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Abstract

We consider a setup in which confidential i.i.d. samples X1, . . . , Xn from an unknown
finite-support distribution p are passed through n copies of a discrete privatization chan-
nel (a.k.a. mechanism) producing outputs Y1, . . . , Yn. The channel law guarantees a local
differential privacy of ε. Subject to a prescribed privacy level ε, the optimal channel should
be designed such that an estimate of the source distribution based on the channel out-
puts Y1, . . . , Yn converges as fast as possible to the exact value p. For this purpose we
study the convergence to zero of three distribution distance metrics: f -divergence, mean-
squared error and total variation. We derive the respective normalized first-order terms
of convergence (as n → ∞), which for a given target privacy ε represent a rule-of-thumb
factor by which the sample size must be augmented so as to achieve the same estimation
accuracy as that of a non-randomizing channel. We formulate the privacy–fidelity trade-off
problem as being that of minimizing said first-order term under a privacy constraint ε.
We further identify a scalar quantity that captures the essence of this trade-off, and prove
bounds and data-processing inequalities on this quantity. For some specific instances of
the privacy–fidelity trade-off problem, we derive inner and outer bounds on the optimal
trade-off curve.

Keywords: differential privacy, randomized response, distribution estimation, privacy–
utility trade-off

1. Introduction

In the statistical analysis of privacy-sensitive data, the key challenge consists in randomizing
database queries or post-processing (sanitizing) the data set so as to render inferences
about the data (values or labels) as difficult as possible while at the same time preserving
the usefulness of the data for estimating parameters of the underlying distribution. The
inherent trade-off between the conflicting goals of privacy and utility arises in a broad
variety of situations, notably in medical surveys, customer profiling, consumer studies,
population census, opinion polls or surveys in social sciences.
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Specifically, we will be concerned with the randomized response (RR) technique. An
early inspiration for the basic setup, which is depicted in Figure 1 further below, dates
back to Warner (1965): a common task in social sciences is to conduct surveys in which
some answers might be stigmatizing (e.g., questions on drug use, sexual behavior, etc.).
To overcome the respondent’s potential reticence to answering faithfully, Warner proposed
to perturb the interviewee’s answers by having him/her secretly randomize the answers, in
such way that not even the interviewer would learn the true answer.

In more recent years, a substantial body of work has developed around the celebrated
notion of differential privacy (DP) introduced by Dwork (2006); Dwork et al. (2006) building
on precursor work by Evfimievski et al. (2003), amongst others. The original purpose of
DP was to provide strong privacy guarantees against a resourceful attacker who can access
queries to a central database (see for example De (2012); Vadhan (2017)). By contrast,
Kasiviswanathan et al. (2011) and Wainwright et al. (2012) considered a decentralized
privatization model referred to as local privacy, in which each data point is independently
perturbed by a randomizing mechanism. Warner’s RR scheme can be inscribed in this local
privacy framework.

Notable other proposals in the spirit of this local, non-interactive privatization mech-
anism include Agrawal and Srikant (2000), in which the authors propose a procedure to
build a decision-tree classifier from perturbed training data that performs close to a clas-
sifier built from the original non-perturbed data. Wasserman and Zhou (2010) study the
exponential rate at which certain estimates of continuous distributions from noisy samples
concentrate in a small ball (in mean-square loss or Kolmogorov-Smirnov distance) centered
around the true distribution. Wainwright et al. (2012) study minimax learning rates of
distribution parameters from privatized samples from the viewpoint of statistics. In the
context of locally private hypothesis testing, Gaboardi and Rogers (2017) study privatized
chi-square tests for goodness of fit and independence testing. A more recent publication by
Nageswaran and Narayan (2020) considers a similar setting as ours, but with reversed tar-
gets: the true distribution is to be kept secret from the querier, whereas the data (or some
function thereof) is to be disclosed with best possible accuracy. Also worth mentioning as
a new research direction is the work by Huang et al. (2017), who introduced the concept
of generative adversarial privacy which is inspired by the recent invention of generative
adversarial networks: the confidential data set (in a non-local privacy context) is used to
train a generative neural network (against an adversary), which then creates plausible new
data samples that emulate the original distribution without disclosing any sample from the
training set.

For discrete and finitely supported distributions, the work of Kairouz et al. (2014) has
shown that a finite class of privatization mechanisms called staircase mechanisms are opti-
mal among all ε-private mechanisms for a constrained f -divergence maximization problem
related to private hypothesis testing. In particular, they show that a simple mechanism,
which we call the step mechanism—defined in Equation (23) in the present article—which
they refer to simply as randomized response (RR), is optimal for their problem in the low
privacy regime. Interestingly, this mechanism appears in other contexts as well: for instance
in the distributed computation problem studied by Kairouz et al. (2015), this mechanism
turns out to be optimal in a fairly general sense.
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An alternative (and complementary) privatization scheme to RR has been more re-
cently introduced under the name of Randomized Aggregatable Privacy-Preserving Ordinal
Response (RAPPOR) scheme (Erlingsson et al., 2014; Duchi et al., 2013). While the con-
ventional RR scheme assumes that the source variable and the privatized share a same finite
alphabet, the privatized representation in a RAPPOR scheme lives on an alphabet whose
size grows exponentially in the source alphabet size, thus harshly impacting on storage or
bandwidth requirements. It was shown in Kairouz et al. (2016a,b) that under `1 (total
variation distance) and `2 (mean-squared error) losses alike, the RAPPOR scheme is order-
optimal in the high privacy regime (ε ↓ 0) and strictly suboptimal in the low privacy regime
(ε ↑ ∞). Conversely, the RR scheme is order-optimal in the low privacy, and sub-optimal
in the high-privacy regime.

Recently, Ye and Barg (2018) introduced a novel privatization scheme1 which can be
viewed as a generalization of both RR and RAPPOR, and is sometimes referred to as sub-
set selection. They prove that under `1 and `2 metrics, these schemes are order-optimal in
the medium to high privacy regime (eε � K, where K denotes the cardinality of the dis-
crete source’s support). Subsequently in Ye and Barg (2017), the same authors strengthen
this result for the `2 metric, by proving asymptotic optimality in all regimes. The result
was recently extended to more general metrics (including the `1 metric) by the same au-
thors (Ye and Barg, 2019). Subsequent work by Acharya et al. (2019) has instead focused
on the distributed scenario, in which the Hadamard response is proposed as a more suitable
mechanism than RR, RAPPOR or subset selection, in that it substantially drives down
communication complexity while still being sample optimal.

In the present work, rather than studying RAPPOR and its generalization by Ye and
Barg, we turn our attention to the conventional, more storage efficient RR scheme.2 Specif-
ically, we consider the situation where an interviewer or curator observes independent and
identically distributed (i.i.d.) realizations of potentially sensitive data. Instead of publishing
the records in the clear, the curator is required to process this source data in such way that
inferences on the individual source realizations are rendered hard, but an accurate estima-
tion of the source distribution is rendered easy. In addition, the curator is constrained to
using a memoryless privatization strategy, sometimes referred to as non-interactive mecha-
nism (Leoni, 2012; Duchi et al., 2013, 2014).

Although non-interactive mechanisms are provably optimal in certain setups (Kairouz
et al., 2015), the trade-off under study may in general benefit from more complex, interactive
channel structures. However, there might be justified reasons to use a stationary and
memoryless privatization channel:

Randomized survey In certain situations such as randomized response surveys (Warner,
1965), the truthful answer to an interviewer’s question might be stigmatizing (e.g., drug
consumption, sexual behavior, etc.). In such setups, a transparent and non-interactive
randomization of answers is necessary as a participatory incentive.

1. Ye and Barg acknowledge in their publication that Wang et al. (2016) independently introduced the
same privatization scheme.

2. Note that several key results known in the literature that facilitate further analysis, such as optimality
of “extremal” mechanisms (Kairouz et al., 2014; Ye and Barg, 2018, Lemma IV.3), cease to hold under
the restriction of pure RR that we take here.
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X1 ∼ p W Y1 ∼ q = pW

X2 ∼ p W Y2 ∼ q = pW

...
...

...

Xn ∼ p W Yn ∼ q = pW

source privatization disclosure

estimates p

Bob

estimates Xi

Eve

Figure 1: Non-interactive mechanism: the curator sees n samples of an i.i.d. discrete random
source {Xi} with distribution p and processes them individually through n copies
of a privatization channel W prior to publication. From the outputs {Yi}, the
legitimate observer Bob tries to infer p, whereas the adversarial observer Eve tries
to infer one (or more) source sample Xi.

Timeliness Strict delay constraints may outrule the possibility of batch processing. Low-
latency sensoring or time-critical surveys may be examples of such situations. For instance,
a medical survey could be conducted over a timespan of several years, but there might be
an urge to publish partial information at much more frequent intervals so as to help gain
statistical insights in a timely manner.

Finite horizon In applications where the curator has no control over the eventual size n
of the data collection because it may be interrupted anytime, a non-interactive mechanism
seems a more viable and robust approach.

Privacy fairness Applying one and the same privatization channel onto each data sample
enforces full uniformity of privacy guarantees across samples in a simple and transparent
way.

Our privacy requirement will be based on the notion of ε-local differential privacy (Sar-
wate and Sankar, 2014), which is inherited from the celebrated concept of differential privacy
proposed by Dwork (see comprehensive surveys by Dwork (2008); Leoni (2012); Ji et al.
(2014)) by removing the adjacency relationship between data sets. The ε parameter in local
differential privacy gives an appreciation of how uniformly hard it is to make inferences on
the source realizations, regardless of the source distribution.

On the other hand, the fidelity will be linked to three alternative loss metrics—a family of
Csiszár f -divergence metrics (notably including Kullback–Leibler (KL) divergence), mean-
squared error (MSE) and total variation (TV)—between the exact source distribution and
an estimate thereof from the privatized samples.3 More specifically, the figure of merit
will be the speed of convergence to zero of the expected fidelity loss (as measured by the
metric of choice among the three metrics under study). For this purpose, we will derive
asymptotic expressions of the expected MSE and TV losses for large sample sizes. As to
the f -divergence metric, we will generalize (to the effect of including randomization) an
asymptotic expansion of the expected KL divergence between the empirical distribution

3. Note that in some publications, the TV and MSE metrics are respectively referred to as `1 and `2-loss (Ye
and Barg, 2018, 2017)
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t(xn) of n i.i.d. samples of a random variable X ∈ [K] gathered in a vector xn ∼ p⊗n, and
its exact distribution p = (p1, . . . , pK), as n tends to infinity (Abe, 1996):

E
[
D
(
t(xn)

∥∥p)] =
K − 1

2n
+

(
K∑
k=1

1

pk
− 1

)
1

12n2
+O(n−3). (1)

The first-order term of this expansion suggests that a low support set cardinality K will
be beneficial for the speed of convergence, the second-order term suggests that for a given
cardinality, the uniform distribution is most beneficial.

The main contributions of this article are a substantial expansion upon our predecessor
conference paper (Pastore and Gastpar, 2016), and can be summarized as follows:

• While previous publications have already studied large-sample size asymptotic expan-
sions of standard loss metrics, we have sought to generalize these derivations in several
ways: (i) we force the distribution estimate to be a valid probability distribution and
rigorously treat the error term that arises from this projection operation4; (ii) in ad-
dition to TV and MSE loss metrics (elsewhere referred to as `1 and `2 risk) we also
cover a large class of f -divergence metrics; (iii) we highlight that maximum-likelihood
and MMSE distribution estimators acquire a similar form and argue that they yield
the same asymptotic loss.

• We identify the non-negative matrix Φ(W ) = W (W−1 �W−1) (where ‘�’ denotes
entrywise multiplication) as well as the sum of its entries ϕ(W ) =

∑
ij Φij(W ) as

representative proxies for a larger class of fidelity metrics. These quantities essentially
capture the fidelity metric’s dependency on the random mechanism (row-stochastic
matrix) W . We study some of their properties, such as data-processing inequalities.

• We give a partial answer to the question as to which ε-private mechanism is optimal
in the sense of minimizing the quantity ϕ(W ). What we prove is that among the
class of circulant mechanisms, the so-called step mechanism (already widely studied
in other publications on local differential privacy) minimizes ϕ(W ) (Theorem 9).

• We derive upper and lower bounds on the fundamental privacy–fidelity tradeoff for
all three loss metrics, and for both problem formulations under consideration: the
so-called feasibility problem and minimax problem (defined in Section 3.3). The lower
bounds are all based on an important lower bound on ϕ(W ) which only depends on
the privacy level ε and the source’s support size K.

2. Notation

By convention, all vectors are row vectors unless transposed by (·)T. We occasionally denote
the inner product between two vectors a and b as 〈a, b〉 = abT. The product signs ‘�’ and
‘⊗’ stand for the Hadamard product (entrywise multiplication) and the Kronecker product,

4. Kairouz et al. (2016a,b), for example, discusses projection operations to some detail and notices by
simulation that a projected estimator tends to outperform its unprojected counterpart, but provides no
analytic treatment of the error term. Similarly, Ye and Barg (2018) correctly point out that the impact
of the projection operation is exponentially small, but omit the detailed analysis.
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respectively. The exponent notation a⊗n stands for the n-fold Kronecker product a⊗. . .⊗a.
The bracket [K] is shorthand for {1, 2, . . . ,K}. The type or empirical distribution of a sample
sequence xn = (X1, . . . , Xn) ∈ [K]n shall be denoted as t(xn) = [t1(xn), . . . , tK(xn)] where
tk(xn) = 1

n

∑n
i=1 1{Xi = k} with 1{·} standing for the indicator function. The all-ones row

vector of dimension N is written as 1N , or simply 1 if its dimension is clear from context.
The probability simplex is denoted as P (whose dimension is always clear from context).
We denote by δk,` the Dirac delta function, which equals one if k = ` and zero otherwise.

3. Problem description

A privatization channel or mechanism W with finite source alphabet [K] and finite output
alphabet [L], is a discrete stochastic mapping (or Markov kernel) described by a matrix of
conditional probabilities W with (k, `)-th entry

Wk,` = Pr{Y = `|X = k}.

The matrix W is row-stochastic, meaning that all its entries belong to the unit interval and
that each row sums to one, i.e., W1T

L = 1T
K . This article is only concerned with square

channels, hence L = K throughout.
The privatization channel acts independently upon each of the n i.i.d. source symbols

xn = (X1, . . . , Xn) ∼ p⊗n to generate a sequence of i.i.d. privatized observations yn =
(Y1, . . . , Yn) ∼ q⊗n. The output distribution q induced by the source distribution p is given
by right-multiplication of p with the channel matrix W . Moreover, we require that W be
full-rank. Hence,

q = pW p = qW−1.

The curator is cognizant of W , has access to the output sequence yn and seeks to generate
an estimate of p, which we denote as p̂n. Since W is square full-rank and the source is
i.i.d., the quantity

p̌n , t(yn)W−1 (2)

is a complete and minimally sufficient statistic for p. Consequently, any estimator p̂n can
be defined as a function of p̌n (and possibly W ) without loss of optimality nor generality.
Additionally, we require the estimator p̂n to be consistent, which means that

lim
n→∞

Pr{‖p̂n − p‖ > δ} = 0 (3)

for any δ > 0. Clearly, the speed at which this convergence takes place will depend on how
“noisy” the mechanism W is designed to be. We would wish the convergence to be fast
(for the sake of fidelity) while the mechanism should allow as little inference on Xi from Yi
as possible (for the sake of privacy), irrespective of the (unknown) source distribution. We
now introduce the metrics for characterizing this privacy–fidelity trade-off.

3.1 Fidelity

To measure the accuracy of any given estimator p̂n, we define three expected loss metrics:
one based on Csiszár’s f -divergence, one based on mean-squared error (MSE) and one based
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on total variation distance (TV), namely5

L
(n)
f -DIV(p,W ) , E

[
Df

(
p̂n
∥∥p)] (4a)

L
(n)
MSE(p,W ) , E

[∥∥p̂n − p∥∥2

2

]
(4b)

L
(n)
TV (p,W ) , E

[∥∥p̂n − p∥∥1

]
. (4c)

Here, the f -divergence between two same-sized probability vectors p, q ∈ P and for a convex
function f satisfying f(1) = 0, is defined as

Df (p‖q) =
∑
k∈[K]

pkf

(
qk
pk

)
.

Note that TV distance is actually an f -divergence (for the function f(x) = |x− 1|) whereas
the MSE distance is not. However, we choose to single out TV distance as a separate
metric, since the class of f -divergences that we shall focus on requires differentiability of
the function f(x) at x = 1, which excludes TV distance.

More specifically than the loss metrics (4a)–(4c) themselves, we will consider the limiting
ratios between the loss metrics achieved with the privatizing mechanism W against the
corresponding value that would be obtained from a clear view on the samples, i.e., without
privatization. These asymptotic normalized loss metrics are defined as

αf -DIV(p,W ) , lim
n→∞

L
(n)
f -DIV(p,W )

L
(n)
f -DIV(p, I)

(5a)

αMSE(p,W ) , lim
n→∞

L
(n)
MSE(p,W )

L
(n)
MSE(p, I)

(5b)

αTV(p,W ) , lim
n→∞

(
L

(n)
TV (p,W )

L
(n)
TV (p, I)

)2

, (5c)

where I denotes the identity (non-privatizing) channel.6 Since, as we shall see, the metrics
(4a) and (4b) decay as O( 1

n) when n tends to infinity, whereas (4c) decays as O
(

1√
n

)
(notice

the square in (5c) introduced to compensate for this fact), we can view the normalized
quantities αf -DIV, αMSE and αTV as rules of thumb for the factor by which the sample size
has to be increased if we want the accuracy of the privatized estimation to approximately
match that of the non-privatized case.

5. Besides (p,W ), the fidelity loss metrics (4a)–(4c) also depend on the estimator function, but we choose
to omit this dependency for notational brevity. The same applies to the asymptotic metrics presented
further below, in (5a)–(5c).

6. The identity can be replaced by any permutation matrix, since a permutation amounts to a relabeling
of symbols. The estimators p̂n introduced in the next Subsection are indeed consistent with this permu-
tation invariance, in the sense that they give L (n)(p,W ) = L (n)(p,WΠ) for any permutation matrix
Π.
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3.2 Privacy

Our definition of privacy is based on the concept of local differential privacy. A privatization
channel W = [Wk,`]k,` as defined above is said to be ε-locally differentially private (or ε-
private) if for all index triples (k, k′, `) ∈ [K]3, we have

Wk,` ≤ eεWk′,`. (6)

For a given channel W , we denote by ε(W ) the smallest value of ε such that (6) holds for
all (k, k′, `), i.e.,

ε(W ) = log

(
max
k,k′,`

Wk,`

Wk′,`

)
. (7)

Let W denote the set of all K×K full-rank row-stochastic matrices and let Wε ⊂ W denote
the set of ε-private mechanisms.

3.3 Two problem formulations for the privacy–fidelity trade-off

Now that we have introduced the fidelity loss and privacy metrics in (5) and (7) respectively,
we can formulate the privacy–fidelity trade-off problem. We propose two different problem
formulations, which we will refer to as the feasibility problem and the minimax problem,
respectively. In the following, the generic notation α may refer to either αf -DIV, αMSE or
αTV.

3.3.1 Feasibility problem

Assume that the source distribution p is fixed. We seek to characterize the set F (p) of all
(ε, α) pairs which are jointly feasible, i.e.,

F (p) ,
{(
α(p,W ), ε(W )

)
: W ∈ W

}
.

Specifically, we seek to characterize the optimal ε-α trade-off curve

α?(ε;p) , min
W∈Wε

α(p,W ) (8)

Note that, as we have stressed previously, the curator (i.e., the designer of W ) has no
knowledge of p. Hence, the optimal trade-off curve α?(ε;p) is achieved in the event that
the curator makes the best guess about the optimal W for a given p, as if aided by a
genie who hands over the knowledge of p. In general though, no design strategy for W can
leverage knowledge about p, and thus will fall short of achieving α?(ε;p).

3.3.2 Minimax problem

Assume that the source distribution p can be any among a continuous subset P of the
probability simplex P. The curator seeks to optimize W based on this knowledge of the
continuous candidate set P. Hence, we define the minimax problem as being that of
determining

α?(ε; P) , min
W∈Wε

sup
p∈P

α(p,W ). (9)
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Reducing P to a singleton set {p} would make both problem formulations mathematically
identical, in the sense that (9) would equal (8). However, one has to bear in mind that
the interpretations of both problem formulations are rather different. Indeed, the minimax
problem makes sense mostly for a non-singleton set P. Besides, assuming a singleton set
would violate the assumption that P is continuous, which is important for another reason:
if P were discrete, it would be more adequate to consider the problem within a guessing or
multiple hypothesis testing framework. In this case, the guessing error would be represented
by error probabilities of different types (e.g., false alarm, missed detection, etc.). For finite
P, these error probabilities would typically decay exponentially in the sample size n, so
a natural candidate for the fidelity loss metric would be the error exponent, rather that
the quantities α studied in this article. Besides the feasibility and the minimax problem,
one can think of other questions about fundamental limits which might be of independent
interest as well, but will not be addressed in this article. Let us mention only one example:

3.3.3 Best-case feasibility problem

The best-case trade-off infp α
?(ε;p) delimits the union

⋃
pF (p) and characterizes the most

optimistic performance limit, in the sense that the source distribution is most benevolent,
and the curator W guesses the best W . This limiting curve will only depend on the
alphabet dimension K (and possibly on the fidelity metric of choice, be it αf -DIV, αMSE or
αTV).

4. Distribution estimation

As we have argued before, any distribution estimator can be expressed as a function of p̌n
(and possibly W ) to the K-dimensional probability simplex. Henceforth, we shall only con-
sider estimators that are projectors of p̌n onto the probability simplex,7 namely, estimators
that can be cast into the form

p̂n = ProjP(p̌n) (10)

where ProjP(·) stands for some idempotent function satisfying ProjP(p̌) = p̌ for any prob-
ability vector p̌ ∈ P.

Let us denote the topological interior and closure (in P) of a set of distributions R ⊂ P
as R◦ and R, respectively, and define its boundary as ∂R = R \ R◦. Henceforth, for
a distribution r ∈ P and a set R ⊂ P, we adopt Csiszár’s notation (Csiszár, 1984) for
information projection

D(R‖r) , inf
r′∈R

D(r′‖r)

where D(·‖·) denotes the Kullback–Leibler divergence.

Lemma 1 The following inequality holds:8

Pr
{
p̌n /∈ P

}
≤ e−nD(∂PW ‖pW ).

7. Note that p̌n [cf. (2)] is not guaranteed to be a probability vector. Due to W being row-stochastic, both
W and W−1 have 1 as an eigenvalue, with associated all-ones eigenvector 1T. Thus, the rows of W−1

and hence the entries of p̌n = t(yn)W−1 sum to one. However, some entries of p̌n may lie outside the
unit interval. Hence the necessity of a projection operation.

8. We omit parentheses in writing ∂PW because regardless of how we set parentheses, ∂(PW ) = (∂P)W .
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Proof See Appendix A.

It is easy to show with Lemma 1 that any estimator of the form (10) is consistent [cf. Sec-
tion 3], because the cases p̌ 6= p̂ are at least exponentially rare, whereas fidelity metrics
decay linearly in the sample size (as we shall see). Moreover, imposing the form (10) outrules
the possibility of trivial “genie-aided” estimators such as p̂n = p by construction.

In addition, the fact that p̌n fails to be a probability vector only in exponentially rare
cases, as highlighted by Lemma 1, is helpful in that our asymptotic loss metrics (5a)–(5c)
do not depend on ProjP (as we shall see). Therefore, all estimators of the form (10) can be
regarded as asymptotically equivalent.

Next, we will derive the maximum likelihood (ML) and the minimum mean-squared
error (MMSE) distribution estimators, and verify that they are two instances of the general
form (10).

4.1 ML estimator

Based on a given output sequence ỹn, the ML estimator of the source distribution is defined
as the distribution that maximizes the probability of the event yn = ỹn. By a classic
argument, one can express the ML estimator as a KL divergence minimizer:

p̂ML(ỹn) = argmax
p′∈P

1

n
logPr

{
yn = ỹn

∣∣ yn ∼ (p′W )⊗n
}

= argmax
p′∈P

1

n
log

n∏
i=1

Pr
{
yi = ỹi

∣∣ yi ∼ p′W}
= argmax

p′∈P

1

n

n∑
i=1

K∑
k=1

1{ỹi = k} log
(
[p′W ]k

)
= argmax

p′∈P

K∑
k=1

tk(ỹn) log
(
[p′W ]k

)
= argmin

p′∈P
D
(
t(ỹn)

∥∥p′W )
. (11)

This optimization problem is convex, because the KL divergence is a convex functional and
the probability simplex P is a convex set. To see that this is an instance of (10), it suffices
to rewrite t(ỹn) as t(ỹn)W−1W in (11) so that the idempotence property of projection
becomes evident.

4.2 MMSE estimator

The MMSE estimator is defined as the probability vector that minimizes the Euclidean
distance between the output distribution it induces, and the empirical output distribution:

p̂MMSE(ỹn) = argmin
p′∈P

∥∥t(ỹn)− p′W
∥∥

2
. (12)

This estimator is similar to the ML estimator, except for replacing the KL divergence in (11)
by Euclidean distance. Similarly to the ML estimator, the minimization problem in (12) is
convex and manifestly an instance of (10).
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5. Convergence of estimates

Recall that p is supported on [K], meaning that all its entries pk are positive. As a con-
sequence, the convergence in probability (3) implies the convergence to zero of all fidelity
loss metrics (including f -divergences) as n→∞, i.e.,

lim
n→∞

L (n)(p,W ) = 0.

As a representative figure for the speed of this convergence to zero, we shall compute the
leading terms in the respective asymptotic expansions (as n → ∞) of the different loss
metrics. Prior to providing analytical expressions for these, we need to introduce some
quantities of interest. For a positive integer ρ, let us define

νρ,k , pW
(
W−1 �W−1 � . . .�W−1︸ ︷︷ ︸

ρ factors

)
eT
k (13)

where ‘�’ denotes entrywise multiplication. In particular, the matrix

Φ(W ) ,W (W−1 �W−1) (14)

involved in the expression of ν2,k will play a prominent role in the fidelity loss metrics and
will be shown to satisfy data-processing inequalities. Finally, the sum of all entries of Φ(W ),
i.e.,

ϕ(W ) , 1Φ(W )1T =

K∑
k=1

K∑
`=1

Φk,`(W ) (15)

will be repeatedly used.

The following theorem gives an asymptotic expansion applicable to a large class of f -
divergences, including KL divergence:

Theorem 2 (Expansion of f-divergence loss) Assume that

1. f(1) = 0 and f(x) is four times differentiable at x = 1,

2. f(0) is finite9

3. f(x) can be expanded as

f(x) =
4∑
ρ=1

f (ρ)(1)

ρ!
(x− 1)ρ +O

(
|x− 1|4+γ)

for some γ > 0, where f (ρ)(x) denotes the ρ-th derivative of f(x).

9. The requirement that f(0) be finite ensures that the expected value E
[
Df

(
p̂n

∥∥p)] is finite, for otherwise
there would be a positive probability of Df

(
p̂n

∥∥p) being infinite for any n, and thus its expectation
would be infinite.

11
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Furthermore, assume that W is full-rank (invertible). Then the following asymptotic ex-
pansion holds:

L
(n)
f-DIV(p,W ) =

Af ′′(1)

2n
+

(
Bf (3)(1)

6
+
Cf (4)(1)

8

)
1

n2
+O(n−3) (16)

with coefficients A, B and C given by

A = −1 +
K∑
k=1

ν2,k

ν1,k
(17a)

B = 2 +
K∑
k=1

(
ν3,k

ν2
1,k

− 3
ν2,k

ν3,k

)
(17b)

C = 1 +

K∑
k=1

(
ν2

2,k

ν3
1,k

− 2
ν2,k

ν1,k

)
(17c)

where νρ,k is defined in (13). (Note that ν1,k is simply pk)

f(x) f (1)(1) f (2)(1) f (3)(1) f (4)(1)

KL divergence x ln(x) 1 1 −1 2

Hellinger
distance

(
√
x− 1)2 0 1/2 −3/4 15/8

1−
√
x −1/2 1/4 −3/8 15/16

Pearson
χ2 divergence

(x− 1)2 0 2 0 0

x2 − 1 2 2 0 0

Triangular
discrimination

(x−1)2

x+1
0 1 −3/2 3

TV distance |x− 1| – – – –

Table 1: First four derivatives at 1 of functions f(x) associated to different f -divergences.
Some definitions vary across the literature.

If one assumes that f is only twice differentiable and that f(x) = f (1)(1)(x − 1) +
1
2f

(2)(1)(x−1)2 +O
(
|x−1|2+γ

)
, one can also prove a simpler version of Theorem 2, namely

that L
(n)
f -DIV(p,W ) = Af ′′(1)

2n +O(n−2).

Theorem 3 (Expansion of MSE loss) It holds that10

L
(n)
MSE(p,W ) =

1

n

K∑
k=1

(
ν2,k − ν2

1,k

)
+O

(
e−nD(∂PW ‖pW )

)
. (18)

10. Unlike the differentiable f -divergence metrics which can be Taylor-expanded [cf. (16)] to, in general, an
infinity of terms, the MSE metric expansion has only a single O(n−1) term. That is, it is exact up to an
exponential remainder term which is attributable to the projection operation.

12
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Theorem 4 (Expansion of TV loss) It holds that

L
(n)
TV (p,W ) =

√
2

πn

K∑
k=1

√
ν2,k − ν2

1,k + o

(
1√
n

)
. (19)

The proofs of Theorems 2, 3 and 4 are given in Appendices B, D and E, respectively.
Note that the proof of Theorem 2 essentially relies on a Taylor expansion, which in principle
could be carried further to produce more asymptotic terms, provided that the function f
is differentiable enough times around zero. By applying these Theorems on the definition
of the normalized first-order terms (5), while calling to mind that ν1,k = pk and that
ν2,k = pΦ(W )eT

k , we obtain the explicit expressions

αf -DIV(p,W ) =
pΦ(W )p−T − 1

K − 1
(20a)

αMSE(p,W ) =
pΦ(W )1T − ‖p‖22

1− ‖p‖22
(20b)

αTV(p,W ) =

(〈
1,
√
pΦ(W )− p� p

〉
〈1,√p− p� p〉

)2

(20c)

where in (20c), square roots on vectors are applied entrywise. Notice how Φ(W ) plays a
central role, in that it fully captures the dependency in W of all three loss metrics. To
better appreciate the significance and behavior of these metrics, a few remarks are in order.

Remark 1 Interestingly, for the uniform source p = 1/K, the f -divergence and MSE
metrics happen to coincide, regardless of the choice of mechanism W ∈ W :

αf-DIV

(
1
K ,W

)
= αMSE

(
1
K ,W

)
=
ϕ(W )− 1

K − 1
. (21)

By contrast, the TV metric is generally smaller, which can be shown by Jensen’s inequality:

αTV

(
1
K ,W

)
=

(∑
k

√
K
∑

` Φk,`(W )− 1

K
√
K − 1

)2

≤ ϕ(W )− 1

K − 1
. (22)

As we shall see in Lemma 8 of Section 7, this inequality becomes tight when the mechanism
is circulant, thus making all three metrics match in such case.

Remark 2 In the noiseless case, W and its inverse W−1 are permutation matrices (Π
and ΠT, respectively), whose entries are equal to 0 or 1. Entrywise squaring leaves them
unchanged, hence Φ(Π) = Π(ΠT �ΠT) = ΠΠT = I and we see that the metrics (20a)–
(20c) all become equal to one, which is consistent with our expectation based on the def-
initions (5a)–(5c). Furthermore we can verify that for W a permutation, specializing
Theorem 2 to the KL divergence recovers the asymptotic expansion (1) by evaluation of
(16)–(17c).

Remark 3 As we shall see in the next section [cf. (28)], it holds that [Φ(W )]k,` ≥ δk,`
(where δk,` stands for the Dirac delta), thanks to which it becomes manifest that the met-
rics (20a)–(20c) are larger or equal to one.
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Remark 4 Concerning the dependency on p, we notice from inspecting (20a)–(20c) that
αMSE(p,W ) and αTV(p,W ) become large if p tends to a canonical base vector (i.e.,
when ‖p‖22 → 1 or equivalently 〈1,√p− p� p 〉 → 1) whereas for the divergence met-
ric αf-DIV(p,W ), it already suffices to have at least one low-probability symbol (pk → 0 for
some k ∈ [K]) for αf-DIV(p,W ) to become large. Loosely speaking, low-probability symbols
are more “penalizing” for the f -divergence loss metric than they are for the MSE or TV
loss metrics.

To illustrate Theorems 2, 3 and 4, we provide numerical evaluations of L
(n)
f -DIV, L

(n)
MSE

and L
(n)
TV for both the ML and MSE estimators (11) and (12), respectively, and compare

them against the non-privatized performance. For the ε-private mechanism, we choose the
matrix

Wε,? =
1

eε +K − 1


eε 1 . . . 1

1 eε
. . .

...
...

. . .
. . . 1

1 . . . 1 eε

 (23)

which we shall call the step mechanism, and for which we will prove optimality results
further on. With this choice of mechanism, the ML and MMSE estimators (11) and (12)
are expressible by waterfilling-type closed forms

p̂ML,k =
1

eε − 1
max

{
0, (eε +K − 1)tk + ηML

}
p̂MMSE,k =

1

eε − 1
max

{
0, ηMMSEtk − 1

}
where the scalars ηML and ηMMSE are chosen such that the sum constraints

∑
k p̂ML,k =∑

k p̂MMSE,k = 1 are met.

Evaluating the quantities νρ,k defined in (13) for the step mechanism (23) yields

ν1,k = pk

ν2,k =
1

(eε − 1)2

(
(eε − 1)(eε +K − 3)pk + eε +K − 2

)
ν3,k =

1

(eε − 1)3(eε +K − 1)

(
(eε − 1)((eε +K − 2)3 + 1)pk

+ (eε +K − 1)(eε +K − 2)(eε +K − 3)
)
.

Figure 2 shows how the fidelity loss metrics decay with n. The exact values of L
(n)
f -DIV

(for KL divergence f(x) = x ln(x)), L
(n)
MSE and L

(n)
TV are plotted against the second-order

approximation (16) and the first-order approximations (18) and (19), respectively. The
same plot is exhibited twice, once for ε = 10−1 (Figure 2a) and once for ε = 1 (Figure 2b).
Though it is not the focus of this article, it is worth mentioning that the small fluctuations
visible on Figure 2a for low values of n are traceable to how empirical distributions are
better approximations of the limiting distribution for certain values of n than for others,
an effect related to Diophantine approximations.
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Figure 2: Unnormalized loss metrics L (n)(p,Wε,?) (for f -divergence, MSE and TV metrics)
plotted as functions of the sample size n. By way of example, we have chosen
K = 4, ε = 1, p = [0.5 0.25 0.125 0.125] and the step mechanism Wε,?. The
dashed curves show the approximations via truncated expansion, obtained from
omitting the big-O or little-o remainder terms in (16), (18), (19), respectively.
For each loss metric, one solid curve (opaque) shows the loss metric obtained
with ML projection, whereas the other curve (semi-opaque) shows the loss metric
obtained with MMSE projection. Note that in Figure 2a, these two curves are
nearly indistinguishable.

6. Data processing theorems

Intuitively, it is clear that any estimator of the source distribution p based on the priva-
tized observations yn will perform worse, in terms of metrics (4a)–(4c), than the empirical
distribution estimator t(xn) based on a clear view of the source symbol vector xn. This
idea is formalized by the data-processing theorems stated below.

Theorem 5 (General form) Consider n copies of the setup as depicted in Figure 6. That
is, assume that yn ∼ (pW )⊗n and y′n ∼ (pWW ′)⊗n are obtained from passing the samples
xn through n copies of the channels W ′ and WW ′, respectively. In addition, assume that

1. for f -divergence metrics, f(x) is strictly convex11 at x = 1;

2. W ′ is not a permutation.

11. Note that strict local convexity is satisfied by all f -divergences of interest which also satisfy the conditions
of Theorem 2. It is also satisfied by TV distance, in the sense that for f(x) = |x − 1|, we have
f(λ(1− ε) + (1− λ)(1 + ε′)) < λf(1− ε) + (1− λ)f(1 + ε′) for all ε, ε′ > 0.
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Figure 3: Normalized loss metrics L (n)(p,Wε,?)/L (n)(p, I) plotted as functions of the sam-
ple size n, with same parameters as in Figure 2. Note that curves corresponding
to ML projection are black, whereas curves corresponding to MMSE projection
are gray. For better visualization in regions where curves overlap, we have chosen
dotted curves for the MSE metric. The dashed curves show the limits as n→∞,
which correspond to the quantities (20a)–(20c).

X ∼ p W Y ∼ pW W ′ Y ′ ∼ pWW ′

source first disclosure second disclosure

Figure 4: Data processing theorems.

Then, for any estimator of the form (10), for any source distribution p supported on [K]
and for sufficiently large n, we have

L (n)(p,WW ′) > L (n)(p,W ).

Proof See Appendix F. The proof essentially exploits convexity, which all loss metrics have
in common. Note, however, that the proof is slightly difficilitated by our rigorous treatment
of the exponentially decaying remainder terms that arise due to the normalization of our
pmf estimators p̂n.

Unsurprisingly, this data-processing relationship carries over directly to the respective
leading terms in the asymptotic expansions of the three loss metrics, as stated in the fol-
lowing corollary.
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Corollary 6 (Data-processing inequality for α) For any source distribution p and
channels W and W ′, it holds that

αf-DIV(p,WW ′) ≥ αf-DIV(p,W ) (26a)

αMSE(p,WW ′) ≥ αMSE(p,W ) (26b)

αTV(p,WW ′) ≥ αTV(p,W ) (26c)

with equality if and only if W ′ is a permutation.

Recall that α(p, I) = 1. By setting W to the identity in (26a)–(26c), we recover the already
known fact that α(p,W ′) ≥ 1 holds for any mechanism W ′ ∈ W .

Proof Suppose that there exists a source distribution p and a pair of channels
(W ,W ′) such that α(p,WW ′) < α(p,W ) (where α stands for either metric).
Then, by Definitions (5a)–(5c), there exist arbitrarily large sample sizes n such that
L (n)(p,WW ′) < L (n)(p,W ). This would contradict Theorem 5.

Theorem 7 (Data-processing inequality for Φ) For any square full-rank channels W
and W ′ of same size, it holds that12

Φ(WW ′) ≥ Φ(W ). (27)

with equality13 if and only if W ′ is a permutation.

Proof See Appendix G.

Note that the above-referenced proof of Theorem 7 in Appendix G hinges on Corollary 6
(of Theorem 5). On the other hand, this Corollary 6 could clearly also be recovered as a
corollary, in fact, of Theorem 7, since αf -DIV, αMSE and αTV are all monotone functions
of the entries of Φ [cf. (20a)–(20c)]. This means that Theorem 7 and Corollary 6 (to be
precise, any one of the three inequalities in Corollary 6) are in fact equivalent statements.
A self-contained proof of Theorem 7 (which we do not provide) would consist, by contrast,
in proving (27) based on the assumption of row-stochasticity of W and W ′ alone.

It is instructive to particularize (27) by setting W = I and using the fact that Φ(I) = I.
We obtain Φ(W ′) ≥ I (which holds for any row-stochastic W ′), or equivalently,

Φk,`(W
′) ≥

{
1 if k = `

0 if k 6= `.
(28)

This inequality allows to immediately grasp why the normalized metrics αf -DIV, αMSE and
αTV, as written out in (20a)–(20c), are quantities larger or equal to one (cf. Remark 3).

12. For matrix-valued A and B, an inequality like A ≥ B should be read entrywise. Hence (27) denotes an
array of K ×K simultaneously holding inequalities.

13. Equality means that all K2 inequalities are satisfied with equality.
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7. Upper bounds on the privacy–fidelity trade-off

Consider the class of circulant mechanisms, which we shall denote as the set W◦, and which
contains all invertible matrices of the form

W =


w1 . . . . . . wK
wK w1 . . . wK−1

...
. . .

. . .
...

w2 . . . . . . w1

. (29)

Note that circulant mechanisms are fully described by their first row w = [w1, . . . , wK ] ∈ P.
If wk/wk′ ≤ eε for all (k, k′), then this matrix constitutes an ε-private mechanism and thus
yields an upper (achievable) bound on the privacy–fidelity trade-off curve. We choose this
class of mechanisms for producing upper bounds due to them

1. appearing as a natural choice, given that all columns have the same composition and
thus the same maximum ratio maxk,k′ wk/wk′ , thereby satisfying an intuitive notion
(though not presently backed by a theorem) that for an optimal mechanism, the
maximum intra-column ratio should be equal on all columns.

2. yielding simple expressions for the relevant fidelity loss metrics, with the added benefit
of making all three normalized metrics αf -DIV, αMSE and αfTV match exactly (so long
as the source is uniform), as we shall see in Lemma 8 stated below.

While a universal characterization of the privacy–fidelity trade-off in the context of local
differential privacy seems elusive due to the fact that the trade-off critically depends on
the specific choice of fidelity metric (f -divergence, MSE, TV, etc.), the following lemma,
however, legitimizes ϕ(W ) as a useful quantity in that it “universally” captures the privacy-
preserving properties of the mechanism W , and thus may be subjected to optimization.

Lemma 8 For a uniform source distribution p = 1/K and a circulant mechanism W ∈ W◦,
the three normalized fidelity metrics are equal. That is, for every W ∈ W◦,

αf-DIV

(
1
K ,W

)
= αMSE

(
1
K ,W

)
= αTV

(
1
K ,W

)
=
ϕ(W )− 1

K − 1
.

Proof The first equality was already mentioned previously (see (21)) and holds more
generally for any (not necessarily circulant) mechanism W . The second equality (for the
TV metric) can be verified by direct evaluation. For this purpose, it suffices to inspect (20c)
while realizing that for a circulant W , we have K1Φ = ϕ(W )1, meaning that ϕ(W )
becomes the eigenvalue of Φ(W ) (up to a factor K) associated to the all-ones eigenvector.
Alternatively, we can leverage the fact that all rows and columns of a circulant matrix have
the same composition to infer that the Jensen inequality (22) becomes tight. The reader is
also referred to detailed derivations for circulant mechanisms in the proof of Theorem 9, in
Appendix H.

The following theorem determines the optimal mechanism within the class of circulant
mechanisms, in the sense that it minimizes ϕ(W ).

18



Locally Differentially-Private Randomized Response

Theorem 9 The step mechanism Wε,? as defined in (23) is optimal (up to row and column
permutations) among all circulant ε-private mechanisms in terms of minimizing the quantity
ϕ(W ), i.e.,

Wε,? = argmin
W∈Wε∩W◦

ϕ(W ). (30)

Proof See Appendix H. The proof makes use of Fourier analysis and some well-known
connections between the eigenvalues and the entries of circulant matrices.

By plugging the minimizer Wε,? of the above problem (30) into the expressions (14)–
(15), we obtain

Φk,`(Wε,?) =
1

(eε − 1)2

[(
eε(eε +K − 2) + 1− eε

)
δk,` + (eε +K − 2)(1− δk,`)

]
(31a)

ϕ(Wε,?) =
K

(eε − 1)2
[(eε +K − 1)(eε +K − 2) + 1− eε]. (31b)

The optimality property of the step mechanism elicited by Theorem 9 gives additional
support to its being widely regarded as a natural choice of RR mechanism in any context.
Some publications even use the term “randomized response” to refer to the step mechanism
itself.

7.1 Upper bounds for the feasibility problem

Particularizing the mechanism W to being the step mechanism Wε,?, we can derive upper
bounds on the fundamental privacy–fidelity trade-off curves α?(ε;p) (for the feasibility
problem), simply by inserting (31a) or (31b) into (8), in combination with loss metric
expressions (20a)–(20c). With a uniform source, for example, using Lemma 8 we obtain,
for any of the three fidelity loss metrics,

α?
(
ε; 1
K

)
≤ ϕ(Wε,?)− 1

K − 1
(32)

with ϕ(Wε,?) as given in (31b). The latter quantity is plotted as a function of ε in Figure 5
for different values of K, along with a corresponding lower bound derived in Section 8.

Furthermore, we believe that Wε,? is the minimizer of ϕ(W ) not only within the class
of circulant mechanisms, but over all ε-private mechanisms. That is, we conjecture that
Wε,? = argminW∈Wε ϕ(W ). As long as this conjecture remains unproven, we rely on com-
plementing the upper bounds on privacy–fidelity tradeoffs yielded by the step mechanism,
with the (generally non-matching) lower bounds developed in the next Section.

Note that (31a) can be equivalently written in matrix form as

Φ(Wε,?) =
1

(eε − 1)2

[
(eε − 1)(eε +K − 3)I + (eε +K − 2)1T1

]
. (33)
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Figure 5: Inner and outer bounds on the fundamental (ε, α)-trade-off for a uniform source
p = 1/K. The feasible set F (1/K) contains the dark shaded region and is
contained in the union of both shaded regions. In other terms, the lower boundary
of F (1/K), described by α?(ε; 1/K), lies in the light shaded region. The upper
bounds are based on (32) in combination with (31b). The lower bounds are
derived in Section 8 further below.
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Figure 6: Inner and outer bounds on the fundamental (ε, α)-trade-off for non-uniform
sources: in (a) for Zipf’s law p = 60

137 [1, 1
2 ,

1
3 ,

1
4 ,

1
5 ]; in (b) for the age pyramid

of the Brazilian population, drawn from the IPUMS data sets (Minnesota Popu-
lation Center, 2019), similar to the data set used by Wang et al. (2019). For the
dotted curves, the ages were grouped in K = 50 bins corresponding to age ranges
0–1, 2–3, . . . , 99+ years; for the dashdotted curves, in K = 20 age bins 0–4, 5–9,
. . . , 95+ years; for the dashed curves, in K = 10 age bins 0–9, 10–19, . . . , 90+
years; for the solid curves, in K = 5 age bins 0–19, 20–39, . . . , 80+ years. The
shaded region is painted for the latter case, with K = 5.
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Plugging the latter into (20a)–(20c), we obtain the expressions

αf -DIV(p,Wε,?) =

1
(eε−1)2

[
(eε − 1)(eε +K − 3)K + (eε +K − 2)

]
− 1

K − 1

αMSE(p,Wε,?) =

1
(eε−1)2

[
(eε − 1)(eε +K − 3) + (eε +K − 2)K

]
− ‖p‖22

1− ‖p‖22

αTV(p,Wε,?) =

∑K
k=1

√
1

(eε−1)2

[
(eε − 1)(eε +K − 3)pk + (eε +K − 2)

]
− p2

k∑K
k=1

√
pk(1− pk)

2

which serve as upper bounds, respectively, on α?f -DIV(ε;p), α?MSE(ε;p) and α?TV(ε;p).

7.2 Upper bounds for the minimax problem

Recall that the fundamental minimax trade-off curve for a continuous set P ⊆ P is given
by [cf. (9)]

α?(ε; P) , min
W∈Wε

sup
p∈P

α(p,W ). (35)

In the context of the minimax problem formulation, we shall focus on sets P that are
symmetric in such way that all symbol probabilities are larger or equal to some p0 > 0.
That is, we set14

P =
{

(p1, . . . , pK) ∈ [p0, 1]K :
∑K

k=1 pk = 1
}
.

Since this set is closed, we can replace the supremum in (35) with a maximum.
Much like for the feasibility problem in Section 7.1, specializing W to the step mecha-

nism Wε,? allows us to derive upper bounds on the fundamental privacy–fidelity trade-off
curves α?(ε; P) for the minimax problem. We present these derivations one by one, in the
following three Subsections 7.2.1 through 7.2.3.

7.2.1 f-divergence metric

In (35), let us set the f -divergence metric αf -DIV and start by focusing on the inner suprem-
ization over p ∈P. We need the following lemma.

Lemma 10 Let Π{i,j} denote the transposition of i and j, that is, the elementary permu-
tation matrix that swaps the position of the i-th and j-th entries. Then the function

[0, 1]→ R+

λ 7→ αf-DIV(λp+ (1− λ)pΠ{i,j},W )

is convex.

Proof The proof is deferred to Appendix I.

Using Lemma 10, we can infer that for any fixed W , the maximizing source distribution

p?(W ) = argmax
p∈P

αf -DIV(p,W )

14. Note that p0 must be smaller than 1/K for P to be non-empty.
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has at most one entry different from p0. In fact, if it had two entries p?i and p?j both distinct
from (larger than) p0, then one could argue with Lemma 10 that replacing the (i, j)-th entry
pair of p? either by (p?j + p?i − p0, p0) or by (p0, p

?
j + p?i − p0) would yield a larger value

of αf -DIV(p?,W ), thus leading to a contradiction. We conclude that p? must have K − 1
entries equal to p0 and one entry equal to 1− (K−1)p0. Suppose that this entry is denoted
by index k′, then

max
p∈P

pΦ(W )p−T = Φk′,k′(W ) +
∑
k 6=k′

∑
` 6=k′

Φk,`(W ) +
p0

1− (K − 1)p0

∑
k 6=k′

Φk,k′(W )

+
1− (K − 1)p0

p0

∑
`6=k′

Φk′,`(W ). (36)

We now evaluate the latter for the step mechanism Wε,?. Using (33), the terms involving
(sums of) entries of Φ(W ) can be expressed as

Φk′,k′(Wε,?) =
1

(eε − 1)2

(
eε(eε +K − 2)− (eε − 1)

)
∑
k 6=k′

∑
` 6=k′

Φk,`(Wε,?) =
K − 1

(eε − 1)2

(
(eε +K − 1)(eε +K − 2)− (eε − 1)

)
∑
k 6=k′

Φk,k′(Wε,?) =
K − 1

(eε − 1)2
(eε +K − 2)

∑
6̀=k′

Φk′,`(Wε,?) =
K − 1

(eε − 1)2
(eε +K − 2)

and upon inserting these expressions back into (36) and (20a), we end up with an upper
bound on the f -divergence minimax fundamental privacy–fidelity tradeoff (9) given by

α?f -DIV(ε; P) ≤ 1

K − 1

(
eε +K − 2

(eε − 1)2

[
eε + (K − 1)(eε +K − 1)

+

(
p0

1− (K − 1)p0
+

1− (K − 1)p0

p0

)
(K − 1)

]
− K

eε − 1
− 1

)
. (38)

7.2.2 MSE metric

The MSE metric can be expressed as [cf. (20b)]

αMSE(p,W ) = α̃(pΦ(W )1T, ‖p‖22)

where α̃(u, v) , u−v
1−v . On the domain (u, v) ∈ [1,+∞)× [0, 1), the function α̃ is marginally

non-decreasing in u (for fixed v) and in v (for fixed u). Therefore, one obtains an upper
bound on maxp∈P αMSE(p,W ) by separately maximizing both arguments, namely

max
p∈P

αMSE(p,W ) ≤ α̃
(

max
p∈P

pΦ(W )1T,max
p∈P
‖p‖22

)
. (39)
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For any fixed W , the maximizing p in the first argument of the function α̃(·, ·) on the
right-hand side of (39) is

p?(W ) = argmax
p∈P

pΦ(W )1T

= (1− (K − 1)p0)ek?(W ) + p0

∑
k 6=k?(W )

ek (40)

where ek = (0, . . . , 0, 1, 0, . . . , 0) denotes the k-th canonical basis vector (with the k-th entry
equal to one), and the index k?(W ) corresponds to the column of Φ(W ) with maximum
column-sum:

k?(W ) = argmax
k∈[K]

ekΦ(W )1T = argmax
k∈[K]

K∑
k′=1

Φk,k′(W ).

As to the second argument of α̃(·, ·) in (39), its maximizer is any vector of the form (40) as
well, yet with arbitrary k?. Hence, p?(W ) as defined in (40) is a common maximizer for
both arguments of α̃(·, ·), and consequently, the upper bound (39) is tight, i.e.,

max
p∈P

αMSE(p,W ) = α̃
(
p?(W )Φ(W )1T, ‖p?(W )‖22

)
.

Here, the two arguments of the function α̃(·, ·) can be evaluated in closed form, respectively,
as

‖p?(W )‖22 = 1− p0(K − 1)(2−Kp0) (41a)

p?(W )Φ(W )1T = p0ϕ(W ) + (1−Kp0)

K∑
`=1

Φk?(W ),`(W ). (41b)

Evaluating Φ(W ) [cf. (31a)] for the step mechanism Wε,?, we obtain for the summation
term in (41b)

K∑
`=1

Φk,`(Wε,?) =
(eε +K − 1)(eε +K − 2)

(eε − 1)2
− 1

eε − 1

for any k = 1, . . . ,K, based on which we can evaluate (41b) for the step mechanism Wε,?,
namely

p?(Wε,?)Φ(Wε,?)1
T =

1

(eε − 1)2

[
(eε +K − 1)(eε +K − 2)− (eε − 1)

]
.

With this expression, we can compute the upper bound as

α?MSE(ε; P)

≤ α̃
(

max
p∈P

pΦ(Wε,?)1
T,max
p∈P
‖p‖22

)

=

1
(eε−1)2

[
(eε +K − 1)(eε +K − 2)− (eε − 1)

]
− 1

p0(K − 1)(2−Kp0)
+ 1. (42)
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7.2.3 TV metric

For the TV metric, we can derive an upper bound as follows:

α?TV(ε; P) ≤ sup
p∈P

αTV(p,Wε,?)

= sup
p∈P

(
〈1,
√
pΦ(Wε,?)− p� p〉
〈1,√p− p� p〉

)2

(a)

≤ sup
p∈P

(√
ϕ(Wε,?)−K‖p‖22
〈1,√p− p� p〉

)2

(b)

≤ ϕ(Wε,?)−K minp∈P‖p‖22
minp∈P〈1,

√
p− p� p〉2

(c)
=

ϕ(Wε,?)− 1(
(K − 1)

√
p0(1− p0) +

√
(1− (K − 1)p0)(K − 1)p0

)2 . (43)

Here, Step (a) relies on Jensen’s inequality 〈1K ,
√
x〉 ≤

√
K〈1,x〉 and makes use of the fact

that 〈1,pΦ(Wε,?)〉 = ϕ(Wε,?)/K; Step (b) consists in upper-bounding the maximum of a
fraction by the ratio between the numerator’s maximum and the denominator’s minimum.
For Step (c), the numerator is readily evaluated by noticing that the minimum of the convex
symmetric function p 7→ ‖p‖22 over the convex set P is achieved by the uniform distribution
p = 1/K, hence minp∈P‖p‖22 = 1/K. The denominator, in turn, is the minimum of a

symmetric concave function p 7→ 〈1,√p− p� p〉 =
∑K

k=1

√
pk(1− pk) over the symmetric

simplex set P, thus its minimizer is a vertex point of P. The vertices of P are vectors with
K− 1 entries equal to p0 and one entry equal to 1− (K− 1)p0. Therefore, the denominator
is (up to squaring) equal to

min
p∈P

K∑
k=1

√
pk(1− pk) = (K − 1)

√
p0(1− p0) +

√
(1− (K − 1)p0)(K − 1)p0.

8. Lower bounds on the privacy–fidelity trade-off

The lower bounds presented in this section rely on the following key lemma.

Lemma 11 It holds that

min
W∈Wε

ϕ(W ) ≥ K

1− e−4ε

(eε +K − 1)2

e2ε +K − 1
, ϕLB(ε;K). (44)

Proof The proof is deferred to Appendix K.

Note that for ε fixed and K tending to infinity, the lower bound on the right-hand side
of (44) behaves as O(K2), whereas the upper bound ϕ(Wε,?) as given by the right-hand
side of (31b) behaves as O(K3). This gap is clearly visible as a difference in slope, in the
limit of large K, between lower bounds (slope of 2 in logarithmic units) and upper bounds
(slope of 3 in logarithmic units) in Figure 8. Closing this gap by sharpening either bound
(upper or lower, or both) is an open problem.
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Figure 7: Upper bounds (38), (42), (43) on the optimal privacy–fidelity minimax tradeoff
curve α?(ε; P) for different values of K and p0. Curves corresponding to the KL
divergence, MSE and TV metric are in black, blue and red, respectively.
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Figure 8: Upper bound ϕ(Wε,?) and lower bound ϕLB(ε;K) on the quantity minW∈Wε ϕ(W )
as a function of K for different values of ε. Notice that, much like the upper
bounds, the lower bounds each tend to a linear asymptote (although upper and
lower bound asymptotes differ in slope). This is also true for ε = 5 and ε =
10, whose curves first follow their matching upper bound very closely, before
eventually approaching their respective asymptote.

In the next subsections, we will present lower bounds for the feasibility problem and
an instance of the minimax problem. In each case, we will need to address the three
metrics (5a)–(5c) separately.

8.1 Lower bounds for the feasibility problem

In order to leverage Lemma 11 for lower-bounding the fundamental trade-off curve α?(ε;p),
we need to derive lower bounds on α?(ε;p) that depend on W only via ϕ(W ). For the
f -divergence and MSE metric, such bounds can be obtained via pmin1 ≤ p ≤ pmax1 and
exploiting the fact that the metrics αf -DIV and αMSE are not smaller than one:

α?f -DIV(ε;p) ≥ min
W∈Wε

max
{
K, pmin

pmax
ϕ(W )

}
− 1

K − 1
(45a)

α?MSE(ε;p) ≥ min
W∈Wε

max
{

1, pminϕ(W )
}
− ‖p‖22

1− ‖p‖22
(45b)

α?TV(ε;p) ≥ min
W∈Wε

(√
pk0(1− pk0) + (ϕ(W )pmin − 1)+ +

∑
k∈[K]\{k0}

√
pk(1− pk)∑

k∈[K]

√
pk(1− pk)

)2

(45c)

where k0 = argmink∈[K]

∣∣pk − 1
2

∣∣ and where (·)+ denotes max{·, 0}. While (45a) and (45b)
are straightforward, deriving (45c) can be done by lower-bounding the numerator of (20c)
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as follows:〈
1,
√
pΦ(W )− p� p

〉
≥
〈
1,
√

max{p, pmin1Φ(W )} − p� p
〉

(a)

≥ min
ψ≥1 :

〈1,ψ〉=ϕ(W )

〈
1,
√

max{p, pminψ} − p� p
〉

=


√
p− p� p if ϕ(W ) ≤ 1

pmin

min
ψ̄k≥0:∑

k ψk=ϕ(W )− 1
pmin

K∑
k=1

√
pk(1− pk) + pminψ̄k if ϕ(W ) > 1

pmin
.

For bounding step (a), we make use of the fact that 1Φ(W ) ≥ 1, which is a consequence
of Φ(W ) ≥ I. Note that (45a) and (45b) have the merit of being tight when p = 1/K,
whereas (45c) is generally not tight even for the uniform source distribution.

Now, by replacing ϕ(W ) on the right-hand sides of (45a)–(45c) with the lower bound
ϕLB(ε;K) from Lemma 11, we eventually obtain lower bounds on the fundamental trade-off
curves α?(ε;p) that only depend on K, ε and p, but not on the mechanism W . Namely,

α?f -DIV(ε;p) ≥
max

{
K, pmin

pmax
ϕLB(ε;K)

}
− 1

K − 1

α?MSE(ε;p) ≥ max
{

1, pminϕLB(ε;K)
}
− ‖p‖22

1− ‖p‖22

α?TV(ε;p) ≥
(√

pk0(1− pk0) + (ϕLB(ε;K)pmin − 1)+ +
∑

k 6=k0

√
pk(1− pk)∑K

k=1

√
pk(1− pk)

)2

.

Although the so-obtained bounds may be loose—especially when pmin
pmax

� 1 or pmin � 1
K ,

that is, when p is highly non-uniform—they nonetheless highlight the relevance of the
quantity ϕ(W ) as a proxy for characterizing the privacy–fidelity trade-off. This corroborates
the relevance of lower bounds on ϕ(W ) such as the one given by Lemma 11.

8.2 Lower bounds for the minimax problem

In the next subsections, we will compute lower bounds on α?(ε; P) for each of the three
loss metrics. First off, note that a simple, robust15 lower bound on α?(ε; P) is obtained by
setting p = 1/K, i.e.,

α?(ε; P) ≥ min
W∈Wε

α(1/K,W ). (47)

where the quantity α(1/K,W ) evaluates as in Remark 1 [cf. (21) and (22)]. It can be
considered a robust bound in the sense that it does not depend on the value of p0. We
will leverage this for the f -divergence and TV metric (Subsections 8.2.1 and 8.2.3). By
contrast, for the MSE metric (Subsection 8.2.2) we will derive a sharper lower bound that
does depend on p0.

15. It is robust in the sense that it does not depend on the parameter p0.
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8.2.1 f-divergence metric

Starting off with the simple lower bound (47) and using Lemma 11, a lower bound on
α?f -DIV(ε; P) is given by

α?f -DIV(ε; P) ≥ ϕLB(ε;K)− 1

K − 1
. (48)

A plot of the lower bound (48) is provided in Figure 9 further below.

8.2.2 MSE metric

The latter expression still depends on W , so we further lower-bound it as follows:

p?(W )Φ(W )1T ≥ min
W∈Wε

p?(W )Φ(W )1T

= min
W∈Wε

{
p0ϕ(W ) + (1−Kp0)

∑
`∈[K]

Φk?(W ),`(W )
}

(a)

≥ p0 min
W∈Wε

ϕ(W ) + (1−Kp0) min
W∈Wε

∑
`∈[K]

Φk?(W ),`(W )

(b)

≥ 1

K
min
W∈Wε

ϕ(W )

(c)

≥ ϕLB(ε;K)

K
. (49)

Here, inequality (a) results from splitting the minimum of a sum into the sum of two minima;
step (b) follows from lower-bounding the maximum column-sum of Φ(W ) by the average
column-sum; step (c) is the application of Lemma 11. Combining (39), (40) and (49), we
obtain

α?MSE(ε; P) ≥
ϕLB(ε;K)

K − 1 + p0(K − 1)(2−Kp0)

p0(K − 1)(2−Kp0)
. (50)

A plot of the lower bound (50) is provided in Figure 9 further below.

8.2.3 TV metric

For the TV metric, we will derive two alternative bounds: one based on the subadditivity
of the square root function, the other based on Jensen’s inequality and the concavity of the
root function.

Bound 1 Since the square root is subadditive, we have for any non-negative vector x that
〈1,√x〉 ≥

√
〈1,x〉, which can be applied on the numerator of the TV metric expression to

obtain the lower bound

αTV(p,W ) =

〈
1,
√
pΦ(W )− p� p

〉2

〈1,√p− p� p〉2

≥ 〈1,pΦ(W )〉 − ‖p‖22
〈1,√p− p� p〉2

.
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Upon inserting the uniform source distribution p = 1/K, we get

αTV(1/K,W ) ≥ 1

K

ϕ(W )− 1

K − 1
.

So finally,

α?TV(ε; P) ≥ 1

K

ϕLB(ε;K)− 1

K − 1
. (51)

Since ϕLB(ε;K) can be arbitrarily close to K (as ε→∞), the bound (51) can be improved
by noticing that α?TV(ε; P), by the data processing inequality, is never smaller than one.

Bound 2 We start with the basic lower bound (47) in combination with (22), i.e.,

α?TV(ε; P) ≥ min
W∈Wε

αTV

(
1
K ,W

)
= min
W∈Wε

(∑
k

√
K
∑

` Φk,`(W )− 1

K
√
K − 1

)2

. (52)

The next aim is to lower-bound the right-hand side of (52) so as to obtain a bound that
only depends on W via ϕ(W ). For this purpose, observe that the function

g : [1/K,+∞)→ R+, x 7→
√
Kx− 1

is increasing and concave. By the non-negativity of Φ(W ) and the data-processing in-
equality in matrix form [Theorem 7 particularized to (28)] we have 0 ≤ Φ ≤ I, whence we
infer that the sum

∑
` Φk,`(W ) is comprised between 1 and ϕ(W ). On the other hand, the

restriction of g to the interval [1, ϕ(W )] is lower-bounded by the corresponding secant:

g(x) ≥ g(1) +
g(ϕ(W ))− g(1)

ϕ(W )− 1
(x− 1)

≥ g(1) + g′(ϕ(W ))(x− 1)

= g(1) +
K

2
√
Kϕ(W )− 1

(x− 1), (for 1 ≤ x ≤ ϕ(W )).

(Here, in the last inequality we use the concavity of g to obtain a weaker but simpler lower
bound on the secant slope.) Applying this lower bound on the right-hand side of (52), we
obtain

α?TV(ε; P) ≥ min
W∈Wε

g(1) + 1

2
√
Kϕ(W )−1

(ϕ(W )−K)
√
K − 1

2

≥ 1

K − 1

(
√
K − 1 +

ϕLB(ε;K)−K
2
√
KϕLB(ε;K)− 1

)2

. (53)

The last bounding step can be made owing to the monotonicity of R+ 7→ R+, ϕ 7→ (ϕ −
K)/
√
Kϕ− 1, which holds for all K ≥ 2.
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Combining Bound 1 and Bound 2 Notice that, unlike the first lower bound (51),
this second bound (53) is always lower-bounded by unity. Our final lower bound on the
fundamental minimax tradeoff curve for the TV metric is obtained by combining (51) and
(53):

α?TV(ε; P) ≥ 1

K − 1
max

{
ϕLB(ε;K)− 1

K
,

(√
K − 1 +

ϕLB(ε;K)−K
2
√
KϕLB(ε;K)− 1

)2}
. (54)

Plots of the above lower bounds (48), (50), (51) and (53) are provided in Figure 9.

9. Conclusion

We have proposed a framework for the study of privacy–fidelity trade-off problems in the
context of randomized response mechanisms, in which the privatization channel is supposed
to facilitate the estimation of the unknown source distribution while obfuscating the source
realizations. A privacy metric based on the concept of local differential privacy, and fidelity
loss metrics based on f -divergence, MSE and TV distance have been proposed as figures
of merit. We have identified the quantities Φ(W ) and ϕ(W ), which capture the essence
of the dependency of fidelity loss metrics on the random mechanism W , and studied some
of its properties, including data-processing inequalities. Finally, we have derived inner and
outer bounds to some specific instances of the fundamental privacy–fidelity trade-off curve,
all of which depend on the random mechanism via Φ(W ) or ϕ(W ).

For a better understanding of the fundamental privacy–fidelity trade-off problems, it
would be desirable to tighten the gap between inner and outer bounds much further. There is
some indication that the lower bounds are loose, so that the step mechanism Wε,? stands as
an optimality candidate among all ε-private mechanisms (in terms of minimizing ϕ(W )). A
proof or counterexample to this claim is left as an open problem. Other interesting research
directions include, for instance, broad channels (L ≥ K) (which encompass the RAPPOR
mechanism and its generalization by Ye and Barg (2018)), sources and/or privatization
channels with memory, interactive mechanisms and batch processing, extensions to other
types of statistical tests or queries (beyond distribution estimation), and to fidelity loss
metrics based on tail probabilities rather than expectations.
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Appendix A. Proof of Lemma 1

By Csiszár’s concentration inequality (Csiszár, 1984, Theorem 1),

Pr
{
t(yn)W−1 /∈ P

}
= Pr

{
t(yn) /∈ PW

}
= Pr

{
t(yn) ∈ P \ PW

}
≤ e−nD(P\PW ‖pW ).
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Figure 9: Lower bounds (48) [f -divergence metric, in black], (50) [MSE metric, in blue] as
well as (51) and (53) [TV metric, in red, which can be combined to (54)] on the
optimal privacy–fidelity minimax tradeoff curve supp∈P α?(p,Wε,?) for different
values of K and p0.
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Since pW has only positive entries, we can express D(P \ PW ‖pW ) as a minimum over
the topological closure of P \ PW (instead of an infimum):

D(P \ PW ‖pW ) = min
r′∈P\PW

D(r′‖pW ).

Furthermore, since pW belongs to the compact set PW , the minimizing distribution is
located on its boundary ∂PW . In fact, for any distribution r′ ∈ P \ PW , there exists a
distribution r′′ on the intersection between the boundary ∂PW and the segment connecting
r′ and pW , such that D(r′′‖pW ) ≤ D(r′‖pW ). Hence,

D(P \ PW ‖pW ) = D(∂PW ‖pW )

= min
r∈∂P

D(rW ‖pW ). (55)

In addition, observing that

∂P =
{
p′ ∈ P : p′i = 0 for some i

}
it becomes evident from the last line of (55) that D(∂PW ‖pW ) > 0, since rW 6= pW for
all r in the compact set ∂P.

Appendix B. Proof of Theorem 2

Let us define the random variables [cf. (10)]

q̂n = [q̂n,1, . . . , q̂n,K ] = t(yn)

p̌n = [p̌n,1, . . . , p̌n,K ] = t(yn)W−1

p̂n = [p̂n,1, . . . , p̂n,K ] = ProjP(t(yn)W−1).

The histogram nq̂n is a K-variate random variable which follows the multinomial distribu-
tion with support set

Sn ,
{

(n1, . . . , nK) ∈ NK : n1 + . . .+ nK = n
}

(where N are the non-negative integers) and with a conditional probability mass function
given by

Pr
{
nq̂n = (n1, . . . , nK)

}
=

{
n!

n1!...nK !q
n1
1 . . . qnKK for (n1, . . . , nK) ∈ Sn

0 for (n1, . . . , nK) /∈ Sn.

By assumption,

f(x) =

4∑
ρ=1

f (ρ)(1)

ρ!
(x− 1)ρ + %

(
|x− 1|4+γ) (56)

where the remainder function %(x) satisfies that lim supx→0 |%(x)|/x is finite. By combining
the definition of f -divergence (5a) with the above Taylor expansion, we obtain

E
[
Df

(
p̂n
∥∥p)] =

K∑
k=1

pk

(
4∑
ρ=1

f (ρ)(1)

ρ!

µ̂
(ρ)
n,k

nρpρk
+Rn,k

)
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where

µ̂
(ρ)
n,k , nρ E

[(
p̂n,k − pk

)ρ]
Rn,k , E

[
%
(∣∣∣ p̂n,kpk − 1

∣∣∣4+γ)]
.

Let w̃k = [W̃1,k, . . . , W̃K,k] denote the k-th column of W−1 (transposed into a row vector)
and let us define the ρ-th central moment of n〈w̃k, q̂n〉 as

µ̌
(ρ)
n,k , nρ E

[〈
w̃k, q̂n − q

〉ρ]
= nρ E

[(
p̌n,k − pk

)ρ]
. (57)

Lemma 12 The difference between µ̂
(ρ)
n,k and µ̌

(ρ)
n,k decays at least exponentially in n, in that

we can upper-bound its absolute value as follows:∣∣∣µ̂(ρ)
n,k − µ̌

(ρ)
n,k

∣∣∣ ≤ Cnρe−nD(∂PW ‖pW )

for some positive constant C > 0.16

Proof See Appendix C.

Lemma 12 is a consequence of p̂n and p̌n being equal except in exponentially rare cases.

This allows us to exchange µ̂
(ρ)
n,k for the easier-to-analyze µ̌

(ρ)
n,k in the study of asymptotic

expansions. Next, we will turn our attention to evaluating the ρ-th moment µ̌
(ρ)
n,k.

The multivariate moment-generating function of the multinomially distributed n(q̂n−q)
being

M (λ) = E
[
en〈λ,q̂n−q〉

]
=

(
K∑
`=1

q`e
λ`

)n
e−n〈λ,q〉 (58)

with λ ∈ RK , it is immediate to obtain the moment-generating function of a weighted sum
of the variates of n(q̂n − q). For a weight vector w̃k, it suffices to replace λ with λw̃k in
(58) to obtain the moment-generating function of n〈w̃k, q̂n − q〉 = n(p̌n,k − pk), i.e.,

Mk(λ) , M (λw̃k)

=

(
K∑
`=1

q`e
λW̃`,k

)n
e−λn〈w̃k,q〉 (59)

with scalar argument λ ∈ R. The ρ-th central moment of n(p̌n,k−pk) can now be expressed
as the ρ-th derivative at λ = 0 of the corresponding moment-generating function:

µ̌
(ρ)
n,k = M

(ρ)
k (0). (60)

16. For an explicit bound on C, see (76).

34



Locally Differentially-Private Randomized Response

The ρ-th derivative of Mk can be expressed as

M
(ρ)
k (λ) =

ρ∑
i=0

(
ρ

i

)
f

(i)
k (λ)g

(ρ−i)
k (λ)

= fk(λ)g
(ρ)
k (λ) +

ρ∑
i=1

(
ρ

i

)
f

(i)
k (λ)g

(ρ−i)
k (λ) (61)

where the functions fk and g are defined as

fk(λ) ,

(
K∑
`=1

q`e
λW̃`,k

)n
gk(λ) , e−λn〈w̃k,q〉.

We now seek to derive an explicit expression for M
(ρ)
k (λ). The derivative g

(ρ−i)
k (λ) can be

easily evaluated as

g
(ρ−i)
k (λ) = (−n〈w̃k, q〉)ρ−igk(λ).

As to the derivative f
(i)
k , it can be evaluated for i ≥ 1 using Faà di Bruno’s formula for

derivatives of concatenated functions:

f
(i)
k (λ) =

di

dλi
(u ◦ vk)(λ)

=
∑̃ i!

m1! . . .mi!
u(m1+...+mi)(vk(λ))

i∏
j=1

(
v

(j)
k (λ)

j!

)mj
where the summation

∑̃
, denoted with a tilde, is over all tuples of non-negative

(m1, . . . ,mi) ∈ Ni satisfying 1 ·m1 + . . .+ i ·mi = i. The functions u and vk are respectively
defined as

u(λ) = λn

vk(λ) =
K∑
`=1

q`e
λW̃`,k

and have respective derivatives

u(j)(λ) =

{
n!

(n−j)!λ
n−j if j ≤ n

0 if j > n

v
(j)
k (λ) =

K∑
`=1

q`W̃
j
`,ke

λW̃`,k .

Noticing that vk(0) = 1 and assuming that n is sufficiently large so as to ensure that
m1 + . . . + mi ≤ n for all values of the sum m1 + . . . + mi taken by summation indices of∑̃

, we can evaluate the derivative f
(i)
k (0) as follows:

f
(i)
k (0) =

∑̃ i!

m1! . . .mi!

n!

(n−m1 − . . .−mi)!

i∏
j=1

〈
w̃�jk , q

〉mj
j!mj

(62)
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where the superscript notation w̃�jk , (W̃ j
1,k, . . . , W̃

j
K,k) denotes entrywise exponentiation.

Note that the inner product 〈w̃�jk , q〉 appearing in the last expression is in fact nothing else
than [cf. (13)] 〈

w̃�jk , q
〉

= pW
(
W−1 �W−1 � . . .�W−1︸ ︷︷ ︸

j factors

)
eT
k

= νj,k.

Combining (62) with (61) and noticing that fk(0) = gk(0) = 1, we obtain

M
(ρ)
k (0) = (−nν1,k)

ρ +

ρ∑
i=1

(
ρ

i

)
f

(i)
k (0)(−nν1,k)

ρ−i

= (−nν1,k)
ρ +

ρ∑
i=1

(
ρ

i

)∑̃ i∏
j=1

ν
mj
j,k

j!mj
i!n!(−nν1,k)

ρ−i

m1! . . .mi!(n−m1 − . . .−mi)!
. (63)

The second, third and fourth moments of the centered variable n(p̌n,k−pk) can be evaluated
from (60) and (63) as

µ̌
(2)
n,k = n

(
ν2,k − ν2

1,k

)
(64a)

µ̌
(3)
n,k = n

(
2ν3

1,k − 3ν1,kν2,k + ν3,k

)
(64b)

µ̌
(4)
n,k = n

(
(3n− 6)ν4

1,k + 3(n− 1)ν2
2,k + (12− 6n)ν2

1,kν2,k − 4ν1,kν3,k + 3ν4,k

)
. (64c)

These explicit evaluations may now be inserted in the Taylor expansion (56). In the last
part, what remains to be proven is that the remainder term of said Taylor expansion satisfies

lim
n→∞

n2Rn,k = 0. (65)

For this purpose we upper-bound the absolute value of Rn,k as follows:

|Rn,k| ≤ E

[∣∣∣%(∣∣∣ p̂n,kpk − 1
∣∣∣4+γ)∣∣∣ ∣∣∣∣ ∣∣∣ p̂n,kpk − 1

∣∣∣ < δ

]
+ E

[∣∣∣%(∣∣∣ p̂n,kpk − 1
∣∣∣4+γ)∣∣∣ ∣∣∣∣ ∣∣∣ p̂n,kpk − 1

∣∣∣ ≥ δ]Pr{∣∣∣ p̂n,kpk − 1
∣∣∣ ≥ δ}. (66)

This bound results from the convexity of the absolute value (Jensen’s inequality), from
expanding the expectation using the law of total expectation, and upper-bounding
Pr{|p̂n,k/pk − 1| < δ} by one. The remaining three terms on the right-hand side of (66)
are upper-bounded in the following.

For the first term, recall that %(x) = O(x) in the vicinity of x = 0, hence there exists a
value ω > 0 such that for any sufficiently small δ > 0, we have |%(δ)| ≤ ωδ. Consequently,
there exists a δ0 > 0 such that, so long as δ ∈ (0, δ0),

E

[∣∣∣%(∣∣∣ p̂n,kpk − 1
∣∣∣4+γ)∣∣∣ ∣∣∣∣ ∣∣∣ p̂n,kpk − 1

∣∣∣ < δ

]
≤ ωδ4+γ . (67)

For the second term in (66), recall that f(0) is bounded and f(x) is well-defined for x > 0,
and as a consequence, %(x) must be well-defined for x ≥ 0. In particular, it follows that
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%(|x − 1|4+γ) is bounded on the closed interval x ∈ [0, 1/pk]. Therefore, the second term
in (66) is upper-bounded by a constant

E

[∣∣∣%(∣∣∣ p̂n,kpk − 1
∣∣∣4+γ)∣∣∣ ∣∣∣∣ ∣∣∣ p̂n,kpk − 1

∣∣∣ ≥ δ] ≤ max
x∈[0,1/pk]

{∣∣%(|x− 1|4+γ)∣∣} ,M (68)

where M will serve subsequently as an abbreviative notation. For the third term in (66),
let us expand it using the law of total expectation:

Pr
{∣∣∣ p̂n,kpk − 1

∣∣∣ ≥ δ} = Pr
{∣∣∣ p̌n,kpk − 1

∣∣∣ ≥ δ∣∣∣p̌n ∈ P
}
Pr{p̌n ∈ P}

+ Pr
{∣∣∣ p̂n,kpk − 1

∣∣∣ ≥ δ∣∣∣p̌n /∈ P
}
Pr{p̌n /∈ P}

= Pr
{∣∣∣ p̌n,kpk − 1

∣∣∣ ≥ δ}+
[
Pr
{∣∣∣ p̂n,kpk − 1

∣∣∣ ≥ δ∣∣∣p̌n /∈ P
}

− Pr
{∣∣∣ p̌n,kpk − 1

∣∣∣ ≥ δ∣∣∣p̌n /∈ P
}]

Pr{p̌n /∈ P}

≤ Pr
{∣∣∣ p̌n,kpk − 1

∣∣∣ ≥ δ}+ Pr{p̌n /∈ P}

≤ Pr
{∣∣∣ p̌n,kpk − 1

∣∣∣ ≥ δ}+ e−nD(∂PW ‖pW ). (69)

Here, in the first equality, we have exploited the fact conditioned on p̌n ∈ P, it holds that
p̌n = p̂n (notice p̌n,k in the first probability term on the right-hand side). In the last
bounding step, we have used Lemma 1.

To tightly bound the deviation probability

Pr
{∣∣∣ p̌n,kpk − 1

∣∣∣ ≥ δ} = Pr
{
p̌n,k /∈

(
pk(1− δ), pk(1 + δ)

)}
remaining on the right-hand side of (69), recall that p̌n,k is equal to the inner product
〈w̃k, q̂n〉. The entries of the type vector q̂n are jointly multinomially distributed, and their
joint cumulant-generating function is given by

λ 7→ log E
[
e〈λ,q̂n〉

]
= n log

(
K∑
`=1

q`e
λ`/n

)

with argument λ = (λ1, . . . , λK) ∈ RK , and therefore the cumulant-generating function of
p̌n,k = 〈w̃k, q̂n〉 is given by

Kn,k(λ) , n log

(
K∑
`=1

q`e
λW̃`,k/n

)
.

Since the limit

Kk(λ) , lim
n→∞

1

n
Kn,k(nλ) = log

(
K∑
`=1

q`e
λW̃`,k

)
is a well-defined strictly convex function of λ ∈ R, we can define its Legendre-Fenchel
transform as

K ?
k (x) , sup

λ∈R
{λx−Kk(λ)}
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which is a non-negative, quasi-convex function vanishing at x = K ′(0) = 〈w̃k′ , q〉 = pk ∈
(0, 1), and apply the Gärtner–Ellis Theorem (Dembo and Zeitouni, 1998, Theorem 2.3.6)
to obtain an upper bound on the large-deviation exponent:

lim sup
n→∞

1

n
logPr

{∣∣∣ p̌n,kpk − 1
∣∣∣ ≥ δ} ≤ − inf

x∈(−∞,pk(1−δ)]∪[pk(1+δ),∞)
K ?
k (x)

= −min
{
K ?
k (pk(1− δ)),K ?

k (pk(1 + δ))
}

≤ −min
{
λpk(1− δ)−Kk(λ), λpk(1 + δ)−Kk(λ)

}
= Kk(λ)− pk

(
λ+ δ|λ|

)
for an arbitrary λ ∈ R. Since we are free to choose λ, we may as well restrict λ to being
non-negative, thus rendering the absolute value |λ| equal to λ. This gives us

lim sup
n→∞

1

n
logPr

{∣∣∣ p̌n,kpk − 1
∣∣∣ ≥ δ} ≤ Kk(λ)− pk(1 + δ)λ (for any λ ≥ 0). (70)

Given that Kk(λ) is infinitely differentiable, we can replace it in (70) with its second-order
Taylor expansion around the origin

Kk(λ) = K ′
k (0)λ+

K ′′
k (0)

2
λ2 +O(λ3)

= pkλ+
1

2

(
−p2

k +
∑K

`=1 q`W̃
2
`,k

)
λ2 +O(λ3)

and, noting that K ′′
k (0) > 0 (due to strict convexity of Kk), we can further proceed with

upper-bounding the large-deviation exponent as follows:

lim sup
n→∞

1

n
logPr

{∣∣∣ p̌n,kpk − 1
∣∣∣ ≥ δ} ≤ K ′′

k (0)

2
λ2 − pkδλ+O(λ3)

for arbitrary λ ≥ 0. Setting λ = pkδ/K
′′
k (0) this bound becomes

lim sup
n→∞

1

n
logPr

{∣∣∣ p̌n,kpk − 1
∣∣∣ ≥ δ} ≤ − p2

kδ
2

2K ′′
k (0)

+O

(
p3
kδ

3

K ′′
k (0)3

)
The latter implies that there exist constants C > 0 and δ′0 > 0 such that for every δ ∈ (0, δ′0),

Pr
{∣∣∣ p̌n,kpk − 1

∣∣∣ ≥ δ} ≤ C exp

(
− np2

kδ
2

2K ′′
k (0)

)
. (71)

Upon inserting inequalities (67), (68) and (71) into (66), we finally obtain that, for any
δ ∈ (0,min{δ0, δ

′
0}),

|Rn,k| ≤ ωδ4+γ +MC exp

(
− np2

kδ
2

2K ′′
k (0)

)
.

Multiplying either side with n2, and substituting δ with n
− 1

2
+ γ

4(4+γ) , it holds for all n

sufficiently large so as to satisfy n
− 1

2
+ γ

4(4+γ) < min{δ0, δ
′
0}, we have

n2|Rn,k| ≤ ωn−
γ
4 + n2MC exp

(
−p

2
kn

γ
2(4+γ)

2K ′′
k (0)

)
.

Taking the limit as n→∞, we conclude (65). This finishes the proof.
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Appendix C. Proof of Lemma 12

Using successively the Jensen inequality and the triangle inequality, we obtain the upper
bound ∣∣∣µ̂(ρ)

n,k − µ̌
(ρ)
n,k

∣∣∣ ≤ nρ E[∣∣(p̂n,k − pk)ρ − (p̌n,k − pk)ρ∣∣]
= nρ E

[∣∣∣∣∣
ρ∑
r=1

(
ρ

r

)(
p̌n,k − pk

)ρ−r(
p̂n,k − p̌n,k

)r∣∣∣∣∣
]

≤ nρ E
[

ρ∑
r=1

(
ρ

r

)∣∣∣p̌n,k − pk∣∣∣ρ−r∣∣∣p̂n,k − p̌n,k∣∣∣r
]
.

Next, by the Cauchy–Schwarz inequality,∣∣∣p̌n,k − pk∣∣∣ =
∣∣〈w̃k, q̂n − q

〉∣∣
≤
∥∥w̃k

∥∥
2

∥∥q̂n − q∥∥2

≤
√
K
∥∥w̃k

∥∥
2

(where the last inequality is due to q̂n and q being probability vectors) so we obtain∣∣∣µ̂(ρ)
n,k − µ̌

(ρ)
n,k

∣∣∣ ≤ nρ ρ∑
r=1

(
ρ

r

)(√
K
∥∥w̃k

∥∥
2

)ρ−r
E
[∣∣p̂n,k − p̌n,k∣∣r]

wherein the remaining expectation may be expressed as

E
[∣∣∣p̂n,k − p̌n,k∣∣∣r] = E

[∣∣∣p̂n,k − p̌n,k∣∣∣r∣∣∣p̂n,k 6= p̌n,k

]
Pr{p̂n,k 6= p̌n,k}. (72)

To upper-bound it, notice that the expectation on the right-hand side of (72) can be upper-
bounded by means of ∣∣∣p̂n,k − p̌n,k∣∣∣ =

∣∣∣p̂n,k − 〈q̂n, w̃k〉
∣∣∣

≤
∣∣p̂n,k∣∣+

∣∣〈q̂n, w̃k〉
∣∣

≤ 1 +
∥∥q̂n∥∥2

∥∥w̃k

∥∥
2

≤ 1 +
∥∥w̃k

∥∥
2

(73)

to yield ∣∣∣µ̂(ρ)
n,k − µ

(ρ)
n,k

∣∣∣ ≤ nρ ρ∑
r=1

(
ρ

r

)(√
K
∥∥w̃k

∥∥
2

)ρ−r(
1 +

∥∥w̃k

∥∥
2

)r
Pr{p̂n,k 6= p̌n,k}. (74)

Finally, to upper-bound the probability Pr
{
p̂n,k 6= p̌n,k

}
, notice that by definition of the

projector ProjP(·), for the event p̂n,k 6= p̌n,k to occur, it is necessary that p̌n be no probability
vector. However, the fact that the rows of W−1 sum to one ensures that the entries of p̌n
will sum to one as well. Therefore p̌n fails to be a probability vector whenever some of its
entries lie outside of the unit interval. Hence,

Pr{p̂n,k 6= p̌n,k} ≤ Pr{p̂n 6= p̌n}
≤ e−nD(∂PW ‖pW ) (75)
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by Lemma 1. Combining (74) and (75), we can conclude that∣∣∣µ̂(ρ)
n,k − µ̌

(ρ)
n,k

∣∣∣ ≤ Cnρe−nD(∂PW ‖pW ).

for some positive constant C > 0 which can be bounded for instance as

C ≤
ρ∑
r=1

(
ρ

r

)(√
K
∥∥w̃k

∥∥
2

)ρ−r(
1 +

∥∥w̃k

∥∥
2

)r
≤
(

1 +
√
K
(
1 +

∥∥w̃k

∥∥
2

))ρ
. (76)

This finishes the proof.

Appendix D. Proof of Theorem 3

The MSE loss metric can be expressed as

L
(n)
MSE(p,W ) = E

[
‖p̂n − p‖22

]
= E

[
‖p̂n − p̌n + p̌n − p‖22

]
=
∑
k∈[K]

µ̌
(2)
n,k

n2
+ E

[
‖p̂n − p̌n‖22

]
+ 2E

[
〈p̂n − p̌n, p̌n − p〉

]
.

We shall prove that, in the last line, the first term [cf. (57)]

1

n2

∑
k∈[K]

µ̌
(2)
n,k =

1

n

∑
k∈[K]

(ν2,k − ν2
1,k)

is the dominant term (as n → ∞), whereas the two other terms decay exponentially in n.
Recall from the proof of Lemma 12 that [cf. (73)]∣∣p̂n,k − p̌n,k∣∣ ≤ 1 + ‖w̃k‖2 (77)

where w̃k is the k-th column of W−1. Following the exact same steps as in (73) except for
replacing p̂n,k with pk, one can show∣∣pk − p̌n,k∣∣ ≤ 1 + ‖w̃k‖2. (78)

Hence, using (77),

E
[
‖p̂n − p̌n‖22

]
= E

[
‖p̂n − p̌n‖22

∣∣p̂n 6= p̌n
]
Pr{p̂n 6= p̌n}

≤
∑
k∈[K]

(
1 + ‖w̃k‖2

)2
Pr{p̂n 6= p̌n}.

Likewise, using (77) and (78),∣∣E[〈p̂n − p̌n, p̌n − p〉]∣∣ =
∣∣E[〈p̂n − p̌n, p̌n − p〉∣∣p̂n 6= p̌n

]∣∣ · Pr{p̂n 6= p̌n}
≤
∑
k∈[K]

E
[∣∣p̂n,k − p̌n,k∣∣ · ∣∣p̌n,k − pk∣∣∣∣∣p̂n 6= p̌n

]
Pr{p̂n 6= p̌n}

≤
∑
k∈[K]

(
1 + ‖w̃k‖2

)2
Pr{p̂n 6= p̌n}.
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Invoking Lemma 1, we can conclude

L
(n)
MSE(p,W ) =

1

n

∑
k∈[K]

(ν2,k − ν2
1,k) +O

(
e−nD(∂PW ‖pW )

)
.

Appendix E. Proof of Theorem 4

The TV loss metric is close to E
[
‖p̌n− p‖1

]
, up to an error term which can be bounded by

means of Jensen’s inequality and the triangle inequality as∣∣∣L (n)
TV (p,W )− E

[
‖p̌n − p‖1

]∣∣∣ =
∣∣∣E[‖p̂n − p‖1]− E

[
‖p̌n − p‖1

]∣∣∣
≤ E

[∣∣‖p̂n − p‖1 − ‖p̌n − p‖1∣∣]
≤ E

[
‖p̂n − p̌n‖1

]
= E

[
‖p̂n − p̌n‖1

∣∣ p̂n 6= p̌n
]∣∣ · Pr{p̂n 6= p̌n}.

Using the bound
∣∣p̂n,k− p̌n,k∣∣ ≤ 1 + ‖w̃k‖2 from the proof of Lemma 12 [cf. (73)], we obtain∣∣∣L (n)

TV (p,W )− E
[
‖p̌n − p‖1

]∣∣∣ ≤ (K +
∑

k∈[K]‖w̃k‖2
)
Pr{p̂n 6= p̌n}.

Finally, by Lemma 1, we conclude that

L
(n)
TV (p,W ) = E

[
‖p̌n − p‖1

]
+O

(
e−nD(∂PW ‖pW )

)
meaning that we can focus on expanding E

[
‖p̌n − p‖1

]
instead of L

(n)
TV (p,W ), since both

quantities are exponentially close (hence asymptotically equivalent). Next, let us define the
centered unit-variance random variables

Zn,k ,
p̌n,k − pk√
var(p̌n,k)

=

√
n(p̌n,k − pk)√
ν2,k − ν2

1,k

where the second equality holds because [cf. (57)]

n2 var(p̌n,k) = µ̌
(2)
n,k = n

(
ν2,k − ν2

1,k

)
.

Recall that the moment-generating function of n(p̌n,k−pk) was introduced in (59), where it
is denoted as Mk. Hence, from (59) we infer that the moment-generating function of Zn,k
is

E
[
eλZn,k

]
= Mk

 λ√
n(ν2,k − ν2

1,k)


=

 K∑
`=1

q` exp

λ(W̃`,k − 〈w̃k, q〉
)√

n(ν2,k − ν2
1,k)

n

=

(
1− λ2

2n
+ o(λ2)

)n
(79)
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where the last equality follows from Taylor-expanding the exponential function to second
order and from noticing that the first and second order terms of said expansion simplify
due to

K∑
`=1

q`W̃`,k − 〈w̃k, q〉 = 0

K∑
`=1

q`

W̃`,k − 〈w̃k, q〉√
ν2,k − ν2

1,k

2

= 1.

For the latter equality, recall that 〈w̃k, q〉 =
∑

` q`W̃`,k = pk = ν1,k and that [cf. (64a)]

K∑
`=1

q`

(
W̃`,k − 〈w̃k, q〉

)2
= ν2,k − ν2

1,k =
µ̌

(2)
n,k

n
.

Since limn→∞
(
1 + x

n + o(n−1)
)n

= ex, we have that for any λ ∈ R, the limit of the moment-
generating function of Zn,k as given in (79) is

lim
n→∞

E
[
eλZn,k

]
= e−λ

2/2

which is the moment-generating function of the normal distribution. By Lévy’s continuity
theorem for moment-generating functions (Billingsley, 1995, Problem 30.4), the pointwise
convergence of the moment-generating functions of Zn,k to that of the normal distribution
as n → ∞ implies that Zn,k converges in law to a normal random variable Z ∼ N (0, 1).
Therefore,

lim
n→∞

√
nL

(n)
TV (p,W ) = lim

n→∞

√
n

K∑
k=1

E
[
|p̌n,k − pk|

]
=

K∑
k=1

√
ν2,k − ν2

1,k lim
n→∞

E
[
|Zn,k|

]
=

K∑
k=1

√
ν2,k − ν2

1,k E
[
|Z|
]

=

K∑
k=1

√
ν2,k − ν2

1,k

√
2

π
.

This concludes the proof.

Appendix F. Proof of Theorem 5

Let D(·, ·) denote a distance metric between probability vectors, which shall stand either for
the f -divergence Df (·‖·) or for the MSE metric ‖· − ·‖22. These metrics are jointly convex
and continuous in both arguments. In particular, they are convex in the first argument,
i.e.,

D(λp+ (1− λ)p′,p′′) ≤ λD(p,p′′) + (1− λ)D(p′,p′′).
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Denoting the probability simplex as P, let us define

D̄(p) , sup
p′∈P

D(p′,p)

which is always finite in the case of the MSE metric, and also finite in the case of the
f -divergence metric as long as limx↓0 xf(x) < +∞, which holds due to the assumption that
f(0) is finite [cf. Theorem 2].

As usual, assume that xn ∼ p⊗n is a vector of n i.i.d. source samples, and let yn ∼
(pW )⊗n be the corresponding outputs from n copies of the channelW . In addition, assume
that y′n are the outputs from passing yn through n copies of another channel W ′. Let us
define the estimates

p̌′n , t(y′n)(WW ′)−1

p̂′n , ProjP
(
t(y′n)(WW ′)−1

)
based on the degraded observation y′n. In addition, let us define the estimates of the output
distribution of the first channel W as

q̌n , t(y′n)(W ′)−1

q̂n , ProjP
(
t(y′n)(W ′)−1

)
.

Using the law of total probability,

L (n)(p,WW ′) = E
[
D
(
p̂′n,p

)]
≥ E

[
D
(
p̌′n,p

)∣∣(q̌n, p̌′n) ∈ P2
]
Pr
{(
q̌n, p̌

′
n

)
∈ P2

}
(80)

wherein we have exploited the fact that the event p̌′n ∈ P implies p̌′n = p̂′n by idempotence
of the projection. We can bound the probability factor on the right-hand side of (80) as

Pr
{(
q̌n, p̌

′
n

)
∈ P2

}
= Pr{p̌′n ∈ P} − Pr{p̌′n ∈ P

∣∣ q̌n /∈ P}Pr{p̌n /∈ P}
≥ Pr{p̌′n ∈ P} − Pr{q̌n /∈ P}
≥ 1− e−nD(∂PWW ′‖pWW ′) − e−nD(∂PW ′‖pWW ′)

≥ 1− 2e−nM (81)

by twice applying Lemma 1. Here, M denotes the constant where

M = min
{
D(∂PWW ′‖pWW ′),D(∂PW ′‖pWW ′)

}
.

In order to bound the other factor in (80), let us first define τn and τ ′n as being the respective
types t(yn) and t(y′n), conditionally on the event{(

q̌n, p̌
′
n

)
∈ P2

}
= {t(yn)W−1 ∈ P, t(y′n)(WW ′)−1 ∈ P}.

The pair (τn, τ
′
n) thus has a probability mass function

Pr{(τn, τ ′n) = (τ̃n, τ̃
′
n)} = Pr{(t(yn), t(y′n)) = (τ̃n, τ̃

′
n)}

× 1
{
τ̃ ′n(W ′)−1 ∈ P, τ̃ ′n(WW ′)−1 ∈ P

}
Pr
{
t(y′n)(W ′)−1 ∈ P, t(y′n)(WW ′)−1 ∈ P

}
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where 1{·} stands for the indicator function. Hence, the first factor on the right-hand side
of (80) can be lower-bounded as follows:

E
[
D
(
p̌′n,p

)∣∣(q̌n, p̌′n) ∈ P2
]

= E
[
D
(
τ ′n(WW ′)−1,p

)]
= E

[
E
[
D
(
τ ′n(WW ′)−1,p

)∣∣τn]]
> E

[
D
(
E[τ ′n

∣∣τn](WW ′)−1,p
)]
. (82)

The bounding step is due to the convexity of D(·, ·) in the first argument (Jensen’s in-
equality). The inequality is strict because the metrics D(·, ·) are strictly convex in the first
argument by assumption, and because τ ′n conditioned on any τn is non-deterministic.

Next, we show that E[τ ′n|τn](W ′)−1 is exponentially close to τn as n→∞. By the law
of total probability,

τ̃nW
′ = E

[
t(y′n)

∣∣t(yn) = τ̃n
]

= E
[
t(y′n)

∣∣t(yn) = τ̃n, q̌n ∈ P
]
Pr
{
q̌n ∈ P

}
+ E[t(y′n)|t(yn) = τ̃n, q̌n /∈ P]Pr{q̌n /∈ P}.

Note that the first expectation in the last line is equal to

E
[
t(y′n)

∣∣t(yn) = τ̃n, q̌n ∈ P
]

= E[τ ′n|τn = τ̃n]

by definition of (τn, τ
′
n). Since by Lemma (1), we have

1− Pr{q̌n ∈ P} = Pr{q̌n /∈ P}
≤ e−nD(∂PW ′‖pWW ′)

it is straightforward to bound the difference between τ̃nW
′ and E[τ ′n|τn = τ̃n] entrywise

from below and from above as

τ̃nW
′ − E[τ ′n|τn = τ̃n] ≥ −E[τ ′n|τn = τ̃n]e−nD(∂PW ′‖pWW ′)

≥ −1e−nD(∂PW ′‖pWW ′) (83a)

τ̃nW
′ − E[τ ′n|τn = τ̃n] ≤ E[t(y′n)|t(yn) = τ̃n, q̌n /∈ P]e−nD(∂PW ′‖pWW ′)

≤ 1e−nD(∂PW ′‖pWW ′). (83b)

The inequalities in (83a)–(83b) hold entrywise in the sense that they stand for K lines
of simultaneously holding inequalities. Combining (83a) and (83b), we can bound the
Euclidean distance ∥∥τ̃nW ′ − E[τ ′n|τn = τ̃n]

∥∥
2
≤
√
Ke−nD(∂PW ′‖pWW ′).

Taking into account that the metric D(·, ·) is continuous in the first argument, the mapping

τ 7→ D(τ (WW ′)−1‖p) (τ ∈ P)

is continuous. Being defined on a compact set (the probability simplex), this mapping is
also uniformly continuous. Hence, for any ε > 0 there exists an Nε such that for all n ≥ Nε,

E
[
D
(
E[τ ′n

∣∣τn](WW ′)−1,p
)]
≥ E

[
D
(
τnW

−1,p
)]
− ε. (84)
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On the other hand,

L (n)(p,W ) = E
[
D
(
p̂n,p

)]
= E

[
D
(
p̌n,p

)∣∣(p̌n, p̌′n) ∈ P2
]
Pr
{(
p̌n, p̌

′
n

)
∈ P2

}
+ E

[
D
(
p̂n,p

)∣∣(p̌n, p̌′n) /∈ P2
]
Pr
{(
p̌n, p̌

′
n

)
/∈ P2

}
≤ E

[
D
(
p̌n,p

)∣∣(p̌n, p̌′n) ∈ P2
]

+ D̄(p)
(
e−nD(∂PW ‖pW ) + e−nD(∂PWW ′‖pWW ′))

≤ E
[
D
(
p̌n,p

)∣∣(p̌n, p̌′n) ∈ P2
]

+ 2D̄(p)e−nD(∂PWW ′‖pWW ′)

= E
[
D
(
τnW

−1,p
)]

+ 2D̄(p)e−nD(∂PWW ′‖pWW ′)

≤ E
[
D
(
τnW

−1,p
)]

+ 2D̄(p)e−nM (85)

where the first bounding step follows from the union of events, and from twice applying
Lemma 1, while in the second bounding step we have used the data processing inequal-
ity D(·WW ′‖pWW ′) ≤ D(·W ‖pW ). Combining all inequalities (80), (81), (82), (84)
and (85), we obtain

L (n)(p,WW ′) >
(
L (n)(p,W )− 2D̄(p)e−nM − ε

)
(1− 2e−nM )

for arbitrarily small ε > 0 and sufficiently large n. It follows that L (n)(p,WW ′) >
L (n)(p,W ) for sufficiently large n, which concludes the proof.

Appendix G. Proof of Theorem 7

Using the identity (20a), the data-processing inequality (26a) can be written as∑
(k,k′)∈[K]2

pk
pk′

(Φk,k′(WW ′)− Φk,k′(W )) ≥ 0. (86)

Since this inequality holds for any probability vector p, it holds in particular for the prob-
ability vector taking value ε2 at the i-th coordinate, value 1 − (K − 2)ε − ε2 at the j-th
coordinate, and value ε on all other coordinates, where ε > 0 is assumed to be sufficiently
small to ensure 1 − (K − 2)ε − ε2 ≥ 0. Expanding the sum on the left-hand side of (86)
for this probability vector, while abbreviating the matrix Φ(WW ′) − Φ(W ) as ∆Φ for
notational concision, we obtain the inequality

ε2

1− (K − 2)ε− ε2
∆Φi,j +

1− (K − 2)ε− ε2

ε2
∆Φj,i

+ ε
∑

k′∈[K]\{i,j}

∆Φi,k′ +
1

ε

∑
k∈[K]\{i,j}

∆Φk,i

+
ε

1− (K − 2)ε− ε2

∑
k∈[K]\{i,j}

∆Φk,j

+
1− (K − 2)ε− ε2

ε

∑
k′∈[K]\{i,j}

∆Φj,k′

+
∑

(k,k′)∈([K]\{i,j})2∪{i,i}∪{j,j}

∆Φk,k′ ≥ 0.
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Multiplying both sides of this inequality by ε2 and taking the limit as ε→ 0, we obtain the
desired result ∆Φj,i ≥ 0 which concludes the proof.

Appendix H. Proof of Theorem 9

Letw = [w1, . . . , wK ] denote the first row of a circulant mechanism, as defined in (29), which
we assume to be full-rank. Owing to its circulant structure, W has an eigendecomposition

W = FΛF † with a symmetric Fourier eigenbasis [F ]i,j = 1√
K
ξ

(i−1)(j−1)
K where ξK =

e−2π/K , and a diagonal matrix of eigenvalues Λ = diag(λ). The vector λ = [λ1, . . . , λK ] of
eigenvalues is the discrete Fourier transform of w, i.e.,

λ = w
√
KF .

Note that the row-stochasticity of W implies λ1 = 1. Furthermore, since W is real-valued,
the remaining eigenvalues (λ2, . . . , λK) are skew-symmetric, in the sense that λ∗k = λK−k+2.
Let λ ∗ λ denote the cyclic self-convolution of λ, i.e.,

[λ ∗ λ]k =

K∑
k′=1

λk′ λ̄k+1−k′

where λ̄ denotes the K-periodic continuation of (λ1, . . . , λK). Then, by the (self-
)convolution theorem of the discrete Fourier transform, for any transform pair (w̃, λ̃), i.e.,
λ̃ = w̃

√
KF , it holds that

1

K
λ̃ ∗ λ̃ = (w̃ � w̃)

√
KF . (87)

Hence, for circulant W = FΛF †, the quantity ϕ(W ) can be evaluated as follows:

ϕ(W ) = 1FΛF †(FΛ−1F † � FΛ−1F †)1T

(a)
=

1

K
1FΛdiag(λ−1 ∗ λ−1)F †1T

(b)
= e1Λdiag(λ−1 ∗ λ−1)eT

1

(c)
= e1 diag(λ−1 ∗ λ−1)eT

1

=

K∑
k=1

1

λkλ̄2−k

= 1 +
K∑
k=2

1

λkλK−k+2

= 1 +

K∑
k=2

1

|λk|2
. (88)

Here, (a) results from the self-convolution identity (87); step (b) is due to F †F = I and
1F =

√
Ke1; step (c) follows from e1Λ = e1. By the Plancherel Theorem,

1 +
K∑
k=2

|λk|2 = K
K∑
k=1

w2
k
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and by the harmonic-arithmetic-mean inequality, we can lower-bound the quantity (88) as

ϕ(W ) ≥ 1 +
K2

−1 +K
∑K

k=1w
2
k

. (89)

Note that the denominator in the last expression is positive, hence minimizing the fraction
(subject to an ε-privacy constraint) amounts to maximizing the sum of squares

∑K
k=1w

2
k,

which by Appendix J, Lemma 13, is achieved (up to permutation) by a vector

w? =
1

eε +K − 1

[
eε 1 1 . . . 1

]
. (90)

It now suffices to show that the harmonic-arithmetic-mean inequality (89) is indeed satisfied
with equality for a circulant mechanism generated by w?. Said inequality is tight for
|λ2| = . . . = |λK |, and the choice (90) yields eigenvalues

λk =

K∑
`=1

w`ξ
(k−1)(`−1)
K

=
1

eε +K − 1

(
eε +

K∑
`=2

ξ
(k−1)(`−1)
K

)
=

eε − 1

eε +K − 1
, (k = 2, . . . ,K) (91)

since for k = 2, . . . ,K, we have

K∑
`=1

ξ
(k−1)(`−1)
K = 0.

Given that the right-hand side of (91) does not depend on k, we have indeed |λ2| = . . . =
|λK |, which implies that the harmonic-arithmetic-mean inequality is tight, and thus con-
cludes the proof.

Appendix I. Proof of Lemma 10

It suffices to prove that the function aW : p 7→ pΦ(W )p−T satisfies that the restriction

[0, 1]→ R+, λ 7→ aW (λp+ (1− λ)pΠ[i,j])

47



Pastore and Gastpar

is convex for any p, {i, j} and W . Singling out two arbitrary variables pi and pj out of the
coordinates of p, we can write a(p) in the following way:

aW (p) =
∑

(k,`)∈[K]2

pk
p`
Φk,`(W )

=
pi
pj
Φi,j(W ) +

pj
pi
Φj,i(W )

+
∑

`∈[K]\{i,j}

pi
p`
Φi,`(W ) +

∑
k∈[K]\{i,j}

pk
pj
Φk,j(W )

+
∑

`∈[K]\{i,j}

pj
p`
Φj,`(W ) +

∑
k∈[K]\{i,j}

pk
pi
Φk,i(W )

+
∑

(k,`)∈([K]\{i,j})2

pk
p`
Φk,`(W ). (92)

Then, aW (λp+(1−λ)pΠ[i,j]) can be written out similarly, by replacing all occurrences of pi
and pj on the right-hand side of (92) with λpi+(1−λ)pj and λpj+(1−λ)pi, respectively. It
is then easy to see that aW (λp+(1−λ)pΠ[i,j]) is convex in λ, since all entries of Φ(W ) are
non-negative. In fact, every summand on the right-hand side of (92) is (weakly or strongly)
convex in λ.

Appendix J. Auxiliary lemma

Lemma 13 The solution to the maximization problem

x? = argmax
x∈RK+ :

‖x‖1=1
∀k,k′ : xk/xk′≤eε

‖x‖22 (93)

is given (up to an arbitrary permutation) by

x? =
1

eε +K − 1

[
eε 1 . . . 1

]
.

Proof Let us first ascertain that the optimization domain is convex. Consider any two
vectors x(1) and x(2) that belong to said domain. Any convex combination λx(1)+(1−λ)x(2)

will also belong to this domain, because

λx
(1)
k + (1− λ)x

(2)
k

λx
(1)
k′ + (1− λ)x

(2)
k′

≤ max

{
x

(1)
k

x
(1)
k′

,
x

(2)
k

x
(2)
k′

}
≤ eε.

Since problem (93) is the maximization of a convex objective over a convex optimization
domain, we infer that the maximizer lies on the domain boundary, that is, the privacy
constraint is satisfied with equality. This means that we can restrict the privacy constraint
to retain only those vectors satisfying

max
k,k′

xk
xk′

= eε.
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Given this equality constraint and the symmetry (permutation invariance) of the objective
function and optimization constraints, we can now conveniently parametrize the optimiza-
tion domain as follows, without loss of generality:

x =

[
eε 1 eλ3ε . . . eλKε

]
eε + 1 + eλ3ε + . . .+ eλKε

. (94)

where λ3, . . . , λK ∈ [0, 1]K−2 are the parameters left to optimize. Let us consider any single
one of them, with index k ∈ {3, . . . ,K}, and study the maximum of the squared Euclidean
norm of (94) as a function of λk, which we define as a function17

f(eλkε) ,
e2ε + 1 + e2λ3ε + . . .+ e2λKε

(eε + 1 + eλ3ε + . . .+ eλKε)
2

=
A+ e2λkε

(B + eλkε)
2

where the constants A and B are defined as

A , e2ε + 1 +

K∑
k′=3
k′ 6=k

e2λk′ε

B , eε + 1 +
K∑
k′=3
k′ 6=k

eλk′ε

and have a ratio A/B upper and lower-bounded as

1 ≤ A

B
≤ eε.

Note that we also have A ≤ B2. The function f is differentiable on R+ and has a derivative

f ′(x) =
d

dx

{
A+ x2

(B + x)2

}
=

2(Bx−A)

(B + x)3

which is negative for x < A/B and positive for x > A/B. It follows that f is quasi-convex
on R+, and thus in particular on [1, eε], so its maximum is attained at either one of the
boundary points, i.e.,

max
1≤x≤eε

f(x) = max{f(1), f(eε)}.

It follows that the maximizer x? of (93) can be represented in the parametric form (94)
in which some number κ of parameters λk are set to zero, while the remaining K − 2 − κ
parameters are set to one. That is, up to a permutation, the optimal x? has the form

x?(κ) =

[
eε eε . . . eε 1 1 . . . 1

]
(K − κ− 1)eε + κ+ 1

17. The function f depends on the other parameters λk′ , but we omit this in notation.
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where the vector in the numerator contains K − κ− 1 entries equal to eε and κ+ 1 entries
equal to one, and the optimal value of κ ∈ {0, . . . ,K − 2} is yet to be determined. Hence,
the optimum of (93) is given by

max
x∈RK+ :

‖x‖1=1

∀k,k′ : xk
xk′
≤eε

‖x‖22 = max
κ∈{0,...,K−2}

‖x?(κ)‖22

= max
κ∈{0,...,K−2}

κ+ 1 + (K − κ− 1)e2ε

(κ+ 1 + (K − κ− 1)eε)2

= max
κ′∈{1,...,K−1}

ζ(κ′). (95)

where the function ζ is defined as

ζ(κ′) =
κ′ + (K − κ′)e2ε

(κ′ + (K − κ′)eε)2
.

By considering the continuous extension of ζ to the interval [0,K] and studying the sign of
its derivative

dζ

dκ′
=

(eε − 1)2((K − κ′)eε − κ′)
(κ′ + (K − κ′)eε)3

we conclude that ζ is quasi-concave on the interval [0,K] with a maximum located at

eεK

eε + 1
∈ (0,K).

Consequently, the maximum (95) is attained at either κ′ = 1 or κ′ = K − 1, i.e.,

max
x∈RK+ :

‖x‖1=1

∀k,k′ : xk
xk′
≤eε

‖x‖22 = max{ζ(1), ζ(K − 1)}

= max

{
1 + (K − 1)e2ε

(1 + (K − 1)eε)2
,
K − 1 + e2ε

(K − 1 + eε)2

}
.

To compute this maximum of two fractions, consider the cross-product of numerators and
denominators, which can be factorized as follows:(

K − 1 + e2ε
)
(1 + (K − 1)eε)2 −

(
1 + (K − 1)e2ε

)
(K − 1 + eε)2

= (K − 1)(K − 2)(e2ε − 1)(eε − 1)2.

From the right-hand side of the last equality, it appears that this expression is non-negative,
hence we conclude that

max
x∈RK+ :

‖x‖1=1

∀k,k′ : xk
xk′
≤eε

‖x‖22 =
K − 1 + e2ε

(K − 1 + eε)2
= ζ(K − 1)

which, up to an arbitrary permutation, is attained by

x? = x?(K − 2) =

[
eε 1 1 . . . 1

]
eε +K − 1

.

This concludes the proof.
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Appendix K. Proof of Lemma 11

Let the columns of W be denoted as (row vectors) w1, . . . ,wK and the rows of its inverse
W−1 be denoted as w̃1, . . . , w̃K . By definition of the inverse, we have

〈
wk′ , w̃k

〉
=

{
0, if k 6= k′

1, if k = k′.
(96)

Let

cos(a, b) =
〈a, b〉
‖a‖2‖b‖2

denote the cosine of the angle enclosed by vectors a and b. For any orthogonal basis
(b1, . . . , bK) of RK and an arbitrary vector a, we have the relationship

K∑
k=1

cos(a, bk)
2 = 1.

For any k 6= k′, since wk′ and w̃k are orthogonal by (96), it follows that

cos(wk,wk′)
2 + cos(wk, w̃k)

2 ≤ 1. (97)

The first squared cosine in (97) can be lower-bounded as follows: Due to the privacy con-
straint W ∈ Wε and the row-stochasticity of W , the vectors wk can be represented in
parametric form as

wk =
‖wk‖2√∑K
`=1 e

2ελ`,k

[
eελ1,k . . . eελK,k

]
(98)

where the coefficients λ`,k belong to the unit interval [0, 1]. Any two distinct column vectors
wk and wk′ span an angle of cosine at least

cos(wk,wk′) =
〈wk,wk′〉
‖wk‖2‖wk′‖2

=

∑K
`=1 e

ε(λ`,k+λ`,k′ )√∑K
`=1 e

2ελ`,k
∑K

`′=1 e
2ελ`′,k′

≥ e−2ε. (99)

Combining (97) and (99), we obtain

cos
(
wk, w̃k

)2
=

1

‖wk‖22‖w̃k‖22
≤ 1− e−4ε.
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This inequality allows us to establish the following lower bound:

∑
(k,`)∈[K]2

Φk,`(W ) =

K∑
k=1

K∑
`=1

K∑
m=1

Wk,mW̃
2
m,`

=
K∑
m=1

K∑
k=1

Wk,m

K∑
`=1

W̃ 2
m,`

=

K∑
m=1

‖wm‖1‖w̃m‖22

≥ 1

1− e−4ε

K∑
m=1

‖wm‖1
‖wm‖22

. (100)

As a final step, when minimizing the right-hand side of (100) over privatization channels
W ∈ Wε, we will show in the following that the minimum is attained for a step-circulant
mechanism

1

eε +K − 1


eε 1 . . . 1

1 eε
. . .

...
...

. . .
. . . 1

1 . . . 1 eε

.
Hence,

min
W∈Wε

K∑
m=1

‖wm‖1
‖wm‖22

= K
(eε +K − 1)2

e2ε +K − 1
(101)

which upon recombining with (100) yields the desired statement of Lemma 11.

The statement (101) will be proven in what follows. To begin with, consider the relax-
ation of problem (101) that one obtains when minimizing over a superset W ε ⊃ Wε defined
as

W ε ,
{
W ∈ RK×K+ :

∑
k,`Wk,` = K and ∀i, j : Wi,j,j′ ≤ eεWi,j′

}
.

In other words, we relax the row-stochasticity constraint while keeping the sum of all entries
equal to K. This relaxed problem can be rewritten as follows:

min
W∈W ε

K∑
m=1

‖wm‖1
‖wm‖22

= min
(N1,...,NK)∈RK+ :
N1+...+NK=K

K∑
m=1

min
wm∈RK+ :

‖wm‖2=Nm
∀k,k′ : Wk,m/Wk′,m≤eε

Nm

‖wm‖22
. (102)

We now need to solve the inner minimization problem (for any given m) on the right-hand
side of (102), whose minimizer can be equivalently expressed as the maximizer

w? = argmax
w∈RK+ :

‖w‖1=Nm
∀k,k′ : wk/wk′≤eε

‖w‖22
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which according to Lemma 13 in Appendix J admits the solution (up to a permutation)

w? = Nm

[
eε 1 1 . . . 1

]
eε +K − 1

.

The reciprocal of the squared Euclidean norm of w? equals

1

‖w?‖22
=

1

N2
m

(eε +K − 1)2

e2ε +K − 1
.

Hence, the relaxed optimization problem considered further above can be written as

min
W∈W ε

K∑
m=1

1

‖wm‖2
= min

(N1,...,NK)∈RK+ :
N1+...+NK=K

K∑
m=1

1

Nm

K − 1 + eε√
K − 1 + e2ε

= K
K − 1 + eε√
K − 1 + e2ε

.

The latter expression is also the minimum of the original optimization problem (before
relaxation) and can be achieved by picking wm to be the rows of the step-circulant matrix

Wε,? =
1

eε +K − 1


eε 1 . . . 1

1 eε
. . .

...
...

. . .
. . . 1

1 . . . 1 eε

.
as defined in (23), which establishes (101) and thus finalizes the proof of Lemma 11.
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