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Abstract

The focus of modern biomedical studies has gradually shifted to explanation and estimation
of joint effects of high dimensional predictors on disease risks. Quantifying uncertainty in
these estimates may provide valuable insight into prevention strategies or treatment deci-
sions for both patients and physicians. High dimensional inference, including confidence
intervals and hypothesis testing, has sparked much interest. While much work has been
done in the linear regression setting, there is a lack of literature on inference for high
dimensional generalized linear models. We propose a novel and computationally feasible
method, which accommodates a variety of outcome types, including normal, binomial, and
Poisson data. We use a “splitting and smoothing” approach, which splits samples into two
parts, performs variable selection using one part and conducts partial regression with the
other part. Averaging the estimates over multiple random splits, we obtain the smoothed
estimates, which are numerically stable. We show that the estimates are consistent, asymp-
totically normal, and construct confidence intervals with proper coverage probabilities for
all predictors. We examine the finite sample performance of our method by comparing it
with the existing methods and applying it to analyze a lung cancer cohort study.

Keywords: Confidence intervals, dimension reduction, high dimensional inference for
GLMs, sparsity, sure screening

1. Introduction

In the big data era, high dimensional regression has been widely used to address questions
arising from many scientific fields, ranging from genomics to sociology (Hastie et al., 2009;
Fan and Lv, 2010). For example, modern biomedical research has gradually shifted to un-
derstanding joint effects of high dimensional predictors on disease outcomes (e.g. molecular
biomarkers on the onset of lung cancer) (Vaske et al., 2010; Chen and Yan, 2014, among
others). A motivating clinical study is the Boston Lung Cancer Survivor Cohort (BLCSC),
one of the largest comprehensive lung cancer survivor cohorts, which investigates the molec-
ular mechanisms underlying lung cancer (Christiani, 2017). Using a target gene approach
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(Moon et al., 2003; Garrigos et al., 2018; Ho et al., 2019), we analyzed a subset of 708 lung
cancer patients and 751 controls, with 6,800 single nucleotide polymorphisms (SNPs) from
15 cancer related genes, in addition to demographic variables such as age, gender, race,
education level, and smoking status. Our objective was to determine which covariates were
predictive in distinguishing cases from controls. As smoking is known to play a significant
role in the development of lung cancer, we were interested in estimating and testing the
interaction between smoking status (never versus ever smoked) and each SNP, in addition
to the main effect of the SNP. Quantifying uncertainty of the estimated effects helps inform
prevention strategies or treatment decisions for patients and physicians (Minnier et al.,
2011).

Considerable progress has been made in drawing inferences based on penalized linear
models (Zhang and Zhang, 2014; Javanmard and Montanari, 2014; Bühlmann et al., 2014;
Dezeure et al., 2015). While techniques for variable selection and estimation in high dimen-
sional settings have been extended to generalized linear models (GLMs) and beyond (Van de
Geer, 2008; Fan et al., 2009; Witten and Tibshirani, 2009), high dimensional inference in
these settings is still at its infancy stage. For example, Bühlmann et al. (2014) generalized
the de-sparsified LASSO to high dimensional GLMs, while Ning and Liu (2017) proposed
a de-correlated score test for penalized M-estimators. In the presence of high dimensional
control variables, Belloni et al. (2014, 2016) proposed a post-double selection procedure for
estimation and inference of a single treatment effect and Lee et al. (2016) characterized the
distribution of a post-LASSO-selection estimator conditional on the selected variables, but
only for the linear regression.

However, the performance of these methods may depend heavily on tuning parameters,
often chosen by computationally intensive cross-validation. Also, these methods may require
inverting a p× p information matrix (where p is the number of predictors), or equivalently,
estimating a p × p precision matrix, with extensive computation and stringent technical
conditions. For example, the sparse precision matrix assumption may be violated in GLMs,
resulting in biased estimates (Xia et al., 2020).

We propose a new approach for drawing inference with high dimensional GLMs. The
idea is to randomly split the samples into two sub-samples (Meinshausen et al., 2009), use
the first sub-sample to select a subset of important predictors and achieve dimension reduc-
tion, and use the remaining samples to parallelly fit low dimensional GLMs by appending
each predictor to the selected set, one at a time, to obtain the estimated coefficient for each
predictor, regardless of being selected or not. As with other methods for high dimensional
regression (Zhang and Zhang, 2014; Javanmard and Montanari, 2014; Bühlmann et al.,
2014), one key assumption is that the number of non-zero components of β∗ is small rela-
tive to the sample size, where β∗ are the true values underlying the parameter vector, β, in
a regression model. The sparsity condition is reasonable in some biomedical applications.
For example, in the context of cancer genomics, it is likely that a certain type of cancer is
related to only a handful of oncogenes and tumor suppressor genes (Lee and Muller, 2010;
Goossens et al., 2015). Under this sparsity condition, we show that our proposed estimates
are consistent and asymptotically normal. However, these estimates can be highly vari-
able due to both the random splitting of data and the variation incurred through selection.
To stabilize the estimation and account for the variation induced by variable selection, we
repeat the random splitting a number of times and average the resulting estimates to ob-
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tain the smoothed estimates. These smoothed estimators are consistent and asymptotically
normal, with improved efficiency.

Our approach, termed Splitting and Smoothing for GLM (SSGLM), aligns with multi-
sample splitting (Meinshausen et al., 2009; Wang et al., 2020) and bagging (Bühlmann and
Yu, 2002; Friedman and Hall, 2007; Efron, 2014), and differs from the existing methods
based on penalized regression (Zhang and Zhang, 2014; Bühlmann et al., 2014; Ning and
Liu, 2017; Javanmard and Montanari, 2018). The procedure has several novelties. First, it
addresses the high dimensional estimation problem through the aggregation of low dimen-
sional estimations and presents computational advantages over other existing methods. For
example, the de-biased methods (Bühlmann et al., 2014; Javanmard and Montanari, 2018)
require well-estimated high dimensional precision matrices for proper inference (e.g. correct
coverage probabilities), which is statistically and computationally challenging. Complicated
procedures that involve choosing a large number of tuning parameters are needed to strike
a balance between estimation accuracy and model complexity; see Bühlmann et al. (2014)
and Javanmard and Montanari (2014). In contrast, our algorithm is more straightforward
as it avoids estimating a high dimensional precision matrix by adopting a “split and select”
strategy with minimal tuning. Second, we have derived the variance estimator using the
infinitesimal jackknife method adapted to the splitting and smoothing procedure (Efron,
2014). This is free of parametric assumptions and leads to confidence intervals with cor-
rect coverage probabilities. Third, we have relaxed the stringent “selection consistency”
assumption on variable selection, which is required in Fei et al. (2019). Our procedure is
valid with a mild “sure screening” assumption for the selection method. Finally, our frame-
work facilitates hypothesis testing and drawing inference on predetermined contrasts in the
presence of high dimensional nuisance parameters.

The rest of the paper is organized as follows. Section 2 describes the SSGLM procedure
and Section 3 introduces its theoretical properties. Section 4 describes the inferential pro-
cedure and Section 5 extends it to accommodate any sub-vectors of parameters of interest.
Section 6 provides simulations and comparisons with the existing methods. Section 7 re-
ports our analysis of the BLCSC data. We conclude the paper with a brief discussion in
Section 8.

2. Method

2.1 Notation

We assume the observed data (Yi,xi) = (Yi, xi1, xi2, . . . , xip) , i = 1, . . . , n, are i.i.d. copies
of (Y,x) = (Y, x1, x2, . . . , xp). Without loss of generality, we assume that the predictors
are centered with E (xj) = 0, j = 1, . . . , p. In the matrix form, we denote the n samples
of observed data by D(n) = (Y,X), where Y = (Y1, . . . , Yn)T and X = (X1, . . . ,Xp).
Here, Xj = (x1j , . . . , xnj)

T for j = 1, . . . , p. In addition, X = (1,X) includes an n × 1
column vector of 1’s. To accommodate non-Gaussian outcomes, we assume the outcome
variable belongs to the linear exponential distribution family, which includes the normal,
Bernoulli, Poisson, and negative-binomial distributions. That is, given x, the conditional
density function for Y is

f(Y |θ) = exp {Y θ −A(θ) + c(Y )} , (1)
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where A(·) is a specified function that links the mean of Y to x through θ. We assume
the second derivative of A(θ) is continuous and positive. We consider the canonical mean
parameter, θ = xβ, where x = (1,x) and β = (β0, β1, . . . , βp)

T include an intercept term.
Specifically, denote µ = E (Y |x) = A′(θ) = g−1 (xβ), and V(Y |x) = A′′(θ) = ν(µ), where
g(·) and ν(·) are the link and variance functions, respectively.

The forms of A(·), g(·), and ν(·) depend on the data type of Y . For example, with the
outcome in BLCSC being a binary indicator of lung cancer, A(θ) = log

(
1 + eθ

)
, g(µ) =

logit(µ) = log
(

µ
1−µ

)
and ν(µ) = µ(1− µ), corresponding to the well known logistic regres-

sion. Based on (Y,X), the negative log-likelihood with model (1) is

`(β) = `(β;Y,X) =
1

n

n∑
i=1

{A(θi)− Yiθi} =
1

n

n∑
i=1

{A(xiβ)− Yi(xiβ)} ,

where θi = xiβ and xi = (1, xi1, xi2, . . . , xip). The score and the observed information are

U(β) =
1

n
X

T {
A′(Xβ)−Y

}
and Î(β) =

1

n
X

T
VX,

which are a (p + 1) × 1 vector and a (p + 1) × (p + 1) matrix, respectively. Here, V =
diag{ν(µ1), . . . , ν(µn)} and µi = g−1(xiβ) for i = 1, . . . , n. When a univariate function
such as A′(·) is applied to a vector, it operates component-wise and returns a vector of
values.

We add an index set, S ⊂ {1, 2, . . . , p}, to the subscripts of vectors and matrices to
index subvectors xiS = (xij)j∈S and xiS = (1,xiS), and submatrices XS = (Xj)j∈S and
XS = (1,XS). Moreover, we define S+j = {j} ∪ S and S−j = S \ {j}. As a convention, let
S+0 = S−0 = S, where “0” corresponds to the intercept.

We write βS = (β0, βj)j∈S , which always includes the intercept and is of length 1 +
|S|. The negative log-likelihood for model (1) that regresses Y on XS (termed the partial
regression) is

`S(βS) = `(βS ;Y,XS) =
1

n

n∑
i=1

{A(xiSβS)− YixiSβS} . (2)

Similarly, US(βS) = n−1XS
T (
A′(XSβS)−Y

)
and ÎS(βS) = n−1XS

T
VSXS , where VS =

diag{A′′(x1SβS), . . . , A′′(xnSβS)}. Let the true values of β be β∗ = (β∗0 , β
∗
1 , . . . , β

∗
p). Define

the expected information as I∗ = E {Î(β∗)}. Let S∗ =
{
j 6= 0 : β∗j 6= 0

}
denote the active

set, and let s0 = |S∗| be the number of nonzero and non-intercept elements in β∗. When
S ⊇ S∗, define the “observed” sub-information by ÎS = ÎS(β∗S), and the “expected” sub-

information by IS = E {ÎS}. The latter is equal to the submatrix of I∗ with rows and
columns indexed by S, which is denoted by I∗S .

2.2 Proposed SSGLM estimator

Under model (1), we assume a sparsity condition that s0 is small relative to the sample
size and will be detailed in Section 3. We randomly split the samples, D(n), into two parts,
D1 and D2, with sample sizes |D1| = n1, |D2| = n2, respectively, such that n1 + n2 = n.
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For example, we can consider an equal splitting with n1 = n2 = n/2. We apply a variable
selection scheme, Sλ, where λ denotes the tuning parameters, to D2 to select a subset of
important predictors S ⊂ {1, . . . , p}, with |S| < n for dimension reduction. Then using
D1 = (Y1,X1), for each j = 1, 2, . . . , p, we fit a low dimensional GLM by regressing Y1 on
X1
S+j

, where S+j = {j}∪S. Denote the maximum likelihood estimate (MLE) of each fitted

model as β̃S+j , and define β̃j =
(
β̃S+j

)
j
, the element of β̃S+j corresponding to predictor

Xj . We denote by β̃0 the estimator of the intercept from the model Y1 ∼ X1
S . Thus, the

one-time estimator based on a single data split is defined as

β̃S+j = argmin
βS+j

`S+j (βS+j ) = argmin
βS+j

`(βS+j ;Y
1,X1

S+j
);

β̃j =
(
β̃S+j

)
j

; β̃ = (β̃0, β̃1, . . . , β̃p).

(3)

In the linear regression setting (Fei et al., 2019), β̃j in (3) has an explicit form,

β̃j =
{

(X1
S+j

T
X1
S+j

)−1X1
S+j

T
Y1
}
j
.

The rationale for this one-time estimator is that if the subset of important predictors, S,
is equal to or contains the active set, S∗, then β̃j would be a consistent estimator regardless
of whether variable j is selected or not (Fei et al., 2019). We show in Theorem 1 that the
one-time estimator is indeed consistent and asymptotically normal in the GLM setting.

However, the estimator based on a single split is highly variable, making it difficult to
separate true signals from noises. This phenomenon is analogous to using a single tree
in the bagging algorithm (Bühlmann and Yu, 2002). To reduce this variability, we resort
to a multi-sample splitting scheme. We randomly split the data multiple times, repeat the
estimation procedure, and average the resulting estimates to obtain the smoothed coefficient
estimates. Specifically, for each b = 1, 2, . . . , B, where B is large, we randomly split the data,
D(n), into Db

1 and Db
2, with |Db

1| = n1 and |Db
2| = n2 such that the splitting proportion is

q = n1/n, 0 < q < 1. Denote the candidate set of variables selected by applying Sλ to Db
2

as Sb, and the estimates via (3), as β̃b = (β̃b0, β̃
b
1, . . . , β̃

b
p). Then the smoothed estimator,

termed the SSGLM estimator, is defined to be

β̂ = (β̂0, β̂1, . . . , β̂p), where β̂j =
1

B

B∑
b=1

β̃bj . (4)

The procedure is described in Algorithm 1.

3. Theoretical Results

We specify the following regularity conditions.

(A1) (Bounded observations) ‖x‖∞ ≤ C0 and E |Y | < ∞. Without loss of generality, we
assume C0 = 1.

(A2) (Bounded eigenvalues and effects) The eigenvalues of Σ = E (xTx), where x = (1,x),
are bounded below and above by constants cmin, cmax, such that

0 < cmin ≤ λmin (Σ) < λmax (Σ) ≤ cmax <∞.
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Algorithm 1 SSGLM Estimator

Require: A variable selection procedure denoted by Sλ
Input: Data (Y,X), a splitting proportion q ∈ (0, 1), and the number of random splits B
Output: Coefficient vector estimator β̂
1: for b = 1, 2, . . . , B do
2: Split the samples into D1 and D2, with |D1| = qn, |D2| = (1− q)n
3: Apply Sλ to D2 to select predictors indexed by S ⊂ {1, . . . , p}
4: for j = 0, 1, . . . , p do
5: With S+j = {j}∪S, fit model (1) by regressing Y1 on X1

S+j
, where D1 = (Y1,X1),

and compute the MLE β̃S+j as in (3)

6: Compute β̃bj =
(
β̃Sb

+j

)
j
, which is the coefficient for predictor Xj (β̃b0 represents the

intercept)
7: end for
8: Output β̃b = (β̃b0, β̃

b
1, . . . , β̃

b
p)

9: end for
10: Compute β̂ = (β̂0, β̂1, . . . , β̂p), where β̂j = 1

B

∑B
b=1 β̃

b
j

Algorithm 2 Model-free Variance Estimator

Input: n, n1, B, β̃b, b = 1, 2, . . . , B and β̂
Output: Variance estimator V̂ B

j for β̂j , j = 0, 1, . . . , p

1: For i = 1, 2, . . . , n and b = 1, 2, . . . , B, define Jbi = I
(
(Yi,xi) ∈ Db

1

)
∈ {0, 1}, and

J·i =
(∑B

b=1 Jbi

)
/B

2: for j = 0, 1, . . . , p do
3: Compute

V̂j =
n(n− 1)

(n− n1)2

n∑
i=1

ĉov2
ij ,

where

ĉovij =
1

B

B∑
b=1

(Jbi − J·i)
(
β̃bj − β̂j

)
4: Compute

V̂ B
j = V̂j −

n

B2

n1

n− n1

B∑
b=1

(β̃bj − β̂j)2

5: end for
6: Set V̂ B =

(
V̂ B

1 , V̂ B
2 , . . . , V̂ B

p

)
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In addition, there exists a constant cβ > 0 such that |β∗|∞ ≤ cβ.

(A3) (Sparsity and sure screening property) Recall that S∗ =
{
j 6= 0 : β∗j 6= 0

}
and s0 =

|S∗|. Let Ŝλn be the index set of predictors selected by S with a tuning parameter λn.
Assume log p = o(n1/2), there exists a sequence {λn}n≥1 and constants 0 ≤ c1 < 1/2,

c2,K1,K2 > 0 such that s0 ≤ K1n
c1 , |Ŝλn | ≤ K1n

c1 , and

P
(
S∗ ⊆ Ŝλn

)
≥ 1−K2(p ∨ n)−1−c2 .

Assumption (A1) states that the predictors are uniformly bounded, which is reasonable
as predictors are often normalized during data pre-processing. As defined in (A2), Σ =
diag(1,Σx), where Σx is the variance-covariance matrix of x. The boundedness of the
eigenvalues of the variance-covariance matrix of x has been commonly assumed in the high
dimensional literature (Zhao and Yu, 2006; Belloni and Chernozhukov, 2011; Fan et al.,
2014; Van de Geer et al., 2014). (A3) restricts the orders of p and n as well as the sparsity
of β∗. Both (A1) and (A2) guarantee the convergence of the MLEs for the low dimensional
GLMs (3) with a diverging number of predictors (Portnoy, 1985; He and Shao, 2000). (A3)
requires S to possess the sure screening property, which relaxes the selection consistency
assumption in Fei et al. (2019).

Variable selection methods that satisfy the sure screening property are available. For
example, Assumptions (A1) and (A2), along with a “beta-min” condition, which stipulates
that minj∈S∗ |β∗j | > c0n

−κ with c0 > 0, 0 < κ < 1/2, ensure that the commonly used sure
independence screening (SIS) procedure (Fan and Song, 2010) satisfy the sure screening
property; see Theorem 4 in Fan and Song (2010). While a “beta-min” condition is commonly
used for deriving the sure screening property, it is not required for the de-biased type of
estimators. We take S to be the SIS procedure when conducting variable selection in
simulations and the data analysis. Theorems 1 and 2 correspond to the one-time estimator
and the SSGLM estimator, respectively.

Theorem 1 Given model (1) and assumptions (A1)—(A3), consider the one-time estima-

tor β̃ = (β̃0, β̃1, . . . , β̃p)
T as defined in (3). Denote ps = |S| and σ̃2

j =
(
{I∗S+j

}−1
)
jj
, j ∈

{0, 1, . . . , p}. Then as n→∞,

i. ‖β̃S+j − β∗S+j
‖22 = op(ps/n), if ps log ps/n→ 0;

ii.
√
n1

(
β̃j − β∗j

)
/σ̃j

d→ N(0, 1), if p2
s log ps/n→ 0.

Theorem 2 Given model (1) and under assumptions (A1)—(A3) and a partial orthogo-
nality condition that {xj , j ∈ S∗} are independent of {xk, k /∈ S∗}, consider the smoothed

estimator β̂ = (β̂0, β̂1, . . . , β̂p)
T as defined in (4). For each j, define σ̌2

j =
(
{I∗S∗+j

}−1
)
jj

.

Then, as n,B →∞,
√
n(β̂j − β∗j )/σ̌j

d→ N(0, 1).
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The added partial orthogonality condition for Theorem 2 is a technical assumption for
the validity of the theorem, which has been assumed in the high dimensional literature
(Fan and Lv, 2008; Fan and Song, 2010; Wang and Wang, 2014). However, our numerical
experiments suggest the robustness of our results to the violation of this condition. In
addition, while both of the one-time estimator β̃j and the SSGLM estimator β̂j possess

asymptotic consistency and normality, the key advantage of β̂j over β̂j lies in the efficiency.

An immediate observation is that β̂j is estimated using all n samples but β̃j is estimated
with only n1 samples, which explains the different normalization constants in their respective
variances, σ̂2

j /n and σ̃2
j /n1. In addition, with σ̃2

j depending solely on a one-time variable

selection S, its variability is high given the wide variability of S. On the other hand, σ̂2
j

implicitly averages over the multiple selections, Sb’s, and gains efficiency via “the effect of
bagging” (Bühlmann and Yu, 2002); also see Web Table 1 of Fei et al. (2019) for empirical
evidence under the linear regression setting. Moreover, the high variability of β̃j may lead
to a large false positive rate; see Figure 1 of Fan and Lv (2008).

We defer the proofs to the Appendix, but provide some intuition here. The randomness
of the selection Ŝλ presents difficulties when developing the theoretical properties, but why
sure screening works is that, given any subset S ⊇ S∗, the estimator β̃S is consistent, though
less efficient (with additional noise variables) than the “oracle estimator” β̃S∗ acting upon
the true active set. The proof also shows that σ̂2

j depends on the unknown S∗, taking

into account the variation in B random splits. Therefore, direct computation of σ̂2
j in an

analytical form is not feasible. Alternatively, we estimate the variance component via the
infinitesimal jackknife method (Efron, 2014; Fei et al., 2019).

4. Variance Estimator and Inference by SSGLM

The infinitesimal jackknife method has been applied to estimate the variance of the bagged
estimator with bootstrap-type resampling (sampling with replacement) (Efron, 2014; Fei
et al., 2019). The idea is to treat each β̃bj as a function of the sub-sample Db

1, or its
empirical distribution represented by the sampling indicator vector Jb = (Jb1, Jb2, . . . , Jbn),
where Jbi ∈ {0, 1} is an indicator of whether the ith observation is sampled in Db

1. We

further denote J·i =
(∑B

b=1 Jbi

)
/B. With slightly overused notation, let

β̃bj = t(Db
1) = t(Jb;D

(n));

β̂j =
1

B

B∑
b=1

β̃bj
p→ E ∗t(Jb;D

(n)), as B →∞,

where t(·) is a general function that maps the data to the estimator, the expectation E ∗

and the convergence are with respect to the probability measure induced by the randomness

of Jb’s. We can generalize the infinitesimal jackknife to estimate the variance, Var
(
β̂j

)
,

analogous to equation (8) of Wager and Athey (2018), as follows

V̂j =
n− 1

n

(
n

n− n1

)2 n∑
i=1

ĉov2
ij , (5)
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where

ĉovij =
1

B

B∑
b=1

(Jbi − J·i)
(
β̃bj − β̂j

)
is the covariance between the estimates β̃bj ’s and the sampling indicators Jbi’s with respect

to the B splits. Here, n(n− 1)/(n− n1)2 is a finite-sample correction term with respect to
the sub-sampling scheme. Theorem 1 of Wager and Athey (2018) implies that this variance

estimator is consistent, in the sense that V̂j/Var
(
β̂j

)
p−→ 1 as B →∞.

We further propose a bias-corrected version of (5):

V̂ B
j = V̂j −

n

B2

n1

n− n1

B∑
b=1

(β̃bj − β̂j)2. (6)

The derivation is similar to that in Section 4.1 of Wager et al. (2014), but it is adapted to the
sub-sampling scheme. The difference between V̂j and V̂ B

j converges to zero with n,B →∞,

as it can be re-written as n
B

n1
n−n1

v̂j , where v̂j = B−1
∑B

b=1(β̃bj−β̂j)2 is the sample variance of

β̃bj ’s from B splits. Thus both variance estimators are asymptotically equal. See Algorithm
2 for a summarized procedure of computing the bias-corrected variance estimates.

For finite samples, we give the order of B to control the Monte Carlo errors of these two
variance estimators. First, with n1 = qn for a fixed 0 < q < 1, the bias of V̂j is of order
nv̂j/B (Wager et al., 2014). Thus, setting B = O(n1.5) will reduce the bias to the desired

level of O(n−0.5). On the other hand, V̂ B
j effectively removes this bias, as it only requires

B = O(n) to control the Monte Carlo Mean Squared Error (MSE) to O(n−1) (Wager et al.,
2014). A comparison between V̂j and V̂ B

j , given in Simulation Example 1, also shows the

preference of V̂ B
j to V̂j .

For 0 < α < 1, the asymptotic 100(1 − α)% confidence interval for β∗j , j = 1, . . . , p, is
given by (

β̂j − Φ−1(1− α/2)
√
V̂ B
j , β̂j + Φ−1(1− α/2)

√
V̂ B
j

)
,

and the p-value for testing H0 : β∗j = 0 is

2×
{

1− Φ

(
|β̂j |/

√
V̂ B
j

)}
,

where Φ is the CDF of the standard normal distribution.

5. Extension to Subvectors With Fixed Dimensions

We extend the SSGLM procedure to derive confidence regions for a subset of predictors
and to test for contrasts of interest. Consider β∗

S(1) with |S(1)| = p1 ≥ 2, which is finite
and does not increase with n or p. Accordingly, the SSGLM estimator for it is presented in
Algorithm 3, and the extension of Theorem 2 is stated below.

9
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Theorem 3 Given model (1) under assumptions (A1)—(A3) and a fixed finite subset
S(1) ⊂ {1, 2, . . . , p} with |S(1)| = p1, let β̂(1) be the smoothed estimator for β∗

S(1) as de-
fined in Algorithm 3. Then as n,B →∞,

√
nI(1)

(
β̂(1) − β∗

S(1)

)
d→ N(0, Ip1),

where Ip1 is a p1×p1 identity matrix, and I(1) is a p1×p1 positive definite matrix depending
on S(1) and S∗ and is defined in the proof.

There is a direct extension of the one-dimensional infinitesimal jackknife for estimating

the variance-covariance matrix of β̂(1), Σ̂(1) = ĈOV
T

(1)ĈOV(1), where

ĈOV(1) =
(

ĉov
(1)
1 , ĉov

(1)
2 , . . . , ĉov(1)

n

)T
, with

ĉov
(1)
i =

B∑
b=1

(Jbi − J·i)(β̂bS(1) − β̂(1))/B.

To test H0 : Qβ(1) = R, where Q is an r × p1 contrast matrix and R is an r × 1 vector,
a Wald-type test statistic can be formulated as

T =
(
Qβ̂(1) −R

)T [
QΣ̂(1)QT

]−1 (
Qβ̂(1) −R

)
, (7)

which follows χ2
r under H0. Therefore, with a significance level α ∈ (0, 1), we reject H0

when T is larger than the (1− α)× 100 percentile of χ2
r .

Algorithm 3 SSGLM for Subvector β(1)

Require: A selection procedure Sλ
Input: Data (Y,X), a data splitting proportion q ∈ (0, 1), the number of splits B, and an

index set S(1) for the predictors of interest
Output: Estimates of the coefficients of predictors indexed by S(1), β̂(1)

1: for b = 1, 2, . . . , B do Split the samples into two parts D1 and D2, with |D1| = qn and
|D2| = (1− q)n

2: Apply Sλ to D2 to select a subset of important predictors S ⊂ {1, . . . , p}
3: Fit a GLM by regressing Y1 on X1

S(1)∪S , where D1 = (Y1,X1) and compute the

MLEs, denoted by β̃(1)

4: Define β̃b
S(1) =

(
β̃(1)

)
S(1)

5: end for
6: Compute β̂(1) =

(∑B
b=1 β̃

b
S(1)

)
/B

6. Simulations

We compared the finite sample performance of the proposed SSGLM procedure, under
various settings, with two existing methods, the de-biased LASSO for GLMs (Van de Geer
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et al., 2014; Dezeure et al., 2015) and the de-correlated score test (Ning and Liu, 2017),
in estimation accuracy and computation efficiency. We also investigated how the choice
of q = n1/n, the splitting proportion, may impact the performance of SSGLM, explored
various selection methods as part of the SSGLM procedure and their impacts on estimation
and inference, illustrated our method with both logistic and Poisson regression settings,
and assessed the power and type I error of the procedure. We adopted some challenging
simulation settings in Bühlmann et al. (2014). For example, the indices of the active set, as
well as the non-zero effect sizes, were randomly generated, and various correlation structures
were explored.

Example 1 investigated the performance of SSGLM with various splitting propor-
tions and the convergence of the proposed variance estimators. We set n1 = qn, q =
0.1, 0.2, . . . , 0.9. Under a linear regression model, Yi = xiβ + εi, i = 1, 2, . . . , n with
i.i.d. εi ∼ N(0, 1), we set n = 500, p = 1, 000, s0 = 10 with an AR(1) correlation
structure, i.e. Σij = ρ|i−j|, ρ = 0.5, i, j = 1, 2, . . . , p. The indices in the active set S∗

randomly varied from {1, . . . , p}, and the non-zero effects of β∗j , j ∈ S∗ were generated from

Unif[(−1.5,−0.5) ∪ (0.5, 1.5)]. For each q, we computed the MSE for β̂
(k)
j , the smoothed

estimate of βj from the k-th simulation, k = 1, 2, . . . ,K,

MSEj =
1

K

K∑
k=1

(β̂
(k)
j − β

∗
j )2, MSEavg =

1

p

p∑
j=1

MSEj .

The left panel of Figure 1 showed that the minimum MSE was achieved when q = 0.5,
suggesting the rationality of equal-size splitting in practice.

However, the MSE was, in general, less sensitive to q when q was getting larger, hinting
that a large n1 may lead to adequate accuracy. Intuitively, there is a minimum sample
size n2 = (1− q)n required for the selections to achieve the “sure screening” property. For
example, LASSO with smaller sample size would select less variables given the same tuning
parameter. On the other hand, larger n1 = qn improves the power of the low dimensional
GLM estimators directly. Thus the optimal split proportion is achieved when n1 is as large
as possible, while n2 is large enough for the sure screening selection to hold. This intuition is
also validated in Figure 1, as efficiency is gained faster at the beginning due to better GLM
estimators with larger n1. This gain is then outweighed by the bias due to poor selections
with small n2. Our conclusion is that an optimal split proportion exists, but depends on the
specific selection method, the true model size, and other factors, rather than being fixed.

We further examined the convergence of the two variance estimators V̂j and V̂ B
j proposed

in (5) and (6) with respect to the number of splits, B. Under the same setting, and with
q = 0.5, we calculated both V̂j and V̂ B

j for B = 100, 200, . . . , 2, 000, and compared

these estimates with the empirical variance of β̂j ’s (considered to be the truth) based on
200 simulation replicates. The right panel of Figure 1 plots the averages over all signals
j = 1, 2, . . . , p and shows V̂j converges to the truth much slower than V̂ B

j , and V̂ B
j has small

biases even with a relatively small B.
Example 2 implemented various selection methods, LASSO, SCAD, MCP, Elastic net,

and Bayesian LASSO, when conducting variable selection for SSGLM, and compared their
impacts on estimation and inference. Ten-fold cross-validation was used for the tuning
parameters in each selection procedure. We assumed a Poisson model with n = 300, p = 400,
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and s0 = 5. For i = 1, . . . , n,

log
(
E (Yi|xi)

)
= β0 + xiβ. (8)

Table 1 reports the selection frequency for each j out of B splits. Larger |β∗j | yielded a
higher selection frequency. For example, predictors with an absolute effect larger than 0.6
were selected frequently. The average size of the selected models by each method varied
from 23 (for LASSO) to 8 (for Bayesian LASSO). However, in terms of the bias, coverage
probabilities, and mean squared errors, the impact of the different variable selection methods
seemed to be negligible. Thus, SSGLM was fairly robust to the choice of variable selection
method.

Example 3 also assumed model (8). We set n = 400, p = 500, and s0 = 6, with
non-zero coefficients between 0.5 and 1, and three correlation structures: Identity; AR(1)
with Σij = ρ|i−j|, ρ = 0.5; Compound Symmetry (CS) with Σij = ρI(i 6=j), ρ = 0.5.

Table 2 shows that SSGLM consistently provided nearly unbiased estimates. The ob-
tained standard errors (SEs) were close to the empirical standard deviations (SDs), leading
to confidence intervals with coverage probabilities that were close to the 95% nominal level.

Example 4 assumed a logistic regression model for binary outcomes, with n = 400, p =
500, and s0 = 4,

logit
(
P(Yi = 1|xi)

)
= β0 + xiβ. (9)

The index set for predictors with nonzero coefficients, S∗ = {218, 242, 269, 417}, were ran-
domly generated, and β∗S∗ = (−2, −1, 1, 2). We report the performance of SSGLM when
inferring the subvector β∗S∗ , in Tables 3 and 4. Our method gave nearly unbiased estimates
under different correlation structures and sufficient power for the various contrasts.

Example 5 compared our method with the de-biased LASSO estimator (Van de Geer
et al., 2014) and the de-correlated score test (Ning and Liu, 2017) in terms of power and type
I error. We assumed model (9) with n = 200, p = 300, s0 = 3, and β∗S∗ = (2, −2, 2) with
AR(1) correlation structures. Table 5 summarises the power of detecting each true signal
and the average type I error for the noise variables under the AR(1) correlation structure
with four correlation values, ρ = 0.25, 0.4, 0.6, 0.75.

Our method was shown to be the most powerful, while maintaining the type I error
around the nominal 0.05 level. The power was over 0.9 for the first three scenarios and
was above 0.8 with ρ = 0.75. The de-biased LASSO estimators controlled the type I error
well, but the power dropped from 0.9 to approximately 0.67 as the correlation among the
predictors increased. The de-correlated score tests had the least power and the highest type
I error. While these two competing methods have the same efficiency asymptotically, they
do differ by specific implementations, for example, the choice of tuning parameters. Indeed,
the de-biased methods may be sensitive to tuning parameters, which could explain the gap
in the finite sample performance.

Table 5 summarizes the average computing time (in seconds) of the three methods per
data set (R-3.6.2 on an 8-core MacBook Pro). On average, our method took 17.7 seconds,
which was the fastest among the three methods. The other two methods were slower for the
smaller ρ’s (75 and 37 seconds, respectively) and faster for the larger ρ’s (41 and 18 seconds,
respectively), likely because the node-wise LASSO procedure that was used for estimating
the precision matrix tended to be faster when handling more highly correlated predictors.
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7. Data Example

We analyzed a subset of the BLCSC data (Christiani, 2017), consisting of n = 1, 459 indi-
viduals, among whom 708 were lung cancer patients and 751 were controls. After cleaning,
the data contained 6, 829 SNPs, along with important demographic variables including age,
gender, race, education level, and smoking status (Table 6). As smoking is known to play
a significant role in the development of lung cancer, we were particularly interested in es-
timating the interactions between the SNPs and smoking status, in addition to their main
effects.

We assumed a high-dimensional logistic model with the binary outcome being an indica-
tor of lung cancer status. A total of 13,663 predictors included demographic variables, the
SNPs (with prefix “AX”), and the interactions between the SNPs and smoking status (with
prefix “SAX”). We applied the SSGLM with B = 1, 000 random splits and drew inference
on all 13,663 predictors. Table 7 lists the top predictors ranked by their p-values. We identi-
fied 9 significant coefficients after applying Bonferroni correction for multiple comparisons.
All were interaction terms, providing strong evidence of SNP-smoking interactions, which
have rarely been reported. These nine SNPs came from three genes, TUBB, ERBB2, and
TYMS. TUBB mutations are associated with both poor treatment response to paclitaxel-
containing chemotherapy and poor survival in patients with advanced non-small-cell lung
cancer (NSCLC) (Monzó et al., 1999; Kelley et al., 2001). Rosell et al. (2001) has proposed
using the presence of TUBB mutations as a basis for selecting initial chemotherapy for pa-
tients with advanced NSCLC. In contrast, intragenic ERBB2 kinase mutations occur more
often in the adenocarcinoma lung cancer subtype (Stephens et al., 2004; Beer et al., 2002).
Lastly, advanced NSCLC patients with low/negative thymidylate synthase (TYMS) are
shown to have better responses to Pemetrexed–based chemotherapy and longer progression
free survival (Wang et al., 2013).

For comparisons, we applied the de-sparsified estimator for GLM (Bühlmann et al.,
2014). A direct application of the “lasso.proj” function in the “hdi” R package (Dezeure
et al., 2015) was not feasible given the data size. Instead, we used a shorter sequence of
candidate λ values and 5-fold instead of 10-fold cross validation for the node-wise LASSO
procedure. This procedure costs approximately one day of CPU time. After correcting
for multiple testing, there were two significant coefficients, both of which were interaction
terms corresponding to SNPs AX.35719413 C and AX.83477746 A. Both SNPs were from
the TUBB gene, and the first SNP was also identified by our method.

To validate our findings, we applied the prediction accuracy measures for nonlinear
models proposed in Li and Wang (2019). We calculated the R2, the proportion of variation
explained in Y, for the models we chose to compare. We report five models and their
corresponding R2 values: Model 1. the baseline model including only the demographic
variables (R2 = 0.0938); Model 2. the baseline model plus the significant interactions
after the Bonferroni correction in Table 7 (R2 = 0.1168); Model 3. Model 2 plus the
main effects of its interaction terms (R2 = 0.1181); Model 4. the baseline model plus
the significant interactions from the de-sparsified LASSO method (R2 = 0.1018); Model
5. Model 4 plus the corresponding main effects (R2 = 0.1076). Model 2 based on our
method explained 25% more variation in Y than the baseline model (from 0.0938 to 0.1168),
while Model 4 based on the de-sparsified LASSO method only explains 8.5% more variation
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(from 0.0938 to 0.1018). We also plotted Receiver-Operating Characteristic (ROC) curves
for models 1, 2, and 4 (Figure 2). Their corresponding areas under the curves (AUCs) were
0.645, 0.69, and 0.668, respectively.

Previous literature has identified several SNPs as potential risk factors for lung cancer.
We studied a controversial SNP, rs3117582, from the TUBB gene on chromosome 6. This
SNP was identified in association with lung cancer risk in a case/control study by Wang
et al. (2008), while on the other hand, Wang et al. (2009) found no evidence of association
between the SNP and risk of lung cancer among never-smokers. Our goal was to test this
SNP and its interaction with smoking in the presence of all the other predictors under the
high dimensional logistic model. Slightly overusing notation, we denoted the coefficients
corresponding to rs3117582 and its interaction with smoking as β(1) = (β1, β2), and tested
H0 : β1 = β2 = 0. Applying the proposed method, we obtained

(β̂1, β̂2) = (−0.067, 0.005), ĈOV
(
β̂1, β̂2

)
=

(
0.44, −0.43
−0.43, 0.50

)
.

The test statistic of the overall effect was T = 0.062 by (7) with a p-value of 0.97, which
concluded that, among the patients in BLCSC, rs3117582 was not significantly related to
lung cancer, regardless of the smoking status.

8. Conclusions

Our approach for drawing inference, by adopting a “split and smoothing” idea, improves
upon Fei et al. (2019) which used bootstrap resampling, and recasts a high dimensional in-
ference problem into a sequence of low dimensional estimations. Unlike many of the existing
methods (Zhang and Zhang, 2014; Bühlmann et al., 2014; Javanmard and Montanari, 2018),
our method is more computationally feasible as it does not require estimating high dimen-
sional precision matrices. Our algorithm enables us to make full use of parallel computing
for improved computational efficiency, because fitting the p low dimensional GLMs and
randomly splitting the data B times are both separable tasks, which can be implemented
in parallel.

We have derived the variance estimator using the infinitesimal jackknife method adapted
to the splitting and smoothing procedure (Efron, 2014; Wager and Athey, 2018). This
estimator is free of parametric assumptions, resembles bagging (Bühlmann and Yu, 2002),
and leads to confidence intervals with correct coverage probabilities. Moreover, we have
relaxed the stringent selection consistency assumption on variable selection as required in
Fei et al. (2019). We have shown that our procedure works with a mild sure screening
assumption for the selection method.

There are open problems to be addressed. First, our method relies on a sparsity con-
dition for the model parameters. We envision that relaxation of the condition may take
a major effort, though our preliminary simulations (Example B.2 in Appendix B) suggest
that our procedure might work even when the sparsity condition fails. Second, as our model
is fully parametric, in-depth research is needed to develop a more robust approach when
the model is mis-specified. Finally, while our procedure is feasible when p is large (tens of
thousands), the computational cost increases substantially when p is extraordinarily large
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(millions). Much effort is warranted to enhance its computational efficiency. Nevertheless,
our work does provide a starting point for future investigations.
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Figure 1: Left: Average MSEs of all predictors at split proportions q’s from 0.1 to 0.9.
Right: Convergence of two variance estimators as B increases.

Figure 2: ROC curves of the three selected models.
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Table 1: Comparisons of different selection procedures to implement our proposed method.
The first column is the indices of the non-zero signals. The last row for the selection
frequency is the average number of predictors being selected by each procedure.
The last row for the coverage probability is the average coverage probability of all
predictors.

Index j β∗j LASSO SCAD MCP EN Bayesian

Selection frequency
12 0.4 0.59 0.55 0.49 0.60 0.60
71 0.6 0.93 0.92 0.90 0.95 0.94

351 0.8 0.99 0.99 0.99 1.00 1.00
377 1.0 1.00 1.00 1.00 1.00 1.00
386 1.2 1.00 1.00 1.00 1.00 1.00

Average model size 23.12 13.15 10.89 10.31 7.98

Bias
12 0.4 0.003 0.003 0.003 0.003 0.001
71 0.6 0.007 0.008 0.008 0.008 -0.010

351 0.8 -0.001 0.001 0 0 0.001
377 1.0 -0.005 -0.005 -0.006 -0.005 0.001
386 1.2 0.002 0.001 0.001 0.001 0.004

Coverage probability
12 0.90 0.90 0.91 0.91 0.95
71 0.94 0.94 0.95 0.94 0.94

351 0.95 0.95 0.95 0.94 0.95
377 0.94 0.93 0.93 0.94 0.92
386 0.94 0.95 0.95 0.95 0.94

Average 0.93 0.94 0.94 0.94 0.94

MSE
12 0.111 0.110 0.110 0.109 0.106
71 0.104 0.103 0.102 0.102 0.101

351 0.103 0.103 0.103 0.103 0.100
377 0.101 0.100 0.100 0.100 0.109
386 0.097 0.096 0.096 0.096 0.102

Average 0.105 0.104 0.103 0.103 0.102
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Table 2: SSGLM under the Poisson regression and three correlation structures. Bias, aver-
age standard error (SE), empirical standard deviation (SD), coverage probability
(Cov prob), and selection frequency (Sel freq) are reported. The last column
summarizes the average of all noise variables.

Index j 0 (Int) 74 109 347 358 379 438 -
β∗j 1.000 0.810 0.595 0.545 0.560 0.665 0.985 0

Identity Bias -0.010 0 0 0.001 0.005 0.005 0.006 0
SE 0.050 0.035 0.034 0.035 0.035 0.034 0.035 0.034
SD 0.064 0.036 0.038 0.031 0.033 0.038 0.036 0.036

Cov prob 0.870 0.920 0.900 0.960 0.990 0.910 0.950 0.936
Sel freq 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.015

AR(1) Bias 0.006 0.003 -0.002 -0.001 -0.001 -0.005 0.003 0
SE 0.052 0.035 0.035 0.035 0.035 0.035 0.035 0.035
SD 0.056 0.031 0.041 0.035 0.037 0.037 0.037 0.036

Cov prob 0.930 0.970 0.890 0.960 0.950 0.930 0.960 0.937
Sel freq 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.015

CS Bias -0.003 -0.005 0.004 -0.002 0.005 -0.004 -0.001 0.001
SE 0.033 0.043 0.043 0.042 0.043 0.043 0.044 0.042
SD 0.038 0.046 0.044 0.052 0.040 0.047 0.043 0.044

Cov prob 0.960 0.900 0.930 0.900 0.970 0.910 0.950 0.934
Sel freq 1.000 1.000 0.999 0.997 0.998 0.999 1.000 0.016
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Table 3: SSGLM under the logistic regression, with estimation and inference for the sub-
vector β(1) = βS∗ . We compare the SSGLM (left) with the oracle model (right),
where the oracle estimator is from the low dimensional GLM given the true set S∗,
and the empirical covariance matrix is with respect to the simulation replications.

Index j 218 242 269 417 Index j 218 242 269 417
β∗j -2 -1 1 2 β∗j -2 -1 1 2

Identity

β̂(1) -2.048 -1.043 0.999 2.096 Oracle -1.995 -1.026 0.973 2.043

Σ̂(1) 0.146 0.010 -0.009 -0.020 Empirical 0.155 0.006 -0.009 -0.027
0.010 0.134 -0.004 -0.011 0.006 0.129 -0.011 -0.015

-0.009 -0.004 0.134 0.009 -0.009 -0.011 0.152 0.010
-0.020 -0.011 0.009 0.143 -0.027 -0.015 0.010 0.134

AR(1)

β̂(1) -2.073 -1.014 1.002 2.110 Oracle -2.024 -0.991 0.977 2.062

Σ̂(1) 0.145 0.012 -0.011 -0.023 Empirical 0.141 0.012 -0.016 -0.028
0.012 0.137 -0.006 -0.011 0.012 0.112 -0.006 0

-0.011 -0.006 0.135 0.010 -0.016 -0.006 0.129 0.009
-0.023 -0.011 0.010 0.147 -0.028 0 0.009 0.136

CS

β̂(1) -2.095 -1.033 1.070 2.102 Oracle -2.037 -1.024 1.027 2.028

Σ̂(1) 0.223 -0.026 -0.048 -0.063 Empirical 0.192 -0.030 -0.044 -0.045
-0.026 0.208 -0.043 -0.047 -0.030 0.187 -0.037 -0.044
-0.048 -0.043 0.207 -0.028 -0.044 -0.037 0.165 -0.011
-0.063 -0.047 -0.028 0.224 -0.045 -0.044 -0.011 0.179

Table 4: SSGLM under Logistic regression, with rejection rates of testing the contrasts.
When the truth is 0, the rejection rates estimate the type I error probability;
when the truth is nonzero, they estimating the testing power.

H0 Truth Identity AR(1) CS

β∗218 + β∗417 = 0 0 0.05 0.04 0.03
β∗242 + β∗269 = 0 0 0.06 0.04 0.025
β∗218 + β∗269 = 0 −1 0.56 0.57 0.42
β∗242 + β∗417 = 0 1 0.55 0.58 0.48

β∗242 = 0 −1 0.83 0.80 0.61
β∗269 = 0 1 0.74 0.81 0.70
β∗218 = 0 −2 1 1 1
β∗417 = 0 2 1 1 1
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Table 5: Comparisons of SSGLM, Lasso-pro, and De-correlated score test (Dscore) in power,
type I error and computing time. AR(1) correlation structures with different ρ’s
for X are assumed.

Power Type I error Time

Truth β∗10 = 2 β∗20 = −2 β∗30 = 2 β∗j = 0 (secs)

ρ = 0.25 Proposed 0.920 0.930 0.950 0.049 17.7
Lasso-pro 0.900 0.930 0.900 0.042 74.7

Dscore 0.790 0.880 0.890 0.177 37.0

ρ = 0.4 Proposed 0.940 0.960 0.965 0.049 17.6
Lasso-pro 0.920 0.910 0.920 0.043 66.0

Dscore 0.770 0.905 0.840 0.175 30.7

ρ = 0.6 Proposed 0.940 0.950 0.880 0.054 17.7
Lasso-pro 0.850 0.750 0.850 0.045 53.3

Dscore 0.711 0.881 0.647 0.268 20.1

ρ = 0.75 Proposed 0.863 0.847 0.923 0.060 17.7
Lasso-pro 0.690 0.670 0.650 0.053 41.0

Dscore 0.438 0.843 0.530 0.400 17.9

Table 6: Demographic characteristics of the BLCSC SNP data.
Controls (751) Cases (708)

Race
White 726 668
Black 5 22
Other 20 18

Education
<High school 64 97

High school 211 181
>High school 476 430

Age
Mean(sd) 59.7(10.6) 60(10.8)

Gender
Female 460 437

Male 291 271

Pack years
Mean(sd) 18.8(25.1) 46.1(38.4)

Smoking
Ever 498 643

Never 253 65
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Table 7: SSGLM fitted to the BLCSC data. SNP variables start with “AX”; interaction
terms start with “SAX”; “Smoke” is binary (1=ever smoked, 0=never smoked).
Rows are sorted by p-values.

Variable β̂ SE T p-value Adjusted P Sel freq

SAX.88887606 T 0.33 0.02 17.47 < 10−3 < 0.01 0.08
SAX.11279606 T 0.53 0.06 8.23 < 10−3 < 0.01 0.00
SAX.88887607 T 0.29 0.04 6.97 < 10−3 < 0.01 0.01
SAX.15352688 C 0.56 0.08 6.90 < 10−3 < 0.01 0.01
SAX.88900908 T 0.54 0.09 5.95 < 10−3 < 0.01 0.02
SAX.88900909 T 0.51 0.09 5.69 < 10−3 < 0.01 0.02
SAX.32543135 C 0.78 0.14 5.49 < 10−3 < 0.01 0.25
SAX.11422900 A 0.32 0.06 5.24 < 10−3 < 0.01 0.09
SAX.35719413 C 0.47 0.10 4.63 < 10−3 0.049 0.00

SAX.88894133 C 0.43 0.10 4.53 < 10−3 0.08 0.00
SAX.11321564 T 0.47 0.11 4.44 < 10−3 0.12 0.00

. . .
AX.88900908 T 0.40 0.11 3.84 < 10−3 1.00 0.00

Smoke 0.89 0.23 3.82 < 10−3 1.00 -
. . .
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Appendix A: Proofs of Theorems

Proof of Theorem 1:
From the data split, D1 and D2 are mutually exclusive, thus S, from D2, is independent

of D1 = (Y1,X1). We show the asymptotics of β̃S+j in (3) with a diverging number of
parameters ps, by using the techniques and results from He and Shao (2000). Without loss
of generality, and to simplify notation, we let j = 1 ∈ S. Then S+j = S. The argument is
the same if 1 /∈ S and for any other j.

To proceed, we first restrict on the event of Ω = {S ⊇ S∗}. With Assumption (A3),
P(Ω) ≥ 1−K2(p ∨ n2)−1−c2 . Recall that

β̃S+j = argmin
β∈R|S|+1

`S(βS) = argmin
β∈R|S|+1

`(βS ;Y1,X1
S);

β̃1 =
(
β̃S+j

)
1
.

To apply Theorems 2.1 and 2.2 of He and Shao (2000) in the GLM case, we can verify that
our Assumptions (A1) and (A2) will lead to their conditions (C1), (C2), (C4) and (C5)
with C = 1, r = 2 and A(n, ps) = ps. To verify their (C3), we first note that their Dn is
our I∗S . Then for any βS , α ∈ Rps such that ‖α‖2 = 1, a second order Taylor expansion of
US(βS) around β∗S leads to∣∣αTE β∗ (US(βS)− US(β∗S))− αTI∗S (βS − β∗S)

∣∣ ≤ O(‖βS − β∗S‖22).

Hence,

sup
‖βS−β∗S‖≤(ps/n)1/2

∣∣αTE β∗ (US(βS)− US(β∗S))− αTI∗S (βS − β∗S)
∣∣ ≤ O(ps/n) = o(n1/2),

which means their (C3) follows. Thus, by Theorem 2.1 of He and Shao (2000),

‖β̃S − β∗S‖22 = op(ps/n1),

given ps log ps/n1 → 0. Furthermore, by Theorem 2.2 of He and Shao (2000), if p2
s log ps/n1 →

0, then

‖n1/2
1 (β̃S − β∗S) + n

−1/2
1 {I∗S}−1US(β∗S)‖2 = op(1).

Releasing the restriction on Ω and with P(Ωc) = P(S 6⊇ S∗) ≤ K2(p ∨ n2)−1−c2 , we
would still have ‖β̃S −β∗S‖22 = op(ps/n1), given ps log ps/n1 → 0. To see this, for any ε > 0,
we can consider

P(‖(n1/ps)
1/2(β̃S − β∗S)‖2 > ε)

< P(‖(n1/ps)
1/2(β̃S − β∗S)‖2 > ε|Ω)P(Ω) + P(Ωc)

< P(‖(n1/ps)
1/2(β̃S − β∗S)‖2 > ε|Ω) +K2(p ∨ n2)−1−c2 ,

where both terms in the last inequality converge to 0 as n1 →∞ and n2 = (1−q)n1/q, with

0 < q < 1 a constant. Similarly, we can show ‖n1/2
1 (β̃S − β∗S) + n

−1/2
1 {I∗S}−1US(β∗S)‖2 =

op(1), if p2
s log ps/n1 → 0, which can also be written as

β̃S − β∗S = −n−1
1 {I

∗
S}−1US(β∗S) + rn1 , (10)
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with ‖rn1‖22 = op(1/n1). Consequently, by taking α = (0, 1, 0, . . . , 0)T and left-multiplying
both sides of (10) by n1/2αT, we have

√
n1

(
β̃1 − β∗1

)
/σ̃1

d→ N(0, 1),

where σ̃2
1 =

(
{I∗S}−1

)
11
.

The following lemma, which is needed for the proof of Theorem 2, bounds the estimates
of coefficients, when the selected subset Sb misses important predictors in S∗ for some
1 ≤ b ≤ B. Although S∗ 6⊆ Sb with probability going to zero by Assumption (A3), we need
to establish an upper bound in order to control the bias of β̂j for any j.

Lemma 4 With model (1) and Assumptions (A1) and (A2), consider the GLM estimator
β̃S with respect to subset S as defined in (3). Denote by ps = |S|. If ps log ps/n → 0,
then with probability going to 1, |β̃S |∞ ≤ Cβ, where Cβ > 0 is a constant depending on
cmin, cmax, cβ, and A(0).

Proof By definition,

β̃S+j = argmin
βS∈Rps+1

`S(βS) = argmin
βS∈Rps+1

`(βS ;Y1,X1
S).

If S∗ ⊆ S, the result immediately follows from Theorem 1 by taking Cβ = 2cβ. When

S∗ 6⊆ S, the minimizer β̃S+j is not an unbiased estimator of β∗S anymore. However, we

show that the boundedness of β̃S+j is guaranteed from the strong convexity of the objective
function `S(βS).

To see this, we note that the observed information is∇2`S(βS) = ÎS(βS) = 1
nXS

T
VSXS ,

where VS = diag{A′′(x1SβS), . . . , A′′(xnSβS)} consisting of all positive diagonal entries,
because of the positivity assumption on A′′(·). Then for any column vector w ∈ Rps+1,

V
1/2
S XSw = 0 if and only if XSw = 0, implying that the positive definiteness of ∇2`S(βS)

is equivalent to that of Σ̂S = 1
nXS

T
XS . On the other hand, with ps log ps/n → 0,

Lemma 1 of Fei et al. (2019) implies that, with probability going to 1, ‖Σ̂S − ΣS‖ ≤ ε
for ε = min(1/2, cmin/2), and, hence,

λmin(Σ̂S) ≥ λmin(ΣS)− ε ≥ λmin(Σ)− ε ≥ cmin/2 > 0.

Thus, with probability going to 1, Σ̂S is positive definite, yielding that

`S(βS) = n−1
n∑
i=1

{A(xiSβS)− YixiSβS}

is strongly convex with respect to βS . Hence, β̃S+j ∈ {βS : `S(βS) ≤ A(0)}, which is a
strongly convex set with probability going to 1. As A(0) does not depend on S or the data,
there exists a constant Cβ > 0 (which only depends on A(0), but does not depend on S or

the data), such that |β̃S |∞ ≤ Cβ holds with probability going to 1.
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Proof of Theorem 2:
We define the oracle estimators of β∗j on the full data (Y,X) and the b-th subsample

Db
1 respectively, where the candidate set is the true set S∗:

β̌S∗+j
= argmin

β∈Rs0+1

`S∗+j
(βS∗+j

) = argmin
β∈Rs0+1

`S∗+j
(βS∗+j

;Y,XS∗+j
), β̌j =

(
β̌S∗+j

)
j

;

β̌bS∗+j
= argmin

β∈Rs0+1

`bS∗+j
(βS∗+j

) = argmin
β∈Rs0+1

`S∗+j
(βS∗+j

;Y1(b),X
1(b)
S∗+j

), β̌bj =
(
β̌bS∗+j

)
j
.

By Theorem 1 and given s2
0 log s0/n→ 0, for each j ∈ {1, . . . , p},
√
n(β̌j − β∗j )/σ̌j

d−→ N(0, 1) as n→∞, (11)

where σ̌2
j =

(
{I∗S∗+j

}−1
)
jj

.

With the oracle estimators β̌j ’s and β̌bj ’s, we have the following decomposition:

√
n
(
β̂j − β∗j

)
=
√
n
(
β̌j − β∗j

)
+
√
n
(
β̂j − β̌j

)
=
√
n
(
β̌j − β∗j

)
+
√
n

(
1

B

B∑
b=1

β̃bj − β̌j

)

=
√
n
(
β̌j − β∗j

)︸ ︷︷ ︸
I

+
√
n

(
1

B

B∑
b=1

β̌bj − β̌j

)
︸ ︷︷ ︸

II

+
√
n

(
1

B

B∑
b=1

{
β̃bj − β̌bj

})
︸ ︷︷ ︸

III

.

(12)

The first two terms in (12), which do not involve various selections Sb’s, deal with the
oracle estimators and the true active set S∗. We need to show the following, which will lead
to the results stated in the theorem by using Slutsky’s theorem.

(a) I/σ̌j =
√
n
(
β̌j − β∗j

)
/σ̌j

d→ N(0, 1);

(b) II =
√
n
B

∑B
b=1

{
β̌bj − β̌j

}
= op(1);

(c) III =
√
n
B

∑B
b=1

{
β̃bj − β̌bj

}
= op(1).

First, (a) holds because of (11). To show (b), i.e. II = op(1), we first denote ξb,n =
√
n
(
β̌bj − β̌j

)
, then II =

(∑B
b=1 ξb,n

)
/B. Since the sampling indicator vectors, Jb’s (defined

in Section 4) are i.i.d, ξb,n’s are i.i.d conditional on data D(n) = (Y,X). The conditional

distribution of
√
n
(
β̌bj − β̌j

)
given D(n) is asymptotically the same as the unconditional

distribution of
√
n
(
β̌j − β∗j

)
, which converges to zero Gaussian by (11). With the uniform

boundedness of β̌bj and β̌j as shown in Lemma 4, we can show that E (ξb,n|D(n)) → 0
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and Var (ξb,n|D(n)) → σ̌2
j uniformly over D(n) as n → ∞. Furthermore, E (II|D(n)) =

E (ξb,n|D(n)), and Var (II|D(n)) = Var (ξb,n|D(n))/B. Denote by Ωn the sample space of
D(n). For any δ, ζ > 0, there exist N0, B0 > 0 such that when n > N0, B > B0,

P(|II| ≥ δ) ≤
∫

Ωn

P
(
|II| ≥ δ

∣∣∣D(n)
)

dP(D(n))

≤
∫

Ωn

P
(
|II−E (II|D(n))| ≥ δ/2

∣∣∣D(n)
)

dP(D(n))

≤
∫

Ωn

Var
(
II
∣∣D(n)

)
δ2/4

dP(D(n)) ≤
σ̌2
j

B0δ2/4

∫
Ωn

dP(D(n)) ≤ ζ.

Thus, II = op(1).
To prove (c), i.e. III = op(1), we first note that each subsample Db

1 can be regarded as a
random sample of n1 = qn (0 < q < 1) i.i.d. observations from the population distribution
for which Assumption (A3) holds, that is |Sb| ≤ K1n

c1 and P
(
S∗ ⊆ Sb

)
≥ 1−K2(p∨n)−1−c2 .

We show that for any b, conditional on Sb ⊇ S∗,
√
n
(
β̃bj − β̌bj

)
= op(1).

To see this, we first arrange the order of the components of x = (x1, . . . , xp) such that
the first s0 components are signal variables. In other words, S∗ = {1, . . . , s0}. From (10) in
in the proof of Theorem 1 and omitting superscript b, we have that

β̃j − β∗j = −n−1
1 ẽT

j {I∗S+j
}−1US+j (β

∗
S+j

) + r̃n1 ,

β̌j − β∗j = −n−1
1 ěT

j {I∗S∗+j
}−1US∗+j

(β∗S∗+j
) + řn1 , (13)

where ẽj = (0, . . . , 0, 1, 0, . . . , 0)T is a unit vector of length |S+j | to index the position
of variable j in S+j , ěj is a unit vector of length |S∗+j | to index the position of variable

j in S∗+j , and the residuals ‖r̃n1‖22 = op(1/n1), ‖řn1‖22 = op(1/n1). Here, I∗S+j
and I∗S∗+j

are two submatrices of the expected information at β∗, i.e. I∗ = E { 1
nX

T
VX}, where

V = diag{ν(µ1), . . . , ν(µn)} is an n × n diagonal matrix with µi = g−1(xiβ
∗); see Section

2.1 for the notation.
Therefore, the jk-th (j, k = 0, 1, . . . , p) entry of I∗, a (p + 1) × (p + 1) matrix, is

E (xjν(µ)xk) with µ = g−1(xβ∗). Now for any j ∈ S∗, k ∈ Sc, the complement of S∗, the
partial orthogonality condition (Fan and Lv, 2008; Fan and Song, 2010) that {xj , j ∈ S∗}
are independent of {xk, k ∈ Sc} implies that E (xjν(µ)xk) = 0, as µ only depends on
x′j , j

′ ∈ S∗ and E (xk) = 0 with centered predictors. Therefore, I∗ is block-diagonal with
two blocks indexed by S∗ and Sc. That is,

I∗ =

(
E ( 1

nX
T
S∗VXS∗) 0
0 E ( 1

nX
T
ScVXSc)

)
.

where the submatrices XS∗ and XSc are as defined in Section 2.1. Hence, I∗S+j
is block-

diagonal with two blocks indexed by S∗ and S+j \ S∗, and I∗S∗+j
is block-diagonal with two

blocks indexed by S∗ and S∗+j \ S∗ = ∅ if j ∈ S∗ or = {j} otherwise.

Therefore, {I∗}−1, {I∗S+j
}−1 and {I∗S∗+j

}−1 are all block-diagonal. Furthermore, the

blocks corresponding to S∗ in {I∗S+j
}−1 and {I∗S∗+j

}−1 are identical and are equal to {E ( 1
nX

T
S∗VXS∗)}−1.

28



Estimation and Inference for High Dimensional GLMs

Write U(β∗) = (u0, u1, u2, . . . , up)
T, ẽT

j {I∗S+j
}−1 = (̃ijk)k∈S+j

and ěT
j {I∗S∗+j

}−1 = (̌ijk)k∈S∗+j
.

Then, it follows that ĩjk = ǐjk for k ∈ S∗, which leads to

√
n1

(
β̃j − β̌j

)
=− 1

√
n1

∑
k∈S+j

ĩjkuk +
1
√
n1

∑
k∈S∗+j

ǐjkuk + r′n1

=− 1
√
n1

∑
k∈S\S∗

ĩjkuk +
1(j /∈ S∗)
√
n1

(
ǐjj − ĩjj

)
uj + r′n1

where r′n1
=
√
n1(r̃n1 − řn1) = op(1), and r̃n1 and řn1 are as in (13).

With Assumption (A3), |S \ S∗| ≤ K1n
c1 = o(

√
n1) with 0 ≤ c1 < 1/2 and, thus,

Var (
∑

k∈S\S∗ ĩjkuk) = o(n1). By the Chebyshev inequality, the first term on the right hand
side converges to 0 in probability. Thus, each of these three terms is op(1) and we have
√
n1

(
β̃j − β̌j

)
= op(1). As n1/n = q where 0 < q < 1, the original statement holds.

Now define ηb = 1
{
S∗ 6⊆ Sb

}√
n
(
β̃bj − β̌bj

)
, while omitting subscripts j in η for sim-

plicity, then III =
(∑B

b=1 ηb

)
/B. When S∗ 6⊆ Sb, β̃bj is not an unbiased estimator of β∗j any

more. Instead we try to bound it by some constant. By Lemma 4, there exists a Cβ ≥ cβ

such that supb

∣∣∣β̃bj − β̌bj ∣∣∣ ≤ supb

∣∣∣β̃bj − β∗j ∣∣∣+ supb

∣∣∣β̌bj − β∗j ∣∣∣ ≤ 2Cβ + 1. Therefore, by (A3),

E (ηb) ≤ P
(
S∗ 6⊆ Sb

)√
n sup

1≤b≤B

∣∣∣β̃bj − β̌bj ∣∣∣ ≤ 2Cβ
√
nK2(p ∨ n)−1−c2 ,

Var (ηb) ≤ P
(
S∗ 6⊆ Sb

)
n sup

1≤b≤B

(
β̃bj − β̌bj

)2
≤ 4C2

βnK2(p ∨ n)−1−c2 . (14)

With dependent ηb’s, we further have

E (III) = E

{(
B∑
b=1

ηb

)
/B

}
≤ 2Cβ

√
nK2(p ∨ n)−1−c2 ,

Var (III) ≤ 1

B2

B∑
b=1

B∑
b′=1

|Cov (ηb, ηb′) | ≤ 4C2
βnK2(p ∨ n)−1−c2 ,

where the last inequality holds because of |Cov (ηb, ηb′) | ≤ {Var (ηb)Var (ηb′)}1/2 and (14).
Then we show III = op(1). More specifically, for any δ > 0, ζ > 0, take N0 = b(Cβδ)1/2+c2c,
where, for a real number a, bac denotes the integer part of a. When n > N0, E (III) ≤ δ/2.
Also let N1 = b{ζδ2/(16C2

βK2)}c2c. Then when n > max(N0, N1), we have

P(|III| ≥ δ) ≤ P (|III−E (III)| ≥ δ/2)

≤ Var (III)

δ2/4
≤

16C2
βK2

δ2
n(p ∨ n)−1−c2

<
16C2

βK2

δ2
n−c2 < ζ,

where the first inequality is due to |E (III)| ≤ δ/2 when n > N0, the second one is due to
the Chebyshev inequality and the last one is due to n > N1.
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Proof of Theorem 3:
Following the previous proof, we replace the arguments in j with those in S(1). The

oracle estimators are

β̌S(1)∪S∗ = argmin `S(1)∪S∗(βS(1)∪S∗ ;Y,XS(1)∪S∗), β̌S(1) =
(
β̌S(1)∪S∗

)
S(1) ;

β̌b
S(1)∪S∗ = argmin `S(1)∪S∗(βS(1)∪S∗ ;Y

1(b),X
1(b)

S(1)∪S∗), β̌
b
S(1) =

(
β̌b
S(1)∪S∗

)
S(1)

.

Notice that |S(1)| = p1 = O(1), as n → ∞, |S∗ ∪ S(1)| = O
(
|S∗|

)
= o(n). Therefore, the

above quantities are well-defined. The oracle estimator follows

√
n
{

(I∗
S(1)∪S∗)

−1/2
}
S(1)

(
β̌S(1) − β∗

S(1)

) d−→ N(0, Ip1) as n→∞.

Here, for a square matrix, say, Q, (Q)S is a submatrix of Q with rows and columns indexed

by S. Denote by I(1) =
{

(I∗
S(1)∪S∗)

−1/2
}
S(1)

.

Similar to (12), we have a decomposition

√
nI(1)(β̂(1) − β∗

S(1)) =
√
nI(1)

(
β̌S(1) − β∗

S(1)

)
+
√
nI(1)

(
1

B

B∑
b=1

β̃b
S(1) − β̌S(1)

)
.

Analogous to the derivations in the previous proof, it follows that the second term is op(1).
Hence, the theorem holds.

Appendix B: Additional Simulations

To assess the robustness of our method, we performed additional simulations when the
parametric model was mis-specified and when the sparsity condition was violated.

Example B.1 assumed that Y |x followed a negative binomial distribution:

P(Y = y) =
Γ(y + r)

Γ(r)y!
pr(1− p)y,

E (Y ) = µ = r(1− p)/p = xβ∗,

with r = 10, sample size n = 300, p = 500, and s0 = 5. However, we modeled the data
using SSGLM under model (8) with B = 300. Table 8 summarizes the results based on 200
simulated data sets. The β̂j ’s had small biases. The estimated standard errors were slightly
less than the empirical standard deviations. Nevertheless, the coverage probabilities were
still close to the 0.95 nominal level.

Example B.2 assumed a non-sparse truth β∗ under model (8). With n = 300 and
p = 500, we let s0 = 100. Among the 100 predictors with non-zero effects, 96 β∗j ’s were small,
which were randomly drawn from Unif[−0.5, 0.5], and the other 4 had values −1.5,−1, 1, 1.5
(as shown in Figure 3). With many small but non-zero signals, SSGLM still gave nearly
unbiased estimates to all of them. See Table 9, where the columns represent 4 large size
β∗j ’s, and the averages over all small signals and all noise variables, respectively.
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Figure 3: SSGLM under a non-sparse truth, with p = 500 and s0 = 100.
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Table 8: SSGLM under a mis-specified model.
Index j 90 179 206 237 316 Noise

β∗j -1.000 -0.500 0.500 1.000 1.500 0.000

Bias -0.020 0.020 0.018 0.001 0.010 -0.001
SE 0.240 0.235 0.232 0.236 0.243 0.233
SD 0.258 0.243 0.249 0.249 0.250 0.231

Cov prob 0.955 0.945 0.900 0.930 0.925 0.946
Sel freq 0.724 0.177 0.216 0.723 0.977 0.021

Table 9: SSGLM under a non-sparse truth.
Index j 128 256 381 497 Small Noise

β∗j -1.50 -1.00 1.00 1.50 - 0

Bias -0.01 0.003 -0.03 0.05 0.003 9× 10−4

SE 0.31 0.30 0.30 0.31 0.29 0.30
SD 0.31 0.30 0.32 0.30 0.29 0.29

Cov prob 0.93 0.93 0.93 0.94 0.94 0.94
Sel freq 0.87 0.50 0.49 0.87 0.06 0.03
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