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Abstract

This paper establishes Hoeffding’s lemma and inequality for bounded functions of general-state-
space and not necessarily reversible Markov chains. The sharpness of these results is characterized
by the optimality of the ratio between variance proxies in the Markov-dependent and independent
settings. The boundedness of functions is shown necessary for such results to hold in general. To
showcase the usefulness of the new results, we apply them for non-asymptotic analyses of MCMC
estimation, respondent-driven sampling and high-dimensional covariance matrix estimation on time
series data with a Markovian nature. In addition to statistical problems, we also apply them to
study the time-discounted rewards in econometric models and the multi-armed bandit problem
with Markovian rewards arising from the field of machine learning.

Keywords: Hoeffding’s inequality, Markov chain, general state space, Markov chain Monte Carlo.

1. Introduction

Concentration inequalities bound the deviation of the sum of independent random variables from its
expectation. They have found numerous applications in statistics, econometrics, machine learning
and many other fields. One of the important and fundamental concentration inequalities was dis-
covered by Hoeffding (1963). Hoeffding’s lemma asserts that a bounded random variable Z ∈ [a, b]

is sub-Gaussian1 with variance proxy (b−a)2

4 . It follows that the sum of n independent, bounded

random variables Zi ∈ [ai, bi], i = 1, . . . , n is sub-Gaussian with variance proxy
∑n

i=1
(bi−ai)2

4 .

1. A random variable Z is sub-Gaussian with variance proxy σ2 if Z has a finite mean EZ and E[et(Z−EZ)] ≤
exp (σ

2t2

2
) for any t ∈ R.
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Specifically, for any t ∈ R,

E
[
et

∑n
i=1(Zi−EZi)

]
≤ exp

(
n∑
i=1

(bi − ai)2

4
· t

2

2

)
. (1)

From (1), the Cramér-Chernoff method (Boucheron et al., 2013) derives Hoeffding’s inequality as
follows. For any ε > 0,

P

(
n∑
i=1

Zi −
n∑
i=1

EZi > ε

)
≤ exp

(
− ε2

2
∑n

i=1(bi − ai)2/4

)
. (2)

Similar bounds apply to the lower deviation
∑n

i=1 Zi −
∑n

i=1 EZi < −ε as well as the two-sided
deviation |

∑n
i=1 Zi −

∑n
i=1 EZi| > ε, with an additional factor of two in the latter case.

However, the independence assumption on random variables limits the applicability of Hoeffd-
ing’s inequality and other concentration inequalities in many statistical, econometric and machine
learning problems involving Markovian dependence. These problems include Markov chain Monte
Carlo (MCMC), time series analyses, economic decision making and reinforcement learning. In
this paper, we generalize the classical Hoeffding’s lemma and inequality at their full strength for
functions of general (general-state-space and not necessarily reversible) Markov chains. For a sta-
tionary Markov chain {Xi}i≥1 and bounded functions fi : x 7→ [ai, bi], we establish analogues of
(1) and (2) for Markov-dependent random variables Zi = fi(Xi). Our main result, formally stated
as Theorem 1, asserts that

∑n
i=1 fi(Xi) is sub-Gaussian with variance proxy

1 + λ

1− λ
·
n∑
i=1

(bi − ai)2

4
,

where λ ∈ [0, 1] is the norm of the Markov operator acting on the Hilbert space consisting of all
squared-integrable and mean-zero functions with respect to the invariant distribution of the Markov
chain. The quantity λmeasures the temporal dependence of the Markov chain, as 1−λmeasures the
speed of the Markov chain converging from non-stationarity towards stationarity (Rudolf, 2012).

This theorem simplifies to the classical results (1) and (2) in the independent setting, because
independent variables can be viewed as functions of i.i.d. uniformly distributed variables on [0, 1],
which form a Markov chain with λ = 0. The corresponding Hoeffding-type inequality generalizes
that in Miasojedow (2014) from the time-independent function case, in which f1 = f2f = · · · =
fn = f are identical, to the time-dependent function case, in which fi’s can be different.

Interestingly, for the time-independent function case in which fi = f , ai = a and bi = b, we
find that the ratio 1+λ

1−λ between variance proxies in the Markov-dependent and independent settings
can be sharpened by replacing λ with a smaller quantity max{λr, 0}, where λr ∈ [−λ,+λ] is the
maximum spectrum value of the additive reversiblization of the Markov operator (Fill, 1991).

This result, formally stated as Theorem 3, generalizes the Hoeffding-type inequality established
by León and Perron (2004) for simple (finite-state-space and reversible) Markov chains to that for
general Markov chains. For simple Markov chains considered by León and Perron (2004), λr is
merely the second largest eigenvalue of the transition probability matrix. This sharper variance
proxy ratio 1+max{λr,0}

1−max{λr,0} is then shown to be optimal by appealing to the Central Limit Theorem of
Markov chains (Geyer, 1992; Roberts and Rosenthal, 1997; Rosenthal, 2003).
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It is also worth noting that the our theorems discover the counterpart of the classical Hoeffding’s
lemma for Markov chains, which has been missing in the previous literature. This counterpart
immediately derives another interesting result that [f(X1), . . . , f(Xn)]T is a sub-Gaussian random
vector2 with variance proxy 1+λ

1−λ ·
(b−a)2

4 .
The general and sharp inequalities presented by Theorems 1-3 enable non-asymptotic analyses

of a few statistical, econometric and machine learning problems involving Markovian dependence.
We showcase their utilities in five such problems, namely, MCMC estimation, respondent-driven
sampling, high-dimensional covariance matrix estimation using Markov-dependent observations,
time-discounted reward in econometric models, and the multi-armed bandit problem with Marko-
vian rewards.

First, we derive a non-asymptotic error bound for MCMC estimation. MCMC estimates a com-
plicated integral by averaging Markov chain samples after a burn-in period. This is arguably one
of the central techniques of the Bayesian computational methods (Geyer, 1992; Gilks, 2005; Liu,
2008). A sharp concentration inequality is crucial to understand how long the Markov chain should
run in order to control the estimation error, and how to allocate computational resources on the burn-
in period and the sampling period. Our non-asymptotic analysis suggests that, roughly speaking,
1+max{λr,0}
1−max{λr,0} ·n Markov chain samples are needed to achieve the same accuracy with n independent
samples in the naive Monte Carlo method. We also find that a burn-in period of length n0 & log n
suffices to get a tight concentration of MCMC estimate around the target integral, and thereafter
justify the ad-hoc choice of n0 = 0.05n or n0 = 0.1n in practice. This insight is obtainable by
neither the asymptotic theories of Markov chains nor non-asymptotic bounds on the mean squared
error of MCMC (Rudolf, 2012; Łatuszyński et al., 2013).

Next, we conduct a non-asymptotic analysis for respondent-driven sampling (RDS) estimates
(Goel and Salganik, 2009, 2010). RDS is a popular method to collect data from a hidden population
in disease (e.g., HIV) infection studies (Heckathorn, 1997, 2002). RDS estimate is shown consistent
for disease prevalence by the asymptotic theory (Law of Large Number) of Markov chains. Our non-
asymptotic analysis reveals that a finite sample size of the logarithmic order of the total population
suffices for the success of RDS. To the best of our knowledge, this insight has not been provided by
the literature in RDS before.

Third, we consider the high-dimensional covariance matrix estimation problem (Fan et al., 2008;
Bickel and Levina, 2008; Rothman et al., 2009; Lam and Fan, 2009; Cai et al., 2010; Cai and Liu,
2011; Fan et al., 2011, 2013) on time series data with a Markovian nature. High-dimensional covari-
ance matrix estimation has found applications in economics, finance, biology, social networks, and
health sciences (Fan et al., 2014, 2016). Although many real high-dimensional data, especially time
series data like functional magnetic resonance imaging (fMRI) data and asset return data, consist
of temporally dependent samples, high-dimensional covariance matrix estimation methods usually
assume the sample independence for convenience of theoretical analyses. To fill in this gap, we sug-
gest a Markov chain model for such temporally dependent data and provide a non-asymptotic anal-
ysis for the thresholding high-dimensional covariance matrix estimator in the Markov-dependent
setting.

Fourth, we construct a tight non-asymptotic confidence interval for the time-discounted reward,
which is commonly-seen in econometric models. In these models, a discount function describes

2. An n-dimensional random vector Z is sub-Gaussian with variance proxy σ2 if Z has a finite mean EZ and
E[et

′(Z−EZ)] ≤ exp (σ2‖t‖22/2) for any t ∈ Rn.
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the weights placed on rewards received at different time points and reflects the tendency of people
to favor rewards received now over those received in future (Frederick et al., 2002). We consider
two commonly-used discount functions, i.e., exponential and hyperbolic discount functions, in the
vineyard model of Paulin (2015, Example 3.17). Note that the exponential discount function has
also been widely used in reinforcement learning (Sutton and Barto, 2018).

Our last example is the multi-armed bandit problem with Markovian rewards. Researchers have
recognized three fundamental forms of multi-armed bandit problems depending on the nature of
the reward process: independently and identically distributed (i.i.d.), adversarial, and Markovian
(Bubeck and Cesa-Bianchi, 2012). The Markovian form is much less studied than the other two
(Tekin and Liu, 2010), primarily because bandit algorithms rely on the concentration of reward
draws to identify the optimal arm, but unfortunately powerful concentration inequalities for Markov
chains were in lack.

The rest of this paper proceeds as follows. We discuss related literature in the remaining of this
section. Section 2 presents our main results in Theorem 1, for time-dependent functions, and Theo-
rem 3, for a time-independent function. Section 3 discusses extensions to unbounded functions and
inhomogeneous Markov chains. An impossibility result is given for unbounded functions. Section
4 outlines the proofs of Theorems 1-3. Section 5 applies our theorems to five problems in statis-
tics, econometrics and machine learning. Section 6 concludes with a brief discussion. All technical
proofs are collected in the appendix.

Related Literature

Several Hoeffding-type inequalities for Markov chains have been produced by spectral methods,
e.g., Gillman (1993); Dinwoodie (1995); León and Perron (2004); Chung et al. (2012); Miasojedow
(2014), to name a few. Most of these results except for Miasojedow (2014) hold for finite-state-
space Markov chains only. This limitation hinders their applicabilities to many important problems,
such as MCMC estimation (Geyer, 1992; Gilks, 2005; Liu, 2008) in which the state space is usually
a multi-dimensional real space. In addition, all the aforementioned inequalities do not allow the
function to vary in time. However, decision problems in economics and reinforcement learning
usually involve temporal discounting and thus need to deal with various functions (Frederick et al.,
2002; Sutton and Barto, 2018).

Spectral methods have also been used to derive Bernstein-type inequalities for Markov chains
(Lezaud, 1998; Paulin, 2015). Their inequalities mainly work for finite-state-space Markov chains3.
It is also worth noting that Hoeffding-type and Bernstein-type inequalities are different. The former
requires the endpoints of value ranges of random variables only and obtains a subgaussian tail,
in contrast the latter takes variances of random variables into account and obtains a mixture of
subgaussian and subexponential tails.

Other exponential concentration inequalities exploit the minorization and drift conditions; see
e.g. Glynn and Ormoneit (2002); Douc et al. (2011); Adamczak and Bednorz (2015). Other included
Kontoyiannis et al. (2005, 2006). These inequalities do not assume non-zero spectral gaps, unlike
those by spectral methods, but have less explicit constants or more complicated expressions.

3. Lezaud (1998) proved a Chernoff-type inequality for finite-state-space Markov chain. Paulin (2015) used Lezaud’s
method to derive Bernstein-type inequalities. But his original proof for general state spaces in the published version
were incomplete. Inspired by an earlier version of our manuscript, Dr. Paulin corrected his proof and updated his
paper on arXiv.
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HOEFFDING’S INEQUALITY FOR GENERAL MARKOV CHAINS

There is another and less related research line for a function of n variables under Markov or other
dependent structures. Marton (1996, 1998) pioneered the concentration of measure phenomenon for
contracting Markov chains. Further progresses are made by Samson (2000); Chazottes et al. (2007);
Redig and Chazottes (2009); Kontorovich and Ramanan (2008), among others.

2. Main Results

As a preparation for presenting theorems, we introduce notation as follows. Let X and π denote
the state space and the invariant measure of a Markov chain {Xi}i≥1. For function h : X → R,
write π(h) :=

∫
h(x)π(dx). Let L2(π) = {h : π(h2) < ∞} be the Hilbert space consisting of

π-square-integrable functions, and L0
2(π) = {h ∈ L2(π) : π(h) = 0} be its subspace of π-mean-

zero functions. The transition probability kernel of the Markov chain, denoted by P , is viewed as
an operator acting on L2(π). Let λ ∈ [0, 1] be the operator norm of P acting on L0

2(π). We refer to
1 − λ as the absolute spectral gap of the Markov chain. Let P ∗ be the adjoint operator of P . We
follow Fill (1991) and call R = (P + P ∗)/2 the additive reversiblization4 of P . It is known that
the spectrum of R acting on L0

2(π) is contained in the interval [−λ,+λ] on the real line (Rudolf,
2012). Let λr ∈ [−λ,+λ] denote the rightmost value of this spectrum. We refer to 1 − λr as the
right spectral gap of the Markov chain.

In Theorems 1-3, we put the subscripts π in the probability and expectation notation Pπ(·)
and Eπ[·] to emphasize that the Markov chain starts from stationarity. We will show later in the
applications to MCMC and RDS how to extend results to non-stationary Markov chains.

Theorem 1 Let {Xi}i≥1 be a Markov chain with invariant measure π and absolute spectral gap
1− λ > 0. For any t ∈ R, uniformly for all bounded functions fi : X → [ai, bi],

Eπ
[
et(

∑n
i=1 fi(Xi)−

∑n
i=1 π(fi))

]
≤ exp

(
1 + λ

1− λ
·
n∑
i=1

(bi − ai)2

4
· t

2

2

)
. (3)

It follows that for any ε > 0

Pπ

(
n∑
i=1

fi(Xi)−
n∑
i=1

π(fi) > ε

)
≤ exp

(
−1− λ

1 + λ
· ε2

2
∑n

i=1(bi − ai)2/4

)
. (4)

The absolute spectral gap 1−λ quantifies the converging speed of the Markov chain towards its
invariant distribution π (Rudolf, 2012). A smaller λ indicates less temporal dependence and a faster
convergence speed. The ratio of the variance proxy of (3)-(4) compared to that of (1)-(2) is 1+λ

1−λ ,
strictly increasing with λ. This is consistent with the intuition that a faster Markov chain {Xi}i≥1

with less temporal dependence results in a smaller variance proxy and a tighter concentration of∑n
i=1 fi(Xi).
Inequalities (3)-(4) given by Theorem 1 reduce to the classical Hoeffding’s lemma (1) and in-

equality (2) in the independent setting. Indeed, independent random variables Zi ∈ [ai, bi] can be
seen as transformations of i.i.d. random variablesUi ∼ Uniform[0, 1] via the inverse cumulative dis-
tribution functions F−1

Zi
: [0, 1] → [ai, bi], i.e., Zi = F−1

Zi
(Ui). The i.i.d. sequence {Ui}i≥1 forms

a stationary Markov chain on the state space [0, 1] with invariant measure π(dy) = dy, transition
kernel P (x, dy) = dy and λ = 0.

4. It is called real part of P in the general operator theory (Conway, 2013).
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Inequality (4) generalizes that by Miasojedow (2014) from the time-independent function case,
in which f1 = f2 = · · · = fn = f are identical, to the time-dependent function case, in which
fi’s may be different. For the time-independent function case, we find that it is possible to sharpen
the variance proxy ratio in Theorem 1 by substituting λ with a smaller quantity max{λr, 0} (see
Theorem 3).

We point out the relation of the absolute spectral gap of a Markov chain to the mixing time.
The mixing time, denoted by tmix(ε), is defined as the first occurrence time when the total variation
distance between the distribution of the Markov chain and the stationary distribution π falls below
a small threshold ε (Levin et al., 2009, Sections 3.5-3.6).

Definition 2 (Mixing Time) Let {Xi}i≥1 be a Markov chain on the state space X and with the
invariant measure π, and the transition kernel P . Let P t(x, ·) be the t-step transition kernel, and
let ‖ν1 − ν2‖tv be the total variation distance between two probability measures ν1, ν2 on X . Then
the mixing time for some small ε > 0 is defined as

tmix(ε) := min{t ≥ 0 : sup
x∈X
‖P t(x, ·)− π‖tv ≤ ε}.

A Markov chain is uniformly ergodic if and only if tmix(ε) is finite for some ε < 1/2 (Roberts and
Rosenthal, 2004, Proposition 7). If this Markov chain is also reversible, then it admits a positive
absolute spectral gap (Rudolf, 2012, Figure 2), which has been made precise by Paulin (2015,
Equations 1.3 and 3.5) as follows.

1− λ ≥ 1

1 + tmix(ε)/ log(1/2ε)
, ∀ ε ∈ [0, 1/2).

On the other hand, for an ergodic and reversible Markov chain on a finite state space, Paulin (2015,
Equation 3.7) showed

1− λ ≤ 2 log(1/2ε) + log(1/πmin)

2tmix(ε)
, ∀ ε ∈ [0, 1/2),

where πmin := minx∈X π(x). To our best knowledge, there are few results on upper bound of
similar form for reversible Markov chains on general state spaces.

Theorem 3 Let {Xi}i≥1 be a Markov chain with invariant measure π and right spectral gap 1 −
λr > 0. For any t ∈ R, uniformly for all bounded functions f : X → [a, b],

Eπ
[
et(

∑n
i=1 f(Xi)−nπ(f))

]
≤ exp

(
1 + max{λr, 0}
1−max{λr, 0}

· n(b− a)2

4
· t

2

2

)
. (5)

It follows that for any ε > 0,

Pπ

(
n∑
i=1

f(Xi)− nπ(f) > ε

)
≤ exp

(
−1−max{λr, 0}

1 + max{λr, 0}
· ε2

2n(b− a)2/4

)
. (6)

Inequality (6) extends the result of León and Perron (2004) from finite-state-space and reversible
Markov chains to general-state-space and not necessarily reversible Markov chains. Note that, for
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finite-state-space and reversible Markov chains, λr is merely the second largest eigenvalue of the
transition probability matrix.

We show the sharpness of the variance proxy ratio in the regime of λr ≥ 0 (which is the case
for most Markov chains arising from applications), by resorting to the Central Limit Theorem for
Markov chains. Consider a function f : X → {+1,−1} such that π({x : f(x) = +1}) = π({x :
f(x) = −1}) = 1/2 and a transition probability kernel P (x,B) = λrI(x ∈ B)+(1−λr)π(B) for
any state x ∈ X and any subset of the state space B ⊆ X , where I(·) is the indicator function. This
transition probability kernel admits right spectral gap 1− λr. Suppose for the sake of contradiction
that (5) holds with some strictly smaller ratio constant C < 1+λr

1−λr . Then nC ≥ Var [
∑n

i=1 f(Xi)]
for any n ≥ 1, because the variance proxy of a sub-Gaussian random variable upper bounds its
variance. However, Geyer (1992, Theorem 2.1), Roberts and Rosenthal (1997, Corollary 2.1) and
Rosenthal (2003, Lemma 1) derive that

lim
n→∞

1

n
Var

(
n∑
i=1

f(Xi)

)
=

1 + λr
1− λr

,

implying that C ≥ 1+λr
1−λr . This contradicts to the initial assumption on constant C.

A simulation experiment is conducted to study the extent to which the replacement of λ with
max{λr, 0} sharpens the variance proxy ratio. Of 1, 000, 000 transition probability matrices of size
3×3, whose rows are independently drawn from the Dirichlet distribution with the shape parameters
(1/3, 1/3, 1/3)T, the quantity 1+λ

1−λ
/1+max{λr,0}

1−max{λr,0} is 7.99 on average.

3. Extensions to Unbounded Functions and Inhomogenous Markov Chains

It is known that the classical Hoeffding’s inequality can be extended to some unbounded (sub-
Gaussian) independent random variables. A natural question arises

Is it possible to relax the boundedness assumption on functions in Theorems 1-3?

Surprisingly, the answer is no. We provide such a counter-example as follows. Consider the case
of a Markov chain {Xi}i≥1 on the state space X = R and the function f : x 7→ x, in which
f(Xi) = Xi individually follows the standard Gaussian distribution, but no finite variance proxy
exists for (3)-(6) to hold.

Theorem 4 Consider a stationary Markov chain {Xi}i≥0 on the state space X = R with invariant
distribution π being standard Gaussian and transition kernel

P (x,B) = λrI(x ∈ B) + (1− λr)π(B), ∀x ∈ X , ∀ measurable B ⊆ X ,

for some 0 < λr < 1. There exists no finite constant C such that

Eπ
[
et

∑n
i=1Xi

]
≤ enCt2/2

hold for any t ∈ R and any n ≥ 1.

Theorem 1 implicitly assumes that the Markov chain is homogeneous, i.e., its transition proba-
bility kernel does not vary in time. The following result provides similar inequalities to (3)-(4) for
inhomogenous Markov chains. Its proof is omitted as it is similar to that of Theorem 1.
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Theorem 5 Consider an time-inhomogeneous, π-stationary Markov chain {Xi}i≥1. If its transition
probability kernel Pi admits absolute spectral gap 1 − λi for each i ≥ 1, then, for any bounded
functions fi : X 7→ [ai, bi], the sum

∑n
i=1 fi(Xi) is sub-Gaussian with variance proxy

(b1 − a1)2

8
+

n−1∑
i=1

1 + λi
1− λi

· (bi − ai)2 + (bi+1 − ai+1)2

8
+

(bn − an)2

8

≤ 1 + maxni=1 λi
1−maxni=1 λi

·
n∑
i=1

(bi − ai)2

4
.

4. Proofs of Theorems 1-2

Theorems 1-3 are proven in the framework of operator theory in the Hilbert spacesL2(π) andL0
2(π).

This section will outline their proofs first and highlight the technical novelty of our technique later.
Let us first define notation used in the proofs. Denote by Ef the multiplication operator of

function ef : x 7→ ef(x), i.e., Ef : h ∈ L2(π) 7→= efh, and Π the projection operator of π, i.e.,
Π : h ∈ L2(π) 7→ π(h). Let

P̂γ = γI + (1− γ)Π

be the convex combination of the identity operator I and the projection operator Π with a coefficient
γ ∈ [0, 1). Let |||T |||π be the norm of operator T acting on L2(π).

The proof of Theorem 1 consists of four major steps, which are presented as Lemmas 6-10,
respectively. Lemma 6 upper bounds the moment generating function of

∑n
i=1 fi(Xi) by the prod-

uct of |||Etfi/2P̂λEtfi/2|||π. Then the task reduces to bound the norm of operators of the form
Etf/2P̂γE

tf/2. Lemma 7 characterizes this operator norm as the limit of the (1/n)-scaled cumu-
lant generating function (CGF) of

∑n
i=1 f(Xi) for a Markov chain {X̂i}ni=1 driven by P̂γ . Lemma 9

constructs a two-state Markov chain {Ŷi}ni=1, whose sum’s CGF upper bounds that of {f(X̂i)}ni=1.
Lemma 10 investigates into the two-state chain system and directly compute the norm of the ana-
logue of Etf/2P̂γEtf/2 in the two-state chain system.

Next, we refine Lemma 6 as Lemma 11 for the time-independent function case of f1 = · · · =
fn = f . Substituting Lemma 6 in the proof of Theorem 1 with its refinement Lemma 11 proves
Theorem 3.

Lemma 6 Let {Xi}i≥1 be a Markov chain with invariant measure π and absolute spectral gap
1− λ > 0. Then for any bounded functions fi : X → [ai, bi] and any t ∈ R,

Eπ
[
et

∑n
i=1 fi(Xi)

]
≤

n∏
i=1

|||Etfi/2P̂λEtfi/2|||π.

Lemma 7 Let {X̂i}i≥1 be a Markov chain driven by Markov operator P̂γ with some γ ∈ [0, 1).
Then for any bounded function f : X → [a, b] and any t ∈ R,

log |||Etf/2P̂γEtf/2|||π = lim
n→∞

1

n
logEπ

[
et

∑n
i=1 f(X̂i)

]
.

8
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Definition 8 (Two-State Markov Chain) Let {Ŷi}i≥1 be a stationary Markov chain on the state
space Y = {a, b} with a transition probability matrix Q̂γ determined by two parameters γ ∈ [0, 1)
and µ ∈ (0, 1) in the way

Q̂γ = γI + (1− γ)

[
µT

µT

]
,

where µ = (1− µ, µ)T is the invariant distribution of the Markov chain.

Lemma 9 (León and Perron (2004),Theorem 2) Let {X̂i}i≥1 be a Markov chain driven by the
León-Perron operator P̂γ = γI + (1− γ)Π with some γ ∈ [0, 1). For a bounded function f : X →
[a, b], let {Ŷi}i≥1 be the two-state Markov chain in Definition 8 with µ = π(f)−a

b−a . Then for any
convex function Ψ : R→ R,

Eπ

[
Ψ

(
n∑
i=1

f(X̂i)

)]
≤ Eµ

[
Ψ

(
n∑
i=1

Ŷi

)]
.

In particular, for Ψ : z 7→ exp (tz),

Eπ
[
et

∑n
i=1 f(X̂i)

]
≤ Eµ

[
et

∑n
i=1 Ŷi

]
.

Lemma 10 Let Ety/2 denote the diagonal matrix with elements eta/2, etb/2. Let |||T |||µ denote the
operator norm induced by the µ-weighted vector norm5 for a 2 × 2 matrix T . Recall notations
Q̂γ , µ,µ from Definition 8. Write µ(y) = (1− µ)a+ µb. Then

|||Ety/2Q̂γE
ty/2|||µ ≤ exp

(
µ(y)t+

1 + γ

1− γ
· (b− a)2

4
· t

2

2

)
Combing these four lemmas completes the proof of Theorem 1.

Proof [Proof of Theorem 1] With Lemma 6 in place, it suffices to show

‖Etf/2P̂γEtf/2‖π ≤ exp

(
π(f) · t+

1 + γ

1− γ
· (b− a)2

4
· t

2

2

)
.

Then taking γ = λ and f = fi in the above display for i = 1, . . . , n and plugging them into Lemma
6 completes the proof of Theorem 1. To show the above display, we recall all notations in Lemmas
7-10 and write

log |||Etf/2P̂γEtf/2|||π = lim
n→∞

1

n
logEπ

[
et

∑n
i=1 f(X̂i)

]
[Lemma 7]

≤ lim
n→∞

1

n
logEµ

[
et

∑n
i=1 Ŷi

]
[Lemma 9]

= log |||Ety/2Q̂γE
ty/2|||µ [to be explained later]

≤ µ(y) · t+
1 + γ

1− γ
· (b− a)2

4
· t

2

2
[Lemma 10]

= π(f) · t+
1 + γ

1− γ
· (b− a)2

4
· t

2

2
[to be explained later]

5. For a bivariate vector y = (y1, y2), its µ-weighted vector norm is defined as ‖y‖µ =
√
µ1y21 + µ2y22 .

9
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In the third line, we apply Lemma 7 to the two-state Markov chain {Ŷi}i≥1 and function f : y 7→ y.
In the fifth line, we use the fact that µ(y) = (1− µ)a+ µb = π(f).

Lemma 11 Let {Xi}i≥1 be a Markov chain with invariant measure π and right spectral gap 1 −
λr > 0. Then for any bounded function f : X → [a, b] and any t ∈ R,

Eπ
[
et

∑n
i=1 f(Xi)

]
≤ |||Etf/2P̂max{λr,0}E

tf/2|||
n

π
.

Proof [Proof of Theorem 2] Just substitute λ with max{λr, 0} and Lemma 6 with Lemma 11 in the
proof of Theorem 1.

Technical Novelty

In addition to several elements borrowed from León and Perron (2004); Miasojedow (2014), we
exploit three techniques to improve upon their results.

Lemma 10 carries out a direct computation of the operator norm in the two-state chain system by
a convex analysis argument. This is the key to establish the counterpart of the classical Hoeffding’s
lemma in the Markov-dependent setting:

‖Etf/2P̂γEtf/2‖π ≤ exp

(
π(f) · t+

1 + γ

1− γ
· (b− a)2

4
· t

2

2

)
.

Letting γ = 0 recovers Hoeffding’s lemma for a single random variable. To the best of our knowl-
edge, this extension of Hoeffding’s lemma has never been discovered before.

Lemma 11 obtains a sharper bound in the time-independent case with constant max{λr, 0} in
place of λ. This finally leads to the sharper Hoeffing-type inequality in Theorem 2. In the heart of
this lemma lies the power inequality on numerical range of operators (Berger, 1965; Pearcy, 1966),
which has never been used in the literature on Hoeffding-type and Bernstein-type inequalities for
Markov chains.

Lemma 7 wraps up (Miasojedow, 2014, Lemma 3.9): the former considers a general bounded
function and the latter considers a function taking finitely many values. For a function taking finitely
many values, we get the same result with (Miasojedow, 2014, Lemma 3.9), but in a simpler way
using Weyl’s theorem on the essential spectrum of self-adjust operators (Weyl, 1909).

Lemma 6 refines (Miasojedow, 2014, Lemma 3.5) in order to cover the time-dependent function
case. Lemma 9 is a restatement of León and Perron (2004, Theorem 2).

5. Applications

We showcase the utilities of our results by applying them to five problems in statistics, econo-
metrics and machine learning. These applications are the Markov chain Monte Carlo estima-
tion, Respondent-driven Sampling, high-dimensional covariance matrix estimation for Markov-
dependent samples, time-discounted reward, and multi-arm bandit problems.

10
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5.1 Markov Chain Monte Carlo

Suppose the task is to compute the integral π(f) =
∫
f(x)π(x)dx of function f with respect to

probability density function π, but π cannot be directly sampled. An MCMC algorithm generates
a Markov chain {Xi}i≥1, which converges to the invariant distribution π, and estimates π(f) by
averaging the realized values of function f on n Markov chain samples {Xi}n0+n

i=n0+1 after a burn-in
period of length n0.

There are mainly two factors influencing the estimation error of MCMC methods. The first is
how fast the Markov chain converges from the initial measure ν to the invariant measure π, which
directly determines the length n0 of the burn-in period. The second one is how the average of f(Xi)
fluctuates after the Markov chain reaches the stationarity. This has been investigated by Theorems 1
and 3.

For the first factor, we adopt the notation and the analysis of Rudolf (2012). Suppose the initial
measure ν is absolutely continuous with respect to the invariant measure π. Denote by dν

dπ the
Radon-Nikodym derivative of ν with respect to π. Let Lp(π) consist of all functions h such that
π(hp) <∞. For any function h ∈ Lp(π), define

‖h‖π,p := (π(hp))1/p =

(∫
hp(x)π(x)dx

)1/p

.

We have the following error bound for MCMC estimation.

Theorem 12 Let {Xi}i≥1 be a Markov chain with invariant measure π, absolute spectral gap 1−λ
and right spectral gap 1 − λr. Suppose the initial measure ν is absolutely continuous with respect
to the invariant measure π and its derivative dν

dπ has a finite p-moment for some p ∈ (1,∞]. Let
q = p/(p− 1) ∈ [1,∞) and

C = C(ν, n0, p) :=


1 + 22/pλ2n0/q

∥∥ dν
dπ − 1

∥∥
π,p

if p ∈ (1, 2),

1 + λn0
∥∥ dν
dπ − 1

∥∥
π,2

if p = 2,

1 + 22/qλ2n0/p
∥∥ dν
dπ − 1

∥∥
π,p

if p ∈ (2,∞),

‖ dνdπ‖π,∞ = ess sup
∣∣ dν
dπ

∣∣ if p =∞.

Then, for any t ∈ R, uniformly for all bounded function f : X → [a, b],

Eν
[
e
t
∑n0+n
i=n0+1 f(Xi)−nπ(f)

]
≤ C exp

(
q · 1 + max{λr, 0}

1−max{λr, 0}
· n(b− a)2

4
· t

2

2

)
.

It follows that for any ε > 0

Pν

(
1

n

n0+n∑
i=n0+1

f(Xi)− π(f) > ε

)
≤ C exp

(
−1

q
· 1−max{λr, 0}

1 + max{λr, 0}
· nε2

2(b− a)2/4

)
.

Note that the constant C = C(ν, n0, p) depends on the initial measure ν and the length n0 of
the burn-in period. For finite p ≥ 1, constant C → 1 geometrically as n0 →∞. Using the fact that
1 + x ≤ ex, we observe that

Pν

(
1

n

n0+n∑
i=n0+1

f(Xi)− π(f) > ε

)
≤ e−O(n)+O(κn0 ),

11
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in which

1 > κ =

{
λ2/q if 1 < p ≤ 2,

λ2/p if p > 2
.

In the exponent of the tail probability, the first term is linear in n and the second term is exponentially
decaying in n0. This observation suggests that n0 & log n suffices for the tail probability of MCMC
estimates to exponentially decay in n, and thereafter justifies practitioners’ ad-hoc choice of n0 =
0.05n or n0 = 0.1n.

5.2 Respondent-driven Sampling

The case of p =∞ in Theorem 12 applies to the respondent-driven sampling (RDS) problem. RDS
methods, initially developed by Heckathorn (1997, 2002), have been widely used to collect data on
disease prevalence and risk behaviors within some “hidden” populations. A population is “hidden”
when the public acknowledgement of membership is unavailable, usually due to privacy concerns,
so that traditional sampling methods do not work. For example, HIV infections concentrate on three
hidden populations: men who have sex with men, injection drug users, and sex workers and their
sexual partners (WHO and UNAIDS, 2009). RDS collects data through a chain-referral mechanism,
in which current participants recruit their contacts to be new participants.

Goel and Salganik (2009, 2010) modeled this chain-referral mechanism as a random walk
among the network of the hidden population under study, and proposed an MCMC-based estimator
for the disease prevalence. Formally, let X denote the population under study, and let E denote the
edge (contact) set among them. Let |X | and |E| denote their cardinalities. Assume that the network
is connected and participants recruit their contacts uniformly at random. The chain-referral process
is modeled as a random walk {Xi}i≥1 on the graph (X , E) with uniform edge weights.

Let f(x) = 1 if node (member) x ∈ X is infected and 0 otherwise, let d(x) be the degree of
node x in the network. The prevalence of a disease

f̄ :=

∑
x∈X f(x)

|X |

can be consistently estimated by the RDS estimate

f̂n :=
n∑
i=1

f(Xi)

d(Xi)

/
n∑
i=1

1

d(Xi)
.

Indeed, the random walk has the invariant distribution π(x) = d(x)/2|E|, and thus by the Law of
Large Number for Markov chains

1

n

n∑
i=1

f(Xi)

d(Xi)
→ π

(
f

d

)
=

∑
x∈X f(x)

2|E|

1

n

n∑
i=1

1

d(Xi)
→ π

(
1

d

)
=
|X |
2|E|

almost surely as n→∞. Combing the two asymptotic convergences obtains f̂n → f̄ almost surely
as n→∞.

12
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Theorem 12 with p = ∞ provides a non-asymptotical analysis for the RDS estimate. This
analysis suggests that the minimum number of participants is n = O(log |X |) for the success of
RDS. To the best of our knowledge, this insight has not been observed in the previous literature.
Specifically, if the chain-referral process starts from a specific node y, i.e., ν(y) = 1 and ν(x) = 0
for x 6= y, and all collected samples are used for estimation, i.e., n0 = 0, then the constant in
Theorem 12 is given by

C(ν, 0,∞) = max
x∈X

∣∣∣∣ν(x)

π(x)

∣∣∣∣ =
2|E|
d(y)

=
d̄

d(y)
|X |,

where d̄ =
∑

x∈X d(x)/|X | = 2|E|/|X | is the average degree of all nodes in the network. It follows
that

Pν

(∣∣∣∣∣ 1n
n∑
i=1

f(Xi)

d(Xi)
−
∑

x∈X f(x)

2|E|

∣∣∣∣∣ > ε

)
≤ 2d̄

d(y)
|X | exp

(
−1−max{λr, 0}

1 + max{λr, 0}
· 2nε2

)

Pν

(∣∣∣∣∣ 1n
n∑
i=1

1

d(Xi)
− |X |

2|E|

∣∣∣∣∣ > ε

)
≤ 2d̄

d(y)
|X | exp

(
−1−max{λr, 0}

1 + max{λr, 0}
· 2nε2

)
.

We conclude that

Pν
(
f̂n ∈

[
f̄ − εd̄
1 + εd̄

,
f̄ + εd̄

1− εd̄

])
≥ 1− 4d̄

d(y)
|X | exp

(
−1−max{λr, 0}

1 + max{λr, 0}
· 2nε2

)
.

This bound of RDS estimates provides some guidance for the RDS practitioners. First, the degree
d(y) of the initial participant y needs to be comparable to the average degree d̄ of all the population.
Second, the number n of participants needed exceeds the logarithm of the total population.

5.3 High-dimensional Covariance Matrix Estimation

This subsection considers estimating high-dimensional covariance matrix with Markov-dependent
samples by thresholding. In the setup of independent samples, this thresholding method has been
intensively studied. See Bickel and Levina (2008); Lam and Fan (2009); Cai et al. (2010); Cai and
Liu (2011); Fan et al. (2013), among others.

Suppose that {Xi}i≥1 is a stationary Markov chain with invariant measure π and right spectral
gap 1 − λr, and f = (f1, . . . , fp)

T is a p-dimensional bounded feature mapping. Without loss of
generality, we assume π(fj) = 0 and supx∈X |fj(x)| ≤ 1 for all j = 1, . . . , p. We are interested in
estimating the covariance matrix

Σ =

∫
f(x)f(x)Tπ(dx)

in the high-dimensional regime with p � n but log p = o(n). This is potentially useful to model
the fMRI data, in which {Xi}i≥1 represents brain activities at various time points i, and fj(Xi)
represents the BOLD (blood-oxygen-level dependent) signal from the region of interest j at time i,
and Σ characterizes the functional connectivity between multiple regions.

We extend the classical analyses of the thresholding estimation method from the independent
setting, in which mutual independence of {f(Xi)}i≥1 are assumed, to the Markov-dependent set-
ting. Using Theorem 3 to deal with the Markov dependence, we obtain an analogous result com-
pared to the classical result in the independent setting. The only difference is that the sample size

13
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should be increased by a factor 1+max{λr,0}
1−max{λr,0} in the Markov-dependent setting, in order to achieve

the same error rate as the independent setting.

Theorem 13 Consider the sparse covariance estimation problem in the Markov-dependent setting.
Define the uniformity class of sparse covariance matrices as

M(s,m) =

{
M � 0 : Mjj ≤ m,

p∑
k=1

I(Mjk 6= 0) ≤ s, ∀j = 1, . . . , p

}
.

For a matrixM , define the element-wise thresholding operator by

Tt(M) =
[
MjkI(|Mjk| > t)

]
1≤j,k≤p.

Let Σ̂ =
∑n

i=1 f(Xi)f(Xi)
T/n. If Σ ∈M(s,m) and the threshold t is chosen as

2

√
2(2 + δ) · 1 + max{λr, 0}

1−max{λr, 0}
· log p

n
≤ t ≤ C

√
1 + max{λr, 0}
1−max{λr, 0}

· log p

n
,

for a sufficiently large constant C, then with probability at least 1− 2p−δ

|||Tt(Σ̂)−Σ|||2 ≤ |||Tt(Σ̂)−Σ|||1 ≤ s

(
2t+ 3

√
2(2 + δ) · 1 + max{λr, 0}

1−max{λr, 0}
· log p

n

)

≤
(

2C + 3
√

2(2 + δ)
)
s

√
1 + max{λr, 0}
1−max{λr, 0}

· log p

n
,

where |||S|||1 and |||S|||2 denote the operator norms of matrix S induced by the `1-norm and `2-norm
of vectors, respectively.

5.4 Time-discounted Reward

In this subsection, we construct confidence intervals for the time-discounted reward arising from
economic models. In these models, discount functions are introduced to weight rewards received
at different time points for modeling the tendency of favoring rewards received now over those
received in future (Frederick et al., 2002).

Consider a vineyard model (Paulin, 2015, Example 3.17) as an example. The production of
grapevine in a vineyard depends on the climate. For simplicity, we model the weather as a Markov
chain {Xi}i≥1 in the state space {0 (bad weather), 1 (good weather)} and assume that the vineyard
produces no grapevine in the bad weather and 1 dollar worth of grapevine in good weather. Suppose
the Markov chain of the weather is stationary with invariant distribution π = (π0, π1)T and admits
absolute spectral gap 1− λ.

With exponential discount of form ρi for some exponential discount coefficient ρ ∈ (0, 1], the
present value of grapevine the vineyard produces during the next n years is

Vn =
n∑
i=1

ρiXi,

14
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It is not hard to see that EπVn = ρ(1−ρn)π1
1−ρ . Applying Theorem 1 yields

Pπ (|Vn − EπVn| ≥ ε) ≤ 2 exp

(
−1− λ

1 + λ
· 1− ρ2

ρ2(1− ρ2n)
· 2ε2

)
.

That means, with probability at least 1− 2δ,∣∣∣∣Vn − ρ(1− ρn)π1

1− ρ

∣∣∣∣ ≤
√

1 + λ

1− λ
· ρ

2(1− ρ2n)

1− ρ2
· log(1/δ)

2
.

With hyperbolic discount of form (1 + ρi)−1 for some degree of discounting ρ ≥ 0, the similar
(1− 2δ)-confidence interval of the present value is given by∣∣∣∣∣

n∑
i=1

Xi

1 + ρi
−

n∑
i=1

π1

1 + ρi

∣∣∣∣∣ ≤
√√√√1 + λ

1− λ
·
n∑
i=1

1

(1 + ρi)2
· log(1/δ)

2
.

5.5 Multi-armed Bandit with Markovian Rewards

The Multi-armed Bandit (MAB) problem has received much attention in decision theory, clinical
trials and statistical machine learning. In this problem, there are a number, say K, of alternative
arms, each with a stochastic reward with initially unknown expectation. The goal is to find the
optimal strategy that maximizes the sum of rewards. Let Zj(t) be the reward from arm j played at
round t. Let j?(t) = arg maxKj=1 EZj(t) be the index of the arm with highest expected reward at
round t. Let j(t) ∈ {1, . . . ,K} be the arm that is chosen at round t. A large body of literature focus
on minimization of the pseudo-regret on the first T rounds

R = E

[
T∑
t=1

Zj?(t)(t)−
T∑
t=1

Zj(t)(t)

]
.

Machine learners have recognized three fundamental formalizations of MAB problems depend-
ing on the nature of the reward process: i.i.d., adversarial, and Markovian (Bubeck and Cesa-
Bianchi, 2012), but the last has been much less studied than the other two (Tekin and Liu, 2010). It
is primarily because many bandit algorithms essentially rely on the concentration of average reward
draws around its expectation to identify the optimal arm, but powerful concentration inequalities for
Markov-dependent random variables were in lack. Let us showcase the utilities of our results by
deriving bounds for the pseudo-regret of the celebrated Upper Confidence Bound (UCB) algorithm
in the following Markovian MAB problem.

Suppose, in an MAB with K arms, each arm j has an underlying stationary Markov chain
{Xji}i≥1 with invariant measure πj and right spectral gap 1 − λr, and a reward function fj : x 7→
[0, 1]. Whenever arm j is played, it returns a reward of the current state and let its Markov chain
transition one step. Let Nj(s) =

∑s
t=1 I(j(t) = j) be the number of times arm j is played on the

first s rounds, and ∆j = πj(fj) − πj?(fj?) be the gap between expected rewards of a suboptimal
arm j and the optimal arm j?. Then the pseudo-regret in this set-up is given by

R =

K∑
j=1

∆jENj(T ).
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Theorem 14 bounds the regret for the UCB algorithm for the MAB problem with Markovian
rewards. If λr = 0 then this theorem recovers the classical regret bound for c-UCB algorithm.

Theorem 14 (c-UCB algorithm for Markovian MAB) Consider the c-UCB algorithm with input
parameter c for the above Markovian MAB. Let f̂j,n = 1

n

∑n
i=1 fj(Xji) be the sample mean of the

first n rewards from arm j. At each round t, select

j(t) ∈ arg
K

max
j=1

f̂j,Nj(t−1) +

√
c log t

2Nj(t− 1)
.

If c > 2 · 1+max{λr,0}
1−max{λr,0} then this c-UCB algorithm has pseudo-regret

R ≤
∑

j: ∆j>0

 2c

∆j
log T +

c∆j

c− 2 · 1+max{λr,0}
1−max{λr,0}

 .

6. Conclusion and Discussions

Markovian structure is frequently used in the literature to model dependence structure between sam-
ples. Yet the literature lacks powerful concentration inequalities for studying Markov chains. In this
paper, we prove an optimal concentration inequality for possibly nonidentical functions of general
Markov chains. It serves as the exact counterpart of the classical Hoeffding’s inequality when sam-
ples are assumed to be independent. This new concentration inequality is optimal and involves the
spectral gap as a coefficient in the exponent. It finds many applications in statistical learning prob-
lems when data are dependent, and we apply them to five different problems in statistics, economics
and machine learning.
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Appendix A. Preliminaries

Throughout the paper, we assume that the state spaceX is Polish (separable, completely metrizable)
and equipped with its sigma-algebra B. Then (X ,B) is a standard Borel space6. This is a common
assumption to rigorously study Markov chains in the measure theory for probability, since several
useful results such as the isomorphism to the real space, the existence of conditional probability
kernels and generalizations of the classical Kolmogorov are true for standard Borel spaces (Mackey,
1957).

6. For formal definitions of Polish spaces and standard Borel spaces and more details, please refer to Preston (2008) and
Orbanz (2015, Chapter 2.5).
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The distribution of a time-homogeneous Markov chain is uniquely determined by its initial
measure ν and its transition kernel P . Let

ν(B) = P(X1 ∈ B), ∀ B ∈ B;

P (Xi, B) = P(Xi+1 ∈ B|Xi), ∀ B ∈ B, ∀i ≥ 0.

A transition kernel P is said invariant with a probability measure π on (X ,B) if

π(B) =

∫
P (x,B)π(dx), ∀ B ∈ B.

A Markov chain is said stationary if it starts from ν = π.
Our analyses are conducted in the framework of operator theory on Hilbert spaces. The idea

of using this framework originates from the fact that each transition kernel, if invariant with π, is
viewed as a Markov operator on the Hilbert spaceL2(π) consisting of all real-valued, B-measurable,
π-square-integrable functions on X .

A.1 Hilbert Space L2(π)

Recall that we write π(h) =
∫
h(x)π(dx) for any real-valued, B-measurable function h : X → R.

Let Lp(X ,B, π) be the set of real-valued, B-measurable functions with finite p-moment, i.e.

Lp(X ,B, π) := {h : π(|h|p) <∞} .

Here h1, h2 ∈ Lp(X ,B, π) are taken as identical if h1 = h2 π-almost everywhere (π-a.e.). For
every p ∈ [1,∞], Lp(X ,B, π) is a Banach space equipped with norm

‖h‖π,p :=

{
π(|h|p)1/p if p <∞,
ess sup |h| if p =∞.

In particular, if p = 2 then
L2(X ,B, π) :=

{
h : π(h2) <∞

}
is a Hilbert space7 endowed with the following inner product

〈h1, h2〉π =

∫
h1(x)h2(x)π(dx), ∀ h1, h2 ∈ L2(X ,B, π),

since for every h ∈ L2(X ,B, π),
‖h‖π,2 =

√
〈h, h〉π.

By convention, the norm of a linear operator T on L2(X ,B, π) is defined as

|||T |||π,2 = sup{‖Th‖π,2 : ‖h‖π,2 = 1}.

Another important Hilbert space is the subspace of L2(X ,B, π) consisting of mean zero functions:

L0
2(X ,B, π) := {h ∈ L2(X ,B, π) : π(h) = 0} .

For simplicity of notation, we write ‖h‖π and |||T |||π in place of ‖h‖π,2 and |||T |||π,2, respectively.
We also write L2(π) and L0

2(π) in place of L2(X ,B, π) and L0
2(X ,B, π) respectively, whenever the

measurable space (X ,B) is clear in the context.

7. Here we consider this real Hilbert space instead of the complex Hilbert space, as the former is adequate for our
proofs.
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A.2 Operators on L2(π)

Each transition kernel P (x,B), if invariant with π, corresponds to a bounded linear operator on
L2(π). We call this operator a Markov operator and abuse P to denote it. That is,

Ph(x) =

∫
h(y)P (x, dy), ∀ x ∈ X , ∀ h ∈ L2(π).

Next, we introduce five transition kernels and their associated Markov operators which appear
frequently throughout the proof. We use the same notation for a transition kernel and its associated
Markov operator.

A.2.1 IDENTITY OPERATOR I

The identity kernel given by

I(x,B) = I(x ∈ B), ∀ x ∈ X , ∀ B ∈ B,

generates a Markov chain, which never moves from its initial state. The identity kernel corresponds
to the identity operator on L2(π)

I : h ∈ L2(π) 7→ h.

A.2.2 PROJECTION OPERATOR Π

The transition kernel given by

Π (x,B) = π(B), ∀ x ∈ X , ∀ B ∈ B,

generates a Markov chain which consists of i.i.d. draws from the invariant measure π. Denote by the
italicized symbol 1 the constant function x ∈ X 7→ 1. The transition kernel Π (x,B) corresponds
to the following Markov operator

Π : h ∈ L2(π) 7→ π(h)1 ,

which is a projection operator of rank one since π(h) = 〈h, 1 〉π. It is not hard to see that PΠ =
ΠP = Π if the transition kernel P (x,B) is invariant with π.

A.2.3 ADJOINT OPERATOR P ∗

Definition 15 (Time-reversal kernel) A transition kernel P ∗ is said to be the time-reversal of a
transition kernel P if∫

B1

π(dx)P (x,B2) =

∫
B2

π(dx)P ∗(x,B1), ∀ B1, B2 ∈ B.

Definition 16 (Adjoint operator) A linear operator T ∗ on a real Hilbert space H endowed with
inner product 〈·, ·〉 is said to be the adjoint of a linear operator T if

〈Th1, h2〉 = 〈h1, T
∗h2〉, ∀ h1, h2 ∈ H.
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Definition 17 (Self-adjoint operator) A linear operator S on a real Hilbert spaceH endowed with
inner product 〈·, ·〉 is said to be self-adjoint if

〈Sh1, h2〉 = 〈h1, Sh2〉, ∀ h1, h2 ∈ H.

The existence of the time-reversal kernel (Definition 15) in a standard Borel space (X ,B) is
guarantteed by Breiman (1992, Theorem 4.34), Durrett (2010, Theorems 2.1.22 and 5.1.9) or Or-
banz (2015, Theorem 3.6(1)). This time-reversal kernel is also unique up to differences on sets
of probability zero (Orbanz, 2015, Theorem 3.6(2)). In most practical examples, probability mea-
sures π(·) and {P (x, ·) : x ∈ X} share a common reference measure. In these examples, let π(x)
and P (x, y) denote their densities then the time-reversal transition kernel has a density of a simple
closed form

P ∗(x, y) =
π(y)P (y, x)

π(x)
.

The time-reversal kernel corresponds to the adjoint operator (Definition 16) of P on L2(π). If the
transition kernel P (x,B) is invariant with π, so is P ∗(x,B). And, P ∗Π = ΠP ∗ = Π . A Markov
chain is said reversible if P ∗ = P . This condition is called the detailed balance condition when
viewing P and P ∗ as transition kernels, or the self-adjointness (Definition 17) when viewing P and
P ∗ as Markov operators.

A.2.4 ADDITIVELY-REVERSIBLIZED OPERATOR R

Fill (1991) defined the additive reversiblization8 of a Markov operator P as

R =
P + P ∗

2
,

which is self-adjoint and thus relates to a reversible Markov transition kernel R(x,B). If the transi-
tion kernel P (x,B) is invariant with π, so is R(x,B). And, RΠ = ΠR = Π .

A.2.5 LEÓN-PERRON OPERATOR P̂

Every convex combination of Markov transition kernels (operators) produces a Markov transition
kernel (operator). We say a Markov operator is León-Perron if it is a convex combination of the
identity operator I and the projection operator Π .

Definition 18 (León-Perron operator) A Markov operator P̂γ on L2(π) is said León-Perron if it
is a convex combination of operators I and Π with some coefficient γ ∈ [0, 1], that is

P̂γ = γI + (1− γ)Π .

The associated transition kernel

P̂γ(x,B) = γI(x,B) + (1− γ)Π (x,B)

= γI(x ∈ B) + (1− γ)π(B), ∀x ∈ X , ∀B ∈ B,

8. Operator R = (P + P ∗)/2 is called the real part of P in the general operator theory (Conway, 2013). Here we
follow Fill (1991) as we discuss this operator in the context of Markov chains.
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characterizes a random-scan mechanism: at each step, the Markov chain either stays at the current
state (with probability γ) or jumps to a new state drawn from π (with probability 1− γ).

The key to prove the Hoeffding-type inequalities for Markov chains in (León and Perron, 2004)
is the observation that a Markov chain driven by P̂γ is the extremal case of all Markov chains with
|||P −Π |||π ≤ γ. That is why we call this type of operators León-Perron.

A.3 Spectral Gaps

Definition 19 (absolute spectral gap) A Markov operator P admits an absolute spectral gap 1−λ
if

λ = λ(P ) := |||P −Π |||π < 1.

It is elementary that λ(I) = 1, λ(Π ) = 0, λ(P ) = λ(P ∗) ≥ λ(R), and λ(P̂γ) = γ. Let
S(T |H) denote the spectrum of an operator T acting on Hilbert spaceH. It is known that the spec-
trum of self-adjoint Markov operator R = (P + P ∗)/2 on L0

2(π) is contained in [−λ(R),+λ(R)]
on the real line. Let

λr(R) := sup{s : s ∈ S(R|L0
2(π))},

λl(R) := inf{s : s ∈ S(R|L0
2(π))}.

(7)

Definition 20 (Right spectral gap) A Markov operator P admits a right spectral gap 1− λr if

λr = λr (R) < 1, where R = (P + P ∗)/2.

Since R = (P + P ∗)/2 is self-adjoint,

λr(R) := sup{〈Rh, h〉 : ‖h‖π = 1, π(h) = 0},
λl(R) := inf{〈Rh, h〉 : ‖h‖π = 1, π(h) = 0},
λ(R) = sup{|s| : s ∈ S(R|L0

2(π))} = max{λr(R), |λl(R)|}

It follows that

|λr(R)| ≤ λ(R) ≤ λ(P ) + λ(P ∗)

2
= λ(P ).

Appendix B. Proof of Lemmas 1-5

Lemmas 1-2 invoke two auxiliary Lemmas 21-22, respectively.

Lemma 21 (i) For any León-Perron operator P̂γ = γI + (1 − γ)Π with γ ∈ [0, 1) and any
bounded function g,

‖g‖π ≤ |||GP̂γG|||
1/2

π ,

where G is the multiplication operator of the bounded function g, i.e.,

Gh(x) = g(x)h(x), ∀x, ∀h ∈ L2(π).

(ii) Let P be a Markov operator with absolute spectral gap 1− γ, and let P̂γ = λI + (1− γ)Π .
For any h1, h2 ∈ L2(π),

|〈Ph1, h2〉π| ≤ 〈P̂γh1, h1〉1/2π 〈P̂γh2, h2〉1/2π .
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(iii) Let P be a Markov operator with absolute spectral gap 1− γ, and let P̂γ = γI + (1− γ)Π .
For any self-adjoint operators S1, S2,

|||S1PS2|||π ≤ |||S1P̂γS1|||
1/2

π |||S2P̂γS2|||
1/2

π .

Proof [Proof of Lemma 21]

(i) The case of g ≡ 0 trivially holds. For any non-zero g,

‖g‖2π|||GP̂γG|||π ≥ 〈g,GP̂γGg〉π ≥ 〈g
2, P̂γg

2〉π
= π(g2)2 + γ‖(I −Π )g2‖2π ≥ π(g2)2 = ‖g‖4π.

Dividing both sides by ‖g‖2π completes the proof.

(ii) Using the fact that PΠ = ΠP = Π and the self-adjointness of I −Π ,

|〈Ph1, h2〉π| = |〈(I −Π )(P −Π )(I −Π )h1, h2〉π + 〈Πh1, h2〉π|
= |〈(P −Π )(I −Π )h1, (I −Π )h2〉π + 〈Πh1, h2〉π|
≤ |〈(P −Π )(I −Π )h1, (I −Π )h2〉π|+ |〈Πh1, h2〉π|
≤ γ‖(I −Π )h1‖π‖(I −Π )h2‖π + |π(h1)π(h2)|

≤
√
γ‖(I −Π )h1‖2π + π(h1)2 ·

√
γ‖(I −Π )h2‖2π + π(h2)2

= 〈P̂γh1, h1〉1/2π · 〈P̂γh2, h2〉1/2π .

(iii) Using part (ii) and the self-adjointness of S1, S2, S1P̂γS1 and S2P̂γS2,

|||S1PS2|||π = sup
h1,h2:‖h1‖π=‖h2‖π=1

|〈S1PS2h2, h1〉π|

= sup
h1,h2:‖h1‖π=‖h2‖π=1

|〈PS2h2, S1h1〉π|

≤ sup
h1,h2:‖h1‖π=‖h2‖π=1

〈P̂γS1h1, S1h1〉1/2π · 〈P̂γS2h2, S2h2〉1/2π

= sup
h1,h2:‖h1‖π=‖h2‖π=1

〈S1P̂γS1h1, h1〉1/2π · 〈S2P̂γS2h2, h2〉1/2π

= sup
h1:‖h1‖π=1

〈S1P̂γS1h1, h1〉1/2π · sup
h2:‖h2‖π=1

〈S2P̂γS2h2, h2〉1/2π

= |||S1P̂γS1|||
1/2

π |||S2P̂γS2|||
1/2

π .
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Proof [Proof of Lemma 1] Note that Etf = (Etf/2)2, that Etf/2 is self-adjoint, and that Etf1 =
etf . By an elementary calculus,

Eπ
[
et

∑n
i=1 fi(Xi)

]
=

〈
1 , Etf1

(
n∏
i=2

PEtfi

)
1

〉
π

=

〈
1 , Etf1/2

(
n−1∏
i=1

Etfi/2PEtfi+1/2

)
Etfn/21

〉
π

=

〈
etf1/2,

(
n−1∏
i=1

Etfi/2PEtfi+1/2

)
etfn/2

〉
π

.

It follows that

Eπ
[
et

∑n
i=1 fi(Xi)

]
≤ ‖etf1/2‖π

n−1∏
i=1

|||Etfi/2PEtfi+1/2|||π‖e
tfn/2‖π.

Taking g = etf1/2 or etfn/2, S1 = Etfi/2 and S2 = Etfi+1/2 in Lemma 21 yields

‖etf1/2‖π ≤ |||Etf1/2P̂γEtf1/2|||
1/2

π ,

‖etfn/2‖π ≤ |||Etfn/2P̂γEtfn/2|||
1/2

π ,

|||Etfi/2PEtfi+1/2|||π ≤ |||E
tfi/2P̂γE

tfi/2|||
1/2

π |||E
tfi+1/2P̂γE

tfi+1/2|||
1/2

π .

Putting them together completes the proof.

Lemma 22 Let P̂γ = γI + (1 − γ)Π be a León-Perron operator. Let f : X → R be a simple
function taking finitely many values. That is, there exists a finite set {β1, . . . , βk} with β1 > · · · >
βk such that f−1(βj) := {x ∈ X : f(x) = βj} satisfies

π(f−1(βj)) > 0, ∀1 ≤ j ≤ k;
k∑
j=1

π(f−1(βj)) = 1.

Let

F (r) = π

(
(1− γ)ef

r − γef

)
=

k∑
j=1

(1− γ)eβj

r − γeβj
π(f−1(βj)).

The following statements hold.

(i) Each solution r? to F (r?) = 1 is an eigenvalue ofEf/2P̂γEf/2 associated with eigenfunction

h? =
(1− γ)ef/2

r? − γef
.

There are k such solutions rj ∈ (γeβj , γeβj−1) for j = 1, . . . , k (letting β0 =∞).
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(ii) Regarding S(Ef/2P̂γE
f/2|L2(π)), the spectrum of operator Ef/2P̂γEf/2 acting on L2(π),

we have

{rj : 1 ≤ j ≤ k} ⊆ S(Ef/2P̂γE
f/2|L2(π))

⊆ {γeβj : 1 ≤ j ≤ k} ∪ {rj : 1 ≤ j ≤ k}.

(iii) Regarding r1, the largest eigenvalue of operator Ef/2P̂γEf/2, we have

|||Ef/2P̂γEf/2|||π = r1.

(iv) Let {X̂i}i≥1 be a Markov chain driven by P̂γ then

lim inf
n→∞

1

n
logEπ

[
e
∑n
i=1 f(X̂i)

]
≥ log r1 = log |||Ef/2P̂γEf/2|||π.

Proof [Proof of Lemma 22]

(i) Note that π(ef/2h?) = F (r?) = 1. We have

Ef/2P̂γE
f/2h?(x)− r?h?(x)

= γef(x)h?(x) + (1− γ)ef(x)π(ef/2h?)− r?h?(x)

= γef(x)h?(x) + (1− γ)ef(x)F (r?)− r?h?(x).

Plugging F (r?) = 1 and h? = (1−γ)ef/2/(r?−γef ) into the last line yields 0. This verifies
that r? is an eigenvalue of Ef/2P̂γEf/2 with eigenfunction h?.

On each interval (γeβj , γeβj−1), function F (r) continuously decreases to −∞ (or 0 if j = 1)
as r ↑ γeβj−1 , and increases to +∞ as r ↓ γeβj . Thus there exists rj ∈ (γeβj , γeβj−1) such
that F (rj) = 1.

(ii) The operator Ef/2P̂γEf/2 is self-adjoint, thus its spectrum consists of the discrete spectrum
Sd(Ef/2P̂γE

f/2|L2(π)), which consists of isolated eigenvalues of finite multiplicity, and the
essential spectrum Sess(E

f/2P̂γE
f/2|L2(π)).

First, we show that Sd(Ef/2P̂γE
f/2|L2(π)) ⊆ {γeβj : 1 ≤ j ≤ k} ∪ {rj : 1 ≤ j ≤ k} by

showing that any eigenvalue r? belongs to either {γeβj : 1 ≤ j ≤ k} or {rj : 1 ≤ j ≤ k}.
Consider any pair of eigenvalue r? and non-zero eigenfunction h? such that

r?h?(x) = Ef/2P̂γE
f/2h?(x)

= γef(x)h?(x) + (1− γ)ef(x)/2π(ef/2h?), π-a.e. x.

If π(ef/2h?) = 0 then the above display implies that (r? − γef(x))h?(x) = 0 for π-a.e. x.
There exists at least one index j such that h?(x) is not identically zero on the set f−1(βj),
rendering r? = γeβj .

If π(ef/2h?) 6= 0 and r? 6∈ {γeβj : 1 ≤ j ≤ k} then the last display is solved by the
eigenfunction

h?(x) =
(1− γ)ef(x)/2

r? − γef(x)
π(ef/2h?), π-a.e. x.
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Multiplying both sides with ef(x)/2, taking expectation of both sides with respect to π, and
dividing both sides by π(ef/2h?) 6= 0 yields F (r?) = 1, that means r? ∈ {rj : 1 ≤ j ≤ k}.
Next, we show that Sess(E

f/2P̂γE
f/2|L2(π)) ⊆ {γeβj : 1 ≤ j ≤ k} by Weyl’s theorem on

essential spectrum (Weyl, 1909). Write

Ef/2P̂γE
f/2 = γEf + (1− γ)Ef/2ΠEf/2

in the form of a self-adjoint operator cEf perturbed by another self-adjoint operator (1 −
γ)Ef/2ΠEf/2. The perturbation (1 − γ)Ef/2ΠEf/2 is of finite rank and thus compact.
Weyl’s theorem says that the essential spectrum of a self-adjoint operator is invariant to the
perturbation of a self-adjoint, compact operator. Hence P̂γ shares the same essential spectrum
with γEf . Note that γEf is the multiplication operator of function γef . Its spectrum is the
essential range of γef , which is simply {γeβj : 1 ≤ j ≤ k}. Thus

Sess(E
f/2P̂γE

f/2|L2(π)) = Sess(γE
f |L2(π)) ⊆ {γeβj : 1 ≤ j ≤ k}.

Combining (i) and results for Sd(Ef/2P̂γE
f/2|L2(π)) and Sess(E

f/2P̂γE
f/2|L2(π)) com-

pletes the proof.

(iii) By (i) and (ii), r1 is the spectral radius of Ef/2P̂γEf/2. Recall that Ef/2P̂γEf/2 is self-
adjoint. Thus r1 = |||Ef/2P̂γEf/2|||π.

(iv) By (i), eigenvalue r1 associates with eigenfunction

h1 =
(1− γ)ef/2

r1 − γef

and 〈h1, e
f/2〉π = F (r1) = 1. Let h̃1 be the projection of ef/2 onto h1. It is elementary that

h̃1 :=

〈
h1

‖h1‖π
, ef/2

〉
π

h1

‖h1‖π
=

h1

‖h1‖2π
,

and
〈ef/2 − h̃1, h̃1〉π = 0.

h1 is the eigenfunction of the self-adjoint operator Ef/2P̂γEf/2, thus

0 = 〈ef/2 − h̃1, (E
f/2P̂γE

f/2)n−1h̃1〉π
= 〈(Ef/2P̂γEf/2)n−1(ef/2 − h̃1), h̃1〉π.

The self-adjoint operator Ef/2P̂γEf/2 is positive semi-definite, so〈
ef/2 − h̃1, (E

f/2P̂γE
f/2)n−1(ef/2 − h̃1)

〉
π
≥ 0.

Thus

Eπ
[
e
∑n
i=1 f(X̂i)

]
=
〈
ef/2, (Ef/2P̂γE

f/2)n−1ef/2
〉
π

≥
〈
h̃1, (E

f/2P̂γE
f/2)n−1h̃1

〉
π

= rn−1
1 /‖h1‖2π,

implying the desired result.
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Proof [Proof of Lemma 2] Applying Lemma 1 yields

Eπ
[
et

∑n
i=1 f(X̂i)

]
≤ |||Etf/2P̂γEtf/2|||

n

π.

It is left to show

lim inf
n→∞

1

n
logEπ

[
et

∑n
i=1 f(X̂i)

]
≥ log |||Etf/2P̂γEtf/2|||π.

It is trivial for t = 0. If t 6= 0, for ε > 0, define

fε =

{
a+ ε d(f − a)/εe if t > 0,

a+ ε b(f − a)/εc if t < 0,

where b·c and d·e are the floor and ceiling function, respectively. Hence

tfε ≥ tf ≥ tfε − tε. (8)

The self-adjoint operator P̂γ preserves the non-negativity of h (i.e. P̂γh ≥ 0 if h ≥ 0), so does
self-adjoint operators Etf/2P̂γEtf/2 and Etfε/2P̂γEtfε/2. Thus

|||Etf/2P̂γEtf/2|||π = sup
h: ‖h‖π=1

|〈Etf/2P̂γEtf/2h, h〉π|

= sup
h≥0: ‖h‖π=1

〈Etf/2P̂γEtf/2h, h〉π

≤ sup
h≥0: ‖h‖π=1

〈Etfε/2P̂γEtfε/2h, h〉π [Using (8)]

= sup
h: ‖h‖π=1

|〈Etfε/2P̂γEtfε/2h, h〉π|

= |||Etfε/2P̂γEtfε/2|||π. (9)

Note that fε takes finitely many values and thus fulfill the condition in Lemma 22. Write

lim inf
n→∞

1

n
logEπ

[
et

∑n
i=1 f(X̂i)

]
≥ lim inf

n→∞

1

n
logEπ

[
e
∑n
i=1 tfε(X̂i)−nεt

]
[Using (8)]

= lim inf
n→∞

1

n
logEπ

[
et

∑n
i=1 fε(X̂i)

]
− εt

≥ log |||Etfε/2P̂γEtfε/2|||π − εt [Lemma 22(iv)]

≥ log |||Etf/2P̂γEtf/2|||π − εt. [Using (9)]

Letting ε tend to 0 completes the proof.

Proof [Proof of Lemma 4] Let θ(t) be the largest eigenvalue of matrix Ety/2Q̂γE
ty/2, then by

Frobenius-Perron theorem,
|||Ety/2Q̂γE

ty/2|||µ = θ(t).
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The largest eigenvalue θ(t) is the right solution to the following quadratic equation

0 = det(θI −Ety/2Q̂γE
ty/2)

= θ2 −
[
(γ + (1− γ)(1− µ))eta + (γ + (1− γ)µ)etb

]
θ + γeta+tb

= θ2 − (1 + γ)
[
(1− p)eta + petb

]
θ + γeta+tb,

where

p =
γ + (1− γ)µ

1 + γ
, 1− p =

γ + (1− γ)(1− µ)

1 + γ
.

It suffices to show

θ̃(t) = exp

(
µ(y) · t+

1 + γ

1− γ
· (b− a)2

4
· t

2

2

)
satisfies

θ̃(t)2 − (1 + γ)
[
(1− p)eta + petb

]
θ̃(t) + γeta+tb ≥ 0, and (10)

θ̃(t)2 ≥ γeta+tb. (11)

(10) is equivalent to
θ̃(t) + γeta+tbθ̃(t)−1

1 + γ
≥ (1− p)eta + petb. (12)

Let ω = (1 + γ)/(1 − γ). Using convexity of function z 7→ ez , the left-hand side of (12) is lower
bounded as

θ̃(t) + γeta+tbθ̃(t)−1

1 + γ

=
exp(tµ(y) + ω(b− a)2t2/8) + γ exp(at+ bt− tµ(y)− ω(b− a)2t2/8)

1 + γ

≥ exp

(
tµ(y) + ω(b− a)2t2/8 + γat+ γbt− γtµ(y)− γω(b− a)2t2/8

1 + γ

)
= exp

(
t · (1− γ)µ(y) + γa+ γb

1 + γ
+

(b− a)2t2

8
· (1− γ)ω

1 + γ

)
= exp

(
t · [(1− p)a+ pb] +

(b− a)2t2

8

)
.

The right hand side of (12) is the mgf of a Bernoulli random variable Z with P(Z = a) = 1−p and
P(Z = b) = p. By the classical Hoeffding’s lemma, exp(t · EZ + (b− a)2t2/8) ≥ EetZ . That is,

exp

(
t · [(1− p)a+ pb] +

(b− a)2t2

8

)
≥ (1− p)eta + petb.

Concatenating the last two displays yields (12) (and thus (10)). On the other hand, (11) holds as

log
(
θ̃(t)2e−ta−tb

)
=
ω(b− a)2t2

4
+ (2µ− 1)(b− a)t

≥ −(2µ− 1)2

ω
≥ − 1

ω
= −1− γ

1 + γ
≥ log γ.
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Proof [Proof of Lemma 5] By an elementary calculus,

Eπ
[
et

∑n
i=1 f(Xi)

]
= 〈etf/2, (Etf/2PEtf/2)n−1etf/2〉π

≤ sup
‖h‖π=1

|〈(Etf/2PEtf/2)n−1h, h〉|‖etf/2‖22

By the power inequality for the numerical radius of operators (Berger, 1965; Pearcy, 1966),

sup
‖h‖π=1

|〈(Etf/2PEtf/2)n−1h, h〉π| ≤

(
sup
‖h‖π=1

|〈Etf/2PEtf/2h, h〉π|

)n−1

.

Note that Etf/2PEtf/2 preserves non-negativity (i.e., Etf/2PEtf/2h ≥ 0 for any non-negative
function h),

sup
‖h‖π=1

|〈Etf/2PEtf/2h, h〉π| = sup
‖h‖π=1

〈Etf/2PEtf/2h, h〉π.

Let R = (P + P ∗)/2 be the additive reversiblization of P then

〈Etf/2PEtf/2h, h〉π = 〈Etf/2REtf/2h, h〉π.

From R = (I −Π )R(I −Π ) + Π (since RΠ = ΠR = Π ) and self-adjointness of Etf/2, I −Π ,
it follows that

〈Etf/2REtf/2h, h〉π = 〈Etf/2(I −Π )h,R(I −Π )Etf/2h〉π + π(etf/2h)2

≤ λr‖(I −Π )Etf/2h‖2π + π(Etf/2h)2

≤ max{λr, 0}‖(I −Π )Etf/2h‖2π + π(Etf/2h)2

= 〈Etf/2P̂max{λr,0}E
tf/2h, h〉π

≤ |||Etf/2P̂max{λr,0}E
tf/2|||

π
‖h‖2π.

Putting all the above displays together yields

Eπ
[
et

∑n
i=1 f(Xi)

]
≤ |||Etf/2P̂max{λr,0}E

tf/2|||
n−1

π
‖etf/2‖2π.

We conclude the proof by applying Lemma 21(i) with g = etf/2 to bound

‖etf/2‖2π ≤ |||Etf/2P̂max{λr,0}E
tf/2|||

π
.
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Appendix C. Proofs of Other Theorems

Proof [Proof of Theorem 3] Let B1 = 1 and {Bi}i≥2 be i.i.d. Bernoulli(1 − λ) random variables,
and let {Wi}i≥1 be i.i.d. N (0, 1) random variables. We construct the Markov chain {Xi}i≥0 in the
following way.

Xi = (1−Bi)Xi−1 +BiWi, ∀i ≥ 1.

By induction,

Xi =

i∑
j=1

 i∏
k=j+1

(1−Bk)

BjWj .

Let

Ni =
n∑
j=i

 i∏
k=j+1

(1−Bk)

Bj ,

then
n∑
i=1

Xi =

n∑
i=1

NiWi, Ni ≥ 0,

n∑
i=1

Ni = n.

Further,

Eπ
[
et

∑n
i=1Xi

]
= Eπ

[
Eπ
(
et

∑n
i=1NiWi

∣∣∣N1, . . . , Nn

)]
= Eπ

[
et

2
∑n
i=1N

2
i /2
]

≥ Pπ (N1 = n)Eπ
[
et

2
∑n
i=1N

2
i /2
∣∣∣N1 = n

]
= λnet

2n2/2,

which could not be bounded by eO(n)t2/2 uniformly for n ≥ 1 and t ∈ R.

Proof [Proof of Theorem 5] Let νPn0 denote the n0-step transition of ν. Write

Eν
[
e
t
∑n0+n
i=n0+1 f(Xi)−nπ(f)

]
= EνPn0

[
et

∑n
i=1 f(Xi)−nπ(f)

]
[Markov property]

= Eπ
[
d(νPn0)

dπ
(X1) · et

∑n
i=1 f(Xi)−nπ(f)

]
[Change measure]

≤
∥∥∥∥d(νPn0)

dπ

∥∥∥∥
π,p

×
{
Eπ
[
eqt

∑n
i=1 f(Xi)−nπ(f)

]}1/q
[Hölder’s inequality]

≤
∥∥∥∥d(νPn0)

dπ

∥∥∥∥
π,p

× exp

(
q · 1 + max{λr, 0}

1−max{λr, 0}
· n(b− a)2

4
· t

2

2

)
. [Theorem 2]
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It remains to show ‖d(νPn0)/dπ‖π,p ≤ C(ν, n0, p). For p ∈ (1,∞), from (Rudolf, 2012, Lemma
3.16 and Lemma 3.17) and the fact that λ(P ) = λ(P ∗), it follows that∥∥∥∥d(νPn0)

dπ

∥∥∥∥
π,p

≤
∥∥∥∥d(νPn0 − π)

dπ

∥∥∥∥
π,p

+ 1

=

∥∥∥∥[(P ∗)n0 −Π ]

(
dν

dπ

)∥∥∥∥
π,p

+ 1 ≤ C(ν, n0, p).

For p =∞, we have∥∥∥∥d(νPn0)

dπ

∥∥∥∥
π,∞

=

∥∥∥∥(P ∗)n0

(
dν

dπ

)∥∥∥∥
π,∞

= ess sup(P ∗)n0

∣∣∣∣dνdπ
∣∣∣∣ ≤ ess sup

∣∣∣∣dνdπ
∣∣∣∣ .

Proof [Proof of Theorem 6] Let εn = maxj,k |Σ̂jk−Σjk|. For each 1 ≤ j ≤ p and each 1 ≤ k ≤ p,

Σ̂jk −Σjk =
1

n

n∑
i=1

fj(Xi)fk(Xi)− π(fjfk).

For simplicity of notation, let ω = 1+max{λr,0}
1−max{λr,0} . By Theorem 2,

Pπ
(∣∣∣Σ̂jk −Σjk

∣∣∣ > ε
)
≤ 2 exp

(
−nε

2

2ω

)
.

A union bound yields

Pπ (εn > ε) ≤ 2p2 exp

(
−nε

2

2ω

)
.

It follows that, with probability at least 1− 2d−δ,

εn ≤
√

2(2 + δ)ω log p/n.

Next, write

|||Tt(Σ̂)−Σ|||1 = max
k

∑
j

|Tt(Σ̂jk)−Σjk|

≤ max
k

∑
j

|Σjk|I
(
|Σ̂jk| ≤ t, |Σjk| ≤ t

)
+ max

k

∑
j

|Σjk|I
(
|Σ̂jk| ≤ t, |Σjk| > t

)
+ max

k

∑
j

|Σ̂jk −Σjk|I
(
|Σ̂jk| > t, |Σjk| > t

)
+ max

k

∑
j

|Σ̂jk −Σjk|I
(
|Σ̂jk| > t, |Σjk| ≤ t

)
.
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The first term is bounded by maxk
∑

j tI
(
Σjk 6= 0

)
≤ ts; the second term is bounded by maxk

∑
j(t+

εn)I
(
Σjk 6= 0

)
≤ (t+ εn)s; the third term is bounded by maxk

∑
j εnI

(
Σjk 6= 0

)
≤ εns; and the

fourth term is bounded by

max
k

∑
j

εnI
(
|Σ̂jk| > t, |Σjk| ≤ t

)
≤ εn max

k

∑
j

I
(
|Σ̂jk| > t, t/2 < |Σjk| ≤ t

)
+ εn max

k

∑
j

I
(
|Σ̂jk| > t, |Σjk| ≤ t/2

)
≤ εns+ εn max

k

∑
j

I
(
|Σ̂jk −Σjk| > t/2

)
≤ εns+ εn max

k

∑
j

I (εn > t/2) .

Collecting these pieces together yields that if εn ≤ t/2 then

|||Tt(Σ̂)−Σ|||1 ≤ s(2t+ 3εn).

Putting it together with the scaling of εn yields that, if

t ≥ 2
√

2(2 + δ)ω log p/n,

then with probability at least 1− 2d−δ,

|||Tt(Σ̂)−Σ|||1 ≤ s
(

2t+ 3
√

2(2 + δ)ω log p/n
)
.

Proof [Proof of Theorem 7] We first argue by contradiction that at least one of three following
events given j(t) = j must be true

E0(t) =

{
f̂j?,Nj? (t−1) +

√
c log t

2Nj?(t− 1)
≤ πj?(fj?)

}
,

E1(t) =

{
f̂j,Nj(t−1) −

√
c log t

2Nj(t− 1)
> πj(fj)

}
,

E2(t) =

{
Nj(t− 1) <

2c log T

∆2
j

}
.

Suppose for the sake of contradiction that all the three events are false. Then

f̂j?,Nj? (t−1) +

√
c log t

2Nj?(t− 1)
> πj?(fj?)

= πj(fj) + ∆j

≥ πj(fj) +

√
2c log t

Nj(t− 1)

≥ f̂j,Nj(t−1) +

√
c log t

2Nj(t− 1)
,
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implying j cannot be selected at round t, i.e. j(t) 6= j.
For any integer u ≥ 1

u ≥
T∑
t=1

I(j(t) = j,Nj(t− 1) < u)

≥
u∑
t=1

I(j(t) = j,Nj(t− 1) < u) +

T∑
t=u+1

I(j(t) = j,Nj(t− 1) < u)

=
u∑
t=1

I(j(t) = j) +
T∑

t=u+1

I(j(t) = j,Nj(t− 1) < u),

which implies

Nj(T ) =

T∑
t=1

I(j(t) = j) =
u∑
t=1

I(j(t) = j) +
T∑

t=u+1

I(j(t) = j)

≤ u−
T∑

t=u+1

I(j(t) = j,Nj(t− 1) < u) +
T∑

t=u+1

I(j(t) = j)

= u+

T∑
t=u+1

I(j(t) = j,Nj(t− 1) ≥ u).

In particular, let u = d2c log T/∆2
je then

ENj(T ) ≤ u+
T∑

t=u+1

P(j(t) = j,Nj(t− 1) ≥ u)

≤ u+

T∑
t=u+1

P(j(t) = j, Ec2(t))

≤ u+
T∑

t=u+1

P(j(t) = j, E0(t) ∪ E1(t))

≤ u+
T∑

t=u+1

P(E0(t)) +

T∑
t=u+1

P(E1(t)).

Proceed to bound
∑T

t=u+1 P(E0(t)) and
∑T

t=u+1 P(E1(t)). For simplicity of notation, let ω =
1+max{λr,0}
1−max{λr,0} . By Theorem 2,

P(E0(t)) ≤
t∑

s=1

P

(
f̂j,s −

√
c log t

2s
> πj(fj)

)

≤
t∑

s=1

exp

(
−2s

ω
× c log t

2s

)
= t−c/ω+1,
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thus
T∑

t=u+1

P(E0(t)) ≤
∞∑
t=2

t−c/ω+1 ≤ 1

c/ω − 2
.

The same argument applies for
∑T

t=u+1 P(E1(t)). It follows that

ENj(T ) ≤ u+
2

c/ω − 2

≤ 2c log T

∆2
j

+ 1 +
2

c/ω − 2

=
2c log T

∆2
j

+
c/ω

c/ω − 2
,

which completes the proof.
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