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Abstract

Sampling the parameters of high-dimensional Continuous Time Markov Chains (CTMCs)
is a challenging problem with important applications in many fields of applied statistics.
In this work a recently proposed type of non-reversible rejection-free Markov Chain Monte
Carlo (MCMC) sampler, the Bouncy Particle Sampler (BPS), is brought to bear to this
problem. BPS has demonstrated its favourable computational efficiency compared with
state-of-the-art MCMC algorithms, however to date applications to real-data scenario were
scarce. An important aspect of practical implementation of BPS is the simulation of event
times. Default implementations use conservative thinning bounds. Such bounds can slow
down the algorithm and limit the computational performance. Our paper develops an algo-
rithm with exact analytical solution to the random event times in the context of CTMCs.
Our local version of BPS algorithm takes advantage of the sparse structure in the target
factor graph and we also provide a graph-theoretic tool for assessing the computational
complexity of local BPS algorithms.

Keywords: CTMCs, Hamiltonian Monte Carlo (HMC), Piecewise-deterministic Markov
Process (PDMP), BPS, Local Bouncy Particle Sampler (LBPS), Generalized Linear Models
(GLM)

1. Introduction

CTMCs have widespread applications ranging from chronic multi-state disease progression
(Chen et al., 1996; Combescure et al., 2003; Saeedi and Bouchard-Coté, 2011; Liu et al.,
2015) to phylogenetics (Yin and Zhang, 2012). However, the estimation of parameters
in CTMCs is a challenging problem when incomplete data observations are only avail-
able at a finite number of time points. This is the case in a wide range of applications,
for analyzing censored survival data (Kay, 1977), for describing panel data under Markov
assumptions (Kalbfleisch and Lawless, 1985), for characterizing multi-state disease progres-
sion (Jackson et al., 2003), and for inferring evolutionary processes (Jukes and Cantor, 1969;
Zhao et al., 2016) using biological sequences.
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A (homogeneous) CTMC is a continuous-time stochastic process taking values on a fi-
nite or countable set. The parameters involved in a CTMC are used to characterize the
transitions between states and the distributions of the intervals between two consecutive
transitions. The parameters are organized into a rate matrix. If the sample paths have been
completely observed continuously over a finite time interval, statistical inference is straight-
forward. However, a more typical situation is that only partial observations of the states on
a finite number of time points are available. For high dimensional rate matrices, efficient
posterior inference is challenging. In particular, despite several algorithmic advances (Moler
and Van Loan, 2003), matrix exponentiation, which is required to compute the marginal
distributions of CTMCs, is still computationally expensive.

In the following, we will make use of a flexible framework to parameterize rate matrices
(Zhao et al., 2016), which subsumes much of the earlier parameterizations (Kimura, 1980;
Hasegawa et al., 1985). This previous work used off-the-shelf Adaptive Hamiltonian Monte
Carlo (AHMC) methods and did not exploit the sparsity often found in the parameterization
of high-dimensional rate matrices.

In order to exploit sparsity, we make use of recently developed Monte Carlo schemes
based on non-reversible PDMPs. In particular, we build our samplers based on the non-
reversible rejection-free dynamics proposed in Peters et al. (2012) in the physics literature
and later developed for statistical applications in Bouchard-Coté et al. (2018). It has been
shown by Neal (2004); Sun et al. (2010); Chen and Hwang (2013); Bierkens (2016) that
non-reversible MCMC algorithms can outperform reversible MCMC in terms of mixing
rate and asymptotic performance. Related sampling schemes have been developed includ-
ing continuous-time Monte Carlo algorithms and continuous-time Sequential Monte Carlo
algorithms (Pakman et al., 2017; Fearnhead et al., 2018). Bierkens et al. (2019) have de-
veloped a super-efficient sampling algorithm based on the zig-zag process under a big data
context. But we focus on proof-of-concept applications of the BPS algorithm in this work.

In the BPS algorithm, the posterior samples of a variable of interest are continuously
indexed by the position of a particle that moves along piecewise linear trajectories. When
encountering a high energy barrier (low posterior density value), the particle is never re-
jected but instead the direction of its path is changed after a Newtonian collision. A key
algorithmic requirement is to efficiently determine the bouncing time of the particle. Most
existing work (Vanetti et al., 2017; Pakman et al., 2017; Fearnhead et al., 2018) use con-
servative bounds from the thinning algorithm of an inhomogeneous Poisson Process (PP)
to sample the collision time. Conservative bounds can lead to computational inefficiency
of the algorithm. Bouchard-Co6té et al. (2018) have obtained analytical solutions to the
collision times under certain simple scenarios such as Gaussian distribution. Thus, the BPS
can be highly efficient but does require application-specific work since the derivation of the
collision time is case-specific. Therefore, we focus on demonstrating a concrete case study
of how this can be achieved in the context of CTMCs and what potential benefits can be
obtained.

The key contributions of this paper are as follows:

e Efficient algorithms to simulate the bouncing time for each factor of the factorized
posterior density of CTMCs to boost the computational efficiency.
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e A novel sampler combining HMC and LBPS to efficiently sample from CTMCs. This
sampler is also of interest for sampling in other sparse factor graphs.

e A graph-theoretic tool to help select optimal sets of variables to be updated with
HMC and which ones to be updated with LBPS, both for the special case of CTMCs
but also more generally in sparse factor graphs.

e A proof-of-concept application on protein evolution to demonstrate on real data the
computational efficiency of LBPS compared to state-of-the-art HMC algorithms.

The remaining of the paper is organized as follows. Section 2 provides background on
CTMCs and on the BPS algorithm. Section 3 describes a novel model for CTMCs used to
demonstrate our computational methodology. Sections 4 and 5 describe our key theoretical
and methodological contributions. In Section 6, we compare our novel sampler to state-of-
the-art methods. Finally, in Section 7, we provide results on protein data, and we discuss
potential extensions of our work in Section 8.

2. Problem setup and notations
2.1 CTMCs notation

We first introduce some notation for CTMCs. More background on CTMCs can be found in
Norris (1998); Guttorp and Minin (2018). We use the same notation as Zhao et al. (2016).
A (homogeneous) CTMC is a continuous-time stochastic process {X(¢) : ¢ > 0} taking
values on a finite or countable set X'. Throughout the paper, we assume X is finite and
X ={1,2,...,|X|}. Denote {X,,n > 0} as the sequence of states visited in the continuous
time path {X(¢)}, and let A, be the corresponding times when the state changes. A rate
matrix ) indexed by X is used to describe the instantaneous transition rate for each pair
of distinct states in X'. For example, g, ,» represents the instantaneous rate between x and
2/, where x € X,2’ € X,z # 2/. The diagonal elements of () are negative and enforce
the constraint that each row sums to zero. The absolute values of the diagonal elements
represent the rate parameter of an exponential distribution, used to characterize the waiting
time spent on each state. We denote the initial state distribution as pi,i(-). Given the rate
matrix @, the transition probability matrix is Fp(A) = exp(AQ) = Z?’;O(AQj)/j!, where
A > 0 corresponds to a time-step size. We use 7 = (71,72,...,7|x|) to represent the
stationary distribution of the CTMC.

We use x to represent N fully observed CTMC paths (example shown in Figure 1).
We define (n,h,c) = (n(x),h(x),c(x)) as the sufficient statistics of N fully observed
CTMC paths. For all z € X, denote n, = ny(x) € {0,1,2,...} as the number of paths
started at state x and n(zx) = (ni(x),n2(x),...,nx|(x)). Similarly, for all z € X, let
h. € [0,00) denote the total time spent in state x and h(z) == (hi(x), ha(z), . .., hjx|(x)).
For all distinct (z,2') € X3t .= {(3 2') € X2 : x # '}, let ¢, denote the number of
jumps from state = to 2’ and let ¢(x) denote the vector of all transition counts organized
according to some arbitrary fixed order of X348t For simplicity, we denote z := (n, h, c)
and z(x) == (n(x),h(x),c(x)). The density of N fully observed paths x from a CTMC
with rate matrix ) over time interval length A is given by
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Figure 1: A fully observed realization of a single path of CTMCs at arrival time points
Ay, Ag, A3, Ay over a state space {1,2,3,4}.

frjga(®lQ,4) = (H pmi(m“*‘) I < (1)
rekX (z,2")

z.x E)c'distinct

x (H exp (hzqw)> 1z € S(A)];

TEX

where S(A) denotes the set of CTMC paths of total length A.

Usually, these paths are only partially observed at a finite number of points 79, 71, ..., 7,
with states yo,y1,... and y,. We use ) to represent the partially observed CTMC path.
Assuming there is no error in the observation of the states, the density over this single path
is

K
gy|Q(y’Q = Pini ZUTO H exXp QAk: Yy Yy, (2)

where Ay = 7, —75_1 is the length of the time interval between two consecutive observations.

The question of interest is often to estimate the rate matrix given partially observed
paths. Pointwise evaluation of Equation 2 can be done in O(|X|?) using diagonalization
method to evaluate the matrix exponential. We reduce the computational cost by intro-
ducing the substitution mapping auxiliary variables (instantiated via uniformization algo-
rithms) as described in Zhao et al. (2016). With the augmented sufficient statistics, the
density of the paths is given by Equation 1.

2.2 Bayesian GLM parameterization

We describe here a sparse rate matrix parameterization built in the framework of Zhao
et al. (2016). This is useful since we propose Bayesian GLM chain General Time Reversible
model (GTR) model in Section 3 on the basis of Bayesian GLM reversible rate matrix
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parameterization (Zhao et al., 2016). We first describe the GTR model and then review
briefly the Bayesian GLM unnormalized reversible rate matrix parameterization. Finally,
we review the Bayesian GLM rate matrix representation for a GTR model since the notation
will be needed to introduce our new sparse model in Section 3.

We introduce the set of unordered distinct pairs of states as Awordereddist. .— 15, 11 ¢
X?%: 2 # 2'}. Recall that in a GTR model, Q is parameterized by the stationary distribution
7 = (m1,72,...,7 x|) and exchangeable parameters 0, ..\, where q, ,» = 0, 4T, T # x'.
In total, there are py = |X|(|X| —1)/2 exchangeable parameters 6, ,» under reversibility. In
the Bayesian GLM unnormalized reversible rate matrix parameterization, we have

Olaay(w’) = exp{(w’ ¢({x,2'}))}, 3)

mo(w") = exp {(w" P(x)) - A(w")}, (4)

A(w") = log Z exp {<wu, 1/)(:1;)>}, (5)
TeX

@ w) = O (w) 7 (") (6)

u
The parameters of interest are w, where w = (Zb> . In Equation 3, we introduce bivariate

feature functions ¢ : Aunordereddist. _ pr2 Tn Equation 4, we introduce univariate feature
functions v : X — RP1. We have p; + po = p and w € RP. The weights related to the
univariate features 1 are denoted as univariate weights w* and the weights related to the
bivariate features ¢ are denoted as bivariate weights w”.

The connection between Bayesian GLM rate matrix representation and a GTR model is
discussed in details in Supplementary 8.1 and Supplementary 8.2 by Zhao et al. (2016). In
Supplementary 8.1, Zhao et al. (2016) have proved that the Bayesian GLM can be used to
represent any rate matrices under the GTR parameterization equivalently. Here, we review
this construction since our new sparse model in Section 3 can be represented in a similar
fashion. To represent the GTR model in a Bayesian GLM framework, if we have a GTR
rate matrix () with stationary distribution 7, for any x € X and ), 7, = 1, we can pick
any reference state x* such that

1
L4 3o toearex exp((w, ¢(27)))

T (W) =

and for other state 2/,
T (w) = T (w) exp((w, $(2)))-

Thus, for any stationary distribution 7, of a GTR rate matrix @, there exists a unique set
of weights w such that m,(w) = 7.

Similarly, we define a map n: Aunordereddist. £ 9 1x|(]X| —1)/2} such that the
ith element of bivariate features 3" : xunordered,dist. _y Rp2 i defined as:

d)%tr({maxl}) = 1(77({9571’/}) = i)? (7)
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where the ith feature ¢ ({x,2'}) is equal to one if and only if the pair of unordered states
{z,2'} is mapped to ith exchangeable parameter via n({z,2’}). Under the definition of
@, for any 0, of a GTR rate matrix (), there exists a unique set of weights such that

00 = exp (W({22}))-

2.3 Bayesian inference

Under the Bayesian GLM rate matrix parameterization defined in Equation 3-6, the pa-
u

rameters of interest are w, where w = (Zb . We place a prior on w with density denoted

by gw(w). Following Zhao et al. (2016), we use a Gaussian distribution with mean zero and
precision & for gy (w).

We assume the observations are partially observed states y1, s, ...,y at a finite num-
ber of time points 7, 71, . . ., 7x on each sample path. To simplify the notations, we assume
that 79,71, ..., 7% are fixed and known. The density over one single path is given in Equa-
tion 2. Under the Bayesian GLM parameterization, we denote the density by gy, (V|Q(w)).
Following Equation 2, we obtain

K
gy\w(y|Q( = Pini y'ro H exp(Q Ak))y"'k—lvy‘"k ) (8)

Thus, the target posterior density is given by

Guly (w]Y) o gw(w)gy s (VIQ(w)) = exp(~U(w)), 9)

where U (w) represents the negative logarithm of the unnormalized posterior density func-
tion.

In Equation 9, the second term involves the computation of matrix exponentials. Zhao
et al. (2016) have argued that using HMC directly on U(w) leads to a high computational
cost as a single gradient evaluation of Equation 8 has a running time of ©(|x|?) (Zhao et al.,
2016). Applying other gradient-based MCMC methods such as BPS or LBPS would suffer
from the same problem.

To circumvent this computational difficulty, we follow the auxiliary variable strategy of
Zhao et al. (2016), where substitution mapping is used before each sampling step to augment
the state space with (sufficient statistics of) full CTMC sample paths. More precisely, given
a pair of consecutive observed states separated by a time interval A, we simulate a full path
conditionally on the end-points and time interval A according to Equation 1 using the cached
uniformization techniques described in Zhao et al. (2016). After doing this for each pair of
consecutive observed states, we obtain a vector of sufficient statistics z := (n(x), h(x), c(x))
as defined in Section 2.1.
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Following Equation 1, the negative unnormalized posterior log-density with augmented
sufficient statistics z is

Uw) = Ux (w) = salwli— 3 hua, . (w (10)
rz€X
_ Z (L¢10g qTT Zn$10g7TI )
(x,2")€ X distinct v

1

(.’I;.:l:,) EXdistinct

— Z (TTlog Ay z:ng[;logwJC ).

(:L’;L")E X distinct xeX

In the remaining, we use the target density exp(—U,(w)) instead of exp(—U(w)). Ap-
pendix J shows that exp(—U,(w)) admits the distribution of interest exp(—U(w)) as a
marginal, therefore there is no error involved in introducing the auxiliary variable z. Again
we introduce this auxiliary variable to make sampling more computationally tractable as
shown in Section 5.

2.4 Background on BPS and LBPS
2.4.1 Basics or BPS

The BPS algorithm belongs to a type of emerging continuous-time non-reversible MCMC
sampling algorithms constructed from PDMPs (Davis, 1984). It was first proposed by
Peters et al. (2012), formalized, developed, and generalized by Bouchard-Cété et al. (2018);
Vanetti et al. (2017).

PDMPs alternate between deterministic trajectory segment each of a length determined
by the first arrival of an inhomogeneous Poisson process, interspersed with random “jumps.”
Three key components describe PDMPs:

The deterministic dynamics: a system of differential equations that characterize the
process’ deterministic behaviour between jumps.

The event rate: a non-negative function that determines the intensity of jumps. As the
process follows its deterministic trajectory, an inhomogenous Poisson process is defined
by composing the state with the intensity function. The first arrival in this Poisson
process determines the length of each deterministic segment.

The transition distribution: given that a jump occurs, the transition kernel is used to
sample the next state given the current one.

BPS is a special case of PDMPs with certain choices of the three aforementioned com-
ponents. We denote the state of the BPS algorithm by Y = (W, V), which encodes the
position and velocity of the particle. Let ((w,v) = ((v){(w), where ((v) represents the
standard multivariate Gaussian distribution and ((w) represents the target posterior dis-
tribution of interest. The BPS is {(w, v)-invariant.

Equipped with this notation, we can now define the BPS algorithm as a PDMP with
the following three components:
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The deterministic dynamics:

dw _, ™ _y
. dt

The event rate: the intensity A(w,v) = max{0, (VU (w),v)}.

The transition distribution: a Dirac centered at (w, Ty (v)), where

(VU(w), v)

Ro@)e o)

Tw(v)=v—2
To ensure the ergodicity of the Markov chain, “refreshment events” are also introduced.
We use independent refreshment, where the velocity is sampled according to ((v) (see
Vanetti et al. (2017) for alternatives). Refreshment events occur at times specified by
independent and identically distributed exponential random variables with rate Tyef.
We summarize the BPS sampler in Algorithm 1.

Algorithm 1 BPS algorithm

1: Initialization:
Initialize the particle position and velocity (w(o), v(o)) arbitrarily on R? x R?.
Set T' to a certain fixed trajectory length.

2: fori=1,2,...,do

3: Sample the first arrival times Tyt and Thounce Of @ PP with intensity A\'*f and APounce re-
spectively, where AP = max ((v(=1), VU (w(~Y + v(=D¢)), 0) and the value of A**f is
pre-fixed.

Set 7; < min(Thounce, Tref)-

Update the position of the particle via w® « w1 4 vz,

If 7; = Tyef, sample the next velocity v ~ N(0g,14).

If 7; = Thounce, Obtain the next velocity v(*) by applying the transition function Ty ('v(i_l)).

8 Ift, = Z;Zl 7; 2 T, exit For Loop (line 2).
9: end for

2.4.2 Basics or LBPS

If the target posterior density ((w) can be represented as a product of positive factors in
Equation 11,

C(w) oc TT vr(™Vy), (11)

feF

where F is the set of index for all factors in the target density and Ny represents the
subset of variables connected to factor f, then a “local” version of BPS referred to as LBPS
can be computationally efficient by taking advantage of the structural properties of the
target density, especially if the target density has a strong sparsity property described in
definition 2. When LBPS is used, computationally cheaper refreshment scheme such as
“local refreshment” (Bouchard-Coté et al., 2018) is often used by exploiting the structure
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of the factor graph. In the local refreshment scheme, one factor -, is chosen uniformly
at random first and only the components of v for variables in Ny are resampled. The
candidate collision time is recomputed only for the extended neighbour factors v, of vy,
where Ny N Ny # 0.

Now we present a brief description of LBPS algorithm and we will see how sparsity plays
an important role in improving the computational efficiency. Detailed description about an
efficient implementation of LBPS via the priority queue can be found in Bouchard-Coté
et al. (2018). If the target unnormalized posterior density can be factorized according to
FEquation 11, its associated energy function is

U(w) =Y Up(Ny), (12)

feFr

where Ug(Ny) = —log(vs(Ny)). We define the local intensity Ar(w,v) and local transition
function T (v) for factor v as:

Af(w,v) = max{0, (VU;(w),v)}, (13)
PN\ 1/ O N

Note that for variables that are not the neighbour variables for factor -y, T‘g('v)/r€ =
vg. In LBPS, the next collision time is the first arrival time of a PP with intensity
AMw,v) = Y terAp(w,v). We can sample the first arrival time using the methods de-
scribed in Bouchard-Coté et al. (2018) (see Section 5.2 for specific examples for the mod-
els explored in this paper). We sample 7 for each factor vy from a PP with intensity
Af(w,v) = max{0, (VUs(w),v)}. The first arrival time for PP with intensity A(w,v) is

T = ?nl;__l 7r. Once a bounce event takes place, LBPS only needs to manipulate a sub-
€

set of the variables and factors. To be specific, if we denote f* as the factor index such
that 7p« = gcmg Tf, we use 7y« to denote the collision factor. Following the priority queue
€

implementation described in Bouchard-Coté et al. (2018), LBPS will update the position
of neighbour variables for the collision factor v« and then apply the corresponding local
transition function TVJVC* (v) to update the velocity. Next, the algorithm will sample the can-
didate bounce time of the next event for all the extended neighbour factors ~ for factor
v+ such that Np N Ny« # 0. If strong sparsity (defined in Section 4.1) is satisfied for
a family of factor graphs, then the number of neighbour variables for the collision factor
grows much slower than the dimension of the parameter space and is negligible compared
to the dimension of the parameter space. The number of operations needed to update the
position of the neighbour variables is negligible. When computing the candidate collision
time for the extended neighbour factors, the number of factors involved is also negligible
compared to the total number of factors in the factor graph, which is desirable in LBPS. We
need to point out that although LBPS manipulates a subset of variables and factors, each
local bounce will lead to changes in all the variables instead of just the neighbour variables
connected with the current collision factor.
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3. Proposed Bayesian GLM chain GTR model

In Section 2.2, we introduced a function n({z,2'}) which embeds state transitions into in-
tegers. We will call this n an “ordering function”. Here we use such ordering function to
model the exchangeable rates between each pair of states through the current pair and its
nearest neighbour pair. We would like to find an order of each pair of distinctive states
that is biologically meaningful so that parameters that are neighbours in this ordering can
share statistical strength. Take protein evolution as an example. Most frequent amino acid
exchanges take place between residues with similar physicochemical properties. Under the
Bayesian GLM chain GTR model we proposed below, we assume that mutations between
two pairs of amino acids sharing one common state are expected to have similar exchangeable
rates if the unshared distinctive states between the two pairs have similar physicochemical
properties. We would like to find an ordering n({z,z'}) such that amino acid pairs that
are nearest neighbours share the most similar physicochemical properties given one com-
mon state. The Nearest Neighbour Pairwise Amino Acid Ordering (NNPAAO) Algorithm
(described in Appendix F) proposed in Section 7 provides an ordering of amino acid pairs
that satisfies such property. We denote it as ngist ({2, 2'}) since the order is determined
according to the Euclidean distance between amino acids defined in Equation 18. Given
this ordering, neighbour pairs share more biological similarities than non-neighbour pairs.

In this paper, based on the intuition of ngist({z,2’'}), we define a novel Bayesian GLM
chain GTR model with feature function

¢ ({2, 2'}) = 1(n({z,2}) € {i,i +1}), (15)

where i = 1,2,... |X|(|X] — 1)/2. If we set n((z,2")) = naist({x, 2'}), the intuition of the
Bayesian GLM chain GTR model is that the value of each exchangeable parameter 0y, .,
depend on {z,z'} and its neighbour pair denoted as {z”,2"'}. Its neighbour pair satisfies
that [p({z”,2""}) — n({x,2'})| = 1. Equivalently, we can define the Bayesian chain GTR
model through the exchangeable parameters 9{,,,l,,,,.r}(wb) by plugging in the definition of
oM ({z 2/1) in Equation 15:

exp {(w”, ¢ ({w,2'})) }
exp w;({%l”}) + w;({x,x’})—l) it n({e,2'}) =2,3,... (|X|(|X] - 1)/2),
exp wi’]({xw,}) , if n({z,2'}) = 1.

0{:1:,11:'} (wb)

For simplicity, we focus on the simple example of chains, but this model could be generalized
to other sparse graphs. We provide a general characterization of the running time analysis
for both arbitrary factor graphs and factor graphs with sparse structure in Section 4.2. The
chain GTR model is general in the sense that it is able to represent any rate matrices. We
prove this in Appendix A.

10
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4. Characterization of factor graphs where LBPS is efficient
4.1 Strong sparsity of factor graphs

A factor graph is a bipartite graph used to represent the factorization of a function, often
a density function (as in Bouchard-Coté et al. (2018)), or a conditional density function
(as in Section 5.1). We will use factor graphs to define a non-standard notion of sparsity,
strong sparsity, that implies computational efficiency guarantees for the LBPS algorithm.
We start by formalizing the notion of factor graph and some associated definitions:

Definition 1 Given a factorization of a function
m
fw) =TT e (Ny),
f=1

where Ny C {w1,ws, ..., wp} denotes neighbour variables for factor vy, the factor graph
G = (w,I', E) consists of a set of variables w = {wy,ws,...,wy}, a set of factors I' =
{71,72, ..., Ym} and a set of edges E defined as follows. We place an undirected edge between
factor v¢ and variable wy, if and only if w, € Ny. The neighbour factors for variable
wy s Sk = {7y : wy € Ny}. The extended neighbour variables for factor vy is Nf =
{wy, : wy, € Npr such that Npr VW Ny # 0}. The extended neighbour factors for factor v¢
18 Sf = {’yfr :Nf/ ﬁNf 7& @}

In Figure 2, we use the following factor graph to illustrate definition 1:

f(w) = y1(w1)y2 (w1, we)y3(wa)va(wa, ws)ys (w3, wy).

Sy = {71,72.73.74)

14! 72 73 74 Vs

V
N2={W1,W2}@ @ @

Ny = {wi,wo, w3}

Figure 2: For factor -9, its neighbour variables Ny = {w;,w2}. Its extended neighbour
variables No = {w1,wa,ws}. Its extended neighbour factors So = {v1,72, 73, V4 }-

11
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Next, we define the notion of strong sparsity, which applies to factor graph families
in which the number of factors m and variables p goes to infinity.

Definition 2 A family of factor graphs is strongly sparse if m?x |S¢| = o(m), for 1 <

k< p, and max INs| = o(p), for 1 < f <m.

Strong sparsity ensures that for any factor in the factor graph, the cardinality of its
extended neighbour factors and extended neighbour variables grows asymptotically slower
than the dimension of the parameter space and is ultimately negligible compared to the
dimension of the parameter space and the total number of factors in the factor graph. We
will show later that the factor graph under our proposed CTMC GLM model sampling
scheme satisfies the strong sparsity property.

4.2 Running time analysis of LBPS for factor graphs

Recent work (Deligiannidis et al., 2020; Andrieu et al., 2018) has analyzed the scaling limits
of samplers constructed from PDMPs including BPS and Zig-zag processes. However, we
are not aware of existing analyses of the running time of the LBPS algorithm. Here we only
partially fill this gap. Specifically, we provide an analysis of the running time for a fixed
trajectory length. This leaves open the scaling property of the Effective Sample Size (ESS)
for LBPS ran for a fixed trajectory length. Previous work has shown that the ESS of the
BPS algorithm is proportional to the trajectory length (Deligiannidis et al., 2020), but this
result is for the global BPS algorithm.

Despite this limitation, our per-iteration cost analysis already reveals an interesting
running time gap between LBPS executed on strongly sparse graphs versus general factor
graphs. We stress that the emphasis here is not to build a comprehensive scaling limit for
the purpose of comparing LBPS to other MCMC algorithms, but rather to guide the choice
of factorization to use when constructing an LBPS algorithm. Specifically, we show in
Section 5.1 that by using a blocking strategy, we can increase the sparsity of LBPS’s factor
graph, by going from the factorization of the joint to the factorization of a conditional.

We first introduce some notations needed in the analysis. Denote ‘W,J = m?X ’Nf‘ , | Ni| =

m;mx |N¢| and ’g*‘ = m?X ’gf‘. Since Ny C Ny, we have |[N¢| < ’Nf‘ and |N,| < }N*’
Denote the cost for computing the collision time for a factor v; as ¢y and ¢, = m}iX cy. Let
cy, denote the running time for computing VU ¢(w) and ¢y, = mjgx cy,. Now, we analyze
the running time of LBPS via a priority queue implementation (Bouchard-Coété et al., 2018)

for factor graph G = (w,I', F).

1. Compute the collision time for all factors and build a priority queue: O(mec,+mlogm).

2. (a) If a collision takes place,

i. Update the position of extended neighbour variables: (’)(‘N* ‘)
ii. Update the velocity of neighbour variables according to Equation 14: O(|N .|+
Cy, ) .
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iii. Add new samples to the trajectory list Li: O(]N«|). We use L to denote
a list of triplets (wg),vg),t,ﬁz)» with w,io) and v,(co) representing the initial

position, and velocity and t,go) = 0. For ¢ > 0, v,gi) represents the velocity
after the ith collision or refreshment event and t,(:) represents the time for
the ith event.

iv. Compute the collision time for extended neighbour factors: O (‘§*| c*).

v. Insert the extended neighbour factors and its collision time into the priority
queue: O(logm). The elements of the priority queue are stored according
to an increasing order of the collision time.

(b) If a refreshment event takes place and a local refreshment scheme (described in
Section 2.4.2) is used:

i. Pick a factor uniformly at random and refresh the velocity: O(|N.|).

ii. Update the position of the neighbour variables of the selected factor, compute
the collision time for the extended neighbour factors and update the collision
time in the priority queue: O(|N,| + ‘g*’ cx + ‘g*’ logm).

iii. Sample the next refreshment time O(1).

Thus, assuming there are Ji collision events and Jo refreshment events when the particle
travels along a fixed trajectory length, the total running time for LBPS is:

O(mc* +Jp (‘W*’ +cy, + B*‘ Cx + logm) + Jo(|[N.| + ‘g*‘ Cx + ‘g*‘ logm)>.
For a factor graph with no sparsity, the total running time for LBPS is
O (J1 (p + cy, + mex + logm) + Jo(p + me, + mlogm)).
For a factor graph with strong sparsity, the total running time for LBPS is
(@) <mc* + J1 (p™ + cy, + m*P2e, +logm) + Jo(p™t + m*? e + m? log m)), (16)
where 0 < a1 < 1,0 < ag < 1.
If m and J; are the dominant terms, as typical in applications, this yields a reduction

in per-iteration cost from O(Jim) down to O(J;m*?) when moving from a general factor
graph to a strongly sparse one.

5. Methodology
5.1 Achieving strong sparsity through LBPS-HMC alternation

In this section, we first show that applying LBPS naively to the CTMC GLM models intro-
duced in Section 2.2 would lead to a factor graph which does not satisfy strong sparsity, and
hence to an inefficient LBPS algorithm. To address this issue, we will introduce a sampling
strategy that alternates between two moves: one which samples a subset of variables based
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on LBPS, while conditioning on the rest, followed by one move which samples a small set
of more connected variables based on HMC while conditioning on the rest.

To motivate the LBPS-HMC alternation algorithm, let us return to the problem of
posterior inference of the parameters of CTMC GLM models. In any such models, we can
decompose the augmented negative log density U(w) (Equation 10) into a sum of factors.
We first introduce notations to group these factors into the following categories:

Normal factor: x| wl|3,
Sojourn time factor: H, ., = h,q, . (w), for all (z,z") € A distinet
Transition count factor: C, . = —c, . log (¢, (w)), for all (z,2") € xdistinct,

Initial count factor: w, = —n,log(m,(w)), for all x € X, with m, representing the
initial count factor but 7, (w) denotes the stationary distribution for state = given w.

Consider first the GTR version of this model. The factor graph of the full posterior
distribution is shown in Figure 3. It is the sparsest possible CTMC GLM model, in the
sense that there is no parameter sharing among the exchangeable nor stationary parameters,
yet, it can be readily seen that this graph is not strongly sparse. Indeed, this graph has the
property that for any factor -y, the extended neighbourhood of + includes all other factors
since they all share common neighbour variables w". Hence the graph is not strongly sparse
and LBPS does not enjoy the computational savings described in Section 4.2.

To address this issue, instead of using LBPS on the full posterior distribution, we only
apply LBPS to a subset of the parameters while conditioning on the others. Within one
LBPS round, only a subset of the variables are updated while keeping the other ones fixed.
This strategy can be described as an “LBPS-within-Gibbs” method, in parallel to the ter-
minology “Metropolis-within-Gibbs” (see e.g. Diggle et al. (1998)). We still maintain invari-
ance with respect to the correct distribution since we alternate between LBPS and an HMC
move sampling the variables not updated by LBPS. As we will show shortly, in the context
of CTMC GLM models, it is advantageous to fix the parameters w" during the LBPS phase
of the alternation. The proposed sampling scheme is summarized in Algorithm 2, and its
invariance is established formally in Appendix J.

When performing LBPS on a subset of the latent variables, the variables that are tem-
porarily fixed can be removed from the factor graph, as their values do not change in this
segment of LBPS trajectory. The power of our LBPS-HMC alternation method comes from
the fact that in certain situations we only need to fix a small number of variables in order
to gain strong sparsity.

Let us illustrate this on the chain GTR model introduced in Section 3. Specifically, we
will next present a concrete example where the LBPS-HMC alternation strategy achieves
strong sparsity. We show in Figure 4 the factor graph corresponding to the distribution of
the parameters w” given all the other variables.

Regardless of the size of the state space X, we next argue that for any {z,z'} €
Juwordered,dist. any sojourn time factor H, . or transition count C, ,» has at most twelve
extended neighbour factors and three extended neighbour variables under Bayesian GLM
chain GTR when conditioning on w". For the pairs of states {z,2'}, when n({z,2'}) #
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Figure 3: Factor graph corresponding to the full posterior of the parameters of the GLM
representation of GTR model (shown here for DNA data). Top row shows the initial count
factors, second row, stationary distribution parameters, third row, transition and sojourn
time factors (C' and H respectively), last row, exchangeable parameters. The graph is not
strongly sparse. To make the figure simpler, we have omitted redundant factors which do
not affect the strong sparsity argument (those corresponding to the normal prior, the other
half of the transition count factors and sojourn time factors for the symmetric pair of states
(', x) such as Hoa,Coa, Hga,Caa, - - ..

|X|(]X]—1)/2, the twelve extended neighbour factors of factor H, ,» or C 5 include the fac-
tors only connected with w? and w?, |, where i = n({z,z'})—2,n({z,2'})—1, and n({z, 2'}).
Similarly, for the pair of states {z, 2’} such that n({z,2'}) = |X|(|X| — 1)/2, Hyp or Cy o
has eight extended neighbour factors, where each of the eight factors is only connected with
w? and w}, ;, where i = n({z,2'}) — 2 and n({z,2'}) — 1. All factors have three extended

: : b b b
neighbour variables W, (12 )—10 Wo (o2 and W, (1301 except that factor Hy» ,n or

+17
Cyr o has two extended neighbour variables w? and w3 when n({z”,2"'}) = 1.

Thus, when updating the position of extended neighbour variables or computing the
candidate bounce time for extended neighbour factors of the collision factor, there is only
a small constant number of extended neighbour variables and extended neighbour factors
involved. We can conclude that the factor graph in Figure 4 satisfies the desirable strong
sparsity in definition 2.

5.2 Simulation of bounce inter-arrival times for GLM GTR models
In this section, we show how to simulate the candidate times 77 for the next bounce for each

factor f. The simulation algorithm for a Gaussian distribution can be found in Bouchard-
Coté et al. (2018), so we focus on the other factors.
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Algorithm 2 Proposed sampling scheme LBPS-HMC for CTMCs

1: Initialization:

Initialize weights w® = (w®, w®) from N(0, 1), where w® represents the weights corresponding
to the univariate features to compute the stationary distribution and w” represents the weights
associated with bivariate features to compute the exchangeable parameters.

2: fori=1,2,...,N, do

. Compute the rate matrix Q given w1 under Bayesian GLM rate matrices.

4:  Use an end-point sampler as in Zhao et al. (2016) to simulate a path given time interval A,
with two consecutive observations observed at time points e = (¢, 4+ 1) of the time series
according to Equation 1 using the cached uniformization technique.

5.  Compute the aggregate sum of the sufficient statistics of all time series obtained in Step 4.

6:  Update univariate weights w" for the stationary distribution via HMC:

(w) | (w, w?) D 20~ HMO( | (w0, w?)? 20 L6,

where L and € are tuning parameters representing the number of leapfrog jumps and step size
in HMC. Recall that Z = (N, H,C) (defined in Section 2.1) denotes the sufficient statistics
of the augmented CTMC paths. Function evaluation and gradient calculation required by
HMC are described in Equation 20 and Equation 21 in Appendix B.

7:  Update bivariate weights w” used to compute the exchangeable parameters:

(wb)(i+1) | (wu)(i+1) 7 (wb) () ,Z" ~ LBPS(- | ((wu)(i+1) ’ (wb)(i)> 20, 1),

where T is the tuning parameter in LBPS representing the fixed length of the trajectory.
8: end for

Figure 4: Factor graphs involved in the LBPS phase of our LBPS-HMC alternation al-
gorithm applied to the chain GTR model. This is the factor graph corresponding to the
distribution of the parameters w” given all the other variables.

5.2.1 SOJOURN TIME FACTORS

We first sample the energy gap —log(F) > 0 with £ ~ ¢(0,1). This gap represents the
difference between the energy denoted as Ey at the current position of a particle and a
higher energy Fy—log(E). The goal is to determine a time interval ¢ such that at this time
point the particle has an energy of Ey — log(FE).

For sojourn factors, the potential energy of the particle is:
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Uwy) = h6") (wy)
= h‘g‘,i)ﬂ'xl exp(<'(U3,(,z')({:1:,:l:l})>).

The potential energy after a time interval 9:

Ulwy +v0) = h{q" (wy +v9)
= W7, exp((wy + vé, p({z, z'}))).

We observe that the particle is travelling to a higher energy area if and only if (v, p({x, z'})) >
0. Therefore, we set

—log(E) = U(wy+vd)—U(wy)

= 104w (expton,o((o ') - 1).
We denote ¢ = —log(E) > 0 and obtain:
(i) 108 <huq<c>(w3) + 1) if (v,0({z,2'})) >0,
00, otherwise.

5.2.2 TRANSITION COUNT FACTORS
Similarly, the transition count factor for pairs of states (x,z’) is _‘SL log (qiriv) (wg)) in

the ¢th iteration, and the gradient is —PE7)I¢({T,T’}) Thus, the potential energy of the
particle is: '

U(wy) = —(‘Ei?,;,log (Q,(,i,e,,.v')(wa)>

= -7, <1og o + (wy, ¢<{x7x’}>>>.
The potential energy after a time interval A:
Utuws+08) = . (1og(m) + (ws + 05, 9({z.a'D) ).
We sample E ~ U(0,1), set ¢ = —log(E), U(wy + vd) — U(wp) = ¢, and obtain:

- if , x,2'})) <0,
51 welzayy (v, o({z, 2}))

0, otherwise.
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5.3 Running time analysis of LBPS-HMC

In Section 4.2, we have provided the running time analysis of LBPS under a general factor
graph G. In this section, we analyze the running time of LBPS-HMC under the Bayesian
GLM chain GTR model for CTMCs by simplifying the computational cost of a factor
graph G with sparse property under the condition that ¢, = O(1) and ¢y, = O(1), which
is satisfied in the Bayesian GLM chain GTR model. The condition that ¢, = O(1) and
cy, = O(1) indicates that the computational cost of computing the collision time and the
gradient in terms of w for any factor in the factor graph is of constant time regardless of
the dimension of the state space X in the CTMC. Recall that the computational cost for a
strongly sparse factor graph G is given in Equation 16.

The computational cost we derive not only holds for Bayesian GLM chain GTR model
but also holds for any Bayesian GLM rate matrix model that satisfies ¢, = O(1), ¢y, =
O(1),|N.| = O(1) and |S,| = O(1). Under the Bayesian GLM chain GTR rate matrix
parameterization, we have m = O (|X|?) and p = O (|X]?).

The running time of the key steps in Algorithm 2 is as follows:

1. Sample the auxiliary sufficient statistics using the end-point sampler: O (]X \3)

2. Update the univariate weights w* using HMC: O(Jy|X|), where Jy represents the
number of leapfrog steps in one HMC iteration. When updating w", the number of
non-zero entries for all possible features is |X|.

3. Update the bivariate weights w” using LBPS: O(J; log |X| + Jolog|X|). This is ob-
tained by plugging a1 = az = 0 into Equation 16, where a; = ap = 0 since we have
‘N*{ = 0O(1) and }S*’ = O(1). A local refreshment scheme is adopted.

Thus, the total cost of one iteration of our LBPS-HMC alternation algorithm is
O(Jo|X| + Jilog | X| + Jolog |X| + |X|%). (17)

In comparison, one HMC iteration for Bayesian GLM chain GTR takes O (Jo|X|? + |X|?)
since the total number of non-zero entries for all possible features of Bayesian GLM chain
GTR is |X|(|X] + 1)/2 using only HMC, where Jy is the number of leapfrog steps in one
HMC iteration. In our experiments, we find that |X/|, log|X| are both lower order terms
compared with |X|? using HMC. This potentially explains why our LBPS-HMC is more
computationally efficient than HMC. The running time analysis discussed here is not a
whole story since we do not provide information on how J; and Jo should be scaled in order
to obtain a constant number of effective samples. To provide the readers an idea of how
Jo in HMC scales, consider the case of normally distributed random vectors of dimension
p with an identity covariance matrix. To reach a nearly independent point, the number of

leapfrog updates under the independent and identically distributed case grows as O (pi

(Neal et al., 2011), where p is the dimension of the parameters. For LBPS, under the
independent and identically distributed normal distribution with dimension p or weakly
dependent case, we expect J; to grow as O(p).
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6. Experiments

All numerical experiments are run on Compute Canada resources “cedar” with Intel “Broad-
well” CPUs at 2.1Ghz and an E5-2683 v4 model. A detailed description of “cedar” can be
found at https://docs.computecanada.ca/wiki/Cedar. The algorithm is implemented
in Python 3.6.4 and available at https://github.com/zhaottcrystal/rejfreePy_main.
Across all experiments, the ESS is evaluated via the R package memese (Flegal et al., 2012).
We set the first 30% of the posterior samples as the burnin period to be discarded.

All the synthetic datasets are simulated under a Bayesian GLM chain GTR rate matrix
parameterization. We assign a standard Gaussian distribution as the prior over both the
univariate and bivariate weights, which are both generated from ¢/(0, 1) across all simulation
studies. The refreshment rate of LBPS is set to one and the number of leapfrog jumps and
the stepsize of each jump are set as L = 40 and ¢ = 0.001 in HMC. The combination of
the two tuning parameters are simply chosen among the ones with the best computational
efficiency given multiple combination of the parameter values.

Across all synthetic experiments, we generate 500 sequences given a total length of the
observation time interval as three and the states of all sequences are observed every 0.5
unit time under a Bayesian GLM chain GTR with different dimensions of rate matrices.
Later in this paper, we use “LBPS” for short to represent the combined sampling scheme
LBPS-HMC, which uses HMC to sample the univariate weights and LBPS to sample the
bivariate weights. When HMC sampling scheme is mentioned later, it refers to the sampling
scheme using HMC to sample all the weight parameters w = (w“, wb).

In both synthetic data experiments in Section 6 and real data analysis in Section 7,
we conduct computational efficiency comparison via ESS per second and we also check the
correctness of the two sampler implementation. For the synthetic data experiments, we
perform Exact Invariance Test (EIT) (Bouchard-Coté et al., 2019) in the spirit of Geweke
(2004). We compare the density of the posterior samples between LBPS and HMC, and
evaluate their difference using Absolute Relative Difference (ARD) (defined in Appendix
I). Since both algorithms share the same limiting distribution, as we increase the number
of iterations of the Markov chains, after an initial burnin period, the distributions of the
posterior samples from the two algorithms are expected to be closer to the target posterior
distribution. For higher dimensional rate matrices, since the total number of parameters
is O(|X|?), it is hard to display the density plots for all parameters. We use ARD as
the metric to describe the similarities between posterior samples from the two algorithms.
Smaller values of ARD indicate more similarities. In Section 7 with the real dataset, we
also compute the ARD and report the results in Appendix I.

6.1 Correctness check of LBPS and HMC using EIT

To check the correctness of our software implementation, we perform out testing procedure
EIT, a simple extension of Geweke (2004), with details provided in Appendix D. We per-
formed tests on both LBPS and HMC kernels on various dimensions of the rate matrices
(see Appendix D).

To further validate the correctness of LBPS and HMC, we compare the distribution of
the posterior samples collected from LBPS and HMC respectively. The shared synthetic
dataset is generated under an 8-by-8 Bayesian GLM chain GTR. The prior distribution for
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w is standard Gaussian distribution. We obtain 40,000 and 10,000 posterior samples from
LBPS and HMC separately with first 30% of the samples discarded. With a long chain
from both algorithms, we expect their density plots to be close and we demonstrate this
in Figure 5 using the density plot of all exchangeable parameters. The boxplot is provided
in Figure 9 in Appendix E. We also provide summary statistics of the posterior samples
among different parameters.
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Figure 5: Density plot of posterior density comparison across exchangeable parameters of
an 8-by-8 rate matrix between LBPS (with trajectory length 0.1) and HMC.

6.2 Computational efficiency comparison between LBPS and HMC

In order to explore the scalability of our algorithm as the dimension of the parameters
increases, we compared the ESS per second in the log;, scale among all the parameters for
different sizes of the rate matrices. Larger ESS per second indicates better computational
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Figure 6: ESS per second in the log;, with the dimension of the rate matrices ranging from
5-by-5, 10-by-10, ... to 30-by-30 with a step size of 5.

efficiency of the algorithm. One obvious choice to compare the efficiency of MCMC algo-
rithms is the average MCMC efficiency over all parameters, which is represented by the
mean ESS per second. However, the algorithm efficiency is better represented by the mini-
mum ESS per second since the entire posterior samples are valid unless all parameters have
mixed adequately. Thus, we focus on the minimum ESS per second over all parameters.

The dimension of the rate matrices ranges from 5-by-5, 10-by-10, ... to 30-by-30. We
obtain a total number of 60,000 posterior samples from LBPS and 10,000 samples from
HMC. To speed up the actual running time of the experiments, for rate matrices of dimen-
sion lower than 15-by-15, the trajectory length is fixed as 0.1. For rate matrices with higher
dimensions, the trajectory length is shortened to 0.05. Under the Bayesian GLM chain
GTR model parameterization, the number of exchangeable parameters is |X|(|X]| — 1)/2.
The result is displayed in Figure 6.

From Figure 6, we can see that when the dimension of the weight parameters is low, for
a 5-by-5 rate matrix, HMC has better performance than LBPS. As the dimension increases,
it shows that the minimum of the ESS per second for LBPS outperforms HMC. The larger
variation in ESS per second of HMC in the violin plot in Figure 6 indicates that HMC is not
efficient in exploring certain directions of the parameter space. We find that the minimum
ESS per second and its lower quantiles for LBPS are better than HMC as the dimension
increases. This result suggests that LBPS has better computational efficiency than HMC
for the class of high-dimensional CTMCs considered in this section.
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6.3 ESS per second using different trajectory lengths of LBPS comparisons

The computation efficiency of HMC has been found to depend highly on the choices of
the tuning parameters, which are the number of leapfrog jumps L and the size of each
jump e. Various strategies (Wang et al., 2013; Hoffman and Gelman, 2014; Zhao et al.,
2016) have been developed to effectively tune the parameters. LBPS also involves a tuning
parameter, which is the fixed trajectory length. Thus, it is of interest to examine whether
the computational efficiency of LBPS is sensitive to different choices of the trajectory length.

We simulate a synthetic dataset from a 20-by-20 rate matrix with 190 exchangeable
parameters. A 20-by-20 rate matrix is chosen since it has the same dimension as protein
evolution in the real data analysis. We use ESS per second as the metric to evaluate
the computation efficiency of LBPS. Our summary statistics include the minimum, first
quantile, mean, median, third quantile and maximum of the ESS per second across 190
exchangeable parameters. We obtain 40,000 posterior samples of the parameters of interest.
We show the actual walltime (in seconds) of our algorithm with fixed trajectory lengths at
0.025, 0.1, 0.15, 0.2 and 0.25 in Table 1. Since the first 30% of the samples are discarded,
the actual running time used to compute the ESS per second are scaled by 70% of the total
walltime in Table 1.

Trajectory Lengths 0.025 0.10 0.15 0.20 0.25
Walltime (in seconds) 240677 282233 338242 381565 403932

Table 1: Actual walltime of LBPS for 40,000 iterations with trajectory lengths at 0.025,
0.1, 0.15, 0.2, 0.25.

The results are shown in Figure 7. We have found that except the maximum of the
ESS per second, the computational efficiency of LBPS is similar across different trajectory
lengths and especially the minimum of ESS per second is very robust. The longer the
trajectory lengths, the better performance of the maximum of the ESS per second. Similar
conclusions are achieved in our real data analysis. The minimum of the ESS per second
is more important than the maximum since the performance of a sampler depends on the
direction that is the hardest to sample.

7. Real Data Analysis

7.1 Background

We use the real dataset from Zhao et al. (2016) with 641 amino acid sequences and each
sequence has 415 sites from the protein kinase domain family. It is available at https://
github.com/zhaottcrystal/rejfreePy_main/tree/master/Dataset. In phylogenetics,
the evolutionary process is often inferred using multiple homologous biological sequences
under a evolutionary tree with the same rate matrix across the tree. For simplicity, we
estimate the rate matrix from a pair of sequences. We pick randomly a pair of amino acid
sequences to study the rate matrix from its posterior distribution.
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Figure 7: ESS per second of the summary statistics across exchangeable parameters with
respect to different trajectory lengths of LBPS.

In Section 2.2, we have provided intuition behind the chain GTR model since we assume
that the exchangeable rates between a pair of states is affected by its neighbour pairs with
similar biological properties. Then another question arises as how to pick a reasonable
ordering of pairs of amino acids to allow neighbour pairs share similar biological properties.
According to He et al. (2011), we determine the ordering according to the closeness among
amino acids based on their pairwise FEuclidean distance defined by their physiochemical
properties. The distance satisfies nonnegative, reflective, symmetric, and triangle properties
and is given by Grantham (1974) as :

1
2

Di; = (a(Ci —¢;)* + B(pi — pj)* +(vi — vj)2> ; (18)

where ¢ = composition, p = polarity, v = molecular volume, and «, 3,7 are defined in
Grantham (1974). Larger pairwise distance indicates less similarity between pairs of amino
acids, where mutation between them may be deteriorative. On the contrary, smaller distance
indicates more similarities and easier mutations. The pairwise Fuclidian distance between
amino acids is given in Table 3 by He et al. (2011). We provide the table in Appendix F.

Given the distance in Appendix F, the ordering of pairs of amino acids regarding their
closeness is determined according to our proposed NNPAAO Algorithm 3 in Appendix G.
Some notations are introduced to help understand the algorithm. Denote AminoAcidDist as
the pairwise Euclidean distance between amino acids shown in Appendix F, X as the state
space of 20 amino acids and Aurerdereddist. a9 the set of unordered pairs of distinct amino
acids, where |x| = 20 and |X unordered,dist- | — 190, The algorithm outputs a dictionary
AminoAcidsPairRank with keys from Aurerdereddist. and the value associated with each
key represents the rank of this amino acid pair. Neighbour pairs indicate closeness for
similarities.
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The algorithm first picks the amino acid pair with the smallest positive Euclidean dis-
tance, which is pair “IL”, where D(I, L) = 5. The nearest neighbour to “IL” is chosen among
two candidate pairs with the smallest nonzero distance to “I” or “L”, which are “IM” with
D(I, M)=10 or “LM” with D(L, M)=15. Among them, we pick the pair with a smaller
distance and “IM” is defined as the nearest neighbour to “IL”. Next our current pair is set
as “IM” and similarly, we find the nearest neighbour to “IM” and we keep searching the
nearest neighbour for the current pair until we have iterated over all pairs in xrordered.dist.

7.2 Numerical results: computational efficiency comparison

We provide the correctness check via ARD between the two samplers in Appendix 1. We
compare the computational efficiency of LBPS and HMC via comparing the summary statis-
tics of the ESS per second across 190 exchangeable parameters of a 20-by-20 reversible rate
matrix using the protein kinase domain family dataset in Zhao et al. (2016). Figure 8 demon-
strates the computational advantages of using LBPS over HMC. The trajectory lengths of
LBPS is chosen as 0.1, 0.15 and 0.2. We find that when the trajectory length is set at 0.2,
LBPS outperforms HMC across all summary statistics of ESS per second. The minimum of
ESS per second of HMC is markedly worse than LBPS, this implies that the inefficiency of
HMC to explore certain direction of the parameter space. Under a fixed trajectory length of
LBPS, there is no big difference between the first quantile and third quantile of the ESS per
second across all parameters. It indicates that LBPS has similar computational efficiency
across different directions of the parameter space. In Table 2, we provide the ESS runing
HMC for 811380 seconds (9.4 days) compared to LBPS running only 81.25% of the walltime
of HMC, which further demonstrates the superior performance of LBPS compared to HMC.
A traceplot scaled by running time of a selected exchangeable parameter showing better
mixing using LBPS compared to HMC is provided in Figure 10 in Appendix H.

Summary Statistics
Method Min. 1st Quantile Median Mean 3rd Quantile Max.
LBPS (0.2) 773 1656 1864 1845 2108 2532
HMC 95 626 740 736 840 1233

Table 2: Summary of ESS across exchangeable parameters between HMC and LBPS with
trajectory length 0.2.

8. Discussion

In this paper, we have developed a computationally efficient sampling scheme combining
LBPS and HMC to explore high dimensional CTMCs under a novel Bayesian GLM chain
GTR rate matrix. In this model, we assume that the mutation rates of the amino acid
evolutionary processes depend on its neighbour pairs with similar physiochemical properties.

We also provide a framework for assessing the running time of LBPS algorithm, based
on a notion of strong sparsity. In terms of empirical performance, we found that in the
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Figure 8: Summary statistics of ESS per second of across exchangeable parameters with
different trajectory lengths of LBPS at 0.1, 0.15 and 0.2, compared to HMC.

problems considered, HMC alone leads to inefficient mixing of certain directions of the
parameter space. In the contrary, the computational performance of our method is more
uniform across different directions of the parameter space. In the real application, our
method outperforms stand-alone HMC in terms of ESS per second for all chosen summary
statistics.

Moreover, we provide the first proof-of-concept real data application applying LBPS
to high dimensional CTMCs, showing the great potential of this computational method in
this domain. This shows promises for evolutionary processes with a large state space, such
as codon evolution (Anisimova and Kosiol, 2008). Our sampling algorithm also has the
potential to be applied to co-evolution of groups of interacting amino acids residues which
also involves large rate matrices.

For phylogenetic applications, one of the limitations of our algorithm in its current form
is that it assumes an unnormalized reversible rate matrices since we were only able to obtain
analytical solution to the collision time under this situation. It is customary in phylogenetics
to use normalized rate matrix, where the normalization ensures that the expected number
of mutations is one given one unit time. To resolve this issue, one can normalize the branch
lengths instead of the rate matrix to recover identifiability. A related issue is that changing
the prior on the weights requires that the algorithms used to simulate the collision times
need be adapted. Fortunately several methods can be used to approach these collision time
simulation algorithms, see e.g. Bouchard-Coté et al. (2018), Section 2.3.

As another direction for future work, it would be interesting to combine our method
with Bayesian variable selection techniques (Ishwaran and Rao, 2005) and a binary version
of BPS (Pakman, 2017) to select subset of features that have a large effect on the underlying
CTMCs.
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Appendix A. Connection between Bayesian GLM GTR model and
Bayesian GLM chain GTR model

We have defined ¢3% in Section 2.2 such that any GTR rate matrices can be represented
via the Bayesian GLM rate matrix parameterization. Our objective is to prove that there
exists w, such that for any rate matrices under the Bayesian GLM parameterization, for

(rev)

Vw,q, . (w) can be represented under the Bayesian GLM chain GTR parameterization.

Zhao et al. (2016) have shown that for any rate matrix @, we can find weights w such
that Q(e1) = ¢4, (W) = exp {{w”, ¢** ({x,2'})) }7, (w") under the Bayesian GLM GTR
model. In the Bayesian GLM chain GTR model, we show that there exists w, such that

for Vw = <wb>’
w

q?;,(w) = exp{(’wb,¢gtr({:1;,:1;'})>}7rzr(’wu)
= 0" (w.)
= exp {<w2, (bCham({:l:, :1:/})>}7r.,;r(w7:)
Thus, we can set w¥ = aw" for any a € R so that 7, (w") = 7 (w¥), for Va’ € X. By

plugging the definition of @3 and ¢ in Equation 7 and Equation 15 respectively, we
require that:

{(1172)77({33@/}) + (’wz)n({x,:v’})fl = ("Ul))n({x’x/}) , for U({$a$/}) =2,3,..., X|(|X| - 1)/2)a
(w2)1 = (wb)l ’ for n({z,2'}) = 1.

Set p = X|(|X]| —1)/2), it is equivalent to solve

We obtain the solution w? = Bw”, where

ij =

B — (_1)i+j_2’ if j <diandi,j = 17277(|X|(|X|_1)/2)7
0, otherwise.

u u
Thus, the solution exists, where w, = <w§> _ (aw > '

*
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Appendix B. Gradient Computation for Univariate Weights in the HMC
step under combined sampling scheme

In our proposed sampling scheme LBPS-HMC described in Algorithm 2, we use HMC to
update only the univariate weights w® while fixing the bivariate weights w” and the auxiliary
variable z and LBPS to update the bivariate weights w” while fixing w* and z. We provide
the gradient information for w" required by HMC of our combined sampling scheme under
a reversible, unnormalized rate matrix.

We review that the augmented joint density given the sufficient statistics z(y) =
(n(y), h(y), c(y)) for a sample CTMC path y under a reversible, unnormalized rate matrix
is:

log fw\z,y(w"za y) = _7KHwH2 Z h Z .z (w) )

TEX z'eX x#x’

YY) cwlog (g, (w) + Y nglog(ma(w)). (19)

reEX x'eX x#x! TeEX

In the ith iteration of LBPS-HMC, while using HMC kernel, we only update w* while
conditioning on the rest. Thus, the exchangeable parameters are fixed at the values obtained

in the (¢ — 1)th iteration denoted as 02,2y (( b)zf ) To simplify the notation, we denote
022} (('wb)ifl) as 0, .. We can rewrite Equation 19 as:

lOg fWu|wb,Z,y (wu’wb’ Z, y) = _7"4'kuH2 Z hy Z Ty (wu)e{:l:,:n'} (20)

' eX x#x’

+ Z Z Cya’ log (Wx’(wu)e{ll'}) + Z Ny log(ﬂx (wu

reX x'eX x#x’ reX

Thus, the gradient of the augmented joint density with respect to w"

)

V108 fouui py (W' w”, 2,y) = —rw" = > D" haq, . (w") <w<x’>—2m<w“>¢(x>>

reEX x'€Xx#x!

+ Z Z Cra’ (’(b(ﬂfl) - Z Wr(wu)¢(x)>

reX ' €eX:x#a'

3 n (w) =S m(wuwm) ,

TEX rEX

where:

(21)
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Appendix C. Gradient Computation for Univariate and Bivariate
Weights using only HMC kernel as benchmark sampling algorithm

To investigate the computational efficiency of LBPS-HMC, we choose state-of-the-art sam-
pling algorithm HMC to sample w = (w”, 'wb).
Since HMC requires the gradient of w, we derive it in Equation 19:

Viog fupy(wlz,y) = —kw—> > huq,, (w) (@b(x’)—Zwr(w)w(:n))

zeX 2’ eX:x#x! TEX

- et (w) 94’

zeX ' eX:x#x!

+ Z Z Cy ! <’(P(J:‘/) — Z Wx(w)'w(m))

zeX ' €X:x#x!

+> ) cwd{ma) + D ng (wc) -> Wx(w)qp(:v)) .

zeX ' €X:x#x! reX reX
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Appendix D. Software implementation correctness checks

We outline in this section a simple extension of Geweke (2004), which allows us to test
the correctness of our software implementation. See Geweke (2004) for more background.
We call the extension outlined in this section “Exact Invariance Test” (EIT), which is
described in more details in the website https://www.stat.ubc.ca/~bouchard/blang/
Testing_Blang_models.html.

As in Geweke (2004), EIT relies on comparing two sets of simulators, both targeting the
joint distribution over the unobserved and observed variables. These methods exploit the
fact that exact samples from this joint distribution can be obtained in two ways, described
below. In what follows, we denote the prior by gy, while W/|W ~ K(:|WW) denotes the
MCMUC kernel. In our case, it is a Markov kernel based on HMC and LBPS. We also define
a test function ¢. In our context, an example of #(-) is the function used to compute the
exchangeable parameters given W. In general, ¢t could take as input both the unobserved
and observed variables, but for simplicity it only depends on the unobserved one W here.

The first simulator consists in the following steps:

e Forme {1,2,..., M},

— Sample W, ~ gy.

— Optional step: generate a dataset using the likelihood conditionally on W,,
(would only be needed if ¢t depends on both the synthetic data and W).

— Fp =t(Wy).
The second simulator consists in the following steps:

e Forme {1,2,..., My} :

— Sample Wi ~ gw-

Generate a dataset using the likelihood conditionally on Wy .
For j S {2, 3, cey J} Wj,m|Wj71,m ~ K('|Wj,1’m).
— Hp =t(Wim).

Forany J > 1,a € {1,2,...,My},b € {1,2,..., My}, the random variable F, (generated
from the first simulator) is equal in distribution to the random variable H (generated by
the second simulator) if and only if the kernel K is f invariant. This follows directly from
the definition of global balance of Markov chains. This exact equality of distributions can
then be used as the basis of a frequentist point-null hypothesis test.

EIT Results

Table 3 and Table 4 show that our proposed LBPS-HMC has passed the EIT since all
pvalues are bigger than a threshold of 0.05/n, where n represents the number of parameters

in the test to take multiple comparisons into account. We show the test results of using
HMC alone in Table 5 and Table 6.
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KS test

Parameter Index

1

2 3 4 )

Pvalue

0.640 0.200 0.329 0.114 0.167

Test statistics

0.060 0.087 0.077 0.097 0.090

Table 3: EIT results for the weights of the stationary distribution using LBPS-HMC.

KS test

Parameter Index

1

2

3

4

5 6 7 8 9 10

Pvalue

0.200 0.504 0.441

0.061 0.571 0.838 0.382 0.709 0.238 0.382

Test statistics

0.087 0.067 0.070 0.107 0.063 0.050 0.073 0.057 0.083 0.073

Table 4: EIT results for exchangeable parameters using LBPS-HMC.

KS test

Parameter Index

1

2 3 4 5

Pvalue

0.967 0.200 0.640 0.838 0.640

Test statistics

0.040 0.087 0.060 0.050 0.060

Table 5: EIT results for the weights of the stationary distribution using HMC alone.

KS test

Parameter Index

1

2

3

4

) 6 7 8 9 10

Pvalue

0.139 0.076 0.504 0.281 0.838 0.640 0.936 0.504 0.139 0.238

Test statistics

0.093 0.103 0.067 0.080 0.050 0.060 0.043 0.067 0.093 0.083

Table 6: EIT results for exchangeable parameters using HMC alone.
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Appendix E. Posterior sample comparison between LBPS-HMC and
HMC

In this section, we provide the summary statistics including the minimum, first quantile,
median, mean, third quantile and maximum of the ARD defined in Equation 22, across all
exchangeable parameters from one single run of LBPS-HMC and HMC in Table 7 under
the 8-by-8 Bayesian GLM chain GTR model described in Section 3. We also provide the
boxplots of posterior samples collected from LBPS-HMC and HMC under the same set-up
in Figure 9.

Min. 1st Quantile Median Mean 3rd Quantile Max.
1.4% 1.16% 2.70%  3.05% 3.63% 12.06%

Table 7: Summary of ARD across exchangeable parameters between HMC and LBPS.

Method ® HMC & LBPS (T=0.1)

12

3;“?“* -*;; I',l- l?'l'.i;. i

El E2 E3 E4 E5 E6 E7 E8 E9 E10E11E12E13E14E15E16 E17 E18 E19 E20 E21 E22 E23 E24 E25 E26 E27 E28
Exchangeable parameters

Posterior samples of exchangeable parameters
[e)]

Figure 9: Boxplot of posterior samples comparison for exchangeable parameters of an 8-by-8
rate matrix between LBPS-HMC and HMC.
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Euclidean Distance of Amino Acids
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Appendix G. Nearest Neighbour Pariwise Amino Acid Ordering

Algorithm 3 Nearest neighbour pairwise amino acid ordering

1:

47:
48:

49:

Initialization:
X dynamic, distinct _ X:listinct’ counter=0.
AminoAcidPairRank=DynamicSupportForAminoAcid =dict(), which is an empty dictionary.
Set a= B=ip=i;=NULL.
for i € X do
DynamicSupportForAminoAcid[i] = X \ {i}.
end for
while xdynamic, distinct i 16t empty do
if ig is not NULL and 4; is not NULL then
Find support of 49: a=DynamicSupportForAminoAcid[io].
Find support of 41: f=DynamicSupportForAminoAcid([i].
end if
if neither of o or 3 is empty then
rowDist = AminoAcidDist[ig, a]
colDist = AminoAcidDist[8, 1]
rowMinInd = afargmin(rowDist)]
colMinInd = B[argmin(colDist)]
if AminoAcidDist[ig, rowMinInd] < AminoAcidDist[colMinInd, i1] then
i1 = rowMinInd
else if AminoAcidDist[ig, rowMinInd] > AminoAcidDist[colMinInd, 1] then
i9 = colMinInd
end if
else if o is NULL and S is not NULL then
colDist=AminoAcidDist[8, i1]
colMinInd=p[argmin(colDist)]
i9= colMinInd
else if « is not NULL and 8 is NULL then
rowDist = AminoAcidDist[ig, o]
rowMinInd=a[argmin(rowDist)]
i1 = rowMinlnd
else
Find the amino acid pair SmallestPair €
0= index of the first amino acid in SmallestPair in X.
71 = index of the second amino acid in SmallestPair in X.
end if
AminoAcidPairRank[ig, 41]=AminoAcidPairRank[i1, i9] =counter, counter ++.
AminoAcidDist[ig, i1]=AminoAcidDist[i1, ig]=00.
if 71 € DynamicSupportForAminoAcid[ip] then
Remove i1 from DynamicSupportForAminoAcid([ig)
end if
if i9 € DynamicSupportForAminoAcid[ii] then
Remove ig from DynamicSupportForAminoAcid[i;]
end if
so = X;, + X, (obtain amino acid pair so), s1 = X;; + X, (obtain amino acid pair s1).
if s0 € X?lynamic, ordered,distinct then
Remove sg from X:{ynamic, distinct'
end if
if s1 € X:lynamic, distinct then
Remove s1 from Xﬂynamic, distinct
end if
end while

Return AminoAcidPairRank.

X dynamic,distinet with nonzero minimum in AminoAcidDist.
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Appendix H. Traceplot comparison for real data analysis

We provide the traceplot on a randomly selected exchangeable parameter using LBPS-HMC
compared with HMC. There is a small difference between posterior means with ARD 0.43%.

Method HMC — LBPS

<

Traceplot

w

18 Tl “‘H‘ i ‘ I

0 250000 500000 750000
Running Time in Seconds

Figure 10: Traceplot for the 145th exchangeable parameter using LBPS-HMC compared to
HMC with ARD 0.43% in terms of the posterior mean.
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Appendix I. Correctness check via ARD between two samplers

With the same prior distribution and likelihood for the parameters (weights) of interest,
LBPS-HMC and HMC share the same posterior distribution. We evaluate the discrepancy
among the posterior samples from the two algorithms using ARD:

lz —yl
max(x,y)

ARD(z,y) , for Vz,y > 0. (22)

Figure 12 and Table 8 demonstrate the ARD across all exchangeable parameters between
HMC and LBPS-HMC with trajectory length 0.2.
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Proportion out of all 190 exchangeable parameters
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0.0 0.1 0.2 0.3
Absolute relative difference across all exchangeable parameters

Figure 11: ARD across exchangeable parameters between LBPS-HMC compared to HMC
with blue dotted lines representing the 10% and 90% quantile of ARD.

Min. 1st Quantile Median Mean 3rd Quantile Max.
0.3% 7.5% 14.8%  15.1% 22.0% 44.4%

Table 8: Summary of ARD across exchangeable parameters.

Since the maximum value of ARD is 44.4%, we further check whether it will decrease
as expected if we run the chain longer. The discrepancy between the posterior samples
from the two algorithms decreases if we have a longer chain. We validate this by providing
a violin plot below comparing the ARD from the current run denoted as “shorter”with a
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longer run denoted as “longer”. HMC had a walltime of 12 days and LBPS had a walltime
of 10 days. Later, we ran each method for two more days. The maximum of ARD dropped
from 44% to 37% .

We provide the quantile of ESS in Table 9 and the actual ESS in Table 10 of the
exchangeable parameters that have ARD bigger than its 95% quantile between LBPS-HMC
and HMC. We have found that a relatively bigger discrepancy between the posterior means
occurs when either both methods have low ESS or when LBPS-HMC has high ESS (such
as 97.9% quantile and 94.2% quantile across all exchangeable parameters) but HMC does
not obtain an equivalently high ESS for the same parameter.

<) o o o
[N ) w IS

Absolute relative difference values

o
=)

longer shorter
walltime group

Figure 12: Violin plot of ARD across exchangeable parameters between a “shorter” and
“longer” run.

LBPS-HMC  2.63% 2.105% 8.42% 5.79% 77.4% 942% 75.8% 979 % 0.526% 3.16%

HMC 16.84% 0.526% 15.79% 2.63% 53.7% 84.2% 73.7% 98.4% 1.053% 5.26%

Table 9: Quantiles of ESS of exchangeable parameters with ARD bigger than its 95%
quantile.

LBPS 1071 1051 1248 1147 2145 2330 2115 2451 773 1118
HMC 544 152 604 488 927 1032 1090 591 190 718

Table 10: The ESS of exchangeable parameters with ARD bigger than its 95% quantile.
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Appendix J. Correctness of the sampling scheme LBPS-HMC

In this section, we establish the correctness of our sampling scheme LBPS-HMC described in
Algorithm 2, i.e. that it is invariant with respect to the distribution with density gy, (w|Y)
in Equation 9. The sufficient statistics Z defined in Section 2 are used as “transient auxiliary
variable,” i.e. quantities used to define a transition kernel but discarded after each transition
is performed, a common technique in the MCMC literature, e.g. Zhao et al. (2016). We
define x as the augmented sample path and a mapping d(-) that takes @ as input and outputs
a vector containing the state of the CTMC at each observation time, y as the states of the
partially observed paths, and gemi as an emission probability or density function.
The joint distribution after auxiliary variable augmentation is

gw,x,y,z(wv Z,Yy, Z) = gw(u’)g)dQ(m | Q(w))gy|d(y ’ d(w))(sz(:lz) (Z) (23)
gya | d) == [ gemi (o | dv) . (24)
veV

Since gyq and d,(4) integrate to one when marginalizing « and z, we have that the aug-
mented target admits the posterior distribution of interest (gyjy, Equation 9) as a marginal.

In the following, we define a Markov chain WO W@, . on the state space RE.
Our sampling scheme is a Markov transition kernel T which is itself constructed using an
alternation of several kernels 17,75, T3. We show that each step in this sequence keeps
Gwly(w|Y) invariant. It follows from standard results in MCMC theory that the alternation
of these three kernels is also invariant with respect to gy, (Tierney, 1994). A first kernel T}
is used to instantiate the auxiliary variable Z. Then, a second kernel T5 is used to perform
changes in W conditionally on Z, and finally, a last kernel T3 projects the augmented space
back to the target space RT. The broad lines of the arguments follow Appendix A in Zhao
et al. (2016), with the key difference being that a combination of LBPS and HMC is used
to design the kernel 75 which updates W given Z. We focus on the points in which the
argument differs compared to Zhao et al. (2016).

Our sequence of transition kernels can be denoted as: w L (w, z) 2, (w', z) B .
Given the observations Y and current weights W, the transition kernel 77 performs the
auxiliary variable Z sampling with density T (w', 2" | w) := 6w (W') gy (2 | W, y). Details
of this sampling step are outlined in Section 4.3 and Supplement 3 of Zhao et al. (2016).

The kernel T, performs several Metropolis-within-Gibbs steps on w while keeping the
auxiliary variable z fixed. In Zhao et al. (2016), AHMC is used to update all elements of
w. In this paper, for reasons described in Section 5.1, we partition w into two blocks: a
first block corresponding to the univariate weights w" and a second block, to the bivariate
weights w” (see Algorithm 2). We use HMC to update w® while fixing w” and z and
LBPS to update w” while fixing w" and z. This alternation can be denoted as (w, z) =
(w*,w"), z) 25 (w™ w’),z) B2 (w™ w?),z) = (w',z). Again, as long as both
the HMC and LBPS components are invariant with respect to an arbitrary conditional
distribution of the augmented target g,y ., their alternation is also guaranteed to preserve
invariance. For HMC, see for example Neal (2010), for LBPS invariance was shown for an
arbitrary distribution in Bouchard-Coté et al. (2018), Appendix F, so in particular it holds
for a conditional distribution.
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