′′ in Hi. If Θ is chosen
to correspond to `p or log-regularizer, this assumption always holds. In contrast, if Θ is selected to
correspond to SCAD (resp., MCP), it is equivalent to w∗i 6= b, ab (resp., w∗i 6= ab) for i /∈ I(w∗) and
thus may fail to hold in general. Though it is expected to hold in many instances, we need to do a
further research so as to remove or weaken it.

It is easy to tailor the proposed smoothing method to problems having other regularizers such
as SCAD and MCP. Convergence properties similar to the case of using the `p-regularizer hold
expectedly. However, proofs for the global convergence to an SB-KKT point in the sense of
Theorem 10 may differ significantly from that in Section 4, because our analysis for the `p-regularizer
actually relies on the specific forms of the smoothing function ϕµ(w) =

∑n
i=1(w2

i + µ2)
p
2 and its

first- and second-order derivatives.

Further extension: Besides the above, there are other directions for extending our results. One
direction is extension to structured sparse regularizers like the group Lasso model (Yuan and Lin,
2006). Such a model often contains regularizers of the composite form

∑l
i=1 Θ(θi(w)) with
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θi : Rn → R (i = 1, 2, . . . , l). For instances of θi, we can set θi(w) := w>ai with ai ∈ Rn or
θi(w) := w>Kiw withKi ∈ Rn×n being a symmetric positive definite matrix.

Another interesting direction is extension to problems with matrix variables. Marjanovic and Solo
(2012) considered regularized least square optimization for matrix completion. For X ∈ Rr1×r2 ,
the regularization term that appears there takes the form of ‖X‖pp :=

∑min(r1,r2)
i=1 σi(X)p with

0 < p ≤ 1, where σi(X) (i = 1, 2, . . . ,min(r1, r2)) are the singular values of X . If r1 = r2 and X
is a diagonal matrix, ‖X‖pp reduces to the `p-regularizer we have considered. In (Marjanovic and
Solo, 2012), in order to find the best-qualified recovered matrix model, the authors iteratively solved
problems involving ‖X‖pp as a regularizer while varying hyperparameters. A bilevel approach may
help to recover a matrix with higher quality faster.

7. Conclusions

We have proposed a bilevel optimization approach for selecting the best hyperparameter (regulariza-
tion parameter) of the `p-regularizer. The bilevel optimization problem that appears in our approach
has a nonsmooth and possibly nonconvex `p-regularized problem as the lower-level problem. For
this problem, we have developed the scaled bilevel KKT (SB-KKT) conditions and proposed a
smoothing-type method. Furthermore, we have made analysis on convergence of the proposed
algorithm to an SB-KKT point. Numerical experiments imply that it exhibited performance superior
to Bayesian optimization and grid search especially in computational time.

The method/theoretical guarantee can be applicable to hyperparameter learning for classification.
As a future work, we would like to make the algorithm more practical. For this purpose, we may
need to integrate some stochastic technique into the proposed algorithm. For example, approximate
KKT points computed by approximate gradient and Hessians can be used. In the stochastic setting,
we expect that the SB-KKT conditions will play a significant role in convergence analysis.
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Appendix A. Omitted Proofs

In this section, we provide proofs of some lemmas and propositions.

A.1 Proof of Theorem 2

Firstly, notice that (w∗,λ∗) is also a local optimum of the following problem:

min
w,λ

f(w)

s.t.
∂G(w, λ̄)

∂wi
+ p sgn(wi)λ1|wi|p−1 = 0 (i /∈ I(w∗))

wi = 0 (i ∈ I(w∗))
λ ≥ 0.

(A.1)
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Actually, this fact is easily confirmed by noting that (w∗,λ∗) is also feasible to (A.1) and the feasible
region of (17) is larger than that of (A.1). Hence, under an appropriate constraint qualification such
as the linearly independent constraint qualification associated to (A.1), the KKT conditions for (A.1)
hold at (w∗,λ∗), namely, there exist some vectors ζ̂∗ := (ζ̂∗1 , ζ̂

∗
2 , . . . , ζ̂

∗
n)> ∈ Rn and η∗ ∈ Rr such

that

∂f(w∗)

∂wi
+

∑
j /∈I(w∗)

(
∂2G(w, λ̄)

∂wi∂wj
+ p(p− 1)λ1|wi|p−2

)
ζ̂∗j = 0 (i /∈ I(w∗)), (A.2)

∂f(w∗)

∂wi
+

∑
j /∈I(w∗)

∂2G(w∗, λ̄∗)

∂wi∂wj
ζ̂∗j + ζ̂∗i = 0 (i ∈ I(w∗)),

∇λf(w∗)− η∗ +
∑

i/∈I(w∗)

∂

∂λ

(
∂G(w∗, λ̄∗)

∂wi
+ p sgn(wi)λ1|wi|p−1

)
ζ̂∗i = 0, (A.3)

∂G(w∗, λ̄∗)

∂wi
+ p sgn(w∗i )λ

∗
1|w∗i |p−1 = 0 (i /∈ I(w∗)), (A.4)

w∗i = 0 (i ∈ I(w∗)), (A.5)

0 ≤ λ∗, 0 ≤ η∗, (λ∗)>η∗ = 0, (A.6)

where ζ̂∗i (i ∈ I(w∗)), ζ̂∗i (i /∈ I(w∗)), and η∗ are Lagrange multipliers corresponding to the
constraints wi = 0 (i ∈ I(w∗) and ∂G(w,λ̄)

∂wi
+ p sgn(wi)λ1|wi|p−1 = 0 (i /∈ I(w∗)), and λ ≥ 0,

respectively. To derive the first equality above, we made use of the fact

∂|wi|p−1

∂wi
= (p− 1)sgn(wi)|wi|p−2

at wi 6= 0. Noting the relations ∇λf(w) = 0, ∂G(w, λ̄)/∂λ1 = 0, ∂2G(w, λ̄)/∂λi∂wi =
∂Ri(w,λ)/∂wi (i = 2, 3, . . . , r), we can rewrite condition (A.3) as∑

i/∈I(w∗)

p sgn(w∗i )|w∗i |p−1ζ̂∗i = η∗1, (A.7)

∑
j /∈I(w∗)

∂Ri(w)

∂wj
ζ̂∗j = η∗i (i = 2, . . . , r). (A.8)

Next, define ζ∗ ∈ Rn as the vector with ζ∗i = 0 (i ∈ I(w∗)) and ζ∗i = ζ̂∗i (i /∈ I(w∗)). Let us
show that (w∗,λ∗, ζ∗,η∗) satisfies the targeted conditions (9)–(14). For each i ∈ {1, 2, . . . , n}, we
have

(w∗i )
2∂f(w∗)

∂wi
+ (w∗i )

2
n∑
j=1

∂2G(w∗, λ̄∗)

∂wi∂wj
ζ∗j + λ∗1p(p− 1)|w∗i |pζ∗i

= (w∗i )
2∂f(w∗)

∂wi
+ (w∗i )

2
∑

j /∈I(w∗)

∂2G(w∗, λ̄∗)

∂wi∂wj
ζ∗j + λ∗1p(p− 1)|w∗i |pζ∗i

= 0,

27



OKUNO, TAKEDA, KAWANA, AND WATANABE

where the first equality follows from ζ∗j = 0 (j ∈ I(w∗)) and the second one can be proved by
cases; when i ∈ I(w∗), the desired equality is obviously true because of (A.5); when i /∈ I(w∗), it is
obtained from multiplying (A.2) by (w∗i )

2 and using ζ∗i = ζ̂∗i . Therefore, we confirm (9). Similarly,
we can deduce (10) and (13) from (A.4) and (A.8) along with the definition of ζ∗, respectively. The
remaining conditions (11), (12), and (14) are derived from (A.7), ζ∗i = 0 (i ∈ I(w∗)), and (A.6),
respectively. Putting all the above results together, we confirm that (w∗,λ∗, ζ∗,η∗) satisfies (9)–(14).
Consequently, we have the desired result. �

A.2 Proof of Lemma 3

We will give a proof of Lemma 3. Firstly, we review the definition and several properties for a
subgradient of a given function from Rockafellar and Wets (2009). We finally give a proof of
Lemma 3.

Let us define regular and general subgradients for a given function according to Definition 8.3(a),(b)
of Rockafellar and Wets (2009). For simplicity, we confine ourselves to a continuous function
f : Rn → R.

Definition A.1 For vectors v ∈ Rn and x̄ ∈ Rn,

1. we say that v is a regular subgradient of f at x̄, written v ∈ ∂̂xf(x̄), if f(x) ≥ f(x̄) +
v>(x− x̄) + o(‖x− x̄‖).

2. We say that v is a (general) subgradient of f at x̄, written v ∈ ∂xf(x̄), if there are sequences
{xν} ⊆ Rn converging to x̄ and {vν} ⊆ Rn converging to v such that vν ∈ ∂̂f(xν) for each
ν.

We often simply write ∂̂x and ∂x as ∂̂ and ∂, respectively.

Obviously, it holds that ∂̂f(x) ⊆ ∂f(x).
The following propositions are useful:

Proposition A.2 (Rockafellar and Wets, 2009, 8.8(c) Exercise) Let fi : Rn → R (i = 0, 1) be
continuous. Let f := f0 + f1. If f0 is continuously differentiable around x̄, then ∂̂f(x̄) =
∇f0(x̄) + ∂̂f1(x̄) and ∂f(x̄) = ∇f0(x̄) + ∂f1(x̄).

Proposition A.3 (Rockafellar and Wets, 2009, 8.5 Proposition) Let f : Rn → R be continuous.
Then, v ∈ ∂̂f(x) if and only if, on some neighborhood of x̄, there exists a differentiable function
g : Rn → R such that∇g(x̄) = v, g(x) ≤ f(x), and g(x̄) = f(x̄). Moreover, g can be taken to be
continuously differentiable with g(x) < f(x) for all x 6= x̄ near x̄.

We next prove the following proposition associated with ‖x‖pp (0 < p ≤ 1).

Proposition A.4 For x ∈ Rn, let I(x) := {i | xi = 0} and g(x) := λ‖x‖pp with 0 < p ≤ 1 and
λ ≥ 0. Then, for 0 < p < 1 and x̄ ∈ Rn, we have

∂g(x̄) =
{
v | vi = λp sgn(x̄i)|x̄i|p−1 (i /∈ I(x̄)), vi ∈ R (i ∈ I(x̄))

}
. (A.9)

On the other hand, for p = 1, we have

∂g(x̄) = {v | vi = λ sgn(x̄i) (i /∈ I(x̄)), vi ∈ [−λ, λ] (i ∈ I(x̄))} . (A.10)
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Proof For convenience of expression, let ĝ(x) := λ
∑

i∈I(x̄) |xi|p. Note that g(x) = ĝ(x) +
λ
∑

i/∈I(x̄) |xi|p and λ
∑

i/∈I(x̄) |xi|p is continuously differentiable around x̄. Then, by Proposi-
tion A.2, we have

∂g(x̄) = λ
∑
i/∈I(x̄)

p sgn(x̄i)|x̄i|p−1ei + ∂ĝ(x̄), (A.11)

where ei ∈ Rn is the vector such that the i-th element is one and the others are zeros. Supposing
I(x̄) 6= ∅, we next describe ∂xĝ(x̄) precisely. First, consider the case of 0 < p < 1. For any v ∈ Rn
with vi = 0 (i /∈ I(x̄)), we can show that λ

∑
i∈I(x̄) |xi|p ≥ λ

∑
i∈I(x̄) vixi holds on a sufficiently

small neighborhood of x̄ since λ ≥ 0. Then, Proposition A.3 implies

∂̂ĝ(x̄) ⊇ {v | vi = 0 (i /∈ I(x̄))} . (A.12)

We next show the converse implication for the above. To this end, choose a regular subgradient v ∈
∂̂ĝ(x̄) = ∂̂

(
λ
∑

i∈I(x̄) |xi|p
)∣∣∣
x=x̄

arbitrarily. Then, according to Proposition A.3, there exists some

differentiable function h such that h(x) ≤ λ
∑

i∈I(x̄) |xi|p near x̄, h(x̄) = λ
∑

i∈I(x̄) |x̄i|p = 0,
and∇h(x̄) = v. Then, for arbitrarily chosen j /∈ I(x̄), h(x̄+ sej) ≤ λ

∑
i∈I(x̄) |x̄i|p = 0 for any

s ∈ R sufficiently small. From this fact along with h(x̄) = 0, we see that s = 0 is a local maximizer
of maxs∈R h(x̄ + sej), and thus vj = ∂h(x̄)/∂xj = ∂h(x̄ + sej)/∂s|s=0 = 0. Hence, since the
index j ∈ I(x̄) was arbitrarily chosen, we obtain the converse implication for (A.12). Using this fact
and (A.12), we have

∂̂ĝ(x̄) = {v | vi = 0 (i /∈ I(x̄))} . (A.13)

We next prove that
∂ĝ(x̄) ⊆ {v | vi = 0 (i /∈ I(x̄))} . (A.14)

Choose v ∈ ∂ĝ(x̄) arbitrarily. Then, there exist sequences {xν} and {vν} such that limν→∞ x
ν = x̄,

limν→∞ v
ν = v, and vν ∈ ∂̂ĝ(xν) for any ν. For an arbitrary j /∈ I(x̄), it is not difficult to verify

vνj = 0 for all ν sufficiently large. Therefore, we obtain vj = 0 for any j /∈ I(x̄). Thus, we conclude
(A.14) which together with the facts of ∂̂ĝ(x̄) ⊆ ∂ĝ(x̄) and (A.13) implies

∂ĝ(x̄) = {v | vi = 0 (i /∈ I(x̄))} .

Finally, from this equality and (A.11), we obtain the desired result (A.9).
For the case where p = 1, it is easy to show the desired result (A.10) using the fact of ∂ĝ(x̄) =

λ
∑

i∈I(x̄) ∂x |xi| |x=x̄ . We omit the detailed proof.

We are now ready to show Lemma 3.

Proof of Lemma 3: We first note that, since G is continuously differentiable and R1(w) = ‖w‖pp
and λ1 ≥ 0, we have

∂w
(
G(w, λ̄) + λ1R1(w)

)
=∇wG(w, λ̄) + ∂w(λ1R1(w))

=


{
v | vi = ∂G(w,λ̄)

∂wi
+ λ1p sgn(wi)|wi|p−1 (i /∈ I(w)), vi ∈ R (i ∈ I(w))

}
(p < 1){

v | vi = ∂G(w,λ̄)
∂wi

+ λ1sgn(wi) (i /∈ I(w)), vi ∈ ∂G(w,λ̄)
∂wi

+ [−λ1, λ1] (i ∈ I(w))
}

(p = 1),

(A.15)
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where the first equality follows from Proposition A.2 and the second equality comes from Proposi-
tion A.4.

Now, let us show the first claim. Suppose 0 ∈ ∂w(G(w, λ̄) + λ1R1(w)). Then, by (A.15), we
have

wi = 0 (i ∈ I(w)), (A.16)

∂G(w, λ̄)

∂wi
+ p sgn(wi)λ1|wi|p−1 = 0 (i /∈ I(w)), (A.17)

which readily implyW∇wG(w, λ̄) + pλ1|w|p = 0. Hence, we obtain the first claim.
We next show the latter claim for the case of p < 1. Suppose thatW∇wG(w, λ̄)+pλ1|w|p = 0.

Then, we see that (A.16) and (A.17) hold. In view of this fact together with (A.15) for p < 1, we
obtain 0 ∈ ∂w(G(w, λ̄) + λ1R1(w)). Thus, we conclude the latter claim.
�

A.3 Proof of Proposition 6

Denotewk = (wk1 , w
k
2 , . . . , w

k
n)> for each k. We first show (21). Note that it follows from (19) that

wki (∇ϕµk−1
(wk))i = p(wki )2((wki )2 + µ2

k−1)
p
2
−1 (A.18)

for each i ∈ {1, 2, . . . , n}. Then, for the index i /∈ I(w∗), we have w∗i 6= 0 and thus get

lim
k→∞

wki (∇ϕµk−1
(wk))i = p(w∗i )

2|w∗i |p−2

= p|w∗i |p. (A.19)

We next choose i ∈ I(w∗) arbitrarily and divide the index set K := {1, 2, . . . , } into the following
two sets:

U i1 := {k ∈ K | wki 6= 0}, U i2 := {k ∈ K | wki = 0}.

Then, for k ∈ U i1, equation (A.18) together with p/2− 1 < 0 and wki 6= 0 yields that

wki (∇ϕµk−1
(wk))i ≤ p|wki |2|wki |2( p

2
−1)

= p|wki |p. (A.20)

Since wki (∇ϕµk−1
(wk))i ≥ 0 holds for each k ∈ U i1 in view of the right-hand of (A.18) and

limk→∞ µk−1 = 0, letting k ∈ U i1 →∞ in (A.20) implies

lim
k∈U i1→∞

wki (∇ϕµk−1
(wk))i = p|w∗i |p = 0. (A.21)

Similarly, for all k ∈ U i2, we have wki (∇ϕµk−1
(wk))i = 0 because of wki = 0 (k ∈ U i2) and (19).

This fact together with (A.21) yields

lim
k→∞

wki (∇ϕµk−1
(wk))i = p|w∗i |p. (A.22)

Combining this with (A.19), we conclude (21).

30



BILEVEL `p-HYPERPARAMETER LEARNING

We next show (22). In view of (20), we have

(wki )2(∇2ϕµk−1
(wk))ii

= p(wki )2((wki )2 + µ2
k−1)

p
2
−1

+ p(p− 2)(wki )4((wki )2 + µ2
k−1)

p
2
−2

=

(
1 +

(p− 2)(wki )2

(wki )2 + µ2
k−1

)(
wki

(
∇ϕ(wk)

)
i

)
, (A.23)

for any i = 1, 2, . . . , n, where the last equality is due to (19). For the case of i /∈ I(w∗), we obtain

lim
k→∞

(wki )2

(wki )2 + µ2
k−1

= 1,

which together with (A.19) and (A.23) implies

lim
k→∞

(wki )2(∇2ϕµk−1
(wk))ii = p(p− 1)|w∗i |p. (A.24)

In turn, let us focus on the case of i ∈ I(w∗). Then, the sequence {(wki )2/
(
(wki )2 + µ2

k−1

)
} is

bounded since |(wki )2/
(
(wki )2 + µ2

k−1

)
| < 1 follows from µk−1 > 0 for all k. Hence, using (A.22),

we derive from (A.23) that

lim
k→∞

(wki )2(∇2ϕµk−1
(wk))ii = 0 = p(p− 1)|w∗i |p,

where the last equality is due to w∗i = 0 for i ∈ I(w∗). By this equation together with (A.24), we
conclude (22). The proof is complete.
�

A.4 Proof of Lemma 7

Choose i ∈ I(w∗) arbitrarily. We show the claim for the case where wki 6= 0 for all k ∈ K. It is not
difficult to extend the argument to the general case where wki = 0 occurs for infinitely many k. Also,
we may assume λk1 > 0 for all k ∈ K because of Assumption A1. For simplicity, denote

Fi(w
k, λ̄k) :=

∂G(wk, λ̄k)

∂wi

for each k ∈ K. From (19) and the i-th element of condition (7) with (w,λ, ε4) = (wk,λk, εk−1
4 ),

we have, for each k ∈ K,

Fi(w
k, λ̄k) + pλk1w

k
i ((wki )2 + µ2

k−1)
p
2
−1 = (εk−1

4 )i, (A.25)

which together with the assumption wki 6= 0 and λk1 6= 0 (k ∈ K) implies

Fi(w
k, λ̄k)− (εk−1

4 )i 6= 0 (k ∈ K).

Recall that εk−1
4 → 0 as k →∞. Noting this fact and (A.25), we get

µ2
k−1 =

∣∣∣Fi(wk, λ̄k)− (εk−1
4 )i

∣∣∣ 2
p−2

p̃λ̃k1|wki |
2
p−2

− (wki )2,
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where
p̃ := p

2
p−2 , λ̃k1 := (λk1)

2
p−2 .

Then, it follows that

|wki |
2

2−p

µ2
k−1

=
p̃λ̃k1∣∣∣Fi(wk, λ̄k)−(εk−1

4 )i

∣∣∣ 2
p−2 − p̃λ̃k1|wki |

2+ 2
p−2

. (A.26)

To show the desired result, it suffices to prove that
{
|wki |

2
2−p /µ2

k−1

}
k∈K

is bounded from above.

To this end, we first consider the case of p = 1. By substituting p = 1 for (A.25), we get

Fi(w
k, λ̄k)−(εk−1

4 )i + λk1
wki√

(wki )2 + µ2
k−1

= 0. (A.27)

Moreover, by substituting p = 1 for (A.26), we have

|wki |2

µ2
k−1

=
(λk1)−2∣∣∣Fi(wk, λ̄k)−(εk−1

4 )i

∣∣∣−2
− (λk1)−2

=

∣∣∣Fi(wk, λ̄k)−(εk−1
4 )i

∣∣∣2
(λk1)2 −

∣∣∣Fi(wk, λ̄k)−(εk−1
4 )i

∣∣∣2 . (A.28)

From equation (A.27), it is not difficult to see that |Fi(wk, λ̄k)−(εk−1
4 )i|2 ≤ |λk1|2. In this inequality,

let k ∈ K →∞. Then, Assumption A3 together with Fi(w∗, λ̄∗) = ∂G(w∗, λ̄∗)/∂wi yields

(λ∗1)2 − |Fi(w∗, λ̄∗)|2 > 0. (A.29)

Letting k ∈ K →∞ in equation (A.28) and noting (A.29), we readily derive that

lim
k∈K→∞

|wki |
2

2−p

µ2
k−1

=

∣∣Fi(w∗, λ̄∗)∣∣2
(λ∗1)2 −

∣∣Fi(w∗, λ̄∗)∣∣2 <∞. (A.30)

We next consider the case of p < 1. By using (A.26) again, it holds that

lim
k∈K→∞

|wki |
2

2−p

µ2
k−1

=
p̃λ̃∗1∣∣Fi(w∗, λ̄∗)∣∣ 2

p−2 − p̃λ̃∗1|w∗i |
2+ 2

p−2

=
p̃λ̃∗1∣∣Fi(w∗, λ̄∗)∣∣ 2

p−2

<∞, (A.31)

where λ̃∗1 := (λ∗1)
2
p−2 > 0 and the second equality follows from 2 + 2

p−2 > 0 and w∗i = 0 because
of i ∈ I(w∗). Particularly, note that the last strict inequality is true due to 2/(p − 2) < 0 even if∣∣Fi(w∗, λ̄∗)∣∣ = 0. Finally, by (A.30) and (A.31), we conclude the desired result.
�
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A.5 Proof of Proposition 9

We prepare the following lemma.

Lemma A.5 Suppose that Assumption A4 holds and let (w∗,λ∗) be an arbitrary accumulation

point of the sequence {(wk,λk)}. Recall that we write ∇w̃h(w) :=
(
∂h(w)
∂wi1

, . . . , ∂h(w)
∂wip

)>
∈ Rp

for a function h : Rn → R and the index set {i1, i2, . . . , ip} := {1, 2, . . . , n} \ I(w∗). Moreover,
denote w̃ := (wi)i/∈I(w∗) and

∇(w̃,λ)Φi(w,λ) :=

[
∇w̃Φi(w,λ)
∇λΦi(w,λ)

]
∈ Rn−|I(w

∗)|+r (i /∈ I(w∗)), (A.32)

∇(w̃,λ)λi :=

[
∇w̃λi
∇λλi

]
∈ Rn−|I(w

∗)|+r (i ∈ I(λ∗)). (A.33)

Then, the vectors {{
∇(w̃,λ)Φi(w

∗,λ∗)
}
i/∈I(w∗) ,

{
∇(w̃,λ)λi|λ=λ∗

}
i∈I(λ∗)

}
are linearly independent.

Proof Notice that∇(w̃,λ)λi is the vector such that the (n− |I(w∗)|+ i)-th entry is 1 and the others
are 0s. Under Assumption A4, we see that the matrix

M :=
[
(∇Φi(w

∗,λ∗))i/∈I(w∗) , (∇(w,λ)wi|w=w∗)i∈I(w∗), (∇(w,λ)λi|λ=λ∗)i∈I(λ∗)

]
∈ R(n+r)×(n+|I(λ∗)|)

is of full-column rank. Since the matrix

N :=

[
zeros(|I(w∗)|, n− |I(w∗)|) E|I(w∗)| zeros(|I(w∗)|, |I(λ∗)|)(
∇(w̃,λ)Φi(w

∗,λ∗)
)
i/∈I(w∗) zeros(n− |I(w∗)|+ r, |I(w∗)|) (∇(w̃,λ)λi|λ=λ∗)i∈I(λ∗)

]
∈ R(n+r)×(n+|I(λ∗)|),

where Es denotes the s × s identity matrix and zeros(s, t) stands for the zero matrix in Rs×t, is
obtained by applying appropriate elementary column and row operations toM , we find thatN is of
full-column rank. Hence, the desired result is obtained.

Proof of Proposition 9: For simplicity, let

ξk := ((ζk)>, (ηk)>)>, ζ̂k :=
ζk

‖ξk‖
, η̂k :=

ηk

‖ξk‖

for each k. Suppose to the contrary that {ξk} is unbounded. Choosing an arbitrary accumulation point
(w∗,λ∗) of the sequence {(wk,λk)}, without loss of generality, we can assume that (wk,λk)→
(w∗,λ∗) and ‖ξk‖ → ∞ as k →∞, if necessary, by taking a subsequence. Let us denote an arbitrary
accumulation point of {ξk/‖ξk‖} by ξ̂∗ := ((ζ̂∗)>, η̂∗)>, where ζ̂∗ and η̂∗ are accumulation points
of {ζ̂k} and {η̂k}, respectively. Again, without loss of generality, we can suppose limk→∞ ξ̂

k = ξ̂∗.

33



OKUNO, TAKEDA, KAWANA, AND WATANABE

Notice that ‖ξ̂∗‖ = 1. By dividing both sides of (4), (5), (6), and (8) with w = wk,λ = λk, ζ =
ζk,η = ηk and (ε1, ε2, ε3, ε4, ε5) = (εk−1

1 , εk−1
2 , εk−1

3 , εk−1
4 , εk−1

5 ) by ‖ξk‖, we have, for each k,(
∇f(wk)

)
i

‖ξk‖
+
(
∇2
wwG(wk, λ̄k)ζ̂k

)
i
+ λk1(∇2ϕµk(wk))iiζ̂

k
i =

(εk−1
1 )i
‖ξk‖

(i = 1, 2, . . . , n),

(A.34)

∇ϕµk(wk)>ζ̂k − η̂k1 =
εk−1

2

‖ξk‖
, (A.35)

∇Ri(wk)>ζ̂k − η̂ki =
(εk−1

3 )i
‖ξk‖

(i = 2, 3, . . . , r), (A.36)

λki η̂
k
i ≤

εk−1
5

‖ξk‖
, λki ≥ 0, η̂ki ≥ 0 (i = 1, 2, . . . , r), (A.37)

where the last conditions are deduced by componentwise decomposition of (8). Note that εk−1
1 /‖ξk‖,

εk−1
2 /‖ξk‖, εk−1

3 /‖ξk‖, and εk−1
5 /‖ξk‖ converge to 0 as k →∞. By driving k →∞ in (A.37) for

i = 1 and using limk→∞ λ
k
1 = λ∗1 > 0 from Assumption A1, we have

η̂∗1 = 0. (A.38)

In a similar manner, we can get
η̂∗i = 0 (i /∈ I(λ∗)), (A.39)

where I(λ∗) = {i ∈ {1, 2, . . . , r} | λ∗i = 0} as is defined in Assumption A4. Expressions (A.38)
and (A.39) together with ‖ξ̂∗‖ = 1, that is, ‖ξ̂∗‖2 = ‖ζ̂∗‖2 +

∑r
i=1 |η̂∗i |2 = 1 imply

‖ζ̂∗‖2 +
∑

i∈I(λ∗)

|η̂∗i |2 = 1. (A.40)

Next, let k →∞ in (A.34). By the boundedness of {∇2
wwG(wk, λ̄k)ζ̂k} and limk→∞∇f(wk)/‖ξk‖ =

0, we find that
{
λk1
(
∇2ϕµk(wk)

)
ii
ζki /‖ξk‖

}
is bounded for each i. Using this fact, limk→∞ λ

k
1 =

λ∗1 > 0, and limk→∞ |(∇2ϕµk(wk))ii| → ∞ for i ∈ I(w∗) by Proposition 8 yield

ζ̂∗i = 0 (i ∈ I(w∗)). (A.41)

We next show that ∑
i/∈I(w∗)

sgn(w∗i )|w∗i |p−1ζ̂∗i = 0. (A.42)

For proving (A.42), it suffices to show

lim
k→∞

∇ϕµk−1
(wk)>ζ̂k =

∑
i/∈I(w∗)

p sgn(w∗i )|w∗i |p−1ζ̂∗i . (A.43)

Indeed, we can derive (A.42) from (A.43) by taking the limit of (A.35), (A.41), and (A.38) into
account. Choose i ∈ I(w∗) arbitrarily. By Lemma 7, there exists some γ > 0 such that

µ2
k−1 ≥ γ|wki |

2
2−p (A.44)
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for all k sufficiently large. In what follows, we consider sufficiently large k so that inequality (A.44)
holds. Then, by 0 < p ≤ 1, we get

µ2−p
k−1

γ
2−p
2

≥ |wki |,

which implies

1

p
(∇ϕµk−1

(wk))iζ̂
k
i =

∣∣∣wki ((wki )2 + µ2
k−1)

p
2
−1ζ̂ki

∣∣∣
≤
∣∣∣wki µ2( p

2
−1)

k−1 ζ̂ki

∣∣∣
≤
µ2−p
k−1

γ
2−p
2

µ
2( p

2
−1)

k−1

∣∣∣ζ̂ki ∣∣∣
=γ

p
2
−1
∣∣∣ζ̂ki ∣∣∣ . (A.45)

From relation (A.45) and expression (A.41) we obtain limk→∞(∇ϕµk−1
(wk))iζ̂

k
i = 0. Since i ∈

I(w∗) was arbitrarily chosen, it holds that

lim
k→∞

∑
i∈I(w∗)

(∇ϕµk−1
(wk))iζ̂

k
i = 0. (A.46)

It then follows that

lim
k→∞

∇ϕµk−1
(wk)>ζ̂k = lim

k→∞

 ∑
i∈I(w∗)

(
∇ϕµk−1

(wk)
)
i
ζ̂ki +

∑
i/∈I(w∗)

(
∇ϕµk−1

(wk)
)
i
ζ̂ki


= lim

k→∞

∑
i/∈I(w∗)

(
∇ϕµk−1

(wk)
)
i
ζ̂ki

=
∑

i/∈I(w∗)

p sgn(w∗i )|w∗i |p−1ζ̂∗i ,

where the second equality follows from (A.46) and the last equality is due to the relation

lim
k→∞

(∇ϕµk−1
(wk))i = p sgn(w∗i )|w∗i |p−1 (i /∈ I(w∗)), (A.47)

which can be derived from (19). Therefore, we conclude the desired expression (A.43) and thus
(A.42). In addition to (A.47), for i /∈ I(w∗), we obtain from (20) that

lim
k→∞

(∇2ϕµk−1
(wk))ii = p(p− 1)|w∗i |p−2.

Then, forcing k →∞ in (A.34) yields

∂
(
∇wG(w, λ̄)>ζ̂∗

)
∂wi

∣∣∣∣∣∣
(w,λ)=(w∗,λ∗)

+ λ∗1p(p− 1)|w∗i |p−2ζ̂∗i = 0 (i /∈ I(w∗)),
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which can be transformed by using (A.41) into

∂
(∑

j /∈I(w∗)
∂G(w,λ̄)
∂wj

ζ̂∗j

)
∂wi

∣∣∣∣∣∣
(w,λ)=(w∗,λ∗)

+ λ∗1p
∂
(∑

j /∈I(w∗) sgn(wj)|wj |p−1ζ̂∗j

)
∂wi

∣∣∣∣∣∣
w=w∗

= 0 (i /∈ I(w∗)).

Put w̃ := (wi)i/∈I(w∗). Letting k → ∞ in (A.36), we get ∇Ri(w∗)>ζ̂∗ − η̂∗i = 0 (i = 2, . . . , r),
which together with (A.41) implies∑

j /∈I(w∗)

∂Ri(w
∗)

∂wj
ζ̂∗j − η̂∗i = 0 (i = 2, . . . , r). (A.48)

Now, let Ψ∗ := (Ψ∗i )
>
i/∈I(w∗) ∈ Rn−|I(w∗)| with

Ψ∗i :=
∂
(∑

j /∈I(w∗)
∂G(w,λ̄)
∂wj

ζ̂∗j

)
∂wi

∣∣∣∣∣∣
(w,λ)=(w∗,λ∗)

+ λ∗1p
∂
(∑

j /∈I(w∗) sgn(wj)|wj |p−1ζ̂∗j

)
∂wi

∣∣∣∣∣∣
w=w∗

(A.49)
and ej ∈ Rr be the vector such that the j-th element is 1 and others are 0s. In addition, Φi

(i /∈ I(w∗)), ∇(w̃,λ)Φi (i /∈ I(w∗)), and ∇(w̃,λ)λi (i ∈ I(λ∗)) are the functions defined in
Assumption A4, (A.32), and (A.33) in Lemma A.5, respectively. Then, it follows that∑

j /∈I(w∗)

∇(w̃,λ)Φj(w
∗,λ∗)ζ̂∗j −

∑
j∈I(λ∗)

∇(w̃,λ)λj |λ=λ∗ η̂
∗
j

=
∑

j /∈I(w∗)

[
∇w̃Φj(w

∗,λ∗)
∇λΦj(w

∗,λ∗)

]
ζ̂∗j −

∑
j∈I(λ∗)

[
zeros(n− |I(w∗)|, 1)

η̂∗je
j

]

=


(
∂(

∑
j /∈I(λ∗) Φj(w,λ)ζ̂∗j )

∂wi

∣∣∣∣
(w,λ)=(w∗,λ∗)

)>
i/∈I(w∗)

−η̂∗ +
∑

j /∈I(w∗)∇λΦj(w
∗,λ∗)ζ̂∗j



=



Ψ∗∑
j /∈I(w∗) ζ̂

∗
j

(
p sgn(w∗j )|w∗j |p−1

)
∑

j /∈I(w∗)
∂R2(w∗)
∂wj

ζ̂∗j − η̂∗2
...∑

j /∈I(w∗)
∂Rr(w∗)
∂wj

ζ̂∗j − η̂∗r


= 0, (A.50)

where zeros(n− |I(w∗)|, 1) denotes the zero matrix in Rn−|I(w∗)|, the second equality follows from
(A.39), the third one is from (A.38), definition (A.49) of Ψ∗, and easy calculation, and the last one is
derived from (A.42), (A.48), and (A.49). Expression (A.50) together with Lemma A.5 entails ζ̂∗i =
0 (i /∈ I(w∗)) and η̂∗i = 0 (i ∈ I(λ∗)). Hence, by (A.41), we obtain ‖ζ̂∗‖2 +

∑
i∈I(λ∗) |η̂∗i |2 = 0.

However, it contradicts (A.40). Therefore, the sequence {(ζk,ηk)} is bounded.
�
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Appendix B. Description of the algorithm for solving the smoothed problem (3)

In this section, we explain the algorithm used for solving problem (3) in the numerical experiment.

B.1 Implicit function based method

In this section, we describe the algorithm that is used for solving the following problem arising by
smoothing problems (33) and (34) in the numerical experiments in Section 5:

min
(w,λ)∈Rn×Rn+1

fval(w) := ‖Avalw − bval‖22

s.t. w ∈ argmin
ŵ

{
φµ(ŵ,λ) := ‖Atrŵ − btr‖2 + eλ1

n∑
i=1

(ŵ2
i + µ2)

p
2 + νŵ>C(λ̄)ŵ

}
,

(B.1)

where ν ∈ {0, 1} and C(λ̄) := Diag(exp(λi))
n+1
i=2 . The above problems with ν = 0 and 1

correspond to problems (33) and (34), respectively. Our goal is to compute a KKT triplet (w,λ,η) ∈
Rn × Rn+1 × Rn of the above problem with the constraint replaced by the equality constraint
∇wφµ(w,λ) = 0. Namely, we compute (w,λ,η) which satisfies

Θ(w,η) :=

[
∇fval(w)

0

]
+

[
∇2
wwφµ(w,λ)
∇2
wλφµ(w,λ)

]
η = 0, ∇wφµ(w,λ) = 0, (B.2)

where∇2
wλφµ(w,λ) = ∇λ (∇wφµ(w,λ)) ∈ R(n+1)×n.

Given λ̃ and µ, let w̃ be a stationary point of the smoothed lower-level problem minw φµ(w,λ).
According to the standard implicit function theorem, if ∇2

wwφµ(w̃, λ̃) is of full rank, there exist
some open neighborhood U

λ̃
of λ̃ and a twice continuously differentiable implicit function w(·) :

U
λ̃
→ Rn such that

w̃ = w(λ̃), ∇wφµ(w(λ),λ) = 0 (λ ∈ U
λ̃

).

In U
λ̃

, we may regard problem (B.1) with the constraint replaced by∇wφµ(w,λ) = 0 as

min
λ∈U

λ̃

{
F (λ) := ‖Avalw(λ)− bval‖22

}
. (B.3)

By the implicit function theorem again, we then have

∇w(λ̃) = −∇2
wλφµ(w(λ̃), λ̃)

(
∇2
wwφµ(w(λ̃), λ̃)

)−1
,

and hereby the gradient of the objective of problem (B.3) at λ̃ is expressed as follows:

∇F (λ̃) = ∇λ‖Avalw(λ̃)− bval‖22
= 2∇w(λ̃)A>val

(
Avalw(λ̃)− bval

)
= −2∇2

wλφµ(w(λ̃), λ̃)
(
∇2
wwφµ(w(λ̃), λ̃)

)−1
A>val

(
Avalw(λ̃)− bval

)
.
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Algorithm B.1 Implicit function based quasi-Newton method for the smoothed subproblem

Require: λ0 ∈ Rn+1, ε ≥ 0, α, β ∈ (0, 1), B0 ∈ Sn+1
++ (Sn+1

++ : The set of (n+ 1)× (n+ 1) real
symmetric positive definite matrices); Set k ← 0.

1: while∇F (λk) ≥ ε do
2: Find wk satisfying∇wφµ(wk,λk) = 0.
3: Set dλ ← −B−1

k ∇F (λk).
4: Find the smallest integer `k ≥ 0 satisfying

F (λk + β`kdλ) ≤ F (λk) + αβ`k∇F (λk)>dλ. (B.4)

Set tk ← β`k .
5: λk+1 ← λk + tkdλ.
6: SetBk+1 ∈ Sn+1

++ .
7: k ← k + 1
8: end while
9: Set (w̄, λ̄)← (wk,λk).

10: Solve Θ(w̄, λ̄,η) = 0 for η to obtain a Lagrange multiplier η̄.
output (w̄, λ̄, η̄)

By computing the above gradient at each iterate, we can preform the quasi-Newton method (Nocedal
and Wright, 2006) for problem (B.3) to have a solution λ∗ with ∇F (λ∗) = 0. Once λ∗ is gained
together with w(λ∗), we substitute them into the first equation Θ(w,η) = 0 in (B.2) and solve
the resultant linear equation Θ(w(λ∗),η) = 0 for η to have a solution, say η∗. The triplet
(w(λ∗),λ∗,η∗) is then nothing but the desired KKT triplet.

The overall algorithm is described as in Algorithm B.1. For the algorithm to work, the full-
rankness of ∇2

wwφµ(w̃, λ̃) is necessary to ensure the existence of the implicit function w(·). This
is expected to hold in many instances, although it cannot be guaranteed generally. We must solve
the lower-level problem in Line 2 every time `k is updated while performing linesearch (B.4), and
thus how we solve the smoothed lower-level problem affects the overall efficiency of Algorithm B.1.
In the subsequent section, we will present a certain Newton-type method for solving the smoothed
lower-level problem.

Next, we make a remark on the linesearch procedure in Algorithm B.1. As mentioned previously,
we need to solve the smoothed lower-level problem minw φµ(w,λk + β`kdλ) so as to evaluate
F (λk + β`kdλ) every time `k is incremented. Actually, to compute F (λk + β`kdλ), we need to
know the value of w(λk + β`kdλ) by solving the equation∇wφµ(w,λk + β`kdλ) = 0. However,
the smoothed lower-level problem minw φµ(w,λk + β`kdλ) is nonconvex when p < 1 and thus
the set of solutions of ∇wφµ(w,λk + β`kdλ) = 0 is not singleton in general5. This fact yields
that applying a numerical method to this equation may not return w(λk + β`kdλ). Nevertheless,
in practice, we expect w(λk + β`kdλ) to be computed successfully by applying, for example, a
Newton-type method withw(λk) as a starting point to the equation, becausew(λk+β`kdλ) actually
gets closer to w(λk) as `k is increased in the linesearch procedure.

5. When p = 1, minw φµ(w,λk + β`kdλ) is strongly convex minimization in virtue of the term
∑n
i=1(w2

i + µ2)
p
2

with µ > 0, and thus its solution set is singleton.
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The convergence analysis of Algorithm B.1 can be mostly done in a manner similar to that of the
standard quasi-Newton method. Indeed, we can show that any accumulation point of {(wk,λk)} is
a KKT point of the smoothed subproblem under the following two sets of assumptions:

Assumption B.1 Let {λk} be a sequence produced by Algorithm B.1. Then, the following properties
hold:

1. The sequence {λk} is bounded.

2. There exist some α1, α2 (0 < α1 ≤ α2) such that

α1E � Bk � α2E

for all k, whereE is the identity matrix with the same size withBk, and for symmetric matrices
X,Y ,X � Y stands for Y −X is positive semidefinite.

The above assumptions are often made in convergence analysis of the quasi-Newton method, whereas
the following assumption is specific to our setting.

Assumption B.2 ∇2
wwφµ(wk,λk) is of full rank for each k, and so is∇2

wwφµ(w∗,λ∗) even at an
arbitrary accumulation point (w∗,λ∗).

Assumption B.2 ensures that the implicit function w(·) exists at each iterate and even at an arbitrary
accumulation point.

The following theorem holds under Assumptions B.1 and B.2. As the proof is similar to that for
the quasi-Newton method, we omit it here.

Theorem B.3 Suppose that Assumptions B.1 and B.2 hold. Then, any accumulation point of {λk}
satisfies∇F (λ) = 0.

B.2 Newton-type method for solving the smoothed lower-level problem

In this section, we describe the modified Newton-type algorithm used for solving the smoothed
lower-level problem minw φµ(w,λ) in problem (B.1). For brevity, the algorithm is presented in the
form pertaining to the following problem:

min
w

ψµ(w) :=
1

2
‖Kw − f‖2 + η

n∑
i=1

(w2
i + µ2)

p
2 , (B.5)

where η ∈ R is positive,K ∈ Rm×n, and f ∈ Rm. Note that by settingK and f appropriately, the
function ψµ above reduces to φµ.

We begin with the update-formula of the standard Newton method for problem (B.5) at the r-th
iterate wr ∈ Rn:

wr+1 ← wr −B(wr)−1∇ψµ(wr), where

B(w) := K>K + pηDiag

(w2
i + µ2)

p
2
−1 +

p− 2

2
w2
i (w

2
i + µ2)

p
2
−2︸ ︷︷ ︸

negative


n

i=1

.
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However, the matrixB(wr) is not necessarily nonsingular because of the above negative part, and
thus the Newton method may not work.6 As a remedy, in the spirit of the modified Newton method,
we modifyB(wr) to the following matrix B̃(wr) by deleting the negative part:

B̃(w) := K>K + pηDiag
(

(w2
i + µ2)

p
2
−1
)n
i=1
.

Now, the presented algorithm is described formally as in Algorithm B.2. In fact, the algorithm is
identical to the one that is proposed by Lai and Wang (2011, Section 2), which gives the following
theorem:

Theorem B.4 (Lai and Wang, 2011, Theorem 2.1) Let {wr} be a sequence generated by Algo-
rithm B.2 with ε = 0. It is bounded and its arbitrary accumulation point satisfies∇ψµ(w) = 0.

It is worthwhile to note that Algorithm B.2 does not request a linesearch procedure for the global
convergence, which is often costly.

Algorithm B.2 Modified Newton-type method for minw ψµ(w)

Require: w0 ∈ Rn, r ← 0, ε > 0
1: while ‖∇ψµ(wr)‖ > ε do
2: wr+1 ← wr − B̃(wr)−1∇ψµ(wr),
3: r ← r + 1.
4: end while
5: Set w̄ ← wr

output w̄

Appendix C. Supplementary tables and figures of bayesopt for the numerical
experiments

This section provides the supplementary Tables C.1 and C.2 that show the first time when bayesopt
found the best observed objective value. These results were recorded in a single run of bayesopt
for each problem, thus differ from the averaged results shown in Tables 1 and 2. In addition, it also
gives Figures C.1 and C.2 that depict how the best observed objective value of bayesopt varies
over time. In order to monitor the change of values in a long period, we extended the time limit of
bayesopt to 1200 seconds from 600 seconds that was employed for making Tables C.1 and C.2.
These figures were obtained by solving the problems organized from the data sets of CpuSmall and
Student.

6. In fact, when p = 1,B(w) is nonsingular even in the presence of the negative part, because

pηDiag

(
(w2

i + µ2)
p
2
−1 +

p− 2

2
w2
i (w

2
i + µ2)

p
2
−2

)n
i=1

= pηDiag
((
µ2 +

p

2
w2
i

)
(w2

i + µ2)
p
2
−1
)n
i=1

,

which turns out to be positive definite.
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Table C.1: The first time of bayesopt for finding a solution of problem (33), which attains the final best
observed objective value, that is, validation value (Those results of bayesopt were recorded in a single run,
thus differ from the averaged results over 5 runs shown in Table 1. For the sake of comparison, the results of
Algorithm 1 are also shown, which are the same as those in Table 1. “f.time (sec)” stands for the first time in
seconds where the best objective value is observed. The best values in f.time (sec) and Errval are displayed in
bold.)

Data bayesopt Algorithm 1

name p Errval f.time (sec) Errval time (sec)

Facebook 1 6.476 42.256 6.474 17.399
0.8 6.504 122.158 6.512 22.242
0.5 6.536 66.589 6.550 16.820

Insurance 1 95.764 49.538 95.764 33.077
0.8 95.737 63.580 95.676 32.465
0.5 95.604 13.960 95.562 44.904

Student 1 0.777 12.405 0.778 10.586
0.8 0.724 339.980 0.724 2.348
0.5 0.731 147.118 0.724 3.618

BodyFat 1 0.209 4.839 0.209 0.068
0.8 0.180 3.899 0.179 0.203
0.5 0.212 1.160 0.267 0.395

CpuSmall 1 131124 1.202 130981 11.299
0.8 131187 1.853 130982 0.741
0.5 131234 1.712 131058 0.672

Table C.2: The first time of bayesopt for finding a solution of problem (34), which attains the final best
observed objective value, that is, validation value (Those results of bayesopt were recorded in a single run,
thus differ from the averaged results over 5 runs shown in Table 2. For the sake of comparison, the results of
Algorithm 1 (Alg.1-A, Alg.1-B) are also shown, which are the same as those in Table 2. “f.time (sec)” stands
for the first time in seconds where the best objective value is observed. The best values in f.time (sec) and
Errval are displayed in bold.)

Data bayesopt Alg.1-A Alg.1-B

name ]λ Errval f.time (sec) Errval time (sec) Errval time (sec)

Facebook 54 8.780 1.518 6.478 20.247 – –
Insurance 86 107.000 4.288 95.694 50.714 94.604 4.473
Student 273 18.324 26.756 0.771 1.451 0.786 71.775
BodyFat 15 46.815 0.337 0.243 0.072 0.130 0.695

CpuSmall 13 151394 531.837 131130 6.222 128540 0.658
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Figure C.1: Best observed objective value (validation value) vs running time in seconds (bayesopt for
problem (33) with a single `0.8 hyperparameter)

(a) Student (The number of hyperparameters is 1; the proposed bilevel algorithm found a solution with 0.724
in 2 seconds.)

(b) CpuSmall (The number of hyperparameters is 1; the proposed bilevel algorithm found a solution with
1.3098× 105 in 0.7 seconds.)
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Figure C.2: Best observed objective value (validation value) vs running time in seconds (bayesopt for
problem (34) with multiple hyperparameters)

(a) Student (The number of hyperparameters is 273; the proposed bilevel algorithms found solutions with
0.771 in 1.45 seconds (Alg.1-A) and 0.786 in 71.78 seconds (Alg.1-B).)

(b) CpuSmall (The number of hyperparameters is 13; the proposed bilevel algorithms found solutions with
1.31× 105 in 6.22 seconds (Alg.1-A) and 1.29× 105 in 0.66 seconds (Alg.1-B).)
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