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Abstract

Effective feature representation is key to the predictive performance of any algorithm. This
paper introduces a meta-procedure, called Non-Euclidean Upgrading (NEU), which learns
feature maps that are expressive enough to embed the universal approximation property
(UAP) into most model classes while only outputting feature maps that preserve any model
class’s UAP. We show that NEU can learn any feature map with these two properties
if that feature map is asymptotically deformable into the identity. We also find that
the feature-representations learned by NEU are always submanifolds of the feature space.
NEU’s properties are derived from a new deep neural model that is universal amongst
all orientation-preserving homeomorphisms on the input space. We derive qualitative and
quantitative approximation guarantees for this architecture. We quantify the number of
parameters required for this new architecture to memorize any set of input-output pairs
while simultaneously fixing every point of the input space lying outside some compact set,
and we quantify the size of this set as a function of our model’s depth. Moreover, we show
that deep feed-forward networks with most commonly used activation functions typically do
not have all these properties. NEU’s performance is evaluated against competing machine
learning methods on various regression and dimension reduction tasks both with financial
and simulated data.

Keywords: Geometric Deep Learning, Universal Feature Maps, Reconfiguration Net-
works, Pre-Processing, Homeomorphism Learning.

1. Introduction

The training phase of most learning problems seeks to identify a model f̂ belonging to a
model class F , which best approximates an unknown function f , as given by:

min
f̂∈F

∑
n≤N

1

N
L(f(xn), f̂(xn), xn) + P (f̂), (L)
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where {xn}n≤N is a given set of training data, L is a loss-function, and P is a penalty which
encodes regularity into the model f̂ . The effectiveness of the learning task (L) often hinges
on the appropriateness of the input data’s representation. Where by a representation of the
input space Rd is the subset φ(Rd) ⊆ RF and where φ : Rd → RF is a feature map mapping
into the feature space RF . Following Micchelli et al. (2006), we define feature maps as being
continuous, and by Brouwer (1911) we observe that the feature space’s dimension must be
at-least that of Rd.

Two popular but differing approaches to representation learning are offered by kernel
methods and by deep learning. Introduced by Boser et al. (1992), the former of the two
implicitly embeds Rd into a high, and often infinite, dimensional linear space H by using the
correspondence between feature maps and kernels identified in Aronszajn (1950); Argyriou
et al. (2009). However, the effectiveness of these methods hinges on the appropriateness of
the specified kernel; see Kanagawa et al. (2020) for example. In contrast, the deep learning
paradigm offers a non-parametric approach to representation learning. This is because any
deep feed-forward network (DNN) f̂ is necessarily of the form f̂(x) = W ◦φ(x) where W is
an affine function on RF and φ : Rd → RF is a feature map generated by iteratively applying
feed-forward layers to the input space.

This paper introduces Non-Euclidean Upgrading (NEU), a meta-algorithm that incorpo-
rates a linearizing preprocessing step into (L) as summarized in Meta-Algorithm 1. During
this preprocessing step, NEU generates a feature map that both increases the expressiveness
of F and preserves its approximation capabilities by learning a topological embedding of
the input space Rd into a low-dimensional feature space RF . NEU does this by training a
new deep neural model type, called the reconfiguration network and denoted by Φ?:d, whose
members form a universal class of regular feature maps.

NEU balances the newly found flexibility, which Φ?:d embeds into F by optimally re-
weighting the relative impact of each training data-point {xn}n≤N in (L) so as to minimize
the gap between the trained model’s training and testing performance. We denote these
new, data-dependent, weights by {w?,λn }n≤N , where λ > 0 is a hyper-parameter.

Meta-Algorithm 1: Non-Euclidean Upgrading (NEU)

input : Hypothesis class F , loss-function L, penalty function P ,
Training Data {xn}n≤N
Feature map’s depth J
Robustness Hyper-parameter λ > 0

output: NEU-model fNEU , f̂ ◦ φ̂Î .

1 φ̂ ∈ argmin
φ∈Φ?:d

∑
n≤N w

?,λ
n L (f(xn), Aφ(xn) + b, xn) + P (Aφ+ b) ; . Get Feature Map

2 f̂ ∈ argmin
f̂∈F

∑
n≤N w

?,λ
n L

(
f(xn), f̂ ◦ φ̂(xn) + b, xn

)
+ P (f̂ ◦ φ̂) ; . Get NEU-Model

We motivate NEU through its properties. Many feature maps can impede the universal
approximation property (UAP) of F . Naturally, we require that any feature map gen-
erated by NEU, satisfies the following UAP-invariance property, which is introduced and
characterized in Kratsios and Bilokopytov (2020):1

1. The authors find that (P-i) holds exactly when φ is injective. Consequentially, Brouwer (1911) implies
any UAP-invariant feature map must map into a feature space RF of dimension at-least d.
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(P-i) If F is a universal in C(Rd,RD) then so is F ◦ φ.

Next, we require NEU should be able to learn the identity continuously. Thus, it should
be capable of not imposing any additional unnecessary structure if, and once, the input
space is sufficiently well-represented. Mathematically, we require that the collection of
feature maps that NEU can generate, denoted for the moment by Φ, satisfy:

(P-ii) Any φ ∈ Φ can be parameterized to continuously learn the identity; i.e., there is a
continuous map φα : [0, 1]× Rd → RF such that

φ1(x) = φ(x), φ0((x1, . . . , xn)) = (x1, . . . , xd, 0, . . . , 0), φα satisfies (P-i).

Property (P-ii) is critical when members of Φ are built by repeatedly composing many layers
since failing (P-i) forces all deeper layers to simultaneously learn the target function and
compensate the mistakes of erroneously applied earlier layers. As discussed in, Hardt and
Ma (2016), property (P-ii) is core to the success of the batch normalization algorithm of
Ioffe and Szegedy (2015), among other recent deep learning paradigms.

NEU is designed to exclusively generate feature maps satisfying both (P-i) and (P-
ii). Our main universal approximation results will show that the feature maps generated by
NEU are universal amongst all those satisfying both properties (P-i) and (P-ii). In contrast,
we show that typically DNNs with the ReLU non-linearity of Hahnloser et al. (2000) fail to
satisfy (P-i).

Together, properties (P-i) and (P-ii) only guarantee that a class of feature maps Φ does
not disrupt the representation of any input space. However, we are most interested in
identifying a feature map class Φ, which additionally improves the expressiveness of any
model class possessing a basic level of expressiveness. By this, we mean that NEU should
imbue most learning models with the universal approximation property:

(P-iii) If F contains all linear maps, then {F ◦ φ}φ∈Φ is universal.

Property (P-iii) is ”asymptotic” since it guarantees that any function can eventually be
approximated if a sufficiently complex feature map is used. We complement it with the
following, non-asymptotic, refined memorization property:

(P-iv) If n = d and F contains all linear maps, then given any input-output pairs {xn}n≤N
and {yn}n≤N and any tolerance δ > 0, some feature map φ ∈ Φ satisfies

φ(xn) = yn and µ
(
{x ∈ Rd : φ(x) 6= x}

)
< δ;

for every n ≤ N ; where µ is the Lebesgue measure on Rd.

Property (P-iv) is a refinement of the arbitrary memory capacity of feed-forward networks
studied in Jiang et al. (2009), which simultaneously asks that NEU be able to leave most
of the unseen data unimpacted. We show that NEU generates feature maps satisfying
properties (P-iii) and (P-iv) and that DNNs with commonly-used non-ReLU activation
functions, such as the Swish non-linearity of Ramachandran et al. (2018), the Gaussian
Error Linear Unit of Hendrycks and Gimpel (2016), the Soft-Plus activation of Glorot
et al. (2011), and tanh activation functions all fail (P-iv). Analogously to Yarotsky (2018),
Bölcskei et al. (2019), Lu et al. (2020), and Kratsios and Papon (2021) our approximation
guarantees are quantitative and analogously to Jiang et al. (2009), Yun et al. (2019), and
Vershynin (2020a) our memorization guarantees are also quantitative.
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Outline of the Paper

Section 2 begins by covering the topological background required for the framing of our
main results and ends with the precise description of the deep neural model which NEU
trains. Section 3 contains the paper’s main theoretical contributions. These include vari-
ous universal approximation results, guarantees on the reconfiguration network’s memory
capacity, and guarantees that the reconfiguration network can approximate at the desired
optimal rates. The implications of these results are then unpacked in the context of NEU.
Section 4 evaluates the predictive gain obtained by applying NEU across various regression
and dimension reduction problems. Our implementations focus on financial data analy-
sis. The performance of NEU regression methods is subsequently evaluated on simulated
data to understand its implications in a fully controlled environment. Specifically, NEU is
stress-tested using various pathological regression challenges. All proofs and any additional
topological background is available in the supplementary material.

Notation

The following notation is maintained throughout this paper. We denote the set of continuous
functions from Rd to RD by C(Rd,RD). The set of DNNs from Rd to RD with activation
function σ ∈ C(R) and at-least one hidden layer is denoted by NN σ

d,D.

2. Preliminaries

This section covers the background and definition required in the remainder of this paper.

2.1 Background

2.1.1 Continuous Functions

We denote the Euclidean norm by ‖ · ‖ on Rd (resp RD). Following Hornik et al. (1989), we
view C(Rd,RD) as a metric space, with metric ducc defined for f, g ∈ C(Rd,RD) by

ducc (f, g) ,
∑
k∈N+

sup‖x‖≤k ‖f(x)− g(x)‖

2k
(

1 + sup‖x‖≤k ‖f(x)− g(x)‖
) . (1)

This metric describes the uniform convergence on compacts topology standard in the uni-
versal approximation literature such as Leshno et al. (1993) and Kidger and Lyons (2020).

Analogously to Yarotsky (2018) our quantitative approximation results depend on the
regularity of the unknown target function. The regularity of any f ∈ C(Rd,RD) is quan-
tified by its (optimal) modulus of continuity, denoted by ωf ,2 measures the input’s space’s
distortion upon applying f and it is defined by ωf (δ) , supx,y∈Rd, ‖x−y‖≤δ ‖f(x)− f(y)‖.

2.1.2 Orientation-Preserving Homeomorphisms

In Kratsios and Bilokopytov (2020), it was shown that a feature map has the UAP-invariant
property if and only if it is injective. Geometrically, this is because any injective feature

2. By the Heine-Cantor Theorem (Munkres, 2000, Theorem 27.6), any continuous functions on a compact
subset of its input space, such as [−M,M ]d ⊂ Rd, has a well-defined modulus of continuity.
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map is by definition, injective and continuous, and thus, as discussed in Kratsios and Papon
(2021), it preserves all the topological information of any compact subset of Rd.

This perfect preservation of topological information is formalized by topological embed-
dings. Topological embeddings are continuous bijections which have a continuous inverse
defined on their image. These are closely related to homeomorphisms; where by a homeo-
morphism on Rd we mean a bijection φ ∈ C(Rd,Rd) having a continuous inverse.

Throughout this paper, we focus on the subset H (Rd) ⊆ C(Rd,Rd) consisting of home-
omorphisms φ which preserve any the orientation of any basis of Rd. For example, no
reflection in R2 belongs to H (R2) but the map x 7→ 2x does not. This class is key to our
analysis as it is interconnected with property (P-ii). This is because the central result of
Kirby (1969) characterizes H (Rd) as exactly describing the homeomorphisms on Rd that
can be continuously deformed into the identity; i.e.: there is a φα ∈ C([0, 1] × Rd,Rd)
satisfying:

φ1(x) = φ(x), φ0(x) = x, φα is a homeomorphism for each α ∈ [0, 1]. (2)

Following Adams (2004), we refer to the function φα as an ambient-isotopy.
In Edwards and Kirby (1971), it is shown that the homeomorphisms in H (Rd) are

characterized by their fragmentation property. This means that, given any φ ∈ H (Rd),
δ > 0, and any {xn}n≤N for which [−M,M ]d ⊆ ∪n≤NB(xn, δ) then there necessarily exist
some {φn}n≤N ⊆H ([−M,M ]d) satisfying

φ = φN ◦ · · · ◦ φ1 and φn(x− xn) = x− xn (whenever ‖x‖ ≥ δ). (3)

Our interest in the fragmentation property is that it allows us to quantify the complexity
of a homeomorphisms; which we rely on for our quantitative results.

2.2 The Space of Rotation Matrices

Key to our analysis are the higher-dimensional rotation matrices, which have recently been
connected to DNNs in Bansal et al. (2018), Jia et al. (2019), and Lezcano-Casado and
Mart́ınez-Rubio (2019). These matrices R are precisely those for which the map x 7→ Rx
does not flip any basis of Rd and it preserves the distances between any two vectors. These
matrices are characterized by:

SO(d) ,
{
R ∈ Matd×d : R>R = RR> = Id and det(R) = 1

}
;

where Id is the d× d identity matrix on Rd and Matd×d denotes the set of d× d matrices.
Following Knapp (2002), every R ∈ SO(d) can be expressed as the matrix exponential

exp(A) of a d × d-skew symmetric matrix A; where exp(A) ,
∑∞

k=0
1
k!A

k. Analogously to
Lezcano-Casado and Mart́ınez-Rubio (2019), we identify the vector space of d × d-skew-
symmetric matrices, denoted by sod, with the Euclidean space of the same dimension. This
identification is realized via the bijection Skw : Rd(d−1)/2 → sod defined by

(x1,2, . . . , x1,d, . . . , xd−1,d)→


0 x1,2 . . . x1,d

−x1,2

. . .
. . . xd−1,d

−x1,d −xd−1,d 0

 .

Next, we describe the deep neural models which NEU trains.
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2.3 Reconfiguration Networks

Recall that the DNN architecture, originating in McCulloch and Pitts (1943), is built by
repeatedly composing the following type of elementary functions x 7→ σ • (Ax+ b) , where
A is a di × di+1 matrix (di, di+1 ∈ N+), b ∈ Rdi+1 , σ : R→ R is a non-linear function which
is fixed across each feed-forward layer, and • denotes component-wise composition.

NEU trains a variant of the DNN architecture whose layers are constrained between
Rd, but with the key difference being that the connection matrix A is replaced by a spe-
cific SO(d)-valued function called a reconfiguration unit. These units allow the network’s
connection to depend, in a highly structured and non-constant way, on spatial data with
the added flexibility of being able to only locally manipulate input data. A visualization of
reconfiguration units is found in Figure 1.

(a) Input data (b) Reconfiguration unit’s output.

Figure 1: Visualization of reconfiguration unit’s effect.

Definition 2.1 (Reconfiguration Unit) A reconfiguration unit is a matrix-valued func-
tion A : R→ Matd×d with representation

A(x) , exp
(
M1(‖x− c‖2) +M2(‖x− c‖2)

)
M1(z) , Skw(W2,1 ◦ σReLU •W1,1)(z)

M2(z) , Skw(W2,2 ◦ σReLU •W1,2)(z) 8
√

(z − η)(z + η)I|z|<η,

(4)

where, for i = 0, 1, W1,i : R → Rd(d−1)/2 and W2,i : Rd(d−1)/2 → Rd(d−1)/2 are affine
functions, c ∈ Rd, η > 0, and where σReLU(x) , max{0, x}.

Remark 1 (Reconfiguration unit parameters) The map M2 controls the local behaviour
of A and the map M1 controls its global behaviour. By setting W2,2 = 0, the reconfiguration
unit A becomes the identity outside of the ball {z ∈ Rd : ‖z − c‖ ≤ η}.

We combine reconfiguration units, biases, and activation functions to build complex deep
neural models. However, again unlike DNNs, we use an activation function, which is always
a homeomorphism on R. Analogously to He et al. (2015) and Ramachandran et al. (2018)
we allow the activation function to depend on an additional parameter that can be used to
turn the activation function into the identity map.
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Definition 2.2 (Reconfiguration Network) A reconfiguration network is a function φ ∈
C(Rd,Rd) with representation φ(x) = φJ(x), where φJ is defined iteratively via

φn+1(x) = σαn (An(φn(x))(φn(x)− cn)) + bn φ0(x) = x, (5)

for every x ∈ Rd, some J ∈ N+, some {cn, bn}Nn=1 ∈ Rd, reconfiguration units {An}Nn=1, and
some {αn}Nn=1 in [0,∞), where

σα(x) , x+ tanh(αx). (6)

The set of all reconfiguration networks is denoted by Φ?:d. J is called the depth of φ.

3. Main Results

This section contains the paper’s main theoretical contributions. We begin by outlining
the structured approximation capabilities of the reconfiguration networks, before describing
their implications for NEU. The section closes upon examining NEU’s robustification of (L).

3.1 Universal Orientation-Preserving Homeomorphisms

We find that reconfiguration networks can approximate any homeomorphism in H (Rd).

Theorem 2 (Reconfiguration Networks are Universal in H (Rd)) Let d ∈ N+ with
d ≥ 1, φ ∈ H (Rd), K be a non-empty compact subset of Rd, and let ε > 0. There exist
φε ∈ Φ?:d satisfying

(i) supx∈K ‖φ(x)− φε(x)‖ < ε.

(ii) φε ∈H (Rd).

Theorem 2 is a qualitative universal approximation result for DNN in H (Rd). However,
analogously to Barron (1993) and Siegel and Xu (2020), by assuming some additional regu-
larity of the homeomorphism being approximated, we may obtain a quantitative approxima-
tion result describing the complexity of the reconfiguration network required to approximate
a target homeomorphism.

Analogously to Yarotsky (2018); Kratsios and Papon (2021) the complexity of a recon-
figuration network is quantified by its depth. Since homeomorphisms are more complex and
structured objects than simple continuous functions, our rates depend both on the target
homeomorphism’s modulus of continuity, as in Yarotsky (2018), and its best behaviour on
a fragmentation; in the sense of (3).

Let M, δ > 0 and let ω : [0,∞) → [0,∞) be a modulus of continuity. We establish
bounds for the class H δ

M,ω(Rd) ⊆ H (Rd) consisting of all homeomorphisms φ ∈ H (Rd)

mapping [−M,M ]d into itself satisfying a refinement of (3). Here, we additionally require
that there is at-least one pair {xn}n≤N and {ϕn}n≤N satisfying (3) which also satisfies:

‖ϕn(x)− xn‖ = ‖x− xn‖ (7)

‖ϕn(x− xn)− ϕn(y − xn)‖ = ‖y − x‖ ( if ‖x− xn‖ = ‖y − xn‖) (8)

‖xn − xm‖ >
δ

2
( if n 6= m, n,m ≤ N) (9)

max
n≤N

ωφn(u) ≤ ω(u) (∀u ≥ 0). (10)
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Theorem 3 (Quantitative Approximation Rates) Fix δ,M > 0, d ∈ N+, and a mod-
ulus of continuity ω. For any φ ∈ H δ

M,ω(Rd), any ν ∈ N+ there is a C ≥ 0, not depending

on d,D, δ or ω, and a reconfiguration network φ of depth at-most ν
⌈

(8M)ddd−1

δd(d−1)

⌉
, such that:

sup
‖x‖≤M

∥∥∥φ(x)− φ̂(x)
∥∥∥ ≤ ων,δ,M,d,ω; (11)

where ων,δ,M,d,ω , ω⌈
(8dM)d

δd

⌉ and ω⌈
(8dM)d

δd

⌉ is determined recursively by:

ωn+1 = 2dMCω

(2−1ν

⌈
δd

(8dM)d

⌉
d(d− 1)

)−1
d

+ ω (ωn) , ω0 = 0. (12)

Homeomorphisms depending on arbitrary moduli of continuity, as in Theorem 3, may have
arbitrarily poor behaviour. However, in many applications one has differentiability of the
unknown homeomorphism φ and therefore φ is Lipschitz on [−M,M ]d by the Mean-Value
Theorem; i.e.: ω(t) = L|t| for some L > 0. In this case, (11) implies the following.

Example 1 (Simple Bounds for Lipschitz Homeomorphisms) In the case that φ ∈

H δ
M,L|·|, then recursive upper-bound simplifies to ων,δ,M,d,ω = ν

−1
d

(
2dMCL1−L

8d2M
δ

1−L

)
.

Reconfiguration networks can memorize arbitrarily many input-output pairs without
much guessing. Analogously to Jiang et al. (2009), we provide an upper bound on the
reconfiguration network’s depth, trained on the memorization task.

3.2 Memorization without Guessing

We quantify the size of the compact subset K ⊆ Rd on which the reconfiguration network
guesses, by the number of d-dimensional balls of radius δ > 0 required to cover K. This
quantity is known as the δ-external covering number of K, (see (Mohri et al., 2018, Chapter
3.5)), and it is denoted by Nδ(K). Its advantage over the Lebesgue measure of K, is that
it does not ignore sets of Lebesgue measure zero.3

Theorem 4 (Quantitative Memory Capacity Bounds with Guessing Control) Let
d ≥ 2, N ∈ N+, M ∈ N, and {xi}Ni=1, {ym}Mm=1, and {zi}Ni=1 be sets of distinct points in Rd

for which xi 6= zi, for i = 1, . . . , N and such that ym 6∈ {xi, zi}Ni=1 for each m ≤M . Define
∆ , 1

2 min
{

2,min ‖u− v‖ : u 6= v, u, v ∈ {xi, zi}Ni=1 ∪ {ym}Mm=1

}
. For any 0 < δ < ∆ there

exists a reconfiguration network φ of depth J and a compact subset K ⊆ Rd satisfying:

(i) φ(xn) = zn for each n = 1, . . . , N .

(ii) φ(ym) = ym for every m = 1, . . . ,M .

3. The two quantities are related, since the volume of a d-dimensional of radius δ > 0 is δ2π
d
2

Γ( d
2

+1)
; hence

Nδ(K) ≤ N implies µ(K) ≤ Nδ2π
d
2

Γ( d
2

+1)
.

8
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(iii) φ(x) = x for every x ∈ Rd −K.

Furthermore, the following upper-bounds on J and K hold:

Nδ(K) ≤ J ≤
⌈

Nπ

2(min{2δ, 1})

⌉
. (13)

In contrast, DNNs with analytic activation function always fail to have the memorization
without guessing property (P-iv).

Proposition 5 (No Memorization without Guessing) Let d ≥ 1. If σ is analytic
then every f ∈ NN σ

d,d fails (P-iv).

DNNs with ReLU networks are not included in Proposition 5. However, the difference
between these architectures and reconfiguration networks is addressed later in the paper.

3.3 Universal Approximation via Topological Embeddings

By precomposing with an injective linear map, the universal approximation capabilities of
reconfiguration networks can be extended to universal topological embeddings. In turn,
post-composing with a linear map we can approximate any continuous function.

Theorem 6 (Topologically Regular Universal Approximation) Fix f ∈ C(Rd,RD),
a (d+D)× d-matrix A, and M > 0. There exists a reconfiguration network φ̂ ∈H (Rd+D)
and a D × (d+D)-matrix B, such that Mφ̂,M,ε , φ ◦ (I ⊕A·)[[−M,M ]d] ⊆ Rd+D satisfies:

(i) Embedding: φ̂ ◦ (Id ⊕ A·) is a homeomorphism from [−M,M ]d onto Mφ̂,M,ε and it
is an isometry when Mφ̂,M,ε is equipped with the metric:

dφ̂,M,ε(z1, z2) , ‖(Id ⊕A)†φ−1(z1)− (Id ⊕A)†φ−1(z2)‖,

where (Id ⊕A)† , ((Id ⊕A)>(Id ⊕A))−1(Id ⊕A) and is a left-inverse of Id ⊕A.

(ii) Regular Feature Space: Mφ̂,M,ε is a topological submanifold of Rd+D with boundary,

(iii) Sparsity: L(x) = Bx and B has exactly D non-zero entries and,

(iv) Universal Approximation: sup‖x‖≤M

∥∥∥f(x)−Bφ̂(x,Ax)
∥∥∥ < ε.

Let us compare the topological regular approximation results of this section with the
popular approach of generating φ with a DNN with ReLU activation function. We frame
our result in the setting of generalized-ReLU networks, as defined in Gribonval Rémi et al.
(2021).

Proposition 7 Let σr−ReLU(x) = max{0, xr} and 0 < d. If f̂ ∈ NN σr−ReLU

d,D and f̂ is

UAP-invariant, then for every affine function W : Rd → Rd the deep ReLU network:

f̃ = f̂ ◦ σr−ReLU •W,

is not UAP-invariant. In particular, it is not a topological embedding.
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Proposition 7 highlights the main geometric difference between DNNs and reconfiguration
networks. Namely, the latter always represents the input space as an embedded topological
submanifold of the feature space RF whereas the former typically does not.

Remark 8 (Discussion: Comparison with Kernel Methods) Kernel methods implic-
itly linearize functions in C(Rd,RD) by representing them within a high-dimension space. In
contrast, Theorem 6 guarantees that reconfiguration networks can perform this linearizing
in a d+D-dimensional space.

To see this, we consider a familiar example. Consider the kernel Kψ(x, y) ,
∑∞

n=1
1

22nx
nyn

on [0, 1]. This Kernel is universal, in the sense that:{
F∑
n=0

βnKψ(·, yn) : F ∈ N, y1, . . . , yF ∈ [0, 1], β1, . . . , βF ∈ R

}
,

is a dense subset of C([0, 1],R)4. Moreover, as discussed in (Micchelli et al., 2006, Section
3) the feature map φ̃ associated to Kψ is maps any x ∈ [0, 1] to the sequence (x

n

2n )∞n=0 ∈ `2(N).

Thus, for any f ∈ C([0, 1],R), there exists a linear map B̃ : `2 → R such that

max
x∈[0,1]

‖B̃ ◦ φ̃(x)− f(x)‖ < ε. (14)

The contrast between equation (14) and Theorem 6 (iv) is that, for every ε > 0, together the
maps B and φ̂(Id ⊕ A·) only require 2 dimensions in order to approximately linearize the
function f ; whereas together B̃ and φ̃ need infinitely many dimensions to do so. Therefore,
amongst other things, Theorem 6 can be interpreted as an explicit low-dimensional analogue
of kernel methods which are implicit and high-dimensional.

3.4 Non-Euclidean Upgrading

We close the approximation-theoretic portion of this paper by relating our results on recon-
figuration networks back to the learning problem (L) and to NEU. We present two results,
each offering a different perspective on the improvement which can be gained by NEU.
Both qualitative and quantitative results are provided. We operate under the following
assumptions; typical in non-convex optimization (see Dal Maso (1993)).

Assumption 3.1 We assume the following regularity of L and P defining Problem (L):

(i) L : RD × RD × Rd → R is continuous, and bounded-below.

(ii) P : C(Rd,RD) → R is continuous, bounded-below, and coercive; i.e.: for every t ∈ R
the sub-level set: {

P (f) ≤ t : f ∈ C(Rd,RD)
}
,

is compact in C(Rd,RD).

4. This is a direct consequence of (Micchelli et al., 2006, Theorem 7) and the Weierstraß Approximation
Theorem.

10



NEU

Remark 9 (Why not lower semi-continuity of L and of P?) In general non-convex
settings, lower semi-continuous (lsc) objective functions are typically considered instead
of continuous ones. However, László (2017) shows that if our objective function is not
continuous but is lsc and, in addition, if we do not optimize this objective function over the
entire space but instead only optimize it over a proper dense subset (such as {f ◦ φ : f ∈
F , φ ∈ Φ?:d+D} or F if it is a universal model class), then the global optimum is typically
unobtainable. However, in (László, 2017, Corollary 3.4) the authors shows that this is never
a theoretical issue for continuous objective functions.

The following result says that given a family of models F which is at-least able to express
linear functions, there must be a UAP-invariant feature map in Φ?:d+D which ”upgrades”
F until it approximately achieves the optimal value of the learning problem (L). Moreover,
the representation learned by the reconfiguration network never needs to be in dimension
above d+D. Furthermore, the representation produced by the reconfiguration networks is
an embedded topological submanifold of the feature space RF = Rd+D and the feature map
is a topological embedding.

Corollary 10 (Non-Euclidean Upgrading I) Let {xn}Nn=1 be a subset of Rd and sup-
pose that L and P satisfy Assumption 3.1. Suppose also that F ⊆ C(Rd+D,RD) contains
all linear maps from Rd+D to RD; i.e.:{

x 7→ Ax+ b : b ∈ RD, A ∈ MatD×d+D

}
.

Then, for every ε,M > 0 and every full-rank matrix A ∈ Matd,d+D, there exists some

f̂ ε ∈ F and some φ̂ε ∈ Φ?:d+D and some f ε ∈ F such that:

(i) The ε-optimality criterion holds:

N∑
n=1

L
(
f(xn), f ε ◦ φ̂ε((Id ⊕A)xn), xn

)
+ P

(
f ε ◦ φ̂ε((Id ⊕A)·)

)
<ε+ inf

g∈C(X,RD)

N∑
n=1

L (f(xn), g(xn), xn) + P (g(xn)) .

(15)

(ii) φ̂ε ◦ (Id⊕A·) is a homeomorphism from [−M,M ]d onto Mφ̂ε,M,ε and it is an isometry
when Mφ̂ε,M,ε is equipped with the metric:

dφ̂ε,M,ε(z1, z2) , ‖(Id ⊕A)†φ−1(z1)− (Id ⊕A)†φ−1(z2)‖.

(iii) Mφ̂ε,M,ε is a topological submanifold of Rd+D with boundary.

Remark 11 In particular, Corollary 10 (i), implies that the ”upgraded model”: f εφ̂ε((Id⊕
A)·) must achieve a lower value of the objective function of the training problem (L).

The following result says that reconfiguration networks can modify models in F to
match the optimizer of Problem (L) at every given data-point while leaving almost all of
their other input-output pairs unaltered. The result is quantitative in the number of points
modified, and the external-covering number of the set of input-output pairs left unaltered.

11
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Corollary 12 (Non-Euclidean Upgrading II) Let {xn}Nn=1 belong to a compact sub-
set X of Rd and suppose that L and P satisfy Assumption 3.1. Suppose also that F ⊆
C(Rd+D,RD) contains all linear maps from Rd+D to RD; i.e.:{

x 7→ Ax+ b : b ∈ RD, A ∈ MatD×d+D

}
.

Then, there exists an f? ∈ C(X,RD) satisfying

f? ∈ argmin
g∈C(X,RD)

N∑
n=1

L (f(xn), g(xn), xn) + P (g).

Moreover, if f?(xn) 6= f?(xm) whenever n 6= m and xn 6= 0 for n ≤ N , then there exists
some f̂ ∈ F such that for every

0 < δ <
1

2
min

{
‖u− v‖ : u 6= v and u, v ∈ {f?(xn), xm}Nn,m=1

}
, (16)

there exists a reconfiguration network φ̂δ ∈ Φ?:d+D satisfying:

(i) f̂ ◦ φ̂δ(Axn) = f?(xn) for every n ≤ N ,

(ii) Nδ

({
(x, f̂(Ax)) ∈ Rd+D : (x, f̂(Ax)) 6= φ̂δ(x, f̂(Ax))

})
≤
⌈

Nπ
2(min{2δ,1})

⌉
,

(iii) φ̂δ has depth at-most
⌈

Nπ
2(min{2δ,1})

⌉
.

Remark 13 Corollary 12 (ii) highlights the need to quantify the smallness of the set K
in Theorem 4 with its external covering number instead of its Lebesgue measure. This is
because, the set being described in Corollary 12 (ii) is a d-dimensional subset of Rd+D;
therefore, it is of Lebesgue measure 0. However, within the context of Corollary 12, this set
is not negligible as it describes the set of input-output pairs which are transformed by the
feature map φ̂δ.

These two results show that NEU embeds a great deal of flexibility into any model class F
with a basic level of expressibility. The next section describes how to counter-balance this
flexibility by robustifying the learning problem (L).

3.5 Robustification of Loss-Function for Improved Generalization

Fix M > 0, a non-empty training set {xn}n≤N ⊆ [−M,M ]d, and a model f̂ for (L). We
can evaluate its generalizability on [−M,M ]d outside the training data {xn}n≤N by the gap

in the error on the training data
∑

n≤N
L(f(xn),f̂(xn),xn)

N +P (f) and the worst-case scenario

error on [−M,M ]d. We define this gap by

sup
‖x‖≤M

L(f(xn), f̂(xn), xn) + P (f)−

 1

N

∑
n≤N

L(f(xn), f̂(xn), xn)

N
+ P (f)

 . (17)
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A-priori it seems that, for any given f̂ , all the quantities in (17) are fixed by the learning
problem. In fact, this is not the case here as we have implicitly made the assumption that
the weight of each training data-point pulls equal weight on the left-hand side of (17).

Accordingly, we re-weight the training objective function to
∑

n≤N wnL(f(xn), f̂(xn), xn)+
P (f) with new weights {wn}n≤N in [0, 1] summing to 1. Thus, we improve the generaliz-
ability of our model f̂ by extending (L) by coupling it with the following extension of (17)

min
f̂∈F

∑
n≤N

wnL(f(xn), f̂(xn), xn) + P (f̂)

where: argmin∑
n≤N wn=1
wn∈[0,1]

sup
‖x‖≤M

L(f(xn), f̂(xn), xn) + P (f)

−

∑
n≤N

wnL(f(xn), f̂(xn), xn) + P (f)

 .
(18)

The multi-function argmin is invariant under addition. Therefore, we may simplify the
constraint in (18). Thus, we are interested in the following equivalent optimization problem:

argmax∑
n≤N wn=1
wn∈[0,1]

∑
n≤N

wnL(f(xn), f̂(xn), xn).
(19)

The key advantage of (19) over (18) is that it is completely independent of the behaviour of
our model’s test-set performance quantified by sup‖x‖≤M L(f(xn), f̂(xn), xn)+P (f). Thus,
any optimizer of (19) can be computed independently of any test-set information.

Nevertheless, problem (19) is generally ill-posed. In order to identify a good set of
weights {wn}n≤N , we interpret any set of weights {wn}n≤N as describing a discrete proba-
bility measure on {1, . . . , N}. Hence, by adding the following Kullback-Leibler divergence
between the discrete probability measures implicitly defined by {wn}n≤N and the uni-
form probability measure on {1, . . . , N} implicitly specified by the naive weighting scheme
{ 1
N }n≤N we obtain the following well-posed variant of (19), with hyper-parameter λ > 0

argmax∑
n≤N wn=1
wn∈[0,1]

∑
n≤N

wnL(f(xn), f̂(xn), xn)− λ
∑
n≤N

wn log
(wn
N

)
.

(20)

Theorem 14 (Optimal Robust Weights for (20)) Let {xn}n≤N be a non-empty train-

ing dataset in Rd and L be continuous. Then {wλ,f̂n }Nn=1 belongs to (20), where

wλ,f̂n ,
eλ
−1L(f(xn),f̂(xn),xn)∑

n≤N e
λ−1L(f(xn),f̂(xn),xn)

.

Moreover, the robust learning Problem (18) is equal to

min
f̂∈F

∑
n≤N

eλ
−1L(f(xn),f̂(xn),xn)L(f(xn), f̂(xn), xn)∑

n≤N e
λ−1L(f(xn),f̂(xn),xn)

+ P (f̂). (21)
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By the representation (18), the learning problem (21) necessarily yields better generaliz-
ability than its naive counterpart (L). This generalization improvement is quantified by the
gap between (17) and the value of the constraint of (18). Given a model f̂ ∈ F and weights
{wn}n≤N in [0, 1] summing to 1 we dfine

GenM

(
f̂
∣∣∣{wn}n≤N) , sup

‖x‖≤M
L(f(xn), f̂(xn), xn)+P (f)−

∑
n≤N

wnL(f(xn), f̂(xn), xn) + P (f)

 .
Corollary 15 (NEU’s Loss-Function Modification Improves in Generalizability)

Let x1, . . . , xN ∈ Rd, f̂ ∈ F , and M > 0. Then GenM

(
f̂
∣∣∣{ 1

N

}
n≤N

)
−GenM

(
f̂
∣∣∣{wλ,f̂n }n≤N)

equals to:

∑
n≤N

(
e−λ

−1L(f(xn),f̂(xn),xn)∑
n≤N e

−λ−1L(f(xn),f̂(xn),xn)
− 1

N

)
L(f(xn), f̂(xn), xn) ≥ 0.

We end the this portion of the paper with the following observation.

Training Very Deep UAP-invariant Feature Maps

From the computational standpoint, property (P-i) can be used to to subdivide step 1
of Meta-Algorithm 1 into an incremental procedure, analogously to Bengio et al. (2007);
Larochelle et al. (2009), allowing for the handling of extremely deep feature maps without
negatively impacting the model’s UAP. This incremental procedure, summarized by sub-
routine 2, views the feature map φ̂ Meta-Algorithm 1 step 1 as a composition φ̂ = φ̂Î ◦· · ·◦φ̂1

of deep reconfiguration networks {φ̂i}i≤Î trained in a loop.

Sub-Routine 2: Incremental training of very deep UAP preserving feature maps.

input : Loss-function L, penalty function P ,
Training and Validation Data {xn}n≤N = {xn,t}n≤Nt ∪ {xn,v}n≤Nv
Number of blocks I of Feature Map, J depth per block
Robustness Hyper-parameter λ > 0, F ∈ N+

output: NEU-Feature Map φ̂ , φ̂Î ◦ · · · ◦ φ̂1.

1 for i ≤ I do

2 φ̂ ∈ argmin
φ∈Φ?:F

∑
n≤N w

?,λ
n L

(
f(xn), Aφ ◦ φ̂i−1(xn) + b, xn

)
+ P (Aφ ◦ φ̂i−1 + b) ;

3 φi = φ̂ ◦ φ̂i ;

4 Âi, b̂i ∈ argmin
A,b

∑
n≤Nt w

?,λ
n L

(
f(xn,t), Aφ̂i(xn,t) + b, xn,t

)
+ P (Aφ̂i + b)

5 end

6 Î ∈ argmin
i≤I

∑
n≤Nv w

?,λ
n L

(
f(xn,v), Âiφ̂i(xn,v) + b̂i, xn,v

)
+ P (Âiφ̂i + b̂i)

Sub-routine 2 would typically yield sub-optimal φ̂. However, by replacing step 1 of Meta-
Algorithm 1 with sub-routine 2, we can train feature maps that are too deep to train on a
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single machine while also guaranteeing that these maps have property (P-i). In contrast,
Proposition 7 guarantees that DNNs with the ReLU activation function cannot be trained
analogously without disrupting the DNN’s UAP.

4. Numerical Evaluation of NEU-OLS and NEU-PCA

Next, we evaluate the performance of NEU across various learning tasks. First, we investi-
gate the performance of NEU in the chaotic environment provided by real-world financial
data. Then, we stress test NEU’s behaviour within the controlled environment provided by
simulation studies. The Tensorflow (v.2.4.1) code and data-sets for our implementations is
available online at ?.

4.1 Financial Data Analysis

The performance of the NEU meta-algorithm will be investigated both on regression and
dimension reduction tasks using financial data. We begin with the regression problem of
constructing a stock return replication and then move to non-Euclidean yield-curve analysis.

4.1.1 Regression Analysis: Apple Stock Tracker

Predicting the relationship between the price of a set of assets is central to many trading
strategies. For example, strategies that rely on illiquid assets may create a portfolio com-
prised entirely of liquid assets that tracks the illiquid asset’s movements. In this example the
technique is demonstrated using liquid stocks for both the target and the tracking portfolio
so we can better evaluate performance, which would be more difficult with illiquid assets
due to missing contemporaneous prices for the illiquid target.

We consider Apple’s stock as the target asset while the tracking portfolio is comprised
of IBM, Google, Cisco Systems, Microsoft, Acacia Communications, NXP Semiconductors
NV, Qualcomm, Analog Devices, Glu Mobile, Jabil, Micron, and STMicroelectronics NV.
Thus, the tracking portfolio is comprised of the stock of major companies in the same
industry and Apple’s supply chain (see Seth (2018) and Stoller (2018)).

We build a tracking portfolio using various linear, non-linear, and discontinuous regres-
sion model classes. These include Elastic Net regularization of Zou and Hastie (2005), gener-
alizing the LASSO regressor of Tibshirani (1996) and Tychonov regularization of Tikhonov
(1963) (Elastic Net), kernel ridge regression (Kernel), gradient boosted random forests
(GBRF), and a DNN with ReLU activation function. Each of the hyper-parameters is
selected by cross-validations and randomized search from a large grid, hyper-parameters
include the choice of kernel. The NEU version of these models is also used considered as a
general evaluation of the improvement capabilities of NEU.

We consider 2 years of closing stock prices, ending on September 25th 2020, to compute
the regression weights. The models are trained on the first 75% of the data and the remain-
ing 25% is used to evaluate the out-of-sample predictive performance of the trained models,
and is illustrated in Figure 2.

15



Kratsios and Hyndman

0 20 40 60 80 100 120 140

20

0

20

40

60

Model Predictions
f(x)
Lin. Reg
GBRF
Kernel Ridge
DNN
NEU_OLS
NEU-GBRF
NEU-Kernel Ridge
DNN_NEU

Figure 2: Regression models’ 150 day-ahead out-of-sample predictions.

Train Er. 95L Er. Mean Er. 95U MAE MSE

NEU-ENET -0.057708 6.552474e-09 0.058055 0.466568 0.455442
ENET -0.054082 3.295653e-18 0.054309 0.452092 0.413066
NEU-GBRF -0.069073 0.000000e+00 0.068067 0.525591 0.647727
GBRF -0.066513 2.966087e-17 0.066309 0.488983 0.622644
NEU-kRidge -0.005229 -8.935916e-05 0.005009 0.044634 0.003772
kRidge -0.038941 -5.949302e-04 0.037408 0.326579 0.200016
NEU-OLS -0.046744 5.180375e-03 0.055844 0.424678 0.361532
NEU-DNN -0.026579 2.685197e-02 0.081460 0.439256 0.411793
DNN -0.021030 3.271767e-02 0.088175 0.445274 0.427985

Table 1: Train performance of fixed time-horizon problem.

16



NEU

Test Er. 95L Er. Mean Er. 95U MAE MSE

NEU-ENET -0.159483 0.407651 1.004434 1.448866 5.369902
ENET -0.166303 0.364576 0.929381 1.368901 4.903049
NEU-GBRF -0.096924 0.492442 1.096471 1.587017 5.989319
GBRF -0.168434 0.427108 1.052304 1.591232 5.971403
NEU-kRidge -0.150280 0.411124 1.026502 1.429903 5.515611
kRidge -0.169045 0.380833 0.958410 1.427682 5.110043
NEU-OLS -0.167247 0.344157 0.929869 1.309060 4.816255
NEU-DNN -0.062913 0.455043 1.034286 1.407882 4.948565
DNN -0.079580 0.462161 1.049870 1.444588 5.112289

Table 2: Test performance of fixed time-horizon problem.

NEU-OLS and the DNN model both outperform each of the linear models. However,
NEU-OLS’s out-performance of the DNN model is a joint effort between its representation
properties and its robustness properties. The in-sample advantage can be explained by
NEU’s memory capacity, as demonstrated by Theorem 4, and its expressibility improvement,
as demonstrated by Theorem 6. The out-of-sample performance, described in Table 2, has
also benefited from the robustness of the NEU weights, described by Theorem 14.

4.1.2 Dimension Reduction: US-Bond Yield Curve

Principal component analysis (PCA) is commonly used in finance to reduce the effective
dimension of data and a classical application is for representing the yield curve corresponding
to zero-coupon bond prices. Denote by B(t, T ) the price at time t of a zero-coupon bond
that pays the face value, by assumption $1, at maturity T . The bond’s yield, denoted
y(t, T ), is the continuously compounded interest rate at which an investment of B(t, T )

would accumulate to the face value. That is, y(t, T ) , − ln(B(t,T ))
T−t . The yield curve is the

map of a bond’s yields as a function of time to maturity, (T − t)→ y(t, T ). Since the bond
prices for all maturity dates T ≥ t are not observed it is an important problem for a variety
of financial applications to construct the curve using the available observed bond prices at
a given time. We benchmark NEU against auto-encoders (AE) with bottleneck dimension
equal to the number of principal components (or factors) and against kernel-PCA (kPCA),
two popular non-linear alternatives to classical PCA. NEU variants of both these methods
are also considered.

The daily bond data considered in this example consists of 6385 consecutive instances
of stripped US government bond prices between June 8th 1990 to April 2rst 2017. Each
instance records the value of zero-coupon bonds with 1, 3, and 6 month, and 1, 2, 3, 5, 7,
10, 20, 30 year maturities.

We shall consider the performance of PCA, kPCA, NEU-PCA, NEU-kPCA, a deep auto-
encoder (AE), and NEU-AE. The test set consists on instance ahead yield curves, and thus
it measures the robustness to the dimension reduced yield-curves factor models to market
movements.

Figures 3-5 show that NEU-AE’s performs best from all the proposed models both
in and out-of-sample when using one, two, and three factors. NEU-PCA only becomes
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competitive, both on the training and testing sets, when three factors are utilised. This
observation highlights the importance of NEU’s UAP-invariance property (P-i) as, in this
case, NEU is able to maintain and improve the expressiveness of the auto-encoder model.

Test-MAE Test-MSE Train-MAE Train-MSE

NEU-PCA 3.214483 15.518402 3.406530 16.814745
PCA 3.218449 15.302093 2.972712 13.817181
NEU-AE 2.715108 11.043391 3.010322 13.117202
AE 3.172362 14.792091 2.950363 13.495282
NEU-kPCA 3.554145 18.568798 3.687914 19.654074
kPCA 3.253660 15.626541 3.067545 14.513802

Table 3: Performance of reconstructed factor models - 1 Factor.

Test-MAE Test-MSE Train-MAE Train-MSE

NEU-PCA 3.189997 14.913756 3.227090 15.089537
PCA 3.195051 15.143381 2.955438 13.675315
NEU-AE 2.623852 10.425360 2.685428 10.647568
AE 2.827589 11.930328 2.703830 11.108966
NEU-kPCA 3.842316 21.080980 3.697985 20.525725
kPCA 3.252147 15.614535 3.064285 14.491074

Table 4: Performance of reconstructed factor models - 2 Factors.

Test-MAE Test-MSE Train-MAE Train-MSE

NEU-PCA 3.241300 14.439484 2.755066 11.301304
PCA 3.197890 15.176116 2.933380 13.557278
NEU-AE 3.093146 13.579660 2.613067 10.845548
AE 3.162107 14.688698 2.940275 13.391631
NEU-kPCA 3.883233 20.833542 3.464134 17.237757
kPCA 3.252588 15.178260 3.064387 14.493373

Table 5: Performance of reconstructed factor models - 3 Factors.

In each case, NEU-PCA and NEU-AE reconstructs the yield curve more accurately
from a small number of learned driving factors. We find that the in and out of sample
explanatory capabilities of NEU-PCA surpass even the auto-encoder. As expected, NEU-
AE offers the best performance amongst all the models, however, the advantages over
NEU-PCA is nevertheless marginal. As with the regression tasks, the kPCA’s rigid feature
map negatively interacts with NEU’s feature map causing instability.

18



NEU

Remark 16 (Clashing NEU Features and Kernel Features) This last point is a re-
current theme throughout our experiments; namely that the kernel methods such as kPCA
and kRidge’s features tend to clash with the features learned by NEU. At times, they harmo-
nize and the Non-Euclidean Updgraded kernel model offers astounding performance, how-
ever, at other times the performance deteriorates. This unstable behaviour is not observed
in the other non-Euclidean upgraded methods and this is because the other methods either
do not impose any additional features (such as OLS, PCA, or Elastic Net) or are flexible
enough to blend their feature representation with NEU’s (as for GBRF, AE, or DNN).

4.2 Simulated Experiments

Next, we unpack and understand the detailed behaviour of NEU in the controlled environ-
ment offered by simulation studies. We consider a series of regression problems. In each
situation, the data is generated using to the non-linear regression model with additive and
multiplicative noises

y = Uδm(x) + σZ, (22)

where Z ∼ N(0, 1) and Uδ ∼ U(1−δ, 1+δ), 0 < δ < 1, σ > 0, and m is a non-linear function.
The multiplicative noise Uδ encapsulates model misspecification as it discontinuously (in x)
distorts the shape of the unknown function m, and the additive noise σZ quantifies the
noise distorting the signal, as in classical regression problem formulations.

We consider four challenging non-linear functions, each exhibiting a distinct pathology.
The first, is comprised of several distinct local sub-patterns. The second exhibits aperiodic
oscillations. The third, is split by a sharp jump discontinuity. The last pattern is highly
discontinuous and we use it to evaluate each model’s ability to discern between a sharp
irregular signal and varying levels of noise.

The NEU-OLS and NEU-DNN models will be benchmarked against three standard
non-parametric regression algorithms, penalized smoothing splines regression (p-splines),
locally weighted scatterplot smoothing (LOESS), kernel ridge regression (Ker-Ridge), and
feed-forward artificial neural networks (DNN). Other than the DNNs which were discussed
thoroughly in the paper’s introductory section, we review the benchmark models here.

In each of our experiments, we visualize the feature representation learned by NEU
by plotting each of the coordinates of φ(x). These plots are given in Figures 3, 5, and 7,
respectively for each experiment. Essentially, these can be interpreted as the features learned
by NEU, which are then fed into the upgraded model. In particular, when the model is
linear, the target function is approximately expressible as a linear combination of these
features.

We see that the target function is reflected by each of the feature maps learned by
NEU. For example, in the first implementation, NEU’s feature representation illustrated in
Figure 5 has a dramatic change at the precise point where the two sub-patterns deviate
from one another. In the second experiment, NEU’s produces a feature map, illustrated
by Figure 3, whose coordinates represent osculations happening at different rates; these
are then combined by the linear model being upgraded to produce the correct osculating
pattern. In the final experiment, NEU’s features are illustrated in Figure 7, and draw out
two distinct and relatively flat heaps. This reflects the sharp discontinuity separating the
two otherwise constant parts of the target function.
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For each simulation, 104 observations are generated on the interval [−1, 1]; the data is
then normalized to the unit square for uniformity between the three examples. The models’
tuning-parameters are then estimated by cross-validation.

4.2.1 Aperiodic Oscillations

We begin by evaluating each model’s ability to handle aperiodic oscillations. To this end,
we simulate from the unknown function m2(x) = cos(e2+x).

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0
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1.0

Slices of Embedded Submanifold

Figure 3: NEU’s features for: min(e
−1

(1+x)2 , x+ cos(x)).

Test Er. 95L Er. Mean Er. 95U MAE MSE

NEU-OLS -0.021313 -2.570136e-09 0.020961 0.435468 0.292991
Smoothing Splines -0.006834 1.428117e-02 0.035403 0.435920 0.295227
LOESS -0.012301 1.862346e-02 0.048980 0.630788 0.613180
ENET -0.034831 -1.136868e-17 0.035714 0.740855 0.805618
NEU-GBRF -0.023963 -5.684342e-17 0.024021 0.494789 0.382412
GBRF -0.024555 -5.684342e-18 0.024455 0.499496 0.387694
NEU-kRidge -0.020963 -2.570866e-04 0.020747 0.429108 0.284365
kRidge -0.020745 -3.927500e-05 0.020682 0.434514 0.291221
NEU-DNN 0.004625 2.622699e-02 0.047207 0.435748 0.296543
DNN -0.021901 -1.453060e-04 0.021675 0.441955 0.304498

Table 6: A-Periodic oscillations - m2(x) = cos(e2+x) : σ = δ = 0.5

Figure 6 highlights the clash between the rigid structure imposed by the Kernel regres-
sion’s implicit feature map and NEU’s feature map. Since NEU’s feature map is designed
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Train Er. 95L Er. Mean Er. 95U MAE MSE

NEU-OLS -0.007318 -0.005953 -0.004600 0.042497 0.003580
Smoothing Splines -0.016907 -0.006644 0.002417 0.070279 0.180917
LOESS 0.016649 0.029347 0.042376 0.467625 0.321612
ENET -0.007673 0.009254 0.025702 0.656024 0.526628
NEU-GBRF 0.000899 0.008715 0.016585 0.308246 0.120689
GBRF -0.004417 0.003626 0.011627 0.313712 0.126322
NEU-kRidge -0.008430 -0.006731 -0.005058 0.056449 0.005649
kRidge -0.007045 -0.005678 -0.004326 0.046354 0.003695
DNN -0.011299 -0.008462 -0.005682 0.102038 0.015454
NEU-DNN 0.016808 0.018696 0.020518 0.055287 0.007063

Table 7: A-Periodic Oscillations - m2(x) = cos(e2+x) : σ = δ = 0.5

for models that are either linear or can efficiently approximate linear maps, then kernel
regression’s feature map can, and in this case, it does, interfere with the representation
learned by NEU. However, as is also reflected in Table 8, this only happens with the Kernel
regression method and not with the GBRF, linear regression, or DNN methods.

4.2.2 Functions with Local Behaviour

Next, we compare each model’s abilities to learn from functions determined by several,
exclusively local, sub-patterns. Thus, the unknown function m of (22) is taken to be

m(x) , min(e
− 1

(x+1)2 , x+ cos(x)). The underlying pattern is therefore generated from two

distinct sub-patterns e
− 1

(x+1)2 and x + cos(x), with the change between the two occurring

every time the condition e
− 1

(x+1)2 < x+ cos(x) either holds or fails.
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Figure 4: Error Distribution Comparisons for: cos(e2+x).
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Figure 5: NEU’s features for: min(e
−1

(1+x)2 , x+ cos(x)).

Test Er. 95L Er. Mean Er. 95U MAE MSE

NEU-OLS -0.019358 6.980434e-04 0.021225 0.418056 0.266197
Smoothing Splines -0.020310 4.915925e-11 0.019642 0.416499 0.265408
LOESS -0.017103 3.094336e-03 0.023561 0.418556 0.268401
ENET -0.020520 4.760636e-17 0.020322 0.419717 0.269394
NEU-GBRF -0.020503 -1.705303e-16 0.020621 0.430601 0.284261
GBRF -0.020795 7.958079e-17 0.020671 0.432727 0.286976
NEU-kRidge -0.020580 1.588384e-05 0.020460 0.418158 0.267961
kRidge -0.019606 1.823117e-06 0.020202 0.418136 0.267707
NEU-DNN 0.001613 2.200638e-02 0.041955 0.418093 0.269347
DNN -0.012107 8.756267e-03 0.029376 0.418196 0.268941

Table 8: Non-Local function - min(e
−1

(1+x)2 , x+ cos(x)) : δ = σ = 0.5.

Figure 8 show that NEU-OLS and NEU-DNN still offer the best out-of-sample perfor-
mance amongst the DNN, LOESS, ENET, GBRF, kRidge, and DNN Models. However, this
implementation suggests that smoothing splines may are better suited to locally-determined
target functions. This is not surprising since NEU performs any localization after repre-
senting the pattern in a higher-dimensional space, whereas smoothing splines can locally
approximate any function directly.

Figure 9 shows that in-sample, NEU-OLS offers provides a better fit than the Smoothing
Splines, LOESS, ENET, GBRF, and the DNN model. However, kRidge seems best suited
to the in-sample fitting of this type of pattern. We also note that, though the UAP-
invariance property (P-i) guarantees that NEU-DNN is universal, since DNN was, Figure 9
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Train Er. 95L Er. Mean Er. 95U MAE MSE

NEU-OLS -0.003219 -0.001356 0.000763 0.029811 0.007868
Smoothing Splines -0.005625 -0.004594 -0.003564 0.035477 0.002062
LOESS -0.003280 -0.001950 -0.000587 0.037035 0.003622
ENET -0.007302 -0.005885 -0.004524 0.047878 0.003902
NEU-GBRF -0.008818 -0.004893 -0.000868 0.151281 0.031597
GBRF -0.008343 -0.004443 -0.000530 0.148070 0.029684
NEU-kRidge -0.005622 -0.004717 -0.003816 0.026037 0.001607
kRidge -0.004352 -0.003566 -0.002819 0.024096 0.001135
NEU-DNN 0.014463 0.015718 0.016956 0.040284 0.003335
DNN 0.001173 0.002462 0.003720 0.035320 0.003244

Table 9: Non-Local function - min(e
−1

(1+x)2 , x+ cos(x)) : δ = σ = 0.5.

shows that at-times NEU-OLS can fit finite data-sets better than NEU-DNN does. This
shows that though the DNN and the reconfiguration networks have arbitrarily large memory
capacities, these two may at-times unfavorably interact since both memorize input-output
pairs differently (which we see by comparing the proofs of Theorem 4 and the central result
of Vershynin (2020b)). This interaction effect is less likely with NEU-OLS than NEU-DNN,
since the any memorization only occurs in final layer in the in the former case.

Figure 6 reflect the bias reduction obtained by NEU’s feature map, which is most sig-
nificant when applied to the OLS and DNN models. Here, NEU showcases the benefit of it
being able to only locally modify a pattern, which is especially important in this case since
two unrelated local sub-patterns determine m.

Tables 9 and 8 show that the NEU models achieve an improved performance both in-
sample and out-of sample over their classical variants. The feature maps were only trained
once for the OLS model and then used in the remaining models. Thus, the non-linear feature
presentation must be correct as it transfers its improvement to each of the benchmarked
regression models. We see that NEU-OLS offers the best accuracy, and most stable in-to-out
of sample performance. This is likely due to the learned linearizing feature map not having
to conflict with any other assumed feature map, as is the case for NEU-kRidge, NEU-DNN,
and NEU-GBRF.

4.2.3 Jump Discontinuities

The last simulation experiment explores a situation with discontinuities that is outside the
scope of the standard p-sline, LOESS, and DNN methods. However, the NEU-OLS is able
to perform well when the data exhibits these jump discontinuities. The function m in
equation (22) is assumed to be m(x) = I(−∞, 1

2
](x). As reflected by Figure 7, NEU behaves

the same when the unknown noisy function being approximated has a jump discontinuity as
when distinct, locally-determined functions determined it; as in Figure 6. In both situations,
NEU can learn a feature map that is determined only by local data, so it implicitly separates
the behavior of the model on each part of the jump discontinuity, just as it did on the
different sub-patterns in Figure 6.
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Figure 6: Error Distribution Comparisons for: min(e
−1

(1+x)2 , x+ cos(x)).
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Figure 7: NEU’s features for: I(−∞,.5].

Test Er. 95L Er. Mean Er. 95U MAE MSE

NEU-OLS -0.007420 -1.978159e-03 0.003309 0.219500 0.075624
Smoothing Splines -0.005347 -1.902232e-12 0.005499 0.221883 0.077588
LOESS -0.003747 2.843149e-03 0.009276 0.261553 0.109594
ENET -0.007296 -5.968559e-17 0.007283 0.293706 0.134424
NEU-GBRF -0.007103 3.467449e-16 0.007091 0.292915 0.128904
GBRF -0.006864 3.240075e-16 0.007085 0.292915 0.128904
NEU-kRidge -0.004780 4.746673e-04 0.005816 0.217793 0.074313
kRidge -0.005810 1.327000e-06 0.005720 0.237115 0.088674
NEU-DNN -0.017917 -1.253940e-02 -0.007353 0.218370 0.074929
DNN 0.004379 9.808546e-03 0.015200 0.218675 0.075156

Table 10: Discontinuous Function - m(x) = I(−∞, 1
2

](x). : δ = ε = 0.5

The presented simulations studies, highlight the strengths and weaknesses of NEU. In
nearly every case, the Non-Euclidean Upgraded model outperforms is classical counterpart.
However, we typically find that the more linear the original model, the more reliable NEU’s
performance will be. This is likely due to conflicts between the assumed feature map,
especially in NEU-kRidge, and the feature map being learned. This is because, assuming a
feature map forces NEU to simultaneously learn the target while undoing any feature map
misspecification.

Each of the simulated pathological regression problems, illustrated in this section showed
that NEU is not only capable of out-performing each of the benchmark models regardless
of how badly behaved the unknown target function is. Moreover, this performance im-
provement was maintained in the face of high amounts of multiplicative and additive noise.
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Figure 8: Error Distribution Comparisons for: min(e
−1

(1+x)2 , x+ cos(x)).

27



Kratsios and Hyndman

Train Er. 95L Er. Mean Er. 95U MAE MSE

NEU-OLS 0.002959 0.003741 0.004552 0.011879 0.001689
Smoothing Splines 0.001218 0.002504 0.003796 0.022726 0.004295
LOESS 0.005587 0.009368 0.013222 0.135893 0.038387
ENET 0.002787 0.007589 0.012474 0.210154 0.063623
NEU-kRidge 0.001912 0.002406 0.002911 0.011165 0.000659
kRidge -0.003193 -0.000655 0.001772 0.098367 0.015523
NEU-GBRF -0.001760 0.002934 0.007482 0.238186 0.056756
GBRF -0.001773 0.002934 0.007643 0.238186 0.056756
NEU-DNN -0.010775 -0.010128 -0.009464 0.021392 0.001207
DNN 0.011372 0.012157 0.012948 0.019651 0.001737

Table 11: Discontinuous Function - m(x) = I(−∞, 1
2

](x). : δ = ε = 0.5.

These results mirror our theoretical findings and support the hypothesis that the perfor-
mance improvement observed by using NEU in the context of quantitative finance, was not
a singular instance but rather part of a general theoretically-founded trend.

5. Conclusion

This paper introduced the first generic algorithmic procedure for learning any feature map
with the invariance properties (P-i) and (P-ii) while simultaneously guaranteeing the per-
formance enhancement of properties (P-iii) and (P-v). From the perspective of Kernel
methods, NEU is a universal procedure for learning a low-dimensional generic feature map
with many desirable properties. From the standpoint of geometric deep learning, NEU also
provides an answer to the recent research problem initiated in Kratsios and Bilokopytov
(2020) and in Kratsios and Papon (2021), of how to generically learn optimal UAP-invariant
feature maps from Rd in cases where a UAP-invariant feature map is not already explicitly
provided.

From the manifold learning perspective, reconfiguration networks are the first prov-
ably universal and computationally tractable class of topological embeddings. As a meta-
algorithm, NEU can generically learn the optimal linearizing pre-processing step to nearly
any model class F , provided that F at-least contains all linear maps. NEU’s theoretical
properties were also supported experimentally.

NEU successfully introduced tools from geometric deep learning into financial data-
analysis. NEU was found to outperform the current leading machine learning methods for
non-parametric dimension reduction of yield curves and produce a competitive performance
in the non-parametric stock-returns replication problem.
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6. Proofs

This appendix contains proofs of the paper’s main results and some auxiliary technical
lemmas. We draw the reader’s attention to the fact that many of the paper’s results are
heavily interdependent and that this sequential dependence is different from the order giving
the cleanest presentation, which we chose for the paper’s main body. Accordingly, proofs
will be presented in their logical order, even if it differs from the paper’s main exposé.

6.1 Technical Lemmas

This section contains some technical lemmas which we often refer to throughout the paper’s
proofs.

Lemma 17 (Properties of Reconfiguration Units/Network) Every reconfiguration unit
is a reconfiguration network. Moreover, the following hold:

(i) Every φ ∈ Φ?:d is a homeomorphism in H (Rd),

(ii) For every φ ∈ Φ?:d, there exist (φα)α∈[0,1] ⊂H (Rd) such that for each x ∈ Rd:

φ0(x) = x, ξα ∈ Φ?:d, φ1(x) = φ(x), (23)

for every α ∈ [0, 1]. Moreover, for every x ∈ Rd, the map α 7→ φα(x) is continuous.

(iii) For every x, y ∈ Rd and every ε > 0 there exists a reconfiguration unit φ such that

φ(x) = y and φ(z) = z,

for every z ∈ Rd satisfying ‖x− z‖ > ε+ ‖x− y‖,

(iv) If φ1, φ2 ∈ Φ?:d, then φ2 ◦ φ1 ∈ Φ?:d.
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Proof [Proof of Lemma 17] First, we observe that (iv) holds by construction and the fact
that any two reconfiguration units are composable since they map to and from Rd.

By (iv) and the fact that the composition of homeomorphisms is again a homeomor-
phism, then it is enough to establish (ii) on a single map of the form

σαn (A(x)(x− c)) + b. (24)

First, observe that for every α ∈ [0, 1], the map x 7→ σα(x) is monotonically increasing,
continuous, and surjective; thus, by (Hoffmann, 2015) implies that σα is a homeomorphism
from R onto itself. Since the d-fold Cartesian products of homeomorphisms is again a home-
omorphism, then the map x 7→ σα • x is a homeomorphism from Rd onto itself. Moreover,
for any b ∈ Rd, the maps x 7→ x + b and x 7→ x − c are homeomorphisms; thus the map
of (24) is a homeomorphism if each reconfiguration unit A(x) is a homeomorphism. Hence,
we show that A ∈H (Rd).

For notational simplicity, we let F (x) , Skw(f0)(x) + A1Skw(f1)(x)Lη(x), f0, f1 ∈
NN σReLU

d,d(d−1)/2 with 1 hidden unit, and we observe that the reconfiguration unit A(x) may

be written as A(x) = exp(F (‖x‖))x. Define the map B(y) , exp(−F (‖y‖))y. Since exp
is continuous, matrix multiplication is continuous, and F is continuous then both A and
B are continuous. Thus, if B is a two-sided inverse of A then A is a homeomorphism; we
show this now. First, observe that for every z ∈ R, F (z) is a d× d skew-symmetric matrix
and therefore, by (Rohan, 2013, Section 4), for every x ∈ Rd, exp(F (‖x‖)) is an orthogonal
matrix with determinant det(exp(F (‖x‖))) = 1. Thus, exp(F (‖x‖)) is an isometry fixing
the origin; hence

‖ exp(F (‖x‖))x‖ = ‖x‖. (25)

Therefore, (25) implies that

‖y‖ = ‖exp(F (‖x‖))x‖ = ‖x‖,

where y = F (‖x‖)x. Hence, we compute that

B(y) = exp (−F (‖y‖)) y
= exp (−F (‖x‖)) y
= exp (−F (‖x‖)) exp (F (‖x‖))x
= exp (−F (‖x‖) + F (‖x‖))x
= exp(0)x

=Idx

=x;

(26)

where Id is the d×d identity matrix. Mutatis mundais, the computation of the right-inverse
is analogous. Therefore, B is the two-sided inverse of A and thus A is a homeomorphism.
This gives (i).

For (ii), since the composition of identity maps is again the identity map then it is
enough to demonstrate that any one reconfiguration unit may be parameterized to be the
identity. Indeed, setting

φα(x) , σααn exp
(
αSkw(f0)(‖x− c‖2) + α Skw(f1)(x)Lη(‖x− c‖2)

)
; α ∈ [0, 1],
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this gives the result since exp(0) = Id.
Next, we complete the proof by showing (iii). By (ii) and (iv) any reconfiguration unit

A(x) ∈ Φ?:d. Let x, y, z ∈ Rd be such that ‖x − y‖ < ‖x − z‖. Then, the barycenter
c = 2−1(x + y) satisfies ‖x − c‖ = ‖y − c‖ < ‖c − z‖. We set η , 2−1 (‖c− z‖ − ‖c− x‖)
and f0 = 0.

Now, since the subset of NN σReLU

d,d(d−1)/2 with one hidden unit, contains all constant func-

tions, Skw is a bijection from sod onto Rd(d−1)/2, and since any matrix B ∈ exp(sod)
satisfies B>B = Id and det(B) = 1 then for any B ∈ sod the constant function fB1 ,
Skw−1(log(B)) belongs to NN σReLU

d,d(d−1)/2. Moreover, the reconfiguration unit Ac,B,η(u) ,

exp
(
fB1 Lη(‖u− c‖2)

)
(u − c), belongs to Φ?:d and by construction Ac,B,η(z) = z since

Lη(‖z−c‖2) = 0. Therefore exp(fB1 Lη(‖z−c‖2))z = exp(0)z = z. Furthermore, Ac,B,η(x) 6=
x and Ac,B,η(y) 6= y whenever B 6= 0.

At this point, we seek a matrix B such that such that Bx = y, B>B = Id, and
det(B) = 1. This matrix is explicitly computed to be

B =

(
y − c
‖x− c‖

− x− c
‖x− c‖

)
x− c
‖x− c‖

>
+ (ỹ − x̃) x̃>,

x̃ ,
y −

(
y>x

)
x

‖y − (y>x)x‖
, ỹ ,

−x+
(
x>y

)
y

‖x− (x>y) y‖
, c ,

x+ y

2
.

(27)

Since Lη(u) > 0 while |u| < η then Lη(‖x− c‖)−1 is a well-defined strictly positive number.
Setting fB1 , Lη(‖x− c‖)−1 log(B), where B is given by (27), gives the conclusion.

Proof [Proof of Proposition 5] We argue analogously to the proof of (Kratsios and Zaman-
looy, 2021, Lemma A.1). If σ is analytic, then so is the function Σ : Rd → Rd obtained
by component-wise application of σ. Since the composition of analytic functions is again
analytic, and since every affine function is analytic, then every f ∈ NN σ

d,d is analytic. Since
the difference of two analytic functions is analytic, then for every f ∈ NN σ

d,d, the function

F (x) , f(x)− x is analytic from Rd to Rd.
Suppose that property (P-iv) (from page 3) holds. Denote the zero-set of F by ZF ,{

x ∈ Rd : φ(x) = x
}

and note that by hypothesis we have that µ(ZF ) > 0. Since ZF is a
set of positive Lebesgue measure then it must have a accumulation point and therefore it
is identically 0 by the Principle of Permanence5. Hence, F must be identically 0 on all of
Rd and therefore f(x) = x for every x ∈ Rd. However, this contradicts the hypothesis that
f(x1) = y1 for some x1 6= y1; both in Rd. Thus property (P-iv) never holds if σ is analytic.

The proof of Proposition 7 uses the following observation.

Lemma 18 Let h : X → Y and g : Y → Z, where X,Y, Z are non-empty sets. Then, g ◦ h
is injective only if h is injective.

Proof [Proof of Lemma 18] Let g ◦h :→ Z be injective. For a contradiction, assume that h
is injective. Then there would exist distinct x1, x2 ∈ X for which h(x1) = h(x2). Therefore,

5. The Principle of Permanence is sometimes called the Uniqueness Theorem of Analytic Functions
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g ◦ h(x1) = g(f(x1)) = g(f(x2)) = g ◦ h(x1) which contradicts the assumed injectivity of
g ◦ h. Hence, h must be injective.

Proof [Proof of Proposition 7] Let f ∈ NN σ
d,D. Clearly, if d = 0 then f is injective

since there is only one point in its domain. Assume that d ≥ 1. Let f̂ ∈ NN σr−ReLU

d,D be
UAP-invariant and therefore by (Kratsios and Bilokopytov, 2020, Theorem 3.4) is must be
injective.

Define the function gW ∈ C(Rd,Rd) by gW , σr−ReLU •W, where W is an affine function
from Rd to itself. By Lemma 18, f̂ ◦ gW is injective only if gW is injective.

We show that this is never the case. To see this, we note that σr−ReLU •W is injective
only if Im(W ) = [0,∞)d; where Rd is the co-domain of W . By Lemma 18, σr−ReLU •W1 is
injective only if W is also injective.

We show that these two conditions cannot hold simultaneously. Suppose that W is
injective and takes values in [0,∞)d. Since W is affine then W (x) = Ax + b for some
d× d-dimensional matrix A and some b ∈ Rd. Since W is injective then A 6= 0. Let ei ∈ Rd

be the vector with entry 1 in its ith component and zero otherwise; that is, {ei}di=1 is the
standard orthonormal basis of Rd. Therefore, W ((−bj −Ai,j)ei)j = −1 for every 1 ≤ j ≤ d
and every 1 ≤ i ≤ d. Thus, Im(W ) ∩ (−∞, 0)d 6= ∅, which is a contradiction. In turn,
this contradicts the assumption that f̂ ◦ σr−ReLU •W is not injective. By (Kratsios and
Bilokopytov, 2020, Theorem 3.4), f̂ ◦ σr−ReLU ◦ W is not UAP-invariant. Moreover, by
definition it is not an embedding on [0, 1]D, since all topological embeddings are injective.
Therefore, if f̂ ∈ NN σr−ReLU

d,D is UAP-invariant, then for every affine map W : Rd → Rd, the

DNN f̂ ◦ σr−ReLU •W is not; nor is it a topological embedding on [0, 1]d.

6.2 Proof of Theorem 4

The proof of Theorem 4 depends on the following lemma. Recall the length of a piece-wise
smooth curve γ : [0, 1]→ Rd, denoted by Len(γ), is defined by:

Len(γ) =

∫
t∈D
‖γ̇(t)‖ dt =

∫ 1

0
‖γ̇(t)‖ dt,

where D is a dense subset of [0, 1] for which µ(D) = 1 and on which γ is differentiable, and
where γ̇ is the derivative of γ on D.

Lemma 19 Let d,N ∈ N+ with d > 1 and x1, . . . , xN , x, z be distinct points in Rd. Fix
0 < δ < ∆ where ∆ is given by:

∆ ,
1

2
min

{
2, min
i,j=1,...,N, i6=j

‖xi − xj‖, min
i=1,...,N

‖xi − z‖, min
i=1,...,N

‖xi − x‖
}
.

There exists a piece-wise smooth curve γ[x:z] : [0, 1]→ Rd satisfying

(a) min
j=1,...,n
t∈[0,1]

∥∥γ[x:z](t)− xj
∥∥ > 0,
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(b) Len
(
γ[x:z]

)
≤ π

2∆ ,

(c) γ[x:z](0) = x and γ[x:z](1) = z.

In particular, there exists reconfiguration units A1, . . . , AJ such that

(i) AJ ◦ · · · ◦A1(x) = z,

(ii) AJ ◦ · · · ◦A1(xi) = xi,

(iii) There exits a compact subset K ⊆ Rd for which AJ ◦ · · · ◦A1(x) = x for every x 6∈ K.

Furthermore, the following estimates hold:

J ≤
⌈

π

2(min{2δ, 1})

⌉
, Nδ(K) ≤ J, and µ (K) ≤ Jδ2π

d
2

Γ
(
d
2 + 1

)
Proof [Proof of Lemma 19] Let n ∈ N, and x1, . . . , xn, x, z be distinct points Rd. For any
y ∈ Rd and ε > 0 let

Bε(y) ,
{
p ∈ Rd : ‖p− y‖ < ε

}
.

We denote the boundary of Bε(y) by ∂Bε(y). We proceed by induction. If N = 0 then
δ > 0 can be chosen arbitrarily. Let l[x:z] : [0, 1] → Rd be the straight line joining x to z.
Since this function is piece-wise smooth its length, which we denote Len

(
l[x:z]

)
, is given by

Len
(
l[x:z]

)
=

∫ 1

0

∥∥∥l̇[x:z](t)
∥∥∥ dt = ‖x− z‖. (28)

Since l[x:z] and Bδ(xi) is a convex body in Rd then l[x:z] can each ∂Bδ(xi) at-most two
points. Without loss of generality, if l[x:z]([0, 1])∩Bδ(xi) = ∅ for some i = 1, . . . , N then l[x:z]

does not need to be modified to avoid xi; thus we may assume that l[x:z]([0, 1])∩Bδ(xi) 6= ∅
for each i = 1, . . . , N . For each i = 1, . . . , N let tiI < tiO be the respective first and final
times where l[x:z] intersects ∂Bδ(xi); these are given by

tiI , min
{
t ∈ [0, 1] : l[x:z](t) ∈ ∂Bδ(xi)

}
and tiO , min

{
t ∈ [tiI , 1] : l[x:z](t) ∈ ∂Bδ(xi)

}
Accordingly define the points piI , l[x:z](t

i
I) and piO , l[x:z](t

i
O). We modify l[x:z] to circum-

vent Bδ(xi) and connect piI to piO about a minimal length curve on ∂Bδ(xi). From Fletcher
(2013) one finds that this is given by a great circle on the sphere ∂Bδ(xi) given by the curve
γi : [0, 1]→ ∂Bδ(xi)

γi(t) , δ2

(
piI cos

(
t
∥∥vi∥∥)+

sin
(
t‖vi‖

)
‖vi‖

vi

)
,

where vi , arccos(〈piI , piO〉)(piO−〈piI , piO〉piI) (here we have adjusted the formula in Fletcher
(2013) to the case where δ ≤ 1 by using basic trigonometry). Accordingly, we modify `[x:z]

to the following curve

γ[x:z](t) ,

γi
(

(t−tiI)tiO
(tiO−t

i
I)

+
(t−tiO)tiI
(tiI−t

i
O)

)
: t ∈ [tiI , t

i
O]

l[x:z](t) : else
, (29)
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this is indeed well-defined since Bδ(xi) ∩Bδ(xj) = ∅ for every i 6= j by definition of ∆.
Since the length of γi is given by the geodesic distance on the sphere ∂Bδ(x

i) which was
shown in Fletcher (2013) to be equal to

δ2 arccos
(
〈piI , piO〉

)
≤ δ2π

2
. (30)

Then, since γi is piece-wise smooth then, by (28) and (30), it’s length is computed to be

Len
(
γ[x:z]

)
=

∫ 1

0
‖γ̇(t)‖ dt ≤ π

2
‖x− z‖. (31)

Moreover, by construction γ[x:z] satisfies the bound

δ < inf
t∈[0,1],x1,...,xN

‖γ[x:z](t)− xi‖. (32)

Thus, (a)-(c) hold.
Since Len(γ[x:z]) ≤ π

2∆ < ∞ then we may pick 1 ≤ t1 < · · · < tJ̃ ≤ 1 such that the
length of the segment of γ[x:z] between [ti, ti+1] is at-most 2δ; i.e.:∫ ti+1

ti

‖γ̇(t)‖ dt ≤ 2δ (∀i = 1, . . . , J̃),

where J̃ ,
⌈
Len(γ[x:z])

min 2δ,1

⌉
balls of radius δ. In particular, by (31) we may take

J̃ ≤
⌈
Len(γ[x:z])

min 2δ, 1

⌉
≤
⌈

π

2(min{2δ, 1})

⌉
.

Furthermore, combining with (32), we observe that the collection of closed balls
{
Bδ (tj)

}J̃
j=1

satisfies:

γ[x:z]([0, 1]) ⊂
J̃⋃
j=1

Bδ(tj) and Bδ(tj) ∩ {xi}ni=1 = ∅.

By Lemma 6.1 (iv) there exists reconfiguration units A1, . . . , AJ such that for each j =
1, . . . , J̃ − 1

Aj
(
γ[x:z](tj)

)
= γ[x:z](tj+1) and Aj(p) = p; (∀p ∈ Rd −Bδ(γ[x:z](tj))). (33)

Let K̃ ,
⋃J̃
j=1Bδ(γ[x:z](tj)), by the Heine-Borel theorem each Bδ(γ[x:z](tj)) is compact and

since J̃ is finite then K̃ is compact.
Lastly, by the sub-additive of measure and by (NA, 2013, Equation 5.19 (iii)), we have

the following estimate of µ(K̃)

µ
(
K̃
)
≤

J∑
j=1

µ
(
Bδ(γ[x:z](tj))

)
=

J∑
j=1

δ2π
d
2

Γ
(
d
2 + 1

) =
Jδ2π

d
2

Γ
(
d
2 + 1

) .
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We have defined an open cover of K by the balls
{
Bδ
(
γ[x:z](tj)

)}J̃
j=1

. Therefore Nδ

(
K̃
)
≤

J̃ .

We will obtain the result now follows from Theorem 4 by repeatedly applying Lemma 19.
Proof [Proof of Theorem 4] We proceed by induction on N ∈ N+. Suppose that N = 1,
set x = x1, z = z1, and let {yk}Kk=1 be given. Since

∆ ≤1

2
min

{
2,min ‖u− v‖ : u 6= v, u, v ∈ {xi, zi}Ni=1 ∪ {yk}Kk=1

}
≤1

2
min

{
2, min
i,j=1,...,N, i6=j

‖xi − xj‖, min
i=1,...,N

‖xi − z‖, min
i=1,...,N

‖xi − x‖
}
,

then Lemma 19 applies; hence, there exists some sequence of reconfiguration unitsA1,1, . . . , A1,N1

satisfying Theorem 4. This yields the base case of the induction.
For the induction hypothesis, suppose that for any N ∈ N+ with N ≥ 1, there exists

some sequence A1,N , . . . , AJN ,N and some non-empty compact subset KNn ⊆ Rd satisfying
the conclusion of Theorem 4 for the given set {yk}Kk=1. Set x = xN+1 and z = zN+1. Our
requirements on ∆ imply that Lemma 19 applies; whence, there exists some sequence of
reconfiguration units {As,N+1}

JN+1

s=1 and some non-empty compact subset KN+1 ⊆ Rd such
that

AJN+1
◦ · · · ◦A1(x) = z (34)

AJN+1
◦ · · · ◦A1(x̃) = x̃ ∀x̃ ∈ KN+1 ∪

[
{ym}Mm=1 ∪ {xn, zn}Nn=1

]
(35)

JN+1 ≤
⌈

π

2(min{2δ, 1})

⌉
(36)

µ (KN+1) ≤ JN+1δ
2π

d
2

Γ
(
d
2 + 1

) , (37)

Nδ(KN+1) ≤ JN+1. (38)

Consider the sequence of reconfiguration units A1,N , . . . , AJN ,N , A1,N+1, . . . , AJN+1,N+1 and

the set K , KN ∪KN+1. Note that this sequence is of length J , JN+1 + JN . Note that
the set K is compact since the finite union of compact subsets of Rd is again compact, KN

is compact by induction hypothesis, and KN+1 is compact by Lemma 19.
Consider the reconfiguration network Φ , AJN+1,N+1 ◦ · · · ◦A1,N+1 ◦ · · · ◦AJN ,N ◦ · · · ◦

A1,N · · · ◦A1,N . For notational simplicity let Φ1 , AJN ,N ◦ · · · ◦A1,N , and Φ2 , AJN+1,N+1 ◦
· · ·◦A1,N+1. By the induction hypothesis, Φ1(x) = x and Φ1(z) = z. Therefore, (34) implies
that

Φ(xN+1) = Φ(x) = Φ2 ◦ Φ1(x) = Φ2(x) = z = zN+1.

Again, by the induction hypothesis, we have that Φ1(xn) = zn for each n ≤ N . Hence, (35)
implies that Φ(xn) = Φ2 ◦ Φ1(x) = Φ2(zn) = zn, for each n ≤ N . Thus (i) holds.

By the induction hypothesis, Φ1(ym) = ym for each m ≤M . Thus, (35) yields

Φ(ym) = Φ2 ◦ Φ1(ym) = Φ2(ym) = ym,

for each m ≤M . Hence, (ii) holds.
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Since, KN ,KN+1 ⊆ K then Rd −K ⊆
[
Rd −KN

]
∩
[
Rd −KN+1

]
. Thus, the induction

hypothesis implies that Φ1|Rd−KN (p) = p for every p ∈ Rd −K. Likewise, by definition of
KN+1, Φ2|Rd−KN (p) = p for every p ∈ R−KN+1. Therefore, for every p ∈ Rd −K we have
that Φ(p) = Φ2 ◦ Φ1(p) = Φ2(p) = p. Therefore, (iii) holds.

Next, by the induction hypothesis, the definition of J , and by (36) we have that

J = JN + JN+1 ≤
⌈

Nπ

2(min{2δ, 1})

⌉
+

⌈
π

2(min{2δ, 1})

⌉
≤
⌈

(N + 1)π

2(min{2δ, 1})

⌉
.

This gives the bound on J . Lastly, combining the induction hypothesis on the covering
number of KN with the bound of (38) we make the following computation

Nδ(K) ≤Nδ(KN ) +Nδ(KN+1) ≤ JN + JN+1 = J.

This completes the induction hypothesis and therefore the proof.

6.3 Proof of Theorem 3

Proof [Proof of Theorem 3] Let φ ∈H δ
M,ω(Rd), M, δ > 0, and d ∈ N+. By definition, there

exists {xn}n≤N in Rd and {ϕn}n≤N in H (Rd) such that [−M,M ]d ⊆ ∪n≤NB(xn, δ), (3),
and (7)-(10) hold.

Step 1 - Upper-bound N : Let us begin by upper-bounding N . Observe that if
x ∈ [−M,M ]d then ‖x‖ ≤ 2

√
dM . Therefore, (Shalev-Shwartz and Ben-David, 2014, page

337) implies that

N2−1δ([−M,M ]d) ≤ sup
x∈[−M,M ]

(
2‖x‖

√
d

2−1δ

)d

=

(
8
√
dM
√
d

δ

)d
.

(39)

Next, [−M,M ]d ⊆ ∪n≤NB(xn, δ) and (9), together with the bound on the packing number

Npack
2−1δ

([−M,M ]d) in (Shalev-Shwartz and Ben-David, 2014, Lemma 27.3) imply that

N ≤ Nδ([−M,M ]d) ≤Npack
2−1δ

([−M,M ]d) ≤ N2−1δ([−M,M ]d). (40)

Combining (39) with (40) yields the following upper-bound on N

N ≤ N2−1δ([−M,M ]d) ≤
(

8dM

δ

)d
. (41)

Step 2 - Representation of each ϕn: Next, let us determine the form of any φ ∈
H δ
M,ω(Rd). By the fragmentation representation (3), we only need to describe a single

ϕn for n ≤ N . In what follows, for x ∈ Rd and r ≥ 0, we use Sd−1(x, r) to denote
the d − 1 dimensional sphere in Rd with center x and radius r; defined by Sd−1(x, r) ,{
z ∈ Rd : ‖x− z‖ = r

}
. Together, properties (7) and (8) imply that ϕn maps Sd−1(xn, δ) to

itself and that ϕn|Sd−1(xn,r) : Sd−1(xn, δ)→ Sd−1(xn, r) is an isometry, for every r ≥ 0. Since

any isometry on Rd belongs to the Euclidean group6 then it is of the form ϕn|Sd−1(xn,r) =

6. The Euclidean group is set of all isometries on Rd. A map f ∈ C(Rd,Rd) belongs to the Euclidean group
if and only if it is an affine map of the form f(x) = Ax+ b where A is an orthogonal matrix and b ∈ Rd.
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Arx + br for some orthogonal matrix Ar and some br ∈ Rd. However, since ϕn maps
each Sd−1(xn, r) into itself then it must fix xn and therefore bn = −Arxn. Next, since
ϕn ∈ H (Rd) then it is orientation-preserving and therefore Ar ∈ SO(d). Thus, for every
n ≤ N and every r ≥ 0

ϕn(x) = A‖x‖(x− xn). (42)

The map exp : sod 7→ SO(d) is a continuous surjection with continuous right-inverse log :
SO(d) 7→ sod (see (Rohan, 2013, Section 4)). Hence, the map r 7→ R̃r , log (Ar) from
[0,∞) to sod must be continuous and by (42) it satisfies

ϕn(x) = exp
(
R̃‖x−xn‖

)
(x− xn). (43)

since Skw : Rd(d−1)/2 → sod is a bijective isometry then there exists some function R ∈
C([0,∞),Rd(d−1)/2) satisfying Skw ◦R = R̃. Thus, (43) simplifies to

ϕn(x) = exp
(
SkwR‖x−xn‖

)
(x− xn). (44)

Since ϕn ∈H (Rd) then representation (44), the continuity of log on SO(d), Skw−1 on sod,
the continuity of the Euclidean norm, the continuity of affine transformations, and the fact
that the composition of continuous functions is again continuous all together imply that the
map x 7→ exp(Skw(R‖x−xn‖))(x− xn) must be also be continuous.

Step 3 - Representation of Reconfiguration Network’s Layers: For any given
Ñ , n ∈ N+ with n ≤ N , whenever we set αk = 0, ηk = 0 for 1 ≤ k ≤ Ñn, ck = bk = 0
for 1 < k ≤ Ñn, and −c1 = b1 = xn, we can represent any such reconfiguration network
φ(n) , φÑn,n ◦ · · · ◦ φ1,n, with φk,n for the form:

φk,n(x) =
∏
k≤Ñn

exp
(
Skw(W2,k:n ◦ σReLU •W1,k:n)(‖x− xn‖2)

)
(x− xn). (45)

Using the fact that exp(A + B) = exp(A) exp(B) for any d× d matrices A and B and the
linearity of Skw, we rewrite (45) as

φk,n(x) = exp

Skw

∑
k≤Ñn

W2,k:n ◦ σReLU •W1,k:n(‖x− xn‖2)

 (x− xn). (46)

Finally, by construction each φk,n maps each Sd−1(xn, r), for r ≥ 0, isometrically into itself
we have that ‖φk,n(x)− xn‖ = ‖x− xn‖, for every x ∈ Rd and every k ≤ Ñ , and therefore

φ(n)(x) = φÑn,n ◦ · · · ◦ φ1,n = exp
(
Skw

(
fn(‖x− xn‖2)

))
(x− xn), (47)

where fn ∈ NN σReLU

1,d(d−1)/2 with 1 hidden layer and of width νÑn , Ñnd(d−1)
2 .

Thus, in the next step, we consider reconfiguration networks of the form φ̂(x) = φ(N) ◦
· · · ◦φ(1); where each φ(n) is represented via (47). Hence, φ will always be a reconfiguration
network of depth

∑
n≤N νÑn .

Step 4 - Upper-bounding the Modulus of Continuity of r 7→ Rr: We conclude
this portion of the proof by computing an upper-bound of the modulus of continuity of
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R. Indeed, since we are estimating on [−M,M ]d and since the Euclidean norm maps
[−M,M ]d to the compact interval [0, 2

√
dM ] then we only need to concern ourselves with

approximating the modulus of continuity of r 7→ Rr on [0, 2
√
dM ]. Since r 7→ Rr is

continuous and since [0, 2
√
dM ] is compact, then by the Heine-Cantor Theorem ((Munkres,

2000, Theorem 27.6)) every continuous function on a compact set is uniformly continuous.
Hence, R genuinely admits an optimal modulus of continuity, which we denote by ωR.

If f, g are composable with respective optimal moduli of continuity ωf and ωg then the
optimal modulus of continuity of g ◦ f , denoted ωg◦f , satisfies the bound

ωg◦f (t) ≤ ωg ◦ ωf (t), (48)

for every t ∈ [0,∞). Since the Riemannian exponential map on SO(d) coincides with its
Lie exponential at the identify and therefore by (Sternberg, 2004, Equation 1.11), we know
that for every pairs of d× d skew symmetric matrices X and Y we have that:

d exp(Y ) = exp(Id)

∫ 1

0
exp(−sX)Y exp(sX)ds

=

∫ 1

0
Y ds

= Y ;

(49)

where we have use the fact that if X ∈ sod, and similarly for sX for any s ∈ [0, 1] since
sod is a vector space, then exp(X) is an isometry. Since exp is smooth then the mean-value
theorem and (49) imply that exp is 1-Lipschitz from sod with the Fröbenius norm ‖ · ‖F
to SO(d) with the its Riemannian distance and, in particular, so for its Euclidean norm.
Furthermore, the generalized right-inverse of ωexp, in the sense of Embrechts and Hofert
(2013), is defined by

ω−1
exp(t) , inf{s ∈ R : ωexp(s) ≥ t} = t

and it satisfies t ≤ ωexp ◦ ω−1
exp(t) for every t ∈ [0,∞). These considerations, together with

(Embrechts and Hofert, 2013, Proposition 2.3) and (10) imply that

ωR(t) ≤ ωR ◦ ωexp ◦ ω−1
exp(t) =ωexp ◦R ◦ ω−1

exp(t)

=ωφn ◦ ω−1
exp(t) ≤ ω ◦ ω−1

exp(t)

=ω(t),

(50)

for every t ∈ [0,∞).

Step 5 - Computing Bounds (Single block Case): By (Serre, 2002, Excersize
106), the map exp : sod → SO(d) is 1-Lipschitz when sod is equipped with the operator
norm ‖ ·‖op. Combining the representations for φn and of φ̂(n) is steps 2 and 3, respectively,
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we compute the following estimate.

∥∥∥φn(x)− φ(n)(x)
∥∥∥ =

∥∥exp
(
Skw ◦R‖x−xn‖

)
(x− xn)− exp

(
Skw

(
fn(‖x− xn‖2)

))
(x− xn)

∥∥
≤
∥∥exp

(
Skw ◦R‖x−xn‖

)
− exp

(
Skw

(
fn(‖x− xn‖2)

))∥∥
op
‖(x− xn)‖

≤
∥∥exp

(
Skw ◦R‖x−xn‖

)
− exp

(
Skw

(
fn(‖x− xn‖2)

))∥∥
op

2
√
dM

≤
∥∥Skw ◦R‖x−xn‖ − Skw ◦ fn(‖x− xn‖2)

∥∥
op

2
√
dM

=
√
d
∥∥Skw ◦R‖x−xn‖ − Skw ◦ fn(‖x− xn‖2)

∥∥
F

2
√
dM

=
∥∥R‖x−xn‖ − fn(‖x− xn‖2)

∥∥ 2dM ;

where appealed the bound ‖ · ‖op ≤
√
d‖ · ‖F and the fact that Skw is an isometry between

sod with the Fröbenius norm, and Rd(d−1)/2 with the Euclidean norm ‖·‖. Since (50) gives us
a uniform upper-bound of the modulus of continuity of R, and since fn ∈ NN σReLU

1,
d(d−1)

2

width

(breadth)
νÑnd(d−1)

2 and one hidden layer, then we may apply (Yarotsky, 2018, Proposition
1) to the left-hand side of (6.3) to obtain the following bound

∥∥∥φn(x)− φ(n)(x)
∥∥∥ =

∥∥R‖x−xn‖ − fn(‖x− xn‖2)
∥∥ 2dM ≤ 2dMCω

(νÑnd(d− 1)

2

)−1
d

 ,

(51)
where C > 0 is a constant independent ν.

Step 5 - Computing Bounds (General Case): Suppose that N is known exactly.
We make the following abbreviations ωN−1 , sup‖x‖≤M

∥∥φ(N−1) ◦ · · · ◦ φ(1)(x)− ϕN−1 ◦ · · · ◦ ϕ1(x)
∥∥,

ϕ̃N−1 , ϕN−1 ◦ · · · ◦ ϕ1 and φ̃N−1 , φ(N−1) ◦ · · · ◦ φ(1). Then, using (10), the definition of
the modulus of continuity of φN , and Step 4 we compute the following recursive-bound for
any x ∈ [−M,M ]d.

∥∥∥φn ◦ φ̃(n−1)(x)− ϕn ◦ ϕ̃n−1(x)
∥∥∥ =

∥∥∥φn ◦ φ̃(n−1)(x)− ϕn ◦ φ̃(n−1)(x)

−ϕn ◦ ϕ̃n−1(x) + ϕn ◦ φ̃(n−1)(x)
∥∥∥

≤
∥∥∥φn ◦ φ̃(n−1)(x)− ϕn ◦ φ̃(n−1)(x)

∥∥∥
+
∥∥∥ϕn ◦ φ̃(n−1)(x)− ϕn ◦ ϕ̃n−1(x)

∥∥∥
≤
∥∥∥φn ◦ φ̃(n−1)(x)− ϕn ◦ φ̃(n−1)(x)

∥∥∥
+ω

(∥∥∥φ̃(n−1)(x)− ϕ̃n−1(x)
∥∥∥)

≤2dMCω

(νÑnd(d− 1)

2

)−1
d


+ω (ωn−1)

(52)
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Set νÑn , ν
⌈

δd

(8dM)d

⌉
. By the bound (41), we know that νÑn , ν

⌈
δd

(8dM)d

⌉
≤ ν

N and by the

monotonicity of modulus of continuity ω we have that for every k ≥ 0

ω
(
νÑnk

)
≤ ω

( ν
N
k
)
. (53)

Therefore, we have the following approximation bound

sup
‖x‖≤M

∥∥∥φn ◦ φ̃N−1 − φ̂(N) ◦ φ̃(N−1)(x)
∥∥∥ ≤ ωN ,

where ωN is determined by the recurrence relation:

ωn+1 = 2dMCω

(νÑnd(d− 1)

2

)−1
d

+ ω (ωn) , ω0 = 0. (54)

Since ω takes values in the non-negative integers; then, the sequence {ωn}n∈N is monoton-
ically increasing. Whence, ωN ≤ ω⌈

(8dM)d

δd

⌉. This gives us the desired bound.

6.4 Proof of Theorem 6

The proof of Theorem 6 relies on the observation that given any (d+D)× d matrix A, any
f ∈ C(Rd,RD) can be expressed as f = P ◦Φf (x,Ax) where P : Rd+D → RD is the (linear)
orthogonal projection mapping (x, y) ∈ Rd ×RD to y ∈ RD and Φf ∈H (Rd+D) is given by

Φf,A(x, y) = (x, y + f(x)−Ax) .

Since P is 1-Lipschitz, A is arbitrary, then we only need to approximate Φf,A; which we
know can always be done using Theorem 2.
Proof [Proof of Theorem 6] By Theorem 2 since Φf,A ∈ H (Rd+D) there exists some

φ̂ ∈ NN ?:d+D satisfying

sup
(x,y)∈Rd+D; ‖(x,y)‖≤M

∥∥∥Φf,A(x, y)− φ̂(x, y)
∥∥∥ < ε. (55)

Since the orthogonal projection P (x, y) , y is 1-Lipschitz, then (55) yields (iv) via

sup
‖x‖≤M

∥∥∥f(x)− Pφ̂(x,Ax)
∥∥∥ = sup

‖x‖≤M

∥∥∥P ◦ Φf,A(x,Ax)− Pφ̂(x,Ax)
∥∥∥

= sup
‖x‖≤M

1
∥∥∥Φf,A(x,Ax)− φ̂(x,Ax)

∥∥∥
<ε.

(56)

Setting B , P , yields (iii).
Since x 7→ Id ⊕ Ax is a linear map, it is continuous. By construction, Id ⊕ A is of

fullrank; whence the associated linear map (obtained by matrix-multiplication) is injective
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and since φ̂ ∈H (Rd+D), then it is also continuous and injective. Hence, ψ(x) , φ̂(Id⊕Ax)
is a continuous injective map. Since ψ is continuous then the pre-image of any compact
subset K ⊆ Rd+D is closed in Rd and ψ−1[K]∩ [−M,M ]d is a closed subset of the compact-
set [−M,M ]d. Hence, ψ−1[K] ∩ [−M,M ]d is compact in [−M,M ]d. Therefore, ψ is a
continuous, injective, and by (Munkres, 2000, Exercises 26.6) it is a closed map also. Thus,
it is a topological embedding; i.e. a homeomorphism onto its image with respect to the
subspace topology. This gives (ii) and the statement that ψ is an isometry in (i).

Moreover, since ψ is a homeomorphism then it is a bijection with inverse φ−1 ◦A† where
Id⊕A† is the left-inverse of Id⊕A given in the statement of (i). Since φ is a bijection then
the metric

dφ̂,M,ε(z1, z2) , ‖ψ−1(z1)− φ−1(z2)

is well-defined on Mφ̂,M,ε and by construction ψ is an isometry from [−M,M ]d to Mφ̂,M,ε.

This completes the proof of (i).

6.5 Proof of Theorem 2

6.5.1 Comments on the method of proof for Theorem 2

We begin by noting that the space H (Rd) is highly non-linear. To see this, observe that
the identity map 1Rd belongs to H (Rd), however, 1Rd − k1Rd 6∈H (Rd) for any k > 0.

This non-linearity unfortunately renders most classical tools used to establish univer-
sality, such as the Stone-Weirestraß theorem (used in Hornik et al. (1989)) from classical
approximation theory, the Hahn-Banach theorem (used in Micchelli et al. (2006)) from func-
tional analysis, the Wiener-Tauberian Theorem (used in Cybenko (1989)) from harmonic
analysis, or hypercylicity results (used in Kratsios (2021)) from linear dynamical systems,
useless.

Nevertheless, we still have access to the less standard tools from infinite-dimensional
topology; which were specifically built to handle limits of homeomorphisms in H (Rd).
Specifically, we appeal to the inductive convergence criterion, a less-known result which
provides conditions on a sequence of homeomorphisms (Φk)k∈N+ in H (Rd) such that the
limit of Φk ◦ . . .Φ1 in the topology of H (Rd) exists. For a self-contained exposition, we
briefly discuss state and discuss the result here before applying it.

The result relies on some notation which we now develop. Let ε > 0, K ⊆ Rd be
non-empty and compact. For any Φ ∈H (K) define the quantity:

α(h, ε) , inf {δ : ∃x, y ∈ K, ‖x− y‖ > ε and ‖Φ(x)− Φ(y)‖ = δ} .

As discussed on (Anderson, 1967, page 367), if d ∈ N+ then for any Φ ∈ H (K) and any
ε > 0 we have that α(Φ, ε) > 0. Several formulations of this lemma exist, see van Mill
(2001); Hernandez-Gutierrez (2020); however, we prefer to use of the phrasing presented in
Anderson (1967).

Lemma 20 (Inductive Convergence Criterion (Anderson, 1967, Lemma 2.1))
If (φk)k∈N+

is a sequence in H (K) and if

sup
x∈K
‖φk(x)− x‖ < 3−k min

{
1, α

(
φk−1 ◦ · · · ◦ φ1, 2

−k
)}

,
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for each k > 1 then {φk ◦ · · · ◦ φ1}k∈N+
converges (to a homeomorphism) in H (K).

6.5.2 Proof for Theorem 2

Proof [Proof of Theorem 2] Let d ∈ N+ with d ≥ 2, K ⊆ Rd be compact, and let φ ∈H (Rd).
We deduce some simplifications on K, on φ, and on their relationship before moving onto
the main part of the proof. Since φ ∈ H (Rd) then it is isotopic to the identity; thus, the
second Corollary7 to (Kirby, 1969, Theorem 2) implies that φ can be fragmented, i.e.: for
any open cover U , {Un}Nn=1 of Rd there exists φU :1, . . . , φU :N ∈H (Rd) such that

φ = φU :N ◦ · · · ◦ φU :1

φU :n(x) = x (∀x 6∈ Un).
(57)

In particular, (57) implies that φU :n(Un) = Un, for every n ≤ N , since the value of φn
is determined to be the identity outside of Un. In particular, fix some δ > 0 and define
K ′δ ,

{
z ∈ Rd : (∃x ∈ K) ‖z − x‖ < δ

}
; then for the open cover

{
K ′δ,R

d −K
}

of R, the
fragmentation property of φ implies that there are {φU :i}2i=1 ⊂H (Rd) satisfying

φ = φU :2 ◦ φU :1

φU :2(x) = x (∀x ∈ K)

φU :1 (K) = K ′δ.

(58)

In particular, (58) implies that for each x ∈ int(K) we have that φ(x) = φU :2 ◦ φU :1(x) =
φU :1(x). Therefore, for every φ̂ ∈ Φ?:d, the following holds

sup
x∈K′δ

∥∥∥φ̂(x)− φ(x)
∥∥∥ = sup

x∈K′δ

∥∥∥φ̂(x)− φ1(x)
∥∥∥ . (59)

Since K ′δ is, by definition, dense in its closure K ′δ and since continuous functions are deter-
mined by their value on dense sets then

max
x∈K

∥∥∥φ̂(x)− φ(x)
∥∥∥ ≤ sup

x∈K′δ

∥∥∥φ̂(x)− φ(x)
∥∥∥ = max

x∈K′δ

∥∥∥φ̂(x)− φ1(x)
∥∥∥ . (60)

Therefore, we only need to approximate φ1 on K ′δ in order to approximate φ on K ⊂ K ′δ.

Thus, without loss of generality, we may assume that K = int(K) and that φ : K → K.

With these key simplifications, we proceed to the main part of the proof. Since Rd is
separable then so is K. Therefore, there exists a sequence {xn}n∈N contained in K such that
{xn}n∈N is a dense subset of K. Since the value of any continuous function is determined by
its value on any dense subset, and since φ is continuous, then we only need to approximate
φ on {xn}n∈N.

Define the sequence {zn}n∈N ∈ φ(K) by zn , φ(xn), for each n ∈ N. For any N ∈ N+,
Theorem 4 implies that there exists some φ̂ ∈ Φ?:d satisfying φ̂(xn) = φ(xn) for every
n ≤ N . Set φ̂0 , φ̂. We recursively generate a sequence of reconfiguration networks in Φ?:d

converging to φ on {xn}n∈N and therefore on K.

7. The results are not numbered in Kirby (1969).
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By Lemma 19, for every n > N there exists some continuous curve with finite length
γxn:zn : [0, 1] → Rd satisfying γxn:zn(0) = xn, γxn:zn(1) = zn, and for which there is some
∆n > 0 satisfying

∆n , min
k<n,t∈[0,1]

‖γ[xn:zn](t)− zk‖ > 0.

. For any decreasing of positive numbers {εn:k}k∈N in (0,∆n) Since γ[xn:zn] has finite
length then one can choose an increasing sequence {tn:k}k∈N in [0, 1] such that tn:0 = 0
and γ[xn:zn]([0, 1]) ⊆

⋃
k∈N Ball

(
γ[xn:zn](tn:k), εn:k

)
. Since γ[xn:zn] is continuous and [0, 1] is

compact, then (Munkres, 2000, Theorem 26.5) implies that γ[xn:zn]([0, 1]) is compact and

therefore there must exist a finite sub-collection {(εn:kj , tn:kj )}
Jn
j=1 such that

γ[xn:zn]([0, 1]) ⊆
Jn⋃
j=1

Ball
(
γ[xn:zn](tn:kj ), εn:kj

)
. (61)

By Lemma 6.1 (ii), we choose reconfigurations networks φ̂n:1, . . . , φ̂n:Jn−1 ∈ Φ?:d so that

φ̂n:j

(
γ[xn:zn](tn:kj )

)
= γ[xn:zn](tn:kj+1

), (62)

sup
u∈Rd, ‖u−γ[xn:zn](tn:kj

)‖≥εn:kj

‖φ̂n:j(u)− u‖ = 0 (63)

for k ∈ {1, . . . , Jn − 1}. In particular, supu∈Rd ‖φ̂n:j(u)− u‖ ≤ 2εn:kj .
Let us describe how to choose {εn:k}k∈N. We define this sequence recursively according

to

εn,k , min

{
3−N(n,k), 3−N(n,k)α

(
φ̂n:k−1 ◦ . . . φ̂n:1 ◦ . . . φ̂1:1,

1

2N(n,k)

)}
,

where N(n, k) is the number of elements in ε1,k1 , . . . , ε1,kJ1
, . . . , εn,1, . . . , εn,kj−1

. Note that,
as discussed in (Anderson, 1967, page 367 preceding Lemma 2.1), the quantity

α

(
φ̂n:k−1 ◦ . . . φ̂n:1 ◦ . . . φ̂1:1,

1

2N(n,k)

)
is positive by the compactness of K. Hence, the sequence {εn,k}k∈N is decreasing and
non-negative. Thus, by the argument preceding (62), there exist well-defined sequence
φ̂1,1, . . . , φ̂1,J1 , . . . , φ̂n,1, . . . , φ̂n,Jn , . . . satisfying

φ̂n,Jn ◦ . . . φ̂n,1 ◦ · · · ◦ φ̂1,J1 ◦ · · · ◦ φ̂1,1(xn) =φ(xn) (64)

sup
u∈Rd

‖φ̂n:j(u)− u‖ < εn,k. (65)

Hence, (65) and the Inductive Convergence Criterion imply that the limit

lim
n↑∞

φ̂n,Jn ◦ · · · ◦ φ̂n,1 ◦ · · · ◦ φ̂1,J1 ◦ · · · ◦ φ̂1,1

converges in H (Rd) (with respect to the topology of uniform convergence on compacts).
Denote its limit by φ̂∞. Next, (64) implies that φ̂∞(xn) = φ(xn) for every n ∈ N. Moreover,
(Munkres, 2000, Theorem 46.5) guarantees that the uniform limit of continuous functions
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is again continuous, therefore φ̂∞ and φ are both continuous. Since continuous functions
agreeing on dense subsets are equal, then we conclude that φ̂∞ = φ. In particular, for the
given value of ε > 0, there must be some integer N(n, k) ∈ N+ such that for every N ∈ N
with N ≥ N(n, k) we have that:

sup
x∈K

∥∥∥(φ̂N,JN ◦ · · · ◦ φ̂N,1 ◦ · · · ◦ φ̂1,J1 ◦ · · · ◦ φ̂1,1)(x)− φ(x)
∥∥∥ < ε.

This concludes the proof.

6.6 Proof of Corollary 10

Lemma 21 Let {xn}Nn=1 be points in X, where X is a compact subset of Rd, and suppose
that L and P satisfy Assumption 3.1. Then:

(i) The map g 7→
∑N

n=1 L (f(xn), g(xn), xn) + P (g) is continuous from C(X,RD) to R,

(ii) There exists some f? ∈ C(Rd,RD) satisfying

f? ∈ argmin
g∈C(X,RD)

N∑
n=1

L (f(xn), g(xn), xn) + P (g). (66)

Proof [Proof of Lemma 21] Since RD and R are metric spaces then (Munkres, 2000, Theorem
46.8) implies that the topology of uniform convergence and the compact-open8 topologies
coincide on C(X,RD) and on C(X,Rd). Since L and f are continuous and since X is
compact, then (Munkres, 2000, Theorem 46.10) implies that, for every n ∈ {1, . . . , N} the
evaluation map:

g 7→ L(f(xn), g(xn), xn),

is continuous from C(X,RD) to C(X,R). Since the sum of (finitely many) continuous
functions is continuous then the map

g 7→
N∑
n=1

L(f(xn), g(xn), xn) + P (g), (67)

is continuous on C(X,RD). This gives (i).
Continuing our argument, for every g ∈ C(Rd,RD) the quantity

∑N
n=1 L(f(xn), g(xn), xn)+

P (g) is finite since L and P were assumed to be finite-valued. Since L was assumed to be
bounded-below, then in particular:

min
n=1,...,N,g∈C(X,RD)

L(f(xn), g(xn), xn) ≥ min
y1,y2∈RD,x∈Rd

L(f(xn), g(xn), xn) > −∞.

Now since P was also assumed to be bounded-below on C(Rd,RD) then it particular it is
bounded-below on C(X,RD); hence the functional of (67) is continuous, bounded-below,

8. See (Munkres, 2000, page 285) for a definition of the compact-open topology; however, its definition is
never explicitly needed in our argument; but rather only its properties.
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and finite-valued on C(X,RD). Therefore, (Dal Maso, 1993, Theorem 1.15) applies there-
fore there exists some f? ∈ C(X,RD) satisfying (66). This gives (ii).

Proof [Proof of Corollary 10] By Lemma 21 (ii) there exists some f? ∈ C(X,RD) satisfy-
ing (66). By Theorem 3.3, for every full-rank matrix A ∈ Matd,d+D and every δ > 0, there

exists a matrix Bδ ∈ Matd+D,D and some φ̂δ ∈ Φ?:d+D such that

sup
x∈X

∥∥∥f?(x)−Bδφ̂δ((Id ⊕A)x)
∥∥∥ < δ. (68)

By Lemma 21 (i) the map F : g 7→
∑N

n=1 L (f(xn), g(xn), xn) + P (g) is continuous and
therefore (68) implies that for every ε > 0 we may pick some δ > 0 such that:

F
(
Bδφ̂δ((Id ⊕A)·)

)
≤ F (f?) + ε.

Relabeling, yields the conclusion.

6.7 Proof of Corollary 12

Proof [Proof of Corollary 12] The existence of f? is guaranteed by Lemma 21. Define the
matrices B ∈ MatD×d+D and A ∈ Matd+D,d, respectively, by:

A , (Id|0D) and B , (0d|ID), (69)

where 0D and 0d are respectively the respective zero matrices of MatD×D and of Matd×d.
Set f̂(z) , Bz and observe that f̂ ∈ F since F contains all linear maps.

For every n ≤ N set

zn , (0, . . . , 0, f?(xn)) ∈ Rd+D

x′n , (xn, 0, . . . , 0) ∈ Rd+D.

Since f?(xn) 6= f?(xm) for every n 6= m, with n,m ≤ N , then for any n,m ≤ N if n 6= m
then zn 6= zm and x′n 6= x′m (the latter observation follows from the fact that if x′n did
equal to x′m then xn would equal to xm and then f(xn) would equal to f(xm) which is
a contradiction of our assumption). Since xn 6= 0 for any n ≤ N then x′n 6= zm for any
n,m ≤ N since these must differ their first coordinate. Hence, {zn}Nn=1 ∪ {x′n}Nn=1 is a set
of 2N distinct points in Rd+D and d ≥ 1, D ≥ 1, thus d + D ≥ 2. Since ∆ of Theorem 4
is at-most equal to the right-hand side of (16) then Theorem 4 applies; hence, there exists
some φ̂ ∈ Φ?:d+D satisfying

φ̂(x′n) = zn, (70)

for every n ≤ N . In particular, (70) and the definitions of A and B imply that for every
n ≤ N

f̂ ◦ φ̂δ(Axn) = Bφ̂δ(Axn) = Bφ̂δ(x′n) = Bzn = f?(xn). (71)

Thus, (i) holds.
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Moreover, Theorem 4 implies that φ̂δ has depth at-most
⌈

Nπ
2(min{2δ,1})

⌉
; depending on

our choice of δ > 0; sufficiently small; and in particular, as specified by condition (16). This
gives (iii).

By construction we have the containment:{
(x, f̂(Ax)) ∈ Rd+D : (x, f̂(Ax)) 6= φ̂δ(x, f̂(Ax))

}
⊆
{

(x, y) ∈ Rd+D : (x, y) 6= φ̂δ(x, y)
} , (72)

and the bound on the external covering number of the right-hand side of (72) is also guar-
anteed by Theorem 4. This gives (ii) and completes the proof.

6.8 Proof of Theorem 14

Proof [Proof of Theorem 14] Observe that the term sup
x∈K

L(f(xn), f̂(xn), xn) does not de-

pend on {wn}Nn=1 ∈ (0, 1)n; hence:

argmin
wn∈(0,1)

{wn}Nn=1wn=1

sup
x∈K

L(f(xn), f̂(xn), xn)−

∑
n≤N

wnL(f(xn), f̂(xn), xn)− λ
∑
n≤N

1

N
log
(wn
N

)

= argmin
wn∈(0,1)

{wn}Nn=1wn=1

−

∑
n≤N

wnL(f(xn), f̂(xn), xn)− λ
∑
n≤N

1

N
log
(wn
N

) .
(73)

Notice that the set
{
{wn}Nn=1 : wn ∈ (0, 1),

∑
n≤N wn = 1

}
describes the collection of prob-

ability measures Q which are equivalent to the uniform probability measure P on {xn}Nn=1.
Thus,

∑
n≤N wnL(f(xn), f̂(xn), xn) is the expectation of L(f(xn), f̂(xn), xn) for a random

variable X taking values on {xn}Nn=1 and
∑

n≤N
1
N log

(
wn
N

)
is the relative entropy of the

measure Q with respect to P, in the sense of (Wang et al., 2020, Definition 3). Therefore
(Wang et al., 2020, Proposition 1) applies, thus, the measure P? defined by

P?(X = xi) =
eλ
−1L(f(xn),f̂(xn),xn)∑

n≤N e
λ−1L(f(xn),f̂(xn),xn)

optimizes the right-hand side of (73).

Proof [Proof of Corollary 15] Fix f̂ ∈ C(Rd,RD) and let {wλ,f̂n }Nn=1 be as in Theorem 14 and

use Q{w
λ,f̂
n }Nn=1 to denote the measure on {xn}Nn=1 taking values with probabilities {wλ,f̂n }Nn=1.

Then by Theorem 14

GenM

(
f̂
∣∣∣{wλ,f̂n }Nn=1

)
+ λDKL

(
Q{w

λ,f̂
n }Nn=1

∥∥∥∥P

)
≤GenM

(
f̂

∣∣∣∣∣
{

1

N

}N
n=1

)
+ λDKL (P‖P).

(74)
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By Gibbs’ inequality, see (MacKay, 2003, Exercise 2.26), we have that DKL

(
Q{w

λ,f̂
n }Nn=1

∥∥∥P
)
≥

0 and DKL (P‖P) = 0. Thus, since λ > 0 then (74) reduces to

GenM

(
f̂
∣∣∣{wλ,f̂n }Nn=1

)
≤GenM

(
f̂
∣∣∣{wλ,f̂n }Nn=1

)
+ λDKL

(
Q{w

λ,f̂
n }Nn=1

∥∥∥∥P

)
≤GenM

(
f̂

∣∣∣∣∣
{

1

N

}N
n=1

)
+ λDKL (P‖P)

= GenM

(
f̂

∣∣∣∣∣
{

1

N

}N
n=1

)
,

(75)

with equality in the left-most inequality if and only if Q{w
λ,f̂
n }Nn=1 = P. Hence, from (75) we

have that

0 ≤ GenM

(
f̂

∣∣∣∣∣
{

1

N

}N
n=1

)
−GenM

(
f̂
∣∣∣{wλ,f̂n }Nn=1

)
, (76)

with equality if and only if Q{w
λ,f̂
n }Nn=1 = P. Applying Theorem 14 we have an explicit form

for Q{w
λ,f̂
n }Nn=1 and therefore, we compute the right-hand side of (76) as follows

0 ≤GenM

(
f̂

∣∣∣∣∣
{

1

N

}N
n=1

)
−GenM

(
f̂
∣∣∣{wλ,f̂n }Nn=1

)

=

sup
x∈K

L(f(xn), f̂(xn), xn)− 1

N

∑
n≤N

L(f(xn), f̂(xn), xn)


−

sup
x∈K

L(f(xn), f̂(xn), xn)−
∑
n≤N

wλ,f̂n L(f(xn), f̂(xn), xn)


=
∑
n≤N

wλ,f̂n L(f(xn), f̂(xn), xn)− 1

N

∑
n≤N

L(f(xn), f̂(xn), xn)

=
∑
n≤N

(
e−λ

−1L(θ,xn)∑
n≤N e

−λ−1L(θ,xn)
− 1

N

)
L(f(xn), f̂(xn), xn).

(77)

Lastly, note that Q{w
λ,f̂
n }Nn=1 = P if and only if for each 1 ≤ n ≤ N we have

eλ
−1L(f(xn),f̂(xn),xn)∑

n≤N e
λ−1L(f(xn),f̂(xn),xn)

=
1

N
. (78)

Thus, (78) holds if and only if for every 1 ≤ n,m ≤ N

eλ
−1L(f(xn),f̂(xn),xn)∑

n≤N e
λ−1L(f(xn),f̂(xn),xn)

=
1

N
=

eλ
−1L(θ,xm)∑

n≤N e
λ−1L(f(xn),f̂(xn),xn)

. (79)
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