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Crowdsourcing has been a prompt and cost-effective way of obtaining labels in many ma-
chine learning applications. In the literature, a number of algorithms have been developed
to infer the ground truth based on the collected labels. However, most existing studies
assume workers to be independent and are vulnerable to worker collusion. This paper aims
at detecting the collusive behaviors of workers in labeling tasks. Specifically, we consider
collusion in a pairwise manner and propose a penalized pairwise profile likelihood method
based on the adaptive LASSO penalty for collusion detection. Many models that describe
the behavior of independent workers can be incorporated into our proposed framework
as the baseline model. We further investigate the theoretical properties of the proposed
method that guarantee the asymptotic performance. An algorithm based on expectation-
maximization algorithm and coordinate descent is proposed to numerically maximize the
penalized pairwise profile likelihood function for parameter estimation. To the best of our
knowledge, this is the first statistical model that simultaneously detects collusion, learns
workers’ capabilities, and infers the ground true labels. Numerical studies using synthetic
and real data sets are also conducted to verify the performance of the method.

Keywords: adaptive LASSO, crowdsourcing, collusion, pairwise profile likelihood

1. Introduction

Crowdsourcing has gained its popularity as a prompt and cost-effective way of solving a
variety of real-world problems, especially for those that are difficult for machines but rela-
tively easy for human. Some applications of crowdsourcing include the reCAPTCHA system
for character recognition (von Ahn et al., 2008), the online video game Foldit for protein
structure prediction (Cooper et al., 2010), and Galaxy Zoo for morphological classification
of galaxies (Lintott et al., 2011). Crowdsourcing also greatly benefits the machine learning
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related areas (see Vaughan, 2018 for a review). For example, crowdsourcing provides an
appealing way of obtaining the labels or annotations for large data sets that are otherwise
difficult or expensive to obtain. These labels can be further used for supervised learning
tasks such as image and video classification (Russell et al., 2008; Vondrick et al., 2013)
and natural language annotation (Snow et al., 2008). In practice, crowdsourcing platforms
such as Amazon Mechanical Turk (AMT) and CrowdFlower have been developed that can
facilitate the collection of labeled data. For example, in AMT, the requesters post tasks on
the platform, and then the workers choose to complete tasks of interest for some monetary
rewards.

One major challenge of crowdsourcing is to ensure the quality of the collected labels.
In particular, as the workers are often not domain experts, they are subject to mistakes.
In addition, there may exist spammers, who simply provide random labels to maximize the
rewards, or even adversarial workers, who intentionally provide wrong labels to mislead the
result. A common strategy for improving the label quality is repeated labeling, where a
task is labelled by multiple workers, and then the multiple noisy labels are aggregated to
produce an estimation of the ground true label. In the literature, a number of algorithms
have been developed to estimate the ground true labels and /or train the supervised learning
model, see Zhang et al. (2016) for a recent review of the literature.

Most of the existing studies assume that workers do not know each other and are mutu-
ally independent; therefore, they can only consider individual spam. However, in practice,
although some crowdsourcing platforms such as AMT do not provide means of communi-
cation, workers may still collude with each other on the same task, namely collusive spam,
which is much more challenging to spot (Liu et al., 2017). In fact, collusion of workers is
common in many crowdsourcing systems such as rating systems (Dellarocas, 2006) and ques-
tion answering communities (Xu et al., 2015). For example, in 2004, Amazon’s Canadian
site mistakenly revealed the identities of thousands of book reviewers. It turned out that
many anonymous book reviews were actually written by the author’s family and friends, or
from the competitors (Harmon, 2004). Gray et al. (2016) and Yin et al. (2016) pointed out
that a large proportion of workers in crowdsourcing platforms such as AMT communicate
and collaborate with each other via online forums to obtain more rewards. Unfortunately,
most existing studies assuming independent workers are ineffective to collusive spam, which
can lead to great bias in the estimated model and large errors in ground truth inference. As
a simple example, consider the case of three anonymous workers with the same accuracy.
If the workers are indeed independent, then majority voting is a good mechanism to infer
the ground truth. However, if two workers collude with each other and give the same task
label, then majority voting will always treat this label as the ground truth and thus fail to
defend against the attack when the colluding workers simply give some random labels.

Despite the pressing need of a robust method for collusion detection and ground truth
inference, the existing studies considering workers’ collusive behaviors are still sparse and
heuristic. In this study, we propose a new statistical framework for detecting the collusion
of workers in crowdsourcing systems with a focus on labeling tasks, i.e., workers choose a
correct answer from multiple alternatives. We call the proposed method PROCAP (Pairwise
Recognition Of Collusion with Asymptotic Promise). To the best of our knowledge, this
is the first statistical model that simultaneously detects the collusive behaviors of workers,
learns the workers’ capabilities, and infers the ground true labels. Furthermore, we prove
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that under some conditions, the performance of PROCAP is theoretically guaranteed, i.e.,
the estimated parameters converge to the true value, and the probability for correctly
detecting the collusive behaviors converges to 1. The proposed model can also be extended
to other crowdsourcing tasks and systems such as rating systems.

The remainder of this paper is organized as follows. Section 2 describes the basic settings
of the problem. Section 3 elaborates the model development. The theoretical properties of
the proposed method are investigated in Section 4. In Section 5, we propose the algorithms
for solving the optimization problem. We then discuss ground truth inference in Section 6
and review the related literature in Section 7. Numerical studies using synthetic data sets
and real data sets are conducted in Section 8. At last, Section 9 draws the conclusion and
discusses future work.

2. Setup

In this study, we consider a set of workers W = {1,2,--- , W} and a set of tasks T =
{1,2,---,T}, where W and T are the total number of workers and tasks, respectively. For
one task, a worker needs to choose one label from a set of alternatives C = {1,2,--- ,C}.
Denote y; € C as the unknown true label for task ¢ € 7, and denote l;; € C as the label
given by worker ¢ € W on task t. In practice, a worker may only produce labels for a subset
of tasks. If worker ¢ does not give a label for task ¢, we denote l;; = 0. Our objective is to
detect the collusion of workers and infer the ground truth {y;} based on the collected labels
{li+}.

To detect the collusive behavior of workers, the first step is to consider the characteristics
of the labels given by colluding workers. Chen et al. (2018) summarized three types of
collusive behaviors:

(1) Duplicated submission, where a group of workers work together on the same task and
submit the same answer;

(2) Group plagiarism, where some workers simply plagiarize others’ answers; and

(3) Spam accounts, where one worker registers multiple accounts within one crowdsourc-
ing platform and submits the same answer to a task for multiple times, which is often
referred to as Sybil attack (Douceur, 2002).

In all the three types of collusive behaviors, the colluding workers will give the same label
on a task, which is the key for collusion detection. However, great challenges still exist.
First, to avoid being detected, colluding workers may choose to collude on only a fraction
of tasks, making the collusive behavior more difficult to spot. Second, the effect of collusion
can be confounded with other factors as independent workers can also give the same label
on a task. For example, if two workers have high expertise and always give the right answer,
their labels will always be the same. Thus, it is very important to distinguish duplicated
labels resulted from collusive behavior and from other factors. Third, a worker may collude
with different workers on different tasks, leading to a large number of possible colluding
scenarios. To address the challenges, we propose to formulate the problem in an innovative
pairwise manner, as described in the next section.
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3. Collusion Detection

To model worker collusion, it is important to distinguish the labels generated from indepen-
dent workers and those from colluding workers. To address this issue, we simultaneously
model the behaviors of independent workers and colluding workers. At first, we select a
baseline model which characterizes the behavior of independent workers.

3.1 The Baseline Models

Without loss of generality, as a demonstration, we consider the General Dawid-Skene (DS)
model as our baseline model (Dawid and Skene, 1979). In fact, the General DS model is very
flexible and by imposing some restrictions, it reduces to various models that are commonly
used in the literature. Here we give a brief introduction to these models (Li and Yu, 2014).

o General DS model. This model assumes when worker ¢ works independently, for a task
with true label Y, the label L; is generated according to a C-by-C' confusion matrix
a;, where the entry at the yth row and /th column is

[y = p(Li =1]Y =y) ,

and ) ,cclaily; = 1. As can be seen, a; is task-independent, which means an inde-
pendent worker is assumed to adopt the same confusion matrix for all tasks. Here
we drop the subscript ¢ for simplicity and use the upper letters L;, Y to represent the
corresponding random variables for a general task.

e Class-Dependent DS model. For each row of the confusion matrix a; in the General
DS model, if we restrict the off-diagonal entries to be the same, i.e.,

1—0/@' , .
[az‘]y,l:C[_]lyy Jfl#y,

then the General DS model reduces to the Class-Dependent DS model. A special case
is that for binary labeling tasks with C' = 2, the Class-Dependent DS model is the
same as the General DS model, which is also referred to as the two-coin model.

e Homogeneous DS model. For each confusion matrix a; in the Class-Dependent DS
model, if we further restrict the diagonal entries to be the same, i.e.,

) aq, if Yy = l y

1, ify#l,

then Class-Dependent DS model reduces to the Homogeneous DS model. For binary
labeling tasks with C' = 2, the Homogeneous DS model is also referred to as the
one-coin model.

e Uniform DS model. Following the same spirit, we can further simplify the Homoge-
neous DS model by restricting the confusion matrix of each worker to be the same,

ie.,
lad] a, ify=1,
a; =
T L ity AL

4



COLLUSION DETECTION IN CROWDSOURCING FOR LABELLING TASKS

We call it the Uniform DS model throughout this paper. In fact, there is a connection
between the Uniform DS model and majority voting, which will be elaborated in
Section 8.

Besides the models mentioned above, other existing models such as the GLAD model
(Generative model of Labels, Abilities, and Difficulties) proposed by Whitehill et al. (2009)
can also be used as the baseline. In this section, we consider the General DS model for
demonstration due to its flexibility, and other models can be incorporated in a similar way.
The procedure for incorporating the GLAD model is briefly introduced in Appendix A as
another example. Next, we discuss a novel approach to model worker collusion based on
the pairwise likelihood.

3.2 Pairwise Likelihood Estimation

In the literature, collusion detection is usually formulated as a problem of partitioning the
set of workers W into several mutually exclusive groups, where the workers in the same
group collude with each other (Liu et al., 2008; Xu, 2013). However, this formulation is not
flexible enough to realize the practical issue when a worker colludes with different workers
on different tasks. In addition, since the partition is a discrete formulation, deriving the
optimal partition of workers usually requires much computation. To address the challenges,
we consider the workers in a pairwise manner. Specifically, we propose a Bernoulli random
variable z! ; ~ Bernoulli(H; ;) representing whether worker i and Worker j collude on task
t, where z! i ; = 1 means worker ¢ and worker j collude on task ¢, and 2t i; = 0 otherwise. H; ;
represents the probablhty that worker ¢ and worker j collude. Accordlng to the definition,
the variables z! ;; and H; ; are symmetric regarding to ¢ and j in that 2t ;and H; j =
Hj ;. In this way, the formulation is very flexible to represent various colludlng scenarios of
workers. For example, to represent the scenario when workers 1, 2, and 3 collude together
on task ¢, we have 2572 = 2573 = 2373 = 1. For another example, if worker 1 colludes with
worker 2 on task 1, and colludes with worker 3 on task 2, we can represent this case as
zll 5 =1,2% 3 = 1. In addition, we can capture the situation when workers only collude on a
portion of tasks using a value of H; ; < 1. Note an implicit constraint is that z ;. 1s transitive.
In other words, for a certain task ¢, the matrix [2! ]Z jew can be permuted as block diagonal
by rearranging the sequence of worker index i ] For example, if 2172 = z273 =1, then we
must have 2{ 3 = 1. This is because if worker 1 colludes with worker 2 and worker 2 colludes
with worker 3 on task ¢, then worker 1 cannot be independent with worker 3, even if worker
1 does not directly collude with worker 3 on this task. Nevertheless, as will be discussed
later, the implicit constraint on transitive zf ; can be relaxed for parameter estimation.

In our proposed model, we simultaneously consider the behaviors of colluding workers
and independent workers. In this way, when some workers generate the same label, our
method is able to distinguish whether they are independent or colluding by deciding which
situation is more probable. Specifically, we make two assumptions depending on whether
two workers collude or not. At first, the colluding assumption is that if worker i and worker
j collude on a task, they always generate the same label according to Chen et al. (2018),
ie.,

p(Li = l,Lj = ”Z@j = 1,Y = y) = I(l = l/)p(Li = Lj = ”Zi,j = 1,Y = y) .
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Here we again drop the subscript ¢ for simplicity and use the upper letters L;, L;, Z; ;, Y
to represent the corresponding random variables for a general task. The indicator functlon
I(l=1)=1if I =, and otherwise I(l =) = 0. To model the probability p(L; = L; =
l|1Z;; = 1,Y =y), one possible way is to assume a new confusion matrix b; ; for the pair
of workers (i, j), where the entry at the yth row and lth column is [b;;],; = p(L; = L; =
l|1Z;; =1,Y =y). The second assumption, the non-colluding assumption is that if worker i
and worker j do not collude on a task, they generate labels according to their own confusion
matrices, i.e.,

p(Li=1,L; =11Z; =0,Y =y) =p(L; =1|Y = y)p(L; =U'|Y =vy) . (1)

It is worth noting that in practice, the non-colluding assumption might be an approxi-
mation. For example, even if worker i does not collude with worker j on a task, he/she
may collude with another worker k and generate the label according to a confusion matrix
b; 1., where b; ), # a;. There are two general cases when the non-colluding assumption is a
good approximation. In the first case, each worker generates labels according to a similar
confusion matrix no matter whether the worker is working independently or colluding with
others. Specifically, in the previous example, the first case means that when b;; is close
to a;, (1) will hold for worker i and worker j. In the second case, the colluding workers
collude frequently and the confusion matrix when they collude can be also regarded as their
own confusion matrices. Specifically, if worker ¢ colludes frequently with worker k£ with a
probability H;j close to 1, then only the value of b;; matters, which means that we can
simply regard a; and aj, to be the same as b;, and then (1) will hold for worker ¢ and
worker j.

Under the two assumptions, we formulate the problem using pairwise likelihood approach
(Varin et al., 2011). Denote P = {(i,5) : ¢,7 € W,i < j} as the set of worker pairs. In
practice, it is possible that two workers generate labels for mutually exclusive tasks only,
i.e., At such that liy # 0 and l;; # 0. In this case, we exclude this pair from P. Let
0~i7j = (a;,a;,b; ;,m, H; ;) be the model parameters involved for the pair of worker i and
worker j, where m = [mq,--- ,m¢]’ is the vector of marginal probabilities of y; with
me = p(yr = ¢), and let 0 = U(i,j)e'péid‘ be the set of all model parameters. Specifically,
given the labels {l;;,7 € W,t € T}, the log-likelihood for the pair of workers (3, j) is

059)(6 Zlogp Li = lig, Lj = 1;465;) -

Then the overall pairwise log-likelihood is

Z Zlogp(Lz = li,t; Lj = lj,t éi,j) . (2)
(i.5)eP t
Since l; 4,15 € C, we can define n =Y verdliy =1) - I(lj; = I') as the number of tasks

where workers ¢ and j generate a label of [ and l’ respectively. Then (2) can be rewritten

as
Z Z?’L logpL_lL_l|0:J)7

(i.j)ePLlI'eC
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where

p(Li=1L; = l,’éi,j) = Z[ai]w[aj]y,l’my — Hij) + ZI (= 1)[bijlyimyHi; -
yeC yeC

To estimate the parameters, we can maximize the pairwise likelihood function ﬁp(é) such
that all parameters of @ are between 0 and 1, doyecmy =13 cclailyr =1, and 3 o[bi ]y =
1. A benefit of using the pairwise likelihood approach is that the implicit constraint on tran-
f j can be relaxed. This is because the constraint involves three or more workers and
does not apply to a pair of workers. Appendix C.1 provides further discussions.

However, there are critical issues with the pairwise likelihood estimation method. First,
the model is over-parameterized by assigning a confusion matrix to each pair of workers. An
intuitive way to address this issue is to impose constraints on b; ;, for example, by assuming
b;; = %(ai +a;). However, this approach restricts the model flexibility with more assump-
tions. Second, the identifiability of b; ; depends on the value of H; ;. Specifically, b; ; is only
identifiable when H;; > 0, which may cause numerical issues in solving the optimization
problem. To address these issues, in the next subsection, we propose a penalized pairwise
profile likelihood method for collusion detection.

sitive z

3.3 Penalized Pairwise Profile Likelihood Estimation

To address the theoretical and numerical issues caused by the parameters b; ; in pairwise
likelihood estimation, our innovated idea is to adopt the profile likelihood and eliminate the
parameters b; ; from the objective function. Specifically, we find the upper bound of the log-
likelihood function £,(8), denoted as £, (@), such that £, () > £,(8), where 8 = Ui jyerbijs
and 0, ; = (a;,aj, m, H; ;) denotes the parameters without b; ;. Consequently, we propose
to maximize the profile log-likelihood

bp(0)= Y 159(0i)) .

(i,7)€P
where
G900 = Y w gl =1L, = (.2, = 00,)

LU E€CAY
(Zn >logp (Li = L;|6;;), (3)
leC
such that all parameters of 8 are between 0 and 1, - .- my =1, and 7, .c[a;]y; = 1. Here

p(Li=1L;=1,Z;=00:;) = (1 = Hij) Y _[adyilaslyrm, ,
yeC

p(Li=L;|0;5) = Hij+ (1= Hij) > [ailyilajlyim,, .
y,leC

The details for deriving the pairwise profile log-likelihood function can be found in Appendix
B. The rationale is that, for each pair of workers, we distinguish the tasks that receive the
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same label from those receiving different labels. According to the colluding assumption,
if worker 7 and worker j generate different labels on a task, they must be independent of
each other on the task, which means b; ; is not related to the probability p(L; # L;|6; ;).
For the case when workers ¢ and j generate the same label, we only consider the overall
probability p(L; = L;|6; ;) instead of the probabilities p(L; = L; = l\éi’j),l € C. Since
p(L; = Lj|0; ;) = 1 —p(L; # L;|6;;) is also independent of b; ;, the resulting pairwise
profile log-likelihood does not involve b; ;.
As another point of view, £, () can also be regarded as an M-estimator

l,(0) = Z ZMi,j(li,t,lj,t;gz’,j)a (4)

(3,5)EP LET
where

logp(Li = Uiy, Lj = ljy, Zi j = 06; 5), if Ly # L,

. (5)
log [H;j+ (1 — H;j)p(Li = Lj|Zij = 0,0;;)], ifliz=1;1 .

M i(lig, 13 055) = {

In Appendix C.1, we show that the true parameters ; ; is a maximizer of Eg;«j (M (Lt L 05.5)],

which means that we can estimate the parameters by maximizing Zp (0). From the above
equation, it is straightforward to see that we discard some information. Specifically, we
only consider the overall probability for two workers to generate the same label, but neglect
the exact value of the label. In other words, we do not distinguish the cases l;; = l;; = {
and l;; =1l = I for any [,I’ € C. In this way, we eliminate the parameters b; ; at a cost of
discarding this information. In practice, discarding the information may cause additional
identifiability issues of the model parameters, but this can be alleviated by blending the
likelihood and the profile likelihood, as will be discussed in Section 5.2.

In practice, it is probable that many workers do not collude with each other, which means
that H;; should be sparse. To keep the model parsimonious and avoid false detection of
collusion, we apply a penalty function to the objective function and maximize

FO) = > f90.5) =6,0)— > nijdh(Hiy),

(4,9)€P (4,5)€P

where

FED(6i5) = 057 (0i5) — nij Ta(Hig) -

Here A > 0 is the tuning parameter, n; ; = Zl,l’ec nil; is the total number of the common
tasks that both worker ¢ and worker j finish, and J)(:) is the penalty function. In this
formulation, we use n; ; to weight the penalty. In this way, pairs of workers with larger n; ;
receive larger penalties.

Commonly used penalty functions such as the Least Absolute Shrinkage and Selection
Operator (LASSO) and the Smoothly Clipped Absolute Deviation (SCAD) penalty can
be adopted here (Tibshirani, 1996; Fan and Li, 2001). In this study, we focus on the
adaptive LASSO penalty because it shows appealing theoretical properties (Zou, 2006) and
can achieve superior performance for variable selection in different applications (Zou et al.,
2011; Kamarianakis et al., 2012; Kim et al., 2019; Song et al., 2019). With the adaptive
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LASSO penalty Jx(H; ;) = A\w; jH; j, where w; ; is a user-specified weight for the pair of
workers (4, j), our objective function becomes

FO)=10,(0)—X > nijwiHi; .
(4,5)eP

According to Zou (2006), w;; can be estimated by w;; = 1/I§T5j, where ﬁIi’j is the
estimation of H;; obtained by maximizing the pairwise profile likelihood function ¢, (@)
without penalty, and r is a pre-specified positive number. In this study, we use r = 1 for the
numerical experiments. The tuning parameter A is usually selected using cross validation
or information criteria. In our case, the cross validation may not be applicable because
different workers may generate labels for different tasks, and as a result, we may not be
able to find a partition of tasks that can be effectively used for cross validation for all pairs of
workers. Therefore, we rely on information criteria for selecting A. Specifically, since £, ()
can be decomposed into local models £, (8) = 2 Gi.)eP @l’j)(am) for each pair of workers
(i,j) € P, we can define information criteria for each local model in the conventional way
and sum up to obtain the overall information criteria for Zp (0). Consequently, we define
the Akaike information criterion (AIC) of 0 as

AlCg = =20, (0) +2 Y I(H;; #0),
(i,)€P

and the Bayesian information criterion (BIC) as

BICe = —20, () + >  I(Hi;#0)-logn;; .
(i,5)eP

Then, we can select a A such that the corresponding estimated 0 has the minimum AIC or
BIC.

4. Asymptotic Properties

In this section, we discuss the asymptotic properties of the proposed PROCAP method. At
first, we reparametrize the model to remove the constraints Zlczl[ai]y,l = 1and 25:1 my =
1. Specifically, we replace [a;],.c by 1 — Zlczjl[ai]y,l and replace m¢ by 1 — 25;11 m,. For
simplicity, we still use @ to represent the parameters after re-parametrization. The first
issue we need to consider is the identifiability of €. Mathematically, @ is generally not
identifiable. A simple example is that for C = 2, if we exchange the two entries of m, and
exchange the two rows for each a;, then Zp (0) remains unchanged. However, in practice,
external information or domain knowledge is usually available to narrow down the space
of 8 such that the true parameter 8* is identifiable. For the previous example, if worker
1 is known to be honest, or the first entry of m* is known to be greater than the second
one, we can impose proper restrictions such as [a;]1,1 > [ai]1,2 and m; > mgy accordingly
when estimating 6. Throughout this section, we assume that 8* is identifiable. In addition,
for simplicity, we assume each worker generates a label for each task, i.e., n;; = T for
any (i,7) € P, where T' is the total number of tasks. In fact, the asymptotic properties
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discussed below apply to the local model lz(f’j )<9i,j) and f(9)(8; ;) for each pair of workers,
which means that the proposed PROCAP method still enjoys these properties even when
different pairs of workers generate labels for different number of tasks. Further, it should
be noted that the asymptotic properties discussed in this section are under the regularity
condition that each entry of the true a! and m* is within the interval (0,1) and each true
H; is within the interval [0,1), i.e., the parameter 6* is allowed to be on the boundary
with H; ; = 0. This is different from many existing studies where the true parameter is
usually assumed to be an inner point.

In this section, we present the main results and the proofs can be found in Appendix C.
At first, we consider the estimated 6 by maximizing Zp (0) without penalty. As mentioned
in Section 3.3, £, (0) can be viewed as an M-estimator. Then, we can show the following
theorem.

Theorem 1 (Consistency of pairwise profile likelihood) 6= argmaxg ,, (8) is root-
n consistent, i.e., VT (0 — 0*) = O,(1).

Note that throughout the section and Appendix C, n refers to the number of tasks 7.
Usually, the maximum likelihood estimator is asymptotically normal. However, in our case,
the true 8* may be on the boundary, i.e., the true H;‘] = 0. Thus, the estimated 0 may
not be asymptotically normal, but it is still consistent with the common root-n convergence
rate.

Next, we consider the asymptotic properties of the penalized pairwise profile likelihood
estimation method. Let Pg = {(i,j) € P : H]; = 0} be the set of worker pairs with the
true H;; to be 0, and let P; = P\Pg = {(i,j) € P : H; > 0} be the complement set
of P;. To emphasize that the selection of the tuning parameter A depends on the number
of tasks T, we explicitly write the tuning parameter as Ar. In addition, denote g:(}, =
min{\rw; ;, (i,5) € Ps} and gt = max{\rw; ;, (i,j) € P;} as the minimum and maximum
penalty coefficients of Arw; ; for non-colluding and colluding worker pairs, respectively. The
next theorem verifies the consistency of the penalized pairwise profile likelihood method.

Theorem 2 (Consistency of penalized pairwise profile likelihood) If VT g% — 0,
there exists a local mazimizer 0 of f(0) such that VT(0 — 6*) = Op(1).

This theorem indicates that as long as the maximum penalty coefficient for colluding workers
shrinks to 0 at a rate faster than 1/ VT , there exists a local maximizer of the penalized
pairwise profile likelihood that is root-n consistent.

In fact, the root-n consistent local maximizer possesses the oracle property. Specifically,
if we divide the parameter 6 into two parts as @ = (6o, 6.), where 8y = {H; ;, (i,7) € P§}
and 6. = 0\0y, the oracle property is stated in the following theorem.

Theorem 3 (Oracle property) If \/Tgilr — 0, \/Tg% — 00, then with probability tending
to 1, the root-n consistent local maximizer 0 of f(0) in Theorem 2 satisfies:

(a) Selection consistency: 6y = 0; and

(b) Asymptotic normality: VT(0, — 6*) = N(0,%.), where X, is a constant covariance
matric.

10
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This theorem indicates that with probability goes to 1, the estimated 6y is 0 and the
estimated 6. is normally distributed with mean 6} .

As mentioned before, we estimate w; ; by w; ; = 1/]:153‘7 where ﬁid is the estimation of

H; ; without penalty, and r is a positive number. Since H; ; is root-n consistent according
to Theorem 1, it is easy to verify that as long as TV2Ap — 0 and TUH/2)p — oo, the
technical conditions for Theorem 2 and Theorem 3 are satisfied. For example, if r = 1 as
considered in this paper, then A\p = %logT satisfies the technical conditions. However,
selecting A in this way may not be optimal in practice, because it simply regards A as a
deterministic function of 7" and does not consider the collected data. As mentioned before,
we may consider selecting A according to information criteria.

Next, we show that with probability tending to 1, any A that fails to identify the
correct model will not be selected by BIC. Denote é()\) as the corresponding estimation
of the penalized pairwise profile likelihood method with tuning parameter A. Let 750()\) =
{(i,5) € P : I;Q’j()\) = 0} be the collection of worker pairs where the two workers are
independent according to @(\), and let Py(\) = P\Po(\) = {(i,7) € P : H; j(\) > 0}. We
can partition the set of nonnegative numbers R, = [0, +00) into three mutually exclusive
sets Ry = RYURSURS, where for any A € R, the model is underfitted with 750()\) Z Py
for any A € RS, the model is correct with 750()\) = Pg; and for any A € RY, the model
is overfitted with Po(\) C Pg, Po(\) # Pi. In addition, denote {Ar} as a sequence of
that satisfies the technical conditions, e.g., \p = %log T. Then the corresponding local
maximizer é(S\T) satisfies the properties in Theorem 2 and 3. Using Ar as reference, we
show that if A leads to an underfitted or overfitted model, then with probability tending to
1, the BIC of @(Ar) is smaller than the BIC of @()), and thus A will not be selected by the
BIC criterion.

Theorem 4 (BIC selection consistency)

P < inf  BIC,

> BICy 5 1.
AEREURS H(AT)> ”

)

This theorem indicates that asymptotically, the model selected by BIC is the correct model.

5. Numerical Algorithm

In this section, we discuss the algorithms to maximize ¢, (@) and f(6).

5.1 Maximizing Pairwise Profile Likelihood

Expectation-maximization (EM) algorithm is usually used to maximize the likelihood func-
tion with missing data. In our study, to maximize the pairwise likelihood ¢, (8), we adopt
the EM algorithm for composite likelihood proposed by Gao and Song (2011). Specifically,

11
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we define the Q-function in the expectation step as

Q(66")
Ll
=y [ > on > Q01,107 ) logp(Li = 1,L; =1'\Y =y, Z;; = 0[6; )
(i,5)eP Lirec:11 yeC

+<Zn§;§> S Qw210 )logp(Li = Ly = 1Y =y, Zij = 216:5) |

leC yleC z€{0,1}

where
Qi (ylz, LU, 0F ) =p(Y =y|Zij =2 Li=1,L; =1,6};)
and

Qij(y,z,zyegfj) =p(Y =y,Zij=21L;i=L;j =L _Lj,efj)

are constants with respect to 8, and Oﬁj is the estimation of @ at the kth iteration. Our
definition of the Q-function is slightly different from the literature, because our objective
function is the profile likelihood function instead of the likelihood function. In this Q-
function, besides y; and zf’j, we also consider different possible scenarios when L; = L; as
a latent variable, i.e., we distinguish the scenarios that L; = L; = [ for different /. In this
way, we can maximize Q(6|6%) by separately considering the parameters H;;, a;, and m.
In Appendix D, we prove the following theorem, which verifies that we can maximize £, ()
by iteratively maximizing Q(6|6%).

Theorem 5 (Verification of EM algorithm) If Q(0/6%) > Q(6%|6%), then £,(0) >
i, (6%).

Furthermore, it is straightforward to see that Q(@]0%) contains the term

logp(Li = Lj =1Y =y, Zi; = 1|6;;) =
log my + logHm- + logp(Li = Lj = l|Y =, Zi,j = 1) ,

where the term logp(L; = L; = l|Y = y,Z;; = 1) is unrelated to 6, because 6 does
not contain any parameter that specifies the behavior of two workers when they collude.
Therefore, we simply omit this term when maximizing Q(0]6%). As a result, we obtain the
following updating equations for each parameter

l,l k
E+1 _ > iec M Hj;

" Zu'ec”” HY +p(Li = Lj|Zi; = 0,68;) (1 - HE))

4 l
LAED YR I W RIRE RS porti) RUS IS Al B

(i.J)EP | LIECIAY lec

and

at],x 3|5 e enret) (Sl ) oot

T yeWsj£i | recii 4l rec
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Here, mi*! and {af“] should be normalized such that 3°, . myi*! = 1and Y, ¢ {af“} =

)

1. The details for deriving the updating equations are shown in Appendix E. To summa-
rize, given an initial estimation of @, we maximize Zp (0) by iteratively applying the above
updating equations until its convergence. According to the updating equations, the time
complexity and the space complexity for the EM algorithm are provided in the following
theorem.

Theorem 6 (Complexity of EM algorithm) The time complexity for one iteration of
the EM algorithm is O(|P|C®), where |P| is the number of worker pairs, and the space
complezity is O(|P|C?).

5.2 Maximizing Penalized Pairwise Profile Likelihood

Next, we discuss the algorithm for maximizing f(0) = ¢, (0) — > G.)ep i Ia(Hij). Since
f(0) only differs from ¢, () by a penalty term, an intuitive way for maximizing f() is
to modify Q(6]6%) in the EM algorithm to consider the penalty term. However, Q(0|6%)
contains the term log H; j, which means that no matter which penalty is added to Q(8]6%),
H; ; will never be shrunk to 0. Therefore, the EM algorithm does not help keep the model
parsimonious. To tackle this issue, we propose to adopt a coordination descent (CD) algo-
rithm as follows.

Step 1: Update H; ; by maximizing f(0) with a; and m fixed, i.e.,

HF = argmax f(0|a; = af,m = mk) )
H

where H**' = {H'H, (i, j) € P}.
Step 2: Update a; and m by maximizing f(0) with H; ; fixed, i.e.,

(ab* mFt) = argmax f(O|H = H*!) .

7 Y
a;,m

In Step 1, since a; and m are fixed, it is straightforward to see that H;; for each pair
of workers can be maximized separately. Therefore, we only need to solve |P| univariate
maximization problems, where |P| denotes the number of elements in P. In Step 2, since
the penalty term is only related to H; ; and H;; is fixed, maximizing f(6) is equivalent to
maximizing Zp (0). Consequently, we can directly adopt the EM algorithm without updating
H; ; to derive a; and m. In practice, one possible modification of Step 2 is to consider the
likelihood for non-colluding worker pairs instead of the profile likelihood. As mentioned
before, in the penalized pairwise profile likelihood method, we eliminate the parameters b; ;
at a cost of discarding some information. Thus, for a pair of non-colluding workers with
H; ; = 0, the profile likelihood does not fully explore all the available information and may
lead to multiple maximizers of £, (6). To address this issue, given the estimated result of
H in Step 1, we propose to maximize the following objective function in Step 2

g(6|H = H") = DA (%) E N S (TR
(i,j)EP:H¢7j20 (Z‘,j)G'PZHi’j¢O
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In other words, we consider profile likelihood for colluding workers and consider likelihood
for non-colluding workers. As a result, the updating equations for a; and m change to

mFtl n”Q yO,l,l’
v > 2 (vl r)

(i,j)EP:Hi’jZO l l eC

+ Z Z ”i:?Qzl,g(y|Oalvl/70 (Zn ) _y|L = L]70’i€j) )

(i,J)EP:H; ;70 | LV ECIA leC

and

[afHLJ X Z Zn” Ql y|0717l/70£€,])

jeW!Hl"j—O 'eC

oy | X mielwlonrel) (Zn )ggj (,0,116%)

JEW:H, j#0 |VeC:l/#] rec

The detailed derivation is similar as in Appendix E, and thus is omitted.

6. Ground Truth Inference

After obtaining the estimated parameter é, we can infer the ground true label y; for each
task. Since we adopt the pairwise likelihood for parameter estimation, we consider the
composite posterior distribution based on the pairwise likelihood. The composite posterior
distribution is similar to the posterior distribution, but with the full likelihood replaced by
the composite likelihood, which is the pairwise likelihood in our case (Ribatet et al., 2012).
Specifically, the composite posterior distribution of y; can be calculated as

m(ye = c|lig,i € W) o< 1, 11 p(Li = lis, Lj = Lislys = ¢, 0) .
(i,j)G’PIli,t;ﬁO,ljJ?ﬁO

Here the conditional probability is

~

p(Lz = li,taLj = lj,t|yt =G é) = [&i]Clit[dj]Clgt( H )
+ Il = 1ig)p(Li = Ly = 1i4| Zij = L,ye = ¢)Hy j .
The probability p(L; = L; = lis|Zij = 1, yt = ¢) = [bijlcy,, is unknown, because b; ;
has been eliminated from the model. To address this problem, we propose to consider

a non-informative Dirichlet prior for b; ; and calculate the expected composite posterior
7(ye = c|liy, i € W). Specifically, let the prior distribution for each row of b; ; be

. 1 1
[bi,j]c ~ Dir <Cv T 7C> 5
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and assume b; ; to be mutually independent. The expected composite posterior is

Eby .yt [Ty = cllig, i € W)]

xie I oy [p(Li =l Ly = Ll = . 0)]
(1,4) EP:Li 170,05, 70
: L . :
= MM, H @il [@ilea,;, (1 — Hij) + 6I(li,t =14 )H;j} .

(4,§)EP:ls 170,15, 7#0

As a result, by considering the expected composite posterior, we essentially replace the
probability p(L; = Lj = l;4|Z;; = 1,y = ¢) by 1/C. In other words, we treat workers
as spammers when they collude on a task, which is equivalent to removing the duplicated
labels generated by colluding workers. With a greater value of ﬁm, the probability p(L; =
Lit, Lj = Litlye = ¢, é) gets closer to 1/C" and thus has less effect on the final inference
result. In this way, we discard the information from collusion to protect the final inference
result from over-weighting the duplicated labels generated by colluding workers.

7. Related Work

In the literature, a number of studies have been focused on ground truth inference in
crowdsourcing. One of the most commonly used models is the General DS model (Dawid
and Skene, 1979), which is a baseline model of our study. As mentioned before, the General
DS model is flexible in modeling worker expertise and can reduce to several other models by
imposing some restrictions. Extensions have also been made to incorporate more factors into
consideration. For examples, Donmez et al. (2010) considered the workers’ accuracy changed
over time, and adopted a particle filter to trace the change. Liu et al. (2012) transformed this
problem into an inference problem in graphical models and applied approximate variational
methods for ground truth inference. Whitehill et al. (2009) assumed different tasks had
different levels of difficulty, and Kamar et al. (2015) further discussed different hierarchical
models to account for task-dependent bias, where the confusion matrix was dependent on
the task feature. Another perspective in crowdsourcing is to train a supervised model based
on the collected labels. Raykar et al. (2010) discussed supervised model training for different
data types of response with noisy labels, while the worker expertise was still considered as a
confusion matrix. Other studies extended the method and assumed each worker’s response
was an output of a different supervised model (Yan et al., 2010; Welinder et al., 2010; Kajino
et al., 2012; Bi et al., 2014).

To further improve the performance of the ground truth inference algorithm, Raykar and
Yu (2012) proposed to explicitly eliminate spammers by designing a special prior distribu-
tion of workers’ confusion matrices. However, this model regards the workers as independent
and only considers individual spam. Jagabathula et al. (2017) proposed a reputation algo-
rithm to identify unreliable and adversarial workers without a probabilistic labeling strategy.
Some other studies focused on detecting the community structure of workers (Kajino et al.,
2013; Venanzi et al., 2014; Moreno et al., 2015). Specifically, workers were assigned to dif-
ferent communities where within the same community, workers shared the same or similar
expertise. These methods still assumed the workers to be independent.
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Only a few studies have considered the collusive behaviors of workers. Ghosh et al.
(2011), Karger et al. (2013), and Jagabathula et al. (2017) considered the case when ad-
versarial workers colluded to attack the system, but they mainly focused on analyzing the
robustness of a model against the attack in the worst case and did not consider other col-
lusive behaviors. Liu et al. (2008), Xu (2013), and Allahbakhsh et al. (2013) discussed
collusion detection in reputation and rating systems. These studies extracted features from
the ratings of workers and then identified colluding groups based on a classifier or a cluster-
ing algorithm. For crowdsourcing systems with labeling tasks, Chen et al. (2018) proposed
an algorithm to remove duplicated labels resulted from worker collusion before aggregating
the labels. However, the objective function of the algorithm is a heuristic metric and thus
the performance still needs to be verified.

To summarize, most existing studies assume the workers to be independent and only a
few studies have considered the collusive behavior of workers. To the best of our knowledge,
the proposed PROCAP method in this paper is the first rigorous statistical model that aims
to solve collusion detection and ground truth inference with theoretical justifications.

8. Experiments

We conduct a series of numerical studies to verify the performance of our PROCAP method.
At first, we simulate the collected labels in different scenarios, and for each scenario, we
assess the performance of PROCAP in ground truth inference, collusion detection, and
parameter estimation, based on different baseline models. Then, we implement PROCAP
in some publicly available real data sets for ground truth inference and collusion detection.

For ground truth inference, besides PROCAP, we also report the performance of two
benchmark methods, including (i) the baseline model without considering worker collusion
and (ii) majority voting. In particular, by assuming workers to be independent, a baseline
model can be directly used for ground truth inference, which we refer to as independent-
worker baseline model for simplicity. The parameters m and a; can be estimated by max-
imum likelihood using the EM algorithm, and then the posterior distribution of 3; can be
calculated as

p(ye = cllit,i € W) o H p(litlye = ¢, ai)me = me H @i, - (6)
iEW 1eW
Consequently, the estimated label is

Ut = argrréaxp(yt =cllit,ieW). (7)
ce

The details of independent-worker baseline models can be found in Dawid and Skene (1979).
It is worth noting that for the Uniform DS model, (6) reduces to

Me .

Cc-1

If we further restrict m, = 1/C and a > 1/C, the estimated ¢ using (7) is the same as the
one in (8) based on majority voting:

Uy = argmaxz I(liy=vy), (8)
yeC P

22 [1=1(ls,e=c)]
p(yt = C‘li7t,i S W) X aZi I(li,¢=c) < L a) t
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which shows the connection between the Uniform DS model and majority voting.

In the literature of crowdsourcing, the algorithms for estimating the parameters of the
independent-worker baseline models are usually initialized by majority voting (Dawid and
Skene, 1979). Specifically, this is equivalent to setting the initial estimation of the parame-

ters as
0.7, ify=1,
[a?]yl ~ Y03 )
’ c=1~ if Yy 7é ! )

and mQ = 1/C. Therefore, throughout this section, we initialize a; and m in the same way
when 1mplement1ng the algorithms proposed in Section 5. For H; ;, we initialize H, 0] = 0.5.
The numerical studies were conducted on a virtual machine with an Intel Xeon E5-2693V3
16-core 2.30-GHz processor and 32 GB RAM.

8.1 Synthetic Data Sets

In the simulation study, we explore the performance of our proposed PROCAP method
under different scenarios and compare with the benchmark methods. While the method can
be similarly applied to multi-class labeling tasks, we consider tasks of two alternatives, i.e.,
C = 2, in this simulation study to numerically demonstrate the performance and properties
of the method. Additional simulation studies with C' > 2 have been conducted and similar
results are obtained, and thus are omitted in this paper. The ground true labels y; for each
task are randomly generated with the marginal probability m* = [0.6,0.4]7. In addition,
we consider 10 workers. If working independently, each worker has a confusion matrix of

* = 8?7) gi . The first k workers belong to a colluding group with a colluding probability
of h for each task. Specifically, with a probability of h, the k workers collude on a task,

p o 1- p]
L—p p |
otherwise they generate the labels independently according to their own confusion matrices.
The remaining 10 — k workers are always independent. Throughout the simulation, each
worker generates labels for all tasks.

and they generate the same label according to a confusion matrix of b* = {

In the simulation study, different scenarios with different combinations of group size k
and colluder expertise p are considered. Specifically, we consider scenarios with £k = 3 and
k = 5, representing the number of colluding workers to be small and large, respectively; and
we consider p = 0.7,0.5,0.3, and 0, representing the colluding workers to be reliable workers
(tend to give the correct label), spammers (randomly generate labels), adversarial workers
(tend to give a wrong label), and sophisticated adversarial workers (always give wrong
labels), respectively. Table 1 summarizes the scenarios that we consider in the simulation
study. In each scenario, we consider two different colluding probabilities including h = 0.5
and h = 1, representing the colluding workers collude on half of the tasks and all the tasks,
respectively. In addition, we try different numbers of tasks to see how the performance
of PROCAP changes. For each scenario with a certain number of tasks, we replicate the
simulation for 100 times.

We consider two baseline models including the Uniform and the Homogeneous DS model.
The result of each scenario is discussed as follows.
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Colluder expertise p

. =0.7 =0.5 =0.3 =0
Group size k (Iieliable (slfammers) (agversarial (sop}/iisticated
workers) workers)  adversarial workers)
k =3 (small group) Scenario 1  Scenario 2  Scenario 3 Scenario 4
k =5 (large group) Scenario 5  Scenario 6  Scenario 7 Scenario 8

Table 1: Summary of scenarios considered in the simulation study.

SCENARIO 1: SMALL GROUP WITH HONEST WORKERS

In this scenario, we consider k¥ = 3 and p = 0.7. Since now b* = a*, the non-colluding
assumption is satisfied. In addition, the first three workers have an overall confusion matrix
of (1—h)a*+hb* that is equal to the overall confusion matrix a* for the other workers. This
satisfies the assumption of the independent-worker Uniform DS model and majority voting
that the confusion matrix of each worker is the same. At first, we examine the accuracy of
ground truth inference as shown in Figure 1. This figure is divided into four panels, where
the two columns represent the two baseline models, the Uniform and Homogeneous DS
models, and the two rows represent two different cases with h = 0.5 and h = 1, respectively.
If A = 0.5, it means that the three workers collude on roughly half of the tasks, but for the
other tasks, they give their honest answers independently. If h = 1, it means that these
workers always collude and give the same label. For each panel, we compare the accuracy
of the majority voting model, the independent-worker baseline model (Independent), and
the proposed PROCAP model with collusion detection based on the baseline model with
the tuning parameter A\ selected by AIC and BIC (Collusion-AIC and Collusion-BIC), for
different number of tasks. Since majority voting (see (8)) is independent of the baseline
model, for a certain h, it has the same curve in the left panel and the right panel.

From Figure 1, we have the following observations. First, with the Uniform DS model
as baseline, PROCAP performs better than the other two benchmarks that do not consider
worker collusion, and the difference becomes greater with a larger A. This indicates that
by detecting the worker collusion, PROCAP can improve the accuracy of ground truth
inference. Second, with the Homogeneous DS model as the baseline, the performance of
PROCAP increases with more tasks. This is because in this case, there are relatively more
parameters that need to be estimated, and with more tasks, the estimation becomes more
accurate, leading to a higher accuracy in ground truth inference. Last, we can see that the
independent-worker Homogeneous DS model does not perform well. When workers collude
and frequently generate the same label, it tends to regard the colluding workers as experts
who seldom make mistakes, which leads to a biased estimation of the workers’ confusion
matrices. In comparison, the performance of majority voting and the independent-worker
Uniform DS model is not too bad. The reason is that for these two models, the confusion
matrix of each worker is restricted to be the same, which avoids incorrectly treating colluding
workers as experts as in the independent-worker Homogeneous DS model.

Besides the performance in ground truth inference, we are also interested in the perfor-
mance of parameter estimation and collusion detection of PROCAP. Here we only consider
the case h = 0.5 and the estimation selected by BIC. To quantify the performance of pa-
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Figure 1: Performance of ground truth inference using different models for Scenario 1.

rameter estimation, we calculate the L, distance between the estimated ﬁi,j and the true
H;; by Z(i,j)eP |H;;— H;;| . In Figure 2, we show the average and one standard deviation
of the L distance over 100 repetitions based on the two baseline models. As we can see,
for both baseline models, the Ly distance diminishes to 0, and we achieve relatively smaller

distance based on the Uniform DS model, because less parameters need to be estimated.

Uniform Homogeneous

Distance
L e
e ¢ 2

©
&

o
@

25 50 100 200 500 1000 25 50 100 200 500 1000
Number of Tasks

Figure 2: L; distance between the the estimated ﬁ” and the true H;; in Scenario 1.

In Figure 3, we further show the probability that our method correctly detects the
colluding workers, i.e., p(750 = P§), which is calculated as the proportion of repetitions
where the set of detected colluding worker pairs Po equals the set of true colluding worker
pairs P; among 100 repetitions. Obviously, the probability increases with more tasks for
both baseline models.
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Figure 3: Probability of selecting the correct model in Scenario 1.

The running time of the proposed PROCAP method was recorded for the synthetic data
sets. Table 2 shows the average running time until convergence in seconds based on a single
CPU core for the EM algorithm described in Section 5.1 and the coordinate descent (CD)
algorithm described in Section 5.2 under Scenario 1 with h = 0.5, where the EM algorithm
(or the CD algorithm) stops when the log-likelihood £, (8) (or the penalized log-likelihood
f(8)) decreases by a proportion of less than 1076 after the latest iteration. The numbers
in parentheses are the average number of iterations for the algorithms to converge. It is
easy to see that a larger number of tasks does not necessarily increase the running time,
because only the summary statistic nil; is needed in the PROCAP method as in (3). In
fact, EM algorithm converges in fewer iterations with more tasks, and thus leading to less
computation time. For the CD algorithm, the number of iterations seems to be stable under
the Uniform DS baseline model and increases with more tasks under the Homogeneous DS
baseline model. However, since each iteration of the CD algorithm contains a run of the
EM algorithm and the running time of the EM algorithm decreases with more tasks, the

running time of the CD algorithm also decreases with more tasks in this example.

Number of Tasks
25 50 100 200 500 1000
0.083 0.065 0.046 0.037 0.032 0.028

- Uniform 3 60 (87)  (5.8)  (45)  (3.7)  (3.1)
Homogeneous 0202 0124 0.085 0064 0.045 0040
(28.6) (17.5) (11.9) (8.8) (6.2) (5.5)
Uniforms 0425 03787 0.300 0244 0.185  0.140
D 47)  (5.2)  (5.6) (55) (47) (4.0)
1.165 1011 1.013 00957 0819 0.729

Homogeneous

(5.6) (7.7) (11.0) (13.6) (16.4) (16.3)

Table 2: Computation cost for Scenario 1 with h = 0.5.
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SCENARIO 2: SMALL GROUP WITH SPAMMERS

In this scenario, we consider k = 3, p = 0.5, i.e., when the first three workers collude on a
task, they simply give a random guess. In this case, a* # b* and thus when h = 0.5, the
non-colluding assumption is violated. In addition, the majority voting and the independent-
worker Uniform DS model may not be a good fit, because the overall confusion matrix
(1 — h)a* + hb* for the first three workers is different from the overall confusion matrix a*
for other workers, which contradicts the assumption of equal confusion matrices in these
two models. In Figure 4, we show the performance of ground truth inference by different
methods. Similar conclusions can be drawn as in Scenario 1. PROCAP performs the

Uniform Homogeneous
S
O & ¥ L u
0.6 ',/’:
=5
0.7 I
o
o1
0.6-
2 Majority Voting
g 0.5+ -»- Independent
§ -4 Collusion+AIC
0.8- — 34— Collusion+BIC
————— &
=r
0.7+ V4 Il
[
0.6+
0.5 T~ . ..

25 50 100 200 500 1000 25 50 100 200 500 1000
Number of Tasks

Figure 4: Performance of ground truth inference using different models for Scenario 2.

best among all methods. The performance of majority voting and the independent-worker
Uniform DS model is not too bad, probably because b* is still close to a*. However,
the independent-worker Homogeneous DS model is vulnerable to worker collusion with the
worst performance. A new observation is that compared with Figure 1, the performance
of PROCAP based on the Homogeneous DS model is much better than that based on the
Uniform DS model when a large number of tasks are available. The reason is that in this
scenario, the Homogeneous DS model provides a better fit to the data. Specifically, as
discussed in Section 3.2, with a higher value of colluding probability h for the first three
workers, the non-colluding assumption provides a good approximation only if we can regard
the confusion matrices a;,7 = 1,2, 3 for the first three workers to be close to b*. However,
this is not satisfied in the Uniform DS model where a; for all workers are restricted to be the
same. By combining the worker collusion detection and the flexibility of the Homogeneous
DS model, PROCAP achieves superior performance, when there are a large number of tasks
available.
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Similar as before, we check the performance of PROCAP in parameter estimation and
collusion detection for h = 0.5 with the parameter selected by the BIC criterion. The results
are shown in Figure 5 and Figure 6. It is interesting to see that with the Uniform DS model
as the baseline, for 1000 tasks, the standard deviation of the L; distance between fIZJ
and H;‘ ; increases, and the probability of correctly detecting colluding workers decreases.
This is because the non-colluding assumption cannot provide a good approximation when
the Uniform DS model is the baseline, as mentioned before. On contrary, based on the
Homogeneous DS model, although the non-colluding assumption still does not strictly hold,
PROCAP shows good performance in parameter estimation and collusion detection. From
the result, we can see that PROCAP is insensitive to this assumption if a proper baseline
model is used.

Uniform Homogeneous
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Figure 5: L; distance between the estimated fI” and the true H j in Scenario 2.
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Figure 6: Probability of selecting the correct model in Scenario 2.

SCENARIO 3: SMALL GROUP WITH ADVERSARIAL WORKERS

In this scenario, we consider k = 3 and p = 0.3. In this case, the colluding workers try to
select the wrong answer to mislead the inference when they collude. Similar as before, we
show the result of ground truth inference in Figure 7. As this figure shows, the performance
of independent-worker Uniform DS model and majority voting deteriorates because the
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overall confusion matrix of the first three workers greatly differ from that of the other
workers. In addition, when the Uniform DS model is used as the baseline, PROCAP does
not perform much better than the benchmark models. In fact, it is even worse than the
benchmark models when h = 1 and the number of tasks is large. The reason is similar as in
Scenario 2 that the non-colluding assumption does not provide a good approximation under
the constraint of equal confusion matrices by the Uniform DS model. Since b* much differs
from a* in this scenario, the influence of the improper baseline model becomes more severe.
In contrast, the performance of PROCAP is satisfactory when the Homogeneous DS model
is used as the baseline with a large number of tasks. Although the non-colluding assumption
still does not strictly hold in this scenario, the Homogeneous DS model provides a better
fit and leads to higher accuracy in ground truth inference when incorporated by PROCAP.
In addition, to achieve a good performance, PROCAP requires relatively large number of
tasks as many parameters are involved in the Homogeneous DS model. Therefore, it is
important to select a suitable baseline model. If the baseline model is oversimplified and
does not fit the data well, or the baseline model is too complicated but the available data
is not enough to provide a good estimation of the parameters, PROCAP may not perform
well.
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Figure 7: Performance of ground truth inference using different models for Scenario 3.

Next, we show the parameter estimation performance of PROCAP using BIC when
h = 0.5 as in Figure 8 and Figure 9. It is clear that with the Homogeneous DS model as the
baseline, the performance of PROCAP becomes better with more tasks, and if the number
of tasks is large enough, we can still obtain an accurate estimation with a high probability of
detecting the correct colluding workers. However, it is not true when the Uniform DS model
is used as the baseline. Similar as before, the reason is because the Uniform DS model is
too restricted and cannot provide a good fit to the data, leading to a biased estimation.
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Figure 8: L; distance between the estimated f]zj and the true H j in Scenario 3.
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Figure 9: Probability of selecting the correct model in Scenario 3.

SCENARIO 4: SMALL GROUP WITH SOPHISTICATED ADVERSARIAL WORKERS

In this scenario, we consider k£ = 3 and p = 0. In other words, when the workers collude, they
always submit the wrong answer. Here a sophisticated adversarial worker refers to a worker
who knows the correct answer but intentionally gives the wrong answer. The result of ground
truth inference is shown in Figure 10. Similar to Scenario 3, when h = 0.5, the performance
of PROCAP is very good if the Homogeneous DS model is the baseline, but degrades
when the Uniform DS model is the baseline. Interestingly, when h = 1, the performance
of majority voting deteriorates much but the independent-worker Homogeneous DS model
achieves very good accuracy. The reason is that in this case, the three colluding workers
always generate the wrong answer and can simply be regarded as independent adversarial
workers. Therefore, the independent-worker Homogeneous DS model can correctly estimate
their confusion matrices. By comparing the case h = 0.5 with A = 1, we can see that the
independent-worker Homogeneous DS model possesses the ability to identify a small number
of sophisticated adversarial workers when they always give the wrong answer, but if they try
to disguise to be honest workers by honestly answering a subset of the tasks, then the model
will fail to identify them. We have also checked the performance of parameter estimation
for PROCAP in this scenario. The result is similar to Scenario 3 and thus is omitted.
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Figure 10: Performance of ground truth inference using different models for Scenario 4.

SCENARIO 5: LARGE GROUP WITH HONEST WORKERS

In this scenario, we consider k& = 5 and p = 0.7. Here a half of the workers are involved
in collusion. The result of ground truth inference is shown in Figure 11. Compared with
Scenario 1, the performance of majority voting greatly deteriorates, especially for h = 1,
because more workers are colluding with others. In contrast, PROCAP still achieves high
accuracy in ground truth inference.

SCENARIO 6: LARGE GROUP WITH SPAMMERS

In this scenario, we consider £ = 5 and p = 0.5. The result of ground truth inference is
shown in Figure 12. We can see that the accuracy of majority voting and the independent-
worker baseline models is close to 0.5 when h = 1, but the accuracy of PROCAP can reach
above 0.8 when a large number of tasks are available, demonstrating great superiority.

SCENARIO 7: LARGE GROUP WITH ADVERSARIAL WORKERS

In this scenario, we consider £ = 5 and p = 0.3, and the result of ground truth inference is
shown in Figure 13. Since a half of the workers are colluding and adversarial, the accuracy
of majority voting and independent-worker baseline models can drop below 0.5, meaning
that they are worse than random guess. In contrast, the accuracy of PROCAP is still much
better when the Uniform DS model is the baseline, and can even achieve 0.8 with enough
number of tasks when the Homogeneous DS model is the baseline.
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Figure 11: Performance of ground truth inference using different models for Scenario 5.
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Figure 12: Performance of ground truth inference using different models for Scenario 6.

SCENARIO 8: LARGE GROUP WITH SOPHISTICATED ADVERSARIAL WORKERS

At last, we consider the scenario with £ = 5 and p = 0. The result of ground truth inference
is shown in Figure 14. When h = 0.5, we observe relatively good performance of PROCAP.
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Figure 13: Performance of ground truth inference using different models for Scenario 7.

This means that if the sophisticated adversarial workers try to disguise to be honest workers
for a subset of the tasks, PROCAP can accurately identify them given enough tasks.

In contrast, when h = 1, the colluding workers can be simply regarded as independent
and thus PROCAP delivers similar result as the independent-worker baseline models, which
has also been seen in Scenario 4. The bad performance of the independent-worker baseline
models and PROCAP when h = 1 can be explained by the unidentifiability of the true
parameter. As mentioned in Section 4, the true parameter 8* may not be identifiable.
Since the algorithm for parameter estimation is initialized by (9) that assumes the majority
of workers to be honest, the resulting estimated parameter turns out to be biased and
has similar likelihood as the true parameter. However, if prior knowledge is available which
suggests the majority of workers are adversarial, we can set the initial point for the algorithm

as
0.3, ify=1,
[a?]yl: 0.7 ly
’ o1 iy #l,

and then the parameter estimation and ground truth inference will be much more accurate.
Therefore, without a suitable initial point or some empirical knowledge that solves the
identifiability issue, PROCAP may fail to identify a large group of sophisticated adversarial
workers when they always collude, which is the same as the independent-worker baseline
model.

To summarize, when workers collude, PROCAP can generally achieve better perfor-
mance in ground truth inference than the independent-worker baseline models, and detect
the worker collusion correctly. In addition, we would like to highlight some points as fol-
lows. First, it is important to select a suitable baseline model. If the baseline model is too
restrictive and the non-colluding assumption cannot provide a good approximation, PRO-
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Figure 14: Performance of ground truth inference using different models for Scenario 8.

CAP may not deliver a satisfactory result in ground truth inference. Second, a baseline
model that is more flexible with more parameters to be estimated usually requires more
data to ensure an accurate estimation. Last, PROCAP is generally more robust to colluding
spammers and adversarial workers than the independent-worker baseline models, but when
a large number of sophisticated workers are involved and always generate the wrong labels,
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PROCAP might fail. However, this case is very unlikely to occur in practice.

8.2 Real Data Sets

In addition, we implement PROCAP to five publicly available data sets including bluebird,

ducks, tweets, stage2, and rating. These data sets are briefly described as follows.

(1) The bluebird data set consists of worker-generated labels indicating whether an image
contains Indigo Bunting or Blue Grosbeak (Welinder et al., 2010);

(2)

28

In the ducks data set, workers are presented with photos that may contain American
Black Duck, Canada Goose, Mallard, Red-necked Grebe, or no bird, and need to
identify whether the photo contains a duck or not (Welinder et al., 2010).
Mallards and American Black Ducks are ducks;

In the tweets data set, workers classify the sentiment of tweets as positive or negative
(Mozafari et al., 2014);

In the stage2 data set, workers judge whether a document is related to a topic for
document-topic pairs (Tang and Lease, 2011). This dataset was part of the TREC
2011 crowdsourcing track; and
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(5) The rating data set consists of ratings on a scale of 1 to 10 for products, and the
collusive behaviors of workers are identified by obtaining the admission of colluding
workers (KhudaBukhsh et al., 2014).

For the first four data sets, all or a partial of the ground true labels are available, and thus
we use these data sets to evaluate the performance of ground truth inference of PROCAP.
The rating data set consists of rating tasks rather than labeling tasks. The ground true
labels are not available but the collusive behaviors of workers have been identified, and thus
we use this data set for evaluating the performance of collusion detection.

8.2.1 GROUND TRUTH INFERENCE

For the first four datasets, we remove the workers who generated labels for only 1 or 2
tasks, and remove the tasks that receive the labels from only 1 or 2 workers. The summary
statistics of the data sets after preprocessing are shown in Table 3. The last row shows the
average number of tasks that each pair of workers generate labels to, i.e., the average of
n; ;. According to the conclusions of the simulation study, the performance of PROCAP
generally becomes better with more tasks per worker pair. As can be seen, bluebird and
ducks have relatively large numbers in the last row, and thus we expect higher probability
of correctly detecting worker collusion and inferring the ground truth in these two data sets.

bluebird ducks tweets stage2
Workers 39 53 66 181
Tasks 108 240 1000 3557
Labels 4212 9600 4977 10742
Worker pairs 741 1310 1005 688
Tasks per worker pair 108 142.9 9.9 15.9

Table 3: Summary of the datasets for ground truth inference.

All these data sets consist of binary labeling tasks with C' = 2, and thus the Class-
Dependent DS model is the same as the General DS model. For each data set, we consider
three baseline models including the Uniform, Homogeneous, and the General DS models. All
available worker-generated labels are used to estimate the ground truth, and the tasks with
ground true labels available are used to calculate the accuracy of the inference. In Table
4, we report the accuracy of ground truth inference for the independent-worker baseline
models and PROCAP with A selected by AIC and BIC. We also report the accuracy of
majority voting for comparison. If PROCAP has an equal or higher accuracy than the
independent-worker baseline model and majority vote, we mark the number as bold in the
table. In Table 5, we show the number of detected colluding worker pairs according to BIC
for each data set by PROCAP for each baseline model.

For bluebird and stage2, PROCAP does not show significant improvement over the
independent-worker baseline models and majority voting in Table 4. Specifically, the
independent-worker General DS model achieves high accuracy in the bluebird data set,
indicating a good fit to the data. This is further confirmed by Table 5, as no colluding
worker is detected in the bluebird data set with the General DS model as the baseline.
Therefore, PROCAP successfully avoids false detection and overfitting in the bluebird data
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bluebird  ducks tweets stage2

Majority Voting 0.759 0.692 0.692 0.742
Independent 0.741 0.683 0.692 0.830

Uniform Collusion+AIC  0.759 0.746 0.692 0.830
Collusion+BIC  0.759 0.738 0.689 0.830

Independent 0.583 0.588 0.670  0.830
Homogeneous Collusion+AIC ~ 0.583 0.575 0.642 0.830
Collusion+BIC  0.583 0.575 0.564 0.830

Independent 0.880 0.600 0.712  0.723

General Collusion+AIC  0.880 0.596 0.724 0.645
Collusion+BIC  0.880 0.604 0.718 0.645

Table 4: Result of ground truth inference for the four data sets.

bluebird ducks tweets stage2

Uniform 446 967 494 326
Homogeneous 305 1300 740 227
General 0 301 445 198

Table 5: Detected number of colluding worker pairs for the four data sets.

set with the appropriate baseline model. Although colluding workers are detected in the
stage2 data set, the inference accuracy does not show much difference. One possible reason
is that the number of tasks for each worker pair is too small to accurately estimate the
parameters. For the tweets data set, PROCAP shows a slightly better performance than
the baseline models. Since the number of tasks for each worker pair is very small, the
estimation may not be accurate, which affects the performance. For the ducks data set,
PROCAP has a significantly better performance when the Uniform DS model is used as
the baseline.

Table 6 reports the average time in seconds until the EM algorithm and the CD algorithm
stop for each data set based on a single CPU core, where the numbers in parentheses are
the number of iterations. For the four data sets, the EM algorithm (or the CD algorithm)
stops when the log-likelihood £, (6) (or the penalized log-likelihood f(6)) decreases by a
proportion of less than 1078 after the latest iteration. In addition, the EM algorithm
is restricted to have less than 50 iterations. As shown in the table, although collusion
detection is a complicated problem with huge number of possible colluding combinations,
our method greatly decreases the complexity of the problem by considering workers in a
pairwise manner, and thus leading to an acceptable computation cost.

In practice, it is possible that additional information is available to further improve the
result of ground truth inference. For example, from a prior study or some tasks with known
ground truth, we may have a good estimation of the marginal distribution m. Thus, in
the numerical study, we also implement the methods with the marginal distribution m set
to be the value calculated from the ground true labels. The results are shown in Table
7 and Table 8. It turns out that Table 8 is very similar to Table 5 except for the ducks
data set with the baseline model to be the Homogeneous and General DS models. This is
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bluebird ducks tweets stage?2
Uniform 6 (45.0) 6.3 (42.6) 0.6 (5.7) 1.2 (14.8)
EM Homogeneous (16 9) 1.8 (12.7) 1.3 (12.3) 1.4 (17.3)
General 2 (37.5) 5.7 (40.8) 1.9 (19.1) 1.8 (26.5)

Uniform 138.8 (37.5) 218.3 (33.0) 53 (7.4) 4.8 (3.8)
CD Homogeneous 9.8 (5.7) 13.2 (6.2) 8.1 (5.6) 6.9 (4.7)
General 28.6 (8.8)  76.0 (12.9) 10.7 (5.6) 10.2 (5.4)

Table 6: Computation cost for the four data sets.

also reflected in Table 7, as the accuracy with these two baseline models for the ducks data
set is also greatly different from Table 4. In fact, the performance of PROCAP based on
the Homogeneous DS model deteriorates, but the performance with the General DS model
greatly improves, indicating a good fit to the data. This shows that we may further improve

the performance by incorporating more information.

bluebird  ducks tweets stage2

Majority Voting 0.759 0.692 0.692 0.742
Independent 0.759 0.692 0.692 0.817

Uniform Collusion+AIC  0.759 0.725 0.692 0.830
Collusion+BIC  0.759 0.725 0.690 0.830

Independent 0.713 0.588 0.689  0.807
Homogeneous Collusion+AIC  0.583 0.413 0.686 0.797
Collusion+BIC  0.583 0.413 0.688  0.797

Independent 0.898 0.613 0.712  0.781

General Collusion+AIC  0.898 0.967 0.723 0.714
Collusion+BIC  0.898 0.913 0.719 0.728

Table 7: Result of ground truth inference for the four data sets with m set to be the

previously estimated value.

bluebird ducks tweets stage2

Uniform 459 957 494 326
Homogeneous 279 745 487 186
General 0 878 463 194

Table 8: Detected number of colluding worker pairs for the four data sets with m set to be

the previously estimated value.

To summarize, we have similar observations as in the simulation study. In particular, if
the baseline model is a good fit to the data and the number of tasks for each worker pair
is large enough, PROCAP achieves good performance. In addition, incorporating more

information may further enhance the performance of PROCAP.
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8.2.2 COLLUSION DETECTION

The rating data set contains the ratings of 20 products from 123 workers with a scale
from 1 to 10. The collected ratings are quite dense and each worker rates 19.97 products
on average. Although PROCAP is not originally designed for rating tasks, we can still
implement the method by transforming the ratings into labels to test the performance in
collusion detection. The difference between rating tasks and labeling tasks is that, instead
of generating the same label, colluding workers in rating tasks may generate similar but not
exactly the same ratings. To address this issue, we transform each pair of ratings for each
product into a pair of labels that reflects the colluding possibility. Specifically, let r;; be
the rating of task ¢ given by worker i. Without loss of generality, we define a mapping 7(-)
where n(r) = 1if r € {1,2}, n(r) = 2 if r € {3,4,5}, n(r) =3 if r € {6,7}, and n(r) =4
if r € {8,9,10}. In this way, the mapping 7(-) transforms a rating in a scale from 1 to 10
into a label with four alternatives. Accordingly, we transform each pair of ratings by

(ri’t’mt) . (W(Ti,t>777(7°j,t)) ) ?f ’Ti,t - Tj,t‘ > 2,
(™), (™)), if [rig —rj <1,

where r™** = max{r;,7;:}. In other words, if the two original ratings differ by 2 or more,
we simply transform them into labels separately according to n(-). If the two ratings differ
by 1 or less, we consider they may be resulted from collusion, and thus we transform them
into the same label, and then PROCAP can determine whether there is indeed a collusion.
Additional studies have been conducted with different mappings 7(-). The results are similar
and thus are omitted here.

In Figure 15, we show the true and detected colluding workers based on different baseline
models with the tuning parameter A\ selected by BIC. The colluding pattern of workers is
illustrated as a symmetric matrix, with H;; to be the ith row and jth column, and the
grey scale indicates the value of H;;. A white pixel represents H;; = 0 and a black
one represents H; ; = 1. The diagonal entries of the matrices are set to be 1, and the
workers are permutated such that the true collusion matrix is block-diagonal. By comparing
the detected collusion matrices with the true collusion matrix, we can see that with the
Class-Dependent or General DS model as the baseline, the collusion pattern becomes quite
clear, despite some false detections. In fact, a majority of the false detections can be
further eliminated by setting a threshold against the estimated fIZ-J. This study shows that
PROCAP can be potentially extended to detect collusion in rating tasks as well.

9. Conclusions and Future Work

In crowdsourcing systems, workers are usually not mutually independent but collude with
others to gain more rewards. However, existing studies usually assume workers to be inde-
pendent and thus are vulnerable to worker collusion. This study aims at addressing this
issue by detecting the collusive behaviors of workers for labeling tasks in crowdsourcing
systems. Based on a baseline model that describes the worker’s behavior when working
independently of others, we introduce a new parameter H; ; to characterize the probability
of collusive behaviors among workers in a pairwise manner, and propose to estimate the
parameters by pairwise likelihood estimation. To address the identifiability issue and over-
parameterization, we further propose the pairwise profile likelihood estimation, and rely
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Figure 15: True and detected worker collusion matrices with different baseline models ac-
cording to BIC for the rating data set.

on adaptive LASSO penalty to ensure the sparsity. Then, we investigate the asymptotic
properties of the proposed PROCAP method and propose algorithms for deriving numerical
solutions. To the best of our knowledge, this is the first statistical model that simultane-
ously detects worker collusion, learns the capabilities of workers, and infers the ground true
labels, with theoretical guarantees. Numerical experiments using simulated data sets and
real data sets are conducted to thoroughly test the proposed PROCAP method. We find
that PROCAP achieves good performance in ground truth inference and collusion detection
when a relatively large amount of data is available and a proper baseline model is adopted.

In the future, there are some important problems worth investigation. First, there are
many existing models for ground truth inference in the literature, and the performance of
each model heavily depends on the data set. How to select the best model that fits the data
set has been an important problem that remains to be solved. This study encounters the
problem as well, as the good performance of PROCAP relies on a suitable baseline model.
Therefore, one potential future study is to develop a systematic approach for selecting
a suitable independent-worker baseline model. Second, both the theoretical results and
the numeric experiments show that the performance of PROCAP improves if each worker
generates labels for more tasks. However, in practice, the requester may not be able to
control the number of labels that each worker generates. Therefore, it is important to
explore different manners of incorporating more information into the model to enhance the
performance when only limited data is available. For instance, in practice, it is possible
that for some tasks, the ground true labels are known, which are usually referred to as
gold tasks. These tasks may be incorporated into PROCAP to deliver better results. As
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shown in the simulation, one scenario that PROCAP may fail is when a large number of
sophisticated workers are involved and always generate the wrong labels. However, such a
scenario can be easily detected if some gold tasks are available. Third, this paper focuses
on labeling tasks, but similar idea can be extended to other crowdsourcing tasks such as
rating tasks, which will be an interesting topic for a future study.

Appendix A. Incorporating the GLAD Model as the Baseline

The GLAD model proposed by Whitehill et al. (2009) assumes the expertise of worker i to
be «; and the difficulty of task t to be 1/8;, where §; > 0. When worker 4 is independent
from other workers, the probability for worker i to generate a correct label for task t is

1

p(Liy = Y1) = o(aif) = 1+ exp(—a;fB)

Here we use L;; as the label generated by worker ¢ for task ¢ and Y; as the ground true
label for task t. With the GLAD model as the baseline, the colluding assumption changes
to

p(Lig =1L, =012} ;=1,Y,=¢)=I(1=1)p(Liy = Ljy =1|Z{; = 1,Y; = ¢) ,

where Z,i ; 1s the collusion indicator for worker ¢ and worker j on task t. The non-colluding
assumption changes to

P(Lig =1L =112 ;= 0,Yy = ¢) = p(Liy = U|Ys = o)p(Ljy = 'Y, = ¢) ,

where

o; By (I#c)
p(Liy =1|Y; = ¢) = [o( )] 1= [C(zﬂ)]

—1
Then £, (8) can be formulated as in (4) and (5), and f(6) can be derived accordingly.

Appendix B. Derivation of the Pairwise Profile Likelihood

To derive the pairwise profile likelihood, our idea is to find an upper bound of the pairwise
log-likelihood with b; ; eliminated. Depending on whether the workers generate the same
label or not, the pairwise log-likelihood for the pair of workers (i, j) can be written as

nilj logp L = l,Lj = l/|0~i7j)
Ll'eC

L ~ 1 ~
= Y nylogp(Li =1Ly =110i5)+ > ni;logp(Li = Lj =1|,) .
LU ECHAL leC

The first term considers the case when workers ¢ and j generate different labels [ # 1. Ac-
cording to the colluding assumption, the two workers must be independent when generating
different labels, and thus b; ; is not involved in the first term, i.e.,

p(Li=1,L; =010;;) =p(Li =1,L; =1,Z;; =06, ) .
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For the second term, b; ; is related to probabilities p(L; = Lj = l]éz-,j),l € C, but the overall
probability for the workers to generate the same label p(L; = L;|0;;) = > ;cop(Li = Lj =
16; ;) is independent of b, ;, because

p(Li = Ljl0;5) = 1 —p(L; # Lj|0; j) = p(Li = Lj|Z;; = 0,0; ;)(1 — H; j) + H; 5 .

This motivates us to define the upper bound of the second term using the overall probability
logp(L; = Lj|6;;) according to Jensen’s inequality. Specifically, let e;; = ;¢ nl,l], the
second term can be rewritten as

+ Z n; log nil]

ll
1
> nillogp(Li = Lj = 116;) —ewz & log[ —rp(Li =L =116, )
lec lec i ij

According to Jensen’s inequality, we get

n.. 1
K| Li=1L; =11; <1 (Li=L; =116, )
Ze}, og ”p( | ,])] < og[ > | g] :

bJ e

with equality holds if and only if n%p(Li =L; =1 |é”) is a constant with respect to I.
Therefore, we get "
E00;5) < > mitlogp(Li =1,L; =1, Z; j = 0[6; ;)
LIEC:IA
+e;jlogp(L; = Lj|6;;) + Zn” logn —e;jloge; ;.

By ignoring the constants, we derive the pairwise profile log-likelihood £, (8) with b;
eliminated.

Appendix C. Proof of Theorems 1-4

Denote © as the domain of 8. It i 1s Stralghtforward to see that © is compact with all entries
of @ between 0 and 1, and Zl Mailys <1, ZU 1 my < 1. We derive the asymptotic
properties following the literature (Fan and Li, 2001; Wang and Leng, 2007) with a special
treatment of the case when the true H;, = 0.

C.1 Proof of Theorem 1

Consider the pairwise profile log-likelihood function lz(j’j )(02-,]-) for the pair of workers (i, 7).
Let 67, be the true parameter. Since

LU
b — p(LZ‘ =1, Lj = l/, Zi,j = O’Ojj) s
i j ’
1l
Diec il
S p(Ls = L 675)

ni?j
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as n;; — 00, it is straightforward to see the pointwise convergence

ew(e ) = LY (6; ;) .
g4

LE0;) = > p(Li=1Lj =1 Z;=06;;)logp(Li =1,L; =1, Z; ; = 0/6; ;)
LU eC:l#l
+p(Li = L;|67 ;) log p(L; = L;|6; ;) ,

where
p(Li=1,L; =1,2;;=06;;) =p(Li =1,L; =1'| Z; ; = 0,0; ;)(1 — Hy ;) ,

and

p(Li = L;j|0; ;) = Hij + (1 — H; j)p(Li = Lj|Z; ; = 0,0 ;) .

If we regard the pairwise profile likelihood as an M-estimator, we can verify that E( 7 )(Om-)
is the expectation of the estimation function, i.e.,

L59(8:5) = Bo; [Mij(lis 14:6:7)] -

In fact, it is straightforward to verify that the convergence is uniform.
In addition, according to Jensen’s inequality,

L5D(0;5) — LI (87,) < 0. (10)

Thus 67 ; is a maximizer of Zz(,i’j )(01-7]4). Therefore, based on Theorem 5.7 of van der Vaart
(2000) and extending the result to the overall pairwise profile log-likelihood ¢, (8), we
conclude that & — 6* in probability.

It is worth noting that for a pair of workers (7, j), the implicit constraint on transitive 2} i

does not affect the likelihood function Zg’j ) (6; ;) and EZ(, 9 (6 ;), because the constraint only
applies to three or more workers. As discussed above, BA” converges to OZ ; even without
the constraint. Therefore, the constraint is not needed for parameter estimation.

To show the convergence rate, denote ©; ; as the domain of 6; ;. Under the regularity
condition, the true parameters [a;],; € (0,1), m; € (0,1), and H; € [0,1). If H; > 0,

then 67, is an inner point of @;; and thus B*j is a local maximizer of E( )(GW) with
a Zero gradlent and a negative definite Hessian matrix. If H; = 0, then 67; is on the
boundary of @; ;. In this case, it is straightforward to verify that (10) still holds it H; ; is a

small negative number, and thus ['z(? )(Bw) still has a zero gradient and a negative definite
Hessian matrix at 67 ;. As a result, the root-n convergence rate follows Corollary 5.53 of
van der Vaart (2000).
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C.2 Proof of Theorem 2

The proof generally follows Fan and Li (2001), but has been tailored for our model with the
consideration of the case when H} ; = 0. To prove Theorem 2, we need to show that for an
arbitrarily small € > 0, there exists a sufficiently large constant D such that

p [Slllbpf<9*+\;%) < f(9*)] >1—¢,

where ||u|| = D and 0* + u/v/T € ©. This means that there is a local maximizer 6 in
the space {6* + u/VT € © : ||u| < D} with a probability of at least 1 — ¢, and thus
VT (6 — 6*) = O,(1). We consider

_ u _ _ u _
f (9* + ) — () =1, (0* + ) —0p(0°) = AMVT > wijuiy
VT VT (4,5)€P
where wu; j is the entry of w corresponding to H; ;. For any (i,j) € Po, since Hz*J = 0 and
H + u”/\/T > 0, we must have u; ; > 0, and thus

f(0*+“> —fe") <t <0*+“’> —0p(07) = AVT D wijuiy
\/T p \/T p .52, J 7]

According to Taylor expansion,

* u 0 * 1 L * 1 r *
(04 ) =108+ T G6°) + pul L5 ul1 + 0, (1)
where £/,(6%) is the gradient of £, (@) at 6%, £(6*) is the Hessian matrix of £,(6) at 6",
and L£,(0) = > (ij)eP E_](f’j)(Bi,j). Therefore,

f <e* + %) —f(6) < \}TuTe;,(e*) + %uTEZ(OZj)u{l +op(1)} = AMpVT Z wi i g
(4.9)€P1
From the proof the Theorem 1, we know that no matter whether 8* is an inner point
of 6 or on the boundary with some H;; = 0, E_Z(B;j) is always negative definite and
57;(9*)/\/? = Op(1). Thus, the first term of the right-hand side of the above equation is
dominated by the second term with a sufficiently large ||u||. In addition, the third term
is bounded by |P1|vVTgh|lu|, where |P;| is the number of elements of P;, and thus with
the condition v/T' g% — 0, the third term is also dominated by the second term. Therefore,

f (9* + u/ﬁ) — f(8*) < 0 by selecting a sufficiently large D. This completes the proof.

C.3 Proof of Theorem 3

To show part (a), let 6 be a root-n consistent estimator of % from Theorem 2. For any
(1,7) € Po, our idea is to prove that if H;; > 0, then 0f(0)/0H;; < 0, which contra-
dicts with our assumption that @ is a local maximizer as we can further increase f(6) by
decreasing H; ;. Specifically, we consider
1 0f6) 1 .
OO _ Loy gy
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where o7, (6)
_ 9%
According to mean value theorem,
1 A 1 A 1 N
——7(0) = —=~(0") + (0 — 0T —~ (0" + (1 — )0) ,
() = Z2(07) + (0 - 0T/ (00" + (1-0)0)

where 0 < o < 1. The first term of the right-hand side of the equation is Op(1). Since
VT (6 — 6*) = O,(1), and
10%, (6°)
T 06007
the second term is also O,(1). Therefore, v(8)/v/T is O,(1). With the condition that

ﬁg% — oo, for any (i,7) € Py, \/TATwM > \/Tg?p — 00, and thus ﬁ%(fj < 0. This

= L,(6") +0p(1)

completes the proof for part (a).
For part (b), consider any (i,5) € Py, we know

1 9f6) 1 .
Z7.]
Since VT Arw; ; < V/Tgh — 0, following similar argument with part (a), we get
7] T
1

- 1 A 1 -«
—=(0) = —=7(0*) + (0 —6")T —=+ (a0* + (1 —)8) = 0 .
J(0) = =67+ (0 - 69—/ (6" + (1 - )9)
According to part (a), with probability tending to 1, 6y =0 = 0;, and thus 60— 6% =
(0,0, — 6%). Then, we get

L (0%) + (0. — 67)7 ” (ae* - a)é)

Nl ©T T 90
Following the same procedure for each entry of 8. and combining the result into a matrix
form, we get

— 0.

%1, (a@* F(1- a)é)

1 0ty (6%) ) A
VT o6, 00 Lm0 e o
Since
1 9¢,(6%)
— N(0, %
\/T 800 — (07 C) i
1 020, (ae* + (11— a)é) 5
T 90,007 e
where 52, (0)
Y= =
06.6T

we can easily get vVT(0, — %) — N(0,3,).
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C.4 Proof of Theorem 4

We consider the underfitted case and overfitted case separately.
Case 1: If X € RY, the corresponding model is underfitted. We consider

%(Blcé() BICy, ) {E[ )(Ar )]—?p[é(k)}}ﬂLlogT (‘7’1 ‘_

(r)]) .

where ’751()\)‘ =Y Gpepl (ﬁ”()\) > 0) is the number of colluding worker pairs indicated
by O(\). Obviously, the second term IOEC’ZT (’751()\)‘ — 751(5\T)‘> — 0, and thus we focus

on the first term. Given a set of independent worker pairs Py, we can obtain é(Po) as the
maximizer of £, () with constraints H; ; = 0 for any (i,j) € Po. Thus 6 (750()\)) is the

estimation based on the model indicated by 8()). We know

LI < 7, [é (750()\)” .

In addition, within all underfitted models with Py ¢ Pg, we can find the one with the
maximum £,[0(P)], denoted as £,[0(PF*)]. We get

A [é (730()\)” < 0,[0(Pmex)] .

Therefore

%{Ep[é(AT)] ~Bl00]} > S AGI00)] - BO(PF™)]}

Since O(A7) is consistent, from the proof of Theorem 1, we know

We have shown that * is the maximizer of £ (0)
fore, with probability tending to 1, we get {E @ (
BICé(A) > BICé(;\T). Consequently,

(6*) > L,[6(Pr>)]. There-
pO(Py*)]} > 0, which means

>4?“

(Aler%zfu BICy o) ~ IC@(M)) —1.
Case 2: If X € R, the corresponding model is overfitted. We consider
D (S\T)D :

Since Ap satisfies the conditions of Theorem 2 and Theorem 3, with probability tending to
1, the corresponding model is correct, i.e., P1(Ar) = P;. Since P;(A) corresponds to an

overfitted model, we get ’751()\)’ — |Pf| > 1, thus

BIC,

60 — BICq

r) = 26 [0C)] — 26,00 +los T ([P ()| -

logT (‘751()\)‘ - ‘751(5@)‘) >logT .
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In addition, following similar argument with Case 1, we get

LIOOT)] ~ HION] = HI00)] ~ 5, [0 (PoV))| = L1601, [6(P5)]

where P§** is the model within a}lpverﬁtted models Py C Py, Po # Pgy that has the
maximum £,[0(Pp)]. Since both O(Ar) and O(PF**) are root-n consistent, £,[0(\r)] —

[ (Pma")} is Op(1), and thus BIC, ) — BIC 3, is dominated by log T'. Therefore,

By combining the two cases, we finish the proof of Theorem 4.

Appendix D. Proof of Theorem 5

Consider

G(6]6%) = 4, (0) — Q(6]6%)

== [ S a0l (wl0,1,1,6% ) log QL ;(]0,1,1',6; ;)

(i.j)eP LLreci-r yec
+ (Z né:é») D D 9.z 605)10g O (v, 2, 116:) | -
leC y,leC ze{0,1}
According to Jensen’s inequality, it is straightforward to show that G (0%16%) < G(6|6").
Therefore, if Q(0]6%) > Q(6%|6%), then ¢, (8) > £, (6%).
Appendix E. Derivation of the Updating Equations of Section 5.1
We know

logp(Li =1, L; =1I'Y =y, Z; j = 0|6 ;) = log(1 — H; ;) + logmy + loga],; + logla], 1 ,

logp(Li =L; =1,Y =y, Zi; = 1/6; ;)
=log H; j +logmy, +logp(Li = L; =Y =y,Z; ; =1,0; ) .
To maximize Q(6]6%) under the constraints > yec™y = land > claily; = 1, we consider

Lagrangian multipliers and maximize Q(8|6%) — )‘m(ZyeC my — 1) — )\Z(Zlec [aily; —1).
For m,, by taking the first derivative, we obtain

P Z [ Z nl:‘lylgg,](y’ovl?llvaf])

My i pyer Lrecizr

+(Zn§;§.) (ZQ (.0.106F;) + > Q2 (y,1,116F, >]—)\m:0.

leC leC leC
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Since p(Y = y|L; = Lj, 7JJ) Y e ”(y,() l]O i)+ ee Q?’j(y,l,l\ei‘fj), we obtain the
updating equation for m,,. Similarly, for [a;],,, the first derivative is

n,Qz ( ‘OJal/a % n Qz 2%0”9 ) _)‘21:0'
,1 59 ) 2 ’

a
[@ily. jeWsj#i |recil Al rec

Then we obtain the updating equation for [a;], ;. At last, the first derivative for H; ; is

i Y Y euirel)

b el yeC
1l
-%ZWJ—» S no05)+ - D08 1lely)| =0,
ZEC 7

leading to the updating equation for H; ;.
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