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Abstract

The existence of output noise will bring difficulties to supervised learning. Noise filtering,
aiming to detect and remove polluted samples, is one of the main ways to deal with the
noise on outputs. However, most of the filters are heuristic and could not explain the fil-
tering influence on the generalization error (GE) bound. The hyper-parameters in various
filters are specified manually or empirically, and they are usually unable to adapt to the
data environment. The filter with an improper hyper-parameter may overclean, leading to
a weak generalization ability. This paper proposes a unified framework of optimal sample
selection (OSS) for the output noise filtering from the perspective of error bound. The
covering distance filter (CDF) under the framework is presented to deal with noisy out-
puts in regression and ordinal classification problems. Firstly, two necessary and sufficient
conditions for a fixed goodness of fit in regression are deduced from the perspective of
GE bound. They provide the unified theoretical framework for determining the filtering
effectiveness and optimizing the size of removed samples. The optimal sample size has the
adaptability to the environmental changes in the sample size, the noise ratio, and noise
variance. It offers a choice of tuning the hyper-parameter and could prevent filters from
overcleansing. Meanwhile, the OSS framework can be integrated with any noise estimator
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and produces a new filter. Then the covering interval is proposed to separate low-noise and
high-noise samples, and the effectiveness is proved in regression. The covering distance is
introduced as an unbiased estimator of high noises. Further, the CDF algorithm is designed
by integrating the cover distance with the OSS framework. Finally, it is verified that the
CDF not only recognizes noise labels correctly but also brings down the prediction errors
on real apparent age data set. Experimental results on benchmark regression and ordinal
classification data sets demonstrate that the CDF outperforms the state-of-the-art filters
in terms of prediction ability, noise recognition, and efficiency.

Keywords: output noise, generalization error bound, optimal sample selection, covering
distance filtering, supervised learning

1. Introduction

In real-world applications, the performance of the learning model highly depends on data
quality. The output noise has a negative impact on data quality. It might result in an
unreasonable model and inaccurate prediction if the noise is ignored. From the perspective
of statistical learning theory, the bound of generalization error(GE) or risk can be expressed
as an equation increasing with the empirical risk (Bartlett and Mendelson, 2007; Rigollet,
2007; Oneto et al., 2015; Zhang et al., 2017). However, the true empirical risk might be
underestimated due to noisy outputs or labels in supervised learning. Then the GE bound
will be raised to some extent.

The outputs are usually polluted due to insufficient information, inexperienced labelers,
errors in encoding or communication processes, etc (Wang et al., 2018; Han et al., 2019).
The presence of noise may lead to various consequences, such as weakening the generaliza-
tion ability of models (Tian and Zhu, 2015; Han et al., 2019), increasing the complexity
of models (Sluban et al., 2014; Segata et al., 2010), and interfering with feature selec-
tion (Shanab et al., 2012; Gerlach and Stamey, 2007). The noise on output is considered to
be more important than that on input because there are many features but only one output
(few outputs in multi-label learning) which has a decisive impact on learning (Frenay and
Verleysen, 2014).The output noise denotes the mislabeling in classification, and it means
that the real output has a deviation from the true output in regression.

Noise-robust models and noise filtering are dominant techniques in dealing with the
output noise. The model which is robust to label noise can be constructed by robust losses,
sample weighting, and ensemble methods (Patrini et al., 2017; Shu et al., 2019; Sabzevari
et al., 2018). Deep learning and transfer learning are also verified to be effective in learning
with label noises (Li et al., 2018; Lee et al., 2018). Researches indicate that many losses
are not completely robust to label noise, and the performance of the noise-robust model is
still influenced by output noise (Nettleton et al., 2010; Yao et al., 2018).

Noise filtering is a popular way to deal with output noise by removing noisy samples (Fre-
nay and Verleysen, 2014). From the perspective of the output type, filtering algorithms are
mainly designed for output noise in classification, and some of them are extended to the
regression scenario. From the perspective of designing idea, most filters are based on nearest
neighbor and ensemble learning. The main idea of a nearest neighbor-based filter is that
a label is probably to be noisy if it is different from its neighbors’ (Cao et al., 2012; Sáez
et al., 2013). To obtain a more reliable detection result, ensemble-based filters employ base
models to vote for each sample according to whether their predictions are consistent with
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the real label (Khoshgoftaar and Rebours, 2007; Sluban et al., 2010; Yuan et al., 2018). In
addition, there are a few filters based on model complexity (Gamberger et al., 1999; Sluban
et al., 2014).

Although kinds of filters have been proposed to detect noisy samples, they might also
make wrong recognitions and remove many noise-free samples (Frenay and Verleysen, 2014;
Garcia et al., 2015). Then the original data distribution may be destroyed and the prediction
ability of models trained on the filtered set might be weakened to some extent. Besides, most
of the filters are heuristic and lack of theoretical foundations. Moreover, filters for regression
have not yet been widely studied because the noise problem is more complex than that in
classification. Specifically, the number of values to be predicted in classification is usually
very low, whereas the output variable in regression is continuous, such that the number of
possible values to predict is unlimited (Kordos and Blachnik, 2012; Kordos et al., 2013).

1.1 Related Work

Noise filtering approaches can be classified into nearest neighbor-based filter, ensemble-
based filter and model complexity-based filter.

As k-nearest neighbor (kNN) classifier is sensitive to label noise (Garćıa et al., 2012),
various nearest neighbor-based filters, such as edited nearest neighbor (ENN), all kNN
(ANN) (Cao et al., 2012), and mutual nearest neighbors, were presented (Barandela and
Gasca, 2000; Liu and Zhang, 2012). Samples misclassified by kNN is known as noises in
ENN, and the noise recognition procedure is repeated for k = 1, · · · ,K in ANN. A sample
x1 is a mutual nearest neighbor of x2, if x1 belongs to the k nearest neighbors of x2, and x2

is also one of the k nearest neighbors of x1 at the same time. All samples with an empty
MNN set are deleted from the original data set.

Ensemble-based filter employs various classifiers to vote for samples. The removing cri-
terion has two choices: a majority vote and a consensus vote (Frenay and Verleysen, 2014).
The majority vote classifies a sample as mislabeled if a majority of these classifiers misclassi-
fied it, and the consensus vote requires that all classifiers have misclassified it. Classification
filtering (CF) may be the simplest among them. The cross-validation procedure is executed
on a data set for a given model and misclassified samples are recognized as noises by CF.
The noise is determined by multiple classifiers in majority voting filter (MVF) (Brodley and
Friedl, 1999). Iterative-partitioning filter (IPF) partitions a data set into several subsets and
removes samples by the ensemble criterion (Khoshgoftaar and Rebours, 2007). This process
is repeated on the filtered data set until all the quantities of continuous three removing are
less than a threshold. Samples are recognized as noises by high agreement random forest
(HARF) if the predictions of all decision trees do not reach a high agreement level (Sluban
et al., 2010). In order to improve the prediction performance of base classifier, iterative
noise filter based on the fusion of classifiers (INFFC) builds base models on a data set with
fewer noises and scores for all misclassified samples (Sáez et al., 2016). Samples with scores
beyond a threshold will be deleted by INFFC. In probabilistic sampling filter, clean samples
have more chances to be selected than noisy ones. The degree of cleanliness is measured by
the label confidence (Yuan et al., 2018).

It is known that the complexity of a model is likely to be raised if noises are added to
the training set. Conversely, it might become lower if partial noisy samples are removed.
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Saturation-based filter (SF) exhaustively looks for examples which could make the maximum
reduction of complexity (Gamberger et al., 1999). However, it takes a lot of time to complete
the SF procedure because of the huge searching space and the complicated calculation
of model complexity. Prune saturation filter simplifies SF by replacing the complexity
indicator with the nodes number of random forest, and all decision trees have been pruned
before saturation filtering (Sluban et al., 2014).

Above filters are empirically compared in relevant studies. The results from Sáez et al.
(2013) indicate that there is a notable relationship between the characteristics of the data
and the efficacy of filters. Li et al. (2016) shows that filters can significantly reduce the
noise ratio and enhance the model’s generalization ability. It confirms that CF, MVF, and
IPF outperform ENN and ANN. Sluban et al. (2014) and Garcia et al. (2016) examined
the performances of ensemble filters. The former’s result shows ensemble filters usually
have better precision than elementary filters. The latter studied many possible ensembles
and found that the use of ensembles increases the predictive performance in the noise
identification, especially for the ensemble of HARF and MVF. However, the ensemble filters
are prone to overcleansing and have a higher computational cost than the elementary filter.

The filtering for regression gets less attention than that for classification. Inspired by
the feature selection, a filter based on mutual information (MI) is presented to decide which
samples should belong to the training data set (Guillen et al., 2010). But its performance is
not satisfactory and it takes a huge amount of time. The ENN evolves into a new version,
ENN for regression (RegENN), which is to remove any sample if its neighbors’ output is far
away from the prediction of a model trained on all samples except itself (Kordos et al., 2013).
Another evolution is named as the discrete ENN (DiscENN) (Arnaiz-González et al., 2016).
It transforms the continues variables into classes by the discretization of the numerical
output variable, then the filter for classification is applied to the transformed data set.

Existing filters for classification or regression focus on the noise (value or probability)
estimation by means of various data partitions, models, and ensemble strategies. However,
two basic problems are often missing or solved intuitively. (1) The influence of filtering on
GE bound. Many filters may be good at estimating the noise, but they did not explain the
influence of filtering on the generalization ability. There is no theoretical guarantee that a
filter could reduce the GE bound. (2) The adaptive sample selection problem. It mainly
refers to how to regulate the number of kept or removed samples according to the noise
environment. Specifically, the filtering thresholds are empirically selected by the simulated
results in many filters, including HARF, INFFC, MI, and RegENN. Then the filtering with
the suggested threshold may be unsuitable for a new noisy data set.

1.2 Summary of Contributions

From the perspective of generalization error (GE) bound, three essential problems need to
be answered in output noise filtering.

1. Whether a filter works or whether it could reduce the GE bound?

2. How many samples should be removed so as to obtain the least GE bound?

3. Which samples should be removed?
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The first two problems are often out of consideration or discussed empirically in related
works. We propose a unified framework of optimal sample selection (OSS) for effectiveness
determination and optimal sample selection in output noise filtering from the perspective
of GE bound. A noise estimator and a novel filter are presented to deal with noisy outputs
in regression and ordinal classification problems. In summary, the main contributions of
this paper are as follows.

• For Problem 1, the decision rule is presented to decide whether a filter could reduce
the GE bound. It implies that not all filters are beneficial to the generalization ability
although they could reduce the noise level. The decision rule applies to any filter
when the noise estimation and model errors are prepared.

• For Problem 2, the proposed OSS framework provides the optimal sample size for
filtering so as to obtain the least GE bound. It implies that not all noisy samples need
to be removed even though noises almost have been estimated accurately. Essentially,
the optimal sample size is the result of a comprehensive balance of multiple factors,
including the sample size, model errors, and the noise level. Hence the optimal sample
size has the adaptability to environmental changes in the sample size, the noise ratio,
and noise variance. Meanwhile, the OSS framework can be integrated with any noise
estimator and then produces a new filter. It offers a choice of tuning the filtering
threshold and could prevent filters from overcleansing.

• For Problem 3, the proposed OSS framework suggests that samples with larger noises
should be removed first. Further, high-noise and low-noise samples can be broadly
separated by the covering interval, and the covering distance (CD) provides a prac-
tical estimation of symmetric output noise. The characteristics of the CD estimator,
including unbiasedness, absolute and relative deviations, are explored under popular
noise distributions. Then the covering distance filtering (CDF) approach is proposed
by integrating the CD with the OSS framework.

• It is empirically verified that the covering interval and the CD estimator are also ap-
plicable to asymmetric mixed noise. Experimental results indicate that the proposed
CDF filter is effective in regression and ordinal classification problems, and it outper-
forms the state-of-the-art filters in terms of noise recognition, prediction ability, and
efficiency. In the real problem of apparent age estimation, the CDF algorithm not
only recognizes noisy age labels correctly but also brings down the prediction errors.

1.3 Organization

The rest of this paper is organized as follows. Section 2 describes the unified filtering frame-
work in determining the effectiveness and optimizing the sample size from the perspective
of GE bound in regression. The properties and applications are analyzed subsequently. In
Section 3, the covering interval is introduced to separate low-noise samples from high-noise
ones. The covering distance is proposed for estimating the output noise, and it is integrated
with the OSS framework, generating the CDF filtering algorithm. All the proofs of Section
2 and Section 3 can be found in the appendix. In Section 4, the CDF filter is applied to a
real apparent age data set in order to identify noisy age labels and improve the prediction
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ability. Section 5 shows the results of numerical experiments on benchmark data sets in
regression and ordinal classification, and Section 6 concludes.

2. Optimal Sample Selection Framework for Noise Filtering

A general structural regression problem can be denoted by D = {(xi, yi), i = 1, 2, . . . , n},
where xi, yi are input and output of the i-th sample or instance, respectively. If output
noise exists in the problem, yi may be unequal to the true output y0

i . Let y = m(x) be a
model trained on data set D.

Definition 1 (Noise) The noise on the i-th sample

ei = yi − y0
i . (1)

Definition 2 (Error) The model error (or residual) on the i-th sample

ri = m(xi)− yi. (2)

Let DF be the filtered data set from D. The size of filtered data set nF is less than n.
y = mF (x) denotes the model trained on data set DF .

Definition 3 (Relative size) The relative size of the filtered data set to the initial one is
defined as

ρ =
nF
n
. (3)

If all noises have been well estimated, they can be sorted by the absolute values. An
intuitive idea is to remove samples whose noises are over a threshold. Indeed, the threshold
corresponds to a relative size. In another word, the filtered data set with relative size ρ
consists of nρ samples with (estimated) noises less than the threshold.

2.1 Main Results for Sample Selection

2.1.1 Effective Noise Filtering

This subsection analyzes the necessary and sufficient condition of effective noise filtering
which brings down the generalization error (GE) bound by removing noisy samples.

Lemma 1 (Cherkassky et al., 1999) For regression problems with squared loss, the following
GE bound holds with probability 1− η:

R(m,D) ≤ Remp(m,D) · ε(h, n, η), (4)

where R(m,D) is the prediction risk of leaner m trained on data set D, the empirical risk

Remp(m,D) =
1

n

∑
xi∈D

[m(xi)− y0
i ]

2, (5)

and

ε(h, n, η) =

1−

√
h
(
ln n

h + 1
)
− ln η

n

−1

+

(6)

is a function about the VC-dimension h, the sample size n, and the probability η.
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Let ε(D) = ε(h, n, η) and ε(DF ) = ε(h, nF , η). The following theorem provides a necessary
and sufficient condition of effective noise filtering, and it can serve as a decision rule for
effective noise filtering.

Theorem 1 (A necessary and sufficient condition for effective noise filtering) The
model trained on DF has a lower GE bound than that on D if and only if

EDF (e2
i )

ED(e2
i )

<
ε(D)

ε(DF )
(1 + C)− C (7)

holds for a fixed goodness of fit (1−
∑
i[m(xi)−yi]2∑
i(yi−

∑
yi/n)2

), where E(·) denotes expectation function,

the coefficient

C =
ED(r2

i )

ED(e2
i )
> 0, (8)

and

ε(DF ) = ε(h, nρ, η) =

1−

√
h
(
ln nρ

h + 1
)
− ln η

nρ

−1

+

. (9)

It means that the ratio of noise levels
EDF (e2i )

ED(e2i )
is required to be under a corresponding

bound for effective noise filtering. Conversely, the model trained on the filtered data set
will have a higher risk. The proof of Theorem 1 can be found in Appendix A.1.

For simplicity, two definitions are given based on (7).

Definition 4 (Ratio of noise levels and its bound) The ratio of noise levels with re-
spect to the relative size ρ is defined as

T (ρ) =
EDF (e2

i )

ED(e2
i )
, (10)

and the (upper) bound of T (ρ) is defined by

BT (ρ) =
ε(D)

ε(DF )
(1 + C)− C, (11)

where ρ = #{DF }/#{D} = nF /n.

According to Theorem 1, the relationship between the ratio of noise levels and its bound
decides whether a filter works or whether it could reduce the GE bound.

2.1.2 Optimal Sample Selection

This subsection proposes a necessary and sufficient condition for the optimal sample selec-
tion which minimizes the GE bound of the model trained on filtered data set.

Theorem 2 (Optimal sample selection for effective noise filtering) For a fixed good-
ness of fit in regression,

minRemp(mF , DF ) · ε(DF )⇔ max [BT (ρ)− T (ρ)] · ε(DF ), (12)

where the three components are defined in (9), (10) and (11).
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It indicates that the GE bound after filtering depends on the margin between T (ρ)
and its bound BT (ρ) and the coefficient ε(DF ). The proof of Theorem 2 can be found in
Appendix A.2. Note that the error bound in Lemma 1 depends on the probability η, i.e.,
the probability η is arbitrary. And so, the conclusions in Theorems 1 and 2 hold for any
value of η. By (12), the objective function of effective noise filtering becomes

F(ρ) = [BT (ρ)− T (ρ)] · ε(DF ), (13)

and the optimal relative size

ρ∗ = arg maxF(ρ) = arg max [BT (ρ)− T (ρ)] · ε(DF ). (14)

According to Theorem 2, the number of kept samples should maximize the objective
function F(ρ) so as to obtain the least GE bound.

In Theorem 2, only the component T (ρ) is related to the noise in DF , and a smaller
T (ρ) is desired by the objective function. From (10), retaining low-noise samples means a
small T (ρ). Therefore, high-noise samples should be removed so as to obtain a smaller T (ρ)
and a lower GE bound for a given relative size.

Remark 1 The goodness of fit is assumed to be fixed in both Theorems 1 and 2. However,
it is expected to be slightly enlarged after filtering as some hard-to-learn (noisy or specific)
samples are removed in reality. In another word, the model error is likely to be reduced by
the filtering. Strictly speaking, this reduction will bring a small positive shift to BT (ρ), i.e.,
BT (ρ) in (11) is an underestimated bound for T (ρ) if the assumption is removed in the proof
of Theorem 1(see Proof A.1).

The true noise of retained samples is not always less than that of the removed ones due
to the deviation of noise estimation. It implies that the estimated T (ρ) is usually optimistic
(underestimated) in reality. Then the deviation of BT (ρ) will be counteracted by that of
T (ρ) to some extent. In addition, the robustness of some regression models might reduce
the variation of the goodness of fit in filtering, especially for large-scale data sets. Overall,
the violation of the assumption about the goodness of fit is considered to have no essential
influence on the theoretical results.

Theorem 1 means that not all filters are beneficial to the error bound although they
can reduce noise level (T (ρ) < BT (ρ) < 1). If there does not exist an effective filtering
for a data set, the optimal relative size ρ∗ will be equal to 1, i.e., no sample needs to be
removed. The optimal relative size is determined by the three components related to the
sample size, model errors, and the noise level. Hence the optimal sample size is the result
of a comprehensive balance of multiple factors (not just minimize the noise level). This
implies that not all noisy samples need to be removed even though noises almost have been
estimated accurately.

Theorems 1 and 2 provide theoretical foundations for the determination of effective
filtering and the optimal sample selection. They are directly available for noise filtering
when the noise estimation and model errors are ready. From a broad perspective, the two
theorems can be integrated with any noise estimator. In another word, they provide a
unified framework, named as the optimal sample selection (OSS) framework, for the output
noise filtering in regression. In addition, the effectiveness of the OSS framework partially
depends on the accuracy of noise estimation in reality.
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2.2 Properties of the three components

This subsection studies the properties of the three components in objective function F(ρ).
They are the basis of the instructions of the proposed framework in Subsection 2.3.

2.2.1 Properties of T (ρ)

By (10), the T (ρ) curve depends on the noise and the sequence of sample removing. Assume
that the true noises are known in the ideal situation, then all samples can be sorted by their
absolute noise values in ascending order (the last is removed first). However, a few samples
may be in the wrong order in reality due to the deviation in noise estimation. So T (ρ) can
be calculated in different ways.

• The true T (ρ) from the God’s-eye view. All true noises are known and can be sorted
in ascending order completely. It means that the true noise value and completely
correct sequence are employed in this scheme.

• The real T (ρ) in a trial. The removing sequence based on the estimated noises should
be partially consistent with the truth. The true noise value is adopted to validate the
effectiveness of the proposed theorems. In other words, the partially correct sequence
based on noise estimation and the true noise value are employed in this scheme.

• The real average T (ρ) in multiple trials. It is obtained by averaging the real T (ρ)
values over many trials in order to analyze the property in the sense of expectation.

• The estimated T (ρ) in experiment. The estimated noise values and the correspond-
ing sequence (partially correct) have to be used in real filtering algorithms.

It is easy to find that both the true and estimated T (ρ) monotonously increase with ρ.
The real T (ρ) in a trial should have a larger variation than the average T (ρ). The first
three kinds of T (ρ) are analyzed in this section, and the last is utilized in the real filtering
algorithm in Section 3.

For simplicity, the noise for exploring the property of T (ρ) is randomly generated from
a predefined distribution. Indeed, it is independent of any data set and model in this
subsection. Simulated results of T (ρ) are shown in Figure 1. It can be observed that the
true T (ρ) is equal to 0 for ρ < 1−NR and monotonously increases with ρ when ρ > 1−NR,
where NR denotes the noise ratio. The average T (ρ) is similar to the true version in shape,
but the former is larger. In addition, the average T (ρ) is more smooth than the real T (ρ).
It is obvious that the true T (ρ) is less than the other two versions for any ρ. Further,
the averaged T (ρ) is an increasing and convex function about ρ for the predefined noise
distributions. The true T (ρ) curves in two sub-figures are similar in terms of monotonicity
and concavity. The difference in noise distribution is reflected by the slope of the T (ρ)
curve.

The true T (ρ) may be affected by the noise levels, including the noise ratio NR and the
noise variance σ2, for a given type of noise distribution (the noise expectation is usually
assumed to be zero). Note that σ2 is a general variance notation but not specialized for the
Gaussian distribution. The true T (ρ) is theoretically analyzed under the assumption that
the sample size n → +∞ so as to describe the properties in the form of partial derivative.
The proportion relationship implied by the partial derivative holds for any sample size.
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(a) T (ρ) for Gaussian noises N(0, 0.52)

Sorted absolute noises (Ground truth)
0 200 400 600 800 1000 1200

0

0.5

1

Sorted absolute noises (In reality)
0 200 400 600 800 1000 1200

0

0.5

1

;

0 0.2 0.4 0.6 0.8 1

T
(;

) 
fo

r 
U

ni
fo

rm
 n

oi
se

0

0.2

0.4

0.6

0.8

1

True T(;)
Average T(;)
Real T(;)

(b) T (ρ) for uniform noises U(−1, 1)

Figure 1: The ratio of noise levels T (ρ) is simulated in two situations. In the ideal (ground
truth) situation, all (100%) noises are in the correct order, and the sorted noises
are displayed in the top left of each sub-figure. In the real situation, most (75%) of
the noises are in the correct order and the others (25%) are randomly permuted.
The real order for sorted noises are displayed in the bottom left of each sub-figure.
The noises in the two sub-figures are from the Gaussian distribution N(0, 0.52)
and the uniform distribution U(−1, 1), respectively. The noise ratio (number of
noisy samples/n) is set to be NR = 25% and the sample size n = 1000. The real
T (ρ) is the result in a trial and the average T (ρ) is from 100 independent trials.
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Property 1 The true T (ρ) has the following characteristics:

(1)
T (ρ < 1−NR) = 0, T (ρ > 1−NR) > 0. (15)

(2)
∂T (ρ)

∂ρ
≥ 0. (16)

(3) If there do not exist two equal noises,

∂2T (ρ)

∂ρ2
> 0. (17)

(4) For a given noise distribution,
∂T (ρ)

∂NR
≥ 0. (18)

(5) If the noise is from a symmetric Gaussian(or uniform, or Laplace) distribution,

∂T (ρ)

∂σ
= 0. (19)

The proof of Property 1 can be found in Appendix A.3. The first two properties
can be observed from Figure 1. Equation (16) means that the true T (ρ) (non-strictly)
monotonously increases with ρ. Equation (17) shows the convexity of T (ρ). Actually, the
true T (ρ) might be non-convex when there are many equal noises. Equation (18) indicates
that T (ρ) increases with the noise ratio NR. Although the noise level is related to the
noise ratio and the noise variance, Equation (19) shows that T (ρ) is independent of the
variance for usual symmetric noise distributions. The reason is that both the numerator
and denominator in the definition of T (ρ) (Equation 10) are proportional to the variance
and the variance can be eliminated at the same time. Note that (19) might not hold for
some asymmetric noise distributions.

As the average T (ρ) is similar to the true T (ρ) in shape, it should have the same
proportional relationship about the factors including ρ, NR, and σ in most cases. In
addition, the estimated T (ρ) associates with noise estimation apart from the noise level.

2.2.2 Properties of BT (ρ)

From (11), the upper bound BT (ρ) is related to the relative size ρ, the sample size n, the
VC-dimension h, the probability η, and the coefficient C. These relationships are shown in
Figure 2. It can be observed that BT (ρ) increases with n, η and decreases with h, C. There
is no significant difference among the considered η values. Besides, BT (ρ) monotonously
increases with ρ for other fixed factors (proved in Equation 21). The simulated results
indicate that BT (ρ) is a concave function about ρ. According to Theorem 1, BT (ρ =
0.6|n = 1000, h = 10, η = 0.05, C = 1) = 0.85 indicates that the noise level should be
reduced by more that 15% (1− 0.85) in the filtering of removing 40% (1−ρ) of the samples
so as to obtain a lower GE bound with probability 0.95 (1− η).
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Figure 2: Influences on the upper bound BT (ρ) are simulated with the following settings.
Sub-figure (a): n = 102, 103, 104, 105, h = 10, η = 0.05, C = 1; sub-figure (b): n =
1000, h = 10, 20, 50, 100, η = 0.05, C = 1; sub-figure (c): n = 1000, h = 10, η =
0.1, 0.05, 0.01, 0.001, C = 1; sub-figure (d): n = 1000, h = 10, η = 0.05, C =
0.25, 0.5, 1, 2, 4. The independent variable ρ is in [0.1,1] for each sub-figure.

Property 2 BT (ρ) has the following characteristics:

(1)
∂BT (ρ)

∂C
< 0. (20)

(2)
∂BT (ρ)

∂ρ
> 0. (21)

(3) When n� h,
∂BT (ρ)

∂n
> 0. (22)

(4)
∂2BT (ρ)

∂ρ∂C
=
∂2BT (ρ)

∂C∂ρ
> 0. (23)
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The proof can be found in Appendix A.4. Note that C is inversely proportional to the
initial noise level ED(e2

i ) in (8), Equation (20) implies that BT (ρ) increases with ED(e2
i ) for

any ρ < 1. For example, BT (ρ = 0.8|ED(e2
i ) = 2) > BT (ρ = 0.8|ED(e2

i ) = 1). Equation (23)
means that the slope of BT (ρ) with regard to ρ will increase with C or decrease with ED(e2

i ).
Equations (21) and (23) indicate that the bound BT (ρ) has a smaller increase for the larger
ρ when the initial noise level is enlarged. For example, assume that ED(r2

i ) = 1 and ED(e2
i )

is enlarged from 0.5 to 1, then C will be reduced from 2 to 1 for a fixed goodness of fit. It
can be deduced that 0 < [BT (ρ|ED(e2

i ) = 1)− BT (ρ|ED(e2
i ) = 0.5)]|ρ=0.8 < [BT (ρ|ED(e2

i ) =
1)−BT (ρ|ED(e2

i ) = 0.5)]|ρ=0.6, i.e., 0 < [BT (0.8)−BT (0.6)]|C=1 < [BT (0.8)−BT (0.6)]|C=2.
These properties can be clearly observed from Figure 2.

2.2.3 Properties of ε(DF )

Since ε(DF ) = ε(h, nρ, η) in (9), ε(DF ) is related to the relative size ρ, the sample size n,
VC-dimension h, and the probability η. The relationships between ε(DF ) and its factors
are shown in Figure 3.
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Figure 3: Influences on ε(DF ) are simulated with the following settings. Sub-figure (a):
n = 500, 1000, 5000, 10000, h = 10, η = 0.05; sub-figure (b): n = 1000, h =
10, 20, 30, 40, η = 0.05; sub-figure (c): n = 1000, h = 10, η = 0.1, 0.05, 0.01, 0.001.

It can be observed that ε(DF ) increases with h and decreases with n, η for fixed ρ. There
is no significant difference among the considered η values. Besides, ε(DF ) monotonously
decreases with ρ when other factors are fixed. More importantly, the ε(DF ) curve is almost
flat when ρ ∈ [0.6, 1]. It implies that ε(DF ) may have a smaller impact on the objective
function F(ρ) than the margin between T (ρ) and BT (ρ) when the relative size ρ is large
enough.

Property 3 ε(DF ) has the following characteristics:

(1) When n� h,

∂ε(DF )

∂n
< 0. (24)

13



Jiang, Wang, Qian and Liang

(2)

∂ε(DF )

∂ρ
< 0. (25)

(3)

∂ε(DF )

∂h
> 0. (26)

(4)

∂ε(DF )

∂η
< 0. (27)

These relationships can be easily obtained by (9), and the proof is omitted. In addition,
the relations are verified by Figure 3.

The proposed properties are summarized in Table 1. T (ρ) refers to the true version here.
The relationships between the component and its factors are denoted by different signals.
The correspondences are as follows: ↑-proportional relationship, ↓-inversely-proportional re-
lationship, ↗-insignificant proportional relationship, ↘-insignificant inversely-proportional
relationship, ×-independent. The signal with a star means the relationship is just supported
by simulation results, and the others have been proved.

ρ n
Noise

C h ηNR σ

T (ρ) ↑ × ↑ × × × ×
BT (ρ) ↑ ↑ ↑ ↑ ↓ ↓∗ ↗∗
ε(DF ) ↘ ↓ × × × ↑ ↘

Table 1: Summary of the properties

2.3 Practical Instructions for OSS Framework

This part describes practical instructions for the OSS framework, and explains its adapt-
ability based on previous simulations and properties.

2.3.1 Applications of OSS Framework

Figure 4 shows the simulation results of relevant functions for determining the effective
noise filtering and optimizing the relative size ρ. From Figure 4(a), the filtering is effective
(gets a lower GE bound) when the relative size is on the right of the red dot (ρ > 0.145).
From Figure 4(b), the maximum of the objective function (red dot) is on the upper left of
the maximum of the margin curve (blue dot) since ε(DF ) decreases with ρ and ε(DF ) > 1.
Besides, the two dots have very close horizontal coordinates, and it means the optimal
relative size mainly depends on the margin.
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(a) Discrimination of effective noise filtering
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Figure 4: The sample selection is simulated based on the proposed OSS framework. The
left sub-figure shows the three components in the objective function. Note that
the average T (ρ) is implemented in the same way as Figure 1. The maximum
margin between T (ρ) and BT (ρ) is marked by a black dashed line, and a red dot
is plotted at the crossing position. The right sub-figure shows the margin curve
(blue) and the objective function (red), and their maximums are marked by solid
dots. A vertical dashed line is added at the maximum margin. The parameter
setting for both sub-figures is: the sample size n = 1000, noise ratio NR = 25%,
noise distribution N(0, 0.52), VC-dimension h = 10, the probability η = 0.05, the
coefficient C = 1.

2.3.2 Adaptability of OSS Framework from a Qualitative Perspective

Intuitively speaking, the optimal relative size ρ∗ in (14) should have the adaptability to
the data quality and noise level, so we explored the influences of the sample size n and the
noise levels, including the noise ratio NR and noise variance σ2 (for a given type of noise
distribution), on ρ∗.

The simulation results are shown in Figure 5. The paired top and bottom sub-figures
are analyzed together in order to make a clear explanation.

(1) In the left pair (Figure 5(a) and (d)), the first new setting has a smaller sample size
than the baseline setting (n = 500 < 1000). From the baseline setting to the new
setting, BT (ρ) has a reduction due to (22). More importantly, sub-figure (a) indicates
that the smaller the ρ value is, the more BT (ρ) is reduced. As a result, the relative size
with the maximum margin becomes larger when the sample size is reduced. So does the
relative size at the crossing position as shown in Figure 5(a). Although the new setting
for comparison has a larger ε(DF ) due to (24), it has an insignificant influence on the
maximum of the objective function. Thus the optimal relative size in Figure 5(d) also
has a growing tendency. Overall, the optimal relative size ρ∗ decreases with the sample
size n in the sense of expectation when the other conditions are fixed.
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Figure 5: Influences of the sample size n, noise ratio NR, and noise variance σ2 on the
three components of the objective function F(ρ) and on the optimal relative size
ρ∗ are displayed. All components of F(ρ) are shown in the top sub-figures. The
bottom sub-figures show corresponding objective functions, and the maximums
are marked with dots. Note that component T (ρ) is implemented in the average
version similar to Figure 1, and it can be considered as a derivable function about
ρ in the sense of expectation. Three new settings are compared with a baseline
setting. The results under the baseline setting are denoted by the red dashed
lines, and those with the new settings for comparison correspond to the blue
solid lines. The baseline setting is: n = 1000, NR = 25%, the noise variance
σ2 = 0.52 (Gaussian distribution), h = 10, η = 0.05, C = 1. The new settings
for comparison are as follows. The left sub-figures: n = 500; the middle sub-
figures: NR = 35%, C = 25%/35% = 5/7; the right sub-figures: σ2 = 0.22,
C = 0.52/0.22 = 25/4. Since C is inversely proportional to the noise level ED(e2

i ),
it is adjusted according to the noise levels of the new settings. Omitted variables
are the same as those of the baseline setting.
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(2) In the middle pair (Figure 5(b) and (e)), the second new setting has a larger noise ratio
than the baseline setting (NR = 35% > 25%). By (8), the C value should become
smaller under the new setting. It can be observed from Figure 5(b) that both BT (ρ)
and T (ρ) are affected by the change of the noise ratio. BT (ρ) is larger under the new
setting because of (20). Moreover, Equation (23) implies that the smaller the ρ values
is, the more the increment of BT (ρ) is. The average T (ρ) function with the new setting
is larger than or equal to that with the baseline setting because of (18). The final
result is that both the relative size at the maximum margin and the optimal relative
size become smaller from the baseline setting to the new setting. Overall, the optimal
relative size ρ∗ decreases with the noise ratio in the sense of expectation when the other
conditions are fixed.

(3) In the right pair (Figure 5(c) and (f)), the third new setting has a smaller noise variance
than the baseline setting (σ2 = 0.22 < 0.52). For a given type of noise distribution,
both T (ρ) and ε(DF ) are not affected by the variance due to Equations (19) and (9).
Whereas BT (ρ) becomes smaller under the new setting because of Equations (20) and
(8). Moreover, both Equation (23) and Figure 5(c) support that the reduction of BT (ρ)
is more evident for a smaller ρ value. The final result is that both the relative size at the
maximum margin and the optimal relative size become larger when the noise variance
is reduced. Overall, the optimal relative size ρ∗ decreases with the noise variance in
the sense of expectation when the other conditions are fixed. In addition, the crossing
point for determining effective noise filtering has the same tendency as ρ∗.

The following property provides a strict description of the relationship between the
optimal relative size and noise variance.

Property 4 (Adaptability of ρ∗ to the noise variance) Assume the noise is from a
symmetric Gaussian (or Laplace, or uniform) distribution. Then

∂ρ∗

∂(σ2)
< 0 (28)

holds for a fixed goodness of fit and the true T (ρ), where σ2 is the noise variance.

The proof can be found in Appendix A.5. It indicates that the optimal relative size
should be reduced, or more samples could be removed, when the noise variance is enlarged.
This is consistent with the result in Figure 5(c) and (f). Actually, they provide the same
suggestion in tuning the relative size from the theoretical and simulated perspectives, re-
spectively. They have the same assumptions including the fixed goodness of fit and the
symmetry of the noise distribution. The difference between Figure 5 and Property 4 lies
in the version of T (ρ). The former utilizes the average T (ρ), while Property 4 adopts the
true T (ρ). The main reason for the same suggestion is that the average T (ρ) and the true
version have similar properties.

In sum, the optimal relative size ρ∗ decreases with the sample size, the noise ratio, and
noise variance in the sense of expectation when the other conditions are fixed. So do the
relative size at the crossing position and the one with the maximum margin. In another
word, more samples are allowed to be removed when the sample size and the noise level
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(NR and σ2) are large enough. On the contrary, more samples should be retained to avoid
overcleansing. This is accordant with our intuition. Therefore, the proposed OSS framework
has the adaptability to the data quality and noise level.

3. Covering Distance Filtering under OSS Framework

Two proposals, i.e. the covering interval and covering distance, are presented to distinguish
noisy samples in regression. A novel filtering algorithm is designed by integrating them
with the proposed OSS framework.

3.1 Covering Interval: a Selector for Low-noise Samples

Definition 5 (Covering interval) [u, v] is a covering interval of the true output y0
i if

y0
i ∈ [u, v]. The center of the interval c = u+v

2 , and the radius r = v−u
2 .

Low-noise samples can be identified by the covering interval according to the rule: falling
in the covering interval corresponds to a smaller noise, and getting out of the interval
indicates a larger noise. This is supported by the following propositions.

Let F (e|µ, σ), f(e) be the cumulative distribution function (CumDF) and probability
density function (PDF) of the noise e, respectively. µ denotes the mean and σ2 is the
variance. Note that F (e|µ, σ) is a general notation for any distribution but not specialized
for the Gaussian distribution.

Proposition 1 (A necessary condition for low-noise samples) Assume that the noise
ei on y0

i is from a symmetric distribution with CumDF F (e|µ = 0, σ). e(1), e(2) are two sets

of noises with variances σ2
1, σ

2
2 on y0

i . [u, v] is any covering interval of y0
i . If ∂F (e|µ=0,σ)

∂σ < 0
for e > 0 and σ2

1 < σ2
2, then

P{yi ∈ [u, v]
∣∣e(1)} > P{yi ∈ [u, v]

∣∣e(2)}, (29)

where P(·) denotes the probability function.

Corollary 1 Assume that the noise ei on y0
i is from a Gaussian(or uniform, or Laplace)

distribution with the CumDF F (e|µ = 0, σ). e(1), e(2) are two sets of noises with variances
σ2

1, σ
2
2 on y0

i . [u, v] is any covering interval of y0
i . Then (29) holds for σ2

1 < σ2
2.

Proposition 1 means that the samples with low noises are more likely to fall in the
covering interval than those with large noises. Corollary 1 shows that the conclusion still
holds for usual distributions at fewer preconditions. Their proofs can be found in Appendix
A.6 and A.7.

Proposition 2 (A sufficient condition for low-noise samples) Assume that the noise
e on the true output is from a symmetric distribution with the PDF f(e), i.e. f(−e) = f(e).
[u, v] is any covering interval of y0

i . e ∈ {ei, i = 1, 2, · · · , n}. Then

E(|ei|p
∣∣y0
i + ei ∈ [u, v]) < E(|ei|p

∣∣y0
i + ei /∈ [u, v]) (30)

holds for any p ∈ N+.
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The proof can be found in Appendix A.8. It means that the samples within any covering
interval have a lower average noise than those out of the interval. Proposition 2 is applicable
to some special symmetric noise distributions, including the zero-mean Gaussian, uniform,
and Laplace distributions. The conclusion is still true if the noise distribution is a mixture
of multiple symmetric distributions.

The covering interval is required for distinguishing between the low noise and high noise.
Unfortunately, it is difficult to decide whether a given interval is the covering interval since
the true output is usually unknown in reality. It is helpful if we can deduce that a specific
interval covers the true output with a relatively large probability. Actually, this kind of
covering interval can be prepared by means of model predictions.

Definition 6 The prediction interval of J base models {y = mj(x), j = 1, 2, · · · , J} for yi
is defined as

[ui, vi] = [min
j
mj(xi),max

j
mj(xi)]. (31)

Note that whether the above interval covers the true value is unknown yet.

If the base models {mj(x), j = 1, 2, · · · , J} are trained on different data subsets, we
can assume the independence of mj(x). Also, the events y0

i < mj(xi) for different j values
are independent. Similarly, the independence of y0

i > mj(xi) with different j values holds,
too. According to the principle of indifference (Peters, 2014), we can assume P{mj(xi) <
y0
i } = P{mj(xi) > y0

i } = 1/2. By the above independence and indifference, the covering
probability

P{y0
i ∈ [ui, vi]} = P{min

j
mj(xi) ≤ y0

i ≤ max
j
mj(xi)}

= 1− P{y0
i < min

j
mj(xi)} − P{y0

i > max
j
mj(xi)}

= 1− P{y0
i < mj(xi),∀j} − P{y0

i > mj(xi),∀j}

= 1−
J∏
j=1

P{y0
i < mj(xi)} −

J∏
j=1

P{y0
i > mj(xi)}

= 1−
J∏
j=1

1/2−
J∏
j=1

1/2

= 1− 21−J .

(32)

It indicates that the larger J produces a higher covering probability. However, increasing
J will enlarge the interval radius, and then raise the deviation of noise estimation (see
Property 6). In order to obtain a good balance, the parameter J is selected in a trade-off
situation when the uncovering probability is around the popular significant levels, such as
0.1, 0.05 and 0.01. As P{y0

i ∈ [ui, vi]} = 0.9 ⇒ J ≈ 4.3 and P{y0
i ∈ [ui, vi]} = 0.99 ⇒ J ≈

7.6, J = 5, 6, 7 is considered in the construction of covering interval.

Considering that the independence is required, the model predictions are generated in
the subsets scheme in reality. The original data set is randomly partitioned into J subsets.
Then the regression model is trained on each subset and tested on the whole data set.
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3.2 Covering Distance: an Approach of Noise Estimation

The covering distance (CD) is proposed to estimate the absolute noise. On the basis of the
noise estimation, a noisy data set can be filtered under the proposed OSS framework.

3.2.1 Definition of the Covering Distance

Definition 7 (Covering distance, CD) The covering distance from yi to the covering
interval [u, v] is defined as

Ri =
1

2

(
min

y0i ∈[u,v]
|yi − y0

i |+ max
y0i ∈[u,v]

|yi − y0
i |

)
. (33)

By the noise definition in (1), the absolute noise has the following bounds:

inf |ei| = min
y0i ∈[u,v]

|yi − y0
i |

=

{
0 if yi ∈ [u, v]

min{|yi − u|, |yi − v|} otherwise
,

=

{
0 if yi ∈ [u, v]

|yi − c| − r otherwise
,

(34)

sup |ei| = max
y0i ∈[u,v]

|yi − y0
i |

= max{|yi − u|, |yi − v|}
= |yi − c|+ r.

(35)

where c, r denote the center and radius of the covering interval, respectively. Substituting
(34) and (35) into (33), we get a practical definition of the covering distance

Ri =

{
1
2 (|yi − c|+ r) if yi ∈ [u, v]
|yi − c| otherwise

, (36)

where the interval center c = u+v
2 and the interval radius r = v−u

2 . Besides, the covering
distance can be simplified to be the absolute covering distance (ACD)

RAi = |yi − c|. (37)

Figure 6 shows the mapping from yi to the absolute noise. One possible situation of
y0
i is plotted in the covering interval. The true absolute noise is zero when yi = y0

i , and it
linearly increases with the distance |yi − y0

i | (see the blue dotted line). The area between
the lower and upper bounds from (34) and (35) is gray-colored. And the covering distance
lies in the center of the gray area from the vertical view.

3.2.2 Theoretical Property

As an estimator of the true absolute noise, the covering distance has the following properties.

20



A Unified Sample Selection Framework for Output Noise Filtering

yi

jeij

u vy0
i c

The true noise
Lower bound of noise
Upper bound of noise
Covering distance

Figure 6: Cover distance and the true absolute noise

Property 5 (Unbiasedness) Assume the probability density function (PDF) of the in-
terval center fc(·) is symmetric about the true output y0

i , i.e. fc(y
0
i − c) = fc(y

0
i + c) and

y0
i ∈ [u, v], then Ec(Ri) = |ei|, ∀yi /∈ [u, v].

The proof can be found in Appendix A.9. It indicates that the covering distance is
an unbiased estimation of |ei| for any yi /∈ [u, v] if the distribution of the interval center
c is symmetric about y0

i . In another word, the average estimated noise is nearby the true
noise as long as the centers of covering intervals are around the true output. Note that the
unbiasedness of the CD does not hold for yi ∈ [u, v].

The expected absolute deviation (EAD) of the CD is defined as the expectation of the
distance from |ei| with respect to c:

EADCD = Ec
∣∣Ri − |ei|∣∣ =

∫ +∞

−∞

∣∣Ri − |ei|∣∣ · fc(c)dc. (38)

The expected relative deviation (ERD) of the CD is defined as

ERDCD = Ec

∣∣Ri − |ei|∣∣
|ei|

=

∫ +∞

−∞

∣∣Ri − |ei|∣∣
|ei|

· fc(c)dc. (39)

The EADs of the two bounds in (34) and (35) have similar equations:

EADL = Ec
∣∣ inf |ei| − |ei|

∣∣, EADU = Ec
∣∣ sup |ei| − |ei|

∣∣.
The ERDs of the two bounds are

ERDL = Ec

∣∣ inf |ei| − |ei|
∣∣

|ei|
, ERDU = Ec

∣∣ sup |ei| − |ei|
∣∣

|ei|
.

Property 6 Assume the PDF of the interval center fc(·) is symmetric about y0
i and y0

i ∈
[u, v]. For any yi /∈ [u, v],

21



Jiang, Wang, Qian and Liang

(1) EADCD < EADL = EADU ≡ r.

(2) ERDCD < ERDL = ERDU .

(3) ∂EADCD
∂r > 0.

The proof can be found in Appendix A.10. It indicates the covering distance outperforms
the two bounds in estimating the noise in terms of the EAD and ERD when the noise is
relatively large (yi /∈ [u, v]). Besides, the deviation of the CD increases with the interval
radius r. In another word, the shorter the covering interval is, the more accurate the
estimator is. Particularly, it is easy to prove EADCD = r/2 when the interval center c is
from the uniform distribution U(y0

i − r, y0
i + r). In addition, the ACD in (37) has the same

characteristics as the CD in Properties 5 and 6 since RAi ≡ Ri for any yi /∈ [u, v].

3.2.3 Empirical Property

It is assumed y0
i ∈ [u, v] in Properties 5 and 6. However, Equation (32) implies that y0

i

may be out of the constructed covering interval. So the previous properties are required
to be reexamined in a more realistic situation. Assume the interval center c is from three
distributions: the uniform distribution U(y0

i − 1.25r, y0
i + 1.25r), the Gaussian distribution

N(µ = y0
i , σ = r/2) and the Laplace distribution Lp(µ = y0

i , σ = r), where µ denotes
the mean and σ is the standard deviation. Their covering probabilities (P{y0

i ∈ [ui, vi]} =
P{y0

i ∈ [c− r, c+ r]}) are 0.8, 0.95 and 0.76, respectively.
Figure 7 shows the density plots of the true noise and four noise approximations, in-

cluding inf |ei| in (34), sup |ei| in (35), Ri in (36), and RAi in (37). Generally, the lower
bound inf |ei| underestimates the noise, and the upper bound sup |ei| overestimates for all
predefined PDFs. From Figure 7(d), (e) and (f), the covering distance Ri has an unbiased
estimation for |ei| > 2r. Indeed, |ei| > 2r implies yi /∈ [u, v] with a large probability (at
least the covering probability),

P(yi /∈ [u, v]) = P(|yi − c| > r)

≥ P(|yi − y0
i | − |y0

i − c| > r)

= P(|ei| − |y0
i − c| > r)

≥ P(2r − |y0
i − c| > r)

= P(|y0
i − c| < r)

= P(y0
i ∈ [u, v]).

It means the unbiasedness of Property 5 is verified in the simulation. Whereas Ri usually
makes an overestimation when |ei| < r. This bias is mainly from the interference of the
upper bound (Ri = (inf |ei| + sup |ei|)/2) as the least estimation of sup |ei| is the radius r
but not zero in (35). In a word, the covering distance is unbiased for high noises, and it
produces an overestimation for low noises. Compared with the covering distance, the ACD
estimator performs better for low noises as it gets rid of the minimum limit of sup |ei|.

Figure 8 shows the EAD and ERD curves under three predefined PDFs of c.

• It can be observed from Figure 8 that EADCD ≤ EADACD < EADL ≤ EADU

and ERDCD ≤ ERDACD < ERDL ≤ ERDU when |ei| > r. It means that the
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Figure 7: The density maps of the true noise ei and four approximations (inf |ei|, Ri, RAi ,
sup |ei|) are displayed. In order to obtain a stable result, the interval center c is
set to be the equally spaced percentiles (0.005 : 0.01 : 0.995) of the predefined
PDFs. One hundred noise values are uniformly taken from the interval [−3r, 3r].
Thus there are 10000 dots in each density plot. A red solid line representing the
accurate estimation is added to each sub-figure.
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(f) EAD for the Laplace distribution
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(h) ERD for the Gaussian distribution
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Figure 8: The top sub-figures show the predefined PDFs of the interval center c. The
middle and bottom sub-figures display the EAD and ERD curves, respectively.
In the top sub-figures, the area of y0

i ∈ [u, v] (u < y0
i < v ⇔ c − r < y0

i <
c + r ⇔ y0

i − r < c < y0
i + r) is blue-colored. The EAD and ERD curves are

obtained in the same way as the density plot in Figure 7, i.e., the variable of
integration c is taken from 100 equally spaced percentiles (0.005 : 0.01 : 0.995)
of the predefined PDFs. Since Ri depends on yi, c, r and yi = y0

i + ei, EADCD

and ERDCD can be considered as the functions with regard to ei for fixed y0
i , r

(c is the variable of integration). Also, the independent variable can be replaced
with yi (ei ∈ [−3r, 3r]⇔ yi ∈ [y0

i − 3r, y0
i + 3r]).
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CD outperforms the others for large noises in terms of the EAD and ERD. This is
generally consistent with that in Property 6. Their difference lies in the independent
variable. Property 6 describes the results with regard to yi (yi /∈ [u, v]), whereas Figure
8 displays the results with respect to ei (|ei| > r) for the convenience of calculation.
Actually, both yi /∈ [u, v] and |ei| > r refer to the large noise.

• When |ei| < r, EADL and EADACD may be less than EADCD. That is because the
lower bound in (34) usually underestimates the noise and caters for the low noise,
while the upper bound in (35) overestimates and then interferes with the low noise
estimation of the covering distance (Ri = (inf |ei|+ sup |ei|)/2).

• From Figure 8 (d), (e) and (f), all EADs become stable when |ei| > 2r. The reason
is that |ei| > 2r could ensure yi /∈ [u, v] with a relatively large probability (at least
the covering probability). According to Property 6, the EAD is a constant for given
fc(c) and r when yi /∈ [u, v], and so, all EAD curves become stable when |ei| > 2r.
Besides, both EADL and EADU are very close to r for all predefined probability
density functions when |ei| > 2r.

• All EADCD and EADACD curves are wavy when |ei| < r. It is from the instability
of
∣∣Ri − |ei|∣∣. For example,

∣∣Ri − |ei|∣∣ in Figure 6 increases with yi in [u, y0
i ], and

decreases with yi in [y0
i , c + δ], then increases again in [c + δ, v] (δ is the horizontal

distance of the crossing point of |ei| and Ri from the interval center c). In contrast,
the two bounds have monotone EAD curves with regard to |ei| as their deviations
are simpler than the CD. For example,

∣∣ inf |ei| − |ei|
∣∣ decreases with yi in [u, y0

i ] and
increases in [y0

i , v] in Figure 6. Indeed, the EADCD curves are based on the density
maps in Figure 7(d), (e) and (f), and the instability of

∣∣Ri−|ei|∣∣ also can be observed
from Figure 7.

• From Figure 8 (g), (h) and (i), all ERDs generally decrease with |ei| since they are
inversely proportional to the absolute noise. ERDCD < 50% for the uniform distri-
bution, ERDCD < 30% for the Gaussian distribution and ERDCD < 20% for the
Laplace distribution when |ei| > r. It means the covering distance has small ERDs in
estimating large noises.

Too large ERD (e.g. ERD > 50%) may bring confusion to noise comparison or ranking.
For example, there are two cases of noise comparison based on a noise estimator: case 1
{A=50± 2 vs. B=30± 2}; case 2 {A=5± 2 vs. B=3± 2}. Although both cases have the
same absolute deviation (±2), they differ greatly in the relative deviation. In case 1, it is
clear that noise A is larger than noise B. While there exists an obvious uncertainty in the
noise comparison of case 2. That is because the relative deviation in case 2 is significantly
larger than that in case 1. The noise estimator with a large ERD may lead to an unreliable
or wrong result in noise comparison and it should be avoided wherever possible.

In a word, the covering distance (CD) would be an accurate and reliable estimator,
especially for high noises. Meanwhile, the absolute covering distance (ACD) is comparable
with the covering distance and it has a lower deviation for low noises.
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3.3 Covering Distance Filtering for Regression

This part shows the filtering difference between the CD and ACD, and presents the filtering
algorithm based on CD.

3.3.1 Filtering based on CD and ACD

The optimal sample selection in (14) provides a unified framework for noise filtering, and
the (absolute) covering distance in (36) and (37) can be embedded in the framework. Specif-
ically, the joint points are in the estimations of T (ρ) and the coefficient C.

T (ρ) can be estimated by replacing e2
i with R2

i ,

T̂ (ρ) =
EDF (R2

i )

ED(R2
i )

=

∑
DF

R2
i /(nρ)∑

D R
2
i /n

, (40)

where Ri is the CD estimator in (36).

Ĉ =

max
j=1,2,··· ,J

∑n
i=1

(
r

(j)
i

)2
/n∑n

i=1R
2
i /n

, (41)

where the model error r
(j)
i = mj(xi) − yi. Compared with the definition of C in (8), Ĉ

takes the maximum on J sets of prediction errors. The reason is that the covering distance
is overestimated for low noises, and then the denominator term

∑n
i=1R

2
i /n in (41) is an

overestimation of ED(e2
i ). This modification in (41) aims to weaken the negative impact of

noise estimation. In addition, T (ρ) and C also can be similarly estimated by the absolute
covering distance RAi in (37).

By (11) and(13), the estimated objective function

ˆF(ρ) =

[
ε(D)

ε(DF )
(1 + Ĉ)− Ĉ − T̂ (ρ)

]
· ε(DF ) (42)

= (Ĉ + 1) · ε(D)− (Ĉ + T̂ (ρ)) · ε(DF ), (43)

where ε(D), ε(DF ) depend on n, ρ, h, η in (6) and (9).

Considering that the CD and ACD may be unreliable in estimating and ranking low
noises (large ERDs), low-noise samples are directly retained in noise filtering. According to
Proposition 2, they can be identified through the covering interval. The sample selection is
optimized on high-noise samples (yi /∈ [u, v]) under the proposed OSS framework,

ρ̂∗ = arg max
ρ>nc/n

ˆF(ρ), (44)

where ρ̂∗ denotes the estimated optimal relative size, and nc is the number of low-noise
samples (yi ∈ [u, v]).
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It is obvious that ρ̂∗ satisfies ∂ ˆF(ρ)
∂ρ = 0 when n→∞, where

∂ ˆF(ρ)

∂ρ
= (Ĉ + T̂ (ρ)) ·

(
−∂ε(DF )

∂ρ

)
− ∂T̂ (ρ)

∂ρ
· ε(DF )

=

(
maxj

∑n
i=1(r

(j)
i )2/n∑n

i=1R
2
i /n

+

∑
DF

R2
i /(nρ)∑

D R
2
i /n

)
·
(
−∂ε(DF )

∂ρ

)
− ∂T̂ (ρ)

∂ρ
· ε(DF )

=

(
maxj

∑n
i=1(r

(j)
i )2/n+

∑
DF

(R2
i )/(nρ)∑

D R
2
i /n

)
·
(
−∂ε(DF )

∂ρ

)
− ∂T̂ (ρ)

∂ρ
· ε(DF ).

(45)

Note that the ACD in (37) provides a lower estimation than the CD in (36) for low noises
in DF , i.e., RAi < Ri for yi ∈ [u, v], we have

∑
DF

(RAi )2/(nρ)∑
D(RAi )2/n

<

∑
DF

(R2
i )/(nρ)∑

D R
2
i /n

and

maxj
∑n

i=1(r
(j)
i )2/n+

∑
DF

(RAi )2/(nρ)∑
D(RAi )2/n

<
maxj

∑n
i=1(r

(j)
i )2/n+

∑
DF

(R2
i )/(nρ)∑

D R
2
i /n

.

By (25) and (16), we know
(
−∂ε(DF )

∂ρ

)
> 0 and ∂T̂ (ρ)

∂ρ > 0. Then ∂ ˆF(ρ)
∂ρ based on the

ACD will be less than that based on the CD. Considering that the slope of ˆF(ρ) generally
decreases with ρ, we could deduce that the estimated relative size ρ̂∗ from the ACD is smaller
than that from the CD. In another word, the filtering based on the ACD will remove more
samples than that based on the CD, and the ACD takes a higher risk of overcleansing than
the CD in noise filtering.

The CD and ACD are compared in the following simulation.

Let Din, Dout be the subsets consisting of samples in or out of the covering interval,
respectively. Their sample sizes are nc = #{Din} and np = #{Dout}. Considering that the
sorted sequences of Din from both CD and ACD may be unreliable (large ERDs), samples
in Din and Dout are sorted separately and those in Dout are removed first.

Figure 9 shows the filtering results based on the CD and ACD on benchmark data set
Space ga (detailed data information is shown in Table 5). From Figure 9(a), the optimal
relative size ρ∗ has the following relation: ρ∗ACD < ρ∗CD < ρ∗. The result in Figure 9(b)
becomes ρ∗ACD < ρ∗CD ≈ ρ∗. It means the filtering from ACD removes more samples than
the CD and the true ρ∗. It verifies the previous deduction that the ACD takes a higher
risk of overcleansing than the CD. Clearly, the optimal relative size from the CD is more
closer to the true one. When the noise ratio is large enough, the filtering based on the CD
is comparable with the true ρ∗.
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Figure 9: The sample selections based on the CD and ACD are compared under the OSS
framework. The Gaussian noises from N(0, 0.52) are artificially added to the data
set Space ga (the sample size n = 3107, the noise ratio NR = 10%, 30%). The
model predictions are produced by the kNN model (k = 3) in the subsets scheme
(J = 5). Note that the sequence of sample removing based on the CD is the
same as that from the ACD, only one true objective function is displayed as the
baseline. In other words, the three objective functions in each sub-figure have
the same sequence of sample removing. The true F(ρ) is computed by the true
noise, while the others are based on the noise estimations in (36) and (37). The
reference line marked with ρ = nc/n separates the low-noise (Din) and high-noise
(Dout) samples.

It is worth noting in Figure 9 that a valley occurs at ρ = nc/n for each curve, especially
for those from the CD and ACD. The reason is that samples in Din and Dout are sorted
separately and the estimated noises of a few samples in Din are larger than the least of
Dout. These samples are named as the overflowing samples. As mentioned before, the noise
for Din is usually overestimated by the CD and ACD (see Figure 8), while the estimation
for Dout is unbiased (Property 5). The truth is that the overflowing samples based on the
true noise is not as many as those based on the CD or ACD. This is verified by the fact that
the valley in the true F(ρ) curve is insignificant. In addition, ˆF(ρ) in reality is a smooth
function with respect to ρ, while the true F(ρ) is slightly rough as the sequence of sample
removing is based on the noise estimation but not the true value.

The objective function estimated by the ACD is closer to the true curve because it has
a lower deviation for some low noises. In estimating the objective function, the ACD wins
in the distance from the true function, while the CD wins in the shape and the trend.
Compared with the ACD, the CD estimator allows more samples to be retained. As a
result, it has a lower risk of overcleansing and is closer to the true optimal sample selection.
Thus the CD estimator is adopted in the filtering algorithm.
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3.3.2 Filtering Algorithm based on CD

Let Din, Dout be the subsets consisting of samples in or out of the covering interval, re-
spectively. Their sample sizes are nc = #{Din} and np = #{Dout}. The noise filtering
is executed in the following way. Firstly, the samples in Din are considered as low-noise
and they are retained directly as the covering distance (CD) has large relative deviations
in estimating low noises. Secondly, the noise of each sample is estimated by the CD. Then
the samples in Dout can be removed one by one according to the absolute noise (large noise
first). When a new sample is removed, the objective function F(ρ) for a smaller ρ can be
estimated by (43). Finally, the removing operation is stopped at the maximum F(ρ).

Algorithm 1 Covering distance filtering (CDF) algorithm for regression.

Input:
Regression data set D = {(xi, yi), i = 1, 2, · · · , n}
Base models y = mj(x), j = 1, 2, · · · , J

Output:
Filtered data set DF

1: Train and test the base models in the subsets scheme, then each sample has J model
predictions and errors.

2: Compute the covering interval for each sample by (31).
3: Compute the CD value for each sample by (36). Sort the samples in Dout by the CD in

ascending order and obtain a new set D′out = {(xi′ , yi′)}
np
i′=1.

4: Estimate the coefficient C by (41), compute ε(D) by (6).
5: for s = 1 to np do
6: nF = nc + s, ρs = nF /n, DF=Din

⋃
{(xi′ , yi′) ∈ D′out}si′=1;

7: Compute T̂ (ρs) by (40); Compute ε(DF ) by (9).
8: Estimate the objective function F(ρs) by (43).
9: end for

10: s∗ = arg maxsF(ρs), DF=Din
⋃
{(xi′ , yi′) ∈ D′out}s

∗
i′=1.

Algorithm 1 shows the steps of the proposed covering distance filtering (CDF). Model
predictions and errors are generated in the subsets scheme in step 1. In steps 2-3, the
covering interval and CD are obtained based on the model predictions and real outputs.
The samples in Dout are sorted to decide the removing sequence. Step 4 computes the fixed
items in (43), including coefficient C and ε(D). In steps 5-9, the objective function F(ρ) is
estimated for each possible filtering from the removing sequence. Step 10 finds the filtering
such that F(ρ) achieves the maximum (ρ∗ = (nc+s

∗)/n). The traversal calculation of F(ρs)
(steps 5-9) is efficiently executed through vector operations (vectors T̂ (ρs) and ε(DF )) in
our experiments.

The relative size is limited in ρ = (nc+1 : n)/n, and the maximum objective value must
exist. If any filtering is determined to be ineffective by (7), the optimal relative size will be
equal to 1. In most cases, T (ρ) is convex about ρ and BT (ρ) is concave, the estimated F(ρ)
is usually a concave function with respect to ρ ∈ [(nc + 1)/n, 1]. Thus the optimization
procedure can also be implemented by other optimizing methods such as the binary search
and gradient-based search.
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Assume that Cj(n) is the time complexity function of the j-th base model. Only the
first step of Algorithm 1, computing the model predictions, is the complexity of Cj(n)
and the other steps have a linear complexity. Hence the total complexity is T (CDF ) =∑J

j=1 Cj(n)+np ·n, where np denotes the number of samples out of the covering interval. If
the kNN model is employed in the subsets scheme, it becomes T (CDF ) = (log(n) +np) ·n.

4. A Real Example: Noise Filtering on Apparent Age Data Set

4.1 Competition Data Set Information

Apparent age estimation has attracted more and more researchers since its potential ap-
plications in the real world such as in forensics or social media (Rothe et al., 2018). In
apparent age estimation, each facial image is labeled by multiple individuals. The mean
age (rather than the real age) is set to be the ground truth age and the uncertainty is intro-
duced by the standard deviation (Std). Briefly speaking, face age estimation consists of two
crucial stages: age feature representation and age estimator learning (Liu et al., 2015). Huo
et al. (2016) provide four sets of feature representations for images in the age estimation
competition data set based on fine-tuned deep models. The original images are from ICCV
2015 (training data set: 2463×2; validation data set: 1136×2) and CVPR 2016 (training
data set: 4113×2; validation data set: 1500×2) (Escalera et al., 2015). Images are turned
over as the image augmentation (×2). The data set contains 90 features and 18424 samples
in each feature representation. The following age noise identification is based on the given
features and labels.

As the apparent age is labeled by multiple individuals, the age value may be inconsistent
with the facial image. The noise filtering on apparent age data set aims to find the most
inconsistent label(s) and improve the prediction ability of the model trained on it. The
proposed CDF (J = 5) is independently executed on the data sets with four sets of different
feature representations. Predictions are obtained by kNN (k = 5) regressor in the subsets
scheme. Considering the randomness of data partition, each noise filtering round is repeated
five times and the covering distance (CD) is averaged.

Figure 10(a) displays the age distribution by means of the density curve and histogram.
Figure 10(b) shows some confident examples (with the least average CD) in different age
intervals. The apparent age and image name are given over and under the image, respec-
tively.

4.2 Noise Filtering Results

It is known that high-noise samples usually have large CDs. Table 2 lists the images
with the 20 largest average CDs (on the four sets and five repetitions) and those with the
maximum CD over 4. Considering that the facial image is similar to its mirror image (such
as 005052.jpg and 005052t.jpg), they are listed adjacently and only the one with the larger
average is shown. The CD values beyond 4 have a light blue background, and the average
CDs over 4 are bolded. The label bias denotes the relationship between the age label and
the covering interval. The symbol ↑ means the label is larger than the interval center, i.e.,
the label seems to be overestimated. While the symbol ↓ has the opposite meaning.
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Image No.
Name Age

Std.
Label CD from different features Aver.

(Source) label bias Fea. 1 Fea. 2 Fea. 3 Fea. 4 CD

1 005152.jpg 11.3 14.1 ↑ 8.82 8.62 6.80 7.39 7.91
2 005152t.jpg 11.3 14.1 ↑ 7.88 10.17 4.84 7.88 7.69

(CVPR2016 validation dataset)

3 000115t.jpg 89.2 6.5 ↑ 6.36 6.29 5.18 5.50 5.83
4 000115.jpg 89.2 6.5 ↑ 5.94 6.27 5.15 5.25 5.65

(CVPR2016 training dataset)

5 005165.jpg 87.9 6.6 ↑ 4.94 4.72 3.78 4.13 4.39
6 005165t.jpg 87.9 6.6 ↑ 5.01 5.13 3.79 3.97 4.47

(CVPR2016 validation dataset)

7 005565.jpg 25.2 10.7 ↑ 3.30 4.24 4.20 3.44 3.79
8 005565t.jpg 25.2 10.7 ↑ 3.29 4.55 3.58 2.29 3.43

(CVPR2016 validation dataset)

9 000962t.jpg 74.1 11.2 ↑ 4.06 4.04 3.23 3.26 3.65
10 000962.jpg 74.1 11.2 ↑ 4.06 3.85 2.14 3.43 3.37

(CVPR2016 training dataset)

11 augmentation image 2084.jpg 7 5.2 ↑ 10.05 0.82 1.96 1.60 3.61
12 image 2084.jpg 7 5.2 ↑ 8.73 0.97 1.49 1.63 3.21

(ICCV2015 validation dataset)

13 002914.jpg 7.1 5.2 ↑ 8.64 0.30 1.58 1.54 3.02
14 002914t.jpg 7.1 5.2 ↑ 9.97 0.24 1.87 1.52 3.40

(CVPR2016 training dataset)

15 003260.jpg 86.9 5.5 ↑ 3.96 4.85 1.16 2.32 3.07
16 003260t.jpg 86.9 5.5 ↑ 3.96 4.60 1.16 2.27 3.00

(CVPR2016 training dataset)

17 image 432.jpg 51 4.7 ↓ 2.06 1.88 2.01 2.79 2.18
18 augmentation image 432.jpg 51 4.7 ↓ 1.94 1.98 1.95 2.23 2.02

(ICCV2015 training dataset)

19 002376t.jpg 55.1 7.7 ↓ 2.27 2.18 2.16 1.93 2.14
20 002376.jpg 55.1 7.7 ↓ 2.09 2.29 2.11 1.57 2.01

(CVPR2016 training dataset)

21 002827t.jpg 50.5 8.4 ↑ 1.22 1.83 2.16 2.53 1.93

(CVPR2016 training dataset)

22 image 4725.jpg 31 2.2 ↑ 0.94 5.30 0.03 0.02 1.57
23 augmentation image 4725.jpg 31 2.2 ↑ 0.41 5.35 0.01 0.04 1.45

(ICCV2015 training dataset)

24 001265t.jpg 31.1 2.2 ↑ 0.37 5.26 0.03 0.02 1.42
25 001265.jpg 31.1 2.2 ↑ 0.63 5.19 0.17 0.02 1.50

(CVPR2016 training dataset)

Table 2: Noisy age labels in competition data set
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Figure 10: Information of age estimation data set from ICCV2015 and CVPR2016

In Table 2, it might be difficult to decide whether the age labels have deviations for
the elderly people (Nos. 3-6, 9-10, 15-16), whereas it becomes easier for the children. For
example, the age for the first image (Nos. 1, 2, age=11.3) should intuitively between 2
and 5, and the label is inaccurate. Although the 9-th and 10-th images (Nos. 17-20)
are identical, their features have minor differences among the four sets of representations.
Moreover, the subset partition is random, hence these images (Nos. 17-20) do not exactly
have the same CD. So do images Nos. 11-14 and Nos. 22-25. The apparent age of the 6-th
and 7-th images (Nos. 11-12, age=7; Nos. 13-14, age=7.1) should be no more than 5. It
is inappropriate to assign age=31.1 to the last two images (No. 21-25). The above images
have notable overestimated labels. While the ages for images Nos. 17-20 seem to be over
60 and the labels (51 and 55.1) should be underestimated. The results indicate that the
proposed CDF filter can effectively identify inaccurate labels in apparent age data set on
the basis of proper feature representations.

The relative size of the filtered data set is about 82% (15108 samples). The age distri-
bution changes are shown in Figure 11. The number of removed samples for each age label
(1-100) is plotted in the figure, and the horizontal dotted line denotes threshold 30. The
age labels losing more than 30 samples range from 16 to 61. From the smoothed density
curves, the distribution difference mainly lies in the same range. It means that the CDF is
more likely to drop samples in the high-density area. Thus the CDF would not destroy the
initial age distribution and it is a safe filter.

For an imbalanced data set, the filtering also can be executed on the subsets separately.
For example, the age data set can be partitioned into three subsets according to the initial
age density: [0-15], [16-60], [60-100]. As described in Subsection 2.3.2, the optimal relative
size decreases with the sample size. Then more samples will be removed by CDF on the
second subset ([16-60]) which has many more samples than the other two.
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Figure 11: Change of the age distribution in filtering

4.3 Age Prediction on Real Data Set wiki

To evaluate the effectiveness of filtering, the model trained on the competition data set
(ICCV2015 and CVPR2016) is tested on real data set wiki based on Wikipedia (Rothe
et al., 2018). The raw wiki data set is preprocessed by the face and label validity detections.
The cascaded convolutional networks is employed to detect the face and landmarks (Huang
et al., 2018). The feature representation for images in data set wiki is obtained by the
fine-tuned deep models the same as that for the training data set (Huo et al., 2016). Ages
in [0,100] are considered as valid labels. The final test set has 29930 samples.
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Figure 12: Prediction error comparison

Three widely used models, kNN (k = 5), random forest (RF, 100 trees) and neural
networks (NNet, 30 neurons), are trained on the data sets before (no filtering, NoF) and
after CDF5 (CDF,J = 5) filtering, and the test error is measured by the mean absolute error
(MAE). The test errors of NoF and CDF5 are compared in Figure 12. The red diagonal
means equal errors and the blue lines denote the error difference within 3. It can be observed
that most scatters are around the diagonal and most MAE values are less than 20. The
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number of samples with the error difference over 3 is marked in the corresponding area.
For example, there are 493 samples whose NoF error is beyond the CDF error+3 in Figure
12(a), while only 116 samples whose NoF error is less than the CDF error-3. It means that
CDF5 outperforms NoF for samples with the error difference over 3. Results for the RF
and NNet models are similar to that of kNN (163>22, 385>259).

The detailed error comparison of NoF and CDF5 is implemented on three test sets.
The first set consists of all available testing samples, the second set contains samples whose
MAE of NoF is over 5 (above the lower dotted line in each sub-figure of 12), and the
last contains those with MAE over 10 (above the upper dotted line in Figure 12). Note
that the last two sets may vary with the testing model. Table 3 lists the results including
the win-tie-lose ratio, the average error (± Std) on testing samples, the relative reduction,
and the P-value of the rank-sum test. The relative reduction is calculated by the formula:
1−MAECDF5/MAENoF . The reductions over 1% and P-values under 0.05 are bolded.

Test set Model #Samples
CDF5 vs. NoF MAE Relative

P-value
win tie lose NoF CDF5 reduction

kNN 29930 38.28% 23.72% 38.00% 5.38±4.43 5.29±4.19 1.63% 0.561
All available RF 29930 50.07% 0.00% 49.93% 5.39±4.30 5.35±4.20 0.66% 0.934

NNet 29930 50.93% 0.00% 49.07% 5.41±4.43 5.40±4.36 0.03% 0.641
kNN 13342 41.84% 22.96% 35.20% 9.07±4.12 8.79±3.80 2.97% 0.000

MAE(NoF)>5 RF 13516 52.74% 0.00% 47.26% 9.00±3.83 8.87±3.73 1.37% 0.046
NNet 13369 50.91% 0.00% 49.09% 9.10±4.13 9.02±4.03 0.81% 0.800
kNN 3745 46.33% 23.60% 30.07% 14.12±4.50 13.28±4.14 5.99% 0.000

MAE(NoF)>10 RF 3807 61.15% 0.00% 38.85% 13.77±3.96 13.43±3.87 2.50% 0.000
NNet 3819 57.29% 0.00% 42.71% 14.11±4.43 13.76±4.29 2.44% 0.004

Table 3: MAE comparison of NoF and CDF5 on wiki data set

It is clear from Table 3 that the average error of CDF5 is less than that of NoF in all
cases. For all samples, the two sets of errors have no significant difference. For the second
subset, the CDF5 error is significantly less than the NoF error for kNN and RF. For the last
subset, the error difference between CDF5 and NoF is significant for all models. Generally
speaking, the CDF filter could significantly reduce the prediction error for hard-to-learn
samples.

Furthermore, the CDF filter is superior to NoF in efficiency as it has a smaller data size
and a shorter training time. For example, the total time of CDF5 in filtering and testing
(9.1+219.3 seconds) is less than that of NoF (0+351.5 seconds) for the NNet model.

5. Experiments and Analysis

In this section, we empirically study the performances of the proposed CDF filter on bench-
mark data sets. We present our experimental framework, empirical results, and analysis.

5.1 Experimental Framework

For each data set and filter, the overall process is shown in Figure 13. Firstly, the original
data set D is randomly partitioned into two parts DA, DB whose size ratio is 8:2. The
polluted set DAp is obtained by adding noises artificially to the first part DA. Then DAp is
filtered and a cleaner set DAf is obtained. Finally, the model is trained on DAf and tested
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on the second part DB. The above steps are repeated ten times owing to the randomness
in data partition and adding noises.
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Figure 13: The overall framework of experiments

Task Regression Ordinal Classification/Regression

Data 10 data sets (Table 5) 17 data sets (Table 6)
Uniform 1: U(−0.5, 0.5);
Uniform 2: U(−0.8, 0.8);
Gaussian 1: N(µ = 0, σ = 0.5); Label yi → yj

Noise distribution Gaussian 2: N(µ = 0, σ = 0.8); ·yi 6= yj
/Noise rule Laplace 1: Lp(µ = 0, σ = 0.5); ·P (yi → yj) ∝ #{yj}/n

Laplace 2: Lp(µ = 0, σ = 0.8);
Mixture 1: N(µ = 1, σ = 0.3) +N(µ = −1, σ = 0.3);
Mixture 2: N(µ = 1, σ = 0.2) +N(µ = −0.8, σ = 0.4).

Noise ratio 0%,10%,20%,30%,40% 0%,10%,20%,30%
CDF (par.) CDF5(J = 5), CDF6(J = 6), CDF7(J = 7) CDF5(J = 5), CDF6(J = 6), CDF7(J = 7)

Competitors(par.)

NoF (No filtering),
RegENN/Reg (threshold θ = 5, number of neighbors: 9),
DiscENN/Disc (number of neighbors: 9),

NoF (No filtering), ENN (number of neighbors: 3),
MI (threshold α = 0.05, number of neighbors: 6), ANN (number of neighbors: 3),
RegENN/Reg (threshold α = 5, number of neighbors: 9), CF (number of folds: 10),
DiscENN/Disc (number of neighbors: 9). MVF (number of folds: 4),

IPF (number of subsets: 5),
HARF (agreement level: 70%),
INFFC (threshold: 0).

Testing model kNN, NNet, RF SVC1V1, NNOP
No. of neighbors (kNN): k ∈ {1, 3, 5, 7, 9} Kernel width(SVC1V1): σ ∈ {10−3, 10−2, · · · , 103}

Hyper-parameters No. of hidden neurons (NNet): H ∈ {10, 20, 30, 40} No. of hidden neurons (NNOP): H ∈ {10, 20, 30, 40}
No. of trees (RF): T ∈ {50, 100, 150, 200}

Evaluation MSE MAE, MZE

Table 4: Experimental settings

The detailed experimental settings are listed in Table 4.

• Data sets. 27 benchmark data sets are employed for supervised learning. All data
sets in Table 5 are regression problems (Dua and Graff, 2017; Chang and Lin, 2016),
and those in Table 6 are prepared for ordinal classification/regression (Gutierrez et al.,
2016; Sanchez-Monedero et al., 2019). Note that the first ten data sets in Table 6 are
derived from regression data sets by discretizing the output. All numerical features
have been scaled to [−1, 1].
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No. Data set #Sample #Feature

1 Yacht Hydrodynamics 308 7
2 Housing 506 14
3 Energy efficiency 768 8
4 Concrete 1030 9
5 Geographical Original of Music 1059 68
6 MG 1385 6
7 Airfoil self-noise 1503 6
8 Space ga 3107 6
9 Skill Craft Master Table 3395 20
10 Parkinsons Telemonitoring 5875 26

Table 5: Regression data sets

No. Data set Type #Sample #Feaure #Class Class distribution

1 Housing5 Discretised 506 14 5 ≈101 per class
2 Stock5 Discretised 700 9 5 140 per class
3 Abalone5 Discretised 4177 11 5 ≈836 per class
4 Bank5 Discretised 8192 8 5 ≈1639 per class
5 Bank5′ Discretised 8192 32 5 ≈1639 per class
6 Computer5 Discretised 8192 12 5 ≈1639 per class
7 Computer5′ Discretised 8192 21 5 ≈1639 per class
8 Cal.housing5 Discretised 20640 8 5 4128 per class
9 Census5 Discretised 22784 8 5 ≈4557 per class
10 Census5′ Discretised 22784 16 5 ≈4557 per class
11 Balance-Scale Real 625 4 3 288-49-288
12 SWD Real 1000 10 4 32-352-399-217
13 Car Real 1728 21 4 211-384-69-65
14 Eucalyptus Real 736 91 5 180-107-130-214-105
15 LEV Real 1000 4 5 93-280-403-197-27
16 Wine quality-Red Real 1599 11 6 10-53-681-638-199-18
17 ERA Real 1000 4 9 92-142-181-172-158-118-88-31-18

Table 6: Ordinal classification data sets
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• Noises. Assume that all the original data sets are unpolluted. And noises are arti-
ficially added to the output. There are 8 kinds of noise distributions for regression.
Note that the last two are mixed by Gaussian distributions, and 50% of the noises
are from a single Gaussian distribution in each mixture. The last mixed distribution
is asymmetric. In ordinal classification, the label is randomly changed to other labels
according to the noise ratio. And the transforming probability is proportional to the
label frequency.

• Testing models. There are three testing models in regression: kNN, Neural net-
works (NNet), and random forest (RF). Support vector classifier with OneVsOne
(SVC1V1) and Neural network with ordered partitions (NNOP) are adopted in ordi-
nal classification (Gutierrez et al., 2016; Sanchez-Monedero et al., 2019). All model
hyper-parameters are selected by five-fold cross-validation over the training set after
filtering.

• Filters. In regression, the proposed CDF algorithm is compared with existing fil-
ters including MI (Guillen et al., 2010), RegENN (Kordos et al., 2013), and Dis-
cENN (Arnaiz-González et al., 2016). The competitors for ordinal classification in-
clude ENN (Barandela and Gasca, 2000), ANN (Barandela and Gasca, 2000), CF (Sluban
et al., 2014), MVF (Brodley and Friedl, 1999), IPF (Khoshgoftaar and Rebours, 2007),
HARF (Sluban et al., 2010), and INFFC (Sáez et al., 2016). Considering that the or-
dinal classification can be seen as a special regression problem, RegENN and DiscENN
are utilized in the filtering of ordinal classification data sets. The data set without
any filtering (NoF) is also examined as a baseline. In addition, the covering interval
in CDF is obtained by the kNN (k = 3) predictions in the subsets scheme. In the
stage of optimizing the relative size, the parameters are specified as: the probability
constant η = 0.05, the VC-dimension h = 100. The parameters for the other filters
are set to be the suggested values in references.

• Evaluators. Mean square error (MSE) is utilized to measure the generalization ability
in regression. Mean absolute error (MAE) and mean zero-one error (MZE) are the
most common indicators for evaluating ordinal classification models (Gutierrez et al.,
2016).

MSE =
1

n

n∑
i=1

(ŷi − yi)2,

MAE =
1

n

n∑
i=1

|O(ŷi)−O(yi)|,

MZE =
1

n

n∑
i=1

I(ŷi 6= yi),

where yi is the real output/label, ŷi is the predicted output/label and O(·) denotes
the rank function. MZE considers a zero-one loss for misclassification, while MAE
uses an absolute cost.
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5.2 Results and Analysis in Regression

The covering interval and covering distance are designed for identifying and estimating the
noise. Their performances are studied in this section. Then the CDF algorithm is compared
with other filters in terms of the prediction error after filtering.

5.2.1 Performance of Covering Interval

The covering interval is constructed by (31) and it may not cover the true output. So it is
necessary to study the covering probability.

Figure 14 shows the average covering probability and interval length (± standard de-
viation/2) on eight noise distributions and five repetitions for each data set. Each marker
corresponds to a regression data set and a filter. The results of CDF5, CDF6, and CDF7
for the same data set are connected by a dashed line. It is clear that the CDF5 has a
smaller covering probability and a shorter interval for each data set. Whereas the CDF7
has the longest interval and the largest covering probability among three filters. Property 6
indicates that the deviation of the CD increases with the interval radius or length under the
assumption of covering the true output. So a short interval and a large covering probability
are required for a good noise estimator. From Figure 14, there is no dominant covering
interval from the aspects of interval length and covering probability. In another word, the
advantage changes from the interval length to the covering probability when the number of
base models increases from 5 to 7.
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Figure 14: The interval length and covering probability

The original data set can be divided into two subsets according to whether the real
output is in the covering interval (Din and Dout). Figure 15 shows the noise characteristics
of the two subsets. From Figure 15(a), (b) and (c), the noise ratio of Din is below 25% and
the average absolute noise of Din is no more than 0.12 for all CDF filters. It is obvious that
Din has a lower noise ratio and a smaller average absolute noise than Dout for each data
set and each noise distribution. There exists a clear gap between the scatters of Din and
Dout. This indicates that the covering interval could well separate low-noise samples from
high-noise ones.
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Figure 15: Performance of the covering interval is shown in the first three sub-figures, and
predefined noise distributions are shown in the last sub-figure. There are 160
scatters (10 data sets × 8 noise distributions × 2 subsets, noise ratio=30%) in
any one of the first three sub-figures. The center of a scatter is determined by
the noise ratio and the average absolute noise of a subset (Din or Dout). The
radius of the red scatter denotes the size ratio of Dout to the original set, and
the blue scatter represents that of Din. The scatters in the legend have the
maximum size ratio of 1. Besides, those for the two mixed noise distributions
are in bright colors. The last sub-figure shows the probability density functions
of all noise distributions.
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As shown in Figure 15(d), the probability density functions (PDFs) of the last two
mixed noise distributions (Noise: 7-8) are “low-head” and “high-shoulder” in shape, and
it is opposite to the others’ (Noise: 1-6). So their results are shown in different colors.
Compared with the other noise distributions, the last two have larger noise variances. As a
result, more samples will be out of the covering interval.

In Figure 15(a), (b) and (c), the scatters in bright red color have slightly larger radii than
those in dark red color. Specifically, the size ratios of Dout for the first six noise distributions
and the last two are 32.06%(±1.58%) and 40.20%(±0.82%) in CDF5, respectively. They are
29.67%(±1.43%) and 37.75%(±0.65%) in CDF6, 38.03%(±1.63%) and 47.43%(±0.86%) in
CDF7. It is clear that Dout contains more samples for the last two noise distributions. More
importantly, the gap between the scatters of Din and Dout is larger for the two distributions.
Thus the covering interval is applicable for complicated or asymmetric noise distributions.

It is worth noting that the size ratio of Din in CDF5 is less than that of CDF6
(65.90%<68.31%) because the latter usually has a longer interval as shown in Figure 14.
However, the CDF7 has a smaller Din size (59.6%) than both CDF5 and CDF6. Although
the covering interval in CDF7 is longer, the subset has fewer samples (n/7), and then the
output noise might have more severe negative impacts on the constructed covering interval
in CDF7. The noise estimation in CDF7 would also be affected for the same reason.

5.2.2 Performance of Covering Distance

The covering distance is a noise estimator, and the performance is evaluated by means
of the real absolute deviation (RAD) and real relative deviation (RRD), where RAD =∑n

i=1 ||ei| −Ri| /n, RRD =
∑n

i=1
||ei|−Ri|
n|ei| . It is clear that they are the practical versions of

the EAD in (38) and ERD in (39) .

Considering that the estimation performances on all data sets are similar to each other,
only the result of CDF5 on data set Parkinsons is shown in Figure 16. More complete and
detailed results can be found in Table 7.

• It can be observed from the first column of Figure 16 that scatters are around the
ideal line except for the last two mixed noise distributions. The covering distance
makes an under-estimation under the two mixed distributions. The reason is that
the subsets scheme for constructing the covering interval is not very suitable for the
two distributions. Specifically, most noises in the two mixtures have large values
(“low-head” and “high-shoulder” PDF). The training and testing sets are partially
overlapped in the subsets scheme. Then the covering interval and its center c deriving
from kNN predictions are prone to get an evident shift towards the real output when
there are too many large noises. As a result, the covering distance, proportional to
|yi − c|, under-estimates the noise. While the proportion of the large noise is small in
other distributions, and it has an insignificant effect on the noise estimation.

• From the first column of Figure 16, the correlation coefficient has the following results:
(1) The correlation coefficient R2 in uniform 1 is less than that in uniform 2, and it is
similar for the Gaussian or Laplace distribution. (2) R2 in Gaussian 1 is less than that
in Laplace 1, and it has the same result for Gaussian 2 and Laplace 2. The main reason
is that the CD is better at estimating the large noise (unbiased). Specifically speaking,
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Figure 16: Performance of the covering distance in CDF5. The results for all noise distri-
butions (noise ratio NR = 30%) are displayed in rows. The first column shows
the density plot of the noise vs. CD. The ideal line of CD = |ei| is added and R2

denotes their correlation coefficient here. The second column shows the scatters
of the noise and RAD. The distribution of the noise and RRD is displayed in the
third column. The red curves in RAD and RRD denote the median of 99-nearest
neighbors. 41
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(1) the variance of the first uniform/Gaussian/Laplace distribution is less than that
of the second, and more large noises should be generated from the distribution with
a larger variance, so the correlation is more significant for a higher noise level. (2)
For a fixed variance, the Laplace distribution has a heavier tail than the Gaussian
distribution, and more large noises are expected to appear in the former.

• From the second column of Figure 16, the median curve is almost flat. That means the
deviation of the CD estimator is stable about the noise. In addition, the median curve
has a small peak in Laplace 1 and 2. These characteristics are generally consistent with
the simulation results in Figure 8. The third column shows that the RRD generally
decreases with the absolute noise for each distribution. This verifies the ERD results
in Figure 8.

Table 7 lists the detailed results of the CDF noise estimation on data set Parkinsons.
All values are averaged over five repetitions. The best value among the CDF filters is
in bold font. CDF5 generally outperforms CDF6 and CDF7 in terms of the correlation
coefficient, RAD and RRD. Rank-sum tests show that the difference between CDF5 and
CDF6 is insignificant in both the correlation and RAD, but they have a significant difference
in ERD. CDF6 and CDF7 have no significant difference in all indicators.

From the perspective of noise distribution, the RRD values for Gaussian and Laplace
noises are larger than the others. This is because small noises, more likely to have large
RRDs, account for a large proportion of the two kinds of noises. In addition, the last two
mixtures have smaller correlation coefficients and larger RADs. It is related to the larger
noise variance and the estimation bias induced by the subsets scheme.

Noise Correlation coefficient (↑) RAD (↓) RRD (↓)
distribution CDF5 CDF6 CDF7 CDF5 CDF6 CDF7 CDF5 CDF6 CDF7
Uniform 1 0.871 0.869 0.865 0.1124 0.1140 0.1142 71.26% 81.45% 85.49%
Uniform 2 0.911 0.914 0.911 0.1545 0.1499 0.1514 67.44% 73.28% 69.52%
Gaussian 1 0.890 0.884 0.884 0.1047 0.1069 0.1080 88.50% 93.15% 98.66%
Gaussian 2 0.931 0.929 0.929 0.1424 0.1442 0.1440 121.46% 128.24% 136.90%
Laplace 1 0.915 0.914 0.909 0.1086 0.1108 0.1140 210.58% 240.49% 282.61%
Laplace 2 0.943 0.942 0.938 0.1453 0.1478 0.1520 175.46% 177.67% 197.29%
Mixture 1 0.854 0.852 0.854 0.2816 0.2816 0.2788 22.95% 25.40% 24.76%
Mixture 2 0.858 0.852 0.853 0.2497 0.2468 0.2491 24.87% 25.67% 26.64%

Table 7: Performance of CDF in noise estimation

5.2.3 Prediction Error

Table 8 lists the average and the standard deviation (Std) of the prediction error MSE on
ten data sets, five repetitions and eight noise distributions. The least error in each row
(among filters) is bolded, and the least three errors have a light blue background. From
the table, the best error is most likely to appear in the column of CDF5. Although CDF6
and CDF7 reach the minimum in three rows, their errors are very close to that of CDF5.
Obviously, all three implements of the CDF algorithm have smaller errors than the others
in most cases. From the perspective of the noise level, the prediction error usually increases
with the noise ratio (NR) for any filter and any model. And the higher the noise ratio is,
the larger the MSE reduction of CDF5 from NoF is. It means the filter is more effective
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for the data set with a larger noise ratio. From the model perspective, kNN has the largest
error and it is the most sensitive to noises. In addition, the error reductions of kNN and
NNet are more significant than that of the RF model.

NR Model NoF MI RegENN DiscENN CDF5 CDF6 CDF7

10%

kNN
0.0837 0.0784 0.0738 0.0742 0.0653 0.0659 0.0685

(0.0142) (0.0153) (0.0146) (0.0239) (0.0183) (0.0177) (0.0191)

NNet
0.0636 0.0517 0.0511 0.0525 0.0420 0.0424 0.0456

(0.0251) (0.0259) (0.0263) (0.0180) (0.0157) (0.0155) (0.0158)

RF
0.0511 0.0491 0.0486 0.0507 0.0458 0.0459 0.0504

(0.0112) (0.0112) (0.0112) (0.0191) (0.0137) (0.0135) (0.0147)

20%

kNN
0.0903 0.0888 0.0874 0.0789 0.0671 0.0680 0.0717

(0.0125) (0.0135) (0.0130) (0.0179) (0.0148) (0.0147) (0.0157)

NNet
0.0895 0.0712 0.0701 0.0564 0.0469 0.0474 0.0493

(0.0327) (0.0317) (0.0319) (0.0180) (0.0157) (0.0160) (0.0154)

RF
0.0525 0.0503 0.0495 0.0516 0.0477 0.0478 0.0537

(0.0109) (0.0111) (0.0107) (0.0150) (0.0125) (0.0127) (0.0132)

30%

kNN

0.1174 0.1146 0.1133 0.0854 0.0743 0.0751 0.0762
(0.0137) (0.0146) (0.0140) (0.0211) (0.0163) (0.0160) (0.0173)

NNet
0.1139 0.0955 0.0944 0.0698 0.0593 0.0590 0.0597

(0.0370) (0.0428) (0.0437) (0.0210) (0.0173) (0.0178) (0.0172)

RF
0.0630 0.0615 0.0550 0.0562 0.0513 0.0515 0.0547

(0.0110) (0.0112) (0.0113) (0.0174) (0.0137) (0.0136) (0.0143)

40%

kNN
0.1477 0.1225 0.1221 0.0942 0.0856 0.0877 0.0848

(0.0121) (0.0125) (0.0121) (0.0191) (0.0160) (0.0156) (0.0165)

NNet
0.1490 0.1068 0.1064 0.0914 0.0740 0.0766 0.0726

(0.0482) (0.0529) (0.0525) (0.0235) (0.0167) (0.0161) (0.0162)

RF
0.0772 0.0640 0.0677 0.0600 0.0576 0.0589 0.0604

(0.0084) (0.0087) (0.0085) (0.0157) (0.0124) (0.0123) (0.0132)

Table 8: MSE (Std) under different noise ratios
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Figure 17: Critical difference diagram of MSE

Figure 17 compares the MSEs of all filters by means of the critical difference diagram.
For kNN and NNet, the three CDF filters significantly outperform the others in terms of
MSE. The ranks of filters in the RF model are closer to each other (range from 3 to 5), and
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both CDF6 and CDF7 have no significant difference with a few existing filters. Generally,
CDF5 reduces the prediction errors of all models and performs better.

The relative error reduction (RER) of CDF5 is defined by 1 −MSECDF5/MSENoF .
Table 9 lists the average RER over ten data sets, five repetitions and four noise ratios. The
RF model has the lowest RER and the NNet has the largest RER. It means that the NNet
is more sensitive to the artificial noise on benchmark data sets. The performance of NNet
here differs from that on apparent age data set (Table 3). It might be because of the noise
level and sample size. The apparent age set has more than ten thousands of training data
with a low noise level. Whereas the result in Table 9 is based on the benchmark data sets
with high noise ratios and most of them have no more than 2000 samples.

Noise Noise Model

distribution variance kNN NNet RF
Uniform 1 0.5 10.2% 23.3% 4.8%
Uniform 2 0.8 43.7% 51.7% 8.3%
Gaussian 1 0.5 8.7% 28.2% 6.8%
Gaussian 2 0.8 34.1% 50.2% 12.4%
Laplace 1 0.5 9.7% 32.0% 5.9%
Laplace 2 0.8 36.3% 61.7% 14.3%
Mixture 1 1.0 44.2% 52.0% 33.3%
Mixture 2 1.0 39.9% 44.5% 29.0%

Table 9: Relative error reduction of CDF5

From Table 9, the RERs of all models increase with the noise variance for a given type of
noise distribution. It means the effectiveness of CDF5 is more evident on the data set with
a high noise level. The last two noise distributions have the same variance. The mixture
1 is symmetric and the mixture 2 is asymmetric. The RER in mixture 2 is less than that
in mixture 1 for the same model. It indicates the CDF filter is more suitable for the noise
from a symmetric distribution.

Furthermore, the RER differences with respect to the model, the noise distribution and
variance are examined by the statistical test. The result of a three-way analysis of variance
indicates that the RER mainly depends on the noise variance (P-value=0.00) and the model
(P-value=0.00). The type of noise distribution has no significant impact on the RER (P-
value=0.69). It means that CDF5 is effective for some complicated and asymmetric noise
distributions.

5.3 Results and Analysis in Ordinal Classification

The experimental results are analyzed in the aspects of noise recognition, prediction error
and efficiency.

5.3.1 Noise Recognition

The performance in noise recognition is evaluated by the average absolute noise of filtered
data set and the ROC space. The average absolute noise is calculated by

E(|e|
∣∣DF ) =

1

nF

nF∑
i=1

|O(yi)−O(y0
i )|,
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where O(·) is the rank function. As the noise recognition problem can be considered as a
binary classification problem, a new confusion matrix can be constructed similarly, then all
filters can be compared in ROC space. The confusion matrix for noise filtering is shown in
Table 10. The true positive rate TPR = TP

TP+FN and false positive rate FPR = FP
FP+TN .

Predicted

noisy clean

Actual
noisy True Positive (TP ) False negative (FN)
clean False positive (FP ) True negative (TN)

Table 10: Confusion matrix in noise filtering
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Figure 18: Performance in noise recognition

Figure 18 shows the performances of filters in noise recognition. Figure 18(a) displays
the average absolute noise and relative size on 17 filtered data sets and five repetitions. The
original noise levels (NoF) are denoted by the black solid dots. The dot moves from the
bottom left to the top right corner for each filter when the noise ratio (NR) varies from
10% to 30% (NR = 10%, 20%, 30%). Generally, the relative size decreases with the NR for
all filters. It indicates that more samples will be dropped for a higher NR. From Figure
18(a), all relative sizes are less than the original size, but not all noise levels become lower.
HARF, MVF, ENN INFFC, and RegENN are above the highest dotted line (the highest
dot of NoF), and it means they do not reduce the noise level when NR = 30%. Although
ANN brings down the noise levels for all NRs, it removes about 70% of the samples and
may destroy the original data distribution. On the contrary, RegENN retains about 90% of
the samples but it almost does not change the noise level. Compared with the two extreme
filters, IPF, CF, and DiscENN not only obtain evident noise reductions but also retain
more samples than ANN. In another word, they are good choices among existing filters in
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noise recognition. Besides, all CDF filters get lower noise levels and larger relative sizes
than existing ones except RegENN. It indicates that the CDF could reduce the noise level
significantly at a lower cost of data removing.

Figure 18(b) shows the average TPR and FPR values on 17 data sets, five repetitions
and three noise ratios. The existing and proposed filters are marked by blue triangles and
red dots, respectively. From Figure 18(b), RegENN is under the diagonal. This means the
RegENN filter is inferior to a random filtering if the noise quantity (|O(yi)−O(y0

i )|) is out
of consideration. ANN has the biggest FPR because of a large amount of false positive
samples, i.e., many clean samples are removed in the ANN filtering. It is known that the
ideal filter should be near the upper left corner of the ROC space. Hence IPF, CF, and
DiscENN should be good choices among existing filters. These are consistent with the
results of noise level reduction in Figure 18(a). Besides, CDF5 is the filter with the least
FPR except for RegENN, and CDF7 has the largest TPR. Three CDF filters are located at
the left of IPF, CF, and DiscENN which are outstanding among existing filters. It means
that the CDFs have smaller false positive rates and lower risks of overcleansing. Therefore,
the CDF filters outperform the others in the noise recognition of ordinal classification.

5.3.2 Prediction Error

Two indicators (MAE, MZE) are employed for evaluating the prediction performance of the
ordinal classification model (SVC1V1, NNOP) after filtering. Figure 19 shows the critical
difference diagram of the prediction error in ordinal classification. From Figure 19(a) and
(b), the CDF filters are superior to the others in terms of MAE both for SVC1V1 and
NNOP. IPF, CF, and DiscENN obtain small MAE values among existing filters owing to
their good performances in noise recognition. In addition, the CDF filters have no significant
difference with IPF (SVC1V1) or CF (NNOP) in terms of MAE.

From Figure 19(c) and (d), IPF, CF, and DiscENN are good choices among existing
filters from the aspect of MZE. It can be observed that both CDF5 and CDF6 are inferior
to IPF in SVC1V1 or CF in NNOP, but the four filters have no obvious difference for both
models. Clearly, the MAE ranks of the CDF filters are different from their MZE ranks.
The main reason is that MAE uses an absolute cost, while MZE considers a zero-one loss.
Specifically, the CDF algorithm focuses on the noise quantity (the rank distance of yi from
y0
i ), and the MAE indicator measures the error quantity (the rank distance of ŷi from yi).

Both CDF and MAE adopt the quantitative analysis, so the CDF algorithm outperforms
IPF and CF in terms of MAE. Whereas the filters for classification, including IPF and CF,
care about whether it is a noise label (yi 6= y0

i ), and the MZE indicator represents the
probability of correct predictions(ŷi 6= yi). They consider the qualitative relation but not
the quantity, so IPF and CF perform better in terms of MZE.

It is worth noting that many filters are inferior to NoF in terms of both indicators of
SVC1V1 in Figure 19(a) and (c). It means that not all filters are effective in improving
the prediction ability. Although RegENN does not perform well in noise recognition, it
is superior to IPF and DiscENN in terms of both indicators of NNOP. It might because
RegENN keeps most of the samples (90% in Figure 18(a)) and the NNOP model is less
sensitive to the label noise when there are enough samples.
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Figure 19: Critical difference diagram of model errors in ordinal classification

5.3.3 Efficiency

Figure 20 shows the average runtime of all filters on five repetitions for each sample size.
Note that there are 11 sample sizes in 17 data sets as some sets have the same size. The
runtime of the CDF filter includes all steps in Algorithm 1. The runtime generally increases
with the sample size for all filters. The wave in the curve is mainly from the variation of
the feature number. The comparison result is clearer when the sample size is over 3000.
Generally, the filters can be divided into three sets. Neighbor-based filters, including ANN,
ENN, RegENN, DiscENN, usually have low efficiencies. Ensemble-based filters, including
INFFC, HARF, MVF, IPF, and CF, are more efficient than neighbor-based filters. The
proposed CDF filters have smaller runtime and could complete the filtering on tens of
thousands of samples within one second.

5.4 Filtering on Real Benchmark Data Set

In order to explore the effectiveness of the CDF algorithm in real problems, the original data
set without artificial noise (NR = 0%) is processed by CDF5. The discretized data sets in
Table 6 (Nos. 1-10) are not considered here. The filtering procedure is repeated 20 times
for each data set owing to the randomness in the subsets scheme. The prediction error
(MSE in regression, MAE in ordinal classification) after the CDF5 filtering is compared
with that of NoF (no filtering). Table 11 lists the winning probability (WinP) of CDF5,
i.e., CDF5 testing error<NoF testing error. The probabilities over 0.8 are bolded. If there
exists a significant difference between the two sets of errors (rank-sum test, significant level
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Figure 20: Runtime comparison

0.05), a bullet is added after the probability. The relative size of filtered data set is also
displayed. The relative time denotes the ratio of the total time with filtering (including the
CDF5 filtering on DAp, training on DAf and testing on DB in Figure 13) to that without
filtering (including training on DAp and testing on DB).

Task

Data

Sample Relative Model 1 Model 2

(Model) size size WinP Relative time WinP Relative time
1 308 97% 0.50 97% 0.85• 94%
2 506 96% 0.55 94% 0.50 96%
3 768 95% 0.80 94% 0.95• 73%
4 1030 92% 0.50 94% 0.70• 74%

Regression 5 1059 91% 0.90• 93% 0.45 98%
(RF,NNet) 6 1385 92% 0.60 90% 0.70 79%

7 1503 90% 0.65 92% 0.85• 80%
8 3107 92% 1.00• 94% 0.65 90%
9 3395 94% 0.95• 90% 0.65 91%
10 5875 90% 1.00• 90% 0.55 80%
11 625 95% 0.50 99% 0.60 96%
12 1000 86% 0.45 93% 0.40 93%

Ordinal 13 1728 95% 0.55 97% 0.55 97%
classification 14 736 85% 0.45 93% 0.60 95%

(SVC1V1,NNOP) 15 1000 87% 0.95 92% 0.50 91%
16 1599 87% 0.80 85% 0.60 91%
17 1000 80% 1.00• 84% 0.55 87%

Table 11: Effectiveness of CDF5 on real data sets

It is clear from Table 11 that most bullets correspond to large WinP values. For the first
model (RF in regression, SVC1V1 in classification), CDF5 is effective for data sets Nos. 5,
8-10, 17. It means the filter is likely to be effective for large-size data sets in regression and
those with more categories in ordinal classification. For the neural networks models (NNet
in regression, NNOP in classification), CDF5 is effective for data sets Nos. 1, 3, 4, 7. The
proposed filter does not improve the prediction ability of NNOP significantly. It implies
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that the neural networks model could work with low-noise data sets in classification, while
it does not perform well for some regression data sets with a small sample size.

From Table 11, there is no bullet on two regression data sets (Nos. 2, 6) and most
ordinal classification data sets. It means the CDF is better at filtering on the regression
problem. For the cases without the bullet, the rank-sum test shows that there is no signifi-
cant difference before and after the CDF5 filtering. It indicates that CDF5 does not reduce
the model prediction ability significantly, and thus it is a safe filtering algorithm.

The relative size is over 0.95 when the sample size is less than 1000 in regression. It
verifies the adaptability of the proposed OSS framework with respect to the sample size.
Besides, all relative time is less than 100%. It means the strategy of training and testing
with filtering is more efficient than that without filtering.

The above results indicate that the CDF filtering always could significantly improve the
prediction ability on benchmark data sets with artificial noises, even though the model is
less sensitive to noise. Whereas it is not effective for all original benchmark data sets. It
means the proposed filter is more suitable for the data set with a large noise ratio, such as
raw samples collected from crowdsourcing systems or search engines. In other words, the
improvement of prediction ability after filtering partially depends on the noise level and the
robustness of the learning model apart from the accuracy of noise estimation. Compared
with the CDF filtering, many noise-robust models are less efficient and require certain prior
knowledge and manually tuned hyper-parameters.

In brief, the CDF filter (CDF5 or CDF6 is advisable) could significantly improve the
prediction ability of the model trained on a data set unless the data set is low-noise or
noise-free and the model is robust enough. Thus it can serve as an important auxiliary tool
to improve both data quality and model prediction.

6. Conclusion

Although various noise filters have been presented to deal with the output noise, the effec-
tiveness and the influence of the filtering have not been studied carefully from the perspective
of error bound. This paper answers three essential problems in noise filtering: whether a
filter works, how many and which samples should be filtered. The theoretical foundations
for the determination of effective noise filtering and the optimal sample selection are pro-
vided, and then a unified framework of the output noise filtering, which can be integrated
with any noise estimator, is built. More importantly, the OSS framework is adaptable to
noisy environments and could prevent filters from overcleansing. It may provide a novel way
to optimize the hyper-parameter in other filters. Experimental results on real-world image
data and benchmark data sets demonstrate that the proposed CDF filter could significantly
reduce the noise level and outperforms the state-of-the-art filters in prediction ability and
efficiency. These results indicate that the OSS framework and the CDF can be used as
important auxiliary tools to improve data quality and model prediction.

In the CDF filtering, the noise estimation for the mixed or asymmetric noise distribu-
tions seems to be slightly biased, and the CD estimator could be improved. The covering
distance is a quantitative measure of the output quality. It may be beneficial to some label-
related tasks like crowdsourcing learning, self-paced learning, and semi-supervised learning.
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Besides, the filtering for a general classification data set with the label noise may be recon-
sidered from the error-bound perspective. All these deserve further research.
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A. Appendices

A.1 Proof of Theorem 1

Proof Let DF be the filtered data set from the original set D = {(xi, yi), i = 1, 2, . . . , n}.
yi is the real output and y0

i is the true output. m(x) and mF (x) are the models trained on
them. The noise ei = yi − y0

i , the error ri = m(xi)− yi.
In learning problems with accurate outputs, the empirical risk measures the difference

between the model predictions and real outputs. The true empirical risk should represent
the loss of model predictions about the true outputs in the learning with noisy outputs,

Remp(m,D) =
1

n

∑
xi∈D

[m(xi)− y0
i ]

2

=
1

n

∑
xi∈D

[(m(xi)− yi) + ei]
2

=
1

n

∑
xi∈D

{
[m(xi)− yi]2 + e2

i + 2ei · ri
}
.

By the symmetry of noise distribution, we have ED(ei) = 0. Then

Remp(m,D) =
1

n

∑
xi∈D

[
(m(xi)− yi)2

]
+ ED(e2

i ) + 2ED(ei)ED(ri)

= ED
[
(m(xi)− yi)2

]
+ ED(e2

i ).

Similarly, we have Remp(mF , DF ) = EDF
[
(mF (xi)− yi)2

]
+ EDF (e2

i ). Then

Remp(mF , DF ) · ε(DF ) < Remp(m,D) · ε(D)⇔Remp(mF , DF )

Remp(m,D)
<

ε(D)

ε(DF )

⇔
E
[
(mF (xi)− yi)2

∣∣DF

]
+ E(e2

i

∣∣DF )

E
[
(m(xi)− yi)2

∣∣D]+ E(e2
i |D)

<
ε(D)

ε(DF )
,

where ε(D) and ε(DF ) are defined in (6) and (9), respectively.
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If the outputs in DF and D are from the same distribution, they should have the same
variation, i.e., EDF [(yi −

∑
yi/n)2] = ED[(yi −

∑
yi/n)2]. For any given data set and a

fixed goodness of fit (1 −
∑
i[m(xi)−yi]2∑
i(yi−

∑
yi/n)2

), it can be assumed that EDF [(mF (xi) − yi)2] =

ED[(m(xi)− yi)2] = C · ED(e2
i ), where C is a positive coefficient. Then we have

Remp(mF , DF ) · ε(DF ) < Remp(m,D) · ε(D)⇔EDF [(mF (xi)− yi)2] + EDF (e2
i )

ED[(m(xi)− yi)2] + ED(e2
i )

<
ε(D)

ε(DF )

⇔C · ED(e2
i ) + EDF (e2

i )

C · ED(e2
i ) + ED(e2

i )
<

ε(D)

ε(DF )

⇔C · ED(e2
i ) + EDF (e2

i )

(1 + C) · ED(e2
i )

<
ε(D)

ε(DF )

⇔C +
EDF (e2

i )

ED(e2
i )

<
ε(D)

ε(DF )
(1 + C)

⇔EDF (e2
i )

ED(e2
i )

<
ε(D)

ε(DF )
(1 + C)− C,

where the coefficient C =
ED(r2i )

ED(e2i )
> 0.

A.2 Proof of Theorem 2

Proof As proved in A.1, Remp(m,D) = ED
[
(m(xi)− yi)2

]
+ED(e2

i ) and Remp(mF , DF ) =
EDF

[
(mF (xi)− yi)2

]
+ EDF (e2

i ). EDF [(mF (xi) − yi)2] = ED[(m(xi) − yi)2] = C · ED(e2
i )

hold for a fixed goodness of fit, where C is a positive coefficient. Then

Remp(mF , DF ) · ε(DF )−Remp(m,D) · ε(D)

=

(
Remp(mF , DF )

Remp(m,D)
− ε(D)

ε(DF )

)
· Remp(m,D) · ε(DF )

=

(
EDF

[
(mF (xi)− yi)2

]
+ EDF (e2

i )

ED [(m(xi)− yi)2] + ED(e2
i )

− ε(D)

ε(DF )

)
· Remp(m,D) · ε(DF )

=

(
C · ED(e2

i ) + EDF (e2
i )

C · ED(e2
i ) + ED(e2

i )
− ε(D)

ε(DF )

)
· Remp(m,D) · ε(DF )

=

(
C + EDF (e2

i )/ED(e2
i )

1 + C
− ε(D)

ε(DF )

)
· Remp(m,D) · ε(DF )

=

(
C +

EDF (e2
i )

ED(e2
i )
− ε(D)

ε(DF )
(1 + C)

)
· Remp(m,D) · ε(DF )

1 + C

=

(
EDF (e2

i )

ED(e2
i )
−
[
ε(D)

ε(DF )
(1 + C)− C

])
· Remp(m,D) · ε(DF )

1 + C

= [T (ρ)− BT (ρ)] · ε(DF ) · Remp(m,D)

1 + C
,

where T (ρ) and BT (ρ) are defined in (10) and (11), respectively.
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For any given data set and model, the empirical risk Remp(m,D), ε(D), and the coeffi-
cient C are fixed. So we have

minRemp(mF , DF ) · ε(DF )⇔minRemp(mF , DF ) · ε(DF )−Remp(m,D) · ε(D)

⇔min [T (ρ)− BT (ρ)] · ε(DF ) · Remp(m,D)

1 + C

⇔min [T (ρ)− BT (ρ)] · ε(DF )

⇔max [BT (ρ)− T (ρ)] · ε(DF ).

A.3 Proof of Property 1

Proof (1) Note that all noises are sorted by the absolute value in ascending order in the
calculation of the true T (ρ). We know that all samples in DF are noise-free if the relative size
ρ < 1−NR (NR denotes the noise ratio). So we have EDF (e2

i ) = 0 and T (ρ < 1−NR) = 0.
When the relative size ρ > 1 −NR, there must exist at least one noisy sample in DF . So
EDF (e2

i ) > 0 and T (ρ > 1−NR) > 0.

(2) Let f(e) be the probability density function (PDF) of the noise, and fa(|e|) denotes

the PDF of the absolute noise. It is known that T (ρ) = 0 and ∂T (ρ)
∂NR = 0 when ρ < 1−NR.

For ρ > 1−NR,

T (ρ) =
EDF (e2

i )

ED(e2
i )

=
(1−NR) · 0 + (ρ+NR− 1) ·

∫
|e|<Qρ f(e) · e2de

(1−NR) · 0 +NR ·
∫
|e|<+∞ f(e) · e2de

=
(ρ+NR− 1) ·

∫
|e|<Qρ f(e) · e2de

NR ·
∫
|e|<+∞ f(e) · e2de

=
(ρ+NR− 1) ·

∫ Qρ
0 fa(|e|) · |e|2d|e|

NR ·
∫
|e|<+∞ f(e) · e2de

=
1∫

|e|<+∞ f(e) · e2de
· NR+ ρ− 1

NR
·
∫ Qρ

0
fa(|e|) · |e|2d|e|

=
1

U
· NR+ ρ− 1

NR
· Uρ,

where U =
∫
|e|<+∞ f(e) · e2de > 0, Uρ =

∫ Qρ
0 fa(|e|) · |e|2d|e| > 0. Qρ is the ρ + NR − 1

percentile of fa(|e|), and Qρ increases with ρ and NR, i.e.,
∂Qρ
ρ > 0,

∂Qρ
NR > 0.

Note that U is independent of ρ, we have

∂T (ρ)

∂ρ
=

1

U
·
[

1

NR
· Uρ +

NR+ ρ− 1

NR
· ∂Uρ
∂ρ

]
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=
1

U
·
[

1

NR
· Uρ +

NR+ ρ− 1

NR
· ∂Uρ
∂Qρ

· ∂Qρ
∂ρ

]
=

1

U
·
[

1

NR
· Uρ +

NR+ ρ− 1

NR
· fa(Qρ) ·Q2

ρ ·
∂Qρ
∂ρ

]
> 0.

(3) Let {|e′1|, |e′2|, · · · , |e′i−1|, |e′i|, |e′i+1|, · · · , |e′n|} be the set of sorted absolute noises

(|e′i| < |e′i+1|, ∀i). Then T (ρ = i/n) =
∑i
t=1 |e′t|2∑n
t=1 |e′t|2

.

For any i = 2, 3, · · · , n− 1,

T

(
ρ =

i+ 1

n

)
+ T

(
ρ =

i− 1

n

)
=

∑i+1
t=1 |e′t|2 +

∑i−1
t=1 |e′t|2∑n

t=1 |e′t|2

=
2
∑i−1

t=1 |e′t|2 + |e′i|2 + |e′i+1|2∑n
t=1 |e′t|2

>
2
∑i−1

t=1 |e′t|2 + |e′i|2 + |e′i|2∑n
t=1 |e′t|2

=
2
∑i

t=1 |e′t|2∑n
t=1 |e′t|2

= 2T

(
ρ =

i

n

)
.

Similarly, λT (ρ1) + (1− λ)T (ρ2) > T [λρ1 + (1− λ)ρ2] holds for 0 < ρ < 1 when n→ +∞.
So we get the desired result by the definition of convex function.

(4) When ρ > 1−NR,

∂T (ρ)

∂NR
=

1

U
·
[

1− ρ
NR2

· Uρ +
NR+ ρ− 1

NR
· ∂Uρ
∂NR

]
=

1

U
·
[

1− ρ
NR2

· Uρ +
NR+ ρ− 1

NR
· ∂Uρ
∂Qρ

· ∂Qρ
∂NR

]
=

1

U
·
[

1− ρ
NR2

· Uρ +
NR+ ρ− 1

NR
· fa(Qρ) ·Q2

ρ ·
∂Qρ
∂NR

]
> 0.

When ρ < 1−NR, ∂T (ρ)
∂NR = 0. Therefore, ∂T (ρ)

∂NR ≥ 0.

(5) Note that E(e) = 0 holds for any symmetric noise distribution, then the noise
variance σ2 = E(e2)− E2(e) = E(e2) = U .

For ρ > 1−NR,

T (ρ) =
1

U
· NR+ ρ− 1

NR
· Uρ =

NR+ ρ− 1

NR · σ2
· Uρ,

where U =
∫
|e|<+∞ f(e) · e2de > 0, Uρ =

∫ Qρ
0 fa(|e|) · |e|2d|e| > 0, and Qρ is the ρ+NR− 1

percentile of fa(|e|).
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(a) The PDF of a symmetric Gaussian distribution f(e) = 1√
2πσ

exp(− e2

2σ2 ), and fa(|e|) =

2f(e), e > 0. Then we have

T (ρ) =
NR+ ρ− 1

NR · σ2
· Uρ

=
NR+ ρ− 1

NR · σ2
·
∫ Qρ

0
fa(|e|) · |e|2d|e|

=
NR+ ρ− 1

NR · σ2
·
∫ Qρ

0
2f(e) · e2de

=
NR+ ρ− 1

NR · σ2
·
∫ Qρ

0

2√
2πσ

exp(− e2

2σ2
) · e2de

t=e/σ
=====

NR+ ρ− 1

NR · σ2
·
∫ Qρ/σ

0

2√
2πσ

exp(−t2/2) · σ2t2 · σdt

=
NR+ ρ− 1

NR
·
∫ Qρ/σ

0

√
2

π
e−t

2/2 · t2dt,

where Qρ is the ρ+NR− 1 percentile of fa(|e|).
By the symmetry of the noise distribution and the relationship between f(e) and fa(|e|),

we could deduce that Qρ, the ρ+NR− 1 percentile of fa(|e|), is equal to the (ρ+NR)/2

percentile of the distribution f(e) = 1√
2πσ

exp(− e2

2σ2 ). Then Qρ/σ is also the (ρ + NR)/2

percentile of the distribution f(e) = 1√
2π

exp(− e2

2 ).

It is clear that any variable in T (ρ) is irrelative to σ, so we get the desired result. The
result for the symmetric Laplace distribution can be obtained in a similar way.

(b) The PDF of a symmetric uniform distribution f(e) = 1
2a0
, (−a0 < e < a0) where a0

is a positive constant. The variance σ2 = (2a0)2

12 =
a20
3 .

The PDF of the absolute noise distribution fa(|e|) = 1
a0
, 0 < |e| < a0. It is obvious that

the ρ+NR− 1 percentile of fa(|e|) is Qρ = (ρ+NR− 1) · a0. Then we have

T (ρ) =
NR+ ρ− 1

NR · σ2
· Uρ

=
NR+ ρ− 1

NR · σ2
·
∫ Qρ

0
fa(|e|) · |e|2d|e|

=
NR+ ρ− 1

NR · σ2
·
∫ Qρ

0

e2

a0
de

=
NR+ ρ− 1

NR · σ2
·
Q3
ρ

3a0

=
NR+ ρ− 1

NR · σ2
· (ρ+NR− 1)3 · a3

0

3a0

=
(NR+ ρ− 1)4

NR
.

It is clear that T (ρ) is irrelative to σ, so we get the desired result.
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A.4 Proof of Property 2

Proof (1) It is obvious that ε(D) < ε(DF ) since ε(D) decreases with n. By the definition
of BT (ρ) in (11), we have

∂BT (ρ)

∂C
=

ε(D)

ε(DF )
− 1 < 0

for any ρ < 1.

(2) By Equations (6) and (3), we have ∂ε(DF )
∂ρ < 0. Considering that only ε(DF ) is

related to ρ in the definition of BT (ρ), we get

∂BT (ρ)

∂ρ
= − ε(D)

ε(DF )2
(1 + C) · ∂ε(DF )

∂ρ
> 0.

(3) From the definition BT (ρ) = ε(D)
ε(DF )(1 + C)− C, we have

∂BT (ρ)

∂n
= (1 + C) · ∂

∂n

(
ε(D)

ε(DF )

)
= (1 + C) · 1

ε(DF )2
·
[
∂ε(D)

∂n
· ε(DF )− ε(D) · ∂ε(DF )

∂n

]
=

(1 + C)

ε(DF )2
·
[
∂ε(D)

∂n
· ε(DF )− ∂ε(DF )

∂n
· ε(D)

]
.

Let V (n) = (1− 1/
√
n)−1. Then we have

∂V (n)

∂n
= − 1

2
√
n(
√
n− 1)2

,
∂2V (n)

∂n2
=

3n+ 1− 4
√
n

2n(
√
n− 1)2

.

So ∂V (n)
∂n < 0 and ∂2V (n)

∂n2 > 0 hold for n > 1.

Compared with (6), V (n) can be seen as a simplification of the ε(·) function. In the
fraction of ε(·), the denominator term n plays a more important role than the numerator
term [h(ln n

h + 1)− ln η], especially for a large n. Thus ε(·) has the property similar to V (n)

when n is large enough, i.e., ∂ε(D)
∂n < 0 and ∂2ε(D)

∂n2 > 0 hold for n� h.

Since ε(DF ) = ε(h, nρ, η), ε(D) = ε(h, n, η) and nρ < n, we have ε(DF ) > ε(D) and
∂ε(D)
∂n > ∂ε(DF )

∂n when n is large enough. Then we have
[
∂ε(D)
∂n · ε(DF )− ∂ε(DF )

∂n · ε(D)
]
> 0.

Therefore, ∂BT (ρ)
∂n > 0 holds for n� h.

(4)

ε(D)

ε(DF )2
> 0,

∂ε(DF )

∂ρ
< 0⇒ ∂2BT (ρ)

∂ρ∂C
=
∂2BT (ρ)

∂C∂ρ
= − ε(D)

ε(DF )2
· ∂ε(DF )

∂ρ
> 0.
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A.5 Proof of Property 4

Proof It is clear that E(e2) = σ2 holds for any symmetric noise distribution, where σ2

denotes the variance. Then

C =
ED(r2

i )

ED(e2
i )

=
ED(r2

i )

(1−NR) · 0 +NR · E(e2)
=

ED(r2
i )

NR · σ2
,

where NR denotes the noise ratio.
For a fixed goodness of fit, we have dC

d(σ2)
< 0.

From (9), (11) and (19), we know that only the component BT (ρ) in F(ρ) is affected by
the noise variance σ2 when the noise is from a usual symmetric distribution. Then we have

∂F(ρ)

∂(σ2)
= ε(DF ) · ∂BT (ρ)

∂(σ2)
.

Moreover,

∂2F(ρ)

∂ρ∂(σ2)
=

∂2F(ρ)

∂(σ2)∂ρ

=
∂ε(DF )

∂ρ
· ∂BT (ρ)

∂(σ2)
+ ε(DF ) · ∂

2BT (ρ)

∂(σ2)∂ρ

=
∂ε(DF )

∂ρ
· ∂BT (ρ)

∂C
· dC

d(σ2)
+ ε(DF ) · ∂

2BT (ρ)

∂ρ∂C
· dC

d(σ2)
.

From (25), (20) and (23), we have

∂2F(ρ)

∂ρ∂(σ2)
< 0.

It means that ∂F(ρ)
∂ρ decreases with the variance σ2.

From (16), (21) and (25), the objective function F(ρ) is derivable about ρ. According

to ρ∗ = arg maxF(ρ), we know that ∂F(ρ)
∂ρ

∣∣∣
ρ=ρ∗

= 0, ∂F(ρ)
∂ρ

∣∣∣
ρ<ρ∗

> 0, ∂F(ρ)
∂ρ

∣∣∣
ρ>ρ∗

< 0.

Let ρ∗0 be the initial optimal relative size. When the variance σ2 becomes larger, ∂F(ρ)
∂ρ

is reduced for any ρ < 1. Then the new ρ∗ will appear in the interval where ∂F(ρ)
∂ρ > 0 holds

for the initial variance, i.e. in the interval (0, ρ∗0). It means that ρ∗ decreases with the noise
variance and the desired result is obtained.

A.6 Proof of Proposition 1

Proof Let δ1 = y0
i − u > 0, δ2 = v − y0

i > 0. Without loss of generality, suppose δ1 ≤ δ2.
By the definition of the cumulative distribution function (CumDF) and the symmetry of
the error distribution,

P{y0
i + e ∈ [u, v]} = P{e ∈ [u− y0

i , v − y0
i ]}

= P{−δ1 ≤ e ≤ δ2}
= F (δ2|µ = 0, σ)− F (−δ1|µ = 0, σ)

= F (δ2|µ = 0, σ) + F (δ1|µ = 0, σ)− 1.
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As ∂F (e|µ=0,σ)
∂σ < 0 for e > 0 and σ2

1 < σ2
2, F (e|µ = 0, σ1) > F (e|µ = 0, σ2) holds when

e > 0. Considering that both δ1 and δ2 are positive, F (δ1|µ = 0, σ1) > F (δ1|µ = 0, σ2),
F (δ2|µ = 0, σ1) > F (δ2|µ = 0, σ2). Therefore,

P{y0
i + e(1) ∈ [u, v]} = F (δ2|µ = 0, σ1) + F (δ1|µ = 0, σ1)− 1

> F (δ2|µ = 0, σ2) + F (δ1|µ = 0, σ2)− 1

= P{y0
i + e(2) ∈ [u, v]}.

A.7 Proof of Corollary 1

A.7.1 Gaussian distribution

Proof The CumDF of a symmetric Gaussian distribution with mean zero and variance σ2

F (e|µ = 0, σ) =

∫ e

−∞

1√
2πσ

exp(− x2

2σ2
)dx

t=x/(
√

2σ)
========

∫ e√
2σ

−∞

1√
π

exp(−t2)dt

=

∫ 0

−∞

1√
π

exp(−t2)dt+

∫ e√
2σ

0

1√
π

exp(−t2)dt

=
1

2
+

1√
π

∫ e√
2σ

0
exp(−t2)dt

=
1

2
+

1

2
· { 2√

π

∫ e√
2σ

0
exp(−t2)dt}

=
1

2
+

1

2
· erf(

e√
2σ

),

where exp(·) denotes exponential function, and error function erf(x) = 1√
π

∫ x
−x exp(−t2)dt =

2√
π

∫ x
0 exp(−t2)dt.

Let s = e√
2σ

, F (e|µ = 0, σ) = 1
2 [1 + erf(s)]. It is known that d

dxerf(x) = 2√
π

exp(−x2).

Then we have

∂F (e|µ = 0, σ)

∂σ
=
∂F (e|µ = 0, σ)

∂s
· ∂s
∂σ

=
1

2
· 2√

π
exp(−s2) · (− e√

2σ2
)

= − e√
2πσ2

exp(−s2).

When e > 0,
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∂F (e|µ = 0, σ)

∂σ
= − e√

2πσ2
exp(−s2) < 0.

It gives the desired result by applying Proposition 1.

A.7.2 Uniform distribution

Proof Assume that the probability density function (PDF) of a symmetric uniform distri-
bution is

f(x) =

{ 1
b0−a0 if a0 < x < b0
0 otherwise

where a0, b0 are constants. The mean a0+b0
2 = µ = 0, so b0 = −a0 > 0. The variance

V(x) = (b0−a0)2

12 = σ2, so σ = b0−a0√
12

.

The CumDF of the uniform distribution F (e|µ = 0, σ) = e−a0
b0−a0 = e−a0√

12σ
. Then we have

∂F (e|µ = 0, σ)

∂σ
= − e+ b0√

12σ2
.

When 0 < e < b0, ∂F (e|µ=0,σ)
∂σ < 0. It gives the desired result by applying Proposition 1.

A.7.3 Laplace distribution

Proof Assume that the PDF of a symmetric Laplace distribution is

f(x|µ = 0, σ) =
1

2b1
exp(−|x|

b1
)

where b1 is a constant. The variance V(x) = 2b21 = σ2, so σ =
√

2b1.

When e > 0, F (e|µ = 0, σ) = 1− 1
2 exp(− e

b1
) = 1− 1

2 exp(−
√

2e
σ ). Then

∂F (e|µ = 0, σ)

∂σ
= −1

2
exp(−

√
2e

σ
) · (
√

2e

σ2
) < 0.

It gives the desired result by applying Proposition 1.

A.8 Proof of Proposition 2

Proof Let δ1 = y0
i − u > 0, δ2 = v − y0

i > 0. Without loss of generality, suppose δ1 ≤ δ2.
Let eA ∈ {ei

∣∣y0
i + ei ∈ [u, v]}, eB ∈ {ei

∣∣y0
i + ei /∈ [u, v]}.

The PDF of eA
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fA(e) =


f(e)∫ v−y0
i

u−y0
i

f(e)de
if u ≤ y0

i + e ≤ v

0 otherwise

=


f(e)∫ δ2

−δ1
f(t)dt

if −δ1 ≤ e ≤ δ2

0 otherwise
.

For any p ∈ N+,

E(|eA|p) =

∫ +∞

−∞
|eA|p · fA(e)de

=

∫ δ2

−δ1
|eA|p ·

f(e)∫ δ2
−δ1 f(t)dt

de

=

∫ δ2
−δ1 |eA|

p · f(e)de

2
∫ δ1

0 f(t)dt+
∫ δ2
δ1
f(t)dt

=
2
∫ δ1

0 |eA|
p · f(e)de+

∫ δ2
δ1
|eA|p · f(e)de

2
∫ δ1

0 f(t)dt+
∫ δ2
δ1
f(t)dt

=
2
∫ δ1

0 |eA|
p · f(e)de

2
∫ δ1

0 f(t)dt+
∫ δ2
δ1
f(t)dt

+

∫ δ2
δ1
|eA|p · f(e)de

2
∫ δ1

0 f(t)dt+
∫ δ2
δ1
f(t)dt

=
2
∫ δ1

0 f(e)de

2
∫ δ1

0 f(t)dt+
∫ δ2
δ1
f(t)dt

·
2
∫ δ1

0 |eA|
p · f(e)de

2
∫ δ1

0 f(e)de

+

∫ δ2
δ1
f(e)de

2
∫ δ1

0 f(t)dt+
∫ δ2
δ1
f(t)dt

·
∫ δ2
δ1
|eA|p · f(e)de∫ δ2
δ1
f(e)de

.

Let a =
∫ δ1

0 f(t)dt, b =
∫ δ2
δ1
f(t)dt, c =

∫ +∞
δ2

f(t)dt, andH =

∫ δ2
δ1
|eA|p·f(t)dt∫ δ2
δ1

f(t)dt
=

∫−δ1
−δ2
|eB |p·f(t)dt∫ δ2
δ1

f(t)dt
=∫ δ2

δ1
|e|p·f(t)dt∫ δ2
δ1

f(t)dt
.

It is obvious that H ≥
∫ δ2
δ1

δp1 ·f(t)dt∫ δ2
δ1

f(t)dt
= δp1 and H ≤

∫ δ2
δ1

δp2 ·f(t)dt∫ δ2
δ1

f(t)dt
= δp2 . Then we have

E(|eA|p) =
2a

2a+ b
·

2
∫ δ1

0 |eA|
p · f(e)de

2
∫ δ1

0 f(e)de
+

b

2a+ b
·
∫ δ2
δ1
|eA|p · f(e)de∫ δ2
δ1
f(e)de

≤ 2a

2a+ b
·

2
∫ δ1

0 δp1 · f(e)de

2
∫ δ1

0 f(e)de
+

b

2a+ b
·
∫ δ2
δ1
|eA|p · f(e)de∫ δ2
δ1
f(e)de
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=
2a

2a+ b
· δp1 +

b

2a+ b
·H

≤ 2a

2a+ b
·H +

b

2a+ b
·H

= H,

with equality if and only if |eA| ≡ δ1. According to the symmetry of the noise distribution,
|eA| ≡ δ1 means P{eA = −δ1} = P{eA = δ1} = 1/2.

The PDF of eB

fB(e) =


f(e)∫ u−y0

i
−∞ f(e)de+

∫+∞
v−y0

i
f(e)de

if y0
i + e /∈ [u, v]

0 otherwise

=


f(e)

2
∫+∞
δ2

f(e)de+
∫ δ2
δ1

f(e)de
if e /∈ [−δ1, δ2]

0 otherwise
.

For any p ∈ N+,

E(|eB|p) =

∫ +∞

−∞
|eB|p · fB(e)de

=

∫ −δ1
−∞ |eB|

p · f(e)de+
∫ +∞
δ2
|eB|p · f(e)de

2
∫ +∞
δ2

f(t)dt+
∫ δ2
δ1
f(t)dt

=
2
∫ +∞
δ2
|eB|p · f(e)de+

∫ −δ1
−δ2 |eB|

p · f(e)de

2
∫ +∞
δ2

f(t)dt+
∫ δ2
δ1
f(t)dt

=
2
∫ +∞
δ2
|eB|p · f(e)de+

∫ δ2
δ1
|e|p · f(e)de

2
∫ +∞
δ2

f(t)dt+
∫ δ2
δ1
f(t)dt

=
2
∫ +∞
δ2
|eB|p · f(e)de

2
∫ +∞
δ2

f(t)dt+
∫ δ2
δ1
f(t)dt

+

∫ δ2
δ1
|e|p · f(e)de

2
∫ +∞
δ2

f(t)dt+
∫ δ2
δ1
f(t)dt

=
2
∫ +∞
δ2

f(t)dt

2
∫ +∞
δ2

f(t)dt+
∫ δ2
δ1
f(t)dt

·
2
∫ +∞
δ2
|eB|p · f(e)de

2
∫ +∞
δ2

f(t)dt

+

∫ δ2
δ1
f(t)dt

2
∫ +∞
δ2

f(t)dt+
∫ δ2
δ1
f(t)dt

·
∫ δ2
δ1
|e|p · f(e)de∫ δ2
δ1
f(t)dt

.

By H ≤ δp2 , we have
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E(|eB|p) =
2c

2c+ b
·

2
∫ +∞
δ2
|eB|p · f(e)de

2
∫ +∞
δ2

f(t)dt
+

b

2c+ b
·
∫ δ2
δ1
|e|p · f(e)de∫ δ2
δ1
f(t)dt

≥ 2c

2c+ b
·
∫ +∞
δ2

δp2 · f(e)de∫ +∞
δ2

f(t)dt
+

b

2c+ b
·H

=
2c

2c+ b
· δp2 +

b

2c+ b
·H

≥ 2c

2c+ b
·H +

b

2c+ b
·H

= H,

with equality if and only if |eB| ≡ δ2. Note that eB /∈ [−δ1, δ2] and δ1 ≤ δ2, P{eB = −δ2} =
1. By the symmetry of noise distribution, |eB| ≡ δ2 means P{eA = δ2} > 0.

Hence
E(|eA|p) ≤ E(|eB|p)

holds with equality if and only if |eA| ≡ δ1 and |eB| ≡ δ2. The two conditions imply δ1 = δ2.
Then eB ∈ {ei|ei /∈ [−δ1, δ2]} = ∅. And thus E(|ei|p

∣∣y0
i +ei ∈ [u, v]) < E(|ei|p

∣∣y0
i +ei /∈ [u, v])

holds for any p ∈ N+.

A.9 Proof of Property 5

Proof Let fθ(θ) be the probability density function (PDF) of variable θ = y0
i − c, where c

is the center of the covering interval. Then fc(c) = fθ(θ) = fθ(y
0
i − c). Substituting c with

y0
i − c gives us fc(y

0
i − c) = fθ(c). Substituting c with y0

i + c gives us fc(y
0
i + c) = fθ(−c).

By the symmetry of fc(c), i.e.,fc(y
0
i − c) = fc(y

0
i + c), we obtain fθ(c) = fθ(−c). In other

words, θ is from a symmetric distribution. So we have
∫ r
−r θ · fθ(θ)dθ = 0 for any interval

radius r.
When yi /∈ [u, v], Ri = |yi − c| = |yi − y0

i + θ| = |ei + θ|. Then

Ec(Ri) =

∫ y0i+r

y0i−r
|yi − c| · fc(c)dc =

∫ r

−r
|ei + θ| · fθ(θ)dθ , Eθ(Ri).

Considering that yi /∈ [u, v]⇒ |ei| > r > 0, the unbiasedness is analyzed in the following
two cases.

If ei > r > 0, Ri = |ei + θ| = ei + θ. Then

Eθ(Ri) =

∫ r

−r
(ei + θ) · fθ(θ)dθ

=

∫ r

−r
ei · fθ(θ)dθ +

∫ r

−r
θ · fθ(θ)dθ

= ei ·
∫ r

−r
fθ(θ)dθ +

∫ r

−r
θ · fθ(θ)dθ

= ei · 1 + 0 = |ei|.
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If ei < −r < 0, Ri = |ei + θ| = −(ei + θ). Then

Eθ(Ri) = −
∫ r

−r
(ei + θ) · fθ(θ)dθ

= −
∫ r

−r
ei · fθ(θ)dθ −

∫ r

−r
θ · fθ(θ)dθ

= −ei ·
∫ r

−r
fθ(θ)dθ −

∫ r

−r
θ · fθ(θ)dθ

= −ei · 1− 0

= −ei = |ei|.

Therefore, Ec(Ri|yi /∈ [u, v]) = Eθ(Ri|yi /∈ [u, v]) = |ei|.

A.10 Proof of Property 6

Proof (1) From Figure 6, we have∣∣Ri − |ei|∣∣ = |c− y0
i |,

∣∣ inf |ei| − |ei|
∣∣ =

{
y0
i − u if yi < u
v − y0

i if yi > v
,

∣∣ sup |ei| − |ei|
∣∣ =

{
v − y0

i if yi < u
y0
i − u if yi > v

,

By y0
i ∈ [u, v] and c = (u+ v)/2, we have |c− y0

i | ≤ r. Then

EADCD = Ec
∣∣Ri − |ei|∣∣ =

∫ +∞

−∞
|c− y0

i | · fc(c)dc ≤
∫ +∞

−∞
r · fc(c)dc = r,

with equality if and only if |c − y0
i | ≡ r. Considering that |c − y0

i | ≡ r does not hold in
reality, we have EADCD < r for any yi /∈ [u, v].

When yi < u,

EADL = Ec
∣∣ inf |ei| − |ei|

∣∣
=

∫ +∞

−∞
(v − y0

i ) · fc(c)dc

=

∫ +∞

−∞
(c+ r − y0

i ) · fc(c)dc

=

∫ +∞

−∞
(c− y0

i ) · fc(c)dc+ r ·
∫ +∞

−∞
fc(c)dc.

By the symmetry of fc(c), we have
∫ +∞
−∞ (c− y0

i ) · fc(c)dc = 0, then EADL = r.
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Similarly, EADL = r holds for yi > v. Thus EADL ≡ r holds for any yi /∈ [u, v]. It can
be proved in the same way for EADU ≡ r.

(2) Since the absolute noise |ei| is independent of the interval center c, we have ERDCD =
EADCD
|ei| , ERDL = EADL

|ei| , ERDU = EADU
|ei| . Then EADCD < EADL = EADU ⇒ ERDCD <

ERDL = ERDU for any yi /∈ [u, v].
(3) Note that u < y0

i < v ⇔ y0
i − r < c < y0

i + r, we have

EADCD =

∫ y0i+r

y0i−r
|c− y0

i | · fc(c)dc
t=c−y0i======

∫ r

−r
|t| · fc(t+ y0

i )dt.

By the symmetry of fc(c),

∂EADCD

∂r
= r · fc(r + y0

i ) + r · fc(−r + y0
i ) = 2rfc(r + y0

i ) > 0.

References
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