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Abstract

Conditional independence tests play a crucial role in many machine learning procedures
such as feature selection, causal discovery, and structure learning of dependence networks.
They are used in most of the existing algorithms for Markov Blanket discovery such as
Grow-Shrink or Incremental Association Markov Blanket. One of the most frequently used
tests for categorical variables is based on the conditional mutual information (CMI) and
its asymptotic distribution. However, it is known that the power of such test dramatically
decreases when the size of the conditioning set grows, i.e. the test fails to detect true
significant variables, when the set of already selected variables is large. To overcome this
drawback for discrete data, we propose to replace the conditional mutual information by
Short Expansion of Conditional Mutual Information (called SECMI), obtained by trun-
cating the Möbius representation of CMI. We prove that the distribution of SECMI
converges to either a normal distribution or to a distribution of some quadratic form in
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normal random variables. This property is crucial for the construction of a novel test of
conditional independence which uses one of these distributions, chosen in a data dependent
way, as a reference under the null hypothesis. The proposed methods have significantly
larger power for discrete data than the standard asymptotic tests of conditional indepen-
dence based on CMI while retaining control of the probability of type I error.

Keywords: conditional independence tests, mutual information, Möbius representation,
feature selection, information-based selection criteria, interaction information

1. Introduction

In the paper we focus on testing conditional independence when a conditioning set is large.
Conditional independence tests are ubiquitous in many problems of machine learning such
as feature selection (see e.g. Guyon and Elyseeff 2006), causal discovery (see e.g. Spirtes
et al. 2000), and structure learning of dependence networks (see e.g. Yu et al. 2018).

Such tests are used to decide whether to include a candidate variable into the set of active
variables. As an example consider the problem of discovering a Markov Blanket (MB) of the
target variable Y which is defined as the minimal set of variables among all considered, given
which all other variables are independent of Y . MB is a key concept in structure learning
of Bayesian (cf. Tsamardinos et al. 2003) and Markov networks (Bromberg et al., 2009;
Schlüter, 2012) as well as in the feature selection (Brown et al., 2012). It was proposed by
Pearl to identify MB of a class variable within the framework of Bayesian networks (Pearl,
1988) and was then transferred to non-causal case where it serves as the feature selection
tool without establishing causal relationships (Koller and Sahami, 1995). A large class
of such methods (the so-called constraint-based methods) use MB discovery as a step in
learning the Bayesian network structure (see e.g. Pellet and Eliseeff 2008). Representative
examples are: Grow-Shrink (GS) (Margaritis and Thrun, 1999), Incremental Association
Markov Blanket (IAMB) and its variants (Tsamardinos et al., 2003) and HITON (Aliferis
et al., 2003; Pena et al., 2007) among others.

Many authors focus on the optimality of proposed algorithms (i.e. algorithms which
find a MB for any variable considered as a target) and in order to show that the logic of
the algorithm is correct, assume that conditional tests are perfect, i.e. they establish with
certainty whether a candidate variable is conditionally independent or not of the target given
already chosen variables (see e.g. Pena et al. 2007 and Gao and Qiang 2017). Moreover,
a putative reasoning is that even if an error is committed with a certain probability, given
finite number of candidates, the overall error of MB discovery should not be too large.
However, this argument may fail when either the number of variables is large or the error of
deciding whether a candidate variable is conditionally independent from the target is large,
and especially when both situations simultaneously occur. We argue that such situations
may occur for large scale networks (i.e. those having many nodes) and small sample sizes.
This concerns in particular a popular conditional mutual information (CMI) test based
on an asymptotic distribution of sample CMI, which is approximately chi-square under
the null hypothesis of conditional independence (see Theorem 1 below for specification of a
number of degrees of freedom of the chi-square distribution).

We note in passing that, besides MB discovery, CMI-based inference for two features
given the class attribute plays an important role in interaction detection when its value, if
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larger than the unconditional mutual information, indicates positive predictive interaction
(see e.g. Mielniczuk and Teisseyre 2018).

However, it is widely known, although a systematic quantitative study is still missing,
that the power of tests based on sample CMI dramatically decreases when the size of the
conditioning set grows, i.e. the tests fail to detect the true significant variables, when the set
of already selected variables is large. Consequently, the popular MB discovery algorithms
may overlook the significant variables, which in turn leads to an inaccurate prediction of
the network structure. To alleviate the drawback of the asymptotic test for CMI, some
modifications have been proposed. For example, Tsamardinos and Borboudakis (2010)
consider a test for CMI for which parameters of a chi-square reference distribution are
calculated based on the permutation scheme. More specifically, when conditional indepen-
dence of X and Y given Z is tested, the values of X are permuted on strata Z = z, thus
keeping conditional distribution of Y given Z unchanged. A similar permutation scheme
for CMI was used in Leppä-Aho et al. (2018) in the context of learning Markov network
structures for continuous data and in Runge (2018) who tested conditional independence
using a nearest-neighbour estimator of CMI.

We focus here on detecting conditional dependence using non-parametric information-
based methods i.e. we do not make any assumptions on the distributions of (X,Z, Y )
besides that X, Y and Z are discrete. In the case when the distribution of (X,Z) is
unknown and one can sample from it, an approach based on the so-called knockoffs has been
recently developed (see Barber and Candès 2015 and Candès et al. 2018). Here we assume
that the sole information about the distribution of (X,Z, Y ) is an iid sample (Xi, Zi, Yi)
consisting of n observations. Let us mention in this context that the most powerful test for
conditional independence against all alternatives does not exist when some coordinates of Z
are continuous random variables (Shah and Peters, 2020). Even when Z is a discrete random
variable, testing conditional independence is more difficult problem than its unconditional
version as it involves testing independence of X and Y on each strata Z = z.

In this work, we discuss drawbacks of existing CMI-based procedures when the condi-
tioning set consists of a large number of variables and in the view of them we propose a novel
test procedure based on a sample analogue of SECMI (Short Expansion of Conditional
Mutual Information), obtained from Möbius representation of CMI by truncation. Möbius
expansion allows one to write down CMI as a sum of low-dimensional terms pertaining to
interactions between variables. The SECMI is obtained by retaining the first two terms
of the expansion, corresponding to the main effects and the second order interactions, and
replacing them with their sample analogues, while omitting higher-order interactions. In
this way we avoid the problem of calculating the sample mutual information for cells with
small number of observations, which is the case for CMI.

Our aim here is to propose new test procedures based on the SECMI. To this end we
first prove that the asymptotic distribution of SECMI turns out to be either normal or co-
incides with distribution of a certain quadratic form of normal variable, according to depen-
dence structure among variables. Additionally, for the case when Markov Blanket for binary
Y is sought, we fully characterize the situation when a distribution of sample SECMI is not
normal. Moreover, it is empirically confirmed that, under null hypothesis, the distribution
of a quadratic form is close to the chi square distribution. In contrast to CMI, we face
a problem of choosing an appropriate reference distribution for SECMI-based conditional
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independence testing. In order to account for the aforementioned dichotomy of the asymp-
totic limit, we develop a data-driven choice of the reference distribution based on which the
p-value is calculated. As the reference distributions depend on unknown parameters (the
mean and the variance in the case of the normal distribution and the number of degrees of
freedom in the case of the chi square distribution) they have to be estimated. We propose to
estimate them using the permutation scheme. Since we only estimate parameters of these
distributions and not the whole distribution we avoid prohibitive number of permutations
to approximate well its quantiles. It follows from our experiments that the proposed testing
procedures are well calibrated, i.e. the actual significance levels match the assumed ones.
Moreover, our methods outperform CMI-based tests (the asymptotic one and the permu-
tation based test) with respect to the power. We also combine our tests with MB discovery
algorithms which results in significantly larger recall for various networks.

This paper is organized as follows. In Section 2 we discuss notation and recall basic
definitions that are needed to define the proposed test statistic. Section 3 contains the-
oretical results on asymptotic distributions of CMI with self contained proofs as well as
bounds on the sample sizes needed to ensure the desired power of the test. In Section 4 we
introduce a novel statistic SECMI, discuss its properties and give theoretical results on
the distribution of SECMI. In Section 5 we describe novel semi-parametric tests based on
SECMI. Results of the experiments are described in Section 6, Section 7 concludes the
paper.

2. Preliminaries

First we recall definitions of basic quantities considered in Information Theory, which will
be used in the next sections. Throughout we consider univariate or multivariate nominal
random variables having a finite number of discrete values. The mutual information (MI)
between X and Y is defined as (log stands for logarithm to the base 2)

I(Y,X) =
∑
x,y

P (X = x, Y = y) log
P (X = x, Y = y)

P (X = x)P (Y = y)
= H(Y )−H(Y |X), (1)

where H(Y ) = −
∑

y P (Y = y) logP (Y = y) and H(Y |X) =
∑

x P (X = x)H(Y |X = x)
are the entropy and the conditional entropy, respectively. MI evaluates how similar the
joint distribution is to the product of marginal distributions and thus can be considered a
measure of strength of dependence between X and Y . It is symmetric, non-negative and is
equal zero if and only if X and Y are independent. It is also easily seen that

I(Y,X) = H(Y ) +H(X)−H(Y,X). (2)

The conditional mutual information (CMI)

I(Y,X|Z) =
∑
x

P (Z = z)
∑
x,y

P (X = x, Y = y|Z = z) log
P (X = x, Y = y|Z = z)

P (X = x|Z = z)P (Y = y|Z = z)

(3)
measures the strength of the conditional dependence between X and Y given Z. Note that
the conditional mutual information is the mutual information of X and Y given Z = z
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averaged over the values of Z. It is equal zero if and only if X and Y are conditionally
independent given Z. The conditional independence of X and Y given Z is denoted by
X ⊥ Y |Z. For more properties of the basic measures described above we refer to Cover and
Thomas (2006) and Yeung (2002). The above definitions can be naturally extended to the
case of random vectors (i.e. when X, Y and Z are multivariate random variables) by using
a multivariate mass function instead of a univariate one. It is easily seen that

I((X,Z), Y ) = I(Z, Y ) + I(X,Y |Z). (4)

Another important quantity, used in the next sections, is the interaction information II
(McGill, 1954). The 3-way interaction information is defined as

II(X,Y, Z) = −H(X)−H(Y )−H(Z) +H(X,Y ) +H(X,Z) +H(Y,Z)−H(X,Y, Z). (5)

It can be easily proved that II can be also written as

II(X,Y, Z) = I((X,Z), Y )− I(X,Y )− I(Z, Y ), (6)

and thus II can be interpreted as the part of the mutual information of (X,Z) and Y which
is due solely to the interaction between X and Z in predicting Y i.e. the part of I((X,Z), Y )
which remains after subtraction of the amount of individual informations between Y and X
and that of Y and Z. In other words, II is obtained by removing the main effects from the
term I((X,Z), Y ) which describes the overall dependence between Y and the pair (X,Z).
Interaction information can be also written as

II(X,Y, Z) = I(Y,X|Z)− I(Y,X), (7)

which is consistent with an intuitive meaning of existence of an interaction as the situation
in which the effect of a one variable on the class variable Y depends on a value of another
variable. The positive value of II indicates the existence of complementarity, e.g. for
Y = XOR(X,Z), being indicator function of the event {X 6= Z} we have II(X,Y, Z) =
log(2) > 0, when all three variables are binary and take their values with probability 1/2.
On the other hand, the negative value of II indicates redundancy, e.g. for Y = X = Z, we
have II(X,Y, Z) = − log(2) < 0. The 3-way II can be extended to the general case of m
variables. The m-way interaction information (Ting, 1960; Han, 1980) is

II(Z1, . . . , Zm) = −
∑

T⊆{1,...,m}

(−1)m−|T |H(ZT ), (8)

where ZT is the subvector of Z with indices in T and |T | is a number of elements of T .
For m = 1, equality (8) reduces to II(Z1) = −H(Z1), in the case of m = 2 it yields
mutual information, whereas for m = 3 it reduces to (5). It turns out that the conditional
mutual information can be represented as a sum of interaction informations, see Section
4.1. It seems intuitive and helpful that the strength of dependence between multivariate
Z and the class variable Y is decomposed into parts corresponding to interactions between
subvectors of Z of dimensionality r and Y for r = 1, 2, . . . ,m. Using this decomposition we
define a novel test statistic, called SECMI, by truncating the decomposition and retaining
interaction informations of Y with individual Zis and with pairs (Zi, Zj).
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3. Testing Conditional Independence Using CMI

3.1 Asymptotic Distribution of CMI

A frequently applied test of the conditional independenceX ⊥ Y |Z, where Z = (Z1, . . . , Zm),
uses sample conditional mutual information Î(X,Y |Z) as a test statistic obtained by plug-
ging in frequencies for probabilities in (3). It is based on the useful fact that under con-
ditional independence X ⊥ Y |Z its asymptotic distribution does not depend on that of
(X,Y, Z) and is approximately chi square with the known number of degrees of freedom
(see Theorem 1 below). On the other hand, when the conditional independence does not
hold, the limiting distribution of Î(X,Y |Z) − I(X,Y |Z) is normal with the variance de-
pending on the underlying probability distribution. We stress that speeds of convergence
of Î(X,Y |Z) to I(X,Y |Z) are different in both cases: they equal n−1 in the first case and
n−1/2 in the second. The test based on CMI is a popular tool in dependence analysis, in
particular for Markov Blanket discovery. It comes under different guises and names among
which G2 test is the most popular (see e.g. Agresti 2002). X2 denotes the second order
approximation of CMI which turns out to be the conditional chi square test and has the
same asymptotic distribution as Î(X,Y |Z) discussed below (this can be shown similarly
to the unconditional case, see ibidem). It is frequently noted that CMI test lacks power
when the average number of observations per cell is too small (e.g. smaller than 5) but
these statements are rarely supported by quantitative analysis. Actually, the lack of power
of CMI can be quite dramatic. It has important consequences for performance of Markov
Blanket discovery procedures e.g. GS or IAMB - such as a poor detection of influential
variables and consequently low Recall. We support this claim, which is exemplified by anal-
ysis of behaviour of CMI-based test in synthetic models of Section 6, by straightforward
derivation of a behaviour of the test statistic on the alternative using normal approximation
(see Theorem 1 (i)) which turns out to yield surprisingly good approximation of the power
of the test.

We now introduce some notations. Let p(x, y, z) := P (X = x, Y = y, Z = z) and
analogously p(x, y) := P (X = x, Y = y), p(x) := P (X = x), etc. We assume throughout
that p(x, y, z) > 0 for any x, y, z. Moreover, we let X,Y, Z take I, J,K possible values,
respectively. Note that, since Z is a m-dimensional vector, K is the number of all possible
combinations of values of its coordinates. For example if all Zis take b possible values,
then K = bm. We assume throughout that the estimation of I(X,Y |Z) is based on n iid
samples from the distribution of (X,Z, Y ). The following known result is frequently used in
dependence analysis (compare Kullback 1978 and, e.g.,Tsamardinos and Borboudakis 2010
p. 325; see also Shao 2003 for the statement of the result).

Theorem 1 (i) Assume that I(X,Y |Z) 6= 0. Then we have

n1/2(Î(X,Y |Z)− I(X,Y |Z))
d→ N(0, σ2

CMI), (9)

where

σ2
CMI =

∑
x,y,z

p(x, y, z) log2 p(x, y, z)p(z)

p(x, z)p(y, z)
− I2(X,Y |Z) = Var

(
log

p(X,Y, Z)p(Z)

p(X,Z)p(Y,Z)

)
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and σ2
CMI > 0.

(ii) Assume that I(X,Y |Z) = 0. Then

2nÎ(X,Y |Z)
d→ χ2

d, (10)

where d = (I − 1)(J − 1)K.

A closely related result to Theorem 1 (ii), goes back to Fisher (see Fisher 1922) who consid-
ered chi square statistic in place of mutual information. We include a proof of Theorem 1 in
the Appendix as, surprisingly, it is not easy to find its complete and self-contained version.
The reason is that the usual way to justify it is rather circuitous. It relies on representing
conditional independence hypothesis

p(x, y|z) =
p(x, y, z)

p(z)
= p(x|z)p(y|z) =

p(x, z)p(y, z)

p2(z)

as a parametric hypothesis whose parameters are given by the conditional marginal prob-
abilities p(x|z) and p(y|z). Then CMI is derived as the Likelihood Ratio Statistic (LRT)
and asymptotic results on LRT are used to find its limit (see Shao 2003, p. 438). In the
appendix we give a self-contained proof of this result based on the delta method (see Agresti
2002, Section 14.2.1) in the course of which we develop a groundwork for proving our main
result, Theorem 2, which can thus be viewed as a generalization of Theorem 1. We note
that scaling factor n1/2 in (i) needs to be replaced by a larger scaling factor n in (ii) in order
to obtain non-degenerate asymptotic law of the centered Î(X,Y |Z). We also note that this
result is an analogue of the result for the estimator of unconditional information I(X,Y )
which states that its law is asymptotically normal provided I(X,Y ) 6= 0 and chi square
distributed in the opposite case (compare Agresti 2002). In the first case, the variance of
Î(X,Y ) equals Var(log p(X,Y )/p(X)p(Y )) and in the second case the number of degrees of
freedom is (I − 1)(J − 1).

Let us note that LRT tests under appropriate assumptions are uniformly most powerful
tests for testing the conditional independence against the lack of it (see e.g. Agresti 2002).
However, we show in the following sections that when the true dependence structure does
not exhibit higher order interactions or if they are negligible, the proposed SECMI test is
frequently more powerful that the CMI based test.

3.2 Lack of Power of CMI

In this section we address the problem of the lack of power of CMI, that is its poor
performance at distinguishing departures from the conditional independence of X and Y
given Z unless the sample size is very large. We show here that this is consistent with
Theorem 3 (i). First, we report on a very good correspondence between the power calculated
in Monte Carlo experiments for synthetic data and the theoretical power derived below. To
show this fact, we performed an experiment on synthetic data, generated as follows.

Synthetic data D0. We draw Y ∈ {1, 2} from the Bernoulli distribution with the
success probability P (Y = 1) = P (Y = 2) = 0.5. Then we generate Z1, . . . , Zm ∈ {1, 2, 3}
with the marginal distribution P (Zi = 1) = 0.25, P (Zi = 2) = 0.5, P (Zi = 3) = 0.25 and
such that the joint distribution (Y, Zi) is described by a discretized normal copula, with
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covariance matrix Σ =

(
1 γ
γ 1

)
, where γ is a parameter. Finally, we generate variable X ∈

{1, 2} from the Bernoulli distribution with success probability P (X = 1|Z1, . . . , Zm, Y ) =
σ(−

∑m
i=1(Zi + Y )), where σ(s) = (1 + exp(−s))−1 is a logistic function. We consider the

null hypothesis Y ⊥ X|Z1, . . . , Zm.
Figure 1 shows how the theoretical and the empirical power depend on n, for m = 10,

γ = 1 and α = 0.05 for synthetic data D0. We observe a very good agreement between
curves corresponding to the theoretical and the empirical power.
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Figure 1: Theoretical and empirical power of CMI, for m = 10, γ = 1 and α = 0.05 for
synthetic data D0 described in Section 3.2.

Now we calculate theoretically the sample size necessary for the power to be at least β
when the test is performed at significance level α for hypothesis H0 : I(X,Y |Z) = 0. The
rejection region is C = {Î(X,Y |Z) ≥ tα), where tα is the critical value corresponding to
level α calculated from (10). First, in order to control a significance level at α, we note
that, in view of Theorem 1 (ii), we have

α = PH0(Î(X,Y |Z) ≥ tα) = PH0(2nÎ(X,Y |Z) ≥ 2ntα) ≈ 1− Fχ2
d
(2ntα), (11)

where d = (I−1)(J−1)K and Fχ2
d

is a distribution function of χ2
d with d degrees of freedom.

Hence tα ≈ F−1
χ2
d

(1− α)/2n. Standard calculations (see Appendix A) show that, in order to

have the power of the test to be at least β, or equivalently P (C) ≥ β, sample size n should
satisfy

n ≥


√

4σ2
CMI (Φ−1(1− β))2 + 8I(X,Y |Z)F−1

χ2
d

(1− α)− 2σCMIΦ
−1(1− β)

4I(X,Y |Z)

2

. (12)
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If β = 0.5 which corresponds to the probability at least 0.5 of detecting conditional
dependence, as Φ−1(1/2) = 0, this reduces to:

n ≥
F−1
χ2
d

(1− α)

2I(X,Y |Z)
. (13)

In order to visualize how the required sample size for CMI test depends on parameters m,
β, α we consider a simple situation in which X and Y are binary and each Z1, . . . , Zm takes
three possible values, and thus d = 3m (compare Theorem 1). In addition, we assume that
I(X,Y |Z) = 1 and σ2

CMI = 1. The lower bound for the required sample size is derived by
bounding from below the right hand side of (13) by d− 5/2 for α ≤ 0.17 (easily obtainable
from Inglot 2010, Proposition 5.1). Figure 2 shows how the required sample size increases
with β for fixed m (m = 5 and m = 10). Note that for m = 5 and β = 0.5 (Figure 2 (a)) the
required sample sizes oscillate around 150, whereas for m = 10 and β = 0.5 ((Figure 2 (b))
they oscillate around 30000. Figure 3 shows the required sample sizes to achieve the power
β = 0.35, 0.5, 0.9 and 0.99 (logarithmic scale is used on the Y axis). It is clearly seen that
the required sample size increases exponentially with m . The above analysis shows that we
need a large amount of data to detect the conditional dependence among variables, even for
a moderate size of the conditioning set, e.g. for m = 10 we need around 30000 observations
in order to obtain the power of CMI-based test to be at least 0.5. Note also that for smaller
α, when we try to control significance level of the procedure consisting of several tests using
e.g. the Bonferroni correction, the required sample size will be considerably larger.

In the view of the discussed lack of power of the CMI-based test for moderate sample
sizes and large conditioning sets it becomes necessary to look for its alternatives which
do not suffer from this drawback. One possible solution based on the truncated Möbius
expansion is discussed in the following section.
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Figure 2: Required sample size for asymptotic CMI test wrt to β for m = 5 (a) and m = 10
(b).

9



Kubkowski, Mielniczuk, Teisseyre

101

103

105

2 4 6 8 10
m

R
eq

ui
re

d 
sa

m
pl

e 
si

ze
 n

α = 0.001
α = 0.01
α = 0.05
α = 0.1
lower bound

β = 0.35

101

103

105

2 4 6 8 10
m

R
eq

ui
re

d 
sa

m
pl

e 
si

ze
 n

α = 0.001
α = 0.01
α = 0.05
α = 0.1
lower bound

β = 0.5

(a) (b)

101

103

105

2 4 6 8 10
m

R
eq

ui
re

d 
sa

m
pl

e 
si

ze
 n

α = 0.001
α = 0.01
α = 0.05
α = 0.1
lower bound

β = 0.9

101

103

105

2 4 6 8 10
m

R
eq

ui
re

d 
sa

m
pl

e 
si

ze
 n

α = 0.001
α = 0.01
α = 0.05
α = 0.1
lower bound

β = 0.99

(c) (d)

Figure 3: Required sample size for the power of asymptotic CMI test to be at least β =
0.35, 0.5, 0.9, 0.99 wrt to the size of conditioning set m.

4. Expansions of Conditional Mutual Information

In the view of the previous discussion we consider a different statistic than CMI in order
to build a more powerful test of conditional dependence and construct the corresponding
rejection region based on its approximate distribution. Its derivation is based on the so-
called Möbius expansion of I(X,Y |Z), where Z = (Z1, . . . , Zm). By truncating the Möbius
expansion we reduce the sizes of conditioning sets for the summands which are the source of
the lack of power of the CMI. First we give some preliminaries on the Möbius representation
of the conditional mutual information.
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4.1 The Möbius Representation of CMI

Let ZT denote the subvector of Z = (Z1, . . . , Zm) for indices belonging to T ⊆ {1, . . . ,m}.
In order to justify the Möbius expansion, we note that II(Z1, . . . , Zm) defined in (8) is
a special case of the so-called difference operator ∆f(ZS) for f(ZS) = −H(ZS), where
∆f(ZS) is defined by (Rota, 1964; Han, 1980)

∆f(ZS) =
∑
T⊆S

(−1)|S|−|T |f(ZT ).

Then the following Möbius inversion formula holds

f(ZS) =
∑
T⊆S

∆f(ZT ), (14)

(see Rota 1964, Corollary 1 and Principle of Inclusion-Exclusion). For f(ZS) = −H(ZS)
equality (14) yields

−H(ZS) =
∑
T⊆S

II(ZT ). (15)

Observe that in the view of (2), we have I(ZS , Y ) = H(ZS) +H(Y )−H(ZS , Y ). Applying
(15) for the first and the third term of the last equality with S = {1, . . . ,m} and recalling
that II(Y ) = −H(Y ) we obtain the Möbius representation of I(Z, Y )

I(Z, Y ) =

m∑
k=1

∑
{t1,...,tk}⊆{1,...,m}

II(Zt1 , . . . , Ztk , Y ). (16)

Thus, in the view of (4), we have

I(X,Y |Z) = I((Z,X), Y )− I(Z, Y ) = I(X,Y ) +
m∑
k=1

∑
{t1,...,tk}⊆{1,...,m}

II(X,Zt1 , . . . , Ztk , Y ).

(17)

4.2 Short Expansion of Conditional Mutual Information (SECMI)

We define Short Expansion of Conditional Mutual Information (SECMI) as the truncated
Möbius expansion (17) which incorporates the leading term I(X,Y ) and interactions of

order 2 i.e. the terms II(X,Zk, Y ). Let ̂SECMI be the sample version of SECMI. Thus
we have in view of (7)

SECMI(X,Y |Z) = I(X,Y ) +

m∑
k=1

II(X,Zk, Y ) = (1−m)I(X,Y ) +

m∑
k=1

I(X,Y |Zk) (18)

and

̂SECMI(X,Y |Z) = Î(X,Y ) +
m∑
k=1

ÎI(X,Zk, Y ) = (1−m)Î(X,Y ) +
m∑
k=1

Î(X,Y |Zk), (19)

11
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where Î(X,Y ) and Î(X,Y |Z) are the plug-in estimators of I(X,Y ) and I(X,Y |Z), re-

spectively and ÎI is defined using (7) and the plug-in estimators of MI and CMI. The

asymptotic distributions of ÎI(X,Y, Z) when X ⊥ (Y, Z) have been derived in Kubkowski

and Mielniczuk (2020). The main advantage of ̂SECMI over CMI when used as a test
statistic is that it involves conditioning on single variables only thus making approximation
of its target value more precise than in the case of CMI. Note that, in view of (18), for

m = 1, SECMI reduces to I(X,Y |Z) and ̂SECMI reduces to Î(X,Y |Z). It also follows
from (17) that CMI reduces to SECMI when high-order interactions are not present, i.e.
II(X,Zt1 , . . . , Ztk , Y ) = 0 for all k ≥ 2. The SECMI can be naturally extended to take
into account higher-order interactions by including more than the two first terms in (17),
see Sections 4.4 and 6.4 for examples and discussion. We note that when X ⊥ (Y, Z) then
it follows that the distribution of Î(X,Y ) is asymptotically chi square, and the same is
true for Î(X,Y |Zk) (see Theorem 1). However, even in this special case determination of

the distribution of ̂SECMI(X,Y |Z) in (19) does not follow from these two facts as the
summands in (19) are dependent.

The SECMI criterion introduced here is identical with CIFE (Conditional Infomax
Feature Selection) criterion used in variable selection, see Lin and Tang (2006); Brown et al.

(2012). Here, our aim is to consider ̂SECMI in a broader context as a test statistic for
testing the conditional independence and to construct a corresponding test and study its
actual level of significance and power. Then established properties of ̂SECMI can be used
in particular in variable selection (see Section 5.2).

4.3 Properties of SECMI

We discuss now some properties of ̂SECMI and show that it exhibits the dichotomous
behaviour under the conditional independence hypothesis, depending on which of the two
possible scenarios is valid. The asymptotic distributions appearing in Theorem 2 below will
serve as the reference distributions in the introduced SECMI-based test. Define first the
following random variables for i = 1, . . . ,m

Wi = log

(
p(X,Y, Zi)p(Zi)p(X)p(Y )

p(Zi, X)p(Zi, Y )p(X,Y )

)
, Ui = log

(
p(Zi, X, Y )p(Zi)

p(Zi, X)p(Zi, Y )

)
(20)

and

U0 = (1−m) log

(
p(X,Y )

p(X)p(Y )

)
. (21)

Let EU denote the expected value of random variable U . Observe that SECMI can be
written as

SECMI =

m∑
k=0

EUk = (1−m)−1EU0 +

m∑
k=1

EWk. (22)

This follows from

EU0 = (1−m)I(X,Y ), EUi = I(X,Y |Zi), EWi = II(X,Zi, Y ),

12
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for i = 1, . . . ,m, since for example

I(X,Y |Zi) =
∑
x,y,zi

p(x, y, zi) log
(p(x, y, zi)p(zi)
p(zi, x)p(zi, y)

)
and

II(X,Y, Zi) =
∑
x,y,zi

p(x, y, zi) log
(p(x, y, zi)p(zi)p(x)p(y)

p(zi, x)p(zi, y)p(x, y)

)
(see equation (7)).
Let

σ2
̂SECMI

= Var

(
log

[( p(X,Y )

p(X)p(Y )

)1−m m∏
i=1

(
p(Zi, X, Y )p(Zi)

p(Zi, X)p(Zi, Y )

)])
= Var

( m∑
i=0

Ui

)
. (23)

We state the two main theoretical results. The first exhibits the dichotomous behaviour
of ̂SECMI showing that its limit can be either normal or may have a distribution of
quadratic form in normal random variables. The second result fully characterizes the latter
case for binary Y . The proofs of the results are given in the Appendix. Let p̂ be a vector
of sample fractions corresponding to the vector of probabilities p = (p(x, y, z)). Note that
the case m = 1 is covered by the previous result.

Theorem 2 (i) Assume that σ2
̂SECMI

> 0 and m > 1. Then we have

n1/2( ̂SECMI − SECMI)
d→ N(0, σ2

̂SECMI
). (24)

(ii) If σ2
̂SECMI

= 0 then

2n( ̂SECMI − SECMI)
d→W THW, (25)

where W has N(0,Σ) distribution, Σ = nVar(p̂− p) and H is a Hessian matrix defined in
(44).

It follows from the proof of Theorem 1 that the distribution of W THW in (25) coincides
with the distribution of a weighted sum of squared independent normally distributed random
variables, where the weights are equal to the eigenvalues of ΣH. Theorem 2 asserts that
̂SECMI exhibits the dichotomous behaviour. Depending on whether σ2

̂SECMI
6= 0 or

σ2
̂SECMI

= 0 the asymptotic distribution is either normal or coincides with a distribution

of a certain quadratic form in normal variables. Such type of behaviour is typical for the
Likelihood Ratio Statistics (see e.g. Vuong 1989).

Let S = {1, . . . ,m}. As the limiting distribution depends on whether σ2
̂SECMI

is zero

or not, it is of importance to characterize this condition. In this way we learn dependence
structures which are possible when the asymptotic distribution of ̂SECMI is not normal.
This can be investigated in detail for the binary Y . Namely, the following result holds for
all m ∈ N .

13
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Theorem 3 Assume that Y is binary random variable, X,Z are discrete and σ2
̂SECMI

= 0.

(i) Then we have the following exclusive possibilities:
1) for all s ∈ S, variables X,Y are conditionally independent given Zs, moreover X,Y are
independent. This case always holds when m = 1;
2) there exists exactly one s0 ∈ S such that X,Y are conditionally independent given Zs0,
for all s ∈ S \ {s0} Y,Zs are independent, (Y,Zs) are conditionally independent given X,
X,Y are conditionally dependent given Zs. Additionally, X and Y are dependent.
(ii) Conversely, if 1) or 2) holds then σ2

̂SECMI
= 0.

(iii) We have SECMI(X,Y |Z) = 0.

Observe that in the view of (i)-(ii) above, possibilities 1) and 2) give a complete description

of the dependence structures for which ̂SECMI does not have an asymptotically normal
law. Moreover, for binary Y in the view of (iii) the centering in (25) can be omitted.
The following corollary follows directly from Theorem 4.3.

Corollary 1 Assume that Y is binary and m ≥ 2. If there exist at least two Zi such that
X ⊥ Y |Zi and σ2

̂SECMI
= 0 then X ⊥ Y |Zi for all i = 1, . . . ,m and X,Y are independent.

Indeed, it follows from the assumptions and Theorem that 1) of (ii) holds in this case.
We discuss now the consequences of Theorem 4.3 for the feature selection. Let Z be a vector
of already chosen variables and X a candidate. Then case 2) of (i) states in particular that
(Y,Zs) are conditionally independent given X for s 6= s0 and this means that X should
be chosen before all such Zs in Markov Blanket discovery for Y . Thus remaining Zs are
redundant if X and Zs0 are already chosen. Whence this situation is excluded in the greedy
selection context and thus only the case 1) is possible. In other words, for m > 1 limiting

distribution of ̂SECMI is not normal under the restrictive set-up of the case 1) of (i). Thus
for m > 1, Y binary with ZS being the set of chosen variables σ2

̂SECMI
= 0 is equivalent to

1) and can be re-expressed as the following Scenario 1.
Scenario 1.

EU0 = EU1 = · · · = EUm = 0.

The alternative scenario is
Scenario 2. There exists 0 ≤ i ≤ m such that EUi 6= 0.
For binary Y in the view of Theorem 4.3 the number of 0 ≤ i ≤ m such that EUi 6= 0 in
Scenario 2 equals m as EUi 6= 0 for i = 0 and i ∈ S \ {s0}. Moreover, we note that in view
of (iii) of Theorem 4.3 for binary Y , SECMI 6= 0 is sufficient condition for the asymptotic

normality of ̂SECMI.

Remark 2 We comment now on the general case of arbitrary triple (X,Y, Z) when Y is
not necessarily binary. Let M = {i = 0, . . . ,m : EUi 6= 0}. Then M is non-empty and
letting Î(X,Y |Z0) := (1−m)Î(X,Y ) we can write

n1/2( ̂SECMI − SECMI) = n1/2
∑
i∈M

(Î(X,Y |Zi)− EUi) + n1/2
∑
i∈Mc

Î(X,Y |Zi).

In view of Theorem 1 (i) and the remark below it, each term in the first sum has asymp-
totic normal distribution and the second sum is asymptotically negligible due to the difference

14
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in normings in (9) and (10). Thus in Scenario 2 contribution of the first sum eventually
prevails and conclusion of Theorem 2 (i) holds unless Zi, i ∈ M are strongly negatively
dependent in the sense that the variance of the corresponding sum tends more quickly to
0 than n−1. In contrast, in the case of Scenario 1 for all Zi we have that X and Y are
conditionally independent given Zi and moreover, X is independent of Y . In this case in
view of Theorem 1 (ii) and the decomposition of ̂SECMI in (19) all terms Ui will have
approximately the chi square distribution for i ≥ 1 and scaled chi square distribution for
i = 0. As all these terms are dependent the asymptotic distribution of the sum is in general
case more complicated than chi square distribution, namely the distribution of the quadratic
form given in (25).

Note that if X is such that X ⊥ (Y, Z) then Scenario 1 holds as this implies X ⊥ Y |Zi , i =
1, . . . ,m and X ⊥ Y . This particular case has been considered in synthetic models in-
vestigated in Mielniczuk and Teisseyre (2019), where distribution of ̂SECMI has been
approximated by the chi square distribution.

We now consider behaviour of ̂SECMI under the null hypothesis

H0 : X ⊥ Y |Z

and under the alternative

H1 : X 6⊥ Y |Z.

We note that under the null hypothesis both scenarios, Scenario 1 and Scenario 2 are
possible. Distribution of SECMI when H0 holds may differ depending on distribution of
the vector (X,Y, Z). However it follows from Theorem 4.3, that if there are at least two,

but not all Zis such that X ⊥ Y |Zi then, for the binary Y , the distribution of ̂SECMI is
asymptotically normal as then the case 2) is excluded. In the view of discussion above, in

the case of Scenario 2, we approximate distribution of ̂SECMI by the normal distribution
(i.e. its asymptotic limit.) In the case of Scenario 1, we use the chi square distribution
or, alternatively, a scaled and shifted chi square distribution. Thus in the second case,
the distribution of the quadratic form is approximated by one of these distributions. As
the parameters of these distributions are unknown, we propose to estimate them using
permutation scheme which generates data conforming to the null hypothesis and preserves
sample distributions of X and Y given Z. Figure 4 shows distributions and quantile plots
of ̂SECMI for m = 2, n = 5000 and simulation models E1 and E2, described in Section 6.
In both cases null hypothesis H0 holds. In the first case, however, SECMI 6= 0 and thus
σ2

̂SECMI
6= 0 (see Theorem 4.3). Whence distribution of ̂SECMI is asymptotically normal

whereas in the second case X ⊥ (Y, Z) holds, σ2
̂SECMI

= 0 and the asymptotic distribution

coincides with distribution of quadratic form in normal variables.

Remark 3 Note that the null hypothesis H0 for m > 1 is not implied in general by neither
X ⊥ Y |Zi for i = 1, . . . ,m or X ⊥ Y . However, this is true for a vast class of distributions
which are faithful to some undirected graph (see Section 13.6 in Bühlmann and van de Geer
2015).
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Figure 4: Histogram and quantile plot of SECMI, for X ⊥ Y |Z (a,b) and X ⊥ (Y,Z)
(c,d), for m = 2 and n = 5000. Data is generated from simulation models E1 and E2,
described in Section 6.

4.4 Higher-Order Expansions of Conditional Mutual Information

The main advantage of SECMI defined in (18) lies in conditioning on single variables only,
which leads to more powerful tests in the situations when the dependence structure among
the variables is not very complex, i.e. high-order interactions (of order > 2) among variables
are not present or are negligible. On the other hand, it should be stressed that SECMI
ignores the higher-order terms (it is obtained by truncation of the Möbius representation
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of CMI, see formula (17)) and thus it will fail to detect dependence when low-dimensional
terms are zero and only high-order interactions contribute to CMI. In such case CMI >
0 and at the same time SECMI = 0. To deal with the above situation (CMI > 0,
SECMI = 0) it is possible to generalize SECMI in order to take into account higher-
order interactions. Such generalization can be obtained by taking the first k terms (k < m)
in the Möbius representation (17). For example a test statistic containing the first three
components

SECMI3(Y,X|Z) := I(X,Y ) +

m∑
k=1

II(X,Zk, Y ) +
∑
k1<k2

II(X,Zk1 , Zk2 , Y ), (26)

where II(X,Zk1 , Zk2 , Y ) is defined in (8), will detect the interactions of order 3. Such
generalization was already considered in the context of feature selection, see Vinh et al.
(2016) and Pawluk et al. (2019). We note that application of (8) yields that (see Appendix)

SECMI3(Y,X|Z) = A× I(X,Y ) +B
∑
s∈S

I(X,Y |Zs) +
∑

s<s′,s,s′∈S
I(X,Y |Zs, Zs′),

where A and B are defined as where

A = 1−
(
|S|
1

)
+

(
|S|
2

)
, B = 1−

(
|S| − 1

1

)
. (27)

Define ̂SECMI3 to be empirical counterpart of (26) defined analogously to (19) and let

σ2
̂SECMI3

= Var
(

log
([ p(X,Y )

p(X)p(Y )

]A[∏
s∈S

p(X,Y, Zs)

p(X,Zs)p(Y, Zs)

]B ∏
s<s′,s,s′∈S

p(X,Y, Zs, Zs′)p(Zs, Zs′)

p(X,Zs, Zs′)p(Y,Zs, Zs′)

)
.

(28)
Then the following analogue of Theorem 2 holds

Theorem 4 (i) Assume that m > 2 and σ2
̂SECMI3

> 0. Then we have

n1/2( ̂SECMI3− SECMI3)
d→ N(0, σ2

̂SECMI3
). (29)

(ii) If σ2
̂SECMI3

= 0 then

2n( ̂SECMI3− SECMI3)
d→W THW, (30)

where W has N(0,Σ) distribution, Σ is defined in Theorem 2 and H is a Hessian matrix
of the function defined in (70).

The proof of Theorem 4 is given in the Appendix. The result is a theoretical justification
of choosing one of the two reference distributions under the hypothesis of the conditional
independence when the test statistic is ̂SECMI3. We note that when the existence of
an interaction between specified variables is suspected a variable corresponding to this
interaction may be introduced as a new predictor. Also, construction of a test of existence
of interactions of higher order is possible by extending results of Kubkowski and Mielniczuk
(2020), however the question how to use it efficiently avoiding multiple testing problem
remains unresolved.
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5. Testing Conditional Independence Using SECMI

5.1 Permutation Test for SECMI

In the following we discuss construction of SECMI-based test using permutations of the
given data. In view of the dichotomous behaviour of ̂SECMI (see Theorem 2) we propose
data-dependent determination which of the two distributions is closer to the distribution of
̂SECMI under the null hypothesis and the chosen distribution is used to decide the outcome

of the test. Namely, for each strata Z = z consisting of nz observations we permute B times
corresponding nz values of X and for each permutation we calculate value ̂SECMIk for
k = 1, . . . , B.

Using the sample of ̂SECMIk, we calculate the two first central moments which yield
estimators of µ and σ2 for a normal distribution N(µ, σ2) and a number of degrees of
freedom d for χ2

d which is estimated as a sample mean. Then the sample distribution of
̂SECMIk is compared to N(µ̂, σ̂2) and χ2

d̂
and the closer of the two in supremum metrics

is chosen. When the sample mean is non positive then the normal distribution is chosen
as the reference distribution. Then p-value of the observed value of ̂SECMI is calculated
with respect to the chosen distribution. This version of the algorithm is described in detail
in Algorithm 1. We also consider SECMI(chi s) in which the chi square distribution is
replaced with a scaled and shifted chi square distribution. It is defined as the distribution
of αχ2

d + β, where χ2
d is the chi square distribution with d ∈ R+; parameters α, d, β are

calculated based on the three first moments of { ̂SECMIk} (see Buckley and Eagleson 1988
and Zhang 2005).
Note that the conditional permutation method is based on a simple principle that under
H0 the distribution PX|Y,Z equals PX|Z . Thus if r.v. X̃ is such that PX̃|Z = PX|Z then
PX,Y,Z = PX̃,Y,Z . Observations following PX̃|Z are e.g. obtained by randomly permuting
the sample generated from distribution PX|Z .

Our operational premise is that distribution of ̂SECMI has essentially two forms: is ei-
ther approximately normal or chi square. We only use permutations to estimate parameters
of these distributions from the distribution of ̂SECMI calculated for the permuted samples
and not to estimate the whole distribution. Thus, we avoid prohibitive number of permu-
tations to approximate accurately quantiles of this distribution. The proposed method is a
variant of the semi-parametric permutation test used also in the Markov Blanket discovery
(see Tsamardinos and Borboudakis 2010) but differs in two important aspects: the switch
between two parametric distributions is proposed based on theoretical considerations to
ensure better fit to permutation distribution, and, secondly, the conditional information Î
test statistics is changed to ̂SECMI to obtain more powerful tests.

We experimentally tested the switch mode in SECMI procedure, described in Algo-
rithm 1. We consider the following simple simulation model. We first generate Z1, . . . , Zm
independently from discrete uniform distribution on {−1, 0, 1}. We generate Y ∈ {0, 1} from
Bernoulli distribution with success probability P (Y = 1|Z1, . . . , Zm) = σ(Z1 + . . . + Zm)
and X which follows the Bernoulli distribution with success probability P (X = 1|Z1) =
σ(δZ1), where δ is a parameter. Parameter δ controls the dependence strength between
X and Z1. Value δ = 0 corresponds to X ⊥ (Y, Z1, . . . , Zm) and δ > 0 corresponds to
X ⊥ Y |Z1, . . . , Zm and Scenario 2. Thus in the first case the asymptotic distribution of
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Algorithm 1: SECMI

Input : Training sample D of size n, drawn from distribution of (X,Y, Z);
number of permutations B.

Compute: ̂SECMI0 = ̂SECMI(X,Y |Z)
for k = 1, . . . , B do

Randomly permute X (on each strata on Z); denote by X(k) the variable X
with permuted values.

Compute: ̂SECMIk := ̂SECMI(X(k), Y |Z)

Compute:
µ̂ := 1

B

∑B
k=1

̂SECMIk

σ̂2 := 1
B−1

∑B
k=1( ̂SECMIk − µ̂)2.

Let:
FB(s) empirical distribution function of ̂SECMIk, k = 1, . . . , B.
FN(µ̂,σ̂)(s) theoretical distribution function of N(µ̂, σ̂2)
Fχ2

µ̂
(s) theoretical distribution function of χ2

µ̂

Compute:
DN(µ̂,σ̂) := sups |FB(s)− FN(µ̂,σ̂2)(s)|
Dχ2

µ̂
:= sups |FB(s)− Fχ2

µ̂
(s)|

if DN(µ̂,σ̂) < Dχ2
µ̂

or µ̂ ≤ 0 then

p = 1− FN(µ̂,σ̂2)( ̂SECMI0)

else

p = 1− Fχ2
µ̂
( ̂SECMI0)

Output : p-value p

̂SECMI is non-normal in contrast to the case of large δ > 0. Figure 5 shows the fraction
of simulations in which the chi square or the normal distribution were chosen in Algorithm
1 for the above simulation model. When X ⊥ (Y, Z1, . . . , Zm), the chi square distribution
is chosen in 84% of simulations (for m = 2) and 65% (for m = 5). For larger δ, the normal
distribution is chosen more often. When the size of the conditioning set m increases, the
chi square distribution becomes similar to the normal distribution, which explains why the
curves do not separate so clearly for δ = 0.

It is well known that the asymptotic results are hard to apply in the case of the small
sample sizes. We stress that in the following only qualitative result about the dichotomous
behaviour of ̂SECMI is used and parameters of the benchmark distributions are estimated
using permutation scheme. In Section 6 we check in numerical experiments that such
approach leads to satisfactory control of type I error and investigate the power of the
underlying test.

5.2 Using SECMI-Based Test for Variable Selection

We discuss now possible uses of SECMI-based test in variable selection. We have stated al-
ready that the SECMI criterion is identical with the CIFE criterion introduced in Lin and
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Figure 5: Fraction of simulations in which chi squared or normal distribution were cho-
sen in Algorithm 1 SECMI for simulation model described in Section 5.1. Value δ = 0
corresponds to X ⊥ (Y,Z1, . . . , Zm) and δ > 0 corresponds to X ⊥ Y |Z1, . . . , Zm.

Tang (2006). However, CIFE is commonly understood as a greedy feature selection proce-
dure, which works as follows. Assume the supervised learning scenario in which X1, . . . , Xp

are features and Y is the target variable. The method starts from an empty set of features.
Next, in each step it selects feature Xj , j ∈ {1, . . . , p} \ S which maximizes the following
criterion

J(Xj , S) := I(Y,Xj) +
∑
i∈S

II(Xi, Xj , Y ), (31)

where S is the set of features selected as relevant in the previous steps. The first term in (31)
corresponds to marginal dependence between a candidate variableXj and the target variable
Y . The second term is related to interactions between the already selected variables and
the candidate variable. A conditional independence test based on SECMI can be naturally
used in the feature selection task. Firstly it can be easily incorporated into CIFE algorithm
as a stopping rule, namely, we stop adding new variables in CIFE when Xj ⊥ Y |S, for
all j ∈ {1, . . . , p} \ S, where the null hypothesis of the conditional independence is verified
using SECMI. Importantly, note that using SECMI test in the context of the feature
selection is not limited to CIFE algorithm. The proposed test can be combined with all
popular Markov Blanket (MB) discovery algorithms such as GS or IAMB (Tsamardinos
et al., 2003), which are based on conditional independence testing. The GS and IAMB
consist of two steps. In the first step, we sequentially add features using a series of the
conditional independence tests. In the second (backward) step, the variables are sequentially
removed from the current set of the selected variables. The second step is used to limit
the number of variables falsely included in the MB (for the review of various forward-
backward techniques to achieve this we refer to Borbudakis and Tsamardinos 2019, see
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also Mielniczuk and Teisseyre 2019). Finally, note that there is also a close relationship
between CIFE algorithm and IAMB algorithm when IAMB is combined with SECMI.
Specifically, denote by IAMB+SECMI an IAMB algorithm in which SECMI is used as
a test of conditional independence. Observe that when we ignore correction for a multiple
testing, CIFE with a stopping rule determined by SECMI test is identical to the first
(forward) step of IAMB+SECMI.

6. Experiments

The aim is now to verify how SECMI works in practice for three problems: (i) as a test
statistic for the test of conditional independence, (ii) for the feature selection in supervised
classification and (iii) for Markov blanket discovery.

6.1 Power and Type I Error Comparison

In this Section we apply the conditional independence tests considered above to verify the
null hypothesis

H0 : X ⊥ Y |Z1, . . . , Zm. (32)

We investigate how a power (probability of rejection of H0 when it is false) and a type I error
(probability of rejection of H0 when it is true) of the proposed tests depend on the sample
size n, the size of conditioning set m and the dependence structure among variables. We
artificially generate variables X,Y, Z1, . . . , Zm using various dependence schemes described
below. We run L = 500 simulations and report the empirical power and the type I error as
a fraction of simulations in which the null hypothesis stated in (32) has been rejected. We
compare the proposed tests SECMI, SECMI(chi s) and SECMI3 (see Section 4.4). As
a reference we use two tests: (1) asymptotic test for CMI (called simply CMI) and (2)
semi-parametric test for CMI (called CMI(sp)) proposed in Tsamardinos and Borboudakis
(2010). In CMI(sp), permutation scheme is used to estimate a number of degrees of freedom
of the reference chi square distribution. In CMI test, the number of degrees of freedom
is determined by asymptotic distribution, see Theorem 1. Note that in both CMI and
CMI(sp) the same statistic is used. The methods only differ in the choice of the reference
distribution. To avoid a significant computational burden, we use only B = 50 permutations
in SECMI, SECMI(chi s), SECMI3 and CMI(sp). As in CMI(sp) we only estimate
parameters of reference distributions (the chi square or the normal), it is not necessary to
take very large B. For CMI and CMI(sp) we used implementations available in R package
bnlearn (Scutari, 2010). The proposed methods were also implemented in R language.

6.1.1 Simulation Models

We consider the following simulation models for the power comparison (models P1-P4) and
the type I error comparison (models E1-E4). Figures 6 and 7 illustrate graphically the
considered probability structures. First we define models for power comparison which were
chosen to represent a wide spectrum of dependence structures. We note that when Y is
treated as the target variable, models P1 and P4 below are discriminative models, in the
sense that we first generate variables Zi and X and then the target variable Y is generated
using Zi and X (see e.g. Barber 2014, Chapter 13). In contrast, models P2 and P3 belong
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to the class of so-called generative models in which the order of generation is opposite to
that for discriminative models, i.e. we first generate the target variable Y and then generate
Zi using the conditional distributions of Zi given Y . Moreover, model P3 is often referred
to as a ’collider’ as the arrows indicating direction of dependence ’collide’ at vertex X (see
Figure 6 (c) and e.g. Barber 2014, Definition 3.2).
Simulation model P1 We first generate Z1, . . . , Zm, X independently from the discrete
the uniform distribution on {−1, 0, 1}. Then we generate Y ∈ {0, 1} from the Bernoulli
distribution with success probability P (Y = 1|Z1, . . . , Zm, X) = σ(Z1 + . . .+ Zm + γ ·X),
where σ(s) = 1/(1 + exp(−s)) is the logistic function and γ is a parameter which controls
the strength of conditional dependence between Y and X given Z1, . . . , Zm. See Figure 6
(a).
Simulation model P2 Variable Y ∈ {0, 1} is generated from the Bernoulli distribution
with success probability 0.5. Next we generate independent auxiliary variables U1, . . . , Um, Um+1

independently from Y according to the normal distribution N(0, 1). We let Zi = h(Ui +Y )
for i = 1, . . . ,m and X = h(Um+1 + Y ), where h(x) discretizes x to 3 values 0, 1, 2 (Φ
denotes below N(0, 1) cdf):

h(x) =


0 x < Φ−1(0.25),

1 x ∈ [Φ−1(0.25),Φ−1(0.75)],

2 x > Φ−1(0.75).

(33)

Simulation model P3 (collider) First we generate Y ∈ {0, 1} from the Bernoulli dis-
tribution with success probability 0.5. Variable X is generated from the discrete uniform
distribution on {−1, 0, 1}. Then we generate Z1 ∈ {0, 1} according to P (Z1 = 1|X,Y ) = 0.7
if X + Y ≥ 0 and P (Z1 = 1|X,Y ) = 0.3 if X + Y < 0. Finally, Z2, . . . , Zm are generated
independently from the discrete uniform distribution on {−1, 0, 1}.
Simulation model P4 Binary variables X,Z1, Z2 are generated from the uniform distri-
bution on {0, 1} and Y = XOR3D(X,Z1, Z2) is defined as 1 when the sum X1 +Z1 +Z2 is
odd and 0 otherwise. Thus XOR3D is three-dimensional version of the usual XOR. To make
the testing task harder, we next change Y = 1 to Y = 0 with probability 0.3 if X +Z1 +Z2

is odd and we change Y = 0 to Y = 1 with probability 0.3 if X + Z1 + Z2 is even. We
additionally generate Z3, . . . , Zm from the uniform distribution on {0, 1, 2}, independently
from X,Y, Z1, Z2.

Observe that models P1, P2 and P3 are constructed in such a way that the interactions
between variables of order 3 and higher are absent. Therefore, we expect SECMI to work
on par or even better than CMI as it avoids estimation of non-existing effects. SECMI3
takes into account the 3rd order interaction terms, whose theoretical values are zero for
models P1-P3. So SECMI3 is also expected to work correctly for these models. For model
P4, however, assumptions of SECMI are not met, i.e. the theoretical value of SECMI
is zero, whereas theoretical values of CMI and SECMI3 are positive and equal. So in
this case, SECMI will fail to detect the true conditional dependence between variables,
whereas SECMI3 should work correctly.

Now we define models for Type I error comparison.
Simulation model E1 We first generate Z1, . . . , Zm independently from the discrete uni-
form distribution on {−1, 0, 1}. We generate Y ∈ {0, 1} from the Bernoulli distribution
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Figure 6: Graphs corresponding to simulation models P1-P4 described in Section 6.1.1.

with success probability P (Y = 1|Z1, . . . , Zm) = σ(Z1 + . . .+Zm) and X which follows the
Bernoulli distribution with success probability P (X = 1|Z1) = σ(Z1). In this case Scenario
2 holds.
Simulation model E1bis We define Y, Z1, . . . , Zm as in model E1, but X is now gen-
erated from the Bernoulli distribution with success probability P (X = 1|Z1, . . . , Zm) =
σ(Z1 + . . .+ Zm).
Simulation model E2 We define Y, Z1, . . . , Zm as in model E1, but X is now generated
independently from (Y,Z1, . . . , Zm) and has the Bernoulli distribution with probability 1/2.
Simulation model E3 First we generate Y ∈ {0, 1} from the Bernoulli distribution with
success probability 0.5. Next we generate auxiliary variables U1, . . . , Um, Um+1 indepen-
dently from the normal distribution N(0, 1). We let Zi = h(Ui + Y ) for i = 1, . . . ,m and
X = h(Z1 − 2 + Um+1).
Simulation model E3bis We generate Y , U1, . . . , Um, Um+1 and Zi for i = 1, . . . ,m as in
model E3, but X is defined as X = h(Z1 + . . .+ Zm − 2m+ Um+1).
Simulation model E4 We define Y,Z1, . . . , Zm as in model E3, however X = h(Um+1)
now. In this case Scenario 1 holds.

Note that in E1 and E3 we have X ⊥ Y |Z1, . . . , Zm, whereas in E2 and E4 a stronger
condition holds, namely X ⊥ (Y, Z1 . . . , Zm). Models E1bis and E3bis are modifications
of E1 and E3, respectively. Note that in E1 X ⊥ Y |Z1, . . . , Zm and also X ⊥ Y |Z1 but
X 6⊥ Y |Zi for i ≥ 2 . In E1bis, X ⊥ Y |Z1, . . . , Zm but X 6⊥ Y |Zi i = 1, . . . ,m. So in E1bis,
X and Y are conditionally independent given all variables Z1, . . . , Zm and conditionally
dependent given individual Zis. An analogous relationship exists between models E3 and
E3bis.

6.1.2 Results

Figures 9 and 10 show the power wrt size of the conditioning set m, for simulation models
P1-P4 defined in Section 6.1.1, and two sample sizes: n = 1000 and n = 5000. In model P1,
parameter γ = 1. Figure 11 shows the power wrt to γ for model P1. In addition we present
how the power varies with the sample size for fixed size of the conditioning set m = 5, see
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Figure 7: Graphs corresponding to simulation models E1, E1bis and E2 described in Section
6.1.1.
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Figure 8: Graphs corresponding to simulation models E3, E3bis and E4 described in Section
6.1.1.
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Figure 12. First it is clearly seen that the power of CMI decreases to 0 for relatively small
m. For example, in the case of models P1-P2, the power of CMI is equal 0 already for
m = 5 and n = 1000. The power of CMI(sp) is usually slightly larger, but it is also close
to 0 for relatively small m. For example, in the case of model P1 the power of CMI(sp)
approaches 0 already for m = 6 when n = 1000. The power for the proposed methods
is much larger than for the CMI-based tests. Among the proposed methods, SECMI
achieves the largest power for models P1-P3. The test based on the sample version of
SECMI3 defined in (26) is the second best for models P1, P2 and P3 (in the last case
only for n = 5000). This indicates that an unnecessary inclusion of higher-order terms
in the Möbius representation diminishes the power of the test. Despite this, SECMI3 is
still better than CMI and CMI(sp) for all considered models. As expected, SECMI fails
in the case of model P4 (its power oscillates around the significance level) as this model
contains an interaction of order 3, which is not captured by SECMI. The CMI-based
methods work for small m, for model P4. Importantly, when m increases, CMI also fails
to detect the dependence for P4. However, SECMI3 works very well in this case, notably
even in situations when CMI fails. The other proposed method SECMI(chi s) usually
works worse than SECMI and SECMI3 wrt to the power, although it controls the type
I error slightly better. As expected, the power increases with sample size. In general, the
performance of the tests strongly depends on ’m to n’ ratio. For large ’m to n’ ratio, CMI-
based test work poorly, even when theoretical value of CMI is positive (e.g. for model P4).
Recall that in the considered models each explanatory variable admits three values, thus the
number of possible values of vector (Z1, . . . , Zm) equals 3m and depends exponentially on
m. Note also that in model P1, for small γ and small m all methods work similarly, whereas
for larger m and larger γ, SECMI-based methods are evidently superior (see Figure 11).

Next, we studied observed type I errors for simulation models when the assumed type I
error is α = 0.05. Recall that we consider two situations: X ⊥ Y |Z (models E1, E1bis, E3
and E3bis) and X ⊥ (Y,Z) (models E2 and E4). The proposed methods control the type
I error, for larger sample size n = 5000, see Figures 13, 14 and 15. We also observe rather
unstable behaviour of CMI, for all considered sample sizes. For model E1bis we observe
that the empirical type I error exceeds assumed level 0.05 for m = 3 for SECMI-based
methods but in general they control the assumed type I error satisfactorily. In the most
challenging situation (large m and small n) it may happen that there is only one observation
for each combination of conditioning variables. We observe such effect for m = 10 and
n = 1000. Note that for m = 10 we have 3m = 59049 possible values of (Z1, . . . , Zm). This
is analogous to the case of having only one observation per cell in the contingency table. In
such situations, permutation scheme fails as the number of degrees of freedom is estimated
by the value of the statistics and the hypothesis is never rejected. This explains why the
curves in Figures 13 and 15 approach 0 for n = 1000 and m = 10. We also analysed the type
I errors as a function of α. Figures 16, 17 and 18 show the results for n = 5000. Observe
that for small m = 2, all methods control the type I error fairly well although CMI behaves
conservatively in model E3bis (left hand side panels). For larger m = 6, CMI does not
control the type I error (right hand side panels); the curve corresponding to CMI oscillates
around zero, which means that this test does not reject the null hypothesis at all.
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Figure 9: Power wrt to m for models P1 and P2 described in Section 6.1.1. Left-hand side
panels correspond to sample size n = 1000, right-hand side panels correspond to sample
size n = 5000.
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Figure 10: Power wrt to m for models P3 and P4 described in Section 6.1.1. Left-hand side
panels correspond to sample size n = 1000, right-hand side panels correspond to sample
size n = 5000.
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Figure 11: Power wrt to γ for model P1 described in Section 6.1.1, for sample sizes n = 1000
(left panels) and n = 5000 (right panels). Parameter γ controls the strength of conditional
dependence between Y and X given Z1, . . . , Zm. The first row corresponds to m = 2 and
the second row corresponds to m = 6.
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Figure 12: Power wrt to sample size n, for m = 5, for models P1, P2, P3 and P4 described
in Section 6.1.1.
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Figure 13: Type I error wrt to m for models E1 and E2 described in Section 6.1.1, for
α = 0.05. Left-hand side panels correspond to sample size n = 1000, right-hand side panels
correspond to sample size n = 5000.
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Figure 14: Type I error wrt to m for models E1bis and E3bis described in Section 6.1.1, for
α = 0.05. Left-hand side panels correspond to sample size n = 1000, right-hand side panels
correspond to sample size n = 5000.
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Figure 15: Type I error wrt to m for models E3 and E4 described in Section 6.1.1, for
α = 0.05. Left-hand side panels correspond to sample size n = 1000, right-hand side panels
correspond to sample size n = 5000.
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Figure 16: Type I error wrt to α for models E1 and E2 described in Section 6.1.1, for
n = 5000. Left-hand side panels correspond to m = 2, right-hand side panels correspond to
m = 6.
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Figure 17: Type I error wrt to α for models E1bis and E3bis described in Section 6.1.1, for
n = 5000. Left-hand side panels correspond to m = 2, right-hand side panels correspond to
m = 6.
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Figure 18: Type I error wrt to α for models E3 and E4 described in Section 6.1.1, for
n = 5000. Left-hand side panels correspond to m = 2, right-hand side panels correspond to
m = 6.
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6.2 Application to Markov Blanket Discovery

Markov Blanket (MB) of the target variable Y is defined as the minimal subset MB(Y ) of
variables {1, . . . , p} conditioned on which all other variables are independent of Y , i.e.

Y ⊥ (MB(Y ))c|MB(Y ),

where Ac denotes the complement of a set A in {1, . . . , p}. Note that Y is excluded from
{1, . . . , p}. In this Section we combine popular MB-discovery algorithms with the proposed
conditional independence tests. In order to measure the performance of MB discovery
algorithm, we need to know the true Markov Blanket to use it as a ground truth, which in
practice is possible only for the simulated data. For this purpose, we consider databases
sampled from known Bayesian Networks available at BN repository http://www.bnlearn.

com/bnrepository/. The performance of each algorithm is assessed using the following
evaluation measures. Let T be the true MB for the given variable and T̂ be MB returned
by the considered algorithm. We define three measures

Recall :=
|T ∩ T̂ |
|T |

, Precision :=
|T ∩ T̂ |
|T̂ |

, F measure := 2 · Recall · Precision

Recall + Precision
.

Recall is thus the fraction of the chosen relevant variables and all relevant variables. Note
that Recall = 1 indicates that all relevant variables were selected. Precision is the ratio of
the chosen relevant variables to all variables selected as relevant. A large value of Precision
indicates that only few false positive variables are included in the chosen MB. F-measure
is an aggregate measure of Recall and Precision defined as their harmonic mean. A large
value of F-measure indicates that the chosen MB has relatively many ’true positives’ and
at the same time few ’false positives’. Since we are mainly interested in the performance of
proposed methods for large Markov Blankets, for each network we have chosen a node having
the largest MB. Then we run the MB discovery algorithm, combined with the proposed test
SECMI. As a reference we use two methods: the standard asymptotic test for CMI
(denoted as CMI) and the semi-parametric test for CMI (denoted as CMI(sp)), proposed
in Tsamardinos and Borboudakis (2010). We tested three popular MB discovery algorithms:
GS, IAMB and MMPC. Since the performance of GS was slightly better than for IAMB
and MMPC, we only present the results for GS. We consider 10 networks. Their basic
characteristics are given in Table 1. Number of nodes varies from 5 to 76, whereas the size
of the MB, for the chosen node ranges from 4 to 29.

Network nodes true MB size
asia 8 5
sachs 11 7
survey 6 4
alarm 37 8
hepar2 70 26

Network nodes true MB size
cancer 5 4
child 20 8
insurance 27 10
earthquake 5 4
win95pts 76 29

Table 1: Basic characteristics of networks: the total number of nodes and the size of true
Markov Blanket for a chosen node.
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Tables 2-5 show values of F measure (averaged over 200 repetitions), for different sample
sizes: n = 500, 1000, 3000, 5000. The winner method for each data set is marked in bold, the
last row contains averaged ranks (the lower the rank the better). Test CMI(sp) combined
with GS has the smallest averaged rank for n = 500, whereas SECMI has the smallest
averaged rank for n = 1000, 3000, 5000. As expected, CMI works much worse than SECMI
and CMI(sp); SECMI3 works worse than SECMI and CMI(sp), but it is usually clearly
better than CMI. This is consistent with the results from the previous section. Generally,
for the considered data sets CMI(sp) and SECMI work on par: for most data sets the
values of F measure corresponding to these two methods are very close.

To analyse in detail the results presented in the tables, we followed the two-step statis-
tical procedure recommended by Demšar (2006). In the first step we use the Friedman test
(based on averaged ranks) (Friedman, 1940) to assess the null hypothesis that all methods
have equal performance. When the null hypothesis is rejected, a Nemenyi post-hoc test
(Nemenyi, 1963) is used to compare the methods in a pairwise way. Figure 19 shows the
results. For all considered sample sizes, the null hypothesis of the Friedman test is rejected,
when the standard significance level 0.05 is assumed. The blue line denotes the Nemenyi
critical region defined as mean rank ± Nemenyi critical distance. When two intervals inter-
sect, then we conclude that there is no significant difference in performances between the
methods. The critical region for the winner method is highlighted. The analysis confirms
that there is no significant difference between the winner method SECMI and the second
best method CMI(sp). However, both methods work significantly better than CMI.

To gain a deeper insight into behaviour of the methods, we analyse simple and popular
network cancer in more detail. The left panel of Figure 20 visualizes the structure of
the network. Variable cancer, denoting occurrence of the disease, is chosen as the target
variable, whereas the remaining variables (Pollution, Smoke, Xray, Dyspnoea) constitute
its MB. Right panel of Figure 20 shows the selection probabilities for the variables. Note
that two variables (Pollution, Dyspnoea) are more often chosen by SECMI than for CMI
and CMI(sp). Variable Xray is selected by all methods in almost all simulations, whereas
variable Smoker is more often chosen by SECMI and CMI(sp) than by CMI.
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p t GS+CMI GS+CMI(sp) GS+SECMI GS+SECMI3

asia 8 5 0.571 0.571 0.505 0.495
sachs 11 7 0.594 0.885 0.895 0.812
survey 6 4 0.543 0.482 0.520 0.459
alarm 37 8 0.280 0.505 0.515 0.392
hepar2 70 26 0.204 0.283 0.222 0.139
earthquake 5 4 0.680 0.816 0.766 0.773
cancer 5 4 0.589 0.707 0.688 0.703
insurance 27 10 0.462 0.778 0.766 0.611
mildew 27 10 0.462 0.754 0.747 0.606
win95pts 76 29 0.160 0.178 0.198 0.181

avg rank 3.4 1.6 2.0 3.0

Table 2: F-measure for n=500 and GS algorithm. Winner method is in bold. The last row
shows the averaged ranks. Parameters p and t denote the total number of nodes and the
size of true Markov Blanket, respectively.

p t GS+CMI GS+CMI(sp) GS+SECMI GS+SECMI3

asia 8 5 0.571 0.571 0.552 0.552
sachs 11 7 0.651 0.964 0.932 0.896
survey 6 4 0.641 0.683 0.684 0.650
alarm 37 8 0.402 0.585 0.585 0.428
hepar2 70 26 0.243 0.348 0.276 0.186
earthquake 5 4 0.842 0.893 0.909 0.907
cancer 5 4 0.771 0.789 0.859 0.830
insurance 27 10 0.479 0.839 0.819 0.654
mildew 27 10 0.492 0.829 0.838 0.695
win95pts 76 29 0.192 0.208 0.220 0.222

avg rank 3.6 2.0 1.6 2.8

Table 3: F-measure for n=1000 and GS algorithm. Winner method is in bold. The last row
shows the averaged ranks. Parameters p and t denote the total number of nodes and the
size of true Markov Blanket, respectively.
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p t GS+CMI GS+CMI(sp) GS+SECMI GS+SECMI3

asia 8 5 0.571 0.571 0.571 0.571
sachs 11 7 0.727 0.995 0.963 0.959
survey 6 4 0.864 0.829 0.895 0.909
alarm 37 8 0.364 0.638 0.687 0.385
hepar2 70 26 0.311 0.466 0.425 0.327
earthquake 5 4 0.954 0.989 0.994 0.994
cancer 5 4 0.935 0.943 0.971 0.977
insurance 27 10 0.571 0.881 0.868 0.833
mildew 27 10 0.571 0.880 0.845 0.840
win95pts 76 29 0.236 0.287 0.321 0.266

avg rank 3.8 2.0 1.8 2.4

Table 4: F-measure for n=3000 and GS algorithm. Winner method is in bold. The last row
shows the averaged ranks. Parameters p and t denote the total number of nodes and the
size of true Markov Blanket, respectively.

p t GS+CMI GS+CMI(sp) GS+SECMI GS+SECMI3

asia 8 5 0.571 0.571 0.571 0.571
sachs 11 7 0.833 0.997 0.977 0.982
survey 6 4 0.944 0.927 0.977 0.938
alarm 37 8 0.364 0.687 0.727 0.395
hepar2 70 26 0.337 0.508 0.508 0.327
earthquake 5 4 1.000 1.000 1.000 1.000
cancer 5 4 0.977 0.989 0.983 0.994
insurance 27 10 0.632 0.871 0.862 0.861
mildew 27 10 0.648 0.875 0.876 0.863
win95pts 76 29 0.250 0.353 0.390 0.344

avg rank 3.4 2.0 1.9 2.7

Table 5: F-measure for n=5000 and GS algorithm. Winner method is in bold. The last row
contains the averaged ranks. Parameters p and t denote the total number of nodes and the
size of true Markov Blanket, respectively.
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F−measure for n=500
Friedman pv=0.008

Mean ranks

GS+CMI(sp) − 1.65

GS+SECMI − 2.00

GS+SECMI3 − 3.00

GS+CMI − 3.35

1.0 1.5 2.0 2.5 3.0 3.5 4.0

F−measure for n=1000
Friedman pv=0.002

Mean ranks

GS+SECMI − 1.65

GS+CMI(sp) − 1.95

GS+SECMI3 − 2.75

GS+CMI − 3.65

1.0 1.5 2.0 2.5 3.0 3.5 4.0

F−measure for n=3000
Friedman pv=0.002

Mean ranks

GS+SECMI − 1.80

GS+CMI(sp) − 2.05

GS+SECMI3 − 2.40

GS+CMI − 3.75

1.5 2.0 2.5 3.0 3.5 4.0 4.5

F−measure for n=5000
Friedman pv=0.011

Mean ranks

GS+SECMI − 1.85

GS+CMI(sp) − 2.05

GS+SECMI3 − 2.70

GS+CMI − 3.40

1.5 2.0 2.5 3.0 3.5 4.0

Figure 19: Results of Friedman and pairwise tests for F-measure and different sample sizes.
The blue line denotes the Nemenyi critical region. The critical region for the winner method
is highlighted.
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(b) Selection probabilities

Figure 20: Data set cancer. LHS Figure: network visualizing dependency structure (target
variable is marked in grey, MB is marked in white). RHS Figure: selection probability of
true MB variables.

6.3 Application to Feature Selection and Classification

The discussed conditional independence tests can be also used for the feature selection
in supervised classification. Algorithms of Markov Blanket discovery (such as GS, IAMB
or others) combined with the conditional independence tests allow to choose a subset of
relevant features in supervised learning. As in the previous section, we use GS algorithm
combined with 4 tests: CMI, CMI(sp), SECMI and SECMI3.

We consider 12 data sets from UCI machine learning repository (Dheeru and Taniskidou,
2017). These data sets are chosen to represent various characteristics. Most of them were
already used in the related studies on the feature selection, see e.g. Brown et al. (2012).
Table 6 shows the basic statistics of the data sets: the number of observations n, features p,
ratio p/n and the number of classes. The quantitative features are discretized into 2 bins,
whereas the discrete features are left intact.

In order to assess the performance of the considered conditional independence tests we
build a classifier using features selected by the considered methods and then report its
classification performance. We use two popular evaluation measures: the accuracy (i.e. the
fraction of correctly classified elements) and the balanced accuracy (the average accuracy
obtained on all classes), which is a more appropriate measure for imbalanced data sets. We
used kNN classifier for classification task. The kNN classifier is a generic method which
avoids making any assumptions about the data and moreover it requires tuning only one
parameter (the number of nearest neighbours k). For this reason it was used by several
authors to compare the classification performance of feature selection methods (Brown et al.,
2012). We also experimented with other classifiers (e.g. decision trees, random forests and
multinomial/logistic regression) but their accuracies were similar for all considered methods
and therefore they are not presented.

To estimate the classification accuracy for classifiers with optimally chosen parameters
we perform the following steps. First we split data into three parts: a training set (50%), a
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validation set (25%) and a testing set (25%). The feature selection methods are launched
on the training set and then the classifier is built on the training set using selected fea-
tures. The above step is repeated for different values of hyper-parameters: we optimize
over k = 1, 2, . . . , 10 (number of nearest neighbours in kNN) and α = 0.001, 0.01, 0.05, 0.1
(significance level of CMI tests). Validation set is used to choose the optimal values of
hyper-parameters with respect to the considered evaluation measure. Finally, the evalua-
tion measures (the accuracy and the balanced accuracy) are calculated on the testing set.
The above steps are repeated for 50 random data splits.

Tables 7 and 8 show respectively the accuracy and the balanced accuracy (averaged over
50 data splits) for the considered data sets. The last row contains the averaged ranks (the
lower the rank the better). Observe that SECMI and CMI(sp) work similarly, however
SECMI is the winner for most of the data sets, followed by CMI(sp) and SECMI3. The
CMI works clearly worse than the competitors for some data sets. Indeed, for madelon data
set, the accuracy for CMI is 46% whereas the accuracy for SECMI and SECMI3 oscillates
around 84%. To analyse in detail the results presented in the tables, we followed the two-step
statistical procedure based on Friedman and Nemenyi tests, already described in Section
6.2. Figure 21 shows the results. For both evaluation measures, the null hypothesis of the
Friedman test is rejected, when a standard significance level 0.05 is assumed. The critical
region for winner method SECMI is highlighted. For the accuracy, there is no significant
difference between SECMI and the second and the third best method (CMI(sp) and
SECMI3). However, SECMI works significantly better than CMI. For the balanced
accuracy, there is no significant difference between the winner method SECMI and the
second best CMI(sp). Moreover, SECMI performs significantly better than SECMI3 and
CMI. The worse performance of SECMI3 when compared to SECMI may be associated
with the lack of higher-order interactions in the considered data sets.

n p p/n classes

glass 214 9 0.04 6
wdbc 569 31 0.05 2
credit-a 690 38 0.06 2
sonar 208 60 0.29 2
diabetes 768 8 0.01 2
heart-c 303 19 0.06 2
waveform-5000 5000 40 0.01 3
vehicle 846 18 0.02 4
ionosphere 351 34 0.10 2
credit-g 1000 48 0.05 2
prostate 102 6033 59.15 2
madelon 2600 500 0.19 2

Table 6: Summary statistics of real data sets used in Section 6.3.
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CMI CMI(SP) SECMI SECMI3

credit-g 0.678 0.692 0.676 0.670
diabetes 0.728 0.726 0.732 0.729
glass 0.416 0.580 0.604 0.604
heart-c 0.762 0.777 0.793 0.760
ionosphere 0.868 0.889 0.862 0.856
madelon 0.464 0.559 0.841 0.845
waveform-5000 0.656 0.780 0.782 0.781
vehicle 0.587 0.650 0.664 0.583
wdbc 0.898 0.919 0.915 0.919
credit-a 0.838 0.840 0.846 0.849
prostate 0.868 0.880 0.880 0.880
sonar 0.587 0.603 0.615 0.548

avg. rank 3.3 2.3 1.8 2.5

Table 7: Accuracy averaged over 50 random splits of data. The last row shows the averaged
ranks (the lower the rank the better).

CMI CMI(SP) SECMI SECMI3

credit-g 0.579 0.592 0.596 0.589
diabetes 0.683 0.690 0.696 0.688
glass 0.484 0.672 0.638 0.694
heart-c 0.756 0.774 0.796 0.760
ionosphere 0.840 0.863 0.838 0.814
madelon 0.463 0.559 0.841 0.844
waveform-5000 0.598 0.771 0.772 0.758
vehicle 0.568 0.652 0.658 0.568
wdbc 0.888 0.905 0.908 0.906
credit-a 0.841 0.838 0.845 0.842
prostate 0.871 0.884 0.890 0.882
sonar 0.603 0.595 0.613 0.568

avg. rank 3.6 2.3 1.4 2.7

Table 8: Balanced accuracy averaged over 50 random splits of data. The last row shows
the averaged ranks (the lower the rank the better).

6.4 Summary of Experiments

In the following we summarize the results of experiments and give guidelines which methods
to use in specific situations. In the experiments we compared the tests (SECMI, SECMI3,
CMI(sp) and CMI) of the null hypothesis H0 : X ⊥ Y |Z1, . . . , Zm. We studied how the
power and the type I error depend on various parameters such as the size of the conditioning
set m, the sample size n, among others. All methods, except CMI, control the type I
error well. The proposed method SECMI achieves the highest power when the high-order
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Accuracy
Friedman pv=0.027

Mean ranks

SECMI − 1.79

CMI(SP) − 2.33

SECMI3 − 2.54

CMI − 3.33

1.5 2.0 2.5 3.0 3.5 4.0

Balanced accuracy
Friedman pv<0.001

Mean ranks

SECMI − 1.42

CMI(SP) − 2.33

SECMI3 − 2.67

CMI − 3.58

1.0 1.5 2.0 2.5 3.0 3.5 4.0

(a) (b)

Figure 21: Results of Friedman and pairwise tests for accuracy (a) and balanced accuracy
(b). The blue line denotes the Nemenyi critical region. The critical region for SECMI is
highlighted.

interactions (of order larger than 2) are not present and the number of possible values of
conditioning variables bm (assuming that all variables are discretized using b bins and m is
the number of conditioning variables), relative to sample size n, is large. When the high-
order interactions exist, SECMI can be modified in order to take the interactions into
account (SECMI3 is a solution which takes into account the 3-rd order interactions). As
expected, when the higher order interactions exist, CMI and CMI(sp) work better than
SECMI, but, importantly, they also fail to detect the true conditional dependence when
m grows. In view of the above, we recommend to use the SECMI criterion when the ratio
bm/n is large (as in this case CMI won’t work anyway whereas CMI(sp) has usually a
smaller power than SECMI) and CMI(sp) or SECMI3 when bm/n is small. Obviously,
if we do not expect higher-order interactions in the analysed data, we recommend to use
SECMI, regardless of the size of conditioning set. A simple method of choosing a threshold
for the ratio bm/n can be based on the minimal averaged number of observations required
for each combination of conditioning variables. For example, if the required number of
observations is 10 (i.e. n/bm ≥ 10) then we use CMI(sp) for n/bm > 10 (bm/n < 0.1) and
SECMI otherwise. The experiments on synthetic data sets indicate that threshold 10 is
a reasonable choice. For example, Figures 9 and 10 show that, for n = 1000 and b = 3,
performance of CMI(sp) usually deteriorates for m > 4. For m > 4, the average number
of observations for each combination of conditioning variables is smaller than 10 (we have
n/bm ≈ 12 for m = 4 and n/bm ≈ 4 for m = 5).

In the experiments we also the combined conditional independence tests with MB dis-
covery algorithms. We focused on two problems. First, we analysed how accurately we
can recover the true MB based on the data sets sampled from known Bayesian Networks.
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Secondly, we analysed the classification performance based on the real benchmark data sets.
Although in the two experiments it is not possible to measure differences in performance be-
tween conditional independence tests directly, they are important from the practical point of
view. The proposed method SECMI works usually on par or slightly better than CMI(sp)
and clearly better than CMI. The other proposed method SECMI3 works usually worse
than SECMI which may indicate that the high-order interactions are not very strong in
the considered problems.

7. Conclusions and Future Work

In this paper we proposed the novel method for testing the conditional independence, based
on SECMI, which is an empirical version of the truncated Möbius expansion of CMI.
We derived its asymptotic distribution and analysed in detail the types of dependence
structures which lead to a non-normal asymptotic distribution. Importantly, we have shown
in numerical analysis that the SECMI-based tests achieve significantly larger power than
tests using conditional mutual information, while controlling the type I error, especially
when the size of the conditioning set is large. It also follows that in this case CMI will fail
to discover important active features. As a consequence, we witnessed superior behaviour
of GS methods for Markov Blanket discovery for some Bayesian networks in the terms of
F-measure when CMI is replaced by SECMI. Compared with CMI(sp), the SECMI
has in general larger power when testing the conditional independence but its superiority
decreases when the methods are used for the feature selection and Markov Blanket discovery.

A drawback of the proposed method is that it fails to discover the interactions of order
larger than 2, although the experiments suggest that the method can be extended to account
for higher order interactions. Note however that finding a trade-off between including the
higher-order interactions and controlling the size of conditioning set is a challenging and
unresolved issue.

The SECMI-based method could be also possibly improved by considering alterna-
tive switches between normal and non-normal case in Algorithm 1 (such as the weighted
supremum norm instead of Kolmogorov-Smirnov distance) and investigating different ap-
proximations to the distribution of the quadratic form other than those considered here.
Lastly, it is of interest to extend the results of the paper to the case of time series data
(for conditional independence tests designed for time series data and continuous variables
we refer to Su and White 2007, Su and White 2014 and Wang and Hong 2018). We con-
jecture that the analogues of Theorems 2 and 3 still hold (with e.g. σ2

ĈMI
changed to

κ(0) + 2
∑∞

k=1 κk, where κk = Cov(Ii, Ii+k) and

Ii = log
(p(Xi, Yi, Zi)p(Zi)

p(Xi, Yi)p(Zi)

)
for strictly stationary data as suggested by the asymptotic distribution of the sample mean.
However, it is an open problem how to construct appropriate permutation scheme for such
a case.

Acknowledgement
We acknowledge insightful comments of three referees and the Associate Editor which led
to the substantial improvement of the original manuscript.

45



Kubkowski, Mielniczuk, Teisseyre

Appendix A. Sample Size Calculations (Inequality (12))

Re-expressing the condition defining critical region C we have

P (Î(X,Y |Z) ≥ tα) = P

(
√
n
Î(X,Y |Z)− I(X,Y |Z)

σCMI
≥
√
n
tα − I(X,Y |Z)

σCMI

)

≈ 1− Φ

(√
n

(tα − I(X,Y |Z))

σCMI

)
.

Thus the approximate power of CMI test is:

P̃ (α) = 1− Φ

(√
n

(tα − I(X,Y |Z))

σCMI

)
. (34)

We want to find minimal sample size n, under which P̃ (α) ≥ β. This inequality is equivalent
to:

√
n

(tα − I(X,Y |Z))

σCMI
≤ Φ−1(1− β). (35)

After rearranging terms we obtain:

2nI(X,Y |Z) + 2σCMI

√
nΦ−1(1− β)− F−1

χ2
d

(1− α) ≥ 0. (36)

and solving this quadratic inequality we obtain (12):

n ≥


√

4σ2
CMI (Φ−1(1− β))2 + 8I(X,Y |Z)F−1

χ2
d

(1− α)− 2σCMIΦ
−1(1− β)

4I(X,Y |Z)

2

. (37)

Appendix B. Proof of Theorem 1

Proof Let p̂(x, y, z) = #{i : (Xi, Yi, Zi) = (x, y, z)}/n be plug-in estimator for p(x, y, z)
and p = (p(x, y, z))(x,y,z)∈X×Y×Z be I × J ×K vector of probabilities. We write I(X,Y |Z)
as a function of p, namely

I(X,Y |Z) =
∑
x,y,z

p(x, y, z) log

(
p(x, y, z)p(z)

p(x, z)p(y, z)

)
=: f(p).

Observe that Î(X,Y |Z) = f(p̂). We have

∂f(p)

∂p(x, y, z)
= log

(
p(x, y, z)p(z)

p(x, z)p(y, z)

)
, (38)

∂2f(p)

∂p(x, y, z)∂p(x′, y′, z′)
=
I(x = x′, y = y′, z = z′)

p(x, y, z)
− I(x = x′, z = z′)

p(x, z)

− I(y = y′, z = z′)

p(y, z)
+
I(z = z′)

p(z)
,
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where I(A) is an indicator of set A. We use delta method (see e.g. Agresti 2002) which
relies on second order Taylor expansion:

f(p̂)− f(p) = Df(p)T (p̂− p) +
1

2
(p̂− p)TD2f(p)(p̂− p) +O(||p̂− p||32). (39)

Note that the remainder term equals to the value of trilinear form pertaining to the third
derivative of f(p) calculated at p̃, where p̃ is some point in-between p and p̂. As the form is
a bounded operator it is easily seen that the remainder term is of the given order. Moreover,
we have that an element of Σ = nVar(p̂− p) with row index xyz and column index x′y′z′

is
Σx′y′z′
xyz = p(x′, y′, z′)(I(x = x′, y = y′, z = z′)− p(x, y, z)).

It is easy to check (see Agresti 2002, Section 14.1.4 for the case of general f) that

nVar(Df(p)T (p̂− p)) =∑
x,y,z

p(x, y, z) log2

(
p(x, y, z)p(z)

p(x, z)p(y, z)

)
−
(∑
x,y,z

p(x, y, z) log

(
p(x, y, z)p(z)

p(x, z)p(y, z)

))2
=

Var
(

log

(
p(X,Y, Z)p(Z)

p(X,Z)p(Y,Z)

))
. (40)

This ends the proof of part (i) as I(X,Y |Z) 6= 0 implies that p(x, y, z)p(z)/p(x, z)p(y, z)
is not constant and the variance above is not zero and thus the first term on RHS of (39)
dominates.
In order to prove (ii) note that from assumption I(X,Y |Z) = 0 it follows that Df(p) = 0.

As Central Limit Theorem Implies
√
n(p̂− p)

d→ N(0,Σ) we have from (39) that

2nf(p̂)
d→ N(0,Σ)TD2f(p)N(0,Σ) = N(0, I)TΣ1/2D2f(p)Σ1/2N(0, I). (41)

Since eigenvalues of Σ1/2D2f(p)Σ1/2 coincide with those of D2f(p)Σ =: M it follows that

2nf(p̂)
d→
∑
x,y,z

λxyz(M)Zi, (42)

where λxyz(M) are eigenvalues of M and Zi are independent χ2
1-distributed random vari-

ables. Straightforward calculations yield:

Mx′y′z′
xyz =

∑
x′′,y′′,z′′

(
I(x = x′′, y = y′′, z = z′′)

p(x, y, z)
− I(x = x′′, z = z′′)

p(x, z)

− I(y = y′′, z = z′′)

p(y, z)
+
I(z = z′′)

p(z)

)
× p(x′′, y′′, z′′)(I(x′ = x′′, y′ = y′′, z′ = z′′)− p(x′, y′, z′))

= I(x = x′, y = y′, z = z′)− I(x = x′, z = z′)
p(x, y′, z)

p(x, z)

− I(y = y′, z = z′)
p(x′, y, z)

p(y, z)
+ I(z = z′)

p(x′, y′, z)

p(z)
.
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As X and Y are independent given Z, the above formula reduces to:

Mx′y′z′
xyz = I(z = z′)

(
I(x = x′)− p(x′, z)

p(z)

)(
I(y = y′)− p(y′, z)

p(z)

)
.

We note now that in this case matrix M is idempotent, as we have:

(M2)x
′y′z′
xyz =

∑
x′′,y′′,z′′

I(z = z′ = z′′)

(
I(x = x′′)− p(x′′, z)

p(z)

)(
I(x′ = x′′)− p(x′, z)

p(z)

)

×
(
I(y = y′′)− p(y′′, z)

p(z)

)(
I(y′ = y′′)− p(y′, z)

p(z)

)
=
∑
z′′

I(z = z′ = z′′)
∑
x′′

(
I(x = x′′)− p(x′′, z)

p(z)

)(
I(x′ = x′′)− p(x′, z)

p(z)

)
×
∑
y′′

(
I(y = y′′)− p(y′′, z)

p(z)

)(
I(y′ = y′′)− p(y′, z)

p(z)

)

= I(z = z′)

(
I(x = x′)− p(x′, z)

p(z)

)(
I(y = y′)− p(y′, z)

p(z)

)
= Mx′y′z′

xyz .

Hence M2 = M and the only possible eigenvalues for M are 0 and 1. Now we compute
trM =

∑
iMii:

trM =
∑
x,y,z

(
1− p(x, y, z)

p(x, z)
− p(x, y, z)

p(y, z)
+
p(x, y, z)

p(z)

)
= |X ||Y||Z| − |X ||Z| − |Y||Z|+ |Z| = (I − 1)(J − 1)K.

This means that the number of eigenvalues equal 1 is (I− 1)(J − 1)K. Thus it follows from
(42) that:

2nf(p̂) = 2nÎ(X,Y |Z)
d→ χ2

(I−1)(J−1)K .

Appendix C. Proof of Theorem 2

Proof We introduce more general notation: Z = (Zs1 , . . . , Zs|S|), S = {s1, . . . , s|S|} and
|S| is dimensionality of S. We put z = (zs1 , . . . , zs|S|). Let p(x, y, z) = P (X = x, Y =
y, Z = z), p(x) = P (X = x), p(y, z) = P (Y = y, Z = z), p(y, zs) = P (Y = y, Zs = zs) and
p̂(x, y, z) = n(x, y, z)/n be plug-in estimator for p(x, y, z). Then we have:

SECMI(X,Y |Z) =
∑
x,y,z

p(x, y, z) log

((
p(x, y)

p(x)p(y)

)1−|S|∏
s∈S

p(x, y, zs)p(zs)

p(x, zs)p(y, zs)

)
=: f(p),

where p = (p(x, y, z))(x,y,z)∈X×Y×ZS . Then ̂SECMI(X,Y |Z) = f(p̂). Moreover,

∂f(p)

∂p(x, y, z)
= (1− |S|)

(
log

(
p(x, y)

p(x)p(y)

)
− 1

)
+
∑
s∈S

log

(
p(x, y, zs)p(zs)

p(x, zs)p(y, zs)

)
. (43)
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∂2f

∂p(x, y, z)∂p(x′y′z′)
= (1− |S|)

(
I(x = x′, y = y′)

p(x, y)
− I(x = x′)

p(x)
− I(y = y′)

p(y)

)
+
∑
s∈S

I(zs = z′s)

(
I(x = x′, y = y′)

p(x, y, zs)
− I(x = x′)

p(x, zs)
− I(y = y′)

p(y, zs)
+

1

p(zs)

)
. (44)

It is easy to see that∑
x,y,z

( ∂f

∂p(x, y, z)

)2
p(x, y, z)−

(∑
x,y,z

∂f

∂p(x, y, z)
p(x, y, z)

)2
= σ2

̂SECMI
.

As in proof of Theorem 1 we have that when σ2
SECMI > 0 then

n1/2( ̂SECMI − SECMI)
d→ N(0, σ2

̂SECMI
),

and in the opposite case we have

2n( ̂SECMI − SECMI)
d→ Z ′HZ = Z̃ ′MZ̃,

where Z has N(0,Σ) distribution and H is a Hessian defined in (44), Z̃ has N(0, I) distri-
bution and M = Σ1/2HΣ1/2.

We prove the following Lemma which is instrumental in establishing Theorem 4.3. The
following remark is in order. Note that the condition P (X = x, Y = y)/P (X = x)P (Y =
y) is constant implies that X and Y are independent, however, the conditional version
of this statement is not true as the fact that P (X = x, Y = y|Z = z)/P (X = x|Z =
z)P (Y = y|Z = z) does not depend on z does not necessarily imply that X and Y are not
necessarily independent given Z. Indeed, the second possibility exists namely that Y and
Z are conditionally independent given X and Y and Z are unconditionally independent.

Lemma 1 Let Y ∈ {0, 1} be a binary random variable and X,Z ∈ N+ = N \{0} be discrete
variables. (i) If for all y ∈ {0, 1} and x, z ∈ N+ we have:

P (X = x, Y = y|Z = z)

P (X = x|Z = z)P (Y = y|Z = z)
= axy, (45)

where axy > 0 does not depend on z, then at least one of the following possibilities holds:

1. X and Y are conditionally independent given Z and axy = 1 for all x, y .

2. Y and Z are independent and Y and Z are conditionally independent given X, for all
x, y:

axy =
P (X = x, Y = y)

P (X = x)P (Y = y)
,

where axy 6= 1 for some x, y (hence X and Y are dependent).
(ii) Conversely, if (i)1. or (i)2. holds than (45) is valid.
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Proof First we observe that for all x, z ∈ N+ we have:

1∑
y=0

axyP (Y = y, Z = z) = P (Z = z)
1∑
y=0

axyP (Y = y|Z = z)

= P (Z = z)
1∑
y=0

P (X = x, Y = y|Z = z)

P (X = x|Z = z)
= P (Z = z). (46)

Thus for all x we have:

1∑
y=0

axyP (Y = y) =
∑
z∈N+

1∑
y=0

axyP (Y = y, Z = z)

=
∑
z∈N+

P (Z = z) = 1. (47)

Hence:

ax1 =
1− ax0P (Y = 0)

P (Y = 1)
. (48)

From (46) it follows that for all x we have:{
P (Z = z) = P (Y = 0, Z = z)ax0 + P (Y = 1, Z = z)ax1,

P (Z = z) = P (Y = 0, Z = z) + P (Y = 1, Z = z).
(49)

Subtracting second equation from first and using (48) yields:

0 = P (Y = 0, Z = z)(ax0 − 1) + P (Y = 1, Z = z)(
1− ax0P (Y = 0)

P (Y = 1)
− 1) (50)

= P (Y = 0, Z = z)(ax0 − 1) + P (Y = 1, Z = z)(1− ax0)
P (Y = 0)

P (Y = 1)
. (51)

We have two cases:
1) If ax0 6= 1 for some x (note that ax0 = 1 is equivalent to ax1 = 1 in view of (48)),

then the above equation reduces to:

P (Y = 0, Z = z) = P (Y = 1, Z = z)
P (Y = 0)

P (Y = 1)
. (52)

This means that:

P (Z = z) = P (Y = 0, Z = z) + P (Y = 1, Z = z)

= P (Y = 1, Z = z)

(
1 +

P (Y = 0)

P (Y = 1)

)
=
P (Y = 1, Z = z)

P (Y = 1)
.

Analogously, we obtain:

P (Z = z) =
P (Y = 0, Z = z)

P (Y = 0)
. (53)
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Thus Y and Z are independent i.e. P (Y = y, Z = z) = P (Y = y)P (Z = z). Inserting
this equation into (45) yields:

axy =
P (X = x, Y = y, Z = z)

P (X = x, Z = z)P (Y = y)
(54)

and

axyP (X = x, Z = z) =
P (X = x, Y = y, Z = z)

P (Y = y)
. (55)

Thus

axyP (X = x) =
∑
z

axyP (X = x, Z = z) =
∑
z

P (X = x, Y = y, Z = z)

P (Y = y)
=
P (X = x, Y = y)

P (Y = y)
.

(56)
Consequently,

axy =
P (X = x, Y = y)

P (X = x)P (Y = y)
. (57)

Whence, inserting the last equality into (54), we obtain:

P (X = x, Y = y, Z = z)

P (X = x, Z = z)P (Y = y)
=

P (X = x, Y = y)

P (X = x)P (Y = y)
, (58)

what is equivalent to:

P (Y = y, Z = z|X = x) = P (Y = y|X = x)P (Z = z|X = x). (59)

Hence Y and Z are conditionally independent given X.
2) If ax0 = 1 for all x, then in view of (48) we obtain ax1 = 1 for all x. This implies

conditional independence of (X,Y ) given Z.
In order to prove (ii) note that it is obvious when (i) 1. holds and in the case of (ii) 2. it
is easy to see that the expression in (45) equals P (X = x, Y = y)/P (X = x)P (Y = y) and
thus it does not depend on Z.

Appendix D. Proof of Theorem 4.3

Proof (i) First we observe that

σ2
SECMI =

∑
x,y,z

p(x, y, z) log2

((
p(x, y)

p(x)p(y)

)1−|S|∏
s∈S

p(x, y, zs)p(zs)

p(x, zs)p(y, zs)

)

−

(∑
x,y,z

p(x, y, z) log

((
p(x, y)

p(x)p(y)

)1−|S|∏
s∈S

p(x, y, zs)p(zs)

p(x, zs)p(y, zs)

))2

= 0

if and only if (
p(x, y)

p(x)p(y)

)1−|S|∏
s∈S

p(x, y, zs)p(zs)

p(x, zs)p(y, zs)
= C (60)
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for some C ≥ 0 and all x, y, z. Let s0 ∈ S. We rewrite the above equation as:

C

( p(x, y)

p(x)p(y)

)1−|S| ∏
s∈S\{s0}

p(x, y, zs)p(zs)

p(x, zs)p(y, zs)

−1

=
p(x, y, zs0)p(zs0)

p(x, zs0)p(y, zs0)
. (61)

The left side of above equation does not depend on zs0 . Define

W = {s ∈ S : ∃x,y,zs
p(x, y, zs)p(zs)

p(x, zs)p(y, zs)
6= 1}.

Then in view of Lemma 1 we have one of the following possibilities:
1) s0 6∈W . In this case (X,Y ) are conditionally independent given Zs0 and for all x, y, zs0 :

p(x, y, zs0)p(zs0)

p(x, zs0)p(y, zs0)
= 1. (62)

2) s0 ∈ W . In this case Lemma 45 implies that (Y, Zs0) are independent, (Y, Zs0) are
conditionally independent given X,

p(x, y, zs0)p(zs0)

p(x, zs0)p(y, zs0)
=

p(x, y)

p(x)p(y)
(63)

and X and Y are dependent.
In view of (60) we obtain: (

p(x, y)

p(x)p(y)

)1−|S|+|W |
= C. (64)

We have three cases: 1) |S| = 1. In this case from (60) we have:

p(x, y, zs)p(zs)

p(x, zs)p(y, zs)
= C. (65)

Thus:
p(x, y, zs)

p(y, zs)
= C

p(x, zs)

p(zs)
. (66)

Summing over x, we obtain C = 1 and thus in view of (65) (X,Y ) are conditionally
independent given Zs.

2) |W | 6= |S| − 1 and |S| > 1. In this case (64) implies

p(x, y) = p(x)p(y)C
1

1−|S|+|W | . (67)

Summing over x and y yields that C = 1 and thus X and Y are independent (see (64)).
However, independence of X and Y in view of (63) and definition of W implies that W = ∅.
This means in view of (67) that for all s ∈ S (X,Y ) are conditionally independent given Zs
and (X,Y ) are independent.
3) |W | = |S| − 1 and |S| > 1. In this case W c = {s0} for some s0 ∈ S. This means
that (X,Y ) are conditionally independent given Xs0 and Lemma 45 implies that for all
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s ∈ S \ {s0} (Y, Zs) are independent, (Y,Zs) are conditionally independent given X and
(X,Y ) are dependent, because W 6= ∅.
Part (ii). Part (i) is obvious in the case when conditions 1) holds, in the case of 2) it follows
form the proof of part (i) of the Lemma above that for any s 6= s0 p(x, y, zs)p(zs)/p(x, zs)p(y, zs)
equals p(x, y)/p(x)p(y) and for s = s0 it equals 1. Thus(

p(x, y)

p(x)p(y)

)1−|S|∏
s∈S

p(x, y, zs)p(zs)

p(x, zs)p(y, zs)
= 1 (68)

and it follows that σ2
̂SECMI

= 0.

We prove now (iii) which states that if Y is binary then SECMI 6= 0 implies σ2
̂SECMI

> 0.

In order to prove it note that for each case considered in proof of part (i) we obtain C = 1.
This means that for all x, y, z we have that (68) holds (see 61). From the definition of
SECMI it follows that:

SECMI(X,Y |Z) =
∑
x,y,z

p(x, y, z) log

((
p(x, y)

p(x)p(y)

)1−|S|∏
s∈S

p(x, y, zs)p(zs)

p(x, zs)p(y, zs)

)
=
∑
x,y,z

p(x, y, z) log 1 = 0.

Appendix E. Proof of Theorem 4

Proof It follows from (4) and (8) that

II(X,Y, Zs, Zs′) = I(X,Y |Zs, Zs′)− I(X,Y |Zs)− I(X,Y |Zs′) + I(X,Y ). (69)

Using this and definition of SECMI3 we have that

SECMI3 = A× I(X,Y ) +B
∑
s∈S

I(X,Y |Zs) +
∑

s<s′,s,s′∈S
I(X,Y |Zs, Zs′),

where A and B are defined in (27). Thus SECMI3 = f̃(p), where f̃(p) is given by
(z = (z1, . . . , z|S|))∑
x,y,z

p(x, y, z) log
([ p(x, y)

p(x)p(y)

]A[∏
s∈S

p(x, y, zs)

p(x, zs)p(y, zs)

]B ∏
s<s′,s,s′∈S

p(x, y, zs, zs′)p(zs, z′s)

p(x, zs, zs′p(y, zs, zs′)

)
.

(70)
Some tedious but straightforward manipulations yield that

∂f̃

p(x, y, z)
= A(

(
log
( p(x, y)

p(x)p(y)

)
− 1) +B

∑
s∈S

log
( p(x, y, zs)

p(x, zs)p(y, zs)

)
+

∑
s<s′,s,s′∈S

log
(p(x, y, zs, zs′)p(zs, z′s)
p(x, zs, zs′p(y, zs, zs′)

))
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It is now easy to see that

∑
x,y,z

( ∂f̃

∂p(x, y, z)

)2
p(x, y, z)−

(∑
x,y,z

∂f

∂p(x, y, z)
p(x, y, z)

)2
= σ2

̂SECMI3
.

The proof now follows as in the case of proof of Theorem 2 (i). The proof of part (ii) is
analogous.
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