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Abstract

We introduce a unified framework for random forest prediction error estimation based on
a novel estimator of the conditional prediction error distribution function. Our framework
enables simple plug-in estimation of key prediction uncertainty metrics, including condi-
tional mean squared prediction errors, conditional biases, and conditional quantiles, for
random forests and many variants. Our approach is especially well-adapted for prediction
interval estimation; we show via simulations that our proposed prediction intervals are
competitive with, and in some settings outperform, existing methods. To establish the-
oretical grounding for our framework, we prove pointwise uniform consistency of a more
stringent version of our estimator of the conditional prediction error distribution function.
The estimators introduced here are implemented in the R package forestError.
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1. Introduction

Random forests and other tree-based methods are often used for regression—that is, to relate
a real-valued response Y to covariates X (Criminisi et al., 2010; Grimm et al., 2008; Wei
et al., 2010). The objective in many of these applications is to predict the unknown responses
of observations given their covariates. We denote such a prediction by ϕ̂(X). For example,
researchers in precision medicine seek to predict the health outcomes of individual patients
under some treatment regime given patient, clinical, and environmental characteristics,
with the ultimate goal of developing individualized therapies for patients (Fang et al., 2018).
Other researchers seek to predict bird migration patterns to reduce collisions with airplanes,
wind turbines, and buildings (Van Doren and Horton, 2018).

When using any regression method for prediction, quantifying the uncertainty associated
with the predictions can enhance their practical value. One central function for quantifying
uncertainty is the conditional prediction error distribution, which, letting E := Y − ϕ̂(X)
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denote the error of a prediction, is given by

FE (e | x) := Pr (E ≤ e | X = x) = Pr (Y − ϕ̂(X) ≤ e | X = x) .

The conditional prediction error distribution can be mapped to a number of useful param-
eters that characterize prediction uncertainty. For example, the conditional mean squared
prediction error,

MSPE(x) := E
[
(Y − ϕ̂(X))2 | X = x

]
=

∫
e2fE(e | x) de,

can summarize how erroneous a given point prediction is expected to be. Additionally, the
conditional bias,

Bias(x) := E [ϕ̂(X)− Y | X = x] = −
∫
efE(e | x) de,

measures systematic over- or under-prediction of the responses of units with a given set of
covariates. Finally, the α-quantiles of the conditional prediction error distribution,

QαE(x) := inf {e : FE (e | x) ≥ α} ,

can be used to construct a conditional prediction interval containing the unknown response
of a given observation with a specified probability.

This paper proposes a method of estimating the conditional prediction error distribution
FE (e | x) of random forests. With this estimate, conditional mean squared prediction error,
conditional bias, conditional quantiles, and other parameters of the distribution can all be
estimated with ease. By contrast, the current literature on characterizing the uncertainty
of random forest predictions has been piecemeal. For example, existing estimators of condi-
tional biases and conditional response quantiles were developed separately, rely on different
assumptions, and are computed by separate algorithms. Thus, the central contribution of
this paper is a unified framework for assessing random forest prediction uncertainty, with
a suite of estimators that empirically are competitive with, and in some cases outperform,
existing methods, particularly for the tasks of prediction interval estimation and quantile
regression.

In addition to creating a unified framework, our method is general in the sense that it
can be implemented for many variants of the random forest algorithm. For example, it is
compatible with a wide range of decision tree algorithms that partition the covariate space
based on different criteria, such as generalized random forests (Athey et al., 2019), as well as
various resampling and subsampling regimes that have been examined in recent literature
(Biau et al., 2008). It can also be naturally adapted to augmentations of the random forest
algorithm, such as local linear forests (Friedberg et al., 2019).

The remainder of this manuscript is organized as follows. Section 2 reviews the literature
on estimating parameters of FE(e | x) that are commonly of interest. We establish the
setting and relevant notation for our problem in Section 3. Then, we introduce in Section
4 our proposed estimator of FE(e | x) and show how it enables simple plug-in estimation
of parameters of FE(e | x). In Section 5, we assess the empirical performance of some of
these resulting plug-in estimators. In Section 6, we propose and prove uniform consistency
of an estimator of FE(e | x) that is similar to but more stringently constructed than the
one proposed in Section 4. Section 7 concludes.
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2. Related Work

To our knowledge, we are the first to propose a method of estimating the conditional predic-
tion error distribution of random forests. However, random forest mean squared prediction
error, bias, and prediction intervals have each been studied individually in previous works.
We briefly review the literature on each in turn.

The most, and perhaps only, widely used summary metric for random forest prediction
error is the unconditional mean squared prediction error,

MSPE := E
[
(Y − ϕ̂(X))2

]
,

which is usually estimated by an out-of-bag procedure (Breiman, 1996; Liaw and Wiener,
2002). We propose an estimator of the conditional mean squared prediction error MSPE(x),
which, as we illustrate in Section 4.2, is often a more informative metric.

The literature on random forest bias has been more active. Wager and Athey (2018)
show that random forests are biased and provide a bound on the magnitude of the bias
under certain assumptions about the tree-growing mechanism and the underlying data dis-
tribution. Ghosal and Hooker (2020) leverage this work to investigate a method of bias
correction, initially proposed by Breiman (1999), that fits a random forest on the out-of-
bag prediction errors to directly model the bias. This boosting approach, which is similar to
gradient boosting (Friedman, 2001), is also studied by Zhang and Lu (2012), who propose
additional model-based bias corrections for random forests. Hooker and Mentch (2018)
propose a different method of bias correction that approximates the classic bootstrap bias
estimation procedure (Efron and Tibshirani, 1994) in a more computationally efficient way.
We contribute to this literature by proposing a new bias correction procedure and compar-
ing it to the boosting method examined by Ghosal and Hooker (2020) and Zhang and Lu
(2012).

The literature on prediction interval estimation for random forests began with the de-
velopment by Meinshausen (2006) of quantile regression forests, a random forest-based
algorithm that enables consistent estimation of conditional prediction intervals. Since then,
Athey et al. (2019) have proposed generalized random forests, a method of estimating quan-
tities identified by local moment conditions that grows trees specifically designed to express
heterogeneity in the quantity of interest. They show that their algorithm can be used for
quantile regression. Additionally, Zhang et al. (2019) propose estimating prediction inter-
vals using the empirical quantiles of a random forest’s out-of-bag prediction errors. More
broadly, conformal inference offers a generic way of estimating prediction intervals that can
be applied to virtually any estimator of the regression function, including random forests
(Lei and Wasserman, 2014; Lei et al., 2018; Johansson et al., 2014). We add to this lit-
erature by proposing a new prediction interval estimator and assessing the strengths and
weaknesses of each method through simulation.

Finally, we distinguish our work from two segments of the random forest literature.
First, although the prediction interval estimator we propose in Section 4.2 superficially
resembles the proposal by Zhang et al. (2019) mentioned above, this paper differs from
their work in three major respects. First, as an overarching matter, Zhang et al. (2019)
focus solely on prediction interval estimation for random forests built via the classification
and regression tree (CART) algorithm. By contrast, our work establishes a suite of easily
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computed prediction uncertainty metrics, of which prediction intervals are just one, for
a broad class of tree-based algorithms. Second, their prediction intervals provide only
unconditional coverage at the desired rate and by construction have the same width for
all test observations. By contrast, our prediction intervals provide conditional coverage at
the desired rate and adapt to changes in the shape of the conditional response distribution
across the covariate space. We illustrate this distinction, which is often vital in realistic
applications, via simulation in Section 5. Third, the mathematical justifications for the
asymptotic properties of their estimator rely on assumptions different from the ones we use
in Section 6.

Second, we emphasize that our work is largely separate from the literature on the use
of random forest-based algorithms for conditional mean estimation and inference (Sexton
and Laake, 2009; Wager et al., 2014; Mentch and Hooker, 2016; Wager and Athey, 2018).
Although, for many regression methods, the point estimator for an individual response is
equivalent to the point estimator for the conditional mean, the statistical challenges of
conditional mean estimation are different from those of prediction error estimation. For
example, many methods of conditional mean estimation and inference invoke some type
of central limit theorem to characterize their estimators’ behavior; such approaches are
generally less applicable to prediction error estimation, which concerns individual responses
rather than their expected value.

3. Setup and Notation

Consider an observed training sample Dn := {(Xi, Yi)}ni=1, where (Xi, Yi)
i.i.d.∼ P for some

distribution P, Xi ∈ X is a p-dimensional covariate with support X , and Yi ∈ R is a
real-valued response with a continuous conditional distribution function FY (y | x). For
convenience, we let Zi := (Xi, Yi). A standard implementation of random forests fits a tree
on each of B bootstrap samples of the training set D∗n,1, . . . ,D∗n,B using some algorithm, such

as the CART algorithm, with the bth tree’s construction governed by a random parameter
θb drawn i.i.d. from some distribution independently of Dn (Breiman, 2001). Included in
θb, for example, might be the randomization of eligible covariates for each split. Each tree
splits its bootstrap training sample D∗n,b into terminal nodes; each split corresponds to a

partitioning of the predictor space X into rectangular subspaces. For the bth tree, let `(x, θb)
index the terminal node corresponding to the subspace containing x, and let R`(x,θb) denote
the subspace itself. With this notation, we introduce the following terminology; to our
knowledge, the literature has not settled on a term for observations satisfying Definition 1,
although the underlying concept is closely related to the notion of “connection functions”
in the characterization by Scornet (2016) of random forests as kernel methods.

Definition 1. A training observation Zi = (Xi, Yi) is a cohabitant of x in tree b if and
only if `(Xi, θb) = `(x, θb).

When predicting the response of a test observation with realized covariate value x, each
tree in the random forest employs a weighted average of the in-bag training responses, with
weights corresponding to cohabitation. In particular, the in-bag weight given to the ith
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observation in the bth tree is

wi(x, θb) :=
#{Zi ∈ D∗n,b}1(Xi ∈ R`(x,θb))∑n
j=1 #{Zj ∈ D∗n,b}1(Xj ∈ R`(x,θb))

,

where #{Zi ∈ D∗n,b} denotes the number of times the ith observation is in D∗n,b and 1(·) is
the indicator function. Note that wi(x, θb) is a random variable based in part on Xi, hence
the subscript i. The random forest prediction of the response of units with covariate value
x is the average of the tree predictions:

ϕ̂(x) :=
1

B

B∑
b=1

n∑
i=1

wi(x, θb)Yi.

It is well-known that, with a sufficiently large number of trees grown on bootstrap sam-
ples of Dn, each training observation will be out of bag—that is, not included in the boot-
strap sample—for any number fewer than bB(1− 1/n)nc of the trees with high probability.
Thus, we can define out-of-bag analogues to wi(x, θb) and ϕ̂(x). The out-of-bag weight
given to the ith training observation is the proportion of times the ith training observation
is an out-of-bag cohabitant of x, relative to all training observations:

vi(x) :=

∑B
b=1 1(Zi /∈ D∗n,b and Xi ∈ R`(x,θb))∑n

j=1

∑B
b=1 1(Zj /∈ D∗n,b and Xj ∈ R`(x,θb))

.

This is a random variable based in part on Xi, hence the subscript i. Notice that, unlike
wi(x, θb), vi(x) is defined over all trees because x is guaranteed an in-bag cohabitant in each
tree but not an out-of-bag cohabitant. The out-of-bag prediction of the ith training unit is
the average prediction of the unit’s response among the trees for which the unit is out of
bag:

ϕ̂(i)(Xi) :=
1∑B

b=1 1(Zi /∈ D∗n,b)

∑
b:Zi /∈D∗

n,b

n∑
j=1

wj(Xi, θb)Yj .

4. A Unified Framework for Assessing Prediction Uncertainty

In this section, we present a practical implementation of our proposed method of estimating
the conditional prediction error distribution FE(e | x) and show how it facilitates estimation
of conditional mean squared prediction errors, conditional biases, and conditional prediction
intervals. This practical implementation is similar in spirit to but less stringent in its
construction than our more rigorous method of estimating FE(e | x), which we detail and
prove is uniformly consistent in Section 6. Nonetheless, we present the practical version
first to build intuition, demonstrate its viability in empirical applications (see Section 5),
and suggest potential areas of future research. Similar simplifications have been made in
other recent work on random forests (Meinshausen, 2006). The estimators discussed in this
section are implemented in the R package forestError.
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4.1 Estimating the Conditional Prediction Error Distribution

The practical implementation of our proposed method estimates FE(e | x) by out-of-bag
weighting of the out-of-bag prediction errors:

F̂E(e | x) :=
n∑
i=1

vi(x)1
(
Yi − ϕ̂(i)(Xi) ≤ e

)
. (1)

This approach is grounded in the principle that, because training observations are not
used in the construction of trees for which they are out of bag, the relationship between a
training observation and the subset of trees for which it is out of bag is analogous to the
relationship between the test observation and the random forest when the number of training
observations and trees is large. In particular, not only are the out-of-bag prediction errors a
reasonable proxy for the error of future test predictions in general, but also the out-of-bag
prediction errors of training observations that are more frequently out-of-bag cohabitants
of a given test observation make better proxies for the prediction error of that specific
test observation than the out-of-bag prediction errors of training observations that are out-
of-bag cohabitants less often. Broadly speaking, this notion of similarity that motivates
our use of the out-of-bag weights vi(x) also underpins the “proximity” measure commonly
included in random forest implementations. But there are slight differences between these
two similarity measures. In particular, proximity is traditionally measured between pairs of
training observations, counts in-bag cohabitation as well as out-of-bag cohabitation, and is
normalized by the number of trees in the forest (Liaw and Wiener, 2002; Breiman, 2002).
By contrast, vi(x) is measured between the training observations and a test point of interest,
counts only out-of-bag cohabitation, and is normalized to sum to one.

One minor caveat for the analogy between out-of-bag training observations and test
observations is that fewer trees are used to generate out-of-bag predictions. In this respect,
the out-of-bag errors more closely resemble test errors from a fraction of the random forest’s
trees, chosen randomly. However, as the following proposition shows, the distribution of
prediction errors E∗ from a non-zero fraction of the B trees in a random forest becomes
arbitrarily similar to the distribution of prediction errors E from the full random forest as
B increases. The proof is provided in Appendix B.

Proposition 1. For every x ∈ X ,

lim
B→∞

sup
e∈R
|FE∗(e | x)− FE(e | x)| = 0.

Other issues, primarily concerning the dependence relations induced by the construction
of the random forest and F̂E (e | x), prevent us from proving that F̂E(e | x) is consistent.
These issues, which touch on recent areas of research, are discussed further in Section 6,
where we prove uniform consistency of a similar but more stringently constructed estimator
of FE(e | x) (Theorem 1). However, we believe, based on simulations presented in Section
5 and Appendix A.2, that these issues are minor in practice and that F̂E(e | x) as defined
in this section empirically performs as well as our more stringently constructed estimator.

6



Random Forest Prediction Error Estimation

4.2 Extensions

Estimators for conditional mean squared prediction errors, conditional biases, and condi-
tional prediction intervals follow immediately by plugging in F̂E(e | x). We describe each
in turn.

Conditional Mean Squared Prediction Error

We propose a plug-in estimator for the conditional mean squared prediction error MSPE(x)
that averages the squared out-of-bag prediction errors over F̂E(e | x):

M̂SPE(x) :=

∫
e2f̂E(e | x) de =

n∑
i=1

vi(x)
(
Yi − ϕ̂(i)(Xi)

)2
.

To our knowledge, no other method of estimating MSPE(x) has been proposed. Current
implementations of random forests, such as the R package randomForest (Liaw and Wiener,
2002), instead generally estimate MSPE by the unweighted average of the squared out-of-bag

prediction errors; we denote this estimator by M̂SPE. While MSPE can be an informative
summary of the predictive performance of the random forest overall, MSPE(x) is usually
more appropriate for assessing the reliability of any individual prediction.

Figure 1 illustrates this distinction between unconditional and conditional mean squared
prediction error. To create this figure, we repeatedly drew 1,000 training observations

X
i.i.d.∼ Unif[−1, 1]10 with response Y

ind.∼ N
(
10 · 1(X1 > 0), (1 + 2 · 1(X1 > 0))2

)
. Note

that, throughout this paper, we drop the subscript i when discussing simulations for nota-
tional simplicity. For each draw, we fit a random forest to the training observations and
predicted 500 test observations whose covariate values were fixed across the simulation rep-
etitions but whose response values were randomly sampled from the same distribution as
the training data. Figure 1 plots the average M̂SPE, the average M̂SPE(x) of each test
point, and the actual MSPE(x) of each test point against X1. As expected, MSPE(x) is

larger for test observations with X1 > 0. Our estimator M̂SPE(x) reflects this difference

in prediction uncertainty, whereas M̂SPE, while descriptive of global prediction error, does
not accurately assess the error one would expect from any individual prediction.

Conditional Bias

Our proposed plug-in estimator for the conditional bias is the average of the out-of-bag
prediction errors over F̂E(e | x):

B̂ias(x) := −
∫
ef̂E(e | x) de =

n∑
i=1

vi(x)
(
ϕ̂(i)(Xi)− Yi

)
.

Thus, our bias-corrected random forest prediction at x is given by

ϕ̂BC(x) := ϕ̂(x)− B̂ias(x).

We compare the empirical performance of ϕ̂BC(x) to that of the boosting method investi-
gated by Zhang and Lu (2012) and Ghosal and Hooker (2020) in Section 5.1.
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Figure 1: Comparison of M̂SPE and M̂SPE(x) behavior. The data were simulated as X
i.i.d.∼

Unif[−1, 1]10 and Y
ind.∼ N

(
10 · 1 (X1 > 0) , (1 + 2 · 1(X1 > 0))2

)
.

Conditional Prediction Intervals and Response Quantiles

For a given type-I error rate α ∈ (0, 1), a conditional α-level prediction interval PIα(x) for
the response at x satisfies the inequality

Pr (Y ∈ PIα(X) | X = x) ≥ 1− α.

We propose estimating a conditional prediction interval PIα(x) by adding the α/2 and
1− α/2 quantiles of F̂E(e | x) to the random forest prediction at x:

P̂Iα(x) :=
[
ϕ̂(x) + Q̂

α/2
E (x), ϕ̂(x) + Q̂

1−α/2
E (x)

]
,

where Q̂αE(x) := inf{e : F̂E(e | x) ≥ α}. The bounds of P̂Iα(x) correspond to plug-in
estimates of the α/2 and 1 − α/2 quantiles of the conditional response distribution at
x. So, more generally, we propose estimating the α-quantile of the conditional response
distribution

QαY (x) := inf{y : FY (y | x) ≥ α}

by the plug-in estimator
Q̂αY (x) := ϕ̂(x) + Q̂αE(x).

We compare the empirical performance of P̂Iα(x) to the performance of prediction intervals
obtained by other recently proposed methods in Section 5.2.

Conditional Misclassification Rate for Categorical Outcomes

While this paper focuses on settings in which the response is continuous, our framework
extends to random forest classification of categorical outcomes as well. In this setting, one
common measure of predictive accuracy is the misclassification rate MCR := Pr(ϕ̂(X) 6=
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Y ). This is commonly estimated by the unweighted out-of-bag misclassification rate of the
training sample:

M̂CR :=
1

n

n∑
i=1

1(ϕ̂(i)(Xi) 6= Yi)

(Breiman, 2001). By analogy to our earlier discussion of MSPE(x), the conditional misclas-
sification rate MCR(x) := Pr(ϕ̂(X) 6= Y | X = x) is often a more informative metric, but,
to our knowledge, no estimator for it has been introduced in the literature. We propose
estimating MCR(x) by

M̂CR(x) :=
n∑
i=1

vi(x)1(ϕ̂(i)(Xi) 6= Yi).

However, a detailed examination of this estimator is beyond the scope of this paper.

5. Simulation Studies

In this section, we empirically compare our proposed bias correction and prediction intervals
to existing methods reviewed in Section 2 across a variety of synthetic and benchmark
datasets. Except where otherwise specified, we applied our methods to forests grown using
the CART algorithm as implemented by the randomForest package in R. Implementation
details and additional results are in Appendix A. As noted previously, we omit the subscript
i when discussing simulations for notational simplicity.

5.1 Conditional Bias Estimation

We compare our bias-corrected random forest ϕ̂BC(x) to the bias-corrected random forest
obtained by the boosting approach examined by Zhang and Lu (2012), who refer to it as
“BC3,” and Ghosal and Hooker (2020). One metric for comparison is the mean squared
bias,

MSB := E
[
Bias(X)2

]
,

where the outer expectation is taken over the distribution of covariates. A lower value
of MSB indicates a lower level of bias overall. Since correcting the bias of a prediction
may increase the prediction variance, a second metric for comparison is the mean squared
prediction error MSPE, which measures overall predictive accuracy accounting for both bias
and variance.

We tested each method on five synthetic datasets in which the conditional means are

known by design. In each dataset, the covariates were sampled as X
i.i.d.∼ Unif[0, 1]10. The

responses were sampled as follows.

Baseline: Y
i.i.d.∼ N (0, 1).

Linear: Y
ind.∼ N (X1, 1).

Step: Y
ind.∼ N (10 · 1(X1 > 1/2), 1).

Exponential: Y = exp{X1ε}, where ε
i.i.d.∼ N (0, 1).

9



Lu and Hardin

MSB MSPE

Dataset RF Boost ϕ̂BC(x) RF Boost ϕ̂BC(x)
Baseline 0.000 0.000 0.000 1.063 1.170 1.085
Linear 0.008 0.002 0.003 1.074 1.172 1.095
Step 0.814 0.179 0.222 2.014 1.508 1.457

Exponential 0.021 0.031 0.009 0.997 1.124 1.002
Friedman 5.143 1.862 2.765 7.018 3.958 4.927
Boston - - - 8.001 8.259 6.973
Abalone - - - 4.794 5.031 4.831

Servo - - - 26.494 11.779 17.601

Table 1: Mean squared bias and mean squared prediction error of the uncorrected random
forest, the bias-corrected random forest based on boosting, and our bias-corrected
random forest ϕ̂BC(x) for each dataset.

Friedman: Y
ind.∼ N

(
10 sin(πX1X2) + 20 (X3 − 1/2)2 + 10X4 + 5X5, 1

)
(Friedman, 1991).

In each repetition of the synthetic-dataset simulations, we drew 200 training units, as Zhang
and Lu (2012) do in their simulations, and 2,000 test units. We fit an uncorrected random
forest and each bias-corrected random forest to the training set, and then predicted the
responses of the sampled test units using each estimator. We then averaged the squared
prediction errors. Doing this repeatedly allowed us to estimate MSPE. In each repetition, we
also predicted the responses of a held-out set of 2,000 units whose covariate values were fixed
over all repetitions. Averaging these predictions over the repetitions enabled us to estimate
the mean prediction of the uncorrected random forest and each bias-corrected random forest
at each of the fixed 2,000 points; we then combined this with the true conditional mean at
each point, which we knew by design, to estimate MSB. We ran 1,000 repetitions for each
synthetic dataset. We also assessed the MSPE of each estimator on the Boston Housing,
Abalone, and Servo benchmark datasets via the above procedure, using the same train-test
ratios as the simulations in Zhang and Lu (2012). These datasets were obtained through
the UCI Machine Learning Repository and the MASS and mlbench R packages (Dua and
Graff, 2019; Leisch and Dimitriadou, 2010; Venables and Ripley, 2002).

Table 1 reports the results, and Figure 2 plots the conditional bias of each method
against the signaling covariate(s). Overall, our bias-corrected estimator ϕ̂BC(x) appears to
be more conservative but also more robust than the boosting approach. With respect to
both MSB and MSPE, our bias correction generally improved upon but, at a minimum,
did not much worse than the uncorrected random forest. By comparison, the boosting
approach sometimes improved bias more than ϕ̂BC(x) did, but in other instances it had
worse bias than even the uncorrected random forest. Moreover, it sometimes reduced bias
at the expense of greater variance less efficiently than ϕ̂BC(x), as reflected in the MSPE.

The greater robustness of ϕ̂BC(x) is even more apparent in noisier settings. For example,
we ran a modified version of the synthetic-dataset simulations where we set the variance of
the response variable in the Baseline, Linear, Step, and Friedman data-generating processes
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Figure 2: Conditional biases of ϕ̂BC(x), the bias-corrected random forest based on boost-
ing, and the uncorrected random forest for the Step, Exponential, Linear, and
Friedman datasets (clockwise from top left) over 1,000 simulation repetitions.

to 100 and the variance of the noise term in the Exponential data-generating process to
4. Table 2 reports the results. Notably, the performance of ϕ̂BC(x) does not deteriorate
as sharply as the performance of the boosting approach in these noisier settings. The
MSB of ϕ̂BC(x) is lower than or equal to the MSB of the boosting estimator in all but
the Friedman dataset. Additionally, the MSPE of ϕ̂BC(x) is lower than the MSPE of the
boosting estimator in every dataset, including the Friedman dataset.

5.2 Conditional Prediction Interval Estimation

Next, we compare our prediction interval estimator P̂Iα(x) to the estimators obtained by
quantile regression forests (Meinshausen, 2006), generalized random forests (Athey et al.,
2019), conformal inference (Lei and Wasserman, 2014; Lei et al., 2018; Johansson et al.,
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MSB MSPE

Dataset (Noised) RF Boost ϕ̂BC(x) RF Boost ϕ̂BC(x)
Baseline 0.008 0.019 0.009 106.536 117.180 108.761
Linear 0.018 0.019 0.016 106.505 117.059 108.686
Step 2.166 1.295 0.985 109.035 118.516 110.748

Exponential 1.291 1.617 0.522 165.438 191.892 168.375
Friedman 5.142 2.081 3.441 112.206 119.532 113.898

Table 2: Mean squared bias and mean squared prediction error of the standard random
forest, the bias-corrected random forest based on boosting, and our bias-corrected
random forest ϕ̂BC(x) for each noised synthetic dataset.

2014), and the unweighted out-of-bag approach of Zhang et al. (2019). For the conformal
inference estimator, we specifically used the locally weighted split conformal inference pro-
cedure proposed by Lei et al. (2018), which is a special case of the split conformal inference
approach that attempts to account for residual heterogeneity across the covariate space by
using standardized residuals for the conformity scores. Via simulation, we evaluate these
methods with respect to three metrics: coverage rate, interval width, and qualitative behav-
ior. In each simulation, we randomly sampled 1,000 training units and 1,000 test units, and
applied each method to construct 95% prediction intervals for the test units. We repeated
this procedure 1,000 times for each of the following datasets.

Linear: X
i.i.d.∼ Unif[−1, 1]50, and Y

ind.∼ N (X1, 4).

Clustered: X ∈ [0, 1]10 is drawn i.i.d. from a population consisting of five distinct,
roughly equally sized clusters, with no overlap between clusters. Y is independently
drawn from a normal distribution with mean and variance determined by the clus-
ter to which X belongs. The response means and variances within the clusters are
{(0, 1), (40, 4), (80, 9), (120, 16), (160, 25)}. See Maitra and Melnykov (2010) for de-
tails. The data were generated using the MixSim package (Melnykov et al., 2012).

Step: With probability 0.05, X
i.i.d.∼ Unif

(
[−1, 0]× [−1, 1]9

)
; else, X

i.i.d.∼ Unif
(
[0, 1]× [−1, 1]9

)
.

Y
ind.∼ N (20 · 1(X1 > 0), 4).

Friedman: X
i.i.d.∼ Unif[−1, 1]10, and Y

ind.∼ N
(

10 sin(πX1X2) + 20 (X3 − 1/2)2 + 10X4 + 5X5, 1
)

.

Parabola: With probability 0.05, X
i.i.d.∼ Unif

(
[−1,−1/3]× [−1, 1]39

)
; with probability

0.9, X
i.i.d.∼ Unif

(
[−1/3, 1/3]× [−1, 1]39

)
; and with probability 0.05, X

i.i.d.∼ Unif
(
[1/3, 1]× [−1, 1]39

)
.

Y
ind.∼ N

(
0, X4

1

)
.

2D: X
i.i.d.∼ Unif[−1, 1]50, and Y

ind.∼ N
(
5X1, 4(X2 + 2)2

)
.

In addition to conducting simulations on the above synthetic datasets, we also randomly
partitioned each of the Boston, Abalone, and Servo benchmark datasets into training and
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Dataset QRF GRF Split OOB P̂Iα(x)
Linear 0.949 (8.04) 0.952 (8.11) 0.950 (8.32) 0.949 (7.92) 0.948 (7.95)

Clustered 0.930 (15.15) 0.966 (41.27) 0.950 (15.72) 0.949 (15.83) 0.945 (13.94)
Step 0.944 (9.15) 0.962 (12.10) 0.951 (9.17) 0.949 (8.28) 0.945 (8.17)

Friedman 0.992 (36.27) 0.991 (45.50) 0.950 (22.19) 0.949 (23.34) 0.969 (22.01)
Parabola 0.960 (0.82) 0.960 (0.84) 0.951 (0.79) 0.949 (0.84) 0.967 (0.83)

2D 0.957 (18.07) 0.962 (18.87) 0.951 (16.99) 0.948 (17.22) 0.951 (17.25)
Boston 0.981 (15.57) 0.994 (23.92) 0.951 (13.21) 0.946 (12.64) 0.947 (11.16)
Abalone 0.969 (7.95) 0.982 (9.21) 0.950 (8.39) 0.950 (9.11) 0.949 (8.17)

Servo 0.951 (24.42) 0.985 (37.29) 0.961 (27.33) 0.943 (21.13) 0.946 (18.85)

Table 3: Average coverage rates and widths of 95% prediction intervals constructed by
quantile regression forests, generalized random forests, split conformal inference,
the unweighted out-of-bag method, and P̂Iα(x).

test sets using the same train-test ratios as in Section 5.1 and estimated prediction intervals
for the test points. We repeated this 1,000 times for each of the three benchmark datasets.

Table 3 shows the average coverage rate of each method in each simulation, with average
interval widths shown in parentheses. Overall, all five methods performed fairly well with
respect to these two metrics. However, it is notable that generalized random forest inter-
vals were the widest and tended to heavily over-cover in nearly every dataset; they were
particularly wide in the Clustered dataset. While our P̂Iα(x) intervals also over-covered
in the Freidman and Parabola datasets, they were mostly no wider than other methods’
intervals that covered at the desired 95% rate. For example, our method produced narrower
intervals than conformal inference and the unweighted out-of-bag approach in the Friedman
dataset despite having a higher coverage rate. Additionally, our method produced narrower
intervals than the unweighted out-of-bag method despite having a higher coverage rate in
almost half the datasets. Finally, quantile regression forests noticeably under-covered in the
Clustered dataset even though the intervals were wider than P̂Iα(x) on average.

Table 3, however, reports only unconditional coverage rates and interval widths, com-
puted over the entire test sample. Although these unconditional metrics are important,
researchers in practice often seek prediction intervals with good coverage rates and widths
conditionally—that is, given a specific test observation of interest. To better evaluate how
each method performs conditionally, we plot in Figure 3 the average estimated conditional
response quantiles against the true conditional quantiles for the Linear, Clustered, Step,
and Parabola datasets. Overall, P̂Iα(x) captured the nuances in the structure of the data

better than the other estimators. In all four datasets, P̂Iα(x) best tracked the changes in the

conditional quantiles across the covariate space. Only P̂Iα(x) correctly estimated the upper
quantile when X1 < 0 in the Step dataset. Moreover, generalized random forests did not
capture the strong curvature of the quantiles in the Parabola dataset, quantile regression
forests and generalized random forests produced erratic intervals in the Clustered dataset,
and the out-of-bag approach of Zhang et al. (2019) failed to reflect any heterogeneity in the
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Figure 3: Average upper and lower bounds of 95% prediction intervals constructed by our
method P̂Iα(x), generalized random forests, quantile regression forests, split con-
formal inference, and the unweighted out-of-bag method for the Linear, Step,
Parabola, and Clustered datasets (clockwise from top left) over 1,000 simulation
repetitions. The true target conditional response quantiles are shown in black.

Parabola and Clustered datasets. Additionally, while all methods performed fairly well in
the Linear dataset, ours exhibited the least bias at the boundaries of the covariate space.

We believe that at least some of the undesirable behaviors exhibited by generalized
random forests and quantile regression forests in these simulations can be attributed to
the methods’ use of response quantiles instead of out-of-bag prediction error quantiles.
For example, the quantile regression variant of generalized random forests partitions the
covariate space based on the empirical quantiles of the training responses, so it is less able to
detect changes in the conditional response quantiles in low-density regions of the covariate
space. This can be seen in the Step and Parabola datasets. Perhaps more importantly,
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after their trees are grown, both generalized random forests and quantile regression forests
use training responses directly to impute the conditional response distribution, so their
prediction intervals are more sensitive to sharp discontinuities in the conditional response
distribution that are not accurately delineated by their tree-growing algorithms. This can
be seen in the Step and Clustered datasets.

Unlike generalized random forests and quantile regression forests, conformal inference
and the out-of-bag approach of Zhang et al. (2019) do use prediction error quantiles to
construct prediction intervals. But neither method weights these quantiles based on the
training observations’ similarity to the test observation. Conformal inference directly uses
the empirical distribution of conformity scores, weighting each score equally. Similarly, the
out-of-bag approach of Zhang et al. (2019) uses the unweighted quantiles of the out-of-bag
errors instead of weighting them based on cohabitation frequency or some other similarity
metric. Thus, by construction, the intervals of Zhang et al. (2019) have the same width for
all test observations and ignore any heterogeneity in the shape of the conditional response
distribution across the covariate space, as seen in the Clustered and Parabola datasets.

Our method of prediction interval estimation avoids both of these pitfalls. Rather than
using response quantiles, as quantile regression forests and generalized random forests do,
our method uses out-of-bag prediction error quantiles, thus more fully leveraging the pre-
dictive power of the random forest. Additionally, our method weights the errors by how
closely the training units resemble the test point of interest, unlike conformal inference and
the out-of-bag approach of Zhang et al. (2019). Of course, this is not to say that our method
is uniformly best. For example, although they may not estimate conditional response quan-
tiles as well or cover at the desired rate conditionally in some settings, conformal inference
prediction intervals are guaranteed to cover at the desired rate unconditionally even in finite
samples. Additionally, our method qualitatively performs as poorly as the others in the 2D
dataset, where the conditional response mean and variance depend on separate covariates
(Figure 4). This structure is challenging for many tree-based estimators, which usually split
based on heterogeneity in only one aspect of the conditional response distribution.

To illustrate the generality of our framework, we also applied our method to the gener-
alized random forest tree construction algorithm. Athey et al. (2019) show via simulation
that generalized random forests outperform quantile regression forests when the response
variance follows a step function but the mean response is constant. This is because quantile
regression forests grow trees using the CART algorithm, which is sensitive only to mean
shifts. Our method as applied in the simulations thus far has also employed the CART
algorithm and therefore has also inherited this limitation. But our method is well-defined
regardless of the underlying tree-growing algorithm. So we can easily apply our method
to the generalized random forest algorithm, with minor deviations detailed in Appendix

A.3, instead; we denote this adaptation by P̂I
GRF

α (x). Figure 5 replicates the simulation of
Athey et al. (2019) comparing quantile regression forests and generalized random forests.

P̂I
GRF

α (x), added in red, performs identically to generalized random forests in this setting.

More generally, we find that P̂I
GRF

α (x) estimates the conditional response quantiles as well
as or better than generalized random forests in all datasets used earlier. Full simulation
results are in Appendix A.3, but, as a notable example, a comparison between Figure 5 and

Figure 3 shows that P̂I
GRF

α (x) outperforms every other method in the Clustered dataset.
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6. Theoretical Result

In this section, we propose a similar but more stringent estimator of FE(e | x) and prove that
it is uniformly consistent. In addition to regularity assumptions on the tree construction
procedure that have become somewhat standard in recent literature, the most notable
difference between F̂E(e | x) as defined in (1) and the estimator discussed here is that the
latter uses two random forests fit on disjoint subsets of the training data. One random
forest produces weights, and the other produces out-of-sample prediction errors. We view
this broadly as a strengthening of the independence conditions that motivated the out-of-
bag construction of F̂E(e | x).

While we do not prove that our practical estimator F̂E(e | x) is uniformly consistent, we
nonetheless consider it noteworthy for two reasons. From an applied perspective, it is more
data-efficient than our stringent estimator and appears to perform just as well in general;
this can be seen in simulations implementing our stringent estimator in Appendix A.2. From
a theoretical perspective, the contrast between F̂E (e | x) and the estimator introduced in
this section highlights aspects of the dependence structure of random forests that we believe
merit further investigation. Future research into such topics may close the gap between the
two versions of our estimator and contribute more generally to a deeper understanding of
tree-based algorithms.

6.1 Stringent Estimator of the Conditional Prediction Error Distribution

The algorithm for computing our more stringent estimator of FE (e | x) is outlined below.
Note that, in what follows, we redefine some earlier notation rather than introduce new
symbols to reduce notational complexity. An effort has been made to be explicit whenever
notation is redefined.

1. Partition the training data evenly into three subsets, arbitrarily labeled I, J , and K.
Let n denote the sample size of each subset, as opposed to the sample size of the full
training set.

2. Grow one random forest with B trees using I. Label it the “first random forest.”

3. Grow one random forest with B trees using J and the covariates in K. In other words,
do not consider the responses of the units in K when splitting tree nodes. Label this
random forest the “second random forest.”

4. Compute the errors of the first random forest’s predictions of the n units in K:

Ei := Yi − ϕ̂(Xi),

where ϕ̂ denotes the first random forest estimator.

5. For a target x, compute the weight of each of the n units in K given by the second
random forest:

vi(x) :=
1

B

B∑
b=1

#{Zi ∈ D∗n,b}1(Xi ∈ R`(x,θb))∑n
j=1 #{Zj ∈ D∗n,b}1(Xj ∈ R`(x,θb))

, (2)
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where D∗n,b denotes the bootstrap set of units from K whose covariates were used in

the construction of the bth tree of the second random forest, and R`(x,θb) denotes the

rectangular subspace corresponding to the terminal node of the bth tree of the second
random forest in which x falls. Recall that vi(x) is a random variable based in part
on Xi, hence the subscript i.

6. Letting F̂E(e | x) now denote our stringent estimator rather than the estimator given
by (1) in Section 4, define

F̂E(e | x) :=
n∑
i=1

vi(x)1(Ei ≤ e). (3)

Step 3 of our procedure is similar to the honest double-sample regression tree algorithm of
Wager and Athey (2018), but here the training data are split into subsets before resampling
or subsampling. One way to grow the second random forest is to use the covariates in J
and K to determine the set of eligible splits, then choose the eligible split that optimizes
some empirical objective of the responses in J only. Another approach is to grow trees
using only data from J , then prune terminal nodes that do not contain any units from K.

6.2 Consistency

Because the number of trees can be made arbitrarily large given enough computational
power, we take the approach of Scornet et al. (2015) and prove that the limiting version (as
B → ∞) of F̂E(e | x) given by (3) is consistent as n → ∞. This is justified by the law of
large numbers. We do so under the following set of assumptions, many of which are from
Meinshausen (2006). First, we make an assumption about the covariate distribution.

Assumption 1. X has the uniform distribution over [0, 1]p.

Assumption 1 is largely for notational convenience. More generally, one could assume that
the density of X is positive and bounded.

We also make a set of assumptions about the way the observations in K are used in the
construction of the second random forest. For any generic tree in the second random forest
grown with parameter vector θ, let kθ(`) :=

∣∣{Zi ∈ D∗n : Xi ∈ R`(x,θ)}
∣∣ denote the number

of units from its bootstrap sample D∗n of K in its terminal node containing x.

Assumption 2.

(a) The proportion of observations from D∗n in any given node, relative to all observations
from D∗n, is decreasing in n—that is, max`,θ kθ(`) = o(n). The minimum number of
observations from D∗n in a node is increasing in n—that is, 1/min`,θ kθ(`) = o(1).

(b) The probability that variable m ∈ {1, . . . , p} is chosen for a given split point is bounded
from below for every node by a positive constant.

(c) When a node is split, the proportion of observations belonging to D∗n in the original
node that fall into each of the resulting sub-nodes is bounded from below by a positive
constant.
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The conditions in Assumption 2 are adapted from assumptions used to prove consistency of
quantile regression forests (Meinshausen, 2006). Tree construction algorithms that satisfy
these properties or variants of them have been referred to in recent random forest literature
as “regular,” “balanced,” or “random-split” (Wager and Athey, 2018; Athey et al., 2019;
Friedberg et al., 2019).

Next, we assume that the distribution of prediction errors is sufficiently smooth.

Assumption 3. FE(e | X = x) is Lipschitz continuous with parameter L. That is, for all
x, x′ ∈ [0, 1]p,

sup
e∈R

∣∣FE(e | X = x)− FE(e | X = x′)
∣∣ ≤ L‖x− x′‖1.

As Wager and Athey (2018) note, all existing results on pointwise consistency of random
forests have required an analogous smoothness condition in the distribution of interest,
including Biau (2012), Meinshausen (2006), and Wager and Athey (2018).

Additionally, we assume that the distribution of prediction errors is strictly monotone
so that consistency of quantile estimates follows from consistency of distribution estimates.

Assumption 4. FE(e | X = x) is strictly monotone in e for all x ∈ [0, 1]p.

We also assume that the random forest is stable in the following sense.

Assumption 5. There exists a function ϕ(·) such that ϕ̂(X)− ϕ(X)
p→ 0 as n→∞, with

−∞ < ϕ(X) <∞ a.s.

It may help one’s intuition to imagine that ϕ(X) = E[Y | X], in which case Assumption
5 simply states that the random forest is consistent. But ϕ(X) need not be the condi-
tional mean response. Note also that Assumption 5 does not require stability as defined
by Bühlmann and Yu (2002), since here the convergence does not have to be pointwise.
Stability—and, in particular, consistency—of random forests is an ongoing area of research.
Scornet et al. (2015) prove consistency of the original random forest algorithm of Breiman
(2001) when the underlying data follow an additive regression model. Wager and Walther
(2016) prove consistency of adaptively grown random forests, including forests built using
CART-like algorithms, in high-dimensional settings.

Finally, we make an assumption about the behavior of the weights given by the second
random forest relative to the predictions of the first random forest. For any δ > 0, define
the eventMi(δ) := {|ϕ̂(Xi)− ϕ(Xi)| < δ}. We say that δ-stability of the ith unit has been
realized if and only if Mi(δ) holds.

Assumption 6. For all x ∈ [0, 1]p, there exists δ0 > 0 such that, for any δ ∈ (0, δ0),
E[vi(x) | Mi(δ)] = O(n−1) and E[vi(x) | ¬Mi(δ)] = O(n−1).

Assumption 6 further characterizes the stability of the random forest and the underlying
population distribution. It states that the expected out-of-bag weight of the ith observa-
tion in K—which, recall from its definition in (2), is a random variable in Xi and other
quantities—is of order 1/n whether δ-stability has been realized for the observation or not.
The expected values are taken over all training units and all random parameters governing
the sample-splitting and tree-growing mechanisms. Notice that Assumption 6 is satisfied
if E [vi(x) | Mi(δ)] > E [vi(x) | ¬Mi(δ)] and Assumption 5 holds since the weights must
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be nonnegative and E[vi(x)] = 1/n. Note also that the bounding constant can vary by
δ ∈ (0, δ0).

Under these assumptions, we prove in Appendix B that F̂E(e | x) is a uniformly consis-
tent estimator for the true conditional prediction error distribution FE(e | x).

Theorem 1. Under Assumptions 1-6,

sup
e∈R

∣∣∣F̂E(e | x)− FE(e | x)
∣∣∣ p→ 0, n→∞

pointwise for every x ∈ [0, 1]p.

7. Conclusion

We propose a unified framework for random forest prediction error estimation based on
a novel estimator for the conditional prediction error distribution. Under this framework,
useful uncertainty metrics can be estimated by simply plugging in the estimated condi-
tional prediction error distribution. By contrast, these quantities previously each had to be
estimated by different, and in some cases not obviously compatible, algorithms. We demon-
strate the unified nature of our approach by deriving, to our knowledge, the first estimator
for the conditional mean squared prediction error of random forests, as well as estimators
for conditional bias and conditional prediction intervals that are competitive with, and in
some cases outperform, existing methods.

We believe that one advantage of our framework is its generality. While this paper
discusses our work primarily in the context of CART, our estimators can be readily adapted
to other bagged, tree-based estimators with different splitting criteria and subsampling rules,
as demonstrated by the adaptation of our method to generalized random forests in Section
5.2. The weighting scheme we propose can also be naturally tailored to specific needs. For
example, the weights can be modified to count cohabitation in non-terminal nodes if more
stability is needed. More broadly, we believe that our general approach of weighting out-
of-sample prediction errors by their similarity to the test point of interest with respect to
the estimator is applicable to a wide range of estimators with suitably defined metrics for
similarity, even those not based on decision trees. While beyond the scope of this paper,
future work into such extensions may prove fruitful.
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Appendix A. Simulation Details and Additional Results

A.1 Parameter Settings of Main Results

We ran all bias and prediction interval simulations except our replication of the Athey et al.
(2019) prediction interval simulation (Figure 5, left panel) with the following parameters.
Each forest consisted of 1,000 trees. The minimum node size parameter for all forests was
set to 5. We set the number of covariates randomly sampled as candidates at each split to
max{bp/3c , 1}, where p is the number of covariates. We used the default sample-splitting
regime for generalized random forests given in the grf package in R: Half of the training data
were used to build each tree, with half of those units held out for honest tree growth. For
our replication of the Athey et al. (2019) simulation, we used the same parameter settings
as above except we set the number of covariates randomly sampled as candidates at each
split to min{

⌈√
p+ 20

⌉
, p}, following Athey et al. (2019).

A.2 Stringent Estimator Implementation Details and Results

We implemented and evaluated the performance of the stringent versions of our bias and
prediction interval estimators as described in Section 6.1, with two slight modifications. In
the third step of our procedure, we did not use any data from K to construct the second
random forest. Because of this, we could not guarantee that each terminal node of the
second random forest contained a unit from K, so we computed vi(x) in the fifth step of
our procedure by counting the number of times the ith unit in K was a cohabitant of x and
dividing by the total number of times any unit in K was a cohabitant of x:

vi(x) =

∑B
b=1 1

(
Xi ∈ R`(x,θb)

)∑n
j=1

∑B
b=1 1

(
Xj ∈ R`(x,θb)

) .
We believe that these deviations are minor and that this implementation reflects the major
features that differentiate the stringent version of our estimator from the practical version,
particularly the independence relations enforced by growing two random forests on disjoint
subsets of data. Because our stringent estimator splits the training set into three subsets,
which we expected would reduce efficiency, we evaluated our stringent estimator on the
synthetic datasets using both the original training sample sizes (200 for the bias simulations
and 1,000 for the prediction interval simulations) and triple the original training sample
sizes; we were, of course, unable to similarly augment the benchmark datasets.

Table 4 shows the MSB and MSPE of our stringent version of ϕ̂BC(x), and Figure 6
plots the conditional biases of our stringent version of ϕ̂BC(x) against the signaling covari-
ate(s). Additionally, Table 5 shows the coverage rates and widths of our stringent version

of P̂Iα(x), and Figure 7 plots the average conditional response quantiles estimated by our

stringent version of P̂Iα(x) against the true conditional response quantiles for the Linear,
Step, Clustered, and Parabola datasets. As expected, our stringent estimator is less data-
efficient than our practical estimator due to the sample-splitting, but it behaves similarly to
our practical estimator overall. In particular, when given more training units, our stringent
estimator performs nearly identically to our practical estimator.
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Figure 6: Conditional biases of our stringent version of ϕ̂BC(x) for the Step, Exponential,
Linear, and Friedman datasets (clockwise from top left) over 1,000 simulation
repetitions using training sets of 200 units and training sets of 600 units.
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Figure 7: Average upper and lower bounds of 95% prediction intervals constructed by our
stringent version of P̂Iα(x) for the Linear, Step, Parabola, and Clustered datasets
(clockwise from top left) over 1,000 simulation repetitions using training sets of
1,000 units and training sets of 3,000 units. The true target conditional response
quantiles are shown in black.
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MSB MSPE

Dataset ϕ̂BC(x) Original ϕ̂BC(x) Rich ϕ̂BC(x) Original ϕ̂BC(x) Rich
Baseline 0.000 0.000 1.088 1.057
Linear 0.010 0.002 1.099 1.062
Step 0.702 0.227 2.154 1.402

Exponential 0.013 0.011 1.013 0.982
Friedman 5.040 2.711 7.327 4.446
Boston - - 11.178 -
Abalone - - 4.844 -

Servo - - 24.407 -

Table 4: Mean squared bias and mean squared prediction error of our stringent version
of ϕ̂BC(x) for each dataset using both the original training set size and, when
possible, a richer training set with three times as many units.

Dataset P̂Iα(x) Original P̂Iα(x) Rich
Linear 0.946 (7.97) 0.948 (7.92)

Clustered 0.930 (16.57) 0.942 (13.87)
Step 0.946 (8.75) 0.945 (8.15)

Friedman 0.964 (24.67) 0.968 (21.59)
Parabola 0.961 (0.86) 0.966 (0.83)

2D 0.947 (17.33) 0.951 (17.15)
Boston 0.935 (13.49) -
Abalone 0.940 (8.25) -

Servo 0.906 (22.77) -

Table 5: Average coverage rates and widths of 95% prediction intervals constructed by our
stringent version of P̂Iα(x) using both the original training set size and, when
possible, a richer training set with three times as many units.

A.3 Implementation Details and Additional Results for P̂I
GRF

α (x)

As discussed in Section 5.2, we also adapted our method of prediction interval estimation
to the quantile regression variant of generalized random forests, with minor changes. In
particular, we fit a generalized random forest to the training set using the parameters
identified in Appendix A.1. We then computed the out-of-bag prediction errors as the
difference between each training observation’s observed response and the generalized random
forest’s out-of-bag prediction of its median response. Next, for a given test observation with
covariates x, we computed the weight of each training observation by counting the number
of trees in which the training observation was both a cohabitant of x and part of the honest
subsample that was used to populate the tree’s nodes but not to determine its splits; we
normalized the weights to sum to one.
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Table 6 shows the average coverage rates and widths of our adaptation to generalized

random forests, which we denote by P̂I
GRF

α (x). We also reproduced the corresponding re-
sults for generalized random forests from Table 3 for ease of comparison. Figure 8 plots

the average conditional response quantiles estimated by P̂I
GRF

α (x) against the true condi-
tional response quantiles for the Linear, Step, Clustered, and Parabola datasets. Again,
we also reproduced the corresponding results for generalized random forests from Figure 3

for ease of comparison. Notably, P̂I
GRF

α (x) generally produced better-calibrated prediction

intervals, with coverage rates closer to the desired 95% rate. Additionally, P̂I
GRF

α (x) gener-
ally produced conditional quantile estimates that qualitatively behaved more like the true
conditional quantiles across the covariate space.

Dataset P̂I
GRF

α (x) GRF
Linear 0.950 (7.97) 0.952 (8.11)

Clustered 0.947 (11.94) 0.966 (41.27)
Step 0.951 (8.82) 0.962 (12.10)

Friedman 0.979 (25.66) 0.991 (45.50)
Parabola 0.960 (0.84) 0.960 (0.84)

2D 0.952 (17.34) 0.962 (18.87)
Boston 0.965 (15.54) 0.994 (23.92)
Abalone 0.975 (8.49) 0.982 (9.21)

Servo 0.968 (24.43) 0.985 (37.29)

Table 6: Average coverage rates and widths of 95% prediction intervals constructed by

P̂I
GRF

α (x). The average coverage rates and widths of 95% prediction intervals
constructed by generalized random forests are reproduced from Table 3 for ease of
comparison.
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Figure 8: Average upper and lower bounds of 95% prediction intervals constructed by

P̂I
GRF

α (x) for the Linear, Step, Parabola, and Clustered datasets (clockwise from
top left) over 1,000 simulation repetitions. The true target conditional response
quantiles are shown in black. The average upper and lower bounds of 95% pre-
diction intervals constructed by generalized random forests are reproduced from
Figure 3 for ease of comparison.
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Appendix B. Proofs of Proposition 1 and Theorem 1

Proof of Proposition 1 Fix x ∈ X . Since θ1, . . . , θB are i.i.d. and independent of Dn,
the weak law of large numbers implies that, conditionally on Dn,

1

B

B∑
b=1

n∑
j=1

wj(x, θb)Yj
p→ µ := E

 n∑
j=1

wj(x, θ)Yj | Dn

 , B →∞,

where the expectation is taken over θ. Then, by Slutsky’s Theorem, E | x d→ µ − Y | x.

An analogous argument implies that E∗ | x d→ µ − Y | x as well. Recall that (pointwise)
convergence in distribution implies uniform convergence for continuous cumulative distri-
bution functions. Since FY (· | x) is continuous by assumption, Fµ−Y (· | x) is continuous as
well. Therefore,

lim
B→∞

sup
e∈R
|FE∗(e | x)− FE(e | x)|

= lim
B→∞

sup
e∈R
|(FE∗(e | x)− Fµ−Y (e | x)) + (FE(e | x)− Fµ−Y (e | x))|

≤ lim
B→∞

sup
e∈R
|FE∗(e | x)− Fµ−Y (e | x)|+ |FE(e | x)− Fµ−Y (e | x)|

≤ lim
B→∞

sup
e∈R
|FE∗(e | x)− Fµ−Y (e | x)|+ lim

B→∞
sup
e∈R
|FE(e | x)− Fµ−Y (e | x)|

= 0,

which completes the proof.

Before proving Theorem 1, we establish additional notation. First, let Ωv denote the set
of observations—J ∪ K—and parameters that fully define the second random forest (Step
3 of Section 6.1). Second, let Mn denote the maximum possible value of vi(x), which is
decreasing in n by Assumption 2. Finally, for any δ > 0, let γn := Pr(¬Mi(δ)) denote the
probability that δ-stability is not realized for the first random forest’s prediction of the ith

training unit in K, which is decreasing in n by Assumption 5.

Proof of Theorem 1 Fix x ∈ [0, 1]p. Let the random variables Ui, i = 1, . . . , n, be defined
as the quantiles of Ei given Xi:

Ui := FE(Ei | Xi).

Notice that, since Ei follows the distribution of E | Xi, Ui ∼ Unif[0, 1]. Additionally,
Assumption 4 implies that the event {Ei ≤ e} is equivalent to the event {Ui ≤ FE(e | Xi)}.
Using this equivalence, we have

F̂E(e | x) =
n∑
i=1

vi(x)1(Ei ≤ e)

=

n∑
i=1

vi(x)1(Ui ≤ FE(e | Xi))

=
n∑
i=1

vi(x)1(Ui ≤ FE(e | x)) +
n∑
i=1

vi(x)
(
1(Ui ≤ FE(e | Xi))− 1(Ui ≤ FE(e | x))

)
,
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so
∣∣∣F̂E(e | x)− FE(e | x)

∣∣∣ is bounded above by

∣∣∣F̂E(e | x)− FE(e | x)
∣∣∣ ≤ ∣∣∣∣∣

n∑
i=1

vi(x)1(Ui ≤ FE(e | x))− FE(e | x)

∣∣∣∣∣︸ ︷︷ ︸
“variance term”

+

∣∣∣∣∣
n∑
i=1

vi(x)
(
1(Ui ≤ FE(e | Xi))− 1(Ui ≤ FE(e | x))

)∣∣∣∣∣︸ ︷︷ ︸
“shift term”

. (4)

As mentioned in Meinshausen (2006), the first term on the right side of (4) can be thought
of as a variance-type term, while the second term can be thought of as reflecting the shift
in the underlying error distribution across the covariate space. In the next two subsections,
we show that each term converges to zero in probability.

Bounding the Variance Term

Taking the supremum over e of the variance term yields

sup
e∈R

∣∣∣∣∣
n∑
i=1

vi(x)1(Ui ≤ FE(e | x))− FE(e | x)

∣∣∣∣∣ = sup
z∈[0,1]

∣∣∣∣∣
n∑
i=1

vi(x)1(Ui ≤ z)− z

∣∣∣∣∣ .
It suffices to prove that, for all z ∈ [0, 1],∣∣∣∣∣

n∑
i=1

vi(x)1(Ui ≤ z)− z

∣∣∣∣∣ = op(1). (5)

Since the forest used for the weights vi(x) is built on a separate subset of the training data
from the forest used for the predictions ϕ̂(Xi), and the prediction of the ith observation in
K does not depend on the other n−1 observations in K, conditioning on Xi yields sufficient
independence to evaluate the expectation of the weighted average inside (5):

E
n∑
i=1

vi(x)1(Ui ≤ z) =

n∑
i=1

E
[
E[vi(x)1(Ui ≤ z) | Xi]

]
=

n∑
i=1

E
[
E[vi(x) | Xi] Pr(Ui ≤ z | Xi)

]
= zE

n∑
i=1

vi(x)

= z. (6)

Moreover, since the variance of a summation is equal to the summation of the covariances,

Var

( n∑
i=1

vi(x)1(Ui ≤ z)
)

=
n∑
i=1

Var(vi(x)1(Ui ≤ z))

+
∑
i 6=j

Cov(vi(x)1(Ui ≤ z), vj(x)1(Uj ≤ z)),
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with each summation converging to zero by Lemmas 2 and 3.

Bounding the Shift Term

Next, we show that the shift term converges to zero in probability; again, it suffices to show
convergence for all e ∈ R. As an intermediate result, we first show that

n∑
i=1

vi(x)
(
1(Ui ≤ FE(e | Xi))−1(Ui ≤ FE(e | x))

) p→
n∑
i=1

vi(x)
(
FE(e | Xi)−FE(e | x)

)
. (7)

By the triangle inequality, the union bound, and (5), we can reduce the task of showing (7)
to simply showing that

n∑
i=1

vi(x)1(Ui ≤ FE(e | Xi))−
n∑
i=1

vi(x)FE(e | Xi)
p→ 0. (8)

We do so by showing that the left side of (8) has expectation zero and decreasing variance.
Since vi(x) and 1(Ui ≤ FE(e | Xi)) are independent conditional on Xi, and Pr(Ui ≤ FE(e |
Xi) | Xi) = FE(e | Xi), a direct application of the tower property conditioning on Xi yields
the identity

E [vi(x)1(Ui ≤ FE(e | Xi))] = E [vi(x)FE(e | Xi)] . (9)

Thus, (9) and the linearity of expectation implies that

E

[
n∑
i=1

vi(x)1(Ui ≤ FE(e | Xi))−
n∑
i=1

vi(x)FE(e | Xi)

]
= 0.

Next, we again decompose the variance of the summation into the sum of covariances:

Var

(
n∑
i=1

vi(x)1(Ui ≤ FE(e | Xi))−
n∑
i=1

vi(x)FE(e | Xi)

)

=
n∑
i=1

Var (vi(x) (1(Ui ≤ FE(e | Xi))− FE(e | Xi)))

+
∑
i 6=j

Cov
(
vi(x)

(
1(Ui ≤ FE(e | Xi))− FE(e | Xi)

)
,

vj(x)
(
1(Uj ≤ FE(e | Xj))− FE(e | Xj)

))
, (10)

with each summation converging to zero by Lemmas 4 and 5. With our intermediate
result (7) complete, we note that, by Lipschitz continuity of the conditional prediction error
distribution (Assumption 3), it only remains to be shown that

n∑
i=1

vi(x) ‖Xi − x‖1 = op(1). (11)

This follows from Lemma 2 of Meinshausen (2006). In particular, recall that

vi(x) = lim
B→∞

1

B

B∑
b=1

#{Zi ∈ D∗n,b}1(Xi ∈ R`(x,θb))∑n
j=1 #{Zj ∈ D∗n,b}1(Xj ∈ R`(x,θb))
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so showing (11) is equivalent to showing that

lim
B→∞

1

B

B∑
b=1

n∑
i=1

#{Zi ∈ D∗n,b}1(Xi ∈ R`(x,θb))∑n
j=1 #{Zj ∈ D∗n,b}1(Xj ∈ R`(x,θb))

‖Xi − x‖1
p→ 0.

Therefore, it suffices to show that, for a single tree,

n∑
i=1

#{Zi ∈ D∗n}1(Xi ∈ R`(x,θ))∑n
j=1 #{Zj ∈ D∗n}1(Xj ∈ R`(x,θ))

‖Xi − x‖1
p→ 0.

Following the argument in the proof of Theorem 1 of Meinshausen (2006), we can decom-
pose the rectangular subspace R`(x,θ) ⊆ [0, 1]p of leaf `(x, θ) of the tree into the intervals
I(x,m, θ) ⊆ [0, 1] for m = 1, . . . , p:

R`(x,θ) = ⊗pm=1I(x,m, θ).

Note that Xi /∈ I(x,m, θ) implies that 1(Xi ∈ R`(x,θ)) = 0. Thus, it suffices to show that
maxm |I(x,m, θ)| = op(1), which Lemma 2 of Meinshausen (2006) accomplishes.

Before stating and proving Lemmas 2-5, we establish Lemma 1 for use in Lemmas 3 and 5.

Lemma 1. Under Assumptions 1-6, we have the following asymptotic results for any δ ∈
(0, δ0):

γn

n∑
i=1

E [vi(x) | Mi(δ)]→ 0, n→∞;

γn

n∑
i=1

E [vi(x) | ¬Mi(δ)]→ 0, n→∞; and

n∑
i=1

E
[
vi(x)2 | Mi(δ)

]
→ 0, n→∞.

Proof of Lemma 1 Fix δ ∈ (0, δ0) and let ε > 0. Assumption 6 implies that there
exists a constant c > 0 and N1 ∈ N so that, for n ≥ N1, E [vi(x) | Mi(δ)] ≤ c/n and
E [vi(x) | ¬Mi(δ)] ≤ c/n. Fix that value of c. Since the random forest is stable by Assump-
tion 5, there exists N2 ∈ N so that, for n ≥ N2, γn < ε/c. Moreover, by Assumption 2, the
minimum number of observations in each node is growing, so the maximum possible weight
Mn given to any one unit is decreasing in n. Thus, there exists N3 ∈ N so that, for n ≥ N3,
Mn < ε/c. Therefore, for n ≥ max{N1, N2, N3},

γn

n∑
i=1

E [vi(x) | Mi(δ)] <
ε

c

n∑
i=1

c

n
= ε,

γn

n∑
i=1

E [vi(x) | ¬Mi(δ)] <
ε

c

n∑
i=1

c

n
= ε, and

n∑
i=1

E
[
vi(x)2 | Mi(δ)

]
≤Mn

n∑
i=1

E [vi(x) | Mi(δ)] <
ε

c

n∑
i=1

c

n
= ε.

This completes the proof.

30



Random Forest Prediction Error Estimation

Lemma 2. Under Assumptions 1-6,

n∑
i=1

Var(vi(x)1(Ui ≤ z))→ 0, n→∞.

Proof of Lemma 2 By the law of total variance,

n∑
i=1

Var(vi(x)1(Ui ≤ z))

=

n∑
i=1

Var(E[vi(x)1(Ui ≤ z) | Ωv \ {Yi}]) + E[Var(vi(x)1(Ui ≤ z) | Ωv \ {Yi})]

=

n∑
i=1

Var(vi(x) Pr(Ui ≤ z | Xi)) + E[vi(x)2Var(1(Ui ≤ z) | Xi)]

=

n∑
i=1

z2Var(vi(x)) + z(1− z)E[vi(x)2]

≤
n∑
i=1

Var(vi(x)) + E[vi(x)2]. (12)

Notice that
n∑
i=1

Var(vi(x)) ≤
n∑
i=1

E[vi(x)2] ≤MnE
n∑
i=1

vi(x) = Mn. (13)

Since the minimum number of observations in each node is growing by Assumption 2, the
maximum possible weight given to any observation is decreasing in n—that is, Mn → 0.
Thus, plugging the bound given by (13) into (12) yields the desired result:

lim
n→∞

n∑
i=1

Var(vi(x)1(Ui ≤ z)) ≤ lim
n→∞

2Mn = 0.

This completes the proof.

Lemma 3. Under Assumptions 1-6,∑
i 6=j

Cov(vi(x)1(Ui ≤ z), vj(x)1(Uj ≤ z))→ 0, n→∞.

Proof of Lemma 3 Since∑
i 6=j

Cov(vi(x)1(Ui ≤ z), vj(x)1(Uj ≤ z))

=
∑
i 6=j

E[vi(x)vj(x)1(Ui ≤ z)1(Uj ≤ z)]− E[vi(x)1(Ui ≤ z)]E[vj(x)1(Uj ≤ z)]

→
∑
i 6=j

E[vi(x)vj(x)1(Ui ≤ z)1(Uj ≤ z)]− z2,
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it suffices to show that

lim
n→∞

∣∣∣∣∣∣
∑
i 6=j

E[vi(x)vj(x)1(Ui ≤ z)1(Uj ≤ z)]− z2
∣∣∣∣∣∣ = 0.

Let ε > 0. By uniform continuity of the conditional response distribution, there exists
δ1 > 0 so that

|y1 − y2| < 2δ1 =⇒ |FY (y1 | x)− FY (y2 | x)| < ε/3. (14)

Fix δ < min {δ0, δ1}. Then, by Lemma 1, there exists N ∈ N so that, for n ≥ N , terms
identified in Lemma 1 that appear in this proof sum to at most ε/3; for concision, we note
these leftover terms where they appear and then cite Lemma 1 to drop them.

Independence of the Error Terms Conditional on Realized δ-Stability

We use the law of total expectation to condition on the realization of δ-stability of the
random forest prediction of the ith training observation, then apply the triangle inequality,
noting that leftover terms converge to zero by Lemma 1, to bound∣∣∣∣∣∣

∑
i 6=j

E[vi(x)vj(x)1(Ui ≤ z)1(Uj ≤ z)]− z2
∣∣∣∣∣∣

above by ∣∣∣∣∣∣
∑
i 6=j

E[vi(x)vj(x)1(Ui ≤ z)1(Uj ≤ z) | Mi(δ)]− z2
∣∣∣∣∣∣ , (15)

discounting leftover terms. Next, we use the realized δ-stability of the ith prediction to
achieve independence of the ith and jth error terms, then eliminate the jth error term.
Without loss of generality of whether the δ is added or subtracted, we can bound (15)
by substituting in the bound on ϕ̂(Xi) implied by Mi(δ), then use the tower property
conditioning on the jth covariate:∣∣∣∣∣∣

∑
i 6=j

E[vi(x)vj(x)1(Ui ≤ z)1(Uj ≤ z) | Mi(δ)]− z2
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
∑
i 6=j

E[vi(x)vj(x)1(ϕ(Xi)− δ − Yi ≤ F−1E (z | Xi))1(Uj ≤ z) | Mi(δ)]− z2
∣∣∣∣∣∣

=

∣∣∣∣∣∑
i 6=j

E[E[vi(x)vj(x)1(ϕ(Xi)− δ − Yi ≤ F−1E (z | Xi)) | Xj ,Mi(δ)]

· Pr(Uj ≤ z | Xj ,Mi(δ)) | Mi(δ)]− z2
∣∣∣∣∣. (16)
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We evaluate the conditional probability in (16) by exploiting the fact that δ-stability of the
ith prediction is independent of Xj , so Pr(Mi(δ) | Xj) = Pr(Mi(δ)) = 1− γn. This, along
with the law of total probability, the triangle inequality, and Assumption 5, implies that

|Pr(Uj ≤ z | Xj ,Mi(δ))− z| =
∣∣∣∣Pr(Uj ≤ z | Xj)− Pr(Uj ≤ z | Xj ,¬Mi(δ))γn

1− γn
− z
∣∣∣∣

≤ 2γn
1− γn

. (17)

Moreover, Lemma 1 implies that

2γn
1− γn

∑
i 6=j

E
[
vi(x)vj(x)1(ϕ(Xi)− δ − Yi ≤ F−1E (z | Xi)) | Mi(δ)

]
→ 0. (18)

We therefore substitute into (16) our upper bound on Pr(Uj ≤ z | Xj ,Mi(δ)) given by
(17) via the triangle inequality, then apply (18) to eliminate the leftover term, ultimately
bounding (16) above by

z

∣∣∣∣∣∣
∑
i 6=j

E[vi(x)vj(x)1(ϕ(Xi)− δ − Yi ≤ F−1E (z | Xi)) | Mi(δ)]− z

∣∣∣∣∣∣ , (19)

discounting leftover terms. Since z ≤ 1, we drop the z outside of the absolute value in (19).
Next, we eliminate vj(x) terms by applying the triangle inequality and Lemma 1 as follows:

∣∣∣∣∣∣
∑
i 6=j

E[vi(x)vj(x)1(ϕ(Xi)− δ − Yi ≤ F−1E (z | Xi)) | Mi(δ)]− z

∣∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

E
[
vi(x)(1− vi(x))1(ϕ(Xi)− δ − Yi ≤ F−1E (z | Xi)) | Mi(δ)

]
− z

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
i=1

E
[
vi(x)1(ϕ(Xi)− δ − Yi ≤ F−1E (z | Xi)) | Mi(δ)

]
− z

∣∣∣∣∣+

n∑
i=1

E
[
vi(x)2 | Mi(δ)

]
→

∣∣∣∣∣
n∑
i=1

E
[
vi(x)1(ϕ(Xi)− δ − Yi ≤ F−1E (z | Xi)) | Mi(δ)

]
− z

∣∣∣∣∣ . (20)

Proximity Conditional on Realized δ-Stability

We begin this subsection by expressing the z term inside the absolute value of (20) as a
conditional expectation similar to the one inside the absolute value of (20). In particular,
we replace z with the expectation given by (6), decompose the expectation using the law
of total expectation into expectations conditional on δ-stability being realized or not, and
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eliminate leftover terms using Lemma 1 to obtain∣∣∣∣∣
n∑
i=1

E[vi(x)1(ϕ(Xi)− δ − Yi ≤ F−1E (z | Xi)) | Mi(δ)]− z

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

E[vi(x)1(ϕ(Xi)− δ − Yi ≤ F−1E (z | Xi)) | Mi(δ)]−
n∑
i=1

E[vi(x)1(Ui ≤ z)]

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
i=1

E[vi(x)1(ϕ(Xi)− δ − Yi ≤ F−1E (z | Xi)) | Mi(δ)]−
n∑
i=1

E[vi(x)1(Ui ≤ z) | Mi(δ)]

∣∣∣∣∣
+ γn

n∑
i=1

E[vi(x)1(Ui ≤ z) | ¬Mi(δ)] + γn

n∑
i=1

E[vi(x)1(Ui ≤ z) | Mi(δ)]

→

∣∣∣∣∣
n∑
i=1

E[vi(x)1(ϕ(Xi)− δ − Yi ≤ F−1E (z | Xi)) | Mi(δ)]−
n∑
i=1

E[vi(x)1(Ui ≤ z) | Mi(δ)]

∣∣∣∣∣ .
(21)

By linearity of expectation and the realized δ-stability, (21) is bounded above by

n∑
i=1

E[vi(x)
(
1(ϕ(Xi)− δ − Yi ≤ F−1E (z | Xi))− 1(ϕ(Xi) + δ − Yi ≤ F−1E (z | Xi))

)
| Mi(δ)].

(22)
Next, we show that the two indicators in (22) are close to each other in expectation by
continuity of the CDF of Y conditional on X. First, notice that using the tower property
to condition on Xi achieves independence of the indicator functions from vi(x) and obviates
the conditioning on Mi(δ). Therefore, (22) is equivalent to

n∑
i=1

E[E [vi(x) | Xi] ( Pr(ϕ(Xi)− δ − Yi ≤ F−1E (z | Xi) | Xi)

− Pr(ϕ(Xi) + δ − Yi ≤ F−1E (z | Xi) | Xi)) | Mi(δ)]. (23)

By uniform continuity of the conditional CDF of Y as applied in (14), the difference between
the conditional probabilities in (23) is bounded above by ε/3, so (23) is bounded above by

ε

3

n∑
i=1

E [vi(x) | Mi(δ)] . (24)

Finally, for n large enough that γn < 1/2, E [vi(x) | Mi(δ)] < 2/n by the law of total
expectation since the weights must be nonnegative and E[vi(x)] = 1/n. Thus, (24) is
bounded above by 2ε/3. Recalling that the leftover terms we have dropped throughout
these steps sum to ε/3, we conclude that∣∣∣∣∣∣

∑
i 6=j

E[vi(x)vj(x)1(Ui ≤ z)1(Uj ≤ z)]− z2
∣∣∣∣∣∣ < ε,

as desired.
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Lemma 4. Under Assumptions 1-6,

n∑
i=1

Var (vi(x) (1(Ui ≤ FE(e | Xi))− FE(e | Xi)))→ 0, n→∞.

Proof of Lemma 4 We decompose the sum of variances in (10) via the law of total
variance:

n∑
i=1

Var (vi(x) (1(Ui ≤ FE(e | Xi))− FE(e | Xi)))

=

n∑
i=1

Var (E [vi(x) (1(Ui ≤ FE(e | Xi))− FE(e | Xi)) | Ωv \ {Yi}])

+ E [Var (vi(x) (1(Ui ≤ FE(e | Xi))− FE(e | Xi)) | Ωv \ {Yi})] . (25)

By noting that vi(x) is a constant given Ωv \ {Yi} and applying an argument similar to the
one yielding (9), we can reduce the variance-of-expectation term in (25) to

n∑
i=1

Var (E [vi(x) (1(Ui ≤ FE(e | Xi))− FE(e | Xi)) | Ωv \ {Yi}])

=
n∑
i=1

Var (vi(x)E [(1(Ui ≤ FE(e | Xi))− FE(e | Xi)) | Ωv \ {Yi}])

=
n∑
i=1

Var (vi(x)E [(1(Ui ≤ FE(e | Xi))− FE(e | Xi)) | Xi])

=
n∑
i=1

Var (vi(x) (Pr(Ui ≤ FE(e | Xi) | Xi)− E [FE(e | Xi) | Xi]))

= 0.

Moreover, we can reduce the expectation-of-variance term in (25) using Assumption 2 to
note that the maximum possible weight Mn of an observation converges to zero in n:

n∑
i=1

E [Var (vi(x) (1(Ui ≤ FE(e | Xi))− FE(e | Xi)) | Ωv \ {Yi})]

=
n∑
i=1

E
[
vi(x)2Var (1(Ui ≤ FE(e | Xi))− FE(e | Xi) | Xi)

]
.

n∑
i=1

E
[
vi(x)2

]
≤Mn

n∑
i=1

E [vi(x)]

= Mn

→ 0.

This completes the proof.
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Lemma 5. Under Assumptions 1-6,∑
i 6=j

Cov
(
vi(x)

(
1(Ui ≤ FE(e | Xi))− FE(e | Xi)

)
, vj(x)

(
1(Uj ≤ FE(e | Xj))− FE(e | Xj)

))
→ 0

as n→∞.

Proof of Lemma 5 First, we rewrite the covariance in terms of expectations:∑
i 6=j

Cov (vi(x)(1(Ui ≤ FE(e | Xi))− FE(e | Xi)), vj(x)(1(Uj ≤ FE(e | Xj))− FE(e | Xj)))

=
∑
i 6=j

E [vi(x)vj(x)(1(Ui ≤ FE(e | Xi))− FE(e | Xi))(1(Uj ≤ FE(e | Xj))− FE(e | Xj))]

− E [vi(x)(1(Ui ≤ FE(e | Xi))− FE(e | Xi))]E [vj(x)(1(Uj ≤ FE(e | Xj))− FE(e | Xj))]

=
∑
i 6=j

E [vi(x)vj(x)(1(Ui ≤ FE(e | Xi))− FE(e | Xi))(1(Uj ≤ FE(e | Xj))− FE(e | Xj))] ,

where the last equality follows by (9). We therefore seek to show that∑
i 6=j

E [vi(x)vj(x)(1(Ui ≤ FE(e | Xi))− FE(e | Xi))(1(Uj ≤ FE(e | Xj))− FE(e | Xj))]→ 0.

Let ε > 0. As before, the uniform continuity of the conditional response distribution implies
that there exists δ1 > 0 so that

|y1 − y2| < 2δ1 =⇒ |FY (y1 | x)− FY (y2 | x)| < ε/3. (26)

Fix δ < min {δ0, δ1}. Then, by Lemma 1, there exists N ∈ N so that, for n ≥ N , terms
identified in Lemma 1 that appear in this proof sum to at most ε/3; for concision, we note
these leftover terms where they appear and then cite Lemma 1 to drop them.

Conditioning on and Applying Realized δ-Stability

We condition on the event that δ-stability is realized using the law of total expectation,
then apply the triangle inequality and Lemma 1 to bound∣∣∣∣∣∣
∑
i 6=j

E [vi(x)vj(x)(1(Ui ≤ FE(e | Xi))− FE(e | Xi))(1(Uj ≤ FE(e | Xj))− FE(e | Xj))]

∣∣∣∣∣∣
above by∣∣∣∣∣∣
∑
i 6=j

E [vi(x)vj(x)(1(Ui ≤ FE(e | Xi))− FE(e | Xi))(1(Uj ≤ FE(e | Xj))− FE(e | Xj)) | Mi(δ)]

∣∣∣∣∣∣ ,
(27)
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discounting leftover terms. We then expand (27) to∣∣∣∣∣∣
∑
i 6=j

E [vi(x)vj(x)1(Ui ≤ FE(e | Xi))(1(Uj ≤ FE(e | Xj))− FE(e | Xj)) | Mi(δ)]

−
∑
i 6=j

E [vi(x)vj(x)FE(e | Xi)(1(Uj ≤ FE(e | Xj))− FE(e | Xj)) | Mi(δ)]

∣∣∣∣∣∣ . (28)

We then apply the realized δ-stability of ϕ̂(Xi) to the first summation in (28) to show that∣∣∣∣∣∣
∑
i 6=j

E [vi(x)vj(x)1(Ui ≤ FE(e | Xi))(1(Uj ≤ FE(e | Xj))− FE(e | Xj)) | Mi(δ)]

−
∑
i 6=j

E [vi(x)vj(x)1(ϕ(Xi)− Yi + δ ≤ e)(1(Uj ≤ FE(e | Xj))− FE(e | Xj)) | Mi(δ)]

∣∣∣∣∣∣ < 2ε

3
.

(29)

Our proof of this claim is as follows. We can collapse terms inside the absolute value of
(29) to∣∣∣∣∣∣
∑
i 6=j

E [vi(x)vj(x)(1(ϕ̂(Xi)− Yi ≤ e)− 1(ϕ(Xi)− Yi + δ ≤ e))(1(Uj ≤ FE(e | Xj))− FE(e | Xj)) | Mi(δ)]

∣∣∣∣∣∣ .
(30)

Next, because, conditional on Mi(δ), 1(ϕ̂(Xi) − Yi ≤ e) − 1(ϕ(Xi) − Yi + δ ≤ e) ≥ 0, we
can bound (30) above via the triangle inequality and Jensen’s inequality by

n∑
i=1

E [vi(x)(1(ϕ̂(Xi)− Yi ≤ e)− 1(ϕ(Xi)− Yi + δ ≤ e)) | Mi(δ)] . (31)

Note that, conditional on Mi(δ), 1(ϕ(Xi) − Yi − δ ≤ e) ≥ 1(ϕ̂(Xi) − Yi ≤ e). Using this
fact and applying the tower property to condition on Xi, we can bound (31) above by
n∑
i=1

E [E [vi(x) | Xi] (Pr(ϕ(Xi)− Yi − δ ≤ e | Xi)− Pr(ϕ(Xi)− Yi + δ ≤ e | Xi)) | Mi(δ)] .

(32)
By uniform continuity of the conditional distribution of Y given X as applied in (26) and
the fact that E [vi(x) | Mi(δ)] < 2/n for n large enough that γn < 1/2, (32) can be bounded
above by

ε

3

n∑
i=1

E [vi(x) | Mi(δ)] <
ε

3

n∑
i=1

2

n
=

2ε

3
.

Thus, we have shown (29). Applying this result to (28) via the triangle inequality and
re-collapsing terms, we can bound (28) above by∣∣∣∣∣∣
∑
i 6=j

E [vi(x)vj(x)(1(ϕ(Xi)− Yi + δ ≤ e)− FE(e | Xi))(1(Uj ≤ FE(e | Xj))− FE(e | Xj)) | Mi(δ)]

∣∣∣∣∣∣+2ε

3
.

(33)
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Conclusion

Lastly, we use the law of total expectation to decompose the absolute value term in (33) as∣∣∣∣∣∣
∑
i 6=j

E [vi(x)vj(x)(1(ϕ(Xi)− Yi + δ ≤ e)− FE(e | Xi))(1(Uj ≤ FE(e | Xj))− FE(e | Xj)) | Mi(δ)]

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1

1− γn

∑
i 6=j

E [vi(x)vj(x)(1(ϕ(Xi)− Yi + δ ≤ e)− FE(e | Xi))(1(Uj ≤ FE(e | Xj))− FE(e | Xj))]︸ ︷︷ ︸
=0 by the tower property conditioning on Xj

− γnE [vi(x)vj(x)(1(ϕ(Xi)− Yi + δ ≤ e)− FE(e | Xi))(1(Uj ≤ FE(e | Xj))− FE(e | Xj)) | ¬Mi(δ)]

∣∣∣∣∣∣
≤ γn

1− γn

∑
i 6=j

E [vi(x) | ¬Mi(δ)] (34)

→ 0,

where (34) follows by the triangle inequality and Jensen’s inequality. We thus have that (33)
is bounded above by 2ε/3. Recalling that the leftover terms we have dropped throughout
these steps sum to ε/3, we conclude that∣∣∣∣∣∣
∑
i 6=j

E [vi(x)vj(x)(1(Ui ≤ FE(e | Xi))− FE(e | Xi))(1(Uj ≤ FE(e | Xj))− FE(e | Xj))]

∣∣∣∣∣∣ < ε,

which completes the proof.
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Deming, Paul Montagna, Mélanie Lévesque, Jan Marcin Weslawski, Maria Wlodarska-
Kowalczuk, Baban S. Ingole, Brian J. Bett, David S. M. Billett, Andrew Yool, Bodil A.
Bluhm, Katrin Iken, and Bhavani E. Narayanaswamy. Global Patterns and Predictions
of Seafloor Biomass Using Random Forests. PLoS ONE, 5(12):e15323, 2010.

Guoyi Zhang and Yan Lu. Bias-corrected Random Forests in Regression. Journal of Applied
Statistics, 39(1):151–160, 2012.

Haozhe Zhang, Joshua Zimmerman, Dan Nettleton, and Daniel J. Nordman. Random
Forest Prediction Intervals. The American Statistician, pages 1–15, 2019.

41


	Introduction
	Related Work
	Setup and Notation
	A Unified Framework for Assessing Prediction Uncertainty
	Estimating the Conditional Prediction Error Distribution
	Extensions

	Simulation Studies
	Conditional Bias Estimation
	Conditional Prediction Interval Estimation

	Theoretical Result
	Stringent Estimator of the Conditional Prediction Error Distribution
	Consistency

	Conclusion
	Simulation Details and Additional Results
	Parameter Settings of Main Results
	Stringent Estimator Implementation Details and Results
	Implementation Details and Additional Results for PI"0362PIGRF(x)

	Proofs of Proposition 1 and Theorem 1

