Journal of Machine Learning Research 22 (2021) 1-43 Submitted 11/18; Revised 8/20; Published 2/21

Sparse and Smooth Signal Estimation:
Convexification of /y;-Formulations

Alper Atamtiirk

Department of Industrial Engineering € Operations Research
University of California

Berkeley, CA 94720, USA

Andrés Gémez

Daniel J. Epstein Department of Industrial & Systems Engineering
Uniwversity of Southern California

Los Angeles, CA 90089, USA

Shaoning Han

Daniel J. Epstein Department of Industrial & Systems Engineering
University of Southern California

Los Angeles, CA 90089, USA

Editor: Vahab Mirrokni

Abstract

ATAMTURK@BERKELEY.EDU

GOMEZANDQUSC.EDU

SHAONINGQUSC.EDU

Signal estimation problems with smoothness and sparsity priors can be naturally modeled
as quadratic optimization with {p- “norm” constraints. Since such problems are non-convex
and hard-to-solve, the standard approach is, instead, to tackle their convex surrogates based
on /;-norm relaxations. In this paper, we propose new iterative (convex) conic quadratic
relaxations that exploit not only the £p-“norm” terms, but also the fitness and smoothness
functions. The iterative convexification approach substantially closes the gap between the
lo-“norm” and its ¢; surrogate. These stronger relaxations lead to significantly better
estimators than ¢;-norm approaches and also allow one to utilize affine sparsity priors. In
addition, the parameters of the model and the resulting estimators are easily interpretable.
Experiments with a tailored Lagrangian decomposition method indicate that the proposed
iterative convex relaxations yield solutions within 1% of the exact fg-approach, and can
tackle instances with up to 100,000 variables under one minute.

Keywords: Mixed-integer quadratic optimization, conic quadratic optimization, perspec-
tive formulation, sparsity.

1. Introduction

Given nonnegative data y € Rl corresponding to a noisy realization of an underlying signal,
we consider the problem of removing the noise and recovering the original, uncorrupted
signal y*. A successful recovery of the signal requires exploiting prior knowledge on the

structure and characteristics of the signal effectively.

A common prior knowledge on the underlying signal is smoothness. Smoothing consider-
ations can be incorporated in denoising problems through quadratic penalties for deviations
in successive estimates (Poggio et al., 1985). In particular, denoising of a smooth signal can
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be done by solving an optimization problem of the form

min [|ly — |3+ Pz|3, (1)
z€RY

where x corresponds to the estimation for y*, A > 0 is a smoothing regularization parameter,
P € R™*" is a linear operator, the estimation error term ||y — z||3 measures the fitness to
data, and the quadratic penalty term || Pz||3 models the smoothness considerations. In its
simplest form

1Pzl3= Y (i — ;) (2)

{i,j}€A

where A encodes the notion of adjacency, for example, consecutive observations in a time
series or adjacent pixels in an image. If P is given according to (2), then problem (1) is
a convex Markov Random Fields problem (Hochbaum, 2001) or metric labeling problem
(Kleinberg and Tardos, 2002), commonly used in the image segmentation context (Boykov
et al., 2001; Kolmogorov and Zabin, 2004) and in clustering (Hochbaum and Liu, 2018),
for which efficient combinatorial algorithms exist. Even in its general form, (1) is a convex
quadratic optimization, for which a plethora of efficient algorithms exist.

Another naturally occurring signal characteristic is sparsity, this is, the underlying signal
differs from a base value in only a small proportion of the indexes. Sparsity arises in diverse
application domains including medical imaging (Lustig et al., 2007), genomic studies (Huang
et al., 2008), face recognition (Yang et al., 2010), and is at the core of compressed sensing
methods (Donoho, 2006). In fact, the “bet on sparsity” principle (Hastie et al., 2001)
calls for systematically assuming sparsity in high-dimensional statistical inference problems.
Sparsity constraints can be modeled using the £y-“norm”?, leading to estimation problems
of the form

min ly — 2347 S (i — ;)% subject to [aflo< k, (3)
z€RY (ij1eA
where k € Z is a target sparsity and ||z[lo= Y_i_ | 14,20, Where 1, is the indicator function
equal to 1 if (-) is true and equal to 0 otherwise. In addition, the indicators can also be
used to model affine sparsity constraints (Dong, 2019; Dong et al., 2019), enforcing more
sophisticated priors than simple sparsity; see Section 5.2 for an illustration.

Unlike (1), problem (3) is non-convezr and hard-to-solve exactly. The regularized version

of (3), given by
min [y — z[3+A Y (@5 —a;)” + pllzlo (4)
z€RY =
{i,j}€A
with g > 0, has received (slightly) more attention. Problem (4) corresponds to a Markov

Random Fields problem with non-convex deviation functions (Ahuja et al., 2004; Hochbaum,
2013), for which a pseudo-polynomial algorithm of complexity O (l’Z‘% log (%)) exists,
where € is a precision parameter and |A| is the cardinality of set A. More recently, in the
context of signal denoising, Bach (2016) proposed another pseudo-polynomial algorithm

of complexity O ((%)3 log (%)), and demonstrated its performance for instances with n =

50. The aforementioned algorithms rely on a discretization of the x variables, and their

1. The so-called £o-“norm” is not a proper norm as it violates homogeneity.
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performance depends on how precise the discretization (given by the parameter €) is. Finally,
a recent result of Atamtiirk and Gémez (2018) on quadratic optimization with M-matrices
and indicators imply that (4) is equivalent to a submodular minimization problem, which
leads to a strongly polynomial-time algorithm of complexity O(n"). The high complexity by
a blackbox submodular minimization algorithm precludes its use except for small instances.
No polynomial-time algorithm is known for the constrained problem (3).

In fact, problems (3) and (4) are rarely tackled directly. One of the most popular
techniques used to tackle signal estimation problems with sparsity consists of replacing the
non-convex term [|z||o with the convex ¢1-norm, ||z|[1= >""",|z;|, see Section 2.1 for details.
The resulting optimization problems with the £;-norm can be solved very efficiently, even
for large instances; however, the £; problems are often weak relaxations of the exact g
problem (3), and the estimators obtained may be poor, as a consequence. Alternatively,
there is a increasing effort for solving the mixed-integer optimization (MIO) (3) exactly using
enumerative techniques, see Section 2.2. While the recovered signals are indeed high quality,
exact MIO approaches to-date require at least a few days to solve instances with n > 1,000,
and are inadequate to tackle many realistic instances as a consequence. Therefore, bridging
the gap between the easy-to-solve £ approximations and the often intractable ¢y problems
in a convex optimization framework is becoming increasingly important; see Atamtiirk and
Gémez (2019) for rank-one relaxations of sparse regression.

Contributions and outline

In this paper, we construct a set of iterative convex relazations for problems (3) and (4)
with increasing strength. These convex relaxations are considerably stronger than the ¢;
relaxation, and also significantly improve and generalize other existing convex relations
in the literature, including the perspective relaxation (see Section 2.3) and recent convex
relaxations obtained from simple pairwise quadratic terms (see Section 2.4). The strong
convex relaxations can be used to obtain high quality, if not optimal, solutions for (3)—(4),
resulting in better performance than the existing methods; in our computations, solutions
to instances with n = 1,000 are obtained with off-the-shelf convex solvers within seconds.
For additional scalability, we give an easy-to-parallelize tailored Lagrangian decomposition
method that solves instances with n = 100,000 under one minute. Finally, the proposed
formulations are amenable to conic quadratic optimization techniques, thus can be tack-
led using off-the-shelf solvers, resulting in several advantages: (i) the methods described
here will benefit from the continuous improvements of conic quadratic optimization solvers;
(ii) the proposed approach is flexible, as it can be used to tackle either (3) or (4), as well
as other combinatorial constraints, by simply changing the objective or adding constraints.

Figure 1 illustrates the performance of the £;-norm estimator and the proposed strong
convex estimators for an instance with n = 1,000. The new convex estimator, depicted
in Figure 1 (C), requires only one second to solve; the convex estimator enhanced with
additional priors in Figure 1 (D) is solved in under five seconds.

The rest of the paper is organized as follows. In Section 2 we review the relevant
background for the paper. In Section 3 we introduce the strong iterative convex formulations
for (3)—(4). In Section 4 we give conic quadratic extended reformulation of the model and
describe a scalable Lagrangian decomposition method to solve it. In Section 5 we test
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(a) True signal and noisy observations. (b) £1-approx results in dense and shrunk estimators with
many “false positives.”
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(c) New strong convex formulation yields better sparse (d) Incoporating additional priors further improves the
estimators with few “false positives.” estimators, matching the sparsity pattern of the signal.

Figure 1: Estimators from ¢;-approximation and the new strong convex formulations (de-
comp) for signal denoising.

the performance of the methods from a computational and statistical perspective, and in
Section 6 we conclude the paper with a few final remarks.

Notation

Throughout the paper, we adopt the following convention for division by 0: given a > 0,
a/0 = oo if a > 0 and a/0 = 0 if a = 0. For a set X C R"™, let conv(X) denote the
convex hull of X and conv(X) the closure of conv(X). Given two matrices (), R of the
same dimensions, we denote by (@, R) the inner product of @) and R.

2. Background

In this section, we review formulations relevant to our discussion. First we review the usual
¢1-norm approximation (Section 2.1), next we discuss MIO formulations (Section 2.2), then
we review the perspective reformulation, a standard technique in the MIO literature, (Sec-
tion 2.3), and finally pairwise convex relaxations that were recently proposed (Section 2.4).
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2.1 /;-norm approximations

A standard technique for signal estimation problems with sparsity is to replace the £p-norm
with the ¢1-norm in (3), leading to the convex optimization problem

(¢,-approx) min [ly — 23+ Y (2 — x;)? subject to ||z[l1 < k. (5)
z€ERTY (ij1eA

The ¢1-norm approximation was proposed by Tibshirani (1996) in the context of sparse
linear regression, and is often referred to as lasso. The main motivation for the /¢;-
approximation is that the f1-norm is the convex p-norm closest to the fp-norm. In fact,
for L = {z €[0,1]" : ||z]jo< 1}, it is easy to show that conv(L) = {z € [0,1]" : ||z]|1 < 1};
therefore, the ¢1-norm approximation is considered to be the best possible convex relaxation
of the £y-norm.

The ¢1-approximation is currently the most commonly used approach for sparsity (Hastie
et al., 2015). It has been applied to a variety of signal estimation problems including signal
decomposition and spike detection (e.g., Chen et al., 2001; Friedrich et al., 2017; Vogelstein
et al., 2010; Lin et al., 2014), and pervasive in the compressed sensing literature (Candes
and Wakin, 2008; Candes et al., 2008; Donoho et al., 2006). A common variant is the
fused lasso (Tibshirani et al., 2005), which involves a sparsity-inducing term of the form
Z?;11|$i+1 — z;]; the fused lasso was further studied in the context of signal estimation
Rinaldo et al. (2009), and is often used for digital imaging processing under the name of
total variation denoising (Rudin et al., 1992; Vogel and Oman, 1996; Padilla et al., 2018).
Several other generalizations of the ¢;-approximation exist (Tibshirani, 2011), including the
elastic net (Zou and Hastie, 2005; Nevo and Ritov, 2017), the adaptive lasso (Zou, 2006), the
group lasso (Bach, 2008; Qin and Goldfarb, 2012) and the smooth lasso (Hebiri et al., 2011);
related £1-norm techniques have also been proposed for signal estimation, see Kim et al.
(2009); Mammen et al. (1997); Tibshirani et al. (2014). The generalized lasso (Tibshirani
and Taylor, 2011) utilizes the regularization term ||Az||; and is also studied in the context
of signal approximation.

Despite its widespread adoption, the /1-approximation has several drawbacks. First, the
£1-norm term may result in excessive shrinkage of the estimated signal, which is undesirable
in many contexts Zhang et al. (2010). Additionally, the ¢;-approximation may struggle
to achieve sparse estimators—in fact, solutions to (5) are often dense, and achieving a
target sparsity of k requires using a parameter k<< k, inducing additional bias on the
estimators. Consequently, the desirable theoretical performance of the ¢;-approximation
can only be established under stringent conditions (Rinaldo et al., 2009; Shen et al., 2013),
which may not be satisfied in practice. Indeed, ¢i-approximations have been shown to
perform rather poorly in a variety of contexts, e.g., see Jewell and Witten (2017); Miller
(2002). To overcome the aforementioned drawbacks, several non-convex approximations
have been proposed (Frank and Friedman, 1993; Hazimeh and Mazumder, 2018; Mazumder
et al., 2011; Zhang et al., 2014; Zheng et al., 2014); more recently, there is also an increasing
effort devoted to enforcing sparsity directly with ¢y regularization using enumerative MIO
approaches.
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2.2 Mixed-integer optimization

Signal estimation problems with sparsity can be naturally modeled as a mixed-integer
quadratic optimization (MIQO) problem. Using indicator variables z € {0,1}" such that
2i = 1y, 0 for all i = 1,...,n, problem (3) can be formulated as

min Z(yZ —z)2 4+ A Z (2 — x;)? (6a)
i=1

{ijeA
s.t.zi(1—2)=0 (6b)
zeCCH{0,1}" (6¢)
z € RY. (6d)

If C is defined by a k-sparsity constraint, i.e., C = {z € {0,1}" : ||z||1< k}, then problem (6)
is the ¢y analog of (5). More generally, C' may be defined by other logical (affine sparsity)
constraints, which allow the inclusion of additional priors in the inference problem. In
this formulation, the non-convexity of the £y regularizer is captured by the complementary
constraints (6b) and the binary constraints encoded by set C. Constraints (6b) can be
alternatively formulated with the so-called “big-M” constraints with a sufficiently large
positive number u,

zi(1—2z)=0and 2z € {0,1} & z; <uz; and z € {0, 1}. (7)

For the signal estimation problem (6), u = ||y||~ is a valid upper bound for z;, i = 1,...,n.
Problem (6) is a convex MIQO problem, which can be tackled using off-the-shelf MIO
solvers. Estimation problems with a few hundred of variables can be comfortably solved
to optimality using such solvers, e.g., see Bertsimas and King (2015); Cozad et al. (2014);
Gémez and Prokopyev (2020); Wilson and Sahinidis (2017). For high Signal-to-Noise Ratios
(SNR), the estimators obtained from solving the exact £y problems indeed result in superior
statistical performance when compared with the ¢; approximations (Bertsimas et al., 2016).
For low SNR, however, the lack of shrinkage may hamper the estimators obtained from
optimal solutions of the ¢y problems (Hastie et al., 2017); nonetheless, if necessary, shrinkage
can be easily added to (6) via conic quadratic regularizations terms (Mazumder et al., 2017),
resulting again in superior statistical performance over corresponding ¢;-approximations.
Current MIO solvers are unable to solve large instances with thousands of variables.

A recent research thrust aims to use MIO formulations and heuristics for sparse learning
problems such as (6) (Hazimeh and Mazumder, 2018; Xie and Deng, 2018), which scale to
larger instances than MIO solvers but may not provide dual bounds on the quality of
the solutions found. Another research direction aims to design tailored exact methods
for specialized regression problems (Atamtiirk and Gémez, 2020b; Bertsimas et al., 2020;
Hazimeh et al., 2020; Kimura and Waki, 2018), which perform substantially better than
general-purpose MIO solvers for the problems their are designed to tackle, but may not
generalize well to other learning problems; in particular, general constraints such as (6¢)
are challenging to handle via tailored algorithms.

Finally, we point out the relationship between the £i-approximation (5) and the MIO
formulation (6). It can be verified easily that, if C' is defined by a k-sparsity constraint, then
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there exists an optimal solution z to the simple convex relaxation with big-M constraint,
where z; = 7£ for all i = 1,...,n. Therefore, the constraint (6¢c) reduces to ||z:1< ku,
and we find that (5) is in fact the natural convex relaxation of (6) (for a suitable sparsity
parameter). This relaxation is often weak and can be improved substantially.

2.3 The perspective reformulation

A simple strengthening technique to improve the convex relaxation of (6) is the perspective
reformulation (Frangioni and Gentile, 2006), which will be referred to as persp in the
remainder of the paper for brevity. This reformulation technique can be applied to the
estimation error terms in (6a) as follows:

(yi—2)? <t & yl — 2y +a; <t
2 x?
— Yy — 2y + z—’ < t. (8)

)

The term :c? /z; is the closure of the perspective function of the quadratic function l‘%, and

is therefore convex, see p. 160 of Hiriart-Urruty and Lemaréchal (2013). Reformulation
(8) is in fact the best possible for separable quadratic functions with indicator variables.

2
The perspective terms ‘Z—l can be replaced with an auxiliary variable s; along with rotated

cone constraints a:? < s;z; (Aktiirk et al., 2009; Giinliik and Linderoth, 2010). Therefore,
persp relaxations can be easily solved with conic quadratic solvers and is by now a stan-
dard technique for mixed-integer quadratic optimization (Bonami et al., 2015; Hijazi et al.,
2012; Mahajan et al., 2017; Wu et al., 2017). Additionally, relationships between the persp
and the sparsity-inducing non-convex penalty functions minimax concave penalty (Zhang
et al., 2010) and reverse Huber penalty (Pilanci et al., 2015) have recently been estab-
lished (Dong et al., 2015). In the context of the signal estimation problem (3), the persp
yields the convex relaxation

n n 2
. Z;
D vitmin Y (“2ymi+ )N D (wi— )
i=1 i=1 ! {i,j}eA
(persp.)  s.t. 2 < ||Ylloozi i=1,...,n
zeC, x eRY,

where C is a valid convex relaxation of C, e.g., C = conv(C). The ¢;-approximation model,
as discussed in Section 2.1, is the best convex relaxation that considers only the indicators
for the ¢y terms. The persp approximation is the best convex relaxation that exploits the
£y indicator variables as well as the separable quadratic estimation error terms; thus, it is
stronger than the ¢i-approximation. However, persp cannot be applied to non-separable
quadratic smoothness terms (x; — )%, as the function 2?/2; — 2z;2; + :cj2 /#; is non-convex
due to the bilinear term.

2.4 Strong formulations for pairwise quadratic terms

Recently, Jeon et al. (2017) gave strong relaxations for the mixed-integer epigraphs of non-
separable convex quadratic functions with two variables and indicator variables. Atamtiirk



ATAMTURK, GOMEZ AND HAN

and Goémez (2018) further strengthened the relaxations for quadratic functions of the form
(z;—x)? corresponding to the smoothness terms in (6). Han et al. (2020) recently generalize
this result to arbitrary bivariate convex quadratics. Specifically, let

X2 = {(z,2,s) € {0, 12 xR (g —29)? <5, (1 — 2) =0,i= 1,2}

and define the function f: 0,12 x RZ — RU {oo} as

r1—x 2 .
flz,2) = {(1z12) if z1 > x2

a2 .
% if 1 < x9.

Proposition 1 (Atamtiirk and Gémez (2018)) The function f is convex and
cont(X?) = {(z,2,5) € [0, 112 xR2 x RU {0} : f(z,7) < s}.

Using persp and Proposition 1, one obtains the stronger pairwise convex relaxation of (6)
as

n n 2
T4
> yi+min Y <—2y¢xi + Z’) +A Y (22w wp) (9a)
i=1 i=1 ! {ij}eA
(pairwise ) s.t. 2 < ||y]loozis i=1,...,n (9b)
z€C, x €RY. (9¢)

Note that f is not differentiable everywhere and it is defined by pieces. Therefore, it
cannot be used directly with most convex optimization solvers. Atamtiirk and Gdémez
(2018) implement (9) using linear outer approximations of function f: the resulting method
performs adequately for instances with n < 400, but was ineffective in instances with
n > 1,000 as strong linear outer approximations require the addition of a large number of
constraints. Moreover, as Example 1 below shows, formulation (9) can be further improved
even for n = 2.

Example 1 Consider the signal estimation problem (44) with n = 2

min (0.4 — z1)? + (1 — 22)? + 0.5(z1 — 22)? + 0.5 (21 + 29) (10a)
stoxy <z, i=1,2 (10b)
z€{0,1}*,z e RZ. (10c)

The optimal solution of (10) is (27, 25, z7, %) = (0.00,1.00,0.00,0.67). On the other hand,
optimal solutions of the convex relaxations of (10) are:

¢1-approx Obtained by replacing z € {0,1}? with z € [0,1]?. The corresponding optimal
solution is (z¢,x¢) = (0.30,0.60,0.30,0.60), and we find that ||(z*,2*) — (20, z¢)||5 =
0.59.

persp The optimal solution is (2, xp) = (0.00,0.82,0.00,0.59), and ||(2*, %) — (2p, 2p)l, =
0.19.
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pairwise The optimal solution is (24, x4) = (0.11,1.00,0.08,0.69), and ||(z*, 2*) — (24, 2¢) ||l =
0.14.

Although persp and pairwise substantially improve upon the £1-relaxation, the resulting
solutions are still not integral in z. We give the convex hull of (10) in the next section.

In this paper, we show how to further improve the pairwise formulation to obtain
a stronger relaxation of (6). Additionally, we show how to implement the relaxations
derived in the paper in a conic quadratic optimization framework. Therefore, the proposed
convex relaxations benefit from a growing literature on conic quadratic optimization (see for
example Alizadeh and Goldfarb, 2003; Atamtiirk and Gémez, 2019; Atamtiirk and Goémez,
2020a; Atamtiirk and Narayanan, 2007; Lobo et al., 1998; Nemirovski and Todd, 2008), can
be implemented with off-the-shelf solvers, and scale to large instances.

3. Strong convex formulations for signal estimation

In the pairwise formulation each single- and two-variable quadratic term is strengthened
independently and, consequently, the formulation fails to fully exploit the relationships
between different pairs of variables. Observe that problem (6) can be stated as

lyll3+min - 2y'z + 2'Qx (11a)
st.xi(l1—2)=0,i=1...,n, (11b)
zeC,x e RY (11c)

where, for i # j, Qi = =\ if {i,j} € A and Q;; = 0 otherwise, and Q;; = 1 + A|4,]
where A; = {j : {i,j} € A}. In particular, @ is a symmetric M-matrix, i.e., Q;; < 0 for
i # j and @ > 0. In this section we derive convex relaxations of (6) that better exploit
the M-matrix structure. We briefly review properties of M-matrices and refer the reader to
Berman and Plemmons (1994); Gao and Wang (1992); Plemmons (1977); Varga (1976) and
the references therein for an in-depth discussion on M-matrices.

Proposition 2 (Plemmons (1977), characterization 37) An M-matriz is generalized
diagonally dominant, i.e., there exists a positive diagonal matriz D such that DQ is (weakly)
diagonally dominant.

Generalized diagonally dominant matrices are also called scaled diagonally dominant
matrices in the literature.

Proposition 3 (Boman et al. (2005)) A matriz Q is generalized diagonally dominant
iff it has factor width at most two, i.e., there exists a real matric Vyxm such that Q = VV'T

and each column of V' contains at most two non-zeros.

Proposition 3 implies that if @ is an M-matrix, then the quadratic function z’Qx can
be written as a sum of quadratic functions of at most two variables each, this is, 'Qx =
> (0 V;jai)? where for any j at most two entries V;; are non-zero. Therefore, to derive
stronger formulations for (11), we first study the mixed-integer epigraphs of parametric
pairwise quadratic functions with indicators.
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3.1 Convexification of the parametric pairwise terms

Consider the mixed-integer epigraph of a parametric pairwise quadratic term (with param-
eters dy, d2)

ZQ:{(Z,:D,S) € {0,1}2xR? : dyaf — 2z122 + dox3 < s,
wi(1— 2) =0, i:1,2},

where dids > 1 and dq,dy > 0, which is the necessary and sufficient condition for convexity
of the function dlcc% —2x129 + dzﬂ?%. One may, without loss of generality, assume the cross-
product coefficient equals —2, as otherwise the continuous variables and coefficients can be
scaled. Clearly, if di = dy = 1, then Z? reduces to X?2.

Consider the two decompositions of the two-variable quadratic function in the definition
of Z? given by

2
1
dlx% — 2:61332 + dgl‘% = Cll T — B + ﬂ?% d2 —_ =
dy dy

Intuitively, the decompositions above are obtained by extracting a term §;z? from the
quadratic function such that §; is as large as possible and the remainder quadratic term
is still convex. Then, applying persp and Proposition 1 to the separable and pairwise
quadratic terms, respectively, one obtains two valid inequalities for Z2:

2
2 5 1
2y B (g ) < 12
dlf(zl’z2’x1’d1)+z2 (d2 d1>_8 (12)
dof (21, 2 ﬂx)#ﬁ di— L) < (13)
2 (a1,20, o wa) + 2 | di = - ) <

Clearly, there are infinitely many such decompositions depending on the values of §;,7 = 1, 2.
Surprisingly, Theorem 4 below shows that inequalities (12)—(13) along with the bound
constraints are sufficient to describe conv(Z?).

Theorem 4 conv(Z?) = {(z,z,s) € [0,1]* x R x RU oo : (12) — (13)} .
Proof Consider the mixed-integer optimization problem

min  ai1z1 + aszo + bix1 + boxo + As (14)
(z,x,8)€22

and the corresponding convex optimization

min a2 + aszo + bixy + boxg + s (15a)
2
T2 x5 1

t.d — —“ldy—— | < 15b
s 1f(21722,$1,d1)+ Py ( 2 d1> <s (15b)
do f( il )+”"'5j - L) < (15¢)

2f (21, 22, dQ,sz Z1 1 & <s
z€[0,1* v €R%, s €R;. (15d)

10
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To prove the result it suffices to show that, for any value of (a,b,\), either (14) and (15)
are both unbounded, or that (15) has an optimal solution that is also optimal for (14).
We assume, without loss of generality, that didy > 1 (if did2 = 1, the result follows from
Proposition 1 by scaling), A > 0 (if A < 0, both problems are unbounded by letting s — oo,
and if A = 0, problem (15) reduces to linear optimization over a integral polytope and
optimal solutions are integral in z), and A = 1 (by scaling). Moreover, since d;ds > 1, there
exists an optimal solution for both (14) and (15).

Let (2%, x*, s*) be an optimal solution of (15); we show how to construct from (z*, z*, s*)
a feasible solution for (14) with the same objective value, thus optimal for both problems.
Observe that for v > 0, f(yz1,722,vx1,722) = vf(21, 22, x1,22). Thus, if 2§, 25 < 1, then
(yz*, ya*, vs*) is also feasible for (15) with objective value v (a12] + ag25 + b1z} + boxh + s*).
In particular, either there exists an (integral) optimal solution with z* = 2* = 0 by set-
ting v = 0, or there exists an optimal solution with one of the z variables equal to one
by increasing . Thus, assume without loss of generality that 27 = 1. Now consider the
optimization problem

2 1

min agzs + bix; +b2$2+d1f(17227xlaﬁ)+ 2 gy — — (16a)
d1 Z9 dl

2 €[0,1], z € R?, (16b)

obtained from (15) by fixing z; = 1, dropping constraint (15c), and eliminating variable s
since (15b) holds at equality in optimal solutions. An integer optimal solution for (16) is
also optimal for (14) and (15). Let (2, %) be an optimal solution for (16), and consider the
two cases:

Case 1: &1 < Z9/d1: If 0 < 29 < 1, then the point (y22,vy&1,vZ2) with 0 < 729 < 1 is
feasible for (16) with objective value

- ~2
N R . I - z 1
v (@222 + brdy + bodo + di f(1, 20,21, =2) + 22 (da — ) ] .
d1 Z9 d1
Therefore, there exists an optimal solution where Zo € {0, 1}. [ |

Case 2: T > &9/dy: In this case, (22,21, %2) is an optimal solution of

) 22 1
min aszo + bixy + baxs + di <J:‘1 — d) + =2 (dg — > (17&)
1

2 €10,1], z € R2. (17b)

The condition #; > &9/d; implies that &; > 0, thus the optimal value of z; can be found
by taking derivatives and setting to 0. We find

br @9

=700 T A

11
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Replacing x1 with his optimal value in (17) and removing constant terms, we find that (17)
is equivalent to

min aszy + ﬁ—i—b a:—l—x—% cl—i (18a)
222 g lz)re o\ de

zo € [0,1], 9 € R4 (18b)

If 0 < 29 < 1, then the point (y22,v#2) with 0 < 25 < 1 is feasible for (18) with objective
value
. b .23 1
ylasze+ (5 +b2 ) do+ 22 (do— — ) ).
d1 Z9 d1
Therefore, there exists an optimal solution where 25 € {0,1}. [

In both cases we find an optimal solution with z9 € {0,1}. Thus, problem (15) has an
optimal solution integral in both z; and 29, which is also optimal for (14). |

Example 1 (continued) The relazation of (10) with only inequality (13):

1.16 + min — 0.8xz; — 2x9 + 0.5 (21 + 22) + 0.5s

? 1
s.t. 3f(217227 %7‘%2) + % (3 - 3> <s

z€[0,1,z e R?,

is sufficient to obtain the integral optimal solution. Note that the big-M constraints x; < z;
are not needed. |

Given dy,ds € Ry, define the function g : [0,1]% x Ri — Ry as

X

x2 1
9(21, 29, w1, wo; dy, do) = max < dy f(z1, 22,31, —) + =2 (dy — — ),
d1 Z9 d1

2
1 x] 1
dof(z1,22, —,22) + — (d1 — — | ¢- 19
2f (21, 20 2) 21<1 d2>} (19)
For any dy,d> > 0 with didy > 1, function g is the point-wise maximum of two convex
functions and is therefore convex. Using the convex function g, Theorem 4 can be restated
as

conV(Z2) = {(z,a:,s) € [0, 1]2 X ]Ri x RU {0} : g(21, 22, 21, x2;dy, d2) < s}.

Finally, it is easy to verify that if z; > zo, then the maximum in (19) corresponds to the
first term; if z; < 2o, the maximum corresponds to the second term. Thus, an explicit

12



SPARSE AND SMOOTH SIGNAL ESTIMATION

expression of ¢ is

21

diz?—2 +z2/d 2 .
127~ 2eieatas/dy + % do — d% if 21 > 29 and dijz1 > 29
dlx%—Qazlmg—f—dza:%

e 1. if 21 > 29 and dyz1 < x9
g(z,:c, ) - dlx%72x1$2+d21§ 1
dia3 -2z 23 4dsa3 if 21 < 20 and 21 > dao

if Z1 < z9 and I < d2$2.

x%/dz—?zxiwz-‘rdzwg x% di — 1
%2 T\

3.2 Convex relaxations for general M-matrices
Consider the set
7" = {(z,x,t) € {0,1}" x IR{?FH c2'Qr < t, (1 —2)=0,i= 1,...,n},

where @ is an M-matrix. In this section, we will show how the convex hull descriptions for
Z? can be used to construct strong convex relaxations for Z". We start with the following
motivating example.

Example 2 Consider the signal estimation in regularized form with n = 3, (y1,v2,Yy3) =
(0.3,0.7,1.0), A\=1 and p = 0.5,

¢ =158 4+min — 0.6z1 — 1.429 — 2.023 +t + 0.5 (21 + 22 + 23) (20a)
st a2 Fad b a4 (2 — 20) 4 (20— x3)? <t (20b)

zi < 2, i=1,2,3 (20¢)

z€{0,1}%, z e RY. (20d)

The optimal solution of (20) is (z*,2*) = (0.00,1.00,1.00,0.00,0.48,0.74) with objective
value (* = 1.504. The optimal solutions and the corresponding objective values of the
convez relaxations of (20) are as follows:

(1-approx The opt. solution is (z¢,xg) = (0.24,0.43,0.59,0.24,0.43,0.59) with value
Cor-approz = 0.936, and ||(2*,2*) — (2¢,2¢)|y = 0.80.

persp The opt. solution is (zp,xp) = (0.00,0.40,0.82,0.00,0.29,0.58) with value Cpersp =
1.413, and ||(z*,2*) — (2p, zp)||, = 0.67.

pairwise The opt. solution (zq,x4) = (0.18,0.74,1.00,0.13,0.43,0.71) with value Cpasruwise
= 1488, and [|(2*,2%) — (24, 74)|4 = 0.35.

decomp.1 The quadratic constraint (20b) can be decomposed and strengthened as follows:

(21‘% — 2x122 + x%) + (230% — 2x9x3 + 2:16%) <t
— g(zla Z2, X1, T2; 2, 1) + 9(22,23,.%'2,.%'3;2,2) <t

leading to solution is (24,xq) = (0.17,1.00,0.93,0.12,0.53,0.73) with value Cgecomp.1 =
1.495, and ||(2*,2*) — (24, 24)||, = 0.23.

13
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decomp.2 Alternatively, constraint (20b) can also be formulated as g(z1, 22, %1, %2;2,2) +
9(22, z3,x2,x3;1,2) < t, and the resulting convex relaxation has solution (z*,z*) =
|

(0.00,1.00,1.00,0.00,0.48,0.74), corresponding to the optimal solution of (20).

As Example 2 shows, strong convex relaxations of Z™ can be obtained by decomposing
2'Qz into sums of two-variable quadratic terms (as @ is an M-matrix) and convexifying
each term. However, such a decomposition is not unique and the strength of the relaxation
depends on the decomposition chosen. We now discuss how to optimally decompose the
matrix @ to derive the strongest lower bound possible for a fixed value of (z,z,t). Then,
we show how this decomposition procedure can be embedded in a cutting surface algorithm
to obtain a strong convex relaxation of (11).

Consider the separation problem: given a point (z,z,t) € [0, 1]™ x ]Rfrl, find a decompo-
sition of () such that, after strengthening each two-variable term, results in a most violated
inequality, which is formulated as follows:

0(z,x) = max Z Z Qijlg(zis 2, i, x5 iy, dl) (21a)
i=1 j=i+1
sto) [Qyild + ) 1Quldi; = Qi Vi=1,....n (21b)
7<i >
didl > 1, di; >0, d) >0 Vi < j. (21c)

Observe that the variables of the separation problem (21) are the parameters d, and the
variables of the estimation problem (z, z) are fixed in the separation problem. In formulation
(21) for each (negative) entry Q;j, i < j, there is a two-variable quadratic term of the form

|Qij (dijx? —2xw5 + d{ ﬂ‘?); after convexifying each such term, one obtains the objective
(21a). Constraints (21b) ensure that the decomposition indeed corresponds to the original
matrix ¢ by ensuring that the diagonal elements coincide, and constraints (21c) ensure
that each quadratic term is convex. From Proposition 3, problem (21) is feasible for any
M-matrix Q.

For any feasible value of d, the objective (21a) is convex in (z,x); thus the function
6 :[0,1]" x R} — Ry defined in (21) is a supremum of convex functions and is convex itself.
Moreover, the constraints (21b) and (21c) are linear or rotated cone constraints, thus, are
convex in d. As we now show, the objective function (21a) is concave in d, thus (21) is a
convex optimization.

Index the variables such that z; > 29 > ... > z,. Then, each term in the objective
(21a) reduces to

i 2 2 i 2 .
dijwi 2wzt /diy @ (i1 i i > 2
(. e dl dj)— Zi zj ij di; ijti = Ly
g\Zi, 25, Li, Lj; Ay, Qi) = d2j$2—2xriwj+d7.12- i
i i3] ] . .
s if disz <z
2
YO x* 1 1 . .
2 2 vy 4y (11 'y )
P i i T Zi i (z,- z,;) if dj;jz; > x;
=d;;—+d}; -+ RN
. . —2x;x; i . i
z z iTj T 21 1 (I .
i J - T di;x; (zj = ) it djx < ;.

T.hus, g(z,x;d) is separable in dij and dij, is linear in dij, and, it is linear in dij for
di; < x; /x;, and concave for di; > x; /x;. Moreover, it is easily shown that it is continuous

14
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and differentiable (i.e., the derivatives of both pieces of g with respect to dﬁj coincide if

d%wi = x;). Therefore, the separation problem (21) can be solved in polynomial time by
first sorting the variables z; and then by solving a convex optimization problem.

The separation procedure can be embedded in an algorithm that iteratively constructs
stronger relaxations of problem (11).
Simple cutting surface algorithm:

1. Solve a valid convex relaxation.
2. Solve separation problem (21) using a convex optimization method.

3. Add the inequality obtained from solving the separation problem to the formulation,
strengthening the relaxation, and go to step 1.

Below, we illustrate the simple cutting surface algorithm.

Example 2 (Continued) Consider the persp relazation

¢1 =158 4+ min — 0.6z1 — 1.4zy — 2.0z3 +t + 0.5 (21 + 22 + 23) (22a)
af a3 a3 2 2
st.— 4+ =4+ =+ (r1 —w2)” + (22 —x3)° <t (22b)
Z1 Z9 z3
z; < Ziy 1= 1,2,3 (220)
z€ 0,1, x e R} (22d)

with optimal solution (z,xz); = (0.00,0.40,0.82,0.00,0.29,0.58) with ¢; = 1.413 and
|(z*,2*) = (z,2)1]|, = 0.67. This relaxation can be improved by solving the separation
problem (21) at (z,z)1 to obtain the optimal parameters di, = 2.00, d3, = 0.51, d35 = 2.49
and d§3 = 2.00, leading to the decomposition and the constraint

9(z1, 22, x1,22;2.00,0.51) + g(29, 23, z2, T3; 2.49, 2.00) < ¢.

Adding this constraint to (22) and resolving gives the improved solution (z,x)s = (0.15,0.70,

1.00,0.12,0.43,0.71). This process can be repeated iteratively, resulting in the sequence of
solutions

iter.2 (z,x)2 = (0.15,0.70,1.00,0.12,0.43,0.71) with (3 = 1.452 and ||(z*,2*) — (2,2)2||4 =
0.36. The corresponding separation problem has solution (diy,d%,, d3s, d35) = (2,1.06,
1.94,2).

iter.3 (z,2)3 = (0.14,1.00,1.00,0.10,0.52,0.75) with Cs = 1.499 and ||(z*, ) — (z,2)3]|, =
0.18. The corresponding separation problem has solution (di,, d3y,d3s,d3s) = (2,2.5,
0.5,2).

iter.4 (z,z)4 = (0.00,1.00,1.00,0.00,0.48,0.74) with (3 = 1.504. The solution is integral
and optimal for (20). [ |
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The iterative separation procedure outlined above ensures that (z,z,t) satisfies the
convex relaxation
O = {(z,2,t) € [0,1]" x R} : (2, 2) < t}

of Z" that dominates the ¢1-approx, persp, and pairwise and gives the strong relaxation
of problem (11), based on the optimal decomposition of matrix @, given by

(decomp)  |yl3+ min -2’z +0(z,2): 2 € C, z; < ||Ylloczi, i =1...,7.
(2,2)€[0,1]" XR%}

In Section 4 we discuss the efficient implementation of decomp in a conic quadratic opti-

mization framework.

4. Conic quadratic representation and Lagrangian decomposition

Relaxation decomp simultaneously exploits sparsity, fitness and smoothness terms in (3)
and, therefore, dominates all of the relaxations discussed in Section 2. However, the convex
functions f and g can be pathological, as they are defined by pieces and are not differentiable
everywhere. Handling function 6 is challenging as it is non-differentiable, but also it is not
given in closed form and requires solving optimization problem (21) to evaluate.

In this section, we first show how to tackle decomp effectively by formulating it as a conic
quadratic optimization problem in an extended space. We then give a tailored Lagrangian
decomposition method, which is amenable to parallel computing and highly scalable.

4.1 Extended formulations

The simple cutting surface algorithm to solve decomp, illustrated in Example 2, is
computationally cumbersome since: (i) the separation problem (step 2) requires solving a
constrained convex optimization problem; (ii) each cut added (step 3) is dense (and thus
problematic for optimization software); (4ii) a single cut is generated at each iteration;
consequently, the method may require many iterations to converge.

In this section, we show how to address these shortcomings with a conic quadratic
extended formulation with auxiliary variables. In particular:

(i) The separation problem can be solved in closed form (Proposition 11)—eliminating
the need to solve auxiliary optimization problems.

(ii) Cuts (33) can be added as inequalities with at most four variables. Most conic
quadratic optimization solvers are designed to exploit sparsity to improve performance
and numerical stability.

(iii) The method may add up to O(n?) cuts per round, decreasing the total number of
rounds and re-optimizations. More importantly, simple cuts (e.g., sparse or linear
cuts) in this extended space may translate into highly nonlinear cuts when projected
into the original space of variables, often resulting in additional strength. Indeed,
MIO often relies on extended formulations as such formulations lead to substantial
improvements compared to working in the original space of variables (Atamtiirk, 2007;
Atamtiirk and Narayanan, 2010; Tawarmalani and Sahinidis, 2005; Vielma et al.,
2017).
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The proposed extended formulation leads to a method at least two orders-of-magnitude
faster than the simple cutting surface algorithm.

Define additional variables I' € R"*" such that I';; = I'j;; intuitively, variable I';; rep-
resents the product x;x;. Given an M-matrix @), consider the convex optimization problem

min [yl3-2y'c + (T.Q) (23a)

s.t. Tyizg > a? Vi=1,...,n (23b)
T; 1 ) .

0> 5?33;}({) dijf(zi, Zj, Ti, dfjﬁ) — (dijfii — QFZ'J' + dijl‘jj) Vi < J (230)

0 <z; <||Yylloozi i=1,...,n (23d)

z€C,zeR}, T e R (23e)

We will show in this section that problem (23) is equivalent to decomp under mild
conditions, and can be implemented efficiently via conic quadratic optimization. In order
to prove this result, we introduce the auxiliary formulation:

min Jyl3-2¢'s+ (,Q) (242)
s.t.0> max g(zz,zj,xl,xj,d”,dfj) (dﬁjfii — 2Ty, + dgjfjj> Vi < j (24b)
didl >1 ‘
d;;,dﬂj >0
0 <z <|yllooz i=1,...,n (24c¢)
zeC, zeR}, I e R™™ (24d)

We first prove that (24) is equivalent to decomp (Proposition 6), and then show that (23)
and (24) are equivalent (Proposition 7). Before doing so, let us verify that (23)—(24) are
indeed relaxations of (11).

Proposition 5 Problems (23)—(24) are valid convex relazations of (11).

Proof We only prove this result for (24); the proof for (23) follows from identical arguments
and is omitted for brevity.

First we argue the convexity of (24). Clearly, the objective (24a) is linear and constraints
(24d) are convex. Moreover, the right hand sides of constraints (24b) are supremum of
convex functions, thus convex.

Now we argue that (24) is indeed a relaxation of (11). Suppose that constraints I';; =
zizj and z € C are added to (24): then (I', Q) = 2/Qx and the objective functions of (11)

and (24) coincide. Moreover, for any nonnegative d”, d] such that dgjd] i = 1, we see that

9(2i, 25, wi, w55 iy, dzj) < dija} — 2aiw; + dZ] ; (Theorem 4 — validity)
= dﬁj i — QFW + d F”, (Fij = wia;j)

thus inequalities (24b) are satisfied. So, if constraints I';; = x;z; and z € C are added, (24)
is equivalent to (11). Hence, (24) is a relaxation of (11). [ |
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Proposition 6 If Q is a positive definite M-matriz, then problems decomp and (24) are
equivalent.

Proof Consider the variable I';; in (24) for some pair ¢ < j: observe that it only appears
in the objective with coefficient @;; < 0, and a single constraint (24b). It follows that in an
optimal solution of (24), variable I';; is as large as possible and the corresponding constraint
(24b) is binding:

_ . (S i T I
2lyj = max  g(z, 25, i, x5 dj;, di;) — (dUI‘“ + dz’jF]j> .
di.d? . >1
i =
di;d! >0

Therefore, we find that problem (24) is equivalent to

n
~ min max ||y||3—2y'z + Z Qiilii
zEC@ERi,FER" d

i=1
+ Z Z Qi (9(% zjy @i, g dig, dl) — di Ty — d{ijj) (25a)
i=1 j=it+1
stodidl, > 1,d >0, dl, >0 Vi< (25b)

Rearranging terms, we see that the objective of the inner maximization problem (25a)
is equal to

> (Qn‘ =Y 1Qjilds; — Z|Qij|d§j) Ti+ > Z 1Qislg(zi, 2j, iy ys diy, dl)),

i=1 j<i >i i=1 j=i+1

where we ignored the constant (in d) term ||y||3—2y'z. In particular, the inner maximization
problem is precisely the Lagrangian relaxation of (21), where I';; are the dual variables
associated with constraints (21b). Therefore, if strong duality holds for problem (21), then
problems decomp and (24) are equivalent.

Finally, we verify that Slater’s condition and, thus, strong duality for (21) hold for
positive definite Q. Since Q is positive definite, we have that Q = Q + pI for an M-matrix
Q (with same off-diagonals) and some p > 0 (e.g., let p be the minimum eigenvalue of Q).
Since @ is an M-matrix, there exists a vector & satisfying

D 1Quild% + Y |Qisl0h = Qi — p < Qus Vi=1,....n
j<i >
04,67 > 1, 01,20, 61, >0 Vi < j.

It follows that letting dﬁj = 5;5]- + € and d‘gj = (55] + € for all ¢ < j and € > 0 small enough,
we find a vector d such that déjdgj > 1 and

> 1Qildi; + ) |Quldl; < Qu Vi=1,...,n. (26)
Jj<i J>i
After increasing additional entries of d until all inequalities (26) are tight, we find an interior

point of (21). [ |
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For the signal estimation problem, @) is positive-definite. Nonetheless, if strong duality
does not hold, formulation (24) is still a convex relaxation of (11) that is at least as strong
as decomp.

Proposition 7 Problems (23) and (24) are equivalent.

Proof For any ¢ < j, we see from Theorem 4 that constraint (24b) is equivalent to the
pair of constraints:

xj x? J 1 i
0> max d”f(zz,zj,xz, —=)+ = | d; iy —dj; Ty + 215 — d Ljj (27)
di;dl >1 di" 2 d;
di;,dl; >0
x; x? 1
0> max d”f(zl,zj, ) —|— il dZ dz i+ 205 — d”Fjj. (28)
di;dl;>1 dfj dgj
di;.dl; >0

130

Observe that dZ] [z, 25, @i, 5 dl L) > 0 for any d > 0. Therefore, 1f > I';j, constraint (27)

is not satisfied since the rlght hand side can be made arbitrarily large by letting dj — 00
and dﬁj =1/ d] Therefore, constraint (27) implies that I';;z; > a: . Similarly, (28) 1mphes
that I';;z; > :1:1.

Now assume that I'j;z; > 1‘? hold for all j = 1,...,n. In this case, for any optimal
solution of the maximization problem (27) we find that d! j is as small as possible; that is,
dgj = 1/d§j. Thus, if I';;2; > x? holds, then constraint (27) reduces to

0 > max dmf(zl, 2j, Tj, —

di >0 dr ) Ty + 2Ty —

ﬁrjj’ (29)

which is precisely constraint (23c). Moreover, if I';;2; > x? holds, then constraint (28)
reduces to

z; 1

0> maxduf(zz,z], U
ij 2']

dJO

After a change of variable dﬁj = l/dgj and noting that (1/d§j) (zz,zj,d Li, L) = dwf(zz,
zj,azi,:cj/dﬁj), we conclude that (30) is equivalent to (29). [ |

Remark 8 Note that constraints (23c)—~(24b) are necessary only if Q;; # 0. For the signal
estimation problem (3), Qi; = 0 for {i,j} ¢ A. Thus, the methods developed here are
particularly efficient when @ is sparse.
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4.2 TImplementation via conic quadratic optimization

The objectives (23a) and (24a) are linear, and constraints (23b) are rotated cone constraints,
and thus can be handled directly by conic quadratic optimization solvers. In Section 4.2.1,
we show how constraints (23c) and (24b) can be reformulated as a conic constraints for a
fized value of d;;. Then we describe, in Section 4.2.2, a cutting plane method for imple-
menting (23).

4.2.1 CONIC QUADRATIC REFORMULATION OF FUNCTIONS f AND ¢

We now show how to formulate convex models involving functions f and g as conic quadratic
optimization problems. Specifically, we show how to model the epigraph of functions f and
g in Propositions 9 and 10, respectively.

Proposition 9 (Extended formulation of conv(X?)) A point (z,x,s) € conv(X?) if
and only if (z,z,5) € [0,1]? x RZ x RU {00} and there exists v,w € R such that the set of
nequalities

V> — xg, V2 < 821, W X9 — 1, W< Sy (31)

are satisfied.

Proof Suppose, without loss of generality, that 1 > x5 and that (z, x) satisfies the bound

(z1—2)?
21

constraints. If (z,,s) € conv(X?) then < s; setting v = 1 — x9 and w = 0, we

find a feasible solution for (31). Conversely, if (31) is feasible, then % < % < s and

(2,2, s) € conv(X?). [ |

Proposition 10 (Extended formulation of conv(Z2)) A point (z,z,s) € conv(Z?) if
and only if (z,z,s) € [0,1]* x RZ x R U {oo} and there exists s1,82,q1,¢2 € Ry and
v1, V2, w1, wy € Ry such that the set of inequalities

x% < 8121, x% < 8929 (persp

dyvy > dyxy — 9, V3 < qi21 (21 > 22 and dyjz1 > x9

divy > —dyxy + 2, V5 < q122 (21 > 29 and dyz1 < 29

)
)
)
diqi + s2 (d2 - ;) <s (21 > 22)
)
)
22)

1

dowy > z1 — dawa, Wi < g2z (21 < 22 and 1 > dawo
dowy > —x1 + daxa, w3 < 222 (21 < 22 and 1 < daw
1
dg(]g—i—Sl d—— ) <s (
do
are satisfied.
Proof Follows from using the system (31) with inequalities (12)—(13). [ |
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4.2.2 IMPROVED CUTTING SURFACE METHOD

Our implementation of the strong relaxation decomp is based on formulation (23), imple-
mented in a cutting surface method. Consider the relaxation of (23) given by

min Jyl3-20's+ (0,Q) (322)
s.t. Tyz > a2 Vi=1,...,n (32b)

; 1
0>d- f(Z,', Zj, T, %) — (dru — 2Fij + dFjj) Vi < j, Vd € Aij (32(3)
0 < <|ylloozi i=1,....,n (32d)
z€C, zeR}, T e R, (32e)

where each A;; is a finite subset of R. From Proposition 9, each constraint (32c) can be
formulated by introducing new variables s, v, w > 0 as the system

1
0>ds— (dl“z-z- — 2Fij + dl“jj> R (33&)
val—?,v Sszl,wzg—xl,w < 529. (33b)

Therefore, relaxation (32) can be solved using a conic quadratic solver.

In the proposed cutting surface method, formulation (32) is iteratively refined by adding
additional elements to sets A;;, as outlined in Algorithm 1. First, all sets A;; are initialized
to the singleton {1} (line 1). At each iteration of the algorithm, a relaxation of the form
(32) is solved to optimality (line 3). Then, for each pair of indexes i < j where the
relaxation induced by (32c) is weak, the set A;; is enlarged to improve the relaxation (line 7);
Remark 12 and Proposition 11 below show to efficiently check whether the relaxation needs
to be refined and how to do so, respectively.

Algorithm 1 Algorithm to solve formulation decomp

Output: (Z, 2, f‘) optimal for decomp
1: Ay« {1} forall i < j
2: while Stopping criterion not met do

3: (2, 2,T") « Solve (32)

4: for all i < j do

5: if Constraint (23c) is not satisfied then

6: Compute optimal dj; for maximization (23c) > See Proposition 11
7 Aij — Aij U {drj}

8: end if

9: end for

10: end while
11: return (z, 2,1

Proposition 11 For any i < j, the optimal solution of the inner maximization problem
(23c) is obtained as follows:

1. If 22/Ty; > a;?/l“jj then:
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(a) If Ty — x2/2; = 0, then d;; — oo is optimal.

(b) Otherwise, d;j = is optimal.

(a) IfTy; — x2/2z; = 0, then d;j — oo is optimal.
2

T,

Y 3 is optimal.

Fyi——

z

(b) Otherwise, d;; =

8
s+

<.

Proof Suppose z7/Ty; > x?/I‘jj. Note that T';; > x?/2; holds from constraints (23b).
Moreover, we find that

2 2 2
Ly ——* Zrii]—J=$2<“—> > 0.
xI; 23

We now show that there exists a stationary point of (23c) satisfying dj;x; > x;. In this
case, optimization problem (23c) reduces to

di'a:?—2mixl+x2- d;; 1
0 > max J J j/ J dZ]F” — 2F13 + 7].—‘3‘]'
di; >0 Z di;

T 2 1 x?
7 ij 7 17 7

If Ty — v2/2; = 0, then di; — oo is an optimal solution to (34). If I'y; — x?/zl = 0, then
djj = 0 is optimal. Moreover, if both T';; — 2?/z; > 0 and L' — 3:32/22 > 0, then taking
derivatives with respect to d;; we find that

r, 5

% I %
dj = | == (35)

Dy — -

Finally, we verify that the condition d;;z; > x; holds. Indeed, this condition reduces to

z2
S 2> e [T -2 12> (M =28 )2 e 28 >
22 i = &y 29 . T = 1 . J =T
Fii I Zq Zq (42 27
2
which is satisfied. The proof for the case z7/T;; < x? /T'j; is analogous. |

Remark 12 By replacing d;; with its optimal value in (23c), we find that this constraint
can be written explicitly as the piecewise constraint

2 2 2 2
o TiTj LT Y T T;
FZ] zZi \/(Fu Zi > (F]] zi > Zf F“ Fjj
0>
2 2 2 2
Ty o LY i+ L 5
FZ] Zj \/(F“ Zj ) <F]] Z]' > Zf F“‘ Fjj :

22

v

(36)

IN



SPARSE AND SMOOTH SIGNAL ESTIMATION

However, constraint (36) is not conic quadratic.

a

Remark 13 In our computations, we use the following stopping criterion in line 5. Let
Cotd and Cpew be the optimal objective value of the relaxation (line 5). The algorithm is
terminated when the relative improvement of the relazation (Cnew — Cotd) /Cnew < 5 X 107°.

Remark 14 Using Proposition 10, one can extend the ideas discussed in this section to
tackle (24) in a conic quadratic optimization framework as well. However, we prefer for-
mulation (23) since the conic quadratic representation of function f is simpler and more
compact.

4.3 Lagrangian methods for estimation with regularized objective

The cutting surface method introduced in Section 4.2 requires solving a sequence of pro-
gressively larger conic quadratic optimization problems. Based on our computations, this
method can handle a variety of constraints (encoded by set C'), and solve the instances with
n < 10,000 within seconds. For better scalability, in this section, we develop a Lagrangian
relaxation-based method for the estimation problem with regularization objective:

n—1 n
min [y — 2[5+ Z}(iﬂiﬂ — ;) + M; 2 (37a)
8.8, 0 <z < ||y]loozi i=1,...,n (37b)
reRY}, ze€{0,1}" (37¢)

where p > 0 is a regularization parameter controlling the sparsity of the target signal. Let
L={l,....0n,lmt1} C{1,...,n} be any subset of the indexes such that 1 =¢; < ... <
U < lpy1 =n+1. With the introduction of additional variables w; = ¢, —x¢, -1, problem
(37) can be equivalently written as

m [liy1—1 Li+1—=2 Li+1—1 m
rgi;a Z Z (yi — ) + X Z (i1 — )2+ Z zi | + )\Zw? (38a)
=1\ =y i=(; i=¢; J=2
s.t.w; = a0, — 20,1 ji=2,....,m (38b)
0 <z <|y|loozi i=1,...,n (38¢)
zeRY, z€{0,1}", we R™ L. (38d)

Without the coupling constraints (38b), problem (38) decomposes into m independent
problems, each with variables indexed in [¢;,¢;41 — 1] for j = 1,...,m. Letting ; be the
Lagrange multiplier for constraint w; = ¢, —x¢,—1, we obtain the Lagrangian dual problem

yERM-1 T,z,w

m  ,lj41—1 Lijt1—2 Lijp1—1 m
max min ( Z (yi —x:)* + A Z (i1 —x)> + p Z zz) +)\ij2-
j=1 i=l; =2

ZZEJ ’L:éj
+ (wj — Ty + ‘ijl) (39a)
8.8. 0 <z < ||ylloozi i=1,...,n (39b)
reR?, 2€{0,1}", we R™ % (39¢)
Observe that w; = —v;/(2X) holds for an optimal solution of the inner minimization prob-

lem. Moreover, to obtain a strong convex relaxation, we can reformulate each independent
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inner minimization problem using the formulations discussed in Section 3.2, yielding the
convex relaxation

m  [Liy1—1 lit1-1 m 2

i 2| 2 Wit 0t 2w =0 &
+ (2, —1 — x4;) (40a)
s.t. 0 <z < ||y]loozi i=1,...,n (40b)
reRY, z€[0,1]", (40c)

where 6;(z, ) is the convexification of the epigraph of the term

lip1—-1 Lip1—2

Zx—i-/\z (Tit1 —

Implementation Problem (40) can be solved via a primal-dual method: for any fixed
v, the inner minimization problem can be solved by solving m independent sub-problems
(in parallel), and each sub-problem is solved using Algorithm 1. We now describe our
implementation of the “main” outer maximization problem.

Set L Given a target number of subproblems m € Z,, we let {; =14 (j — 1)[n/m] for
j=1....m

Subgradient method Given v € R™ ™!, a subgradient of the objective (40a) at  is given
by £(v); = —9% + (ﬁrl - :c;fj), where z* is an optimal solution of the inner mini-
mization problem at . Thus, letting v be the value of v at iteration h € Z,, we use
the update rule v"*1 = ~;, + (1/h)&(7").

Initial point We start the algorithm with the initial point v° = 0. Note that if Ty =
wy, = 0 (which is the case for large p1), then v; = 0 is optimal.

Stopping criterion We terminate the algorithm when [|£(v")]|co< € (¢ = 1073 in our
computations) or when the number of iterations reaches hpay (Amaz = 100 in our
computations).

Additional considerations In the first iteration, we need to solve m subproblems. How-
ever, the subsequent iterations often require solving fewer subproblems: if £(7") j=
§(fyh+1) and £(y") ;41 = (") 41, then at iteration h + 1 solution of subproblem j
does not change from the previous iteration. For problem instances with large u, the
number of subproblems solved in subsequent iterations reduces considerably.

On Lagrangian methods for general adjacency graphs We point out that the tai-
lored Lagrangian relaxation-based decomposition can be applied to higher-dimensional ad-
jacency graphs. For example, when the adjacency graph is a two-dimensional mesh, one can
divide the mesh into rectangular regions and apply a similar decomposition approach. The-
oretically, it is possible to use a similar method for arbitrary adjacency graphs. However,
key to efficiency of the Lagrangian method, described in “additional considerations” above,
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is the observation that if the dual variables corresponding to the border of a subregion
do not change, then subproblems need not be resolved. With higher-dimensional graphs,
where borders are no longer defined by two points but by rectangles or other objects, more
subproblems may need to be resolved unless regions are defined carefully, depending on the
data y. Developing such methods to partition the adjacency graph is beyond the scope of
this paper.

5. Computations

In this section, we present experiments with utilizing the strong convex relaxations based on
the pairwise convexification methods proposed in the paper. In Section 5.1, we perform ex-
periments to evaluate whether the convex model decomp provides a good approximation to
the non-convex problem (11). In Section 5.2 we test the merits of formulation decomp (with
a variety of constraints C') compared to the usual £;-approximation from an inference per-
spective. Finally, in Section 5.3 we test the Lagrangian relaxation-based method proposed
in Section 4.3. We use Mosek 8.1.0 (with default settings) to solve the conic quadratic
optimization problems. All computations are performed on a laptop with eight Intel(R)
Core(TM) i7-8550 CPUs and 16GB RAM. All data and code used in the computations are
available at https://sites.google.com/usc.edu/gomez/data.

5.1 Relaxation quality

This section is devoted to testing how well the proposed convex relaxations are able to
approximate the ¢y optimization problems using real data.

5.1.1 DATA

Consider the accelerometer data depicted in Figure 2 (A), used in Casale et al. (2011, 2012)
and downloaded from the UCI Machine Learning Repository Dheeru and Karra Taniskidou
(2017). The time series corresponds to the “x acceleration” of participant 2 of the “Activity
Recognition from Single Chest-Mounted Accelerometer Dataset”. This participant was
“working at computer” until timestamp 44,149; “standing up, walking and going upstairs”
until timestamp 47,349; “standing” from timestamp 47,350 to 58,544, from 80,720 to 90,439,
and from time 90,441 to 97,199; “walking” from 58,545 to 80,719; “going up or down stairs”
from 90,440 to 94,349; “walking and talking with someone” from 97,200 to 104,300; and
“talking while standing” from 104,569 to 138,000 (status between 104,301 and 104,568 is
unknown).

Several machine learning methods have been proposed to use accelerometer data to
discriminate between activities, e.g., see Bao and Intille (2004) and the references therein.
Variations of the acceleration can help to discriminate between activities (Casale et al.,
2011). Moreover, as pointed out by Wilson et al. (2008), behaviors can be identified (at
a simplistic level) from frequencies and amplitudes of wave patterns in a single axis of the
accelerometer. Therefore, we consider a rudimentary approach to identify activities from
the accelerometer data: we partition the dataset into windows of 10 samples each, and for
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(a) Original data (b) Transformed data

Figure 2: Underlying signals and noisy observations.

each window we compute the mean absolute value of the successive differences, obtaining
the dataset plotted in Figure 2 (B)?. Finally, we scale the data so that ||y|/co= 1.

Given an optimal solution z* of the estimation problem (6) or a suitable relaxation of
it, periods with little or no physical activity can be naturally associated with timestamps ¢
where z7 = 0, and values =] > 0 can be used as a proxy for the energy expenditure due to
physical activity (Shepard et al., 2008).

5.1.2 METHODS

We compare the following two relaxations of the £p-problem

n n—1
min (yi — 2i)% + X Z(mi_i'_l — x;)? (41a)
R i=1
s.t. ZZZ <k (41Db)
i=1
x <z, (41¢c)
2 e {0,1)" (41d)

L1 The natural convex relaxation of (41), obtained by relaxing the integrality constraints
to z € [0, 1]™.

Decomp The convex model decomp —equivalently, (23)— implemented using Algorithm 1.

The convex formulations used are relaxations of the £y problem; so, their optimal ob-
jective values (1,5 provide lower bounds on the optimal objective value ¢ of (41). We use a
simple thresholding heuristic to construct a feasible solution for (41): for a given solution
Z to a convex relaxation, let ;) denote the k-th largest value, and Z be the solution given
by

_ T T >3y
T, = X
0 otherwise.

2. One of the key features identified in Casale et al. (2011) for activity recognition are the minmax sums
of 52-sample windows, computed as the sums of successive differences of consecutive “peaks”. The time
series we obtain follows a similar intuition, but is larger and noisier due to smaller windows.

26



SPARSE AND SMOOTH SIGNAL ESTIMATION

By construction Z is feasible for (41), and its objective value (yp provides an upper bound
on (. Thus, the optimality gap of the heuristic is

CuB — (LB (42)

gap = 100 x
CuB

5.1.3 RESULTS

We test the convex formulations with the accelerometer data using A = 0.1¢ and k& = 500¢ for
t=1,...,10 for all 100 combinations. Figure 3(A) presents the optimality gaps obtained by
each method for each value of A\ (averaging over all values of k), and Figure 3(B) presents
the optimality gaps for each value of k (averaging over all values of \). We see that
decomp substantially improves upon the natural ¢; relaxation. Indeed, the gaps from the
/1 relaxation are 66.7% on average, and can be very close to 100%; in contrast, the strong
relaxations derived in this paper yields optimality gaps of 0.4% on average.

. .
100.0% " = = = ®m ®m ®mE ®mE ®m & 100.0% b
n ] 1 n
10.0% 10.0%
Q Q
2 2
oo oo
> >
= =
5 1.0% 5 1.0% -
°
%L ° ) L] L ° [ q %L ° [ ] ° o
e ° e ¢ e o
0.1% e o 0.1% °
0.0% 0.0%
0 02 0.4 0.6 038 1 0 1000 2000 3000 4000 5000
Regularization Cardinality
MLl ®Decomp HML1 ®Decomp
(a) Gap as a function of A. (b) Gap as a function of k.

Figure 3: Optimality gaps of the ¢; relaxation (red) and the convexification decomp (blue).

Figure 4 presents the distribution of the time required for each method to solve the
respective convex model. We see that the improvement of relaxation quality of the new
relaxations comes at the cost of computational efficiency: while the ¢; relaxation is solved
in approximately one second, the proposed convexification requires on average 54 seconds.
Although the vast majority of the instances are solved under 100 seconds using Algorithm 1,
a couple of instances require close to 10 minutes. Nonetheless, an average time of under
minute to solve the instances to near-optimality (less than 1% optimality gap) is adequate
for most practical settings. Moreover, as shown in Section 5.3, the computation times can
be improved substantially using the decomposition method proposed in Section 4.3.
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Figure 4: Distribution of CPU times for each method.

Finally, we present a brief comparison with mixed-integer optimization methods. Specif-
ically, we use the perspective reformulation of (41), i.e.,

n

2 n—1
: 2 T 2
min “— i + —1—)\5 Tit1 — Tg
:EERﬁ pa (yz Yi Ty 2 ) i_l( i+1 z)

n
s.t. ZZZ' < k
i=1

r <z,
z€{0,1}"

and solve the problems using Gurobi 8.0 with a one hour time limit. Table 1 presents the
results: it shows, for & € {2000,4000} and A € {0.1,0.2}, the gaps and solution times for
¢1-approx, decomp , and the branch-and-bound solver (b&b)as well as the number of branch-
and-bound nodes explored. The mixed-integer optimizer is unable to solve to optimality
instances of this size within the time limit of one hour. While Gurobi is able to produce
good optimality gaps, improving substantially upon the simple ¢;-relaxation (in part due
to the use of the perspective reformulation), decomp produces better optimality gaps by an
order-of-magnitude and requires only a small fraction of the computational effort.

Table 1: Comparison with exact branch-and-bound method.

2 A\ {1-approx decomp b&b
gap time(s) | gap time(s) | gap time(s) nodes
o0 01912 1 03 60 | 27 3600 4047

0.2 | 87.0 1 0.6 42 74 3,600 1,445

0.1 | 68.0 1 0.0 7 3.4 3,600 1,350

400005 | 56.7 1 0.1 19 28 3,600 4,268

28



SPARSE AND SMOOTH SIGNAL ESTIMATION

5.2 Statistical performance — modeling with priors

In Section 5.1 we established that the convex model derived in this paper indeed provides
a much closer approximation for £y signal estimation problem than the usual ¢; relaxation.
In this section, we demonstrate that using the proposed convexification leads to better
statistical performance than relying on the ¢;-approximation alone. We also show how
additional priors other than sparsity can be seamlessly integrated into the new convex
models and the benefits of doing so.

5.2.1 DATA

We now describe how we generate test instances. First, the “true” sparse signal ¢ is gen-
erated as follows. Let n be the number of time epochs, let s be a parameter controlling
the number of “spikes” of the signal, and let h be a parameter controlling the length of
each spike. Initially, the true signal is fully sparse, § = 0. Then we iteratively repeat the
following process to generate s spikes of non-zero values:

1. We select an index ¢ uniformly between 1 and n + 1 — h, corresponding to the start
of a given spike.

2. We sample an h-dimensional vector v for a multivariate Gaussian distribution with
mean 0 and covariance matrix B, where B;; = % for © < j. Thus v is a
realization of a Brownian bridge process.

3. We update foi; < fesi + |vil.

Note that two different spikes may overlap, in which case the true signal § would have a
single spike with larger intensity. Also, note that the true signal §j generated in this way
has at most hs non-zeros and at most s spikes, but may have fewer if overlaps occur. Then,
given a noise parameter o, we generate the noisy observations y; = ¢; + &;, where ¢; follows
a truncated normal distribution with mean 0, variance o2 and lower bound —g;. Finally,
we scale the data so that ||y||.o= 1.

5.2.2 METHODS

We compare the following methods:

L1 Corresponds to solving the ¢;-approx problem

n—1
min [|ly — 234+ Y (21 — 2i)® + pllz]1.
m€R1 P
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Decomp-sparse Enforces the prior that the signal has a most hs non-zeros, by solving
the convex optimization problem

n
: 2
LI —2 i +0(z,z) + pllx
zE€RY ,z€[0,1]" Iyl ;yl i+0(z, @) + plllh

n
s.t. Zzi < hs
i=1
0<z < [|yllooz

using Algorithm 1.

Decomp-prior In addition to the sparsity prior as before, it incorporates the information
that the underlying signal has a most s spikes and that each spike has at least h
non-zeros. These two priors can be enforced by solving the optimization problem

n
end g 9132+ 02,2) el (430)
n
s.t. Z zi < hs (43b)
i=1
n—1
Z|Zi+1 — zi|< 2s (43c)
i=1
min{n,l+h}
Z 2z > hz l=1,...,n (43d)
i=max{1,{—h}
0 <2< lyllos (130)

Constraint (43c) states that the process can transition from a zero value to a non-zero
value at most 2s times, thus can have at most s spikes. Each constraint (43d) states
that, if z; = 1, then there must be at least h — 1 neighboring non-zero points, thus
non-zero indexes occur in patches of at least h elements.

Observe that, following the results in Mazumder et al. (2017), we keep an ¢;-regularization
for shrinkage to improve performance in low signal-noise-ratio regimes.
5.2.3 COMPUTATIONAL SETTING

For the computations in this section, we generate instances with n = 1,000, s = 10, and
h = 10; so, each signal is zero in approximately 90% of the time. Moreover, we test noise
levels 0 = 0.1t, t = 1,...,n, and for each o we generate 10 different instances as follows:

1. For each parameter combination, two signals are randomly generated: one signal for
training, the other for testing.

2. For all methods, we solve the corresponding optimization problem for the training
signal with 10 values of the smoothness parameter A and 10 values of the shrinkage
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parameter u, a total of 100 combinations. We consider two criteria for choosing a pair
(A, p):

Error The pair that best fits the true signal with respect to the estimation error, i.e.,
combination minimizing |§ —z*||3, where z* is the solution for the corresponding
optimization.

Sparsity The pair that best matches the sparsity pattern of the true signal®, i.e.,
combination minimizing >, ||gilo—|x}|o|. This setting is of practical interest
in cases where the training data is partially labeled: the location of the spikes is
known but the actual value of the signal is not.

3. We solve the optimization problem for the testing signal with parameters (\, ) chosen
in (2), and report the results (averaged over the 10 instances).

For the instances considered, Table 2 shows the average Signal-to-Noise Ratio (SNR) as a
913

function of o, computed as SNR = =y
2

Table 2: Signal-to-Noise Ratio for different values of the noise.

o 0.1 02 03 04 05 06 07 08 09 1.0
SNR | 2,200 138 27 86 35 1.7 09 05 03 02

5.2.4 RESULTS WITH RESPECT TO THE ERROR CRITERION

We now present the results when the true values of §j are known in training. Figure 5 depicts
the out-of-sample error of each method and SNR, computed as

[Geest — 2|3

error = -
\ ‘ Ytest | ’ %

where gyes¢ is the true testing signal, and z* is the estimator. Figure 6 depicts how accurately
the estimator obtained in testing matches the sparsity pattern of the true signal. We observe
that the standard ¢;-norm approach results in dense signals with a substantial number of
false positives, and is outperformed by the approaches that enforce priors in terms of error
as well. The inclusion of the sparsity prior results in a notable improvement in terms of
the error across all SNRs, and reducing it by half or more for SNR> 3. This prior also
yields an order-of-magnitude improvement in terms of matching the sparsity pattern for
SNR> 3, although for low SNRs the improvement in matching the sparsity pattern is less
pronounced (and is worse for SNR=0.5). The inclusion of additional priors for the number
and length of each spike yields further improvements (especially for low SNRs), and yields
a good match for the sparsity pattern in all cases.

Figure 7 provides detailed information about the distribution of the out-of-sample errors
for three different SNRs. We see that in high SNR regimes, the inclusion of the sparsity
prior consistently outperforms the ¢1-norm method, and the inclusion of additional priors

3. A point z; is considered non-zero if |z;|> 1073,
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Figure 5: Average out-of-sample error as a function of SNR (in log-scale).
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Figure 6: Average out-of-sample number of false positives (red/dark blue/dark green) and
false negatives (orange/light blue/light green) as a function of SNR. The number of false
positives for L1 with SNR=2,200 is 746.

consistently outperforms using only the sparsity prior. In contrast, in low SNR regimes,
while additional priors yield better results on average, the improvement is not as consistent.

Finally, Figure 8 depicts the average time required to solve the optimization problems
as a function of the SNR. As expected, the #;-norm approximation is the fastest method.
Optimization problems with the sparsity prior are solved in under two seconds, and opti-
mization problems with all priors are solved in under 10 seconds. We see that time required
to solve the problems based on the stronger relaxations increases as the SNR, decreases.
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Figure 7: Distribution of the out-of-sample errors for different SNRs when the true values
of the signal used in training are available.
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Figure 8: CPU time in seconds as a function of SNR (in log-scale). The error bars correspond
to 1 stdev.

5.2.5 RESULTS WITH RESPECT TO THE SPARSITY PATTERN CRITERION

We now present the results when, for the training data, the true values of g are unknown,
but its sparsity pattern is known. Figure 9 depicts the out-of-sample error of each method
for each SNR and Figure 10 depicts how accurately the estimator obtained in validation
matches the sparsity pattern of the true signal. Naturally, as the true values of the training
signal are unknown, all methods perform worse in terms of the out-of-sample error. The
£1-norm method, in particular, performs very poorly in low SNR regimes: the estimator
is x = 0, resulting in a large error close to one and several false negatives (with no false
positives since few or no indexes are non-zero). In contrast, the methods that enforce priors
result in significantly reduced error across all SNRs while simultaneously improving the
sparsity detection in low SNRs regimes, correctly detecting several spikes. In this setting,
we did not observe a substantial difference between methods Decomp-sparse and Decomp-
prior. From Figure 11, which depicts the distributions of the errors, we see that the new
convexification-based methods consistently outperform the ¢1-method.
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Figure 9: Average out-of-sample error as a function of SNR (in log-scale) when only the
sparsity pattern of the training signal is known.
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Figure 10: Average out-of-sample number of false positives (red/dark blue/dark green) and
false negatives (orange/light blue/light green) as a function of SNR when only the sparsity
pattern of the training signal is known.

5.3 Computational experiments - Lagrangian methods

We now report on the performance of the Lagrangian method given in Section 4.3 for larger
signals with n = 100,000, o = 0.5, s = 10 and A = 100 (so approximately 1% of the signal
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Figure 11: Distribution of the out-of-sample errors for different SNRs when only the sparsity
pattern of the training signal is known.

values are non-zero). We denoise the signal by solving the optimization problem

n
: 2
min -2 x; +0(z,x) + + 44a
e g WIB=2 s+ 002,2) + ol (142)
s.t. 0 <z < ||yl|ooz. (44b)

In these experiments we use synthetic instances generated as in Section 5.2 with A = 0.3
and p = 0% and varying & € {0.0005,0.001,0.002,0.005,0.01,0.02}. We solve (44) using
the Lagrangian method with m € {1,10,100,1000} subproblems (m = 1 corresponds to no
decomposition). The independent subproblems are solved in parallel in the same laptop
computer.

Table 3 presents the results, both in terms of statistical and computational performance.
For each value of k and m, it shows the error between the true signal and the estimated
signal®, the number of non-zero values ||z*||o of the resulting estimator, the time required
to solve the problem; the number of subgradient iterations used, and the actual number of
subproblems solved.

We observe that for the smallest value of K = 0.0005 (corresponding to a sparsity of
|lz*|lo~ 30,000), the method without decomposition (m = 1) is the fastest and is able to
solve the problems in approximately three minutes. However, as the value of the ¢y regu-
larization parameter k increases, the Lagrangian methods solve the problems increasingly
faster. In particular, for values of k > 0.005 (sparsity of ||z*|o< 900), the Lagrangian
method with m = 1,000 solves the problems in under one minute whereas a direct imple-
mentation via Algorithm 1 may require an hour or more. Indeed, we see that as the g
regularization parameter increases, the number of iterations and number of subproblems
solved decreases considerably. In fact, if x > 0.01, the Lagrangian method with m = 10 is
solved to optimality without performing any subgradient iterations. Finally, we point out
that all methods return comparable estimation errors, (except for x = 0.0005, where the
maximum number of 100 iterations is reached and the Lagrangian methods do not solve the
problems to optimality).

4. In the experiments reported in Section 5.2.4 with ¢ = 0.5 and method decomp-sparse, the combination
(A, ) = (0.32,0) was chosen in 4/10 instances and was the combination more often selected in training.
5. Since we do perform cross-validation, we report the in-sample error.
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Table 3: Performance of the Lagrangian method for signals with n = 100,000. Bold
entries correspond to the best estimation error and the fastest solution time.

signal quality computational performance
K m ; -
error  ||lx*||o | time  # iter # sub
1 0.172 29,690 | 172 1 1
0.0005 10 0.188 30,650 | 1,825 &89 10+362
100 | 0.187 30,648 | 656 100 100+4-3,252
1,000 | 0.187 30,670 | 631 100 1,000+31,932
1 0.091 10,790 | 506 1 1
0.001 10 0.091 10,789 | 3,391 62 10+257
100 | 0.091 10,781 | 613 100 100+-2,455
1,000 | 0.090 10,760 | 475 100 1,000+23,174
1 0.027 2,523 1,390 1 1
0.002 10 0.027 2511 1,703 22 10494
100 | 0.027 2,510 280 100 100+4-848
1,000 | 0.027 2,502 173 100 1,000+-7,861
1 0.008 878 5579 1 1
0.005 10 0.008 877 309 12 10+20
100 | 0.008 877 51 17 100+4-54
1,000 | 0.008 878 31 61 1,000+-480
1 0.013 758 2,141 1 1
0.01 10 0.013 758 174 1 10+0
100 | 0.013 759 81 18 100438
1,000 | 0.013 761 49 71 1,000+4-347
1 0.028 648 2,184 1 1
0.02 10 0.030 637 185 1 10+0
100 | 0.028 646 89 14 1004-27
1,000 | 0.028 649 44 62 1,0004-275

Therefore, we conclude that the proposed Lagrangian method is able to efficiently tackle
large-scale problems when the target sparsity is small compared to the dimension of the
problem, and can solve the problems by two-orders of magnitude faster compared to default
method. The drawback is that the decomposition method is unable to incorporate additional
priors using constraints.

6. Conclusions

In this paper, we derived strong iterative convex relaxations for quadratic optimization
problems with M-matrices and indicators, of which signal estimation with smoothness and
sparsity is a special case. The relaxations are based on convexification of quadratic functions
on two variables, and optimal decompositions of an M-matrix into pairwise terms. We also
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gave extended conic quadratic formulations of the convex relaxations, allowing the use
of off-the-shelf conic solvers. The approach is general enough to permit the addition of
multiple priors in the form of additional constraints. The proposed iterative convexification
approach substantially closes the gap between the fyp-“norm” and its ¢; surrogate and results
in significantly better estimators than the standard approaches using #; surrogates. In fact,
near-optimal solutions of the £y-problems are obtained in seconds for instances with over
10,000 variables, and the method scales to instances with 100,000 variables using a tailored
Lagrangian-relaxation algorithm.

In addition to better inference properties, the proposed models and resulting estimators
are easily interpretable. On the one hand, unlike ¢1-approximations and related estimators,
the proposed estimators’ sparsity is close to the target sparsity. Thus, a prior on the
sparsity of the signal can be naturally fed to the inference problems. On the other hand, the
proposed strong convex relaxations compare favorably to ¢1-approximations in classification
or spike inference purposes: the 0-1 variables can be easily used to assign a category to each
observation via simple rounding heuristics, and resulting in high-quality solutions.
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