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Abstract
This paper presents new deviation inequalities that are valid uniformly in time under adaptive
sampling in a multi-armed bandit model. The deviations are measured using the Kullback-Leibler
divergence in a given one-dimensional exponential family, and take into account multiple arms at a
time. They are obtained by constructing for each arm a mixture martingale based on a hierarchical
prior, and by multiplying those martingales. Our deviation inequalities allow us to analyze stopping
rules based on generalized likelihood ratios for a large class of sequential identification problems.
We establish asymptotic optimality of sequential tests generalising the track-and-stop method to
problems beyond best arm identification. We further derive sharper stopping thresholds, where the
number of arms is replaced by the newly introduced pure exploration problem rank. We construct
tight confidence intervals for linear functions and minima/maxima of the vector of arm means.
Keywords: mixture methods, test martingales, multi-armed bandits, best arm identification,
adaptive sequential testing

1. Introduction

We are interested in making decisions under uncertainty in its myriad forms, including sequential
allocation and hypothesis testing problems. In this paper our goal is the design of tight confidence
regions that are valid uniformly in time, as well as the design of efficient stopping rules for a large
class of sequential tests.

We will develop our results in the standard multi-armed bandit model with K independent
one-dimensional exponential family arms that are parameterised by their means µ = (µ1, . . . , µK).
In this setup, samples X1, X2 . . . are sequentially gathered from the different arms: Xt is drawn
from the distribution that has mean µAt where At ∈ {1, . . . ,K} is the arm selected at round t. Our
techniques all make use of self-normalised sums, which are defined after t rounds by∑

a∈S
Na(t)d(µ̂a(t), µa). (1)

Here S is a subset of the arms {1, . . . ,K}, Na(t) is the random number of observations from arm
a, µ̂a(t) is the empirical mean of these observations after t rounds, and d(µ, λ) ≥ 0 is the relative
entropy (Kullback-Leibler divergence) from the exponential family distribution with mean µ to that
with mean λ. The more the empirical means of arms in S deviate from the true means, the larger
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the self-normalised sum. We call the summands self-normalised as they are KL-based analogues
of the (squared) t-statistic. Namely, a second-order Taylor expansion in µ around µ̂(t) reveals that
N(t)d(µ̂(t), µ) ≈ N(t) (µ̂(t)−µ)2

2V(µ̂(t)) , where V(µ) is the variance of the model with mean µ. One of the
reasons why self-normalized sums show up in different sequential learning problems is their relation
to (generalized) log likelihood ratio statistics. For example, it can be shown that

ln
`(X1, . . . , Xt; µ̂(t))

`(X1, . . . , Xt;µ)
=

K∑
a=1

Na(t)d(µ̂a(t), µa)

where `(X1, . . . , Xt;λ) is the likelihood of the observations under a bandit model whose vector of
means is λ and µ̂(t) = (µ̂1(t), . . . , µ̂K(t)).

The proposed analyses of the sequential procedures discussed in this paper all rely on a tight
control of the deviations of self-normalized sums of the form (1), which inform us about possible
values of the means. Our first contribution is the construction of explicit calibration functions
C(x) = x + o(x) for which, under any sampling rule (effecting the Na(t) sampling counts), any
bandit model µ and any confidence δ ∈ (0, 1), the self-normalised sum associated to any subset of
arms S satisfies

Pµ

(
∃t ∈ N :

∑
a∈S

[
Na(t)d(µ̂a(t), µa)−O(ln lnNa(t))

]
≥ |S|C

(
ln 1

δ

|S|

))
≤ δ. (2)

The salient features of this result are that it is uniform in time, exploits the information geometry
(KL) intrinsic to the exponential family (rather than relying on non-parametric relaxations including
sub-Gaussianity), and, more importantly, it generalises confidence ellipses by combining in the strong
summation sense the evidence from multiple arms. Furthermore, as we develop inequalities that hold
for any subset S, at the moderate price of a weighted union bound we may apply the bound to any
arbitrary (random) subset of the arms, and thereby control the model-selection trade off between the
amount of evidence on the left and the magnitude of the threshold on the right.

We may recognise two well-known statistical effects (i.e. fundamental barriers) in the form
of the bound (2). First, the Law of the Iterated Logarithm informs us that, in the Gaussian
case, lim supNa(t)→∞

Na(t)d(µ̂a(t),µa)
ln lnNa(t) = lim supNa(t)→∞

Na(t)(µ̂a(t)−µa)2

ln lnNa(t) is a universal constant
a.s., whence the correction in the sum. Moreover, it follows from the Wilks phenomenon (Wilks,
1938), which gives the limit distribution of Generalized Likelihood Ratio statistics, that, when
S = {1, . . . ,K}, twice the self-normalised sum (1) converges in distribution to a χ2

K distribu-
tion. The K degrees of freedom are reflected in the perspective scaling of the threshold to which∑K

a=1Na(t)d(µ̂a(t), µa) is compared in (2).
The formal statement of our concentration inequalities is given in Section 3, in which we prove a

general result that holds for any exponential family (Theorem 7) and state two improved results for
Gaussian and Gamma distributions (Theorems 9 and 10 respectively). We now compare our results
to previous work and explain why measuring deviations over multiple arms simultaneously is crucial
for applications to sequential learning, which we discuss in Sections 4 to 6.

1.1 Novelty of our Concentration Results

Due to the sequential nature of the data collection process, the analysis of virtually any bandit algo-
rithm relies on deviation inequalities that can take into account the random number of observations
from each arm. Several such inequalities have thus been developed in this literature and beyond.
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However, most of these results measure deviations for one arm only, which can be rephrased in
the form of the following time-uniform deviation inequality

Pµ
(
∃t ∈ N : td(µ̂t, µ)−O(f(t)) ≥ C

(
ln

1

δ

))
≤ δ, (3)

where µ̂t is the empirical average of t i.i.d. observations with mean µ in a one-parameter exponential
family and f(t) = ln(t) or ln ln(t).1 Further, the majority of existing inequalities were obtained
for Gaussian (or sub-Gaussian) distributions with thresholds featuring f(t) = ln(t) (e.g. de la Peña
et al., 2004; Maillard, 2019) or f(t) = ln ln(t) (Robbins, 1970; Jamieson et al., 2014; Kaufmann
et al., 2016; Zhao et al., 2016; Howard et al., 2018). For other one-dimensional exponential families,
time-uniform deviation inequalities with f(t) = ln(t) have been stated for Bernoulli (Lai, 1976;
Jonsson et al., 2020) and Gamma distributions (Lai, 1976). Lai (1976) also provides a generic recipe
for general one-parameter exponential families, but that leads to intractable thresholds. On the
contrary, our Theorem 7 applied to |S| = 1 leads to an explicit inequality of the form (3) for any
exponential family, with a scaling in f(t) = ln ln(t). The closest existing result is that of Garivier
and Cappé (2011), which controls the deviations uniformly for t in a finite time range {1, . . . , n}.

To the best of our knowledge, the only prior result that controls deviations over multiple arms
simultaneously is Theorem 2 of Magureanu et al. (2014), which also bounds deviations for t in a
finite time range {1, . . . , n}. We provide a detailed comparison with this result in Section 3, showing
that our Theorem 7 leads to tighter thresholds, which are furthermore valid for the entire time range
t ∈ N. Given the large number of results that are available for |S| = 1, a natural question is whether
inequalities like (3) for different arms can be combined to obtain an inequality like (2). There
is no straightforward way to do so and obtain the right scaling in δ: using a naive union bound
leads to an inequality of the form (2) in which the right-hand side is |S|C(ln(1/δ)) ' |S| ln(1/δ)
instead of |S|C(ln(1/δ)/|S|) ' ln(1/δ). Hence, specific techniques are needed to propose deviation
inequalities that sum evidence across arms, which we provide.

In this work we obtain essentially tight calibration functions by building suitable martingales.
We show that a calibration function C satisfying (2) can be obtained by exhibiting a martingale that
multiplicatively dominates exp (λ [Na(t)d(µ̂a(t), µa)−O(ln lnNa(t))]) for a suitable λ ∈ (0, 1).
This central assumption to derive deviation inequalities that sum evidence across arms is formalized
in Section 2. Our results are then obtained by leveraging some particular martingales called mixture
martingales that have this property, which are defined in Section 2.3.

Using martingales to obtain time-uniform inequalities is an old idea that can be traced back to
Ville (1939) and all the concentration results quoted above also rely on martingales. We refer the
reader to the recent survey of Howard et al. (2020) who study in great detail the power of elementary
martingales for deriving time-uniform inequalities, yet without the particular focus on exponential
families or multiple arms that we adopt here. Two important techniques based on martingales are
the use of a peeling trick (see, e.g. Cappé et al. 2013) or the “method of mixtures” that has been
popularized by de la Peña et al. (2004, 2009), and is sometimes also referred to as the Laplace
method (Maillard, 2019). We refer the reader to the discussion in Section 2.3 for examples of use of
mixture martingales. Our results rely on new constructions of mixture martingales that are tailored

1. Some existing results rather upper bound the probability that |µ̂t − µ| exceeds some threshold. For one-parameter
exponential families, we think that it is more natural to measure deviations with the KL-divergence function as the
Cramér-Chernoff inequality for such distributions can be expressed as P(td(µ̂t, µ) > ln(1/δ), µ̂t > µ) ≤ δ. This
form is also more convenient for measuring deviations for multiple arms, which is supported by our new inequalities.
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for exponential families. Interestingly, we note that the result of Magureanu et al. (2014) is not based
on mixture martingales: its proof relies on a peeling technique which requires the knowledge of n,
and a stochastic dominance argument. Our proof technique based on mixture martingales is more
flexible as it allows to easily bound deviations uniformly over the entire domain t ∈ N, which is
crucial for the analysis of sequential tests that involve random stopping.

1.2 Applications to Sequential Learning

In this section we give more context, review our contribution, and illustrate its advantage on a simple
example.

1.2.1 RELATED WORK ON BANDITS

Stochastic multi-armed bandit models can be traced back to the work of Thompson (1933) motivated
by clinical trials. They were later studied by Robbins (1952); Lai and Robbins (1985) who introduced
the regret minimization objective: the samples X1, . . . , Xt are seen as rewards and the goal is to find
a sequential strategy to maximize the (expected) cumulated reward, which is equivalent to minimizing
some notion of regret (see e.g. Bubeck and Cesa-Bianchi, 2012; Lattimore and Szepesvari, 2019, for
surveys).

In the meantime, pure-exploration problems in bandit models have also received increased
attention (Even-Dar et al., 2006; Bubeck et al., 2011). In this context, a common objective is to
identify as quickly and accurately as possible the arm with the largest mean, relinquishing the
incentive to maximize the sum of rewards. In the fixed-confidence setting, the minimal number
of samples needed to identify the best arm with accuracy larger than 1 − δ when arms belong to
a one-dimensional family has been identified by Garivier and Kaufmann (2016), in a regime of
small values of δ. Their Track-and-Stop algorithm is shown to asymptotically match this optimal
sample complexity. Extensions of this best arm identification problem in which one should answer
quickly and accurately some more general query about the means of the arms have also been studied
(Huang et al., 2017; Chen et al., 2017). Prototypical queries beyond Best Arm include Top-M
(Kalyanakrishnan and Stone, 2010), Thresholding (Locatelli et al., 2016), Minimum Threshold
(Kaufmann et al., 2018), Combinatorial Bandits (Chen et al., 2014), pure-strategy Nash equilibria
(Zhou et al., 2017) or Monte-Carlo Tree Search (Teraoka et al., 2014). We note that Track-and-Stop
has recently been generalized by Juneja and Krishnasamy (2019) to a generic “partition identification”
problem similar to the one that we consider in Section 4, while Degenne and Koolen (2019) have
studied its extension to queries with multiple correct answers. Finally, recent research has also focused
on developing alternatives to Track-and-Stop that are more efficient numerically, like Degenne et al.
(2019) who develop algorithms based on iterative saddle point solving.

1.2.2 OUR CONTRIBUTIONS

The first impact of our concentration results is that they permit to analyse new stopping rules based
on Generalized Likelihood Ratios, which extend the stopping rule originally proposed for Track-
and-Stop (Garivier and Kaufmann, 2016) to generic sequential identification problems. Our generic
stopping rule is presented in Section 4, in which we further show that under some assumptions
on the identification problem itself, such a stopping rule combined with a suitable sampling rule
is (asymptotically) optimal in terms of sample complexity. We then provide in Section 5 refined
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stopping criteria for some particular tests that replace the number of arms K in the threshold by a
new notion of rank.

Next, we explain in Section 6 how our deviation inequalities can be used to build tight confidence
regions on (functions of) the unknown parameter µ. Indeed, the sum form of the left-hand quantity
in (2) allows us to build confidence regions that exclude the configuration of all (many) empirical
estimates µ̂a(t) being far from their means µa simultaneously. We show how this effect yields
improved confidence intervals for functions of the mean µ in the cases of linear functions and
minima. In concrete examples, we can quantify the benefit precisely.

1.2.3 ILLUSTRATION OF THE BENEFIT OF (2) ON A SIMPLE EXAMPLE

A common task in sequential learning is to construct a confidence interval on the difference µ1 − µ2

in mean between two arms, for example to decide whether µ1 can plausibly be higher than µ2 in a
best arm identification scenario. We now quantify the benefit of using the self-normalized sum (2)
compared to the classical approach of combining per-arm intervals using the union bound, with an
illustration provided in Figure 1.

For maximum interpretability, we instantiate (2) for Gaussian arms with variance 1 (so that
d(x, y) = (x− y)2/2), we ignore the ln ln terms, and we approximate KC(ln 1

δ/K) ≈ ln 1
δ . Then

if we follow the classical per-arm approach, we obtain a confidence interval on µa for each arm
a separately using (2) (which now reduces to the standard Chernoff bound), combine these into a
rectangular confidence region on the pair (µ1, µ2) using the union bound over arms (called “Box” in
Figure 1), and work out what we know about the difference µ1 − µ2 by projecting. Doing so, we

obtain a confidence interval on µ1 − µ2 that has diameter
√

8 ln 2
δ

(√
1

Na(t) +
√

1
Nb(t)

)
. In contrast,

the self-normalised sum of 2 arms directly provides a confidence ellipse on the pair (µ1, µ2) (called
“Sum” in Figure 1), and projecting that to the difference µ1 − µ2 yields a tighter interval of diameter√

8 ln 1
δ

(
1

Na(t) + 1
Nb(t)

)
. The advantage of the second approach can be up to a factor

√
2, which

occurs for equal sample sizes Na(t) = Nb(t). In typical adaptive stopping problems, a reduction by√
2 in confidence width leads to an improvement by a factor 2 of the sample complexity.

In Section 6.1, we quantify the obtained improvement for the more general task of building a
confidence interval on a linear function vᵀµ of the means µ ∈ RK , which can be as large as

√
K.

2. Martingales and Deviation Inequalities for Exponential Family Bandit Models

In this section, we formally introduce the stochastic processes for which we want to obtain deviation
inequalities. We then present a general method for obtaining deviation inequalities for any such
stochastic process. It relies on the crucial assumption that one can find martingales multiplicatively
dominating exponential transforms of the process. We further introduce the general class of martin-
gales that we shall exhibit in order to obtain the particular deviation results of this paper, namely
mixture martingales.

2.1 Exponential Family Bandit Models

A one-parameter canonical exponential family is a class P of probability distributions characterized
by a set Θ ⊂ R of natural parameters, a strictly convex and twice-differentiable function b : Θ→ R
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(a) Confidence region for µ
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(b) Confidence interval for the difference µ1 − µ2 obtained by
projecting confidence regions for µ. The dashed grey help lines
connect points of equal difference µ1 − µ2. The largest and
smallest values for the difference are obtained by squeezing the
confidence interval between diagonal tangents (solid lines). We
see that the confidence width, which is the distance between the
intercepts, is strictly larger for Box than for Sum: the rounded
nature of Sum provides tighter control on the difference.

Figure 1: Visual two-arm comparison of confidence regions for µ and the implied confidence interval
for the difference µ1 − µ2. A union bound over traditional per-arm confidence intervals gives the
“Box” region. Our new bound (2) results in a confidence region of the egg-shape marked “Sum”.

(called the log-partition function) and a reference measure m. It is defined as

P =
{
νθ, θ ∈ Θ : νθ has density fθ(x) = exθ−b(θ) with respect to m

}
.

Example of exponential families include the set of Bernoulli distribution, Poisson distributions,
Gaussian distribution with known variance or Gamma distributions with known shape parameter.
For any exponential family P it can be shown that the mean µ(θ) of the distribution νθ satisfies
µ(θ) = ḃ(θ). Observe that µ is a strictly increasing function of the natural parameter θ, hence
distributions in P can be alternatively parameterized by their means.

We adopt this parameterization in this paper. Letting I := ḃ(Θ) be the set of possible mean
parameters, for all µ ∈ I we define νµ to be the distribution in P that has mean µ. We also define
the Kullback-Leibler divergence between two distributions in P as a function of their means by

d(µ, µ′) := KL
(
νµ, νµ

′
)

=

∫
ln
fḃ−1(µ)(x)

fḃ−1(µ′)(x)
fḃ−1(µ)(x) dm(x).

This divergence function has a closed form expression in the classical exponential families mentioned
above. For example for Gaussian distribution with variance σ2 one has d(µ, µ′) = (µ− µ′)2/(2σ2)
and for Bernoulli distributions d(µ, µ′) = µ ln(µ/µ′) + (1 − µ) ln((1 − µ)/(1 − µ′)). Further
examples can be found in Cappé et al. (2013).

An exponential family bandit model is a sequence of K probability distributions νµ1 , . . . , νµK

that belong to some one-dimensional canonical exponential family P : it can be fully parametrized by
the vector of means µ = (µ1, . . . , µK) ∈ IK . In a bandit model, data is collected sequentially: an
arm At is selected at round t and a sample Xt from the distribution νµAt is observed. We denote
by Na(t) =

∑t
s=1 1(As=a) the number of selections of arm a in the first t rounds and Sa(t) =
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∑t
s=1Xs1(As=a) the sum of these observations. The empirical mean of the observations obtained

from arm a up to round t is therefore defined as µ̂a(t) = Sa(t)/Na(t) once Na(t) 6= 0. We let
Ft = σ(A1, X1, . . . , At, Xt) be the filtration generated by the observations gathered within the first t
rounds and assume the sampling rule is such that At is mesurable with respect to σ(Ft−1, Ut) where
Ut is a uniform random variable that is independent from Ft−1 (allowing randomized algorithms).

In this paper, our objective is to prove time-uniform deviation inequalities for sums involving the
terms Na(t)d(µ̂a(t), µa) (or some one-sided versions of these). The price for uniformity in time will
be some ln ln(Na(t)) term and we shall for example obtain deviation inequalities for sums of the
entries of a stochastic processX(t) = {Xa(t)}Ka=1 of the form

Xa(t) = Na(t)d(µ̂a(t), µa)− c ln(d+ lnNa(t)) (4)

for some constants c and d. We now describe a general method to obtain time-uniform deviation
inequalities for any arm-dependent stochastic processX(t).

2.2 A General Method for Obtaining Deviation Inequalities

Let X(t) = {Xa(t)}Ka=1 be a stochastic process indexed by arms. Here we introduce a central
assumption under which it is easy to obtain deviation inequalities for sums of the entries of X(t)
by combining Ville’s inequality for martingales with the Cramér-Chernoff method. For this reason,
we call such processes g-VCC (in reference to the Ville-Cramér-Chernoff trio). We will also follow
Shafer et al. (2011) in calling any non-negative martingale M(t) ≥ 0 of unit initial value M(0) = 1
a test martingale.

Definition 1 Let g : Λ → R be a function defined on a non-empty interval Λ ⊆ R. A stochastic
processX(t) = {Xa(t)}Ka=1 is called g-VCC if it satisfies the following properties.

1. For any arm a and λ ∈ Λ there exists a test martingale Mλ
a (t) such that

∀t ∈ N, Mλ
a (t) ≥ eλXa(t)−g(λ). (∗)

2. For any subset S ⊆ {1, . . . ,K} and for any λ ∈ Λ, the product
∏
a∈SM

λ
a (t) is a martingale.

We note that the independent work of Howard et al. (2020) also presents a general method
based on the Cramér-Chernoff method to derive time-uniform concentration inequalities. The
authors propose deviation inequalities for a two-dimensional stochastic processes (St, Vt) under
an assumption that bears similarities with (∗): exp(λSt − φ(λ)Vt) has to be upper bounded by a
martingale, for a known function φ and for all λ in a certain range. Yet the proposed applications
of these two general methods differ, in particular there is no emphasis on measuring deviations for
multiple arms in the work of Howard et al. (2020).

Remark 2 To calibrate what to expect for g, we can use knowledge of the asymptotic distribution
of the Xa(t) given in (4). In our applications, Wilks’ phenomenon (see de la Peña et al., 2009,
Chapter 17) tells us that 2Xa(t) is asymptotically (for Na(t)→∞) χ2 distributed when c = 0 in
(4). For 2Y ∼ χ2, we have E[eλY ] = (1− λ)−1/2. This strongly suggests (and this is what we will
find) that g(λ) should be at least 1

2 ln(1− λ), plus a mild additional cost for uniformity in time. For
this reason we will refer to gχ2(λ) = 1

2 ln(1− λ) as the “ideal function”.
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For a g-VCC stochastic processX(t) = {Xa(t)}Ka=1, we provide a general deviation inequality
for the sum of the entries Xa(t) over any subset of arms. The threshold is related to the function g
through the following quantities.

Definition 3 For g : Λ→ R+, we define for all x > 0,

Cg(x) := min
λ∈Λ

g(λ) + x

λ
.

We also define the convex conjugate of g, g∗(x) := maxλ∈Λ (λx− g(λ)).

With these functions in hand, we can now state our g-VCC deviation inequality.

Lemma 4 Fix S ⊆ {1, . . . ,K}. LetX(t) = {Xa(t)}Ka=1 be a g-VCC stochastic process. Then

∀x > 0, P

(
∃t ∈ N :

∑
a∈S

Xa(t) ≥ |S|Cg
(
x

|S|

))
≤ e−x,

∀u > 0, P

(
∃t ∈ N :

∑
a∈S

Xa(t) > u

)
≤ exp

(
−|S|g∗

(
u

|S|

))
.

Proof Fix λ ∈ Λ. AsX(t) is g-VCC (see Definition 1), we find

P

(
∃t ∈ N :

∑
a∈S

Xa(t) > u

)
= P

(
∃t ∈ N : eλ[

∑
a∈S Xa(t)] > eλu

)
≤ P

(
∃t ∈ N :

∏
a∈S

Mλ
a (t) > eλu−|S|g(λ)

)
.

As
∏
a∈SM

λ
a (t) is a test martingale, it follows from Ville’s inequality (P(∃t ∈ N∗ : M(t) ≥ 1/x) ≤

x for any non-negative super-martingale starting from E[M(0)] = 1 and any x ∈ (0, 1], Ville 1939)
that

P

(
∃t ∈ N :

∑
a∈S

Xa(t) > u

)
≤ e−[λu−|S|g(λ)] (5)

Equivalently, one can also establish that for all x > 0, for all λ ∈ Λ,

P

(
∃t ∈ N :

∑
a∈S

Xa(t) >
|S|g(λ) + x

λ

)
≤ e−x (6)

Picking the best possible λ in (6) yields the first inequality in Lemma 4 while picking the best
possible λ in (5) yields the second inequality.

The deviation inequalities given in Lemma 4 are either expressed in terms of the threshold
function Cg or in terms of the convex conjugate g∗. Depending on g, one of these two quantities
might be easier to compute that the other one. Note that if g∗ is well-behaved, the threshold function
can be obtained by inverting g∗, as stated below.
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Proposition 5 Assume g∗ is increasing. For all u ∈ g∗(R+), Cg(u) = (g∗)−1(u).

Proof As g∗ is increasing on R+, the inverse function (g∗)−1 is well defined on I := g∗(R+). From
the definitions of Cg and g∗, it is easy to check that

∀x > 0, g∗(Cg(x)) ≥ x and Cg(g∗(x)) ≤ x.

These two inequalities respectively yield that for all u ∈ I, (g∗)−1(u) ≤ Cg(u) and Cg(u) ≤
(g∗)−1(u), which concludes the proof.

2.3 Mixture Martingales

Introducing the cumulant generating function φµ(η) := lnEX∼νµ
[
eηX

]
for all µ ∈ I, it holds for

all η ∈ R that
Zηa (t) := exp (ηSa(t)− φµa(η)Na(t)) (7)

is a test martingale with respect to the filtration Ft, for any sampling rule. Indeed, when At = a
we have E [Zηa (t)|At,Ft−1] = Zηa (t − 1)E

[
eηXt−φµa (η)

∣∣At,Ft−1

]
= Zηa (t − 1), and the same

trivially holds when At 6= a. So by the tower rule E [Zηa (t)|Ft−1] = E [E [Zηa (t)|At,Ft−1]|Ft−1] =
Zηa (t− 1). More generally, for any probability distribution π on η, the mixture martingale

Zπa (t) :=

∫
Zηa (t) dπ(η) (8)

is also a test martingale, as can be seen by applying Tonelli’s theorem

E [Zπa (t)|At,Ft−1] =

∫
E [Zηa (t)|At,Ft−1]︸ ︷︷ ︸

=Zηa (t−1)

dπ(η) = Zπa (t− 1).

Finally, given a family of priors π = {πa}Ka=1, the product martingale ZπS (t) :=
∏
a∈S Z

πa
a (t) is

also a test martingale with respect to Ft, for any subset S. Namely, when At ∈ S we have

E [ZπS (t)|At,Ft−1] = ZπS\{At}(t− 1)E
[
Z
πAt
At

(t)
∣∣∣At,Ft−1

]
︸ ︷︷ ︸

=Z
πAt
At

(t−1)

= ZπS (t− 1),

and the same result holds trivially when At /∈ S . The martingale property follows by the tower rule.
Hence, a sufficient condition to establish that a stochastic processX(t) is g-VCC is to exhibit for all
λ ∈ Λ a family of priors πa,λ such that Mλ

a (t) := Z
πa,λ
a (t) satisfies (∗). This is how we proceed in

the next sections.

2.3.1 EXAMPLE OF MIXTURE MARTINGALES

Among the first occurrence of such mixture martingales, one can mention the works of Darling
and Robbins (1968); Robbins (1970) which consider the martingale

∫
exp

(
ηSt − η2σ2

2 t
)

dπ(η)

where St is a sum of t i.i.d. standard Gaussian random variables and π is a Gaussian prior. This
martingale coincides with our Zπa (t) for a single standard Gaussian arm a. The choice of Gaussian

9
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prior π results in a threshold growing like
√
t ln t. We use different priors, which asymptote at η = 0,

to obtain a deviation inequality for St that is uniform in time and compatible with the Law of the
Iterated Logarithm: St is compared to a threshold that grows like

√
2t ln ln(t).

More broadly, the term mixture martingale can refer to any martingale of the form
∫
Mη(t)dπ(η)

where Mη(t) is some martingale (not necessarily Za(t)) and π is some probability distribution (that
we call the prior). For example the likelihood ratio martingales introduces by Lai (1976) are of
this form. Mixture martingale constructions are also at the heart of the game-theoretic approach
to probability (Dawid and Vovk, 1999). The “method of mixtures” has then been popularized by
de la Peña et al. (2004, 2009) who use it to prove self-normalized deviation inequalities for general
stochastic processes. Examples of its use include the work of Abbasi-Yadkori et al. (2011) who
propose a self-normalized deviation inequality for a vector-valued martingale applied to the linear
bandit problem or that of Balsubramani (2015) who derive time-uniform Hoeffding or Bernstein
deviation inequalities. Most of these works present mixture martingales with specific choices of
continuous priors for which the corresponding mixture can be either computed in closed form or
well-approximated. In this paper, we will rely on priors constructed in hierarchical fashion from
discrete and continuous ingredients with the goal of obtaining explicit near-optimal thresholds.

3. New Deviation Inequalities for Exponential Families

In this section, we first provide a general deviation result that holds for any one-dimensional
exponential family and can also accommodate one-sided deviations (Theorem 7). Next, we present
in Section 3.2 tighter deviation inequalities that measure two-sided deviations for the special cases of
Gaussian and Gamma distributions. The two sets of results rely on proving that a stochastic process
is g-VCC for certain functions g, which we do by constructing appropriate mixture martingales based
on hierarchical priors in Section 3.4.

3.1 Main Result

To state our result, we introduce one-sided versions of the Kullback-Leibler divergence, namely
d+(u, v) = d(u, v)1(u≤v) and d−(u, v) = d(u, v)1(u≥v). We further introduce the notation

Ya(t) := [Na(t)d(µ̂a(t), µa)− 3 ln(1 + ln(Na(t))]
+

Y −a (t) := [Na(t)d
−(µ̂a(t), µa)− 3 ln(1 + ln(Na(t))]

+

Y +
a (t) := [Na(t)d

+(µ̂a(t), µa)− 3 ln(1 + ln(Na(t))]
+

and letX(t) = {Xa(t)}Ka=1 be a stochastic process such that, for all a, either ∀t,Xa(t) = Ya(t) (for
two-sided deviations) or ∀t,Xa(t) = Y +

a (t) or ∀t,Xa(t) = Y −a (t) (for one-sided deviations).

Remark 6 We use as our correction function 3 ln(1 + lnNa(t)), which is vacuous when Na(t) = 0
because lnNa(t) = −∞. Most algorithms for bandits avoid considering this situation, and start
by pulling all arms once. In some scenarios, especially with many arms, it may be desirable to
include the case Na(t) = 0. There is no essential bottleneck, and one could adjust the analysis to,
for example, replace it by 3 ln(1 + ln(1 +Na(t))).

We provide in Theorem 7 below a new self-normalized deviation inequality featuring a calibration
function Cexp. To give the expression of Cexp, we need to introduce two functions. First for u ≥ 1 the

10
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function h(u) = u− lnu and its inverse h−1(u). Secondly, the function defined for any z ∈ [1, e]
and x ≥ 0 by

h̃z(x) =

{
e1/h−1(x)h−1(x) if x ≥ h(1/ ln z),
z(x− ln ln z) otherwise.

(9)

Theorem 7 Let Cexp : R+ → R+ be the function defined by

Cexp(x) = 2h̃3/2

(
h−1(1 + x) + ln(2ζ(2))

2

)
(10)

where ζ(s) =
∑∞

n=1 n
−s. For S a subset of arms and x > 0,

P

(
∃t ∈ N :

∑
a∈S

Xa(t) ≥ |S|Cexp

(
x

|S|

))
≤ e−x.

Moreover, if Xa(t) measures only one-sided deviation (that is for all a, Xa = Y +
a or Xa = Y −a ), the

calibration function can be replaced by the smaller C̃exp(x) = 2h̃3/2

(
h−1(1+x)+ln(ζ(2))

2

)
.

As can be seen in the proof given in Section 3.4, this result follows by exhibiting a family of
functions gξ such thatX(t) is gξ-VCC, applying Lemma 4 and then optimizing the parameters to
obtain the best possible calibration function. Proposition 8 below (proved in Appendix A) gives a
tight bound on the inverse function h−1, which yields an upper bound on the calibration function
Cexp. On can easily see that Cexp(x) ∼ x when x tends to infinity. For x ≥ 5, a good approximation
of the threshold is Cexp(x) ' x+ 4 ln(1 + x+

√
2x), which is slightly larger than the approximation

' x+ ln(x) that is added for comparison to Figure 2.

Proposition 8 The function h is increasing on [1,+∞[ and its inverse function, defined on [1,+∞[,
satisfies h−1(x) = −W−1(−e−x) with W−1 the negative branch of the Lambert function. Moreover,

∀x ≥ 1, h−1(x) ≤ x+ ln(x+
√

2(x− 1)).

3.2 Refined Results for Gaussian and Gamma Distribution

For Gaussian and Gamma distributions, a different martingale construction, explained in detail in
Appendix C, permits to establish the following results.

In a bandit model with Gaussian arms with means µa and known variance σ2, the associated
divergence is d(µ, µ′) = (µ−µ′)2

2σ2 and one can prove the following theorem.

Theorem 9 In a Gaussian bandit model, introducing for all a the processXa(t) = Na(t)d(µ̂a(t), µa)−
2 ln(4 + lnNa(t)), the stochastic processX(t) is gG-VCC where

gG :]1/2, 1] −→ R
λ 7→ 2λ− 2λ ln (4λ) + ln ζ(2λ)− 1

2 ln (1− λ) .

Hence, letting CG := CgG , it follows from Lemma 4 that for every subset S and x > 0,

P

(
∃t ∈ N :

∑
a∈S

[Na(t)d (µ̂a(t), µa)− 2 ln(4 + lnNa(t))] ≥ |S|CG

(
x

|S|

))
≤ e−x.

11
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In a bandit model with arms that are Gamma distributed with means µa and known shape
parameter α, the associated divergence is d(µ, µ′) = α

(
µ
µ′ − 1− ln µ

µ′

)
and one can prove the

following theorem.

Theorem 10 In a Gamma bandit model, introducing for all a the processXa(t) = Na(t)d(µ̂a(t), µa)−
2 ln(4 + lnNa(t)), the stochastic processX(t) is gΓ-VCC where

gΓ :]1/2, 1] −→ R
λ 7→ 2λ− 2λ ln (4λ) + ln ζ(2λ)− ln (1− λ) .

Hence, letting CΓ := CgΓ , it follows from Lemma 4 that for every subset S and x > 0,

P

(
∃t ∈ N :

∑
a∈S

[Na(t)d (µ̂a(t), µa)− 2 ln(4 + lnNa(t))] ≥ |S|CΓ

(
x

|S|

))
≤ e−x.

3.3 Discussion

The three deviation inequalities given Theorems 7, 9 and 10 all provide a control of the two-sided
deviations of the empirical means from the true means, of the form

P

(
∃t ∈ N :

∑
a∈S

Na(t)d(µ̂a(t), µa) >
∑
a∈S

c ln(d+ ln(Na(t))) + |S|C
(
x

|S|

))
≤ e−x

where c and d are two constants and C(x) is a calibration function. For Gaussian or Gamma
distributions one can use c = 2, d = 4 while c = 3, d = 1 apply for other one-dimensional
exponential families. A more crucial difference is the calibration function C, which can be set to CG
for Gaussian distributions, to CΓ for Gamma distributions and to Cexp in general.

Those three calibration functions are hard to compare at first as they have no closed-form ex-
pressions. Equation (10) provides an explicit expression for Cexp but that still requires to numerically
invert the function h, while CG and CΓ can be numerically approximated using Definition 3 which
requires to minimize a convex function. In Figure 2 we compare those three thresholds to the “ideal”
calibration function Cgχ2 where gχ2(λ) = −1

2 ln(1 − λ) (see Remark 2). We see that that this
idealized calibration satisfies Cgχ2 (x) ' x+ ln(x) and that the calibration functions obtained for
Gaussian and Gamma distributions are very close to it. The function Cexp seems to be off by an
additive term of order 10.

Despite this slightly larger calibration function, the general result of Theorem 7 is interesting
for the following reasons. First, obviously it covers more distributions like Bernoulli and Poisson
distributions that are often relevant for applications of multi-armed bandits. Then, we noted that Theo-
rem 7 can be made tighter in case only one-sided deviations are measured (when Na(t)d

+(µ̂a(t), µa)
or Na(t)d

−(µ̂a(t), µa) are used): Cexp can be replaced by the slightly smaller threshold C̃exp. In
contrast, the construction presented in Appendix C cannot be easily adapted to obtain better results
for one-sided deviations for Gaussian or Gamma distributions. Finally, the presence of the positive
part in the definition of Ya(t)± leads to the following improved result holding uniformly over subsets:

P

(
∃t ∈ N : ∃S ′ ⊆ S,

∑
a∈S′

Na(t)d±(µ̂a(t), µa) >
∑
a∈S′

3 ln(1 + ln(Na(t))) + |S|Cexp

(
x

|S|

))
≤ e−x.

12



MIXTURE MARTINGALES REVISITED

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

5

0

5

10

15

20

25

30

C(
x)

C_{exp}
C_{Gamma}
C_{Gaussian}
Ideal calibration function
x + ln(x)

Figure 2: Several calibration functions C(x) as a function of x.

3.3.1 COMPARISON TO THE STATE-OF-THE-ART

To the best of our knowledge, the only available result that controls deviations over multiple arms
simultaneously is the one of Magureanu et al. (2014). More precisely, Theorem 2 in Magureanu et al.
(2014) can be rephrased as follows2, introducing the function f̃(u) = u− 2 ln(u) for u ≥ 2:

P

(
∃t ≤ n :

∑
a∈S

Na(t)d
+(µ̂a(t), µa) ≥ |S|f̃−1

(
1 + ln ln(n) +

x+ 1

|S|

))
≤ e−x. (11)

We note that here the deviations are uniform over a finite time range {1, . . . , n}. This style of
deviation inequalities can also be deduced from Theorem 7 for general exponential families:

P

(
∃t ≤ n :

∑
a∈S

Na(t)d
+(µ̂a(t), µa) ≥ 3|S| ln(1 + ln(n)) + |S|Cexp

(
x

|S|

))
≤ e−x, (12)

or from Theorem 9 and Theorem 10:

P

(
∃t ≤ n :

∑
a∈S

Na(t)d
+(µ̂a(t), µa) ≥ 2|S| ln(4 + ln(n)) + |S|C

(
x

|S|

))
≤ e−x, (13)

where C(x) = CG(x) for Gaussian distributions and C(x) = CΓ(x) Gamma distributions. In Figure 3,
we plot the thresholds (right-hand side of the deviation inequalities) featured in (11) and (12) for
different values of n, |S| and x, revealing that the threshold in (12) can be much smaller.

3.3.2 IMPROVED RESULT WHEN |S| = 1

Theorem 7 can be made slightly tighter for a subset of size 1 (see Appendix B.3) and we obtain, with
µ̂t the empirical mean of t observations from a distribution with mean µ in an exponential family,

P
(
∃t ∈ N : td (µ̂t, µ) ≥ 3 ln(1 + ln(t)) + 2h̃3/2

(
x+ ln(2ζ(2))

2

))
≤ e−x. (14)

2. The result only considers Bernoulli arms and S = [K], but their analysis can be easily extended to cover the more
general case of exponential families and any subset S

13
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Figure 3: Thresholds that follow from Theorem 7 and Theorem 9 compared to the threshold in (11)
obtained by Magureanu et al. (2014).

Albeit not our main focus, this result is interesting as it provides a deviation result in which the
threshold features a ln(ln(t)) term, which is known to be unavoidable in the Gaussian case due to
the Law of Iterated Logarithm. In the Gaussian (or sub-Gaussian) case, several results of this type
already exist (Robbins, 1970; Jamieson et al., 2014; Kaufmann et al., 2016; Zhao et al., 2016; Howard
et al., 2018) and we do not claim ours to be the tightest in general. Beyond Gaussian distribution,
(14) is the first result that controls deviations uniformly in t ∈ N for general exponential families and
with a threshold scaling in ln(ln(t)).

3.4 Sketch of Proofs

In this section, we provide a detailed proof of Theorem 7, leaving the proof of some intermediate
lemmas to Appendix B. The proofs of Theorem 9 and 10 are given in Appendix C, but we provide
below a high-level description of the martingale that is used for these results.

Proof of Theorem 7 Fix ξ > 0 and define for all λ ∈ [0, 1/(1 + ξ)),

gξ(λ) = λ(1 + ξ) ln (C(ξ))− ln(1− λ(1 + ξ)) with C(ξ) =
2ζ(2)

(ln(1 + ξ))2
.

14
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The proof hinges on the fact that for the stochastic processX , there exists a martingale satisfying (∗).

Lemma 11 For ξ ∈ [0, 1/2],X is gξ-VCC (see Definition 1).

As will be seen in the proof of Lemma 11, given shortly, in case the stochastic processX only
measures one-sided deviations, that is for all a either Xa(t) = Y −a (t) or Xa(t) = Y +

a (t), then C(ξ)
can be replaced by the smaller C(ξ) = ζ(2)/(ln(1 + ξ))2: the factor 2 that is removed corresponds
to picking a one-sided versus a two-sided prior and leads to the slightly smaller threshold C̃exp given
in the second statement of Theorem 7.

Using Lemma 4, we obtain the following deviation inequality expressed with the function Cgξ
associated to gξ (see Definition 3): for all ξ > 0, for all x > 0,

P

(
∃t ∈ N :

∑
a∈S

Xa(t) ≥ |S|Cgξ
(
x

|S|

))
≤ e−x.

Recalling that Cgξ(x) = minλ∈[0,1/(1+ξ))
x+gξ(λ)

λ , the proof is completed by applying Lemma 12
below, proved in Appendix B.2, to compute the optimal tuning of ξ ∈ [0, 1/2].

Lemma 12 Let C(ξ) = 2ζ(2)
(ln(1+ξ))2 . Fix z ∈ [0, e− 1] and x ≥ 0. Then

inf
ξ∈[0,z]

λ∈[0,1/(1+ξ)]

x− ln (1− λ(1 + ξ))

λ
+ (1 + ξ) lnC(ξ) = 2h̃1+z

(
h−1 (1 + x) + ln (2ζ(2))

2

)
.

�
We now provide the proof of the crucial Lemma 11.

Proof of Lemma 11: building the martingale Lemma 13 below shows that the deviations of
Xa(t) can be related to the deviations of a well-chosen mixture martingale Zπa (t), where π has a
discrete support. The proof of Lemma 13 is given in Appendix B.

Lemma 13 (mixture martingales) Fix ξ ∈]0, 1/2[ and x > 0. There exists a (discrete) prior
π(x) = π(x, ξ) such that the corresponding mixture martingale (8), denoted by Zπ(x)

a (t), satisfies,
for all t ∈ N, {

Xa(t)− (1 + ξ) ln

(
2ζ(2)

(ln(1 + ξ))2

)
≥ x

}
⊆
{
Zπ(x)
a (t) ≥ e

x
1+ξ

}
.

If Xa(t) = Y +
a (t) or Xa(t) = Y −a (t), there exists a prior π(x) such that{

Xa(t)− (1 + ξ) ln

(
ζ(2)

(ln(1 + ξ))2

)
≥ x

}
⊆
{
Zπ(x)
a (t) ≥ e

x
1+ξ

}
. (15)

A consequence of Lemma 13 is that, for every z > 1, and every λ > 0{
eλ(Xa(t)−(1+ξ) lnC(ξ)) ≥ z

}
⊆

{
Zπ(ln(z)/λ)
a (t) ≥ e

ln(z)
λ(1+ξ)

}
⊆

{
Zπ(ln(z)/λ)
a (t)e

− ln(z)
λ(1+ξ)︸ ︷︷ ︸

:=W z,λ
a (t)

≥ 1
}
,

15
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where W z,λ
a (t) is a martingale that satisfies E[W z,λ

a (0)] = e
− ln(z)
λ(1+ξ) and, due to the above inclusion,

W z,λ
a (t) ≥ 1(eλ(Xa(t)−(1+ξ) lnC(ξ))≥z). (16)

We now define another mixture martingale, for λ ∈
]
0, 1

1+ξ

[
:

W λ
a (t) = 1 +

∫ ∞
1

W z,λ
a (t)dz.

Using inequality (16) yields
W λ
a (t) ≥ eλ(Xa(t)−(1+ξ) lnC(ξ)).

Moreover, a direct computation shows that W λ
a (0) = 1

1−λ(1+ξ) . Finally defining

Mλ
a (t) = (1− λ(1 + ξ))W λ

a (t),

one has that Mλ
a (t) is a test martingale, i.e. E[Mλ

a (t)] = 1, that satisfies

Mλ
a (t) ≥ exp (λXa(t)− λ(1 + ξ) ln(C(ξ)) + ln(1− λ(1 + ξ)))

= exp (λXa(t)− gξ(λ)) ,

which concludes the proof. Note that if for all a, Xa(t) = Y ±a (t), using the tighter statement (15)
allows to replace the constant C(ξ) by the smaller value ζ(2)

(ln(1+ξ))2 .

Above, we are in essence building a test martingale of value Mt ≥ eλXt from test martingales
guaranteeing Zt ≥ ex1{Xt ≥ x}. The possibilities and limits of doing this are exactly characterised
by Dawid et al. (2011) in the process of characterising the so-called admissible capital calibrators. By
changing the mixture on thresholds x from exponential (as we do here) to polynomial, it is technically
possible to guarantee Mt ≥ eXt−O(lnXt). We do not pursue this direction, as the additional lnXt is
not convenient for combining evidence of arms, and moreover it is not at all clear that the high cost
in terms of multiplicative constants (i.e. the g(λ)) is worth it.

�

3.4.1 ALTERNATIVE MIXTURE MARTINGALES

The martingale Mλ
a (t) built in the proof of Lemma 11 can be viewed as a mixture martingale with a

hierarchical prior, which is a continuous mixture of some discrete priors π(·) defined in Lemma 13.
Indeed, one can write

Mλ
a (t) = (1− λ(1 + ξ))Z0

a(t) +

∫ ∞
1

(∫
Zηa (t)π(ln(z)/λ)(dη)

)
(1− λ(1 + ξ))e

− ln(z)
λ(1+ξ)dz.

To prove Theorem 9 and Theorem 10, we build different mixture martingales in Appendix C.
Interestingly, they also rely on a hierarchical prior but this time the prior is a discrete average of
continuous priors. More precisely, the martingale used in each case can be written of the form

Mλ
a (t) =

∞∑
i=1

γi

∫
Zηa (t)pλ,µaTi

(η)dη

16
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for a well chosen family of (γi, Ti) ∈ (R+,N∗), where pλ,µat (η) is a continuous function satisfying

∀x,
∫
eη(tx)−φµ(η)tpλ,µan (η)dη = eλtd(x,µa).

We see that in both cases, elementary non-negative martingales of the form Zηa (t) from (7) are
mixed under a (hierarchically constructed) prior distribution on η. Both approaches are similar in
spirit, both implementing the Laplace technique of achieving a value close to that of the maximiser η̂
(which is a function of the random data), and the peeling technique (to adapts to the random sample
size Na(t)). The combined density has an asymptote at η = 0, with density nearby proportional
to 1

η(ln η)2 . The log factor is necessary for making the prior proper, and it is also the reason for the
ln lnNa(t) terms in our deviation inequality.

An interesting alternative approach, which goes slightly outside the mixture martingale frame-
work, is taken by Koolen and van Erven (2015). There, a mixture martingale is constructed by mixing
the increment Zηa (t)− Zηa (0) under the improper prior with density 1/η. Subtracting Zηa (0) solves
the problem that, without it, the improper mixture would be infinite. However, it has the effect that
the mixture can become negative, interfering with Ville’s inequality. Yet the mixture value can be
shown (for bounded outcomes) to be at least − lnNa(t). Taking that into account properly yields,
again, the ln lnNa(t) term in the resulting deviation inequality. We believe exploring these ideas
further to be a worthwhile direction for future research.

4. Asymptotically Optimal Adaptive Sequential Testing

In this section, we explain how our new deviation inequalities can be useful to prove the correctness
of a stopping strategy for generic sequential adaptive hypothesis testing problems, that we refer to as
sequential identification problems.

Given a bandit model, we consider M hypotheses H1 = (µ ∈ O1), . . . ,HM = (µ ∈ OM )
where O1, . . . ,OM are open sets forming a partition of the set of possible means O. Our goal is to
adaptively sample the arms until a decision is made that one of the hypotheses ı̂ is correct. Our goal is
to identify the correct hypothesis for all possible means µ ∈ O. More precisely, we aim for δ-correct
strategies, for which ∀µ ∈ O, Pµ (µ ∈ Oı̂) ≥ 1 − δ. This problem falls into the framework of
Sequential Adaptive Hypothesis Testing as introduced by Chernoff (1959) –who studied only discrete
hypotheses and considered a different performance metric– and is called General-Samp by Chen
et al. (2017), who study Gaussian arms with unit variance.

For general exponential family bandits, we analyse below a natural stopping rule based on
Generalized Likelihood Ratio (GLR) tests. We prove that this stopping rule is δ-correct for any
sequential identification problem and that in some cases it attains the minimal sample complexity
(in a regime of small risk δ) when coupled with an appropriate sampling rule. We note that the
independent work of Juneja and Krishnasamy (2019) studies the same problem as ours under the
name “partition identification”, also for exponential families. However, that work puts less emphasis
on stopping rules, and uses the deviation inequality of Magureanu et al. (2014) for its analysis.

4.1 A General Stopping Rule

For every µ, we define
Alt(µ) =

⋃
i:µ/∈Oi

Oi.
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If µ ∈ O, we let i∗(µ) be the index of the unique element in the partition to which µ belongs; in
particular µ ∈ Oi∗(µ) and Alt(µ) = O\Oi∗(µ). We let µ̂(t) be the vector of empirical means of the
arms based on the observations available up to round t. If µ̂(t) ∈ O, we let ı̂(t) = i∗(µ̂(t)) so that
µ̂(t) ∈ Oı̂(t).

Definition 14 The GLR statistic is defined as

Λ̂t = inf
λ∈Alt(µ̂(t))

K∑
a=1

Na(t)d (µ̂a(t), λa) . (17)

Given a sequence of thresholds (ĉt(δ))t∈N, the GLR stopping rule with thresholds ĉt(δ) is defined by

τδ := inf
{
t ∈ N : Λ̂t > ĉt(δ)

}
. (18)

A Generalized Likelihood Ratio statistic is usually defined for testing a possibly composite
hypothesisH0 : (µ ∈ Ω0) against a possibly composite alternativeH1 : (µ ∈ Ω1) by

Rt =
supλ∈Ω0∪Ω1

`(X1, . . . , Xt;λ)

supλ∈Ω0
`(X1, . . . , Xt;λ)

,

where X1, . . . , Xt are some observations whose likelihood `(X1, . . . , Xt;µ) depends on some
unknown parameter µ. Large values of Rt tend to reject the hypothesisH0. When the observations
are obtained under a sampling rule (At) in an exponential family bandit model and µ̂(t) ∈ Ω0 ∪ Ω1

it can be shown that

ln(Rt) = inf
λ∈Ω0

K∑
a=1

d(µ̂a(t), λa).

The GLR statistic Λ̂t can thus be interpreted as a statistic for testingH0 : {µ ∈ Alt(µ̂(t))} against
H1 :

{
µ ∈ Oı̂(t)

}
(if µ̂(t) ∈ O, otherwise note that Λ̂t = 0 which prevent from stopping). However

the two hypotheses that are “tested” at time t are data-dependent. Still, large values Λ̂t tend to reject
(µ ∈ Alt(µ̂(t))): hypothesis ı̂(t) must be true. Another possible interpretation of the GLR stopping
rule is that it is running in parallel M GLR tests of H0 : (µ ∈ O\Oi) against H1 : (µ ∈ Oi) for
i = 1, . . . ,M and stops the first time one of these tests ı̂ rejectsH0. This “Parallel GLRT” view is
the one discussed for example by Garivier and Kaufmann (2021).

It can be observed that
{

Λ̂t > ĉt(δ)
}

=
{
Ct(δ) ⊆ Oı̂(t)

}
where Ct(δ) is the confidence region

Ct(δ) :=

{
λ :

K∑
a=1

Na(t)d(µ̂a(t), λa) ≤ ĉt(δ)

}
. (19)

The GLR stopping rule (18) can thus be rephrased in the following way: stop when the set of
statistically plausible parameters Ct(δ) is included in one fold of the partition. Building on Theorem 7,
Proposition 15 below provides a choice of thresholds for which the GLR stopping rule yields a
δ-correct algorithm. We provide a choice of thresholds for which the GLR rule is δ-correct when the
hypothesisHı̂(τ) is recommended and the corresponding confidence intervals Ct(δ) always contain
the true parameter with probability larger than 1− δ.
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Proposition 15 Let Cexp be the threshold function defined in Theorem 7. The sequence of thresholds

ĉt(δ) = 3

K∑
a=1

ln(1 + lnNa(t)) +KCexp

(
ln(1/δ)

K

)
(20)

is such that, for every sampling rule,

Pµ(∀t ∈ N,µ ∈ Ct(δ)) ≥ 1− δ and Pµ (τδ <∞, ı̂(τδ) 6= i∗(µ)) ≤ δ.

Proof Using Theorem 7 in the last inequality, one can write

Pµ (τ <∞, ı̂(τ) 6= i∗) ≤ Pµ
(
∃t ∈ N : ı̂(t) 6= i∗, Λ̂t > ĉt(δ)

)
= Pµ (∃t ∈ N : ∃i 6= i∗, Ct ⊆ Oi)
≤ Pµ (∃t ∈ N : µ /∈ Ct)

= Pµ

(
∃t ∈ N :

K∑
a=1

Na(t)d(µ̂a(t), µa) ≥ ĉt(δ)

)
≤ δ.

This proves both claims of Proposition 15.

4.2 An Asymptotically Optimal Adaptive Testing Procedure

Proposition 15 provides a threshold for which the GLR stopping rule (18) is δ-correct for any
sampling rule. We now show that used in conjunction with an appropriate “Tracking” stopping rule,
it can even attain the optimal sample complexity. The following lower bound generalizes the sample
complexity lower bound obtained by Garivier and Kaufmann (2016) for the particular Best Arm
Identification problem and is obtained with the exact same change-of-measure technique.

Proposition 16 Define the complexity term T ∗(µ) as

T ∗(µ)−1 = sup
w∈ΣK

inf
λ∈Alt(µ)

K∑
a=1

wad(µa, λa),

where ΣK =
{
w ∈ [0, 1]K :

∑K
i=1wi = 1

}
. Then any δ-correct strategy satisfies

∀µ ∈ O, Eµ[τδ] ≥ T ∗(µ) ln

(
1

3δ

)
.

We define, when they exist (that is, when the argmax below is unique) the optimal weights

w∗(µ) := argmax
w∈ΣK

inf
λ∈Alt(µ)

K∑
a=1

wad(µa, λa) (21)

for µ ∈ O. For well-behaved sequential testing problems, those weights indicate the fraction of
samples that should be allocated to each arm by an optimal strategy. This motivates the Tracking

19



KAUFMANN AND KOOLEN

rule, originally proposed by Garivier and Kaufmann (2016) as the D-Tracking rule for Best Arm
Identification and that we recall here. Letting Ut = {a ∈ {1, . . . ,K} : Na(t) ≤ max(

√
t−K/2, 0)}

be the set of under-sampled arms, at time t+ 1 the selected arm is

At+1 ∈


argmin
a∈Ut

Na(t) if Ut 6= ∅ (forced exploration)

argmax
a∈[K]

t w∗a(µ̂(t))−Na(t) o.w. (tracking the plug-in estimate)
(22)

It can be noted that w∗(µ̂(t)) is defined only if µ̂(t) ∈ O. In practice if µ̂(t) /∈ O the tracking step
of the algorithm can be replaced by uniform exploration. Due to the forced exploration, as µ ∈ O
(which is an open set by assumption) the law of large numbers ensures that at some point µ̂(t) ∈ O,
and the tracking step can be applied.

Theorem 17 Assume that the following assumptions are satisfied:

1. For every µ ∈ O, there is a unique vector of optimal weights w∗(µ)

2. For all i ∈ {1, . . . ,M}, the mapping µ 7→ w∗(µ) is continuous on Oi.

For δ ∈ (0, 1] let ĉt(δ) be a deterministic sequence of thresholds that is increasing in t and for which
there exists constants C,D > 0 such that

∀t ≥ C,∀δ ∈ (0, 1], ĉt(δ) ≤ ln

(
Dt

δ

)
.

Let τδ be the GLR stopping rule (18) with thresholds ĉt(δ). The Tracking rule (22) ensures

lim sup
δ→0

Eµ [τδ]

ln(1/δ)
= T ∗(µ).

The proof of Theorem 17 is given in Appendix D. Combining this result with Proposition 15
yields that an adaptive sequential test using the Tracking rule and the GLR stopping rule with
thresholds (20) is δ-correct for every δ ∈ (0, 1] and its sample complexity is asymptotically matching
the lower bound of Proposition 16, provided that the optimal weights w∗(µ) are well defined and
continuous in µ.

Efficient ways to compute those weights are also needed for the actual implementation of the
Tracking rule. In the next section, we will discuss particular examples of adaptive sequential tests in
which those requirements are fulfilled and optimal (and efficient) adaptive testing is thus possible.
We will see that smaller thresholds than the universal threshold (20) can be used in some cases.

The assumptions of Theorem 17 are frequently satisfied for practical problems (see also Combes
et al. 2017, Lemma 1 proving continuity of the highly related oracle regret problem for the structured
multi-armed bandit problem in the fixed-budget setting, under a unique optimiser assumption similar
to 1). Uniqueness may however fail for other practical problems, including e.g. the Minimum
Threshold problem studied by Kaufmann et al. (2018). A solution for such cases was proposed in
recent follow-up work by Degenne and Koolen (2019), who propose regarding the oracle weight map
µ 7→ w∗(µ) from (21) as set-valued, and prove that it is upper hemi-continuous and convex-valued
for every sequential identification problem of the form we consider here (in particular with a unique
correct answer for each instance). Leveraging these two properties, they analyse a variation of the
Tracking rule (22) for which the overall approach is asymptotically optimal in general (Degenne and
Koolen, 2019, Theorem 7).
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5. Smaller Thresholds for Better Sequential Tests

A stylized form of (two-sided) deviation inequalities obtained in this paper (in Corollaries 9 and 10
and Theorem 7) is the following. For any subset of arms S ⊆ {1, . . . ,K}, for all x > 0,

P

(
∃t ∈ N :

∑
a∈S

Na(t)d(µ̂a(t), µa) >
∑
a∈S

c ln(d+ ln(Na(t))) + |S|C
(
x

|S|

))
≤ e−x (23)

where c and d are two positive constants and C(x) is a threshold function. This result holds for any
subset of arms S . Combining (23) with a weighted union bound, one obtains in Lemma 18 below a
deviation inequality that is uniform over subsets belonging to the support of a weight vector π̃.

Lemma 18 (weighted union bound) Assume (23) holds. Let π̃ be a probability distribution over
subsets:

∑
S⊆{1,...,K} π̃(S) = 1. Then for all x > 0

P

(
∃t,∃S :

∑
a∈S

Na(t)d(µ̂a(t), µa)>
∑
a∈S

c ln(d+ ln(Na(t))) + |S|C
(
x− ln(π̃(S))

|S|

))
≤ e−x.

Proof A union bound followed by inequality (23) gives

P

(
∃t,∃S :

∑
a∈S

Na(t)d(µ̂a(t), µa)>
∑
a∈S

c ln(d+ ln(Na(t))) + |S|C
(
x− ln(π̃(S))

|S|

))

≤
∑

S⊆{1,...,K}

P

(
∃t :

∑
a∈S

Na(t)d(µ̂a(t), µa)>
∑
a∈S

c ln(d+ ln(Na(t))) + |S|C
(
x− ln(π̃(S))

|S|

))

≤
∑

S⊆{1,...,K}

e−(x−ln(π̃(S))) = e−x
∑

S⊆{1,...,K}

π̃(S) = e−x.

We now explain how this result can serve to tighten the analysis of the GLR stopping rule for
some particular sequential testing problems, to allow for the use of smaller threshold functions. We
later discuss in Section 6 the impact of this result on the design of confidence regions.

5.1 Improved Stopping Rules for Best Arm Identification

The (fixed-confidence) Best Arm Identification problem is a particular sequential identification
problem as defined in Section 4 with Ok = {µ : µk > maxj 6=k µj}: the goal is to identify the arm
with largest mean. For this particular problem, the GLR statistic (17) rewrites to

Λ̂t = min
b 6=ı̂(t)

min
λb>λı̂(t)

[
Nı̂(t)(t)d(µ̂ı̂(t)(t), λı̂(t)) +Nb(t)d(µ̂b(t), λb)

]
(24)

and the associated stopping rule, Λ̂t > ĉt(δ), is referred to as the Chernoff stopping rule by Garivier
and Kaufmann (2016). In this particular case, it is possible to propose a smaller threshold than the
universal threshold (20) that still ensures a δ-correct rule. Indeed, the probability of error of the
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strategy that stops when Λ̂t > ĉt(δ) and outputs ı̂(τ) is upper bounded as follows, assuming arm 1 is
the arm with largest mean:

P(error) ≤ P
(
∃t ∈ N, ∃a 6= 1 : min

λa>λ1

[Na(t)d(µ̂a(t), λa) +N1(t)d(µ̂1(t), λ1)] > ĉt(δ)

)
≤ P (∃t ∈ N, ∃a 6= 1 : Na(t)d(µ̂a(t), µa) +N1(t)d(µ̂1(t), µ1) > ĉt(δ))

= P

∃t,∃a 6= 1 :
∑

j∈{1,a}

Nj(t)d(µ̂j(t), µj) > ĉt(δ)

 .

From Theorem 7 and a union bound over the K − 1 subsets {1, 2}, . . . , {1,K} (Lemma 18 with a
weight vector such that π̃({1, a}) = 1/(K − 1) for a 6= 1) it holds that

P

∃t,∃a 6= 1 :
∑

j∈{1,a}

Nj(t)d(µ̂j(t), µj) > 3
∑

j∈{1,a}

ln(1 + ln(Nj(t))) + 2Cexp

(
ln K−1

δ

2

) ≤ δ.
This implies that the GLR rule is δ-correct with the threshold

ĉt(δ) = 6 ln

(
ln

(
t

2

)
+ 1

)
+ 2Cexp

(
ln K−1

δ

2

)
. (25)

For large t, this will be smaller than the original threshold ĉt(δ) = ln 2t(K−1)
δ proposed by Garivier

and Kaufmann (2016) in the Bernoulli case. It can hence lead to earlier stopping while preserving the
optimal sample complexity guarantees, as this threshold still satisfies the assumptions of Theorem 17.
Note also that this new threshold provides a better motivation for the stylized ln((ln(t) + 1)/δ)
threshold that is sometimes used in best arm identification experiments, and for which the empirical
error probability is reported to remain below δ.

Remark 19 The improved threshold (25) yields a δ correct stopping rule, however the corresponding
confidence interval (19) does not satisfy P (∀t ∈ N : µ ∈ Ct(δ)) ≥ 1− δ. There is no equivalence
between the improved δ-correct stopping rule and improved δ-valid confidence regions. We will
discuss the implications of Lemma 18 for confidence regions in Section 6.

5.2 Smaller Thresholds for More General Tests

The reason why we are able to propose a smaller threshold for the BAI problem is that its GLR
statistic (24) only features pairs of arms. In more general tests, the structure of the GLR statistic may
also be exploited to allow for a smaller threshold that does not depend on the total number of arms
K featuring in the universal threshold (20) but on a smaller effective number of arms.

Definition 20 Consider a sequential identification problem specified by a partition O =
⋃M
i=1Oi.

We say this problem has rank R if for every i ∈ {1, . . . ,M} we can write

O\Oi =
⋃
q∈[Q]

{
λ ∈ IK

∣∣∣(λki,q1
, . . . , λ

ki,qR
) ∈ Li,q

}
,

for a family of arm indices ki,qr ∈ [K] and open sets Li,q indexed by r ∈ [R], q ∈ [Q] and i ∈ [M ].
In words, the rank is R if every set O \ Oi is a finite union of sets that are each defined in terms of
only R arms.
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The BAI problem has rank 2. Indeed, for all i ∈ {1, . . . ,K},

O\Oi =
⋃
a6=i

{
λ ∈ IK |(λi, λa) ∈ {(x, y) : x < y}

}
.

In any testing problem that has rank R, the GLR statistic may be rewritten

Λ̂t = min
q∈[Q]

inf
λ

(λ
k
ı̂(t),q
1

,...,λ
k
ı̂(t),q
R

)∈Lı̂(t),q

R∑
r=1

N
k
ı̂(t),q
r

(t)d
(
µ̂
k
ı̂(t),q
r

(t), λ
k
ı̂(t),q
r

)
,

which yields the expression (24) in the BAI case.

Proposition 21 Fix an identification problem of rankR. Then the GLR stopping rule (17) is δ-correct
with threshold

ĉt(δ) = 3R ln(1 + ln(t/R)) +RCexp

(
ln M−1

δ

R

)

Proof Fix µ ∈ O. For each i 6= i∗, µ ∈ O\Oi, thus from Definition 20 there exists qi such that
(µ
k
i,qi
1
, . . . , µ

k
i,qi
R

) ∈ Li,qi . Then

Pµ {τδ <∞ and ı̂(τδ) 6= i∗}

≤ Pµ
{
∃t : Λ̂t ≥ ĉt(δ) and ı̂(t) 6= i∗

}
= Pµ

{
∃t, i 6= i∗ : Λ̂t ≥ ĉt(δ) and ı̂(t) = i

}

= Pµ

∃t, i 6= i∗ : min
q∈[Q]

inf
λ

(λ
k
i,q
1
,...,λ

k
i,q
R

)∈Li,q

R∑
r=1

N
ki,qr

(t)d
(
µ̂
ki,qr

(t), λ
ki,qr

)
≥ ĉt(δ)


≤ Pµ

{
∃t, i 6= i∗ :

R∑
r=1

N
k
i,qi
r

(t)d
(
µ̂
k
i,qi
r

(t), µ
k
i,qi
r

)
≥ 3R ln(1 + ln(t/R)) + Cexp

(
ln M−1

δ

R

)}

≤ Pµ

{
∃t, i 6= i∗ :

R∑
r=1

N
k
i,qi
r

(t)d
(
µ̂
k
i,qi
r

(t), µ
k
i,qi
r

)
≥ 3

R∑
r=1

ln
(

1 + lnN
k
i,qi
r

(t)
)

+ Cexp

(
ln M−1

δ

R

)}
≤ δ,

where the last inequality follows from Theorem 7 and a union bound over M − 1 subsets (Lemma 18
with a weight vector π̃({ki,qi1 , . . . , ki,qiR }) = 1/(M − 1) for i 6= i∗) together with the concavity of
s 7→ ln(1 + ln(s)) that ensures

R∑
r=1

ln
(

1 + lnN
k
i,qi
r

(t)
)
≤ R ln(1 + ln(t/R)).
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5.2.1 A RANK 4 EXAMPLE

Assume we are given a collection of K pairs of arms and want to find out which pair has the largest
difference (which we think of as profit) between first component (which we think of as revenue)
and second component (which we think of as cost). More precisely, we consider a K × 2 array of
random sources Xij where i ∈ [K] and j ∈ {1, 2}. Let µij = E[Xij ] denote the means. A strategy
samples one arm At = (It, Jt) per round and its goal is to identify the largest profit pair

i∗(µ) = arg max
i

µi,1 − µi,2.

It is easy to check that this problem, which we call Largest Profit Identification, has rank 4 and the
GLR statistic rewrites to

Λ̂t = min
b 6=ı̂

inf
λ∈R{b,ı̂}×{1,2}

λb,1−λb,2>λı̂,1−λı̂,2

∑
a∈{b,̂ı}
j∈{1,2}

Na,j(t)d (µ̂a,j(t), λa,j) .

By Proposition 21 the GLR stopping rule (18) is δ-correct with the threshold

ĉt(δ) = 12 ln(1 + ln(t/4)) + 4Cexp

(
ln K−1

δ

4

)
.

Remark 22 For Largest Profit Identification the oracle weights w∗(µ), which are needed for
implementing the asymptotically optimal procedure of Section 4.2, maximise the concave function
T ∗(µ)−1. For both Gaussian and Bernoulli (and possibly more) we can write the objective as a
Disciplined Convex Program and solve it efficiently with e.g. CVX (Grant and Boyd, 2017).

5.2.2 BEST ACTION IDENTIFICATION IN A GAME TREE

In the bandit literature, a particular structured identification problem that offers a simple model for
Monte Carlo Tree Search in games has been recently studied by Teraoka et al. (2014); Garivier et al.
(2016); Huang et al. (2017); Kaufmann and Koolen (2017). The goal is to quickly identify the action
at the root of a (maxmin) game tree whose value is the largest by querying noisy samples of the
leaves’ values of that tree.

Lemma 8 in Kaufmann and Koolen (2017) provides an expression for the optimal weights in a
depth-two tree, that are then computable using disciplined convex optimization tools (e.g. CVX).
Furthermore, it can be checked that this identification problem is of rank L + 1, where L is the
maximum number of actions of the second player. This is much smaller than the number of leaves,
which is K ·L in a game tree where the first player has K moves and the second player has L moves.
Assuming the weights (which are only numerically computable) satisfy the continuity assumption of
Theorem 17 (or, if not, by Degenne and Koolen 2019, Theorem 7), the GLR rule with a rank L+ 1
threshold is asymptotically optimal in combination with the Tracking rule. We note that the existing
literature does not provide asymptotically optimal algorithms for best action identification in a game
tree, even for depth-two trees.

6. Projected Confidence Intervals

The deviation inequalities presented in this paper can also be used to build tight confidence regions
on (functions of) the parameter µ ∈ IK . We are particularly interested in building δ-uniformly valid
confidence regions Ct(δ), that satisfy P (∀t ∈ N,µ ∈ Ct(δ)) ≥ 1− δ for every sampling rule.
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Lemma 18 in combination with our deviation results allows to build such confidence regions.
Indeed for any weight vector π̃ over subsets, the following confidence interval is δ-uniformly valid
(with c and d as given by the lemma):

Cπ̃t (δ) :=

{
λ :∀S,

∑
a∈S

Na(t)d(µ̂a(t), λa)≤c
∑
a∈S

ln(d+lnNa(t))+|S|Cexp

(
ln(1/(π̃(S)δ))

|S|

)}
.

(26)
A natural question is thus which vector π̃ yields the most interesting confidence region. Answering
this question would require to compare complicated shapes in RK (like we do for K = 2 in
Figure 1(a) in the Introduction) and the answer would still depend on the purpose of those confidence
regions.

In this section we investigate their use for computing confidence intervals on derived quantities
of the form f(µ), where f : RK → R is some fixed function. Knowing that µ ∈ Ct, we can
immediately conclude that f(µ) ∈ It(δ) := {f(λ)|λ ∈ Ct}. The interplay of the structure of the
function f and the shape of the confidence region Ct will jointly determine the tightness of the
projected confidence interval It(δ). The principal challenge is to find, for each f of interest, a
statistically tight Ct with a computationally tractable way of computing It. In this section we study
two classes of examples, linear f and minima/maxima.

6.1 Linear Functions

In this section we consider an arbitrary linear function f(µ) = vᵀµ where v ∈ RK . We will derive
our results in the Gaussian case because it admits revealing and explicit closed-form expressions.
In that case the confidence region (26) is δ-uniformly valid for c = 2 and d = 4 and g = gG, as
licensed by Corollary 9. The following two confidence intervals on vᵀµ follow from two extreme
choices of weight vectors: one supported on all the singleton sets and one supported on the full set.

Proposition 23 (Box) The following is a δ-uniformly valid confidence interval on vᵀµ

It(δ) =

vᵀµ̂(t)±
∑
a∈[K]

√
2

(
Cg
(

ln
K

δ

)
+ c ln(d+ ln(Na(t)))

)
v2
a

Na(t)

 .
Proof Simple algebra show that It(δ) = {vTλ,λ ∈ Cπ̃t (δ)} where π̃ is uniform on singletons.
Indeed, as Cπ̃t (δ) is δ-uniformly valid, it holds that for all t ∈ N and a ∈ [K], |µ̂a(t)− µa| ≤√

2
Na(t)

(
Cg
(
ln K

δ

)
+ c ln(d+ ln(Na(t)))

)
.

Proposition 24 (Ellipse) The following is a δ-uniformly valid confidence interval on vᵀµ

It(δ) =

vᵀµ̂(t)±

√√√√√2

KCg ( ln 1
δ

K

)
+
∑
a∈[K]

c ln(d+ ln(Na(t)))

 ∑
a∈[K]

v2
a

Na(t)

 .
Proof We show that It(δ) = {vTλ,λ ∈ Cπ̃t (δ)} where π̃ is a point-mass on the whole set:
π̃({1, . . . ,K}) = 1. Letting C =

∑K
a=1 ln(1 + lnNa(t)) + KCexp(ln(1/δ)/K), computing the
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upper bound of this confidence interval requires to compute

max
λ

vᵀλ subject to
∑
a∈[K]

Na(t)
(µ̂a(t)− λa)2

2
≤ C.

Introducing Lagrange multiplier ρ, we find that this is equivalent to

min
ρ≥0

max
λ

vᵀλ+ ρ

C − ∑
a∈[K]

Na(t)
(µ̂a(t)− λa)2

2

 .

Solving for λ by cancelling the derivative results in λa = µ̂a(t) + va
ρNa(t) , asking us to solve

min
ρ≥0

vᵀµ̂(t) +
∑
a∈[K]

v2
a

2ρNa(t)
+ ρC = vᵀµ̂(t) +

√√√√2C
∑
a∈[K]

v2
a

Na(t)

where zero ρ derivative is found at ρ =
√
C−1

∑
a∈[K]

v2
a

2Na(t) . As minλ v
ᵀλ = −maxλ(−v)ᵀλ,

the lower bound of It(δ) also follows.

6.1.1 COMPARISON

The major difference between the two above bounds is the appearance of the sum outside vs inside
of the square root. To get more intuition, let’s compare in the special case Na(t) = t/K and
approximate Cg(x) ≈ x. Then we need to compare

‖v‖1

√
2

(
ln
K

δ
+ c ln(d+ ln(t/K))

)
K

t
and ‖v‖2

√
2

(
ln

1

δ
+Kc ln(d+ ln(t/K))

)
K

t
.

We see that the box bound depends on the one-norm of v, whereas the ellipse bound depends on the
two-norm of v, which can be smaller by a factor

√
K (at the price of a factor K multiplying the

ln ln t term). In a regime of small δ, the ellipse bound can thus be much better than the box bound.
Another case of interest is Na(t) = t |va|∑

a|va|
, which result from following the oracle weights w∗(µ).

Also here the advantage of ellipse over box can again be as large as a factor
√
K.

6.2 Minimum

We now turn our attention to f(µ) = mina µa. Estimating the minimum (or, symmetrically,
maximum) mean is a natural task in the multi-armed bandit setting (see Kaufmann et al. 2018).
Unlike in the linear case, here the situation is not symmetric. We will study separately the lower and
upper confidence bounds

Lπ̃t (δ) = min
{

min
a
λa : λ ∈ Cπ̃,−t (δ)

}
and Uπ̃

t (δ) = max
{

min
a
λa : λ ∈ Cπ̃,+t (δ)

}
for the confidence regions

Cπ̃,±t (δ) =

{
λ : ∀S,

∑
a∈S

[
Na(t)d

±(µ̂a(t), λa)− 3 ln(1 + lnNa(t))
]+ ≤ |S|Cexp

(
ln(π̃(S)/δ)

δ

)}
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that are both δ-uniformly valid by Lemma 18. It follows that P
{
∀t ∈ N : mina µa ≤ Uπ̃

t (δ)
}
≥ 1−δ

and P
{
∀t ∈ N : mina µa ≥ Lπ̃t (δ)

}
≥ 1 − δ. We investigate in each case the tightest possible

confidence bound that can be obtained by optimising the choice of the weight vector π̃.

6.2.1 LOWER CONFIDENCE BOUND

A minimum is low whenever one entry is low. This means that the λ ∈ Cπ̃,−t of lowest mean
will have all entries equal to µ̂ except for one. This in turn means that we do not get any mileage
out of combining evidence from multiple arms. Instead, the best Lπ̃t is obtained for the choice
π̃({k}) = 1/K (uniform distribution on singletons). We find the following.

Proposition 25 At time t, for each arm a, let θa(t) ≤ µ̂a(t) be the solution to

Na(t)d
−(µ̂a(t), θa(t)) = 3 ln(1 + ln(Na(t))) + Cexp

(
ln
K

δ

)
(note the left-hand side increases with decreasing θa(t), so the solution can be found by binary
search). Then

P
{
∀t ∈ N,min

a
µa ≥ min

a
θa(t)

}
≥ 1− δ.

Proof With the choice π̃({k}) = 1/K, Cπ̃,−t (δ) is the set of λ:

∀a ∈ [K] : Na(t)d
−(µ̂a(t), λa) ≤ 3 ln(1 + ln(Na(t))) + Cexp

(
ln
K

δ

)
.

By definition, θa(t) is the lowest possible value for λa, and hence mina θa(t) is the lowest possible
value for mina λa.

6.2.2 UPPER CONFIDENCE BOUND

Above, we found that we do not learn much about the lower bound in the presence of many arms.
For the upper confidence bound the story is different. We explain in Proposition 26 how to compute
Uπ̃
t for a general weight vector π̃. We then show that empirically a weight vector supported on all

subsets can be helpful.

Proposition 26 Let θ(t) be the solution in θ to the equation

max
S⊆[K]

[∑
a∈S

[
Na(t)d

+(µ̂a(t), θ)− 3 ln(1 + ln(Na(t)))
]+ − |S|Cexp

(
ln 1

δπ̃(S)

|S|

)]
= 0.

Then P {∀t ∈ N,mina µa ≤ θ(t)} ≥ 1− δ.

Proof We prove that Uπ̃
t (δ) = θ(t). Let λ ∈ Cπ̃,+t (δ). By definition,

max
S⊆[K]

[∑
a∈S

[
Na(t)d

+(µ̂a(t), λa)− 3 ln(1 + ln(Na(t)))
]+ − |S|Cexp

(
ln 1

δπ̃(S)

|S|

)]
≤ 0.
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What does this tell us about mina∈[K] λa? Well, consider a candidate value θ ≥ mina µ̂a(t) for the
minimum. Among bandit models λ with mina λa = θ, the left-hand side above is minimised at
λa = max {µ̂a(t), θ} and the maximal value of mina∈[K] λa is the maximal value of θ such that

max
S⊆[K]

[∑
a∈S

[
Na(t)d

+(µ̂a(t), θ)− 3 ln(1 + ln(Na(t)))
]+ − |S|Cexp

(
ln 1

δπ̃(S)

|S|

)]
≤ 0.

We recover the objective in the statement by noting that the left-hand side is a continuous and
non-decreasing function of θ.

6.2.3 PRACTICAL CHOICE OF WEIGHT VECTOR

The upper bound for a minimum may benefit from considering many subsets S ⊆ [K] in the weighted
union bound. The reason is that a smaller subset will have a smaller evidence term (summing fewer
terms), but it may also have a smaller threshold. Here we investigate the use of cardinality-based
weight vectors of the form π̃(S) = π(|S|)/

(
K
|S|
)

for some probability vector π on {1, . . . ,K}.
First, let’s consider the computation of θ(t) for those weight vectors: we are looking for the zero

crossing of an increasing function, which can be found by e.g. binary search. It remains to efficiently
evaluate the objective for a fixed θ(t). Here we propose to express the objective as

max
k∈[K]

max
S⊆[K]:|S|=k

∑
a∈S

[
Na(t)d

+(µ̂a(t), θ(t))− 3 ln(1 + ln(Na(t)))
]+

︸ ︷︷ ︸
the best set takes the k largest contributors; implement by sorting once.

−kCexp

 ln
(Kk )
δπ(k)

k

 .

and observe that the best set of size k takes the k arms of largest contribution, which we can look up
after sorting the arms by their contribution. Hence each evaluation of the objective can be obtained
in O(K lnK) time.

We expect combining evidence across arms to be particularly useful when there are several arms
with means close to the minimum. We illustrate this empirically in Figure 4 for a Bernoulli bandit
model with M arms with mean 0.1 and 4 more arms with means 0.2, 0.3, 0.4, 0.5 (thus K = M + 4),
for different values of M . We consider the use of a “Box” weight vector that is uniform on the
singletons (π(1) = 1), a weight vector supported on the whole set of arms (π(K) = 1) and a weight
vector that is uniform over subset sizes (π(k) = 1/K). For each value of M , data is collected using
uniform sampling and we set δ = 10−10 to focus on the high confidence regime. We see that the
uniform weight vector consistently leads to smaller upper confidence bounds when compared to Box,
with an increased gap when M increases. We also experimented with a “Zipf” distribution for π
(π(k) ∝ 1/k), which performed almost identically as the uniform vector.

This experiment shows that for small values of δ a uniform cardinality-based weight vector is
a robust choice: summing evidence across arms never hurts too much. In the particular case of
minimums, we would like to mention that one can go even further and aggregate samples from
different arms, as explained in Kaufmann et al. (2018), which leads to even smaller upper confidence
bounds in experiments.
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Figure 4: Uπ̃
t (δ) as a function of t for several cardinality-based weight vectors π̃ in a presence of M

identical arms with the minimal mean, for M = 1, 5, 10, 20.

7. Conclusion

Sequential problems are studied in the multi-armed bandit model, where the learner sequentially
picks arms to sample. The central question is what the learner infers from the samples that it has
seen. This is used for deciding what to do next, when to stop, what to recommend and/or estimate.

We use mixture martingales to design confidence regions, based on self-normalised sums, for
exponential family multi-armed bandit models. We argue that these confidence regions are the
tightest known, and match, in spirit, established statistical lower bounds.

We then apply the obtained deviation inequalities to the design of confidence intervals by means
of explicit projections, stopping rules by means of GLR statistics, and asymptotically optimal
sampling rules by a tight analysis of the Track-and-Stop algorithm. The fact that we are pushing
the state of the art in each of these areas clearly demonstrates the generic appeal of the mixture
martingale approach.
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Appendix A. Proof of Proposition 8

We may write

h−1(x) = inf
z≥1

z

(
x− 1 + ln

z

z − 1

)
Plugging in the sub-optimal feasible choice z = 1 + 1

(x−1)+
√

2(x−1)
reveals

h−1(x) ≤

(
1 +

1

(x− 1) +
√

2(x− 1)

)(
x− 1 + ln

(
x+

√
2(x− 1)

))
≤ 1 + (x− 1) + ln

(
x+

√
2(x− 1)

)
.

The last inequality uses ln
(
x+

√
2(x− 1)

)
≤
√

2(x− 1) which holds with equality at x = 1 and
whose gap is increasing (as can be checked by differentiation).

Appendix B. Additional Proofs for Exponential Families

B.1 Proof of Lemma 13

Given any probability distribution π, recall that the associated mixture martingale is defined as

Zπa (t) =

∫
exp (λSa(t)− φµa(λ)Na(t)) dπ(λ).

The first step of the construction is Lemma 27, which relates the deviation of Na(t)d
+(µ̂a(t), µa)

and Na(t)d
−(µ̂a(t), µa) to those of ηSa(t)− φµa(η)Na(t) for a well chosen η, provided that Na(t)

belongs to some “slice” [(1 + ξ)i−1, (1 + ξ)i].

Lemma 27 Fix i ∈ N∗, x > 0 and ξ > 0. There exist η+
i (x, ξ) and η−i (x, ξ) such that, if

Na(t) ∈ [(1 + ξ)i−1, (1 + ξ)i] it holds that

{
Na(t)d

+(µ̂a(t), µa) ≥ x
}
⊆

{
η+
i Sa(t)−Na(t)φµa(η+

i ) ≥ x

1 + ξ

}
{
Na(t)d

−(µ̂a(t), µa) ≥ x
}
⊆

{
η−i Sa(t)−Na(t)φµa(η−i ) ≥ x

1 + ξ

}
.
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The next step is to relate the deviation of Xa(t) to those of a martingale for every t ∈ N and
not only for Na(t) is some slice: this will be achieved by a mixture martingale with a well-chosen
discrete prior. In the sequel, we consider the (most complicated) case in which Xa(t) = Ya(t) for all
t. Given x, we define the following probability distribution. Let

γi = 1
2

1
i2ζ(2)

xi = x+ ln
(

1
γi

)
η+
i = η+

i (xi, ξ) η−i = η−i (xi, ξ),

where η±i (x, ξ) are defined in Lemma 27. We define the discrete prior

π =
∞∑
i=1

γiδη+
i

+
∞∑
i=1

γiδη−i

and the corresponding mixture martingale

Zπa (t) =
∞∑
i=1

γiZ
η+
i
a (t) +

∞∑
i=1

γiZ
η−i
a (t),

where by a slight abuse of notation, Zηa (t) = Z
δη
a (t) = exp(ηSa(t)− φµa(η)Na(t)) for η ∈ R.

In the case Xa(t) = Y +
a (t), this prior is modified by taking γi = 1

i2ζ(2)
and π =

∑∞
i=1 γiδη+

i
,

while for Xa(t) = Y −a (t), one defines π =
∑∞

i=1 γiδη−i
. We continue the proof assuming Xa(t) =

Ya(t) for all t. The proof of the two other cases follow the exact same lines, with the corresponding
priors, leading to an improved constant C(ξ) = ln ζ(2)

(ln(1+ξ))2 .

{Xa(t)− (1 + ξ) lnC(ξ) ≥ x}
⊆
{

[Na(t)d(µ̂a(t), µa)− 3 ln(1 + ln(Na(t)))]
+ ≥ x+ (1 + ξ) lnC(ξ)

}
= {Na(t)d(µ̂a(t), µa)− 3 ln(1 + ln(Na(t))) ≥ x+ (1 + ξ) lnC(ξ)} ,

where we use that x+ (1 + ξ) lnC(ξ) > 0 as ξ < 1/2. Now, as 2(1 + ξ) < 3, one has

{Xa(t)− (1 + ξ) lnC(ξ) ≥ x}

⊆
{
Na(t)d (µ̂a(t), µa)− 2(1 + ξ) ln (1 + ln(Na(t))) ≥ x+ (1 + ξ) ln

(
2ζ(2)

ln(1 + ξ)2

)}
⊆
{
Na(t)d (µ̂a(t), µa) ≥ x+ (1 + ξ) ln

(
2ζ(2)(1 + ln(Na(t))

2

ln(1 + ξ)2

)}
⊆
{
Na(t)d (µ̂a(t), µa) ≥ x+ (1 + ξ) ln

(
2ζ(2)(ln(1 + ξ) + ln(Na(t))

2

ln(1 + ξ)2

)}
,
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where the last inequality uses ln(1 + ξ) ≤ ln(3/2) ≤ 1. Now, let i(t) ≥ 1 be such that Na(t) ∈
[(1 + ξ)i−1, (1 + ξ)i]. One can observe that lnNa(t)

ln(1+ξ) ≥ i(t)− 1. Using Lemma 27,

{Xa(t)− (1 + ξ) lnC(ξ) ≥ x}

⊆
{
Na(t)d (µ̂a(t), µa) ≥ x+ (1 + ξ) ln

(
1

γi(t)

)}

⊆

 max
η∈

{
η+
i(t)

,η−
i(t)

} [ηSa(t)− φµa(η)Na(t)] ≥
1

1 + ξ

[
x+ (1 + ξ) ln

(
1

γi(t)

)]
⊆

 max
η∈

{
η+
i(t)

,η−
i(t)

} γi(t) exp (ηSa(t)− φµa(η)Na(t)) ≥ e
x

1+ξ


⊆

{
max
i∈N

max
η∈{η+

i ,η
−
i }
γi exp (ηSa(t)− φµa(η)Na(t)) ≥ e

x
1+ξ

}
⊆
{
Zπa (t) ≥ e

x
1+ξ

}
.

Proof of Lemma 27 We introduce the notation θ for the natural parameter associated to µa, defined
as θ = ḃ−1(µa). Define η+

i < 0 and η−i > 0 such that

KL(θ + η+
i , θ) = KL(θ + η−i , θ) =

x

(1 + ξ)i
.

where KL(θ, θ′) is the Kullback-Leibler divergence between the distributions of natural parameter θ
and θ′. Moreover, using some properties of the KL-divergence, one can write

KL(θ + η+
i , θ) = η+

i µ
+
i − φµa(η+

i ) with µ+
i := ḃ−1(θ + η+

i ) < µa,

KL(θ + η−i , θ) = η−i µ
−
i − φµa(η−i ) with µ−i := ḃ−1(θ + η−i ) > µa.

For Na(t) ∈ [(1 + ξ)i−1, (1 + ξ)i], one has{
Na(t)d

+(µ̂a(t), µa) ≥ x
}
⊆

{
d+(µ̂a(t), µa) ≥

x

(1 + ξ)i

}
⊆

{
µ̂a(t) ≤ µ+

i

}
⊆

{
η+
i µ̂a(t)− φµa(η+

i ) ≥ KL(θ + η+
i , θ)

}
⊆

{
(1 + ξ)i−1

(
η+
i µ̂a(t)− φµa(η+

i )
)
≥ x

1 + ξ

}
⊆

{
Na(t)

(
η+
i µ̂a(t)− φµa(η+

i )
)
≥ x

1 + ξ

}
,

where the third inclusion uses that η+
i is negative. Similarly, using this time that η−i > 0 yields{

Na(t)d
−(µ̂a(t), µa) ≥ x

}
⊆

{
µ̂a(t) ≥ µ−i

}
⊆

{
η−i µ̂a(t)− φµa(η−i ) ≥ KL(θ + η−i , θ)

}
⊆

{
Na(t)

(
η−i µ̂a(t)− φµa(η−i )

)
≥ x

1 + ξ

}
,

which concludes the proof.
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B.2 Tight Tuning: Proof of Lemma 12

In this section we prove Lemma 12, which gives the tightest possible tuning achievable with our
method. We first prove two auxiliary lemmas.

Lemma 28 Let x ≥ 0. Then

inf
q∈[0,1]

x− ln (1− q)
q

= h−1 (1 + x) .

Proof The objective is convex in 1
q , and hence minimised at zero derivative. Cancelling the derivative

requires

1 + x =
1

1− q
− ln

1

1− q
= h

(
1

1− q

)
so that q = 1− 1

h−1 (1 + x)

where the rewrite in terms of h is allowed since 1/(1− q) ≥ 1. Plugging this in, we find the value as
stated.

Definition 29 For any z ∈ [1, e] and x ≥ 0, we define

h̃z(x) = min
y∈[1,z]

y (x− ln ln y) .

We can now make the connection to (9).

Lemma 30 Fix z ∈ [1, e]. Then

h̃z(x) =

{
exp

(
1

h−1(x)

)
h−1(x) if x ≥ h

(
1

ln z

)
,

z (x− ln ln z) o.w.

Proof The objective in Definition 29 is convex on y ∈ [1, e], and its derivative is x − h(1/ ln y).
When x ≤ h(1/ ln z) it is decreasing on the entire domain y ∈ [1, z], and hence minimised at y = z,
yielding the second case. If on the other hand x ≥ h(1/ ln z), the derivative of the objective is

cancelled at y = e
1

h−1(x) , and substitution reveals that the value equals

e
1

h−1(x)
(
x+ lnh−1(x)

)
= e

1
h−1(x)h−1(x).

We are now ready to prove the Lemma.
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Proof (of Lemma 12) We reorganise, apply Lemma 28 and then Lemma 30 to find

Cexp(x) = inf
ξ∈[0,z]

(1 + ξ)

(
inf
q≤1

x− ln (1− q)
q

+ lnC(ξ)

)
= inf

ξ∈[0,z]
(1 + ξ)

(
h−1 (1 + x) + lnC(ξ)

)
= inf

ξ∈[0,z]
(1 + ξ)

(
h−1 (1 + x) + ln (2ζ(2))− 2 ln ln(1 + ξ)

)
= 2 inf

y∈[1,1+z]
y

(
h−1 (1 + x) + ln (2ζ(2))

2
− ln ln y

)
= 2h̃1+z

(
h−1 (1 + x) + ln (2ζ(2))

2

)
.

B.3 A Tighter One-Arm Bound

Lemma 13 allows us to directly derive valid thresholds involving only a single arm. Namely, we have

Corollary 31 Let h̃z(x) be as defined in (9). For every arm a and confidence parameter x ≥ 0

P
{
∃t ∈ N : Xa(t) ≥ 2h̃3/2

(
x+ ln (2ζ(2))

2

)}
≤ e−x.

Proof By Lemma 13, for every ξ ∈ [0, 1/2],

P
{
Xa(t)− (1 + ξ) ln

(
2ζ(2)

(ln(1 + ξ))2

)
≥ (1 + ξ)x

}
≤ P

{
Zπ((1+ξ)x)
a (t) ≥ ex

}
≤ e−x

Minimising the threshold w.r.t. ξ using Lemma 30 results in

min
ξ∈[0,1/2]

(1 + ξ)

(
x+ ln

(
2ζ(2)

(ln(1 + ξ))2

))
= 2h̃3/2

(
x+ ln (2ζ(2))

2

)
.

We see that the multiple-arm threshold of Theorem 7 has h−1(1 + x) > x where Corollary 31 has
just x. This additional blowup is the overhead that our approach incurs for controlling multiple arms
by means of a “Cramér-Chernoff” approach.

Appendix C. Refined Deviation Inequalities for Gaussian and Gamma Distributions

Theorem 9 and Theorem 10 follow from a similar martingale construction, that could actually be
used for other one-dimensional exponential families with divergence function d(·, ·), provided one is
able to construct a continuous prior satisfying a general assumption given below.
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Assumption 32 For every λ ∈]0, 1[, µ ∈ I, there exists a family of functions (pλ,µt )t≥1 such that,
for every t ≥ 1,

∀x ∈ I,
∫
pλ,µt (η)eηtx−φµ(η)t dη = eλtd(x,µ). (27)

Moreover, for every 1 ≤ n1 ≤ n2 and every η ∈ R,

pλ,µn1
(η) ≥

√
n1

n2
pλ,µn2

(η). (28)

In words, this assumption implies that for all a and t ≥ 1 there exists a prior distribution for
which the corresponding mixture martingale exactly attains eλtd(µ̂a(t),µa) and such that one can
control the variation of the prior corresponding to two different time steps. Under this assumption,
we are able to prove the following.

Theorem 33 Assume that Assumption 32 is satisfied and let

C0(t, λ) := sup
µ∈I

∫
pλ,µt (η) dη.

Fix ξ > 0, c > 1 and define

g0(λ, ξ, c) = ln

[ ∞∑
i=1

1

iλcζ(λc)
C0

(
(1 + ξ)i−1, λ

)]
.

The stochastic process Xa(t) = Na(t)d(µ̂a(t), µa)− c ln
(
ln(1 + ξ) + lnNa(t)

)
is gξ,c-VCC where

gξ,c : (c−1, 1] −→ R+

λ 7→ g0(λ, ξ, c) + 1
2 ln(1 + ξ) + λc ln

(
1

ln(1+ξ)

)
+ ln ζ(λc).

Theorem 33 directly provides a deviation inequality using Lemma 4. It thus remains to find
sequences of priors satisfying Assumption 32, which we were able to do for two particular examples,
Gaussian and Gamma distributions. One can note that finding functions pλ,µt is closely related to
computing a (bilateral) inverse Laplace transform. Indeed, if q is the inverse Laplace transform of
eλtd(x,µ), meaning that ∀x :

∫∞
−∞ q(s)e

−sx ds = eλtd(x,µ), the assumption is satisfied for pλ,µt (η) =

tq(−ηt)eφµ(η)t. However, computing such inverse Laplace transforms is not easy beyond Gaussian
or Gamma distributions.

Proof of Theorem 33 For i = 1, 2, . . . we introduce grid points Ti = (1+ξ)i−1 with prior weights
γi = 1

iλcζ(λc)
and define the (un-normalized) martingale

M̃λ
a (t) :=

∞∑
i=1

γi

∫
pλ,µaTi

(η)eηSa(t)−φµa (η)Na(t) dη,

that satisfies M̃λ
a (0) ≤ exp(g0(λ, ξ, c)).
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For Na(t) ∈ [Ti, Ti+1[, we first bound the martingale from below by one of its terms, and then
make use of Assumption 32.

M̃λ
a (t) ≥ γi

∫
pλ,µaTi

(η)eηSa(t)−φµa (η)Na(t) dη

≥

√
Ti

Na(t)
γi

∫
pλ,µaNa(t)(η)eηSa(t)−φµa (η)Na(t) dη

=

√
Ti

Na(t)
γi exp (λNa(t)d (µ̂a(t), µa))

≥
√

1

1 + ξ
γi exp (λNa(t)d (µ̂a(t), µa)) ,

where the last inequality uses Na(t) ≤ Ti+1 and Ti/Ti+1 = 1/(1 + ξ), due to the geometric grid.
Introducing the normalised martingale Mλ

a (t) = M̃λ
a (t)/M̃λ

a (0) and further using the expression
of γi yields, for all t such that Na(t) ∈ [Ti, Ti+1[,

Mλ
a (t) ≥ M̃λ

a (t)e−g0(λ,ξ,c) ≥ eλNa(t)d(µ̂a(t),µa)−g0(λ,ξ,c)− 1
2

ln(1+ξ)−ln ζ(λc)−λc ln(i).

Finally, using that i ≤ 1 + ln(Na(t))/ ln(1 + ξ) yields the desired

Mλ
a (t) ≥ exp (λXa(t)− gξ,c(λ)) .

It remains to check the case Na(t) = 0. Then Xa(t) = −∞, so clearly Mλ
a (t) = 1 > e−λ∞.

�

C.1 Application to Gaussian Distributions

In the Gaussian case, direct computations show that Assumption 32 holds for the choice

pλ,µt (η) =
1√

1− λ
1√

2πσ2
t

exp

(
− η2

2σ2
t

)
,

where σ2
t = λ

t(1−λ) . As a consequence C0(t, λ) = 1√
1−λ and g0(λ, ξ, c) = −1

2 ln (1− λ). Note that
the inequality (28) is actually an equality. We are now ready to prove Theorem 9.

Proof of Theorem 9 By Theorem 33, picking c = 2, for every ξ > 0 and λ ∈]1/2, 1[ there exists
a test martingale Mλ,ξ

a (t) such that

∀t ∈ N, Mλ,ξ
a (t) ≥ eλ[Na(t)d(µ̂a(t),µa)−fξ(Na(t))]−gξ(λ)

with

fξ(s) = 2 ln(ln(1 + ξ) + ln(s))

gξ(λ) =
1

2
ln(1 + ξ) + 2λ ln

(
1

ln(1 + ξ)

)
+ ln ζ(2λ)− 1

2
ln (1− λ)
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It can be checked that the choice of ξ leading to the smallest gξ function is ln(1 + ξ) = 4λ. Denoting
by ξ∗(λ) this value, it holds that

gG(λ) = gξ∗(λ)(λ) = 2λ− 2λ ln (4λ) + ln ζ(2λ)− 1

2
ln (1− λ) .

For every λ ∈]1/2, 1[, observe that fξ∗(λ)(s) ≤ 2 ln(4 + ln s). Hence, there exists a test martingale

Mλ
a (t) = M

λ,ξ∗(λ)
a (t) such that

∀t ∈ N, Mλ
a (t) ≥ eλ[Na(t)d(µ̂a(t),µa)−2 ln(4+ln(Na(t)))]−gG(λ),

which concludes the proof.

C.2 Application to Gamma Distributions

A Gamma distribution with shape parameter α and mean µ has density at z > 0 given by

fα,µ(z) =
e
−αz

µ

(
αz
µ

)α
zΓ(α)

.

We recover the Exponential distribution for α = 1. More generally, the set of Gamma distributions
with a known shape α form a one-parameter exponential family for which

d(µ, µ′) = α

(
µ

µ′
− 1− ln

µ

µ′

)
and φµ(η) = α ln

(
α

α− µη

)
for η < α/µ.

Next we show that the family of functions

pλt (η) :=
µ

α

(αt/e)λαt

Γ(λαt)

(
1− ηµ

α

)−αt (
λ− ηµ

α

)λαt−1

+
. (29)

leads to suitable “priors”.

Proposition 34 The family of functions defined in (29) satisfies Assumption 32.

Proof Proving (27) is equivalent to checking that for all x > 0,

µ

α

(
αtx

µ

)λαt 1

Γ(λαt)

∫ λα
µ

−∞

(
λ− ηµ

α

)λαt−1
eηtx dη = e

λαtx
µ

which can be done using change of variables to y = tx
(
αλ
µ − η

)
and the definition of the Gamma

function Γ(z) =
∫∞

0 xz−1e−x dx. Now let us check condition (28). The condition is trivially
satisfied for η ≥ λα

µ , as both sides are zero. So assume η is smaller. Then

ln
pλn1

(η)

pλn2
(η)

= ln

µ
α

(αn1/e)λαn1

Γ(λαn1)

(
1− ηµ

α

)−αn1
(
λ− ηµ

α

)λαn1−1

µ
α

(αn2/e)λαn2

Γ(λαn2)

(
1− ηµ

α

)−αn2
(
λ− ηµ

α

)λαn2−1

= ln
Γ(λαn2)(αn2/e)

−λαn2

Γ(λαn1)(αn1/e)−λαn1
+ α(n2 − n1)

(
ln
(

1− ηµ

α

)
− λ ln

(
λ− ηµ

α

))
≥ 1

2
ln

(
n1

n2

)
+ α(n2 − n1)

(
λ lnλ+ ln

(
1− ηµ

α

)
− λ ln

(
λ− ηµ

α

))
≥ 1

2
ln

(
n1

n2

)
.
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For the first inequality we used that the approximation error ln(Γ(x))− x ln(x) + x− 1
2 ln

(
2π
x

)
is a

decreasing function of x ∈ R+ (as can be easily verified by a plot), so that in particular

ln
Γ(λαn2)

Γ(λαn1)
≥ 1

2
ln

(
n1

n2

)
+ λαn2 ln(λαn2/e)− λαn1 ln(λαn1/e).

For the second inequality we use that the expression above switches from decreasing to increasing at
η = 0, and is hence minimised there. Plugging in the value η = 0 gives the result.

We are now ready to prove Theorem 10, as a consequence of Theorem 33.

Proof of Theorem 10 In order to evaluate the function g0(λ, ξ, c) featured in Theorem 33, we first
compute

C0(t, λ) =
Γ((1− λ)αt)

Γ(αt)
(αt/e)λαt(1− λ)−(1−λ)αt.

To see this, perform the variable substitution z = αλ−ηµ
α−ηµ ∈ [0, 1] to render this a standard Beta

integral

C0(t, λ) =
(αt/e)λαt

Γ(λαt)

∫ λα
µ

−∞

(
1− ηµ

α

)−αt (
λ− ηµ

α

)λαt−1 µ

α
dη

=
(αt/e)λαt

Γ(λαt)

∫ 1

0

(
1− λ− z

1− z

)−αt(
λ− λ− z

1− z

)λαt−1 1− λ
(1− z)2

dz

=
(αt/e)λαt

Γ(λαt)
(1− λ)−(1−λ)αt

∫ 1

0
zλαt−1 (1− z)(1−λ)αt−1 dz

= (αt/e)λαt (1− λ)−(1−λ)αt Γ((1− λ)αt)

Γ(αt)

Proposition 35 C0(t, λ) is decreasing in t ∈ R+.

Proof Let ψ(0)(x) = ∂ ln Γ(x)
∂x . The derivative of lnC0(t, λ) w.r.t. t is negative iff

(1− λ)ψ(0)((1− λ)αt)− (1− λ) ln((1− λ)αt) < ψ(0)(αt)− ln(αt).

Now this follows from the fact that xψ(0)(x)− x lnx can be checked to be an increasing function of
x ∈ R+.

We find that C0(t, λ) decreases from 1
1−λ at t→ 0 to 1√

1−λ for t→∞. For the former, we use

C0(t, λ) =
Γ((1− λ)αt)

Γ(αt)
(αt/e)λαt(1− λ)−(1−λ)αt

=
1

1− λ
((1− λ)αt)Γ((1− λ)αt)

(αt)Γ(αt)
(αt/e)λαt(1− λ)−(1−λ)αt

=
1

1− λ
Γ(1 + (1− λ)αt)

Γ(1 + αt)
(αt/e)λαt(1− λ)−(1−λ)αt
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The claimed limit for t → 0 now follows by taking the limit of each factor, using Γ(1) = 1 and
tt → 1. For the latter, the first-order Stirling’s approximation Γ(z) ∼

√
2πe−zzz−

1
2 yields

C0(t, λ) ∼ 1√
1− λ

when t→∞

Finally, we have that for all λ ∈ (0, 1) and t ∈ N,

C0(t, λ) ∈
[

1√
1− λ

;
1

1− λ

]
.

It follows that for all ξ > 0, −1
2 ln(1− λ) ≤ g0(λ, ξ, c) ≤ − ln(1− λ). We might be able to show

that g0 is actually closer to −1
2 ln(1 − λ) as the Stirling approximation is known to be good for

moderate values of t. However using Theorem 33 (and picking c = 2) one can already prove that for
every ξ > 0 and λ ∈ (c−1, 1), there exists a test martingale Mλ,ξ

a (t) such that

∀t ∈ N, Mλ,ξ
a (t) ≥ eλ[Na(t)d(µ̂a(t),µa)−fξ(Na(t))]−gξ(λ)

with

fξ(s) = 2 ln(ln(1 + ξ) + ln(s))

gξ(λ) =
1

2
ln(1 + ξ) + 2λ ln

(
1

ln(1 + ξ)

)
+ ln ζ(2λ)− ln (1− λ) .

Just like in the proof of Corollary 9, the function g is optimised in ξ at ln(1 + ξ) = 4λ. We conclude
similarly that Xa(t) = Na(t)d(µ̂a(t), µa)− 2 ln(4 + ln(Na(t)) is gΓ-VCC (see Definition 1) for the
function gΓ(λ) = 2λ− 2λ ln (4λ) + ln ζ(2λ)− ln (1− λ).

�

Appendix D. Optimal Sample Complexity: Proof of Theorem 17

The first ingredient of the proof is a (deterministic) property of the Tracking sampling rule, that
reformulates Lemma 8 in Garivier and Kaufmann (2016).

Lemma 36 Under the Tracking rule for each a ∈ {1, . . . ,K},Na(t) ≥ (
√
t−K/2)+−1. Moreover,

for all ε > 0, for all t0, there exists tε ≥ t0 such that

sup
t≥t0

max
a∈{1,...,K}

|w∗a(µ̂(t))− w∗a(µ)| ≤ ε ⇒ sup
t≥tε

max
a∈{1,...,K}

∣∣∣∣Na(t)

t
− w∗a(µ)

∣∣∣∣ ≤ 3(K − 1)ε .

To ease the notation, we fix µ ∈ O1. From the continuity of w∗ in µ ∈ O1, there exists
ξ = ξ(ε,µ) such that

Iε := [µ1 − ξ, µ1 + ξ]× · · · × [µK − ξ, µK + ξ]

is included in O1 and is such that for all µ′ ∈ Iε,

max
a∈{1,...,K}

|w∗a(µ′)− w∗a(µ)| ≤ ε.
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In particular, whenever µ̂(t) ∈ Iε, it holds that ı̂(t) = 1.

Let T ∈ N and define the “good tail” event

ET (ε) =
T⋂

t=T 1/4

(µ̂(t) ∈ Iε) .

By Lemma 36, under the Tracking rule each arm is drawn at least of order
√
t times at round t.

This permits to establish the following concentration result, stated as Lemma 19 in Garivier and
Kaufmann (2016).

Lemma 37 There exist two constants B,C (that depend on µ and ε) such that

Pµ(EcT (ε)) ≤ BT exp(−CT 1/8).

Using Lemma 36, there exists a constant Tε such that for T ≥ Tε, it holds that on ET (ε),

∀t ≥
√
T , max

a∈{1,...,K}

∣∣∣∣Na(t)

t
− w∗a(µ)

∣∣∣∣ ≤ 3(K − 1)ε

On the event ET (ε), for t ≥ T 1/4 it holds that ı̂(t) = 1, thus Alt(µ̂(t)) = Alt(µ) and Λ̂t = tM̂(t)
where

M̂(t) := inf
λ∈Alt(µ)

∑
a∈{1,...,K}

Na(t)

t
d (µ̂a(t), λa) .

One can rewrite

M̂(t) = g

(
µ̂(t),

(
Na(t)

t

)
a∈{1,...,K}

)
,

with g a mapping defined on O1 × [0, 1]K by

g(µ′,w′) = inf
λ∈Alt(µ)

∑
a∈{1,...,K}

w′ad
(
µ′a, λa

)
.

As the mapping (λ,µ′,w′) 7→
∑

a∈{1,...,K}w
′
ad (µ′a, λa) is jointly continuous and the constraint set

Alt(µ) doesn’t depend on (µ′,w′), it follows from the application of Berge’s maximum theorem
(Berge, 1963) that g is continuous.

For T ≥ Tε, introducing the constant

C∗ε (µ) = inf
µ′:||µ′−µ||≤ξ(ε)

w′:||w′−w∗(µ)||≤3(K−1)ε

g(µ′,w′) ,

on the event ET (ε) it holds that for every t ≥
√
T , M̂(t) ≥ C∗ε (µ).
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Let T ≥ Tε. On ET (ε),

min
(
τGLR
δ , T

)
≤
√
T +

T∑
t=
√
T

1(τδ>t) ≤
√
T +

T∑
t=
√
T

1(tM̂(t)≤ct(δ))

≤
√
T +

T∑
t=
√
T

1(tC∗ε (µ)≤cT (δ)) ≤
√
T +

cT (δ)

C∗ε (µ)
.

Introducing

T ε0(δ) = inf

{
T ∈ N :

√
T +

cT (δ)

C∗ε (µ)
≤ T

}
,

for every T ≥ max(T ε0(δ), Tε), one has ET (ε) ⊆ (τδ ≤ T ), therefore

Pµ (τδ > T ) ≤ P(EcT ) ≤ BT exp(−CT 1/8)

and

Eµ[τδ] ≤ T ε0(δ) + Tε +
∞∑
T=1

BT exp(−CT 1/8) .

We now provide an upper bound on T ε0(δ). For ξ > 0 we introduce the constant

C(ξ) = inf{T ∈ N : T −
√
T ≥ T/(1 + ξ)}.

Using moreover the upper bound on the threshold yields

T ε0(δ) ≤ C + C(ξ) + inf

{
T ∈ N :

ln
(
DT
δ

)
C∗ε (µ)

≤ T

1 + ξ

}
.

Letting h−1 be the function defined in the statement of Theorem 7 which is related to the Lambert
function. One has

T0(δ) ≤ C + C(ξ) +
(1 + ξ)

C∗ε (µ)
h−1

(
ln

(
(1 + ξ)D

C∗ε (µ)δ

))
.

Using Proposition 8, it follows that

T0(δ) ≤ C + C(ξ) +
(1 + ξ)

Cε(µ)

[
ln

(
(1 + ξ)D

C∗ε (µ)δ

)
+ ln

(
ln

(
(1 + ξ)D

C∗ε (µ)δ

)
+

√
2 ln

(
(1 + ξ)D

C∗ε (µ)δ

)
− 2

)]
.

From this last upper bound, for every ξ > 0 and ε > 0,

lim sup
δ→0

Eµ
[
τGLR
δ

]
ln(1/δ)

≤ (1 + ξ)

C∗ε (µ)
.

Letting ξ and ε go to zero and using that, by continuity of g and by definition of w∗(µ),

lim
ε→0

C∗ε (µ) = T ∗(µ)−1

yields

lim sup
δ→0

Eµ[τδ]

ln(1/δ)
≤ T ∗(µ)

To conclude, the lower bound of Proposition 16 implies that this inequality is an equality.
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