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Abstract

The problem of dimension reduction is of increasing importance in modern data analysis.
In this paper, we consider modeling the collection of points in a high dimensional space as
a union of low dimensional subspaces. In particular we propose a highly scalable sampling
based algorithm that clusters the entire data via first spectral clustering of a small random
sample followed by classifying or labeling the remaining out-of-sample points. The key
idea is that this random subset borrows information across the entire dataset and that the
problem of clustering points can be replaced with the more efficient problem of “clustering
sub-clusters”. We provide theoretical guarantees for our procedure. The numerical results
indicate that for large datasets the proposed algorithm outperforms other state-of-the-art
subspace clustering algorithms with respect to accuracy and speed.

Keywords: dimension reduction, subspace clustering, sub-cluster, random sampling,
scalability, handwritten digits, spectral clustering

1. Introduction

In data analysis, researchers are often given datasets with large volume and high dimension-
ality. To reduce the computational complexity arising in these settings, researchers resort
to dimension reduction techniques. To this end, traditional methods like PCA Hotelling
(1933) use few principal components to represent the original dataset; factor analysis (Cat-
tell, 1952) seeks to get linear combinations of latent factors; subsequent works of PCA
include kernel PCA (Schölkopf et al., 1998), generalized PCA (Vidal et al., 2005); manifold
learning (Belkin and Niyogi, 2003) assumes data points collected from a high dimensional
ambient space lie around a low dimensional manifold, and muli-manifold learning (Liu et al.,
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2011) considers the setting of a mixture of manifolds. In this paper, we focus on one of the
simplest manifold, a subspace, and consider the subspace clustering problem. Specifically,
we approximate the original dataset as an union of subspaces. Representing the data as a
union of subspaces allows for more computationally efficient downstream analysis on vari-
ous problems such as motion segmentation (Elhamifar and Vidal, 2009), handwritten digits
recognition (You et al., 2016a), and image compression (Hong et al., 2006).

1.1 Related Work

Many techniques have been developed for subspace clustering, see Elhamifar and Vidal
(2013) for a review. The mainstream methods usually include two phases: (1) calculating
the affinity matrix; (2) applying spectral clustering (Ng et al., 2002) to the affinity matrix
to compute a label for each data point. For phase (1), the property of self-representation
is often used to calculate the affinity matrix: self-representation states that a point can
be represented by a linear combination of other points in the same subspace. Specifically,
Elhamifar and Vidal (2009) proposed the sparse subspace clustering (SSC) algorithm which
solves the lasso minimization problem N times, where N is the total number of data points,
the theoretical property of SSC was further studied in Soltanolkotabi et al. (2012). Similarly,
Rahmani and Atia (2017) proposed the direction search algorithm (DSC) which uses `1
minimization to find the “optimal direction” for each data point, these directions are then
used to cluster the data points. One of the main drawbacks of SSC and DSC is their
computational complexity of O(N2) in both time and space, which limits its application
to large datasets. To address this limitation, a variety of methods have been proposed
to avoid solving complicated optimization problems in constructing the affinity matrix.
Heckel and Bölcskei (2015) used inner products with thresholding (TSC) to calculate the
affinity between each pair of points, Park et al. (2014) used a greedy algorithm to find for
each point the linear space spanned by its neighbors, similarly Dyer et al. (2013) and You
et al. (2016c) used orthogonal matching pursuit (OMP), You et al. (2016b) used elastic the
net for subspace clustering (ENSC) and proposed an efficient solver by active set method.
However, these methods require running spectral clustering on the full N×N affinity matrix.
A Bayesian mixture model was proposed for subspace clustering in Thomas et al. (2014),
but its parameter inference is not scalable to large dataset. Zhou et al. (2018) used a deep
learning based method which does not have theoretical guarantee.

Recently, there have been two methods that increase the scalability of sparse subspace
clustering. The SSSC algorithm and its varieties (Peng et al., 2015) clusters a random subset
of the whole dataset and then uses this clustering to classify or label the out-of-sample data
points. This method scales well when the random subset is small, however a great deal of
information is discarded as only the information in the subset is used. In You et al. (2016a)
a divide and conquer strategy is used for SSC—the dataset is split into several small subsets
on which SSC is run, and clustering results are merged. This method cannot reduce the
computational complexity of the SSC by an order of magnitude so is limited in its ability
to scale to large dataset.
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1.2 Contribution

In this paper, we propose a novel, efficient sampling based algorithm with provable guar-
antees that extends the ideas in previous scalable methods (Peng et al., 2015; You et al.,
2016a). The motivation for using sampling based algorithm is twofold. From the theoreti-
cal perspective, Luxburg et al. (2005) showed that under certain assumptions, the spectral
clustering results on the sampled subset will converge to the results on the whole dataset.
This gives us the insight that as the size of the sampled subset increases properly, the subset
becomes almost as informative as the whole dataset. From the computational perspective,
traditional spectral clustering based algorithms need to build a “neighborhood” for each
data point. Thus the complexity (both in time and memory) is usually at least quadratic in
the total number of data points, while sampling based algorithms need to find neighboring
points only within the subset. This greatly reduces the computational resources needed
incurring some loss of information.

Our algorithm seeks to combine strengths from both approaches. In particular, for each
point in the subset we find its nearest neighbors in the complete dataset and use these points
to construct a sub-cluster, these sub-clusters contain information from the entire dataset
and not just the random sample. Finding neighboring points among the whole dataset
makes it possible to get a neighborhood with big enough size and few false connections
for each sampled point. The affinity matrix for the subset is then constructed from these
sub-clusters. The idea is that we change the problem from “clustering of data points” to
“clustering of sub-clusters”, which integrates information across the dataset and should
deliver better clustering results.

We provide theoretical guarantees for our procedure in Section 3. The analysis reveals
that under mild conditions, the subspaces can share arbitrarily many intersections as long
as most of their principal angles are larger than a certain threshold. While our algorithm
for finding neighboring points is similar to that of Heckel and Bölcskei (2015), the data
generation model and assumptions underlying our theorems are different—we take into
account the fact that after normalization the noisy terms will no longer follow a multivariate
Gaussian distribution. While our work is originally designed for linear subspace clustering
problems. The idea of clustering through sub-clusters can be easily extended to general
clustering problems.

Finally, we study empirical properties of the proposed algorithm on both synthetic and
real-world datasets selected to have diverse sizes. We show that the clustering through
sub-clusters algorithm is highly scalable and can significantly boost the clustering accuracy
on both the subset and whole dataset. The advantage of our algorithm over other state-of-
the-art algorithms changes from marginal to significant as the size of the dataset increases.

1.3 Paper Organization

The rest of this paper is organized as follows: in Section 2, we describe the implementation of
our clustering procedure, in Section 3 we state the model setting and theoretical guarantees
for our procedure and explain in some details the geometric and distributional intuitions
underlying our procedure. The detailed proofs can be found in Appendix C. In Section 4
we present numerical experiments and compare our method with other state-of-the-art
methods, a comprehensive report of the numerical results can be found in Appendix E.
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1.4 Notation

Unless specified otherwise, we use capital bold letter to denote data matrix, and correspond-
ing lower bold letter to denote the columns of it. In this paper, we are given a dataset Y
with N data points in RD. We use both yi and [Y]i to denoted the i-th column of Y, and
Y−i is the matrix Y with the i-th column removed. Similarly, we write y−j as vector y with
the j-th entry removed. The ij-th entry of a matrix Y is denoted as [Y]ij . The complement

of event E is denoted by E{. The cardinality of E is denoted by card(E), and the mode of E
is mode(E). We use subscript with parenthesis to represent the order statistics of entries in
a vector, for example a(i) is the i-th smallest entry in vector a, while without ambiguity both

a(i) and ai refer to the i-th element of vector a. The unit sphere in Rd is denoted by Sd−1.
We assume each data point of Y lies on one of K linear subspaces denoted by {Sk}Kk=1.
Here K is a known constant and Sk is the k-th linear subspace. The subspace clustering
problem aims assigning to each point in Y the membership to a subspace (cluster) Sk.

We write dk as the dimension of subspace Sk and Uk ∈ RD×dk as its corresponding
orthogonal base. The number of points belong to cluster Sk is Nk. We use yi

(k) ∈ RD
to represent the i-th point from the k-th cluster, the set {y1

(k), ...,yNk
(k)} contains all

points that belong to Sk. Finally, we write Fm,n as the F -distribution with parameters
(m,n), Dir(α) as the Dirichlet distribution with parameter vector α, β(a, b) as the beta
distribution with parameters (a, b), N (µ, σ) as the Gaussian distribution with mean (vector)
µ and variance (covariance matrix) σ2, χ2

d as the chi-square distribution with d degrees of
freedom, and U(Sd−1) as the uniform distribution on the surface of unit sphere Sd−1.

2. The Algorithm for Sampling Based Subspace Clustering

In this section, we introduce our sampling based algorithm for subspace clustering (SBSC).
In Appendix A we will discuss issues regarding hyper-parameters. Throughout this section,
we assume the columns of Y have unit `2 norm.

Our main algorithm takes the raw dataset Y that has N observations and several pa-
rameters as inputs and outputs the clustering assignment for each point in the dataset, it
proceeds in two stages (see the matched steps in Algorithm 1 for further details):

• Stage 1: In-sample clustering

1. Draw a subset Ỹ of n� N points.

2. For each point ỹi ∈ Ỹ, find its (dmax + 1) nearest neighbor points in Y and use
Ci to denote the index set of these points. We call YCi the sub-cluster of ỹi.

3. Compute the affinity matrix D where each element [D]ij is the similarity calcu-
lated between YCi and YCj .

4. Sparsify the affinity matrix by removing possible spurious connections.

5. Conduct spectral clustering on Ỹ with the sparsified affinity matrix.

• Stage 2: Out-of-sample classification

6. Fit a classifier to the clustered points in Ỹ and classify the points in Y \ Ỹ.
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In Stage 1, we formulated n sub-clusters out of the sampled dataset. These n sub-
clusters are then further grouped into K clusters. An algorithm based on a similar idea was
proposed for Gaussian mixture models by Aragam et al. (2020), they first divide the dataset
into L(� K) mixtures, and then cluster these mixtures into K mixtures. In our paper the
linear structure of subspaces is central to clustering while in their paper the distributional
properties of mixture models play the key role in grouping, this is a significant difference. On
a high level, we transfer the problem from “clustering points“ to “clustering sub-clusters“.

Step 2 computes the neighborhood of points around each sampled points by thresholding
a similarity score based on inner products, this method was also used in Heckel and Bölcskei
(2015). The intuitive reason for this step is that for normalized data, two vectors are more
likely to lie in the same linear subspace if the absolute magnitude of the inner product
between the points is large. One may use other measure of similarities in Step 2 to find the
neighboring points. In addition to the standard algorithm, we also present experimental
results based on other similarity measures in Section 4 and Appendix E.

The idea of using distance between the sub-clusters to construct an affinity matrix in
Step 3 relies on the self-representative property of linear subspaces—see Theorem 2 for
technical details. Please note that each entry of the affinity matrix measures the closeness
between data points, hence it is a decreasing function of distance. There is both theoretical
and empirical evidence that sparsification of an affinity matrix by setting smaller elements
to zero improves clustering results (Belkin and Niyogi, 2003; Von Luxburg, 2007). For this
reason in Step 4 we threshold the affinity matrix.

In Stage 2, the remaining points are labeled via a classifier where a regression model is
fitted on the clustered data, specifically a residual minimization ridge regression procedure.
If both n, dmax and D are linear in logN , the complexity of our algorithm is O(N logN).

Note that any classifier can be used to do the out-of-sample classification. While ridge
regression worked well for linear subspace clustering problems in this paper, we encourage
users of Algorithm 1 to choose their own favorite classifier, e.g., svm, random forest, or even
deep neural networks, based on their understandings of the data.

3. Clustering Accuracy

3.1 Model Specification

We assume all subspaces have the same dimension d and the data generating process is

ŷi
(k) = ζ

(k)
i Uka

(k)
i + ê

(k)
i , i = 1, . . . , Nk, k = 1, ...,K,

where a
(k)
i ∈ Rd is sampled from the uniform distribution on the surface of Sd−1, ζ(k)i is a

random scalar such that ζ
(k)2
i ∼ χ2

d, and ê
(k)
i ∼ N (0, dσ2ID). However ŷi

(k) are unobserved

and we only observe the normalized version y
(k)
i = ŷi

(k)/‖ŷi
(k)‖2. We then have

y
(k)
i =

Uka
(k)
i + σe

(k)
i∥∥∥Uka

(k)
i + σe

(k)
i

∥∥∥
2

. (1)

Consequently, each entry in e
(k)
i = ê

(k)
i /(σζ

(k)
i ) follows multivariate t-distribution with

d degrees of freedom, and ‖e(k)i
2

2‖
2
2/D ∼ FD,d. Numerically, the normalizing constant
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input : Data Y, number of subspaces K, sampling size n, neighbor threshold
dmax, regularization parameters λ1 and λ2, residual minimization
parameter m, affinity threshold tmax.

output: The label vector ` of all points in Y
1. Uniformly sample n points Ỹ from Y.
2. Construct the sub-clusters:
for i = 1 to n do

p = |〈ỹi,Y〉|;
Ci := {j : |〈ỹi,yj〉| ≥ p(N−dmax)}.

end

3. Construct affinity matrix [D]ij = e
−d(YCi ,YCj )/2 for i 6= j ∈ {1, ..., n} and

d(YCi ,YCj ) = ||YCi −YCj (Y
T
CjYCj + λ1I)−1YT

CjYCi ||F
+||YCj −YCi(Y

T
CiYCi + λ1I)−1YT

CiYCj ||F .

4. Sparsify the adjacency matrix:
for j = 1 to n do

v := [D]j ;
for i = 1 to n do

if [D]ij ≤ v(n−dmax) then
[D]ij := 0

end

end

end

5. Cluster Ỹ : set D := D + DT and cluster the in-sample points in Ỹ by
applying spectral clustering on D, use `in to denote the labels of Ỹ.

6. Label the remaining points: use the Residual Minimization by Ridge
Regression (RMRR) algorithm in Appendix D to classify the remaining points
in Y \ Ỹ, specifically for the out-of-sample label we have

`out = RMRR(Y \ Ỹ, Ỹ, `in, λ2,m)

7. Combine `in and `out to get `, the label of the whole dataset Y.

Algorithm 1: Sub-cluster Based Subspace Clustering (SBSC) algorithm.

‖Uka
(k)
i + σe

(k)
i ‖2 will be approximately 1. In Heckel and Bölcskei (2015), the normal-

izing constants are treated directly as 1 and their noise vector is a multivariate Gaussian
vector. In developing theoretical guarantees of this paper, we explicitly account for the

normalizing constant ‖Uka
(k)
i + σe

(k)
i ‖2 and its effects.

Let λ
(ij)
1 ≥ λ(ij)2 ≥ ... ≥ λ(ij)d correspond to the cosine values of principal angles between

Si and Sj , hence λ
(ij)
1 ≤ 1 and λ

(ij)
d ≥ 0. Note that λ

(ij)
k = λ

(ji)
k for 1 ≤ k ≤ d and

1 ≤ i < j ≤ K. For each subspace Sk, we define the uniformly maximal affinity vector to
quantify its closeness with respect to all other subspaces.
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Definition 1 For each subspace Sk, its uniformly maximal affinity vector with respect to

the other subspaces is [λ
(k)
1 , ..., λ

(k)
d ] with

λ
(k)
i = max

j 6=k
λ
(kj)
i .

Definition 2 The sub-cluster preserving property holds for an algorithm if each sub-cluster
output contains only points from the same subspace.

If the uniformly maximal affinity vectors have small entries, corresponding to large angles,
we would expect that Algorithm 1 (SBSC) satisfies the sub-cluster preserving property.

In constructing the affinity matrix D, we want the following property: two sub-clusters
that belong to the same subspace have bigger affinities, hence smaller distances, than sub-
clusters that belong to different subspaces.

Definition 3 We say YCi has the correct neighborhood property with distance function
d(·, ·) if

d(YCi ,YCj ) < d(YCi ,YCk),

for any 1 ≤ j 6= k ≤ n such that YCi and YCj belong to the same subspace, and YCk belongs
to a different subspace than YCi.

3.2 Theoretical Properties of SBSC

In this section we provide a theoretical analysis of Algorithm 1 providing conditions under
which we have provable guarantees.

3.2.1 Assumptions

In this section, we list the assumptions used in the lemmas and theorems. On a high level,
the theoretical properties developed in this paper require two groups of conditions. First,
the subspaces need to be separated, this is Assumption A2. Second, the sub-clusters should
be informative and carry enough information about the subspaces they belong to, this is
A3. Notice both A2 and A3 include A1. Assumption A4 subsumes assumptions A1-A3 and
adds slightly stronger conditions on amount of noise, this allows us to prove Theorem 2.
The correct neighborhood property for sub-clusters stated in Theorem 2 is to the best of
our knowledge novel for subspace clustering. An explanation of each assumption is provided
at the end of this section.

A1. There exist positive constants Tl and ρ such that

T 2
l ≤ min

k=1,...,K
Q1− dmax

N
1−ρ
k

, (2)

where Qp denotes the p quantile of β(12 ,
d−1
2 ).
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A2. There exist positive constants {gi}2i=1, η and ρ ∈ (0, 1), such that if we write T =
4g2+2g22
1−g2 + 1+g2

1−g2 g1, the following inequalities hold: (2) with Tl replaced by T , and

d∑
i=1

(
g21 − λ

(k)2
i

)2
+
>

d∑
i=1

(
g21 − λ

(k)2
i

)2
−
,

d∑
i=1

(
g21 − λ

(k)2
i

)
+
>

d∑
i=1

(
g21 − λ

(k)2
i

)
−
,

(3)

g22
Dσ2

> 3 +
6

η
,

d

logN
≥ (2 + 2η)2. (4)

A3. There exist positive constants Tl, q0, ρ and t such that the following inequalities hold:
(2), dmax > d and

(T 2
l dmax − C2)C2 −

C2
1
4

T 2
l dmax

≥ q0, (5)

where

C1 =

(
2 + t

√
logN

d− 2

)√
dmax, C2 =

(√
2dmax
π(d− 1)

− 2− t
√

logN

d− 2

)2/
2.

A4. There exist positive constants Tl, g, λ, η, q0, ρ and t such that the following inequalities
hold: (2), (3) with g1 replaced by Tl, (4) with g2 replaced by g, (5) and

f(d) :=
(2g − g2) (dmax + 1)

2(1− g)
·

√
d(1 + g)4

q20
+
D − d
λ2

≤ 1

2
,

f(d)
√
dmax + 1

1− f(d)
·

√
d(1 + g)4λ2

q20
+D − d ≤

λ(1 + g)2
√
d(dmax + 1)

q0(1− g)
,

g

√
d(1 + g)4λ2

q20
+D − d ≤

λ(1 + g)2
√
d(dmax + 1)

q0(1− g)
,

6λ(1 + g)2
√
d(dmax + 1)

q0(1− g)
≤
√

1− T 2
l .

(6)

Assumption A1: The inner product is used to measure the distance between data points
giving rise to the order statistics of a Beta distribution which is bounded in Assumption
A1. The lower bound of the order statistics is used to control the separation between
different subspaces. The upper bound controls the information carried in each sub-cluster.
Mathematically, it implicitly controls the ratio between d and logN . If we writeNk = 10000,
N = 10Nk, dmax = 3d, T 2

l = 0.09, and ρ = 0.01, then it suffices to have d
logNk

≤ 5 for
inequality (2). Please see the related derivation in Appendix C.
Assumption A2: This is the subspace separation assumption. We use it for the proof of

Theorem 1. In Appendix C, we show that SBSC requires most of {λ(k)i }
d, K

i=1,k=1 to be smaller
than g1. This means large g1 implies an easier clustering problem for SBSC, and vice versa.
Throughout this paper we call g1 the affinity threshold. Note that T is a upper bound
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of the affinity threshold g1, specifically if there was no noise T = g1. From (2) we know
that large d

logN implies a small T and g1. Therefore, large d makes the clustering problem
harder. This agrees with our intuition. Consider the extreme case where the subspaces are

orthogonal, λ
(k)
i = 0 (i = 1, . . . , d, k = 1, . . . ,K), and Equations (3) are naturally true with

any positive constant g1. Finally, the constant g2 in (4) controls the noise term. From the
first condition in (4) we have σ < g2√

D
.

Assumption A3: This guarantees the sub-clusters {YCi}ni=1 are informative. We use it
mainly for the proof of Lemma 5. Here C1 and C2 are closely related to the permeance
statistics (Lerman et al., 2012), which measures how well a set of vectors is scattered across
a space. Therefore a large dmax

d implies that these vectors are well scattered. If T 2
l equals

to its upper bound in (2), ρ = 0.01, Nk = 100000, N = 10Nk, dmax = 160d, t = 0.05 and
we want q0 ≥ 0.5, A3 requires d

logN ≤ 5 1

Assumption A4: Combines all previous assumptions, with slightly stronger conditions on
subspace similarities and noise level; we use it for the proof of Theorem 2. The first three
conditions in (6) essentially control the value of g, which in turn controls the magnitude of
the norm of noise terms. The last condition in (6) controls the value of the regularization
parameter in a distance function that will be defined latter.

3.2.2 Theoretical Properties of SBSC

Two theorems regarding Stage 1 of SBSC are stated and discussed in this section. Theorem 1
states a lower bound on the probability that SBSC satisfies the sub-cluster preserving
property. Theorem 2 proves that SBSC has the correct-neighborhood property with high
probability. Detailed proofs can be found in Appendix C.

Theorem 1 Under Assumption A2, SBSC has sub-cluster preserving property with proba-
bility at least

1−
K∑
k=1

nk(Nk − dmax)

dmax(Nk + 1)(Nρ
k − 1)2

− 2(K − 1)ne−ε
2
1 − 2N

N

(
1+ η

2+η

)2 , (7)

where

ε1 = min
k

∑d
i=1

(
g21 − λ

(k)2
i

)
+
−
∑d

i=1

(
g21 − λ

(k)2
i

)
−

2

√∑d
i=1

(
g21 − λ

(k)2
i

)2
+

+

√
4
∑d

i=1

(
g21 − λ

(k)2
i

)2
+

+ 2
∑d

i=1

(
g21 − λ

(k)2
i

)
+

. (8)

If the subspaces are orthogonal with each other, i.e. {λ(k)i }
d, K
i=1,k=1 = 0. Equation (8)

reduces to

ε1 =

√
d

2 +
√

4 + 2
g21

.

1. In this example, dmax
d

is fairly large. In the numerical section we found it is usually not necessary to
choose large dmax. A better bound in Corollary 3 might be helpful the bridge the gap between numerical
experiments and theoretical guarantee.
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This shows ε1 is linear in
√
d and monotonically increasing in g21. Appendix F establishes

general conditions on g1 and {λ(k)i }
d, K
i=1,k=1 under which ε1 grows like

√
d. Combining this

with Assumption A2, we observe that the third term of (7) is small for large N . When the
number of data points in the sub-sample n is growing linearly in the log of the number of
data points in the entire dataset log(N) (see Section 4.1.2), the second and fourth terms in
Equation (7) go to 0 as N increase. This means (7) is close to 1 for large N .

Next, we use the sub-cluster preserving property established in Theorem 1 to prove
the theoretical guarantee for correct neighborhood property (see Definition 3). We use the
distance function proposed in You et al. (2016a)

d(YCi ,YCj ) = ‖YCi −YCj (Y
T
CjYCj + λI)−1YT

CjYCi‖F +

‖YCj −YCi(Y
T
CiYCi + λI)−1YT

CiYCj‖F , (9)

where λ > 0 is a regularization parameter. This distance function is used to decide if two
sets of points belong to the same cluster. Intuitively, the first term in Equation (9) computes
the `2 norm of the residuals from a ridge regression where YCi is the response and YCj is
the design matrix. The second term exchanges the roles of YCi and YCj .

Theorem 2 Assume sub-cluster preserving property is true for SBSC with probability at
least 1− ps, and Assumption A4 is satisfied. Then {YCi}ni=1 have the correct neighborhood
property with the distance function (9) with probability at least

1− 4n(n− 1)e−ε
2
1 − 2n

N t2/2
−

K∑
k=1

nk

(
Nk − dmax

dmax(Nk + 1)(Nρ
k − 1)2

+ 2(Nk − 1)e−ε
2
2

)
− 2N

N

(
1+ η

2+η

)2 − ps, (10)

where ε1 is defined in (8) with g1 replaced by Tl and

ε2 =

√
d− 1− 1

2 + 1√
d−1+1

. (11)

Similarly as before, one can show that Equation (10) goes to 1 with large N . Specifically,
from Assumption A2 we know the term nk(Nk − 1)e−ε

2
2 grows linearly in nk

Nη .

4. Experimental Results

In this section, we test the performance of SBSC on both synthetic and benchmark datasets.
In addition to Algorithm 1, we also consider two modifications of the SBSC algorithm. The
SBSC-DSC algorithm uses the optimal direction search algorithm (Rahmani and Atia, 2017)
instead of correlations to find neighboring points in Step 2 of Algorithm 1. The SBSC-SSC
algorithm uses lasso minimization in Step 2 of Algorithm 1; its numerical results are reported
in Appendix E.

The performance of the three versions of SBSC is compared to other state-of-the art
algorithms. These include classic subspace clustering method: Sparse Subspace Clustering
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(SSC, Elhamifar and Vidal, 2009; You et al., 2016a), Thresholding Subspace Clustering
(TSC, Heckel and Bölcskei, 2015), Direction Search Subspace Clustering (DSC, Rahmani
and Atia, 2017), Least Square Regression (LSR, Lu et al., 2012), Low-Rank Representation
(LRR, Liu et al., 2010), Subspace Clustering by Orthogonal Matching Pursuit (SSC-OMP,
You et al., 2016c), Elastic Net Subspace Clustering (ENSC, You et al., 2016b); and sampling
based algorithms (Peng et al., 2013): Scalable Sparse Subspace Clustering (SSSC, reported
in Appendix E), Scalable Thresholding Subspace Clustering (STSC), Scalable Direction
Search (SDSC), Scalable Least Square Regression (SLSR), Scalable Low-Rank Representa-
tion (SLRR). To make fair comparisons, where possible we replicated results on our machine.
Some results are copied from the original paper due to the unavailability of code.

Throughout this section, we use clustering accuracy, normalized mutual information
(NMI) and running time as the metrics for performance evaluation. The formulas for
clustering accuracy and NMI are presented in Appendix B. To demonstrate the advantage
of using sub-clusters (i.e. borrowing information from the whole dataset) to cluster the
data points in the subset. For sampling based algorithms we also report their clustering
accuracy on the subset. In the rest of this paper, we call the clustering accuracy on the
whole dataset as accuracy, and the clustering accuracy on the subset as accuracy-sub. For
randomized algorithms, reported results are averaged over 10 trials. Additional numerical
results are presented in Appendix E. The code used to generate these results can be found
in the supplementary material.

4.1 Results on Synthetic Dataset

In this section we evaluate tolerance to noise and scalability on synthetic data generated
using the model specified in Section 3.1.

4.1.1 Tolerance to Noise

In this section, we test the tolerance to noise of the various algorithms. From (1) we

know the un-normalized signal part Uka
(k)
i has unit `2 norm, and the expected squared

norm of the noise is σ2E[‖e(k)i ‖22] = σ2Dd/(d− 2). Therefore throughout this paper we
define (d− 2)/(σ2Dd) as the signal strength (signal to noise ratio). The noise captured the
amount of variation of points in RD.

We change the signal strength from 10 to 2. For each value of signal strength, we
simulate 10 datasets with K = 20 subspaces, where each subspace contains Ni = 10000
data points. For all the sampling based algorithms we fixed the sampling size as n = 200.

The results are presented in Figure 1. Accuracy and accuracy-sub are plotted on the
left and right hand side panels respectively. The small discrepancy between two sides shows
both sampling based algorithms can deliver consistent results between in-sample clustering
and out-of-sample classification. At the same time, the SBSC based algorithms constantly
deliver much higher accuracy-sub than the other sampling based algorithms, this means for
the synthetic datasets, borrowing information from the whole dataset significantly enhanced
the clustering results for subset.

11
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(a) (b)

Figure 1: Tolerance to Noise: Plot of accuracy (left panel) and accuracy on subsets (right
panel) for algorithms applied to synthetic datasets of Section 4.1.1. The x-axis is the signal
strength and the y-axis is the accuracy averaged over 10 different datasets. SBSC performs
very well.

4.1.2 Scalability

In this section, we test the scalability of SBSC. Specifically, we randomly generate K = 20
subspaces in an ambient space with dimension D = 30, each of the subspaces has dimension
d = 5. We increase Nk from 100 to 51200, so the corresponding N increases from 2000 to
1024000. The sampling size n is b2K log(N)c.

The result is presented in Figure 2. On the right hand side y-axis, we show the average
accuracy, which is around 95% across all experiments, against the number of data points
N , this could justify our choice of n. On the left hand side y-axis, we show the scale plot
between running time and N , the linear pattern here agrees with our complexity analysis.
As we increase the number of data points N , the accuracy on the whole dataset slightly
gets higher, this implies our algorithm is particularly useful for large datasets.

4.2 Results on Benchmark Datasets

In this section, we test SBSC on three benchmark datasets. These datasets were selected to
have small, medium and large data size respectively. As expected, the advantage of SBSC
over other state-of-the-art algorithms changes from marginal to significant as the size of the
dataset increases.

4.2.1 The Extended Yale B dataset

The Extended Yale B dataset (YaleB) contains N = 2432 face images of K = 38 individuals.
Each image is a front view photo of the corresponding individual with different illumination
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Figure 2: Scalability: Plot of running time (blue curve) and accuracy (red curve), averaged
over 10 independent datasets, versus the number of data points for SBSC applied to the
data of Section 4.1.2. Shows that the algorithm scales well.

condition. To speed up the running time, a dimension reduction step is taken to pre-process
the dataset (Rahmani and Atia, 2017), hence in our experiment D = 500.

From Table 1, we see that the DSC algorithm delivered the highest accuracy and NMI.
As expected, for this small dataset sampling based algorithms did not perform as well.
The reason is, there is not enough observations to form sufficiently large homogeneous
sub-clusters. This issue is worse for datasets with large number of clusters.

4.2.2 The Zipcode dataset

The Zipcode dataset (LeCun et al., 1990) is a medium-size dataset with N = 9298 data
points and D = 256, each point represents an image of handwritten digit, hence K = 10.

From Table 2 we see, that SBSC delivers the best results in all metrics except running
time. However the differences in running time are marginal for sampling based algorithms.
The accuracy-sub of SBSC is again better than that of traditional sampling based algorithms
(see SBSC versus STSC, and SBSC-DSC versus SDSC).

4.2.3 The MNIST dataset

The MNIST dataset (MNIST) contains N = 70000 data points, each point represents an
image of handwritten digit. The original data was transferred into R500 by convolutional
neural network and PCA (You et al., 2016c). Again K = 10.

From Table 3 we see, that SBSC with bagging described in Appendix A.2 dominates in
nearly every aspect. The large data size of MNIST makes the sampling based algorithms

13
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Method Accuracy (%) Accuracy-Sub (%) NMI (%) Runtime (sec.)

SBSC
26.53
(1.8)

31.56
(1.94)

41.67
(1.44)

27

SBSC-DSC
60.46
(1.62)

62.76
(1.88)

70.15
(0.97)

35

STSC
17.45
(1.27)

21.72
(1.7)

29.17
(1.28)

0.8

SDSC
52.18
(1.96)

60.78
(2.04)

54.61
(1.85)

3

SLRR
18.35
(0.64)

28.6
(1.64)

26.33
(0.57)

7

SLSR
26.48
(1.98)

37.78
(2.33)

35.21
(2.22)

1.5

TSC 26.19 NA 39.31 1

DSC 91.69 NA 93.43 45

SSC 52.96 NA 60.15 169

SSC-OMP 73.88 NA 80.1 1.51

SSC-ENSC 60.81 NA 69.4 3

Table 1: Performance on Extended Yale B: The results of sampling based algorithms
are averaged over 10 independent runs and the corresponding standard deviations are pre-
sented in parentheses. The remaining algorithms do not use random subsampling and were
run only once. The metric reported as “NA” is not defined for these algorithms. The best
result of each performance metric is in bold. DSC delivers the highest accuracy and NMI.

run much faster than traditional methods. Due to their slow speed we did not use bagging
on non-sampling algorithms.

5. Conclusion and Future Research

While the idea of subsampling was discussed before (Peng et al., 2015), the main contribu-
tion of this paper is finding neighborhood points in the whole dataset and using cluster-wise
distance to cluster points in the subset. This results in a higher clustering accuracy.

In calculating cluster-wise distances and classifying out-of-sample points, ridge regres-
sion seems to be the most direct method. However, the algorithm itself is highly flexible.
Users are encouraged to try different distance functions, classification methods, and metrics
in finding neighboring points.

We propose the following directions for future research:

1. In this paper we select the subsamples that are used for initial clustering uniformly
at random. It would be interesting to investigate if selecting these points using a
more deterministic method such as Coresets (Agarwal et al., 2005) or a quasi-random
method such as a Langevin based method (Roberts et al., 1996) could improve the
performance of the algorithm.
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Method Accuracy (%) Accuracy-Sub (%) NMI (%) Runtime (sec.)

SBSC
69.4

(5.17)
72.04
(5.37)

70.3
(1.75)

10

SBSC-DSC
60.84
(2.87)

64.92
(3.37)

62.92
(0.65)

71

STSC
55.28
(4.25)

60.86
(3.8)

53.1
(2.49)

2

SDSC
45.62
(6.43)

51.16
(7.31)

45.99
(3.88)

3

SLRR
63.21
(3.96)

65.16
(4.03)

66.09
(1.39)

10

SLSR
58.66
(0.99)

59.85
(0.98)

62.54
(1.38)

4

TSC 65.73 NA 78.97 115

DSC 60.92 NA 68.43 800

SSC 48.16 NA 52.37 2165

SSC-OMP 23.58 NA 25.51 3

SSC-ENSC 44.65 NA 50.08 36

Table 2: Performance on Zipcode: See the caption of Table 1 for description. We see
SBSC delivers the highest accuracy and accuracy-sub, while TSC delivers the highest NMI.

2. While the correct neighborhood property developed in Theorem 2 assures sub-clusters
from the same subspaces are close to each other. It would be interesting to further
explore, from the theoretical perspective, the impacts of this property on clustering
accuracy. For example, it would be interesting to explore the relationship between
the identifiability discussed in Aragam et al. (2020) and the correct neighborhood
property in this paper.

3. It would be interesting to extend our algorithm to non-linear manifold clustering
problems. For example, one could project the dataset into a RKHS and apply our
algorithm on the projected features.

Appendix A. Practical Recommendations for Parameter Setting

In Algorithm 1 (SBSC), we assume the number of clusters is known. Several methods
have been developed for the estimation of the number of clusters from data (Ng et al.,
2002). Intuitively, n should be large enough to represent the structure of the whole dataset
while still being relatively small to reduce the computational complexity. In our numerical
experiments, we choose n to be linear in K logN .

Ideally, each sub-cluster YCi should well represent the subspace it belongs to, i.e., contain
at least one basis of that subspace. Therefore we want dmax to be larger than maxk=1,...,K dk
which is unknown. For this reason we set dmax to grow linearly with D. Similarly the
residual minimization parameter m should also be linear in D.
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Method Accuracy (%) Accuracy-Sub (%) NMI (%) Runtime (sec.)

SBSC(1)
95.74
(0.28)

96.44
(1.14)

89.9
(0.47)

38

SBSC(6)
97.15
(0.16)

95.25
(1.78)

92.6
(0.3)

246

STSC(1)
30.2

(2.13)
67.8

(3.95)
11.52
(2.12)

28

STSC(6)
40.12
(2.84)

65.23
(2.2)

22.53
(2.36)

172

SLRR(1)
79.5

(1.19)
79.46
(1.3)

79.9
(1.52)

59

SLRR(6)
81

(0.67)
79.6

(0.44)
83.75
(0.74)

378

SLSR(1)
75.06
(6.11)

74.62
(5.99)

76.21
(3.63)

54

SLSR(6)
79.64
(0.85)

76.43
(1.85)

81.24
(0.95)

326

TSC 84.63 NA 87.47 1184

SSC (DC1)∗ 96.55 NA NA 5254

SSC (DC2)∗ 96.1 NA NA 4390

SSC (DC5)∗ 94.9 NA NA 1596

SSC-OMP 81.51 NA 84.45 232

SSC-ENSC 93.79 NA 88.8 500

Table 3: Performance on MNIST: See description in Table 1. Additionally, the results
of methods with star marks are copied from the original paper that did not report NMI.
The number in the parenthesis next to the algorithm name is the number of bags. We see
SBSC dominates other algorithms in nearly every aspect.

A.1 Threshold Selection

The spectral clustering algorithm can deliver exact clustering result (Von Luxburg, 2007) if
the graph induced by the affinity matrix (D+DT ) has no false connections; and has exactly
K connected components. For a large threshold parameter tmax on the affinity matrix more
entries in D will be kept and our algorithm is more likely to have false connections, while
small tmax eliminates false connections but might incur non-connectivity.

Let us consider a heuristic situation: the subset we sampled contains exactly the same
points (hence n

K points) for each cluster. Then if we choose the threshold index tmax to be
n
2K , the induced graph from our affinity matrix will have no false connection (given that
points from same subspace have bigger similarities between each other) and the clusters
themselves will be connected, therefore the spectral clustering algorithm will deliver the
exact clustering result (Luxburg et al., 2005).

In reality clusters do not usually have same points in Ŷ, hence we choose tmax to start
from a relatively large number n

0.5K and gradually increase it. Based on different threshold

values, we can generate different label vectors on the subset Ŷ, intuitively label vectors
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that can deliver highly accurate results should be similar to each other or stable. Based on
this intuition, we developed a simple adaptive algorithm for finding an “optimal” affinity
threshold tmax; see supplementary code for details. Based on our observation, choosing tmax
adaptively works well with datasets where each cluster has large amount of points.

A.2 Combining Runs of the Algorithm

Thanks to the speed of our algorithm, we can conduct several independent runs for one
experiment (for sampling based algorithms, the results between independent runs might
be different) with acceptable running time. In order to make full use of such advantage,
we designed an algorithm to combine the results via bagging from several runs of SBSC
(Breiman, 1996). Unlike the classification problem, we need to conduct label switching, see
Algorithm 2 for details on how label switching is addressed. Please note that bagging can
be used for any clustering algorithms. In Section 4 and Appendix E we report the results,
both with and without bagging, for all sampling based algorithms.

input : The label vectors {lj}bj=1 ∈ RN from b independent runs. The number of
clusters K. Note that each entry of lj is a positive integer from 1 to K.

output: The final label vector l0 ∈ RN .
for m = 1 to b do

Write Mj = {r : lm(r) = j}, j = 1, ...,K.
for i = 1 to b and i 6= m do

1. Write Iq = {r : li(r) = q}, q = 1, ...,K. Let S ∈ RK×K be a score
matrix where

[S]jq =
card(Mj ∩ Iq)

min(card(Mj), card(Iq))
, 1 ≤ j, q ≤ K.

2. Switch the labels in li based on score matrix S:
for k = 1 to K do

Let q = arg maxj [S]jk. For ∀r ∈ Iq set li(r) := k .

end

end

end
for n = 1 to N do

Set l0(n) := mode({lj(n)}bj=1).

end

Algorithm 2: Bagging of Clustering Labels

The Step 2 of Algorithm 2 has a subtle issue: there might exists an integer q such that
q = arg maxj [S]jk = arg maxj [S]jr. Please see our supplementary codes on how to tackle
this problem.
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Appendix B. Clustering Accuracy and Normalized Mutual Information

The clustering accuracy measures the percentage of correctly labeled data points (You et al.,
2016c). It is calculated by

accr = max
π

100

N

∑
i,j

lestπ(i)jl
true
ij , 1 ≤ i ≤ K, 1 ≤ j ≤ N.

Here π is the permutation of K labels. The estimated label indicator lestπ(i)j equals to 1 if

and only if we assign label π(i) to the j-th point, and 0 otherwise. The ground-truth label
indicator ltrueij equals to 1 if and only if the j-th point has label i, and 0 otherwise.

The normalized mutual information (Strehl and Ghosh, 2002) is calculated by

NMI(lest, ltrue) =
I(lest, ltrue)√
H(lest)H(ltrue)

.

Here lest and ltrue are estimated/ground-truth label vectors, respectively. We use I(lest, ltrue)
to denote the mutual information between lest and ltrue, and H(lest) to denote the entropy
of lest. Similarly for H(ltrue).

Appendix C. Proofs of Main Theorems

In this section, we will prove the theorems from Section 3. The following Lemmas are used
to prove Theorem 1.

Lemma 1 Let b be a vector sampled uniformly from Sd−1, and λk (k = 1, .., d) be constants
such that 1 ≥ λ1 ≥ λ2 ≥ ... ≥ λd ≥ 0. For constant g1 ∈ (λd, λ1), we write ri = (g21 − λ2i )+
and si = (g21 − λ2i )−. Assuming that

∑d
i=1 ri >

∑d
i=1 si, then

P

[
d∑
i=1

(λibi)
2 < g21

]
≥ 1− 2e−ε

2
,

where

ε =

∑d
i=1 (ri − si)(√∑d

i=1 r
2
i +

√∑d
i=1 s

2
i

)
+

√(√∑d
i=1 r

2
i +

√∑d
i=1 s

2
i

)2

+ 2s1
∑d

i=1 (ri − si)

.

Proof We write bi = zi√∑d
j=1 z

2
j

, where {zi}di=1 are i.i.d. N (0, 1) random variables. The

goal is to bound

P

[
d∑
i=1

(
g21 − λ2i

)
− · z

2
i ≥

d∑
i=1

(
g21 − λ2i

)
+
· z2i

]
= P

[
d∑
i=1

si · z2i ≥
d∑
i=1

ri · z2i

]
.

Note that g1 ∈ (λd, λ1), hence both
∑d

i=1 ri and
∑d

i=1 si are strictly positive.

18



Subspace Clustering through Sub-Clusters

Now we write X =
∑d

i=1 si ·z2i and Y =
∑d

i=1 ri ·z2i . Applying Lemma 1 in Laurent and
Massart (2000) we have for positive constants εa and εb the following inequalities are true

P

X ≥ d∑
i=1

si + 2

√√√√ d∑
i=1

s2i εa + 2s1ε
2
a

 ≤ e−ε2a , P

Y ≤ d∑
i=1

ri − 2

√√√√ d∑
i=1

r2i εb

 ≤ e−ε2b .
We set εa = εb and

d∑
i=1

si + 2

√√√√ d∑
i=1

s2i εa + 2s1ε
2
a =

d∑
i=1

ri − 2

√√√√ d∑
i=1

r2i εb.

Solving the above quadratic equation we have

εa = εb =

∑d
i=1 (ri − si)(√∑d

i=1 r
2
i +

√∑d
i=1 s

2
i

)
+

√(√∑d
i=1 r

2
i +

√∑d
i=1 s

2
i

)2

+ 2s1
∑d

i=1 (ri − si)

.

Consequently

P [X ≥ Y ] ≤ P

X ≥ d∑
i=1

si + 2

√√√√ d∑
i=1

s2i εa + 2s1ε
2
a

+ P

Y ≤ d∑
i=1

ri − 2

√√√√ d∑
i=1

r2i εb


≤ e−ε2a + e−ε

2
b .

Substituting εa and εb into the inequality above yields the result.

The following bound on F-distributed random variables follows from Lemma 1.

Corollary 1 Let X ∼ F (m,n), and m,n ≥ 2. Then for constant q > 1, we have

P [X ≥ q] ≤ 2e−ε
2
,

where ε = 1
2

[
−
(√

m+ qm√
n

)
+

√(√
m+ qm√

n

)2
+ 2m (q − 1)

]
.

Proof We write bi = zi∑m+n
i=1 z2i

, and X =
(
∑m
i=1 z

2
i )/m

(
∑m+n
i=m+1 z

2
i )/n

, where {zi}m+n
i=1 are i.i.d. N (0, 1)

random variables. Then we have

P [X ≥ q] = P

[
m∑
i=1

1

mq
· z2i ≥

m+n∑
i=m+1

1

n
· z2i

]
.

The corollary follows by selecting λi =
√

1
2 + 1

mq for i = 1, ...,m, λi =
√

1
2 −

1
n for

i = m+ 1, ...,m+ n, and g1 =
√

1
2 in Lemma 1.

Lemma 2 states a bound on the order statistics of Beta distributed random variables.
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Lemma 2 Suppose Tl satisfy Assumption A1. For any k = 1, ...,K, let {B(i)}Nk−1i=1 be the

order statistics from a sample of (Nk − 1) i.i.d β(12 ,
d−1
2 ) random variables, then

P
[
B(Nk−1) ≥

1

2

]
≤ 2(Nk − 1)e−ε2

2
,

and

P
[
B(Nk−dmax) ≤ T

2
l

]
≤ (Nk − dmax)

dmax (Nk + 1)
(
Nρ
k − 1

)2 .
Here ε2 is defined in (11).

Proof Let B ∼ β(12 ,
1
d−1). Then we can write B =

z21∑d
i=1 z

2
i

, where {zi}di=1 are i.i.d. N (0, 1)

random variables. Select λ1 = 1, λi = 0 (i = 2, .., d) and and g1 = 1√
2

in Lemma 1. Note

the following fact

ε2 =

√
d− 1− 1

2 + 1√
d−1+1

≤ d− 2(√
d− 1 + 1

)
+
√(√

d− 1 + 1
)

+ 2(d− 2)
.

From Lemma 1 we have P
[
B ≥ 1

2

]
≤ 2e−ε2

2
. Therefore by union bound inequality we have

P
[
B(Nk−1) ≥

1

2

]
≤ 2(Nk − 1)e−ε2

2
.

This proves the first part of Lemma 2.
Next we prove the second part of Lemma 2. Let U(i) = F( 1

2
, d−1

2
)(B(i)), here F( 1

2
, d−1

2
) is

the CDF of the Beta distribution β(12 ,
d−1
2 ). Note that {U(i)}Nk−1i=1 are the order statistics

of the uniform distribution.
From Assumption A1 we know F( 1

2
, d−1

2
)(T

2
l ) ≤ 1− dmax

N1−ρ
k

and hence

P
[
B(Nk−dmax) ≤ T

2
l

]
≤ P

[
U(Nk−dmax) ≤ 1− dmax

N1−ρ
k

]
. (12)

By Chebyshev’s inequality and basic properties of the uniform order statistics we have

P

[
U(Nk−dmax) ≤ 1− dmax

N1−ρ
k

]
≤
V ar

[
U(Nk−dmax)

](
dmax
Nk
− dmax

N1−ρ
k

)2 =
(Nk − dmax)

dmax(Nk + 1)(Nρ
k − 1)2

. (13)

Combine (12) and (13) we know

P
[
B(Nk−dmax) ≤ T

2
l

]
≤ (Nk − dmax)

dmax(Nk + 1)(Nρ
k − 1)2

.

This completes the proof.

Lemma 3 to Lemma 5 are used to prove Theorem 2.
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Lemma 3 Let v be a random vector that uniformly distributed on Sd−1. Then we can
decompose v into v =

[√
gs,
√

1− gu
]
, where g ∼ β(12 ,

d−1
2 ), u ∼ U(Sd−2) and P [s = 1] =

P [s = −1] = 0.5 are three independent random variables.

Proof It is straightforward to see 〈v,v〉 = [v21, ..., v
2
d] follows the Dirichlet distribution with

parameters α = (12 , ...,
1
2) ∈ Rd. We can decompose 〈v,v〉 into the following concatenation

of two random components[
v21, ..., v

2
d

]
=

[
v21, (1− v21)

〈v−1,v−1〉
1− v21

]
.

Since Dirichlet distribution is completely neutral (Lin, 2016), we know that v21 is independent

of 〈v−1,v−1〉
1−v21

, where v21 ∼ β(12 ,
d−1
2 ) and 〈v−1,v−1〉

1−v21
∼ Dir(α−1). From symmetry, we can set

√
gs := v1 and u := v−1√

1−v21
, where the distributions of g, u and s are specified in the

statement of Lemma 3. This completes the proof.

Let {ai}Nk−1i=1 be (Nk − 1) vectors that are uniformly sampled from Sd−1. From Lemma 3,

we know that for any i = 1, ..., Nk − 1, the value of ai1 is independent of [ai2,..,aid]√
1−a2i1

. The

following corollary is then a direct result from this fact.

Corollary 2 Let {a(i)}Nk−1i=1 be a permutation of {ai}Nk−1i=1 sorted in ascending order of the
absolute value of the first coordinate. Then we can write

a(i) =
[
a(i)1,

√
1− a2(i)1bNk−i

]
,

where {bi}Nk−1i=1 are i.i.d. uniform samples on Sd−2.

Lemma 4 (Lerman et al., 2012, Lemma B.3) Let {bi}dmaxi=1 be i.i.d. uniform samples from
Sd−2, d ≥ 3. Then for any t ≥ 0

inf
‖u‖2=1

dmax∑
i=1

|〈u,bi〉| ≥
√

2

π

dmax√
d− 1

− 2
√
dmax − t

√
dmax
d− 2

,

with probability at least 1− e−t2/2.

Corollary 3 Use the same definition of {bi}dmaxi=1 from Lemma 4. Then for any t ≥ 0:

sup
‖u‖2=1

dmax∑
i=1

〈u,bi〉 ≤ 2
√
dmax + t

√
dmax
d− 2

,

with probability at least 1− e−t2/2.

Proof Note that E [〈u,b〉] = 0 for any b ∼ U(Sd−2) and u ∈ Rd−1. Therefore by Lemma
6.3 in Ledoux and Talagrand (2013) we have:

E

[
sup
‖u‖2=1

dmax∑
i=1

〈u,bi〉

]
≤ 2 sup

‖u‖2=1

E∥∥∥∥∥
dmax∑
i=1

εibi

∥∥∥∥∥
2
 = 2

√
dmax.
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Here {εi}dmaxi=1 are i.i.d. Rademacher random variables. The lemma is proved by following
similar steps after equation (B.11) in Lerman et al. (2012).

Lemma 5 Suppose Assumption A3. Write a0 = [1, 0, ..., 0] ∈ Rd, and use the definitions
for {ai}Nk−1i=1 and {a(i)}Nk−1i=1 from Corollary 2. Let B ∈ Rd×(dmax+1) be a matrix where its
first column is a0 and its i-th column (2 ≤ i ≤ dmax + 1) is a(Nk−i+1). Let the largest d
singular values of B be s1 ≥ s2 ≥ · · · ≥ sd. Then we have

P
[
s2d ≥ q0

]
≥ 1− 2

N t2/2
− (Nk − dmax)

dmax(Nk + 1)(Nρ
k − 1)2

− 2(Nk − 1)e−ε2
2
,

where ε2 is defined in (11).

Proof From Corollary 2, we know B can be re-written as

B =

(
1, a(Nk−1)1, ... a(Nk−dmax)1

0,
√

1− a2(Nk−1)1b1, ...
√

1− a2(Nk−dmax)1bdmax

)
,

where {bi}dmaxi=1 are i.i.d. uniform samples from Sd−2.
Given the dimensions of B, we know sd = inf‖x‖2=1

∥∥BTx
∥∥
2
. For convenience, we write

x′ =
1√

1− x21
[x2, ..., xd] ,

where ‖x′‖2 = 1, ci = 〈x′,bi〉, a(Nk)1 = 1. Let E1 be the event that {s2d ≥ q0}, and E2 be

the event that {a2(Nk−i)1 ∈
[
T 2
l ,

1
2

]
, ∀i = 1, .., dmax}. From Lemma 2 we know

P [E2] ≥ 1− (Nk − dmax)

dmax(Nk + 1)(Nρ
k − 1)2

− 2(Nk − 1)e−ε2
2
. (14)

Conditioning on E2, we have the following relations

∥∥BTx
∥∥2
2

=

∥∥∥∥∥∥
(

1, a(Nk−1)1, ... a(Nk−dmax)1

0,
√

1− a2(Nk−1)1b1, ...
√

1− a2(Nk−dmax)1bdmax

)T
x

∥∥∥∥∥∥
2

2

=

dmax∑
i=0

(
a(Nk−i)1x1 +

√(
1− a2(N−i)1

) (
1− x21

)
ci

)2

=

dmax∑
i=0

a2(N−i)1x
2
1 + 2

dmax∑
i=0

√
a2(N−i)1(1− a

2
(Nk−i)1)(1− x

2
1)cix1

+

dmax∑
i=1

(1− a2(Nk−i)1)(1− x
2
1)c

2
i

≥T 2
l dmax · x21 −

√
(1− x21)x21 sup

‖u‖2=1

dmax∑
i=1

〈u,bi〉
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+
1− x21

2
inf
‖u‖2=1

dmax∑
i=1

〈u,bi〉2. (15)

From Lemma 4 and Corollary 3 and conditional on E2, we have the following inequality

(15) ≥ (1− x21)C2 −
√

(1− x21)x21C1 + T 2
l dmax · x21, (16)

with probability at least 1− 2

Nt2/2
. Since 1− x21 ≤ 1, a lower bound of the RHS of (16) is

(
T 2
l dmax − C2

)
x21 − C1x1 + C2 ≥

(
T 2
l dmax − C2

)
C2 −

C2
1
4

T 2
l dmax

≥ q0,

where the q0 comes from Assumption A3. Finally, note the following fact

P [E1] ≥ P [E1|E2] + P [E2]− 1 (17)

= 1− 2

N t2/2
− (Nk − dmax)

dmax(Nk + 1)(Nρ
k − 1)2

− 2(Nk − 1)e−ε2
2
.

This completes the proof.

Proof of Theorem 1 Let the event E1i = {YCi only contains points in same subspace},
then E1 = ∩ni=1E1i is the event that Algorithm 1 has sub-cluster preserving property. Let

the event E2 = {σ
∥∥∥e(k)i ∥∥∥

2
< g2, ∀i, k}, where g2 is from Assumption A2. Our goal is to find

a lower bound on P [E1].
Note the following fact

P [E1] ≥ 1−
n∑
i=1

P
[
E{1i|E2

]
+ P [E2]− 1 = P [E2]−

n∑
i=1

P
[
E{1i|E2

]
. (18)

Therefore, it suffices to find a lower bound on P [E2]−
∑n

i=1 P
[
E{1i|E2

]
.

We start by finding a preliminary upper bound on P
[
E{11|E2

]
. WLOG assume that y1

(1)

is one of the sampled points, and YC1 is the sub-cluster associated with it. Recall that in

Step 2 of Algorithm 1, we use |〈y(1)
1 ,y

(k)
i 〉| to measure the affinity between y

(1)
1 and y

(k)
i ,

the nearest (dmax + 1) points are then used to construct the sub-cluster associated with

y
(1)
1 . Write Âk = {|〈y(1)

1 ,y
(k)
i 〉|}

Nk
i=1, for E11 to happen we need the largest (dmax + 1) values

among ∪Kk=1Â
k to be from the set Â1. Mathematically this means

E{11 =

{
Â1

(N1−dmax)
≤ max

k 6=1
max

i=1,..,Nk
Âki

}
,

where Âki is the i-th element in Âk and Âk(i) is the i-th smallest element in Âk.
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Recall from (1) that yi
(k) =

Uka
(k)
i +σe

(k)
i∥∥∥Uka

(k)
i +σe

(k)
i

∥∥∥
2

. The triangle inequality tells us that

∥∥∥Uka
(k)
i

∥∥∥
2
−
∥∥∥σe

(k)
i

∥∥∥
2
≤
∥∥∥Uka

(k)
i + σe

(k)
i

∥∥∥
2
≤
∥∥∥Uka

(k)
i

∥∥∥
2

+
∥∥∥σe

(k)
i

∥∥∥
2
.

Therefore conditional on E2, we know the normalizing constants
∥∥∥Uka

(k)
i + σe

(k)
i

∥∥∥
2

are

bounded in [1−g2, 1+g2]. We can write Aki =
∥∥∥y(1)

1

∥∥∥
2
·
∥∥∥y(k)

i

∥∥∥
2
·Âki . It is fairly straightforward

to get the following relation

P
[
A1

(N1−dmax)
≤ 1 + g2

1− g2
max
k 6=1

max
1≤i≤Nk

Aki

∣∣∣∣E2] ≥ P
[
E{11
∣∣∣E2] . (19)

Conditioning on E2 and write Bi = 〈a(1)
1 ,a

(1)
i 〉2, i = 2, ..., N1 − 1. We have the following

inequalities

A1
(N1−dmax)

=
∣∣∣√B(N1−dmax) + σ〈U1a

(1)
1 , e

(1)
i 〉+ σ〈U1a

(1)
i , e

(1)
1 〉+ σ2〈e(1)1 , e

(1)
i 〉
∣∣∣

≥
√
B(N1−dmax) − σ

∥∥∥e(1)i ∥∥∥
2
− σ

∥∥∥e(1)1

∥∥∥
2
− σ2

∥∥∥e(1)1

∥∥∥
2

max
i 6=1

∥∥∥e(1)i ∥∥∥
2

≥
√
B(N1−dmax) − 2g2 − g22.

Similarly we have

max
k 6=1

max
1≤i≤Nk

Aki = max
k 6=1

max
1≤i≤Nk

∣∣∣〈U1a
(1)
1 ,Uka

(k)
i 〉+ σ〈U1a

(1)
1 , e

(k)
i 〉+ σ〈Uka

(k)
i , e

(1)
1 〉+ σ2〈e(1)1 , e

(k)
i 〉
∣∣∣

≤max
k 6=1

max
1≤i≤Nk

∣∣∣〈U1a
(1)
1 ,Uka

(k)
i 〉
∣∣∣+ σmax

k 6=1
max

1≤i≤Nk

∥∥∥e(k)i ∥∥∥
2

+ σ
∥∥∥e(1)1

∥∥∥
2

+ σ2
∥∥∥e(1)1

∥∥∥
2

max
k 6=1

max
1≤i≤Nk

∥∥∥e(k)i ∥∥∥
2

≤max
k 6=1

max
1≤i≤Nk

∣∣∣〈U1a
(1)
1 ,Uka

(k)
i 〉
∣∣∣+ 2g2 + g22.

Pick T from Assumption A2, then the LHS of (19) has the following upper bound

P [T ≤ Q|E2] + P
[
B(N1−dmax) ≤ T

2
∣∣E2] , (20)

where

Q =

(
1 +

1 + g2
1− g2

)(
2g2 + g22

)
+

1 + g2
1− g2

max
k 6=1

max
1≤i≤Nk

∣∣∣〈U1a
(1)
1 ,Uka

(k)
i 〉
∣∣∣ .

Now we are going to complete our proof in 3 steps.

Step 1: For the first term in (20) we have

P [T ≤ Q|E2] = P
[
g1 ≤ max

k 6=1
max

1≤i≤Nk

∣∣∣〈U1a
(1)
1 ,Uka

(k)
i 〉
∣∣∣] .
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From singular value decomposition we can write

〈U1a
(1)
1 ,Uka

(k)
i 〉 = a

(1)T
1 W1kΛ1kV

T
1ka

(k)
i := bTkΛ1kV

T
1kai

(k),

where both {bk}Kk=2 and {VT
1ka

(k)
i }Kk=2 are sampled uniformly from Sd−1. Therefore

P
[
g1 ≤ max

k 6=1
max

1≤i≤Nk

∣∣∣〈U1a
(1)
1 ,Uka

(k)
i 〉
∣∣∣] =P

[
g21 ≤ max

k 6=1
max

1≤i≤Nk

(
bTkΛ1kV

T
1ka

(k)
i

)2]
≤

K∑
k=2

P
[
g21 ≤ max

1≤i≤Nk

(
bTkΛ1kV

T
1ka

(k)
i

)2]
(21)

≤
K∑
k=2

P

[
g21 ≤

d∑
i=1

(
λ
(1k)
i bki

)2]
(22)

≤
K∑
k=2

P

[
g21 ≤

d∑
i=1

(
λ
(1)
i bki

)2]
, (23)

where inequality (21) uses the union bound inequality, (22) comes from Cauchy-Schwarz
inequality, and (23) uses Definition 1. Since {bk}Kk=2 ∼ U(Sd−1), we can write (23) as

(K − 1)P

[
g21 ≤

d∑
i=1

(
λ
(1)
i bi

)2]
,

where b is uniformly distributed on Sd−1. Now we apply Lemma 1 directly to the quantity

above and get P
[
g21 ≤

∑d
i=1

(
λ
(1)
i bi

)2]
≤ 2e−ε

′2
where

ε′ =

∑d
i=1(ri − si)

(
√∑d

i=1 r
2
i +

√∑d
i=1 s

2
i ) +

√
(
√∑d

i=1 r
2
i +

√∑d
i=1 s

2
i )

2 + 2s1
∑d

i=1(ri − si)

=
−(
√∑d

i=1 r
2
i +

√∑d
i=1 s

2
i ) +

√
(
√∑d

i=1 r
2
i +

√∑d
i=1 s

2
i )

2 + 2s1
∑d

i=1(ri − si)

2s1

≥
−(
√∑d

i=1 r
2
i +

√∑d
i=1 s

2
i ) +

√
(
√∑d

i=1 r
2
i +

√∑d
i=1 s

2
i )

2 + 2
∑d

i=1(ri − si)

2
(24)

=

∑d
i=1(ri − si)

(
√∑d

i=1 r
2
i +

√∑d
i=1 s

2
i ) +

√
(
√∑d

i=1 r
2
i +

√∑d
i=1 s

2
i )

2 + 2
∑d

i=1(ri − si)

≥
∑d

i=1(ri − si)

2
√∑d

i=1 r
2
i +

√
4
∑d

i=1 r
2
i + 2

∑d
i=1 ri

≥ ε1.

Here ε1 is defined in (8), ri and si are defined in Lemma 1, and (24) comes from the following
fact for positive constants a, b and s ∈ (0, 1)

−a+
√
a2 + 2sb

2s
≥ −a+

√
a2 + 2b

2
.
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Therefore we have

P
[
g1 ≤ max

k 6=1
max

1≤i≤nk

∣∣∣〈U1a
(1)
1 ,Uka

(k)
i 〉
∣∣∣] ≤ 2(K − 1)e−ε

2
1 .

Step 2: For the second term of (20), we just need to use Lemma 2. Note that for fixed a
(1)
1 ,

one can show that Bi = 〈a(1)
1 ,a

(1)
i 〉2 can be treated as a sample from a Beta distribution

with parameters (12 ,
d−1
2 ). From Lemma 2 and Assumption A2 we have

P
[
B(N1−dmax) ≤ T

2
∣∣E2] ≤ (N1 − dmax)

dmax(N1 + 1)(Nρ
1 − 1)2

.

Combine the results above we know

P
[
E{11
∣∣∣E2] ≤ 2(K − 1)e−ε1

2
+

(N1 − dmax)

dmax(N1 + 1)(Nρ
1 − 1)2

. (25)

Step 3: Now we are going to find the lower bound on P[E2]. Let e be an independent copy

of e
(1)
1 , note that ‖e‖22 /D ∼ FD,d. From Corollary 1 we have

P [g2 ≤ σ||e||2] = P
[
g22
Dσ2

≤ ||e||
2
2

D

]
≤ 2e−t

2
,

where t can be calculated from Corollary 1. Using Assumption A2 we have

t >
D
(

g22
Dσ2 − 1

)
2
(√

D +
g22

σ2
√
d

+
√
d
) =

√
d

2

1−
1 + d

D +
√

d
D

1 + d
D +

g22
Dσ2

 ≥ (1 +
η

2 + η

)√
logN.

Therefore we have P [g2 ≤ σ||e||2] ≤ 2

N(1+ η
2+η )

2 . Now we note that

P
[
g2 > σ max

k=1,...,K
max

1≤i≤Nk

∥∥∥e(k)i ∥∥∥
2

]
= ΠN

i=1

(
1− P

[
g2 ≤ σ

∥∥∥e(k)i ∥∥∥
2

])
≥ (1− 2e−t

2
)N ≥ 1− 2N

N

(
1+ η

2+η

)2 ,
where the last inequality comes from the Bernoulli’s inequality. Therefore

P [E2] ≥ 1− 2N

N

(
1+ η

2+η

)2 . (26)

Finally, the above arguments hold for any y
(k)
i . Putting (25) and (26) together and applying

the union bound inequality yields the result

P[E1] ≥ 1−
K∑
k=1

nk(Nk − dmax)

dmax(Nk + 1)(Nρ
k − 1)2

− 2(K − 1)ne−ε
2
1 − 2N

N

(
1+ η

2+η

)2 . (27)
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To prove Theorem 2, we will use the following equation

(WTW + λId2)−1WT = WT (WWT + λId1)−1, (28)

where W ∈ Rd1×d2 and λ is a positive constant (Murphy, 2012, Chapter 4). Throughout
the proof of Theorem 2, the subscript of identity matrix I will be omitted as its dimension
is clear from the context.

Proof of Theorem 2 Similar to the proof of Theorem 1, let E1 be the event that correct

neighborhood property holds for all {YCj}nj=1, let E2 be the event {σ‖e(k)i ‖2 < g,∀i, k} (g

is from Assumption A4), E3 is the event that the smallest singular value of BBT is at least
q0, ∀i = 1, ..., n, and E4 is the event that the sub-cluster preserving property is satisfied.

Define I = {(i, j) : the i-th and the j-th sampled points belong to different clusters,
1 ≤ i < j ≤ n}, and J = {(i, j) : the i-th and the j-th sampled points belong to the same
cluster, 1 ≤ i < j ≤ n}. Conditional on E4, we know that YCi and YCj belong to different
clusters if (i, j) ∈ I, and belong to the same cluster if (i, j) ∈ J .

We will show that conditioning on E2, E3 and E4, there exists a constant l such that

P [E1|E2, E3, E4] ≥ P
[
d(YCi ,YCj )∀(i,j)∈I > l

∣∣E2, E3, E4] ≥ 1−
∑
∀(i,j)∈I

P
[
d(YCi ,YCj ) ≤ l

∣∣E2, E3, E4] .
Then we obtain an upper bound on P[d(YCi ,YCk) ≤ l | E2, E3, E4], ∀(i, k) ∈ I. The theorem
will follow by using the union bound inequality.

WLOG assume that YC1 and YC2 belong to S1, and YC3 belongs to S2. The distance
function d(YC1 ,YC2) can be explicitly written as∥∥YC1 −YC2(YT

C2YC2 + λI)−1YT
C2YC1

∥∥
F

+
∥∥YC2 −YC1(YT

C1YC1 + λI)−1YT
C1YC2

∥∥
F
. (29)

Conditional on E4, we can write YC1 = U1B̂1 + Ê1, where ‖[U1B̂1]j + [Ê1]j‖2 = 1. Let B1

and E1 be the “un-normalized” version of B̂1 and Ê1 respectively. Here each column of B1

is a sample from the uniform distribution on Sd−1. We have the following relation

[B̂1]j =
[B1]j

‖[U1B1]j + [E1]j‖2
, [Ê1]j =

[E1]j
‖[U1B1]j + [E1]j‖2

, j = 1, ..., dmax + 1.

Similarly we can write YC2 = U1B̂2 + Ê2 and YC3 = U2B̂3 + Ê3. Using Equation (28), the
first term in (29) can be rewritten as∥∥YC1 −YC2(YT

C2YC2 + λI)−1YT
C2YC1

∥∥
F

=
∥∥YC1 − (YC2Y

T
C2 + λI− λI)(YC2Y

T
C2 + λI)−1YC1

∥∥
F

=λ
∥∥(YC2Y

T
C2 + λI)−1YC1

∥∥
F

<λ
∥∥∥[(YC2Y

T
C2 + λI)−1 − (U1B̂2B̂

T
2 UT

1 + λI)−1]||F ||YC1
∥∥∥
F

+ λ
∥∥∥(U1B̂2B̂

T
2 UT

1 + λI)−1YC1

∥∥∥
F
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<λ
∥∥∥(YC2Y

T
C2 + λI)−1 − (U1B̂2B̂

T
2 UT

1 + λI)−1
∥∥∥
F

√
dmax + 1

+ λ
∥∥∥(U1B̂2B̂

T
2 UT

1 + λI)−1U1B̂1

∥∥∥
F

+ λ
∥∥∥(U1B̂2B̂

T
2 UT

1 + λI)−1
∥∥∥
F

∥∥∥Ê1

∥∥∥
F
. (30)

Now we are going to complete our proof in 3 steps. Unless specified otherwise, the
following Step 1 to Step 3 are derived conditioning on E2, E3 and E4.
Step 1: We can rewrite the first term in (30) as the following term

λ
∥∥(G2 + H)−1 −H−1

∥∥
F

√
dmax + 1,

where H = U1B̂2B̂
T
2 UT

1 + λI, and G2 = YC2Y
T
C2 −U1B̂2B̂

T
2 UT

1 = Ê2B̂
T
2 UT

1 + U1B̂2Ê
T
2 +

Ê2Ê
T
2 . Note that the normalizing constant of each column of {Êi}ni=1 are bounded in

[1− g, 1 + g]. We then have the following relations

‖G2‖F ≤
∥∥∥Ê2

∥∥∥
F

∥∥∥B̂T
2 UT

1

∥∥∥
F

+
∥∥∥U1B̂2 + Ê2

∥∥∥
F

∥∥∥ÊT
2

∥∥∥
F

≤ (2g − g2)(dmax + 1)

(1− g)2
. (31)

The above analysis used triangle inequalities and the bounds of normalizing constants.
Using the fact that

‖H−1‖F <

√
d(1 + g)4

q20
+
D − d
λ2

and inequality (31), we have the following inequalities

∥∥H−1G2

∥∥
F
≤
∥∥H−1∥∥

F
‖G2‖F =

(2g − g2) (dmax + 1)

2(1− g)
·

√
d(1 + g)4

q20
+
D − d
λ2

=: f(d) <
1

2
.

Therefore limm→∞(H−1G2)
m = 0. From Theorem 4.29 in Schott (2016) we know (I +

H−1G2)
−1 =

∑∞
j=0(H

−1G2)
j and∥∥(G2 + H)−1 −H−1

∥∥
F

=
∥∥H−1G(I + H−1G2)

−1H−1
∥∥
F

≤

∥∥∥∥∥∥
∞∑
j=1

(H−1G2)
j

∥∥∥∥∥∥
F

∥∥H−1∥∥
F

<
f(d)

1− f(d)

√
d(1 + g)4

q20
+
D − d
λ2

.

We then have for the first term in (30)

λ
∥∥(G2 + H)−1 −H−1

∥∥
F

√
dmax + 1 <

f(d)
√
dmax + 1

1− f(d)
·

√
d(1 + g)4λ2

q20
+D − d.
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For the second term in (30) we have

λ

∥∥∥∥(U1B̂2B̂
T
2 UT

1 + λI
)−1

B̂1

∥∥∥∥
F

=
∥∥∥B̂1 − B̂2B̂

T
2 (B̂2B̂

T
2 + λI)−1B̂1

∥∥∥
F

≤
∥∥∥I− B̂2B̂

T
2 (B̂2B̂

T
2 + λI)−1

∥∥∥
F

∥∥∥B̂1

∥∥∥
F
≤
λ(1 + g)2

√
d(dmax + 1)

q0(1− g)
.

For the third term in (30) we have

λ
∥∥∥(U1B̂2B̂

T
2 UT

1 + λI)−1
∥∥∥
F

∥∥∥Ê1

∥∥∥
F
≤ g

√
d(1 + g)4λ2

q20
+D − d.

Hence by our assumption, Equation (30) can be upper bounded by the following term

3λ(1 + g)2
√
d(dmax + 1)

q0(1− g)
,

which is deterministic and does not depend on the choices of {Bi}ni=1 and {Uk}Kk=1. The
distance function in (29) has two parts which are symmetric, therefore we set

l :=
6λ(1 + g)2

√
d(dmax + 1)

q0(1− g)
> d(YCi ,YCj )(i,j)∈J .

Step 2: Now we consider P [d (YC1 ,YC3) ≤ l|E2, E3, E4]. We explicitly write d(YC1 ,YC3) as∥∥YC1 −YC3(YT
C3YC3 + λI)−1YT

C3YC1
∥∥
F

+
∥∥YC3 −YC1(YT

C1YC1 + λI)−1YT
C1YC3

∥∥
F
. (32)

Note the following relation

P [d(YC1 ,YC3) ≤ l|E2, E3] ≤P
[∥∥YC1 −YC3(YT

C3YC3 + λI)−1YT
C3YC1

∥∥
F
≤ l

2

∣∣∣∣E2, E3, E4]
+ P

[∥∥YC3 −YC1(YT
C1YC1 + λI)−1YT

C1YC3
∥∥
F
≤ l

2

∣∣∣∣E2, E3, E4] .
(33)

To bound the first term in (32), the following facts come from the triangle inequality∥∥∥YC1 −YC3
(
YT
C3YC3 + λI

)−1
YT
C3YC1

∥∥∥
F

=λ
∥∥∥(YC3YT

C3 + λI
)−1

YC1

∥∥∥
F

>λ

∥∥∥∥(U2B̂3B̂
T
3 UT

2 + λI
)−1

U1B̂1

∥∥∥∥
F

− λ
∥∥∥∥(U2B̂3B̂

T
3 UT

2 + λI
)−1∥∥∥∥

F

∥∥∥Ê1

∥∥∥
F

−λ
∥∥∥∥[(YC3YT

C3 + λI
)−1 − (U2B̂3B̂

T
3 UT

2 + λI
)−1]∥∥∥∥

F

√
dmax + 1.

The last two terms of the line above are upper bounded by
λ(1+g)2

√
d(dmax+1)

q0(1−g) as before, and
the first term can be bounded by the following relations

λ

∥∥∥∥(U2B̂3B̂
T
3 UT

2 + λI
)−1

U1B̂1

∥∥∥∥
F
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≥
∥∥∥U1B̂1 −U2U

T
2 U1B̂1

∥∥∥
F
− λ

∥∥∥∥U2

(
B̂3B̂

T
3 + λI

)−1
UT

2 U1B̂1

∥∥∥∥
F

>
∥∥∥U1B̂1 −U2U

T
2 U1B̂1

∥∥∥
F
−
λ(1 + g)2

√
d(dmax + 1)

q0(1− g)
, (34)

where inequality (34) comes from the following relations

λ

∥∥∥∥U2

(
B̂3B̂

T
3 + λI

)−1
UT

2 U1B̂1
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F

≤ λ
∥∥∥∥(B̂3B̂

T
3 + λI

)−1∥∥∥∥
F

∥∥∥U1B̂1

∥∥∥
F

≤ λ
√
d(1 + g)2

q0

√
dmax + 1

1− g
=
λ(1 + g)2

√
d(dmax + 1)

q0(1− g)
.

For the first term in (34) we have∥∥∥U1B̂1 −U2U
T
2 U1B̂1

∥∥∥
F

=

√
Tr
[
B̂T

1 B̂1 − B̂T
1 UT

1 U2UT
2 U1B̂1

]
=

∥∥∥∥√I−Λ2
12B̃1W
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F

≥

∥∥∥√I−Λ2
12B̃1

∥∥∥
F

1 + g
,

where W is the diagonal matrix such that Wjj = 1

‖[B̂1]j‖2
([B̂1]j is the j-th column of

B̂1, j = 1, .., dmax + 1), B̃1 = VB1 is a orthogonal transformation of B1 (here V is the
right orthogonal matrix in the svd of UT

2 U1), and Λ12 is the diagonal matrix such that

[Λ12]ii = λ
(12)
i , i = 1, ..., d. Therefore, eventually the first term at the RHS of (33) can be

upper bounded by

P

[∥∥∥∥√I−Λ2
12B̃1

∥∥∥∥
F

≤
6λ(1 + g)2

√
d(dmax + 1)

q0(1− g)

]
.

Using Assumption A4, Lemma 1 and arguments similar to the proof of Theorem 1, we know
the quantity above is upper bounded by

P
[∥∥∥∥√I−Λ2

12v

∥∥∥∥
F

≤
√

1− T 2
l

]
≤ 2e−ε1

2
,

where ε1 is defined in (8) with g1 replaced by Tl, and v is the first column of B̃1. Using
analogous manipulations we obtain similar results for the second term in (33). Therefore
P [d(YC1 ,YC3) ≤ l|E2, E3, E4] ≤ 4e−ε1

2
.

Step 3: Now we are going to lower bound P [E2, E3, E4] from the fact P [E2, E3, E4] ≥ 1 −
P[E{2 ]− P[E{3 ]− P[E{4 ].

Just as in the proof of Theorem 1 we have P
[
σe

(k)
i ≥ g

]
≤ 2e−t

2
, where

t =
D
(

g2

Dσ2 − 1
)

2
(√

D + Dg2

σ2
√
d

+
√
d
) .
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From Assumption A4 we know 2e−t
2 ≤ 2

N(1+ η
2+η )

2 . Using union bound inequality we have

P
[
E{2
]
≤ 2N

N

(
1+ η

2+η

)2 . (35)

From Lemma 5 we have

P
[
E{3
]
≤ 2n

N t2/2
+

K∑
k=1

nk

(
Nk − dmax

dmax(Nk + 1)(Nρ
k − 1)2

+ 2(Nk − 1)e−ε
2
2

)
. (36)

From our assumption we have

P
[
E{4
]
≤ ps. (37)

Combing (35), (36) and (37) we know

P[E1] ≥1−
∑
∀(i,j)∈I

P
[
d(YCi ,YCj ) ≤ l

∣∣E2, E3, E4]− P
[
E{2
]
− P

[
E{3
]
− P

[
E{4
]

≥1− 4n(n− 1)e−ε
2
1 − 2n

N t2/2
−

K∑
k=1

nk

(
Nk − dmax

dmax(Nk + 1)(Nρ
k − 1)2

+ 2(Nk − 1)e−ε
2
2

)
− 2N

N

(
1+ η

2+η

)2 − ps.
This completes the proof.
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Appendix D. Residual Minimization by Ridge Regression

In this section we provide the algorithm for classifying the out-of-sample points.

input : Y to be classified, R and ` are the training data and labels, m and λ
are the residual minimization and regularization parameters

output: The label vector ` of all points in Y
1. Generate subsets of training data
for k = 1 to K do

Uniformly sample m points from the k-th cluster in the training set R,
denote this sampled set as Rk;

end
2. Compute the projection matrix for each cluster
for k = 1 to K do

Pk := Rk(R
T
kRk + λI)−1RT

k

end
3. Compute residuals for points in Y , here N is the number of points in Y
for i = 1 to N do

for k = 1 to K do
ri(k) := (I−Pk)yi;

end

end
4. Assign labels through minimum residual
for i = 1 to N do

`i = arg mink ri(k);
end

Algorithm 3: Residual Minimization by Ridge Regression (RMRR) algorithm.

Appendix E. Additional Numerical Results

In this section, we present additional numerical results. Results for some algorithms are
omitted for certain datasets due to the limitations on computational resources. Specifically,
the additional results are presented in Table 4, Table 5 and Table 6.

Appendix F. Additional Technical Discussion

F.1 The ε1 in Theorem 1

In this section, we will show that under mild conditions, ε1 in (8) grows at least linear in√
d. For ease of notation, we write ri =

(
g21 − λ

(1)2
i

)
+

and si =
(
g21 − λ

(1)2
i

)
−

, i = 1, .., d.

WLOG assume ε1 is evaluated at k = 1.
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Method Accuracy (%) Accuracy-Sub (%) NMI (%) Runtime (sec.)

SBSC-SSC
20.99
(1.02)

22.5
(1.29)

34.24
(1.15)

56

SSSC
49.33
(2.51)

56.54
(1,77)

52.82
(2.21)

22

LRR 55.63 NA 64.02 29

LSR 54.11 NA 65.12 8

Table 4: Additional Results on Extended Yale B

Method Accuracy (%) Accuracy-Sub (%) NMI (%) Runtime (sec.)

SBSC(6)
75.16
(3.28)

72.62
(1.52)

78.79
(1.67)

63

SBSC-DSC(6)
64.25
(1.25)

65.34
(1.86)

72.34
(0.76)

388

SBSC-SSC(1)
55.24
(1.34)

61.44
(2.36)

45.18
(1.42)

117

SBSC-SSC(6)
71.07
(0.94)

68.65
(1.21)

67.39
(1.19)

703

STSC(6)
57.76
(1.15)

60.1
(1.8)

60.4
(1.59)

13

SDSC(6)
52

(2.63)
51.59
(1.28)

63.28
(1.26)

51

SSSC(1)
41.52
(5.92)

44.86
(7.06)

38.22
(3.7)

25

SSSC(6)
44.43
(4)

44.06
(2.53)

42.61
(2.23)

150

SLRR(6)
63.7

(3.74)
63.85
(1.74)

69.25
(1.86)

46

SLSR(6)
60.71
(1.04)

59.43
(0.8)

66.39
(1.08)

26

LRR 53.25 NA 53.53 401

LSR 58.91 NA 61.56 192

Table 5: Additional Results on Zipcode

Method Accuracy (%) Accuracy-Sub (%) NMI (%) Runtime (sec.)

SBSC-SSC
84.95
(4.51)

86.48
(4.2)

73.71
(2.06)

834

SSSC(1)
33.26
(2.15)

77.22
(3.9)

13.59
(1.41)

43

SSSC(6)
48.49
(2.75)

79.06
(1.63)

30.41
(2.04)

259

Table 6: Additional Results on MNIST
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Main result: If there exist constants c1 ∈ (0, g1], c2 ∈ (0, 1) and c3 > 0 such that∑d
i=1 ri ≥ c1d,

∑d
i=1 si∑d
i=1 ri

≤ c2 and c3d > g1, then we have

ε1 ≥
(1− c2)

√
d

2
√

(c1+c3)g1
c21

+
√

4(c1+c3)g1
c21

+ 2
c1

.

Proof Note that

ε1 =
1−

∑d
i=1 si∑d
i=1 ri

2

√ ∑d
i=1 r

2
i

(
∑d
i=1 ri)

2
+

√
4
∑d
i=1 r

2
i

(
∑d
i=1 ri)

2
+ 2∑d

i=1 ri

. (38)

Define f : V → R, where f(v) =
∑d
i=1 v

2
i

(
∑d
i=1 vi)

2
, and V = {v ∈ [0, g1]

d :
∑d

i=1 vi =
∑d

i=1 ri}.
Consider the following r∗ ∈ V

r∗i =


g1, if i ≤ b

∑d
i=1 ri
g1
c,∑d

i=1 ri − b
∑d
i=1 ri
g1
c · g1, i = b

∑d
i=1 ri
g1
c+ 1,

0, otherwise.

We will prove by contradiction that any maximizer of f(·) is a permutation of r∗.
In fact, assume r′ ∈ V also maximizes f(·) but is not a permutation of r∗. Assume there

are m terms in {r′i}di=1 that are equal to g1. Let r′1 ≤ r′2 be the two smallest positive terms
of {r′i}di=1. It is straightforward to see r′2 < g1. Consequently, we can find a constant δ > 0
such that r′1 − δ, r′2 + δ ∈ (0, g1). Note r′′ = [r′1 − δ, r′2 + δ, r′3, ..., r

′
d] ∈ V, but f(r′′) > f(r′),

which is a contradiction.
Note that r ∈ V, we plug r∗ into f(·) and get

f(r) =

∑d
i=1 r

2
i

(
∑d

i=1 ri)
2
≤

(
∑d
i=1 ri
g1

+ 1)g21

(
∑d

i=1 ri)
2
≤

( c1dg1 + 1)g21

(c1d)2
≤ (c1 + c3)g1

c21d
.

Finally, from the inequality above and (38) we have

ε1 ≥
1− c2

2
√

(c1+c3)g1
c21d

+
√

4(c1+c3)g1
c21d

+ 2
c1d

=
(1− c2)

√
d

2
√

(c1+c3)g1
c21

+
√

4(c1+c3)g1
c21

+ 2
c1

.
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