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Abstract
Variational approximation has been widely used in large-scale Bayesian inference recently, the
simplest kind of which involves imposing a mean field assumption to approximate complicated
latent structures. Despite the computational scalability of mean field, theoretical studies of
its loss function surface and the convergence behavior of iterative updates for optimizing
the loss are far from complete. In this paper, we focus on the problem of community
detection for a simple two-class Stochastic Blockmodel (SBM) with equal class sizes. Using
batch co-ordinate ascent (BCAVI) for updates, we show different convergence behavior with
respect to different initializations. When the parameters are known or estimated within a
reasonable range and held fixed, we characterize conditions under which an initialization can
converge to the ground truth. On the other hand, when the parameters need to be estimated
iteratively, a random initialization will converge to an uninformative local optimum.
Keywords: Variational Approximation, Stochastic Blockmodels, Batch Co-ordinate
Ascent, Local Optima

1. Introduction

Variational approximation has recently gained a huge momentum in contemporary Bayesian
statistics (Jordan et al., 1999; Blei et al., 2003; Jaakkola and Jordon, 1999). Mean field is
the simplest type of variational approximation, and is a popular tool in large scale Bayesian
inference. It is particularly useful for problems which involve complicated latent structure,
so that direct computation with the likelihood is not feasible. The main idea of variational
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approximation is to obtain a tractable lower bound on the complete log-likelihood of any
model. This is, in fact, akin to the Expectation Maximization algorithm (Dempster et al.,
1977), where one obtains a lower bound on the marginal log-likelihood function via the
expectation with respect to the conditional distribution of the latent variables under the
current estimates of the underlying parameters. In contrast, for mean field variational
approximation, the lower bound or ELBO is computed using the expectation with respect to
a product distribution over the latent variables. The Kullback-Leibler divergence is used to
measure how well the product distribution approximates the true posterior.

While there are many advances in developing new mean field type approximation methods
for Bayesian models, the theoretical behavior of these algorithms is not well understood.
There is one line of theoretical work that studies the asymptotic consistency of variational
inference, most of which focuses on the global optimizer of variational methods under
specific models. For example, for Latent Dirichlet Allocation (LDA) (Blei et al., 2003) and
Gaussian mixture models, it is shown in Pati et al. (2018) that the global optimizer is
statistically consistent. Westling and McCormick (2019) connects variational estimators to
profile M-estimation, and shows consistency and asymptotic normality of those estimators.
For Stochastic Blockmodels (SBM) (Holland et al., 1983; Hofman and Wiggins, 2008), Bickel
et al. (2013) shows that the global optimizer of the variational log-likelihood is consistent and
asymptotically normal. For more general cases, Wang and Blei (2019) proves a variational
Bernstein-von Mises theorem, which states that the variational posterior converges to the
Kullback-Leibler minimizer of a normal distribution, centered at the truth.

Recently, a lot more effort is being directed towards understanding the statistical conver-
gence behavior of non-convex algorithms in general. For Gaussian mixture models (GMM)
and exponential families with missing data, Wang and Titterington (2004, 2006) prove local
convergence to the true parameters. The same authors also show that the covariance matrix
from variational Bayesian approximation for the GMM is “too small” compared with that
obtained for the maximum likelihood estimator (Wang and Titterington, 2005). Wu et al.
(2012) propose a variational Bayes algorithm based on component splitting for fitting GMM
and show in simulation that random intializations converge to the ground truth for a simple
two component setting. The robustness of variational Bayes estimators is further discussed
in Giordano et al. (2018). For LDA, Awasthi and Risteski (2015) shows that, with proper
initialization, variational inference algorithms converge to the global optimum.

In this paper, we will focus on the community detection problem in networks under SBM.
Here the latent structure involves unknown community memberships and as a result, the
data likelihood requires summing over all possible community labels. Optimization of the
likelihood involves a combinatorial search, and thus is infeasible for large-scale graphs. The
mean field approximation has been used popularly for this task (Blei et al., 2017; Zhang and
Zhou, 2017). In Bickel et al. (2013), it is proved that the global optimum of the mean field
approximation to the likelihood behaves optimally in the dense degree regime, where the
average expected degree of the network grows faster than the logarithm of the number of
vertices. In Zhang and Zhou (2017), it is shown that if the initialization of mean field is close
enough to the truth then one gets convergence to the truth at the minimax rate. However,
in practice, it is usually not possible to initialize like that unless one uses a pilot algorithm.
Most initialization techniques like spectral clustering (Rohe et al., 2011; Ng et al., 2002) will
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return correct clustering in the dense degree regime, thus rendering the need for mean field
updates redundant.

Indeed, in many practical scenarios, without prior knowledge one simply uses multiple
random initializations, the efficacy of which is model-dependent. In order to understand the
behavior of random initializations, one needs to first better understand the landscape of the
mean field loss. There are few such studies for non-convex optimization in the literature;
notable examples include (Mei et al., 2018; Ghorbani et al., 2018; Jin et al., 2016; Xu et al.,
2016). In (Xu et al., 2016), the authors fully characterize the landscape of the likelihood
of the equal proportion Gaussian Mixture Model with two components, where the main
message is that most random initializations should indeed converge to the ground truth.
In contrast, for topic models, it has been established that, for some parameter regimes,
variational inference exhibits instability and returns a posterior mean that is uncorrelated
with the truth (Ghorbani et al., 2018). In this respect, for network models, there has not
been much work characterizing the behavior of the variational loss surface.

In this article, in the context of a specific SBM, we give a complete characterization
of all the critical points and establish the behavior of random initializations for batch co-
ordinate ascent (BCAVI) updates for mean field likelihood (with known and unknown model
parameters). Our results thus complement those of Zhang and Zhou (2017). For simplicity,
we work with equal-sized two-class stochastic blockmodels. When the parameters are known,
we show conditions under which random initializations can converge to the ground truth. In
particular, we show that centering random initializations around a half ensures convergence
happens a good fraction of time, and this property holds even if we only have access to
reasonable estimates of true parameters. We also analyze the setting with unknown model
parameters, where they are estimated jointly with the community memberships. In this
case, we see that indeed, with high probability, a random initialization never converges to
the ground truth, thus showing the critical importance of a good initialization for network
models.

2. Setup and preliminaries

The stochastic blockmodel (SBM), proposed by Holland et al. (1983) in social science, is one
of the most popular random graph models incorporating community structures. A SBM with
parameters (B,Z, π) is a generative model of networks with community structure on n nodes.
Its dynamics is as follows: there are K communities {1, . . . ,K} and each node belongs to a
single community, where this membership is captured by the rows of the n×K matrix Z,
where the ith row of Z, i.e. Zi,·, is the community membership vector of the ith node and
has a Multinomial(1;π) distribution, independently of the other rows. Given the community
structure, links between pairs of nodes are determined solely by the block memberships of
the nodes in an independent manner. That is, if A denotes the adjacency matrix of the
network, then given Z, Aij and Akl are independent for (i, j) 6= (k, l), i < j, k < l, and

P(Aij = 1 | Z) = P(Aij = 1 | Zia = 1, Zjb = 1) = Bab.

B = ((Bab)) is called the block (or community) probability matrix. We have the natural
restriction that B is symmetric for undirected networks.
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The block memberships are hidden variables and one only observes the network in practice.
The goal often is to fit an appropriate SBM to learn the community structure, if any, and
also estimate the parameters B and π.

The complete likelihood for the SBM is given by

P(A,Z;B, π) =
∏
i<j

∏
a,b

(B
Aij
ab (1−Bab)1−Aij )ZiaZjb

∏
i

∏
a

πZiaa . (1)

As Z is not observable, if we integrate out Z, we get the data likelihood

P(A;B, π) =
∑
Z∈Z

P(A,Z;B, π), (2)

where Z is the space of all n×K matrices with exactly one 1 in each row.
In principle we can optimize the data likelihood to estimate B and π. However, P(A;B, π)

involves a sum over a complicated large finite set (the cardinality of this set is Kn), and hence
is not easy to deal with. A well-known alternative approach is to optimize the variational
log-likelihood (Bickel et al., 2013), which has a less complicated dependency structure, the
simplest of which is mean field log-likelihood (see, e.g., (Wainwright and Jordan, 2008)). We
defer a detailed discussion of the mean field principle in the Appendix.

For the SBM, the variational log-likelihood with respect to a distribution ψ is given by∑
Z

log

(
P(A,Z;B, π)

ψ(Z)

)
ψ(Z) = Eψ

( ∑
i<j,a,b

ZiaZjb(θabAij − f(θab))

)
− KL(ψ||π⊗n),

where θab = log
(

Bab
1−Bab

)
, f(θ) = log(1 + eθ) and π⊗n denotes the product measure on

Z with the rows of Z being i.i.d. Multinomial(1;π). A special case of the variational
log-likelihood is the mean field log-likelihood (see, e.g., (Wainwright and Jordan, 2008)),
where one approximates Ψ by

ΨMF ≡ {ψ : ψ(z1, . . . , zn) =

n∏
j=1

ψj(zj)}. (3)

Define `MF (ψ, θ, π) =
∑

i<j,a,b ψiaψjb(θabAij − f(θab)) −
∑

i KL(ψi||π). For SBM the mean
field approximation is equivalent to optimizing `MF (ψ, θ, π) as follows:

max
ψ

`MF (ψ, θ, π)

subject to
∑
a

ψia = 1, for all 1 ≤ i ≤ n

ψia ≥ 0, for all 1 ≤ i ≤ n, 1 ≤ a ≤ K,

where each ψi is a discrete probability distribution over {1, . . . ,K}.

2.1 Mean field updates for a two-parameter two-block SBM

Consider the stochastic blockmodel with two blocks with prior block probability π, 1 − π
respectively and block probability matrix B = (p− q)I + qJ , where p > q, I is the identity
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matrix, and J = 11> is the matrix of all 1’s. For simplicity, we will denote ψi1 as ψi. Then
the mean field log-likelihood is

`(ψ, p, q, π) =
1

2

∑
i,j:i 6=j

[ψi(1− ψj) + ψj(1− ψi)][Aij log

(
q

1− q

)
+ log(1− q)]

+
1

2

∑
i,j:i 6=j

[ψiψj + (1− ψi)(1− ψj)][Aij log

(
p

1− p

)
+ log(1− p)]

−
∑
i

[log

(
ψi
π

)
ψi + log

(
1− ψi
1− π

)
(1− ψi)]. (4)

For simplicity of exposition, we will assume that π (which is essentially a prior on the
block memberships) is known and equals 1/2. Let Ci, i = 1, 2 be the two communities. Let
π̃ = |C1|

n . It is clear that π̃ = 1
2 +OP ( 1√

n
). Assuming π̃ = 1

2 from the start will not change
our conclusions but make the algebra a lot nicer, which we do henceforth. Now

∂`

∂ψi
=

1

2

∑
j:j 6=i

2[1− 2ψj ][Aij log

(
q

1− q

)
+ log(1− q)]

+
1

2

∑
j:j 6=i

2[2ψj − 1][Aij log

(
p

1− p

)
+ log(1− p)]− log

(
ψi

1− ψi

)

= 4t
∑
j:j 6=i

(ψj −
1

2
)(Aij − λ)− log

(
ψi

1− ψi

)
,

where t = 1
2 log

(p(1−q)
q(1−p)

)
and λ = 1

2t log
( 1−q

1−p
)
. Detailed calculations of other first and second

order partial derivatives are given in Section B of the Appendix. The co-ordinate ascent
(CAVI) updates for ψ are

log
ψ

(new)
i

1− ψ(new)
i

= 4t
∑
j 6=i

(ψj −
1

2
)(Aij − λ).

Introducing an intermediate variable ξ for the updates, let f(x) = log( x
1−x) and ξi = f(ψi).

Then at iteration s, given the current values of p and q for computing t and λ, the batch
version (BCAVI) of this is

ξ(s) = 4t(A− λ(J − I))(ψ(s−1) − 1

2
1),

and ψ(s) = g(ξ(s)), where g is the sigmoid function g(x) = 1/(1 + e−x).
We will study these updates in two setttings: i) when the true model parameters p0, q0

are known (or estimated and kept fixed), and ii) when the model parameters p0, q0 need to
be jointly estimated with ψ. The detailed BCAVI updates for each setting will be described
in Section 3. A summary of notations used in the model description and BCAVI updates so
far is provided in Table 1.
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Notation Definition
A Adjacency matrix
B B = (p− q)I + qJ is the block probability matrix
P P = ZBZT , where Z is the n× 2 membership matrix
ψ n-dimensional mean field parameters
ξ Intermediate variable in the updates, ξi = log

(
ψi

1−ψi

)
t, λ t = 1

2 log
(p(1−q)
q(1−p)

)
and λ = 1

2t log
( 1−q

1−p
)
.

p0, q0, t0, λ0 True model parameters and their related quantities

Table 1: Notations used in the two-parameter two-block SBM and BCAVI updates.

3. Main results

In this section, we state and discuss our main results. All the proofs appear in the Appendix.
We begin with introducing some notations. In the following, we will see the following

vectors repeatedly: ψ = 1
21,1,0,1C1 ,1C2 . Among these, 1 corresponds to the case where

every node is assigned by ψ to C1, and, similarly, for 0, to C2. On the other hand, 1Ci are the
indicators of the clusters Ci and hence correspond to the ground truth community assignment.
Finally, 1

21 corresponds to the solution where a node belong to each community with equal
probability.

The next propositions show some useful inequalities for t and λ computed from general p
and q.

Proposition 1 Suppose 1 > p > q > 0. Then

1. (p−q)(1+p−q)
2(1−q)p < t < (p−q)(1−p+q)

2(1−p)q , and

2. q < λ < p.

The next proposition refines the separation between λ and p, q, when p � q � ρn, ρn → 0.

Proposition 2 If p � q � ρn, ρn → 0 and p− q = Ω(ρn), then

λ− q = Ω(ρn) > 0, (5)
p+ q

2
− λ = Ω(ρn) > 0. (6)

3.1 Known p0, q0:

In this case, denoting the true model parameters p0, q0 (p0 > q0), we assume these parameters
are known and thus need only consider the updates for ψ. We consider the case where the
true p0, q0 are of the same order, that is, p0 � q0 � ρn with ρn possibly going to 0. The
BCAVI updates are:

ξ(s+1) = 4t0(A− λ0(J − I))(ψ(s) − 1

2
1), (7)
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where t0 and λ0 are calculated using p0 and q0. In what follows, we will also study the
population version of this update which replaces A by E(A | Z) = ZBZ> − p0I =: P − p0I.
Hence for convenience, denote M := P − p0I − λ0(J − I). The population BCAVI updates
are

ξ(s+1) = 4t0M(ψ(s) − 1

2
1). (8)

The eigendecomposition of P − λ0J will play a crucial role in our analysis. Note that it
has rank two and two eigenvalues nα±, where α+ = p0+q0

2 −λ0, α− = p0−q0
2 , with eigenvectors

1 and 1C1 − 1C2 respectively. Now it can be easily checked that the eigenvalues of M are
ν1 = nα+−(p0−λ0), ν2 = nα−−(p0−λ0) and νj = −(p0−λ0), j = 3, . . . , n. The eigenvector
of M corresponding to ν1 is u1 = 1, and the one corresponding to ν2 is u2 = 1C1 − 1C2 .

We first present a proposition related to the landscape of the objective function. Consider
the population mean field log-likelihood, which replaces A by its expectation E(A|Z) in Eq (4).
In the known p0, q0 case, 1

21 is a saddle point of the population mean field log-likelihood.

Proposition 3 ψ = 1
21 is a saddle point of the population mean field log-likelihood when p0

and q0 are known, for all n large enough.

We next give conditions on the initialization which determine their convergence behavior
when using the population BCAVI (8). To facilitate our discussion, we will write the BCAVI
updates in the eigenvector coordinates of M . To this end, define ζ(s)

i = 〈ψ(s), ui〉/‖ui‖2 =
〈ψ(s), ui〉/n, for i = 1, 2. We can then write

ψ(s) = 〈ψ(s), u1/‖u1‖〉u1/‖u1‖+ 〈ψ(s), u2/‖u2‖〉u2/‖u2‖+ v(s) = ζ
(s)
1 u1 + ζ

(s)
2 u2 + v(s).

(9)

So, using (8) in conjunction with the above decomposition, coordinate-wise we have:

ξ
(s+1)
i = 4t0n

(
(ζ

(s)
1 − 1

2
)α+ + σiζ

(s)
2 α−

)
+ 4t0ν3

(
(ζ

(s)
1 − 1

2
) + σiζ

(s)
2 + v

(s)
i

)
=: na(s)

σi + b
(s)
i , (10)

where σi = 1, if i is in C1, and −1 otherwise. Note that the mean-field parameters are
obtained by passing ξ(s+1)

i elementwise through a sigmoid. So, in order to converge to the
ground truth, say 1C1 , we hope that ξ

(s+1)
i goes to positive infinity for nodes in C1, and ξ

(s+1)
i

goes to negative infinity for nodes in C2. In Eq (10), in the first iteration, ξ(1)
i is dominated by

na
(0)
σi . In other words, if |na(0)

σi | → ∞ , and a(0)
+1 and a(0)

−1 are of opposite signs, we expect ψ(1)

to converge to the ground truth. If they are of the same sign, then ψ(1) should converge to 1
or 0. The next theorem gives a more rigorous statement of this. In Table 3 we enumerate
the different limits for different signs of a(0)

σi .
A summary of main notations used in our analysis can be found in Table 2.

Theorem 4 (Population behavior) The limit behavior of the population BCAVI up-
dates (8) is characterized by the signs of a(0)

±1, where a
(s)
±1 for iteration s is defined in (10).

Assume that |na(0)
±1| → ∞. Define `(ψ(0)) = 1(a

(0)
+1 > 0)1C1 + 1(a

(0)
−1 > 0)1C2, where 1(·)

7
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Notation Definition
ρn Average density of the network, p0 � q0 � ρn
α± α+ = p0+q0

2 − λ0, α− = p0−q0
2

1C1 ,1C2 1Ci are the indicators of the cluster Ci, i = 1, 2

M M = P − p0I − λ0(J − I)

ν1, . . . , νn
Eigenvalues of M , ν1 = nα+ − (p0 − λ0),

ν2 = nα− − (p0 − λ0), νj = −(p0 − λ0), j = 3, . . . , n

u1, u2, v
u1, u2 are eigenvectors of M , u1 = 1, u2 = 1C1 − 1C2

v is orthogonal to u1, u2, defined in Eq (9).
ζ1, ζ2 ζi = 〈ψ, ui〉/n, i = 1, 2

a
(s)
±1 Defined in Eq (10).

Table 2: Notations used in the analysis.

Signs of a(0)
+1, a

(0)
−1 Stationary point `(ψ(0))

a
(0)
+1 > 0, a

(0)
−1 > 0 1

a
(0)
+1 < 0, a

(0)
−1 < 0 0

a
(0)
+1 > 0, a

(0)
−1 < 0 1C1

a
(0)
+1 < 0, a

(0)
−1 > 0 1C2

Table 3: `(ψ(0)) describes four stationary points depending on the sign of a(0)
±1.

denotes an indicator function of the event (see Table 3 for all cases of `(ψ(0))). Then, under
the same assumption on p0, q0 in Proposition 2, we have

‖ψ(1) − `(ψ(0))‖2

n
= O(exp(−Θ(nmin{|a(0)

+1|, |a
(0)
−1|}))) = o(1).

We also have for any s ≥ 2

‖ψ(s) − `(ψ(0))‖2

n
=

{
O(exp(−Θ(nt0α−))), if a(0)

+1a
(0)
−1 < 0,

O(exp(−Θ(nt0α+)), if a(0)
+1a

(0)
−1 > 0.

Remark 5 1. Note that `(ψ(0)) describes 4 stationary points characterized by the signs of
a

(0)
±1, which are calculated from ψ(0): 1,0,1C1 , and 1C2 . We enumerate these in Table 3.

The theorem explains which stationary point the population BCAVI converges to is
determined by the signs of a(0)

±1.

2. Since the proof of Theorem 4 shows BCAVI can only converge to one of the four points
{1,0,1C1 ,1C2} starting from any given ψ(0) satisfying the condition in the theorem,
there are only five stationary points of the mean field log-likelihood, namely 1,0,1C1 ,1C2 ,
and the saddle point 1

21 in Proposition 3.
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3. We see from Theorem 4 that, essentially, we have exponential convergence within two
iterations.

4. Since p0 � q0 � α+ � ρn, as long as one of the projections ζ(0)
1 − 1/2, ζ(0)

2 of the
initialization ψ(0) is non-vanishing (of order Θ(1)), the condition |na(0)

±1| → ∞ requires
nρn →∞.

From Theorem 4, we can calculate lower bounds on the volumes of the basins of attractions
of the limit points of the population BCAVI updates. We have the following corollary.

Corollary 6 Define the set of initialization points converging to a stationary point c as

Sc := {v | lim sup
s→∞

n−1‖ψ(s) − c‖2 = O(exp(−Θ(nt0 min{|α+|, α−}))), when ψ(0) = v}.

Let M be some measure on [0, 1]n, absolutely continuous with respect to the Lebesgue measure.
Consider the stationary point 1, then

M(S1) ≥ lim
γ↑1

M(Hγ
+ ∩H

γ
− ∩ [0, 1]n),

where the half-spaces Hγ
± are given as

Hγ
± =

{
x | 〈x, α+u1 ± α−u2〉 >

nα+

2
+
n1−γ

4t

}
.

Similar formulas can be obtained for the other stationary points.

For specific measures M, one can obtain explicit formulas for these volumes. In practice,
these are quite easy to calculate by Monte Carlo simulations.

Now we turn to the sample behavior of the updates in (7).

Theorem 7 (Sample behavior) For all s ≥ 1, the same conclusion as Theorem 4 holds
for the sample BCAVI updates in (7) with probability at least 1 − n−r, r > 0, as long as
n|a(0)
±1| � max{

√
nρn log n‖ψ(0) − 1

2‖∞, 1}, nρn = Ω(log n) and ψ(0) is independent of A.

Remark 8 Since ‖ψ(0)− 1
2‖∞ = O(1), we can check that the lower bound required on n|a(0)

± |
by Theorem 7 always holds when we use initializations of the form ψ

(0)
i

iid∼ fµ, where fµ is
some distribution with support [0, 1], mean µ and µ 6= 1

2 . Here n|a(0)
±1| = ΘP (nρn) and we

already have nρn = Ω(log n). When µ = 1
2 , n|a

(0)
± | = OP (

√
nρn) which does not satisfy the

lower bound. In this case, we have the following theorem showing convergence can happen for
a good fraction of the random initializations.

Theorem 9 (Convergence for random initializations) When p0 and q0 are known and
ρn → 0 at a rate such that ρn

√
n/ log n→∞, initializing with ψ(0)

i ∼ iid Bernoulli(1
2) and

using the sample BCAVI updates (7), with probability at least 1− arctan(c`)−arctan(c−1
` )

π − o(1),

‖ψ(s) − z0‖1 ≤ n exp(−C1t0(p0 − q0)n) +
C2ρn

(p0 − q0)2n
‖ψ(s−1) − z0‖1

9
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for s ≥ 3, some general constants C1, C2 (independent of n and model parameters), and
z0 = 1C1 or 1C2 . Here

c` =
(p0 − λ0) + c(λ0 − q0)

c(p0 − λ0) + (λ0 − q0)
, c =

(λ0 − q0)(1− εn)

(p0 − λ0)(1 + εn)
− η,

εn → 0 slowly such that ρn
√
nεn/| log ρn| → ∞ and η > 0 is some arbitrarily small constant.

Remark 10 1. Note that the convergence probability can also be written as 1
2+

2 arctan(c−1
` )

π −
o(1), which is larger than 1/2. The distance between this lower bound probability and 1
decreases as |c− 1| decreases.

2. Thus Theorem 9 shows that random initializations lead to convergence to the global
optima (i.e. the ground truth, 1C1 and 1C2) of the variational objective function with
probability strictly greater than half. This means that one can do N independent
random initializations, and with probability greater than 1 − (1/2)N , at least one of
the initializations will converge to the ground truth. To see this statement is valid, we
note that even though each initialization uses the same data matrix A to obtain the
estimates, the bounds on ψ(0) and A used in our proof are completely separable.

3. With multiple random initializations, the best clustering can be picked by finding one
with the largest ELBO, since it is a well-known fact that the ground truth maximizes
the ELBO (e.g., Bickel et al. (2013) Eq. (3) and Lemma 3). This justifies the common
practice of using multiple random starts and picking the result with the largest ELBO.
Hence it is important to note the key here is that the success probability of a random
initialization is lower bounded by a constant.

4. We can also obtain mis-clustering rate directly from the L1 norm bound. For every
iteration s, let ẑ(s)

i = 1(ψ
(s)
i > 1/2) be the estimated labels. Then the mis-clustering

rate is given by

‖ẑ(s) − z0‖0
n

≤ 2‖ψ(s) − z0‖1
n

≤ 2 (1 + o(1)) exp(−C1t0(p0 − q0)n) + 2

(
C2ρn

(p0 − q0)2n

)s−2

.

The next corollary shows that even if we do not know p0 and q0 and only have their
estimates, the above convergence still holds as long as the estimates are reasonably close to
p0 and q0.

Corollary 11 (Using parameter estimates) The same conclusion as in Theorem 9 holds
if we replace p0, q0 with some p̂, q̂ � ρn, |p̂− q̂| = Ω(ρn), satisfying

1. p0+q0
2 > λ̂,

2. λ̂− q0 = Ω(ρn) > 0,

10
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where λ̂ is computed using p̂ and q̂.

Remark 12 1. In practice, p̂, q̂ can be estimates depending on A, then the statement in
Corollary 11 still holds.

2. When p̂, q̂ � ρn, p̂ − q̂ = Ω(ρn) > 0, λ̂ lies between (p̂ + q̂)/2 and q̂ as suggested by
Proposition 2. The conditions in Corollary 11 imply an upper bound on p̂ and a lower
bound on q̂. Similar constraints hold if q̂ − p̂ = Ω(ρn) > 0. An example of the estimate
regime is shown in Figure 1, where p0 = 0.3, q0 = 0.1, and the yellow area contains p̂,
q̂ such that p0+q0

2 > λ̂ > q0.

3. Such estimates can be obtained by applying any strongly consistent SDP method to a
smaller subgraph, which makes it computationally efficient as well. Consider randomly
sampling

√
n nodes from the original graph. This subgraph has average degree

√
nρn →

∞ under the setting of Theorem 9, and class size of the order Θ(
√
n). Then applying

a strongly consistent SDP method, such as Li et al. (2018), one can achieve exact
recovery of community labels on this subgraph with high probability. p̂, q̂ are obtained by
simply averaging the edge counts, and using Bernstein’s inequality |p̂− p0|, |q̂ − q0| =
O(
√

ρn
n log n)� ρn with high probability.

Figure 1: For p0 = 0.3, q0 = 0.1, the yellow area shows where p0+q0
2 > λ̂ > q0 is satisfied.

3.2 Unknown p0, q0:

In this case, the model parameters p and q are updated jointly with ψ. The full BCAVI
updates are

p(s) =
(ψ(s−1))>Aψ(s−1) + (1− ψ(s−1))>A(1− ψ(s−1))

(ψ(s−1))>(J − I)ψ(s−1) + (1− ψ(s−1))>(J − I)(1− ψ(s−1))
, (11)

q(s) =
(ψ(s−1))>A(1− ψ(s−1))

(ψ(s−1))>(J − I)(1− ψ(s−1))
,

t(s) =
1

2
log

(
p(s)(1− q(s))

q(s)(1− p(s))

)
, λ(s) =

1

2t(s)
log

(
1− q(s)

1− p(s)

)
,

11
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ξ(s) = 4t(s)(A− λ(s)(J − I))(ψ(s−1) − 1

2
1).

Similar to before, p0 � q0 � ρn with ρn possibly going to 0. In the population version, we
would replace A with E(A | Z) = P − pI.

In this case with unknown p0, q0, our next result shows that 1
21 changes from a saddle

point (Proposition 3) to a local maximum.

Proposition 13 Let n ≥ 2. Then (ψ, p, q) = (1
21,

1>A1
n(n−1) ,

1>A1
n(n−1)) is a strict local maximum

of the mean field log-likelihood.

Since p0, q0 and ψ are unknown and need to be estimated iteratively, we have the following
updates for p(1) and q(1) given the initialization ψ(0) and show that they can be written in
terms of the projection of the initialization in the principal eigenspace of P .

Lemma 14 Let x = (ψ(0))Tψ(0) + (1−ψ(0))T (1−ψ(0)) and y = 2(ψ(0))T (1−ψ(0)) = n−x.
Projecting ψ(0) onto u1 and u2 and writing ψ(0) = ζ1u1 + ζ2u2 +w, where w ∈ span{u1, u2}⊥,
then

p(1) =
p0 + q0

2
+

(p0 − q0)(ζ2
2 − x/2n2)

ζ2
1 + (1− ζ1)2 − x/n2

+OP (
√
ρn/n),

q(1) =
p0 + q0

2
− (p0 − q0)(ζ2

2 + y/2n2)

2ζ1(1− ζ1)− y/n2
+OP (

√
ρn/n). (12)

Since (ψ(0))T (1− ψ(0)) > 0, we have ζ1(1− ζ1) ≥ ζ2
2 . This gives:

p(1) ∈
(
p0 + q0

2
+OP (

√
ρn/n), p0

]
, q(1) ∈

[
q0,

p0 + q0

2
+OP (

√
ρn/n)

)
. (13)

It is interesting to note that p(1) is always smaller than q(1) except when it is O(
√
ρn/n)

close to (p0 + q0)/2. In that regime, one needs to worry about the sign of t and λ. In all
other regimes, t, λ are positive.

Using the update forms in Lemma 14, the following result shows that the stationary
points of the population mean field log-likelihood lie in the principle eigenspace span{u1, u2}
of P in a limiting sense.

Proposition 15 Consider the case with unknown p0, q0 and ρn → 0, nρn →∞. Let (ψ, p̃, q̃)
be a stationary point of the population mean field log-likelihood. If ψ = ψu + ψu⊥, where
ψu ∈ span{u1, u2} and ψu⊥ ⊥ span{u1, u2}, then ‖ψu⊥‖ = o(

√
n) as n→∞.

We next present the two main results of this section, which analyze the convergence
of the full BCAVI (Eq (11)) updates with respect to different types of initializations. We
first consider a simple random initialization, where the entries of ψ(0) are i.i.d with mean
µ. In this case, ζ2 is vanishing, which is unsurprising since ζ2 measures correlation with the
second eigenvector of P , u2 which is the 1C1 − 1C2 vector. Then by Lemma 14, p(1) and q(1)

concentrates around the average of the conditional expectation matrix, i.e. (p0 + q0)/2. In
this case, the update converges to 1

21 with small deviations within one update as stated in
the next theorem. This result shows the futility of random initialization when p0, q0 are
unknown, in contrast to the results in Section 3.1.

12
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Theorem 16 Consider the initial distribution ψ(0)
i

iid∼ fµ where f is a distribution supported
on (0, 1) with mean µ. If µ is bounded away from 0 and 1 and nρn = Ω(log n), using the
updates in (11), then ‖ψ(1) − 1

21‖2 = OP (1),

‖ψ(s) − 1

2
1‖2 ≤ OP (1/

√
n)‖ψ(s−1) − 1

2
1‖2 +OP (ρ3/2

n )

for s ≥ 2.

As another type of initialization, it is also instructive to analyze the case where the
initialization is in fact correlated with the truth. To this end, we will consider a initialization
scheme, ψ(0)

i = µi + ε
(0)
i , where the expectation of ψ(0)

i is µi, ε
(0)
i are independent zero mean

noise such that the support of ψ(0)
i is [0, 1]. In this case, provided there is sufficient separation

between the cluster means, defined as

∆µ =

∑
i∈1C1

µi

n
−

∑
i∈1C2

µi

n
, (14)

we have convergence to ground truth within one iteration.

Theorem 17 Consider the initialization ψ(0) = µi + ε
(0)
i such that E[ψ

(0)
i ] = µi, ε

(0)
i are

independent and maxiVar(ψ
(0)
i ) < ∞. Assume 1

n

∑n
i=1 µi = 1/2 (WLOG) and nρn =

Ω(log n). Then provided

|∆µ| = Ω

(
ρ

3/2
n
√

log n

(p0 − q0)2
√
n

)1/3

, (15)

we have for large enough n, with probability at least 1 − exp(−Θ(log n)), ψ(1) = 1C1 +
O(exp(−Ω(

√
nρn log n))) or 1C2 +O(exp(−Ω(

√
nρn log n))), where the error term is uniform

for all the coordinates. For s ≥ 2,

‖ψ(s) − z0‖1 ≤ n exp(−c1t0(p0 − q0)n) +
c2ρn

n(p0 − q0)2
‖ψ(s−1) − z0‖1

for some general constants c1, c2 (independent of n and model parameters), with probability
at least 1− n−r, r > 0, uniformly for all s.

Remark 18 1. The lemma states that provided the separation between p0 and q0 does
not vanish too fast, and there is enough separation between the two cluster means,
we have converge to the truth within one iteration. In the case of p0 − q0 � ρn,

the theorem requires |∆µ| = Ω

((
logn
nρn

)1/6
)
. The lower bound can approach 0 when

nρn/ log n → ∞. Thus in this special case, our constraint on the initialization is
weaker than Zhang and Zhou (2017), which requires ‖ψ(0) − z0‖1 ≤ cinitn/2 for some
sufficiently small constant cinit under a balanced two-block model.

13
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2. Consider randomly sampling a subset of nodes S from the graph, with |S| = Θ

(
n ·
(

logn
nρn

)1/6
)
.

If we initialize ψ(0)
i with the correct labels for i ∈ S (which can be done by applying a

strongly consistent SDP algorithm like Li et al. (2018) to S), and ψ(0)
i iid randomly

for i /∈ S, the separation condition on ∆µ would be satisfied. We show this also with a
simulation in Section 4, Figure 4 (a).

4. Numerical results

In Figure 2-(a), we have generated a network from an SBM with parameters p0 = 0.4, q0 =
0.025, and two equal sized blocks of 100 nodes each. We generate 5000 initializations ψ(0)

from Beta(α, β)⊗n (for four sets of α and β) and map them to a(0)
±1. We perform sample

BCAVI updates on ψ(0) with known p0, q0 and color the points in the a(0)
±1 co-ordinates

according the limit points they have converged to. In this case, α+ > 0, hence based on
Theorems 4 and 7, we expect points with a

(0)
+1a

(0)
−1 < 0 to converge to the ground truth

(colored green or magenta) and those with a(0)
+1a

(0)
−1 > 0 to converge to 0 or 1. As expected,

points falling in the center of the first and third quadrants have converged to 0 or 1. The
points converging to the ground truth lie more toward the boundaries but mostly remain in
the same quadrants, suggesting possible perturbations arising from the sample noise and
small network size. We see that this issue is alleviated when we increase n.

The notable thing is, in Figure 2-(a) and (d), the Beta distribution has mean 0.16 and
0.71 respectively. So the initialization is more skewed towards values that are closer to zero
or closer to one. In these cases most of the random runs converge to the all zeros or all ones,
with very few converging to the ground truth. However, for Figure 2-(b) and (d), the mean
of the Beta is 0.3 and 0.7, and we see considerably more convergences to the ground truth.
Also, (b) and (d) are, in some sense, mirror images of each other, i.e. in one, the majority
converges to 0; whereas in the other, the majority converges to 1.

In Figure 3, we examine whether convergence can hold even when the exact values of
p0, q0 are unknown using the initiliazation scheme in Theorem 9 and Corollary 11. In each
heatmap, the dashed lines indicate the true parameter values used to generate an adjacency
matrix A. The heatmap contains pairs of p̂, q̂ that we use in the sample BCAVI updates (7)
for fixed parameters initialized with ψ(0)

i ∼ iid Bernoulli(1
2). For each pair of parameters, we

use 50 such random initializations and compute the average clustering accuracy. In both
cases, we can see that as long as the parameter estimates fall into a reasonable range around
the true values, convergence to the ground truth happens for a high fraction of the random
initializations. The plots are symmetric in terms of p̂ and q̂, suggesting the estimates do not
have to respect the relationship p̂ > q̂ as discussed in Remark 12.

In Figure 4 (a), we examine initializations of the type described in Theorem 17 and the
resulting estimation error. In particular, we provide correct labels for a set of nodes S and
set ψ(0)

i , i ∈ S at those correct labels, and then initialize the rest of the nodes at random.
We show our results for three settings of p0, q0, with n = 500. On the Y axis we plot the
classification accuracy over 50 random runs across the |S|/n on the X axis. We see the
surprising result that for the highest separation only 10% of labeled nodes can result in

14
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(a) (b)

(c) (d)

Figure 2: n = 200 and 5000, ψ(0) ∼ Beta(α, β)⊗n for various values of α and β. These ψ(0)

are mapped to (a
(0)
+1, a

(0)
−1) (see (10)) and plotted. C1 (magenta) and C2 (green)

correspond to the limit points 1C1 and 1C2 . Other limit points are ‘Ones’, i.e. 1
(blue) and ‘Zeros’, i.e. 0 (red).

better than random classification, whereas for about 20% correctly labeled nodes, the average
accuracy is better than 90%.

In addition, we compare the performance of the random initialization scheme in Theorem 9
with other more informative initializations obtained from running spectral clustering (Rohe
et al., 2011) and semi-definite programming (SDP, Li et al. (2018)). As expected, spectral
clustering and SDP given better initializations than random and lead to higher accuracy,
specially on sparse graphs. Nonetheless, overall random initializations yield very reasonable
results over a range of p0/q0 values and for moderately sparse graphs. Details of the
experiments and results can be found in Appendix Section D.
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(a) (b)

Figure 3: Average clustering accuracy using 50 random initializations ψ(0)
i ∼ iid Bernoulli(1

2)
and different p̂, q̂ values in the BCAVI updates with fixed parameters. The dashed
lines show the true parameter values, (a) p0 = 0.2, q0 = 0.1, (b) p0 = 0.3, q0 = 0.2.

(a) (b)

Figure 4: Random initializations with small subset labeled correctly for a graph of size
n = 400 with (a) 2 equal sized blocks and (b) 3 equal sized blocks. X axis is
fraction of correctly clustered nodes, and Y axis is average accuracy.

5. Discussion

In this paper, we work with the BCAVI mean field variational algorithm for a simple two
class stochastic blockmodel with equal sized classes. Mean field methods are used widely for
their scalability. However, existing theoretical works typically analyze the behavior of the
global optima, or the local convergence behavior when initialized near the ground truth. In
the simple setting considered, we show two interesting results. First, we show that, when
the model parameters are known, random initializations centered around half converge to
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the ground truth a good fraction of time. The same convergence holds if some reasonable
estimates of the model parameters are known and held fixed throughout the updates. In
contrast, when the parameters are not known and estimated iteratively with the mean field
parameters, we show that a random initialization converges, with high probability, to a
meaningless local optimum. This shows the futility of using multiple random initializations
when no prior knowledge is available.

In view of recent works on the optimization landscape for Gaussian mixtures (Jin et al.,
2016; Xu et al., 2016), we would like to comment that, despite falling into the category of
latent variable models, the SBM has fundamental differences from Gaussian mixtures which
require different analysis techniques. The posterior probabilities of the latent labels in the
latter model can be easily estimated when the parameters are known, whereas this is not
the case for SBM since the posterior probability P(Zi|A) depends on the entire network.
The significance of the results in Section 3.1 lies in characterizing the convergence of label
estimates given the correct parameters for general initializations, which is different from the
type of parameter convergence shown in (Jin et al., 2016; Xu et al., 2016). Furthermore,
as most of the existing literature for the SBM focuses on estimating the labels first, our
results provide an important complementary direction by suggesting that one could start
with parameter estimation instead.

While we only show results for two classes, we expect that our main theoretical results
generalize well to K > 2 and will leave the analysis for future work. As an illustration,
consider a setting similar to that of Figure 2 but for n = 450 with K = 3 equal sized classes.
p0 = 0.5, q0 = 0.01 are known and ψ(0) is initialized with a Dirichlet(0.1, 0.1, 0.1) distribution.

We examine the convergence behavior of BCAVI for 1000 random initializations of ψ(0). In
Figure 5, each row represents the cluster membership vector a random initialization converges
to. We represent the node memberships with three different colors in the columns. The rows
have been permuted to group together initializations that converge to the same stationary
point. We can see that all 1000 random initializations converge to stationary points lying
in the span of {1C1 ,1C2 ,1C3}, which are the membership vectors for each class. There are
1+
(

3
2

)
= 4 different types of stationary points, not counting class label permutations. Another

stationary point (the all ones vector that puts everyone in the same class) can be obtained
with other initialization schemes, e.g., when the rows of ψ(0) are identical. For a general
K- blockmodel, we conjecture that the number of stationary points grows exponentially
with K. Similar to Figure 2, a significant fraction of the random initializations converge
to the ground truth when p0, q0 are known. On the other hand, when p0, q0 are unknown,
random initializations always converge to the uninformative stationary point (1/3, 1/3, 1/3),
analogous to Theorem 16.

We believe that for a more general SBM, the separation condition in Theorem 17 will be
some suitably defined distance from the ground truth, which will be a matrix for three or
more blocks (K ≥ 3). Considering a special case of Theorem 17, if one can obtain correct
labels of a nα, α ∈ [0, 1], size subset S of nodes (including all K labels), then an initialization
with the nodes in S fixed at the correct labels, and the rest initialized at random with
probability 1/2, then under suitable conditions on α, we expect BCAVI to converge to the
ground truth. We show that this intuition is indeed correct in Fig 4 (b) for K = 3. Here we
change the size of the random subset of nodes which are initialized at the correct label, and
plot average accuracy over fifty random runs on the Y axis. The three lines correspond to
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Figure 5: Convergence to stationary points for known p0, q0, K = 3. Rows permuted for
clarity.

different p/q ratio. We see that the same trend holds for both K = 2 and 3. But for K = 3,
we need a larger set of correctly labeled samples to reach the same accuracy. In particular,
for the largest p/q ratio, with 20% of correct labels, for K = 2, average accuracy is 90%
whereas for K = 3, the average accuracy is about 75%.

For models beyond SBM, if the model can be expressed with a low rank plus noise
decomposition, then we believe that in the high signal to noise setting, the separation
condition will be reduced to the amount of correlation of the initialization with principal
eigenvectors in the population matrix.
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Appendix A.

This appendix provides derivation of stationarity equations for the mean field log-likelihood,
the proofs of our main results, and some additional simulation results.

Appendix A. The Variational principle and mean field

We start with the following simple observation:

logP (A;B, π) = log
∑
Z

P (A,Z;B, π) = log

(∑
Z

P (A,Z;B, π)

ψ(Z)
ψ(Z)

)
(Jensen)
≥

∑
Z

log

(
P (A,Z;B, π)

ψ(Z)

)
ψ(Z) ∀ψ prob. on Z.

In fact, equality holds for ψ∗(Z) = P (Z|A;B, π). Therefore, if Ψ denotes the set of all
probability measures on Z, then

logP (A;B, π) = max
ψ∈Ψ

∑
Z

log

(
P (A,Z;B, π)

ψ(Z)

)
ψ(Z). (16)

The crucial idea from variational inference is to replace the set Ψ above by some easy-to-
deal-with subclass Ψ0 to get a lower bound on the log-likelihood.

logP (A;B, π) ≥ max
ψ∈Ψ0⊂Ψ

∑
Z

log

(
P (A,Z;B, π)

ψ(Z)

)
ψ(Z). (17)

Also the optimal ψ? ∈ Ψ0 is a potential candidate for an estimate of P (Z|A;B, π). Estimating
P (Z|A;B, π) is profitable since then we can obtain an estimate of the community membership
matrix by setting Zia = 1 for the ith agent where

a = arg max
b
P (Zib = 1|A;B, π). (18)

The goal now has become optimizing the lower bound in (17).

Appendix B. Derivation of stationarity equations

∂`

∂ψi
= 4t

∑
j:j 6=i

(ψj −
1

2
)(Aij − λ)− log

(
ψi

1− ψi

)
,

∂`

∂p
=

1

2

∑
i,j:i 6=j

(ψiψj + (1− ψi)(1− ψj))
(
Aij

(
1

p
+

1

1− p

)
− 1

1− p

)
,

∂`

∂q
=

1

2

∑
i,j:i 6=j

(ψi(1− ψj) + (1− ψi)ψj)
(
Aij

(
1

q
+

1

1− q

)
− 1

1− q

)
. (19)

Therefore

∂2`

∂ψj∂ψi
= 4t(Aij − λ)(1− δij)−

1

ψi(1− ψi)
δij ,
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∂2`

∂ψi∂p
=

1

2

∑
j:j 6=i

(
1

2
− ψj

)(
Aij

(
1

p
+

1

1− p

)
− 1

1− p

)
,

∂2`

∂ψi∂q
=

1

2

∑
j:j 6=i

(
ψi −

1

2

)(
Aij

(
1

q
+

1

1− q

)
− 1

1− q

)
,

∂2`

∂p2
=

1

2

∑
i,j:i 6=j

(ψiψj + (1− ψi)(1− ψj))
(
Aij

(
− 1

p2
+

1

(1− p)2

)
− 1

(1− p)2

)
,

∂2`

∂q2
=

1

2

∑
i,j:i 6=j

(ψi(1− ψj) + (1− ψi)ψj)
(
Aij

(
− 1

q2
+

1

(1− q)2

)
− 1

(1− q)2

)
,

∂2`

∂q∂p
= 0. (20)

Appendix C. Proofs of main results

Proof [Proof of Proposition 1] For any a > b > 0, we have

a− b
a

< log

(
a

b

)
<
a− b
b

,

which can be proved using the inequality log(1 + x) < x for x > −1, x 6= 0. Therefore

p− q
p

< log

(
p

q

)
<
p− q
q

, and
p− q
1− q

< log

(
1− q
1− p

)
<
p− q
1− p

.

So
(p− q)(1 + p− q)

2(1− q)p
< t =

1

2

(
log

(
p

q

)
+ log

(
1− q
1− p

))
<

(p− q)(1− p+ q)

2(1− p)q
,

and

q =

p−q
1−q

p−q
q + p−q

1−q
< λ =

log( 1−q
1−p)

log(pq ) + log( 1−q
1−p)

<

p−q
1−p

p−q
p + p−q

1−p
= p.

Proof [Proof of Proposition 2] Let y = (p − q)/(1 − p) > 0. We will use the well known
inequalities (Topsøe, 2004):

log(1 + y) ≥ 2y

2 + y
≥ y

1 + y
, (21)

log(1 + y) ≤ y − y2

2(1 + y)
(22)

Using Eq (22),

λ =
log 1−q

1−p

log p
q + log 1−q

1−p
≥ y

(1 + y) log p
q + y

≥ (p− q)
log p

q + (p− q)
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Using Eq (21) we get:

λ− q ≥ (p− q)− q log(p/q)−O(ρ2
n)

log p
q + (p− q)

≥
(p− q)− q

(
p−q
q −

(p−q)2
2pq

)
−O(ρ2

n)

log p
q + (p− q)

≥
(p−q)2

2p −O(ρ2
n)

log p
q +O(ρn)

= Ω(ρn)

The last step is true since p− q = Ω(ρn).
Now we prove Eq (6). Let x := p/q − 1 = Ω(1), since p− q = Ω(ρn).

λ ≤ p− q
(1− p) log p

q + (p− q)

p+ q

2
− λ ≥

p+q
2 log(p/q)− (p− q)−O(ρ2

n)

(1− p) log p
q + (p− q)

= q
(1 + x/2) log(1 + x)− x−O(ρn)

log(p/q) +O(ρn)
(23)

Consider the function h(x) defined below, where x = p/q − 1 = Ω(1).

h(x) = (2 + x) log(1 + x)− 2x

h′(x) = log(1 + x) +
2 + x

1 + x
− 2 = log(1 + x)− x

1 + x

≥ 2x

2 + x
− x

1 + x
=

x2

(2 + x)(1 + x)
= Ω(1)

Plugging into Eq (23) we get:

p+ q

2
− λ ≥ q h(x)−O(ρn)

2 log(p/q) +O(ρn)
= Ω(ρn)

C.1 Proofs of results in Section 3.1

Proof [Proof of Proposition 3] That ψ = 1
21 is a stationary point is obvious from the station-

arity equations (19). The eigenvalues of −4I + 4t0M , the Hessian at 1
21, are hi = −4 + 4t0νi.

We have ν1 = nα+− (p0− λ0) = Θ(n), and hence so is h1. Also, p0− λ0 > 0, so that ν3 < 0,
and hence h3 < 0. Thus we have two eigenvalues of the opposite sign.
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Proof [Proof of Theorem 4] From (10), we have

ψ
(s+1)
i = g(na(s)

σi + b
(s)
i ) = g(na(s)

σi ) + δ
(s)
i ,

where |δ(s)
i | = O(exp(−n|a(s)

σi |)), where we have used the fact that

g(nx+ y)− g(nx) = g(nx)g(nx+ y)(ey − 1) exp(−(nx+ y)).

Writing as a vector, we have

ψ(s+1) = g(na
(s)
+1)1C1 + g(na

(s)
−1)1C2 + δ(s), (24)

where ‖δ(s)‖∞ = maxi |δ(s)
i | = O(exp(−nmin{|a(s)

+1|, |a
(s)
−1|})). Note that by our assumption,

‖δ(0)‖∞ = O(exp(−nmin{|a(s)
+1|, |a

(s)
−1|})) = o(1). Now

ζ
(s+1)
1 =

〈ψ(s+1), u1〉
n

=
g(na

(s)
+1) + g(na

(s)
−1)

2
+O(‖δ(s)‖∞),

and

ζ
(s+1)
2 =

〈ψ(s+1), u2〉
n

=
g(na

(s)
+1)− g(na

(s)
−1)

2
+O(‖δ(s)‖∞).

Note that g(na
(s)
±1) = 1{a(s)±1>0} +O(‖δ(s)‖∞). Now, using (24),we have

‖ψ(s+1) − `(ψ(0))‖22
n

=
‖(g(na

(s)
+1)− 1{a(0)+1>0})1C1 + (g(na

(s)
−1)− 1{a(0)−1>0})1C2 + δ(s)‖2

n

≤
2(‖(g(na

(s)
+1)− 1{a(0)+1>0})1C1‖

2
2 + ‖(g(na

(s)
−1)− 1{a(0)−1>0})1C2‖

2
2 + ‖δ(s)‖2)

n

≤ |g(na
(s)
+1)− 1{a(0)+1>0}|

2 + |g(na
(s)
−1)− 1{a(0)−1>0}|

2 + 2‖δ(s)‖2∞

= |1{a(s)+1>0} − 1{a(0)+1>0}|
2 + |1{a(s)+1>0} − 1{a(0)−1>0}|

2 +O(‖δ(s)‖2∞). (25)

From the above representation and our assumption on n|a(0)
±1|, the bound for s = 1 follows.

We will now consider the four different cases of different signs of a(s)
±1.

Case 1: a(s)
+1 > 0, a

(s)
−1 > 0. In this case g(na

(s)
1 ) = g(na

(s)
−1) = 1 +O(‖δ(s)‖∞), so that

(ζ
(s+1)
1 , ζ

(s+1)
2 ) = (1, 0) +O(‖δ(s)‖∞).

This implies that
a

(s+1)
±1 = 2t0α+ +O(‖δ(s)‖∞).

Since α+ > 0 by Proposition 2, a(s+1)
±1 have the same sign as a(s)

±1. Note that, here and in the
subsequent cases, we are using that fact that ‖δ(s)‖∞ = o(1), for s = 0, by our assumption and
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it stays the same for s ≥ 1 because of relations like the above (that is a(1)
±1 = −2t0α+ + o(1),

so that ‖δ(1)‖∞ = exp(−nmin{|a(1)
+1|, |a

(1)
−1|}) = O(exp(−Cnt0α+)) = o(1), and so on).

Case 2: a(s)
+1 < 0, a

(s)
−1 < 0. In this case 1− g(na

(s)
1 ) = 1− g(na

(s)
−1) = 1 +O(‖δ(s)‖∞), so

that
(ζ

(s+1)
1 , ζ

(s+1)
2 ) = (0, 0) +O(‖δ(s)‖∞).

This implies that
a

(s+1)
±1 = −2t0α+ +O(‖δ(s)‖∞).

Since α+ > 0 by Proposition 2, a(s+1)
±1 have the same sign as a(s)

±1.

Case 3: a(s)
+1 > 0, a

(s)
−1 < 0. In this case g(na

(s)
1 ) = 1− g(na

(s)
−1) = 1 +O(‖δ(s)‖∞), so that

(ζ
(s+1)
1 , ζ

(s+1)
2 ) = (

1

2
,
1

2
) +O(‖δ(s)‖∞).

This implies that
a

(s+1)
±1 = ±2t0α− +O(‖δ(s)‖∞).

Since α− > 0, a(s+1)
±1 have the same sign as a(s)

±1.

Case 4: a(s)
+1 < 0, a

(s)
−1 > 0. In this case 1− g(na

(s)
1 ) = g(na

(s)
−1) = 1 +O(‖δ(s)‖∞), so that

(ζ
(s+1)
1 , ζ

(s+1)
2 ) = (

1

2
,−1

2
) +O(‖δ(s)‖∞).

This implies that
a

(s+1)
±1 = ∓2t0α− +O(‖δ(s)‖∞).

Since α− > 0, a(s+1)
±1 have the same sign as a(s)

±1.

We conclude that, if α+ > 0, then we stay in the same case where we began.Now the
desired conclusion follows from the bound (25).

In the proof above, we can allow sparser graphs, with p0, q0 � 1
n . More explicitly, let

p0 = ρna, q0 = ρnb, with a > b > 0 and ρn � 1
n . Then, t0 = Ω(1), nt0|α±| = Ω(nρn)→∞.

Proof [Proof of Corollary 6]
From Theorem 4, it follows that, when α+ > 0,

M(S1) ≥M({ψ(0) | a(0)
+1 > 0, a

(0)
−1 > 0, na

(0)
±1 � 1}

= M({ψ(0) | a(0)
+1 �

1

n
, a

(0)
−1 �

1

n
})

≥M({ψ(0) | a(0)
+1 >

1

nγ
, a

(0)
−1 >

1

nγ
}),

for any 0 < γ < 1 and so on for the other other limit points.
More explicitly,

{ψ(0) | a(0)
+1 >

1

nγ
, a

(0)
−1 >

1

nγ
} = {ψ(0) | (ζ(0)

1 − 1

2
)α+ + ζ

(0)
2 α− >

1

4tnγ
,
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(ζ
(0)
1 − 1

2
)α+ − ζ(0)

2 α− >
1

4tnγ
}

= Hγ
+ ∩H

γ
− ∩ [0, 1]n,

All in all, we have
M(S1) ≥ lim

γ↑1
M(Hγ

+ ∩H
γ
− ∩ [0, 1]n).

This completes the proof.

Proof [Proof of Theorem 7] We begin by noting that A−λ0(J−I)−M = A−E(A|Z) := A−P̃ .
For the first iteration, we rewrite the sample iterations (7) as

ξ(1) = 4t0M

(
ψ(0) − 1

2
1

)
+ 4t0 (A− P̃ )

(
ψ(0) − 1

2
1

)
︸ ︷︷ ︸

=:r(0)

.

Therefore, similar to the population case, we have

ψ
(1)
i = g(na(0)

σi + b
(0)
i + 4t0r

(0)
i ).

Note that

r
(0)
i =

∑
j 6=i

(Aij − P̃ij)(ψ(0)
j −

1

2
). (26)

Since our probability statements will be with respect to the randomness in A and ψ(0) is
independent of A, we may assume that ψ(0) is fixed. Let Yij = (Aij − P̃ij)(ψ(0)

j −
1
2). Then

the Yij are independent random variables for j 6= i, and E(Yij) = 0. Also, |Yij | ≤ |ψ(0)
j −

1
2 | ≤

‖ψ(0)− 1
2‖∞ = ∆, say, and EY 2

ij = (ψ
(0)
j −

1
2)2Var(Aij) = O(ρn(ψ

(0)
j −

1
2)2). So, by Bernstein’s

inequality,

P(
1

n

∑
j 6=i

Yij > ε) ≤ exp

( −1
2n

2ε2∑
j 6=i EY 2

ij + 1
3∆nε

)

≤ exp

( −1
2n

2ε2

Cρn‖ψ(0) − 1
2‖

2
2 + 1

3∆nε

)
≤ exp

( −1
2n

2ε2

Cnρn∆2 + 1
3∆nε

)
. (27)

By taking ε = C ′∆
√

ρn
n log n for some large C ′, it follows from the union bound and

nρn = Ω(log n) that the event A1 = {maxi |r(0)
i | = O(

√
nρn log n∆} has probability at least

1− exp(−Θ(log n)).
Now, from our assumption n|a(0)

±1| � max{
√
nρn log n‖ψ(0) − 1

2‖∞, 1}, it follows that
na

(0)
σi � 4t0r

(0)
i +b

(0)
i under event A1, simultaneously for all i. Thus, similar to the population

case, we can write
ψ(1) = g(na

(0)
+1)1C1 + g(na

(0)
−1)1C2 + δ̂(0),
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where ‖δ̂(0)‖∞ = O(exp(−nmin{|a(0)
+1|, |a

(0)
−1|})) = o(1), with probability at least 1−exp(−Θ(log n)).

After this the proof proceeds like the the proof of Theorem 4, and so we omit it.
Let us consider the case with s = 2 and we will show r

(1)
i can be bounded in a general

way. Now

ξ(2) = 4t0M(ψ(1) − 1

2
1) + 4t0r

(1)

= 4t0M(ψ(1) − 1

2
1) + 4t0(A− P̃ )(ψ(1) − `(ψ(0)))︸ ︷︷ ︸

R1

+ 4t0(A− P̃ )(`(ψ(0))− 1

2
1)︸ ︷︷ ︸

R2

.

Now the analysis of the first term follows from Theorem 4. Define event A2 = {maxi |R2,i| =
O(
√
nρn log n)}. Since `(ψ(0)) ∈ {1C1 ,1C2 ,1,0, 1

21} which is a finite set, by the same
argument as Eq (27), A2 has probability at least 1 − exp(−Θ(log n)). For R1, define
A3 = {‖A− P̃‖op = O(

√
nρn)}. A3 has probability at least 1− n−r, r > 0 (Theorem 5.2 in

Lei et al. (2015)). Under A3,

max
i
|R1,i| ≤ ‖R1‖2 ≤ C‖A− P̃‖op‖ψ(1) − `(ψ(0))‖2

= O(
√
nρn)

√
n ·O(exp(−Θ(nmin{|a(0)

+1|, |a
(0)
−1|}))) = o(1),

using the assumption that n|a(0)
±1| � max{

√
nρn log n‖ψ(0) − 1

2‖∞, 1}. Hence maxi |r(1)
i | =

O(
√
nρn log n) and na(1)

σi � 4t0r
(1)
i + b

(1)
i simultaneously for all i, under A2 ∩ A3. The same

analysis as in the s = 1 case follows.
The case for general s can be proved by induction using the same decomposition of r(s),

which can be bounded uniformly for all s under A2 ∩ A3.

The main proof of Theorem 9 relies on a few lemmas, which we defer to the end of the
proof.
Proof [Proof of Theorem 9]

For convenience, we assume A has self loops, which has no effect on the conclusion.
Similar to the notation used in the proof of Theorem 7, we decompose ξi as the population
update plus noise,

ξ
(s+1)
i = 4t0Mi,·(ψ

(s) − 1

2
1)︸ ︷︷ ︸

signal

+4t0 (A− E(A|Z))i,·(ψ
(s) − 1

2
1)︸ ︷︷ ︸

r
(s)
i

. (28)

Note that the signal part is constant for i ∈ 1C1 and i ∈ 1C2 . For convenience denote

s1 = Mi,·(ψ
(0) − 1

2
1), i ∈ 1C1

s2 = Mi,·(ψ
(0) − 1

2
1), i ∈ 1C2 . (29)
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Similarly, define s(1)
1 and s

(1)
2 in terms of ψ(1). By Lemma 23, since p0 > λ0 > q0, for

∆1,∆2 > 0,

s
(1)
1 = (p0 − λ0)

∑
i∈C1

(ψ
(1)
i −

1

2
) + (q0 − λ0)

∑
i∈C2

(ψ
(1)
i −

1

2
)

≥ (p0 − λ0)
n

2

(
1

2
− Φ

(
−s1 −∆1

σψ

))
+ (q0 − λ0)

n

2

(
1

2
− Φ

(
−s2 + ∆2

σψ

))
−O(nρn)(e−4t0∆1 + e−4t0∆2)−O(nρn)

ρψ
σ3
ψ

−OP (
√
nρn)︸ ︷︷ ︸

Rψ

. (30)

Similarly,

s
(1)
2 = (q0 − λ0)

∑
i∈C1

(ψ
(1)
i −

1

2
) + (p0 − λ0)

∑
i∈C2

(ψ
(1)
i −

1

2
)

≤ (q0 − λ0)
n

2

(
1

2
− Φ

(
−s1 −∆1

σψ

))
+ (p0 − λ0)

n

2

(
1

2
− Φ

(
−s2 + ∆2

σψ

))
+Rψ

(31)

We consider bounding s(1)
1 and s(1)

2 based on the signs of s1 and s2, which only depend
on ψ(0). Therefore in each case, we first consider the conditional distribution given ψ(0).

Case 1: s1 > 0, s2 < 0.
Let ∆1 = εs1, ∆2 = −εs2 for some small ε > 0. We have

1

2
− Φ

(
−(1− ε)s1

σψ

)
≥ (1− ε)s1

σψ
√

2π
exp

(
−(1− ε)2s2

1

2σ2
ψ

)
,

Φ

(
−(1− ε)s2

σψ

)
− 1

2
≥ −(1− ε)s2

σψ
√

2π
exp

(
−(1− ε)2s2

2

2σ2
ψ

)
,

where we have used

|Φ(x)− 1/2| = 1√
2π

∫ |x|
0

e−u
2/2du

≥ |x|√
2π
e−x

2/2. (32)

Applying the above to (30),

s
(1)
1 ≥ n(1− ε)

2
√

2πσψ
((p0 − λ0)|s1|+ (λ0 − q0)|s2|) exp

(
−(1− ε)2s2

2 ∨ s2
1

2σ2
ψ

)
−Rψ. (33)

Similar arguments show

s
(1)
2 ≤ −n(1− ε)

2
√

2πσψ
((λ0 − q0)|s1|+ (p0 − λ0)|s2|) exp

(
−(1− ε)2s2

2 ∨ s2
1

2σ2
ψ

)
+Rψ (34)

26



When random initializations help

Case 2: s1 < 0, s2 > 0.
The same analysis applies with the role of C1 and C2 interchanged.
Case 3: s1 > 0, s2 > 0.
WLOG assume s1 > s2 > 0. Taking ∆1 = ∆2 = ε(s1 − s2), (30) becomes

s
(1)
1 ≥ n

2
√

2πσψ
[(p0 − λ0)(s1 − ε(s1 − s2))− (λ0 − q0)(s2 + ε(s1 − s2))] exp

(
−(1− ε)2s2

1

2σ2
ψ

)
−Rψ

≥ n

2
√

2πσψ
[(λ0 − q0)− ε(p0 − q0)]|s1 − s2| exp

(
−(1− ε)2s2

1

2σ2
ψ

)
−Rψ (35)

using p0− λ0 > λ0− q0 (Proposition 2). Since λ0− q0 = Ω(ρn) also by Proposition 2, choose
a ε small enough so that (λ0 − q0)− ε(p0 − q0) ≥ Ω(ρn).

Similarly, taking ∆1 = εns1, ∆2 = εns2,

s
(1)
2 ≤ − n

2
√

2πσψ
[(λ0 − q0)(1− εn)s1 − (p0 − λ0)(1 + εn)s2] exp

(
−(1 + εn)2s2

1

2σ2
ψ

)
+Rψ,

(36)

Letting εn → 0 slowly and denote c = (λ0−q0)(1−εn)
(p0−λ0)(1+εn)−η, for some small η > 0. When s2 ≤ cs1,

s
(1)
2 ≤ − n

2
√

2πσψ
η(p0 − λ0)|s1|+Rψ. (37)

By Lemma 22, s2 ≤ cs1 happens with probability

P (0 < s2 ≤ cs1) =
arctan(cu)

2π
− arctan(c`)

2π
+O(n−1/2),

where cu = p0−λ0
λ0−q0 , c` = (p0−λ0)+c(λ0−q0)

c(p0−λ0)+(λ0−q0) .
When s2 > s1 > 0, the analysis is the same by symmetry. We have the same bounds for

s
(1)
1 and s(1)

2 with s1 and s2 interchanged. By a similar calculation, we need

P (0 < s1 ≤ cs2) =
arctan(c−1

` )

2π
− arctan(c−1

u )

2π
+O(n−1/2),

Case 4: s1 < 0, s2 < 0. By symmetry, g(4t0(s1 + r
(0)
i )) − 1

2 = 1
2 − g(−4t0(s1 + r

(0)
i ))

(similarly for g(4t0(s2 + r
(0)
i ))). It suffices to apply the same analysis in Case 3 to −s1,−s2

and −r(0)
i . For example, when s1 < s2 < 0, −s(1)

1 is lower bounded by (35), −s(1)
2 is upper

bounded by (36) when 0 < −s1 < −cs2.
Now combining all the cases, define event B as

B =

{
|s(1)

1 |, |s
(1)
2 | ≥ Cηnρnσ

−1
ψ min{|s1|, |s2|, |s1 − s2|} exp

(
−(1 + ε)2s2

2 ∨ s2
1

2σ2
ψ

)
−Rψ, s

(1)
1 s

(1)
2 < 0

}
,

where C depends on p0, q0. Cases 1–4 imply

P (B) =
∑

ψ:s1s2<0

P (B|ψ(0) = ψ)P (ψ(0) = ψ) +
∑

ψ:s1s2>0

P (B|ψ(0) = ψ)P (ψ(0) = ψ)
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≥ P (s1s2 < 0) + 2P (0 < s2 < cs1) + 2P (0 < s1 < cs2)

=
1

2
+

2 arctan(c−1
u )

π
+

arctan(cu)− arctan(c−1
u )

π
−

arctan(c`)− arctan(c−1
` )

π
+O(n−1/2)

= 1−
arctan(c`)− arctan(c−1

` )

π
+O(n−1/2), (38)

where

P (s1 > 0, s2 < 0) = P (s1 < 0, s2 > 0) =
1

4
+

arctan(c−1
u )

π
+O(n−1/2)

using calculations similar to Lemma 22.
Define event D = {|s1|, |s2|, |s1 − s2| ≥ ρn

√
n/cn} for some cn → ∞ slowly. Then

by Lemma 20, P (D) ≥ 1 − O(1/cn). Also σ2
ψ � nρn, ρψ � nρn, e−4t0|s1|, e−4t0|s2| =

OP (exp(−ρn
√
n)), and εn → 0 slow enough such that ρn

√
nεn

| log ρn| →∞, it follows Rψ = o(nρ
3/2
n )

with high probability. Then by (38),

P (|s(1)
1 |, |s

(1)
2 | ≥ Cηnρ

3/2
n /cn, s

(1)
1 s

(1)
2 < 0) ≥ 1−

arctan(c`)− arctan(c−1
` )

π
− o(1), (39)

for some constant C depending on p0, q0.
From now on we will work under the event in (39). In the next iteration, write the true

labels as z0 = 1C11{s
(1)
1 > 0}+ 1C21{s

(1)
1 < 0}. When s(1)

1 > 0 holds,

|ψ(2)
i − z0,i| =

1

1 + eσiξ
(2)
i

≤ e−x0 + 1{σiξ(2)
i ≤ x0} (40)

for any x0 > 0. For i ∈ C1,

ξ
(2)
i = 4t0s

(1)
1 + 4t0r

(1)
i

= 4t0s
(1)
1 + 4t0(A− P )i,·(z0 −

1

2
1) + 4t0(A− P )i,·(ψ

(1) − z0)

Taking x0 = Cηt0ρ
3/2
n n/cn, since s

(1)
1 ≥ Cηnρ3/2

n /cn, we have 4t0s
(1)
1 − 2x0 > 2Cηt0nρ

3/2
n /cn

for large n. Further, (A − P )i,·(z0 − 1
21) = O(

√
nρn log n) uniformly for all i with high

probability by an argument similar to Eq (27), then

1{ξ(2)
i ≤ x0} ≤ 1

{
4t0s

(1)
1 −O(

√
nρn log n) ≤ 2x0

}
+ 1

{
4t0(A− P )i,·(ψ

(1) − z0) ≤ −x0

}
≤ exp

(
2x0 − 4t0s

(1)
1 +O(

√
nρn log n)

)
+ 1

{
4t0(A− P )i,·(ψ

(1) − z0) ≤ −Cηt0ρ3/2
n n/cn

}
≤ exp(−C ′1ηρ3/2

n n/cn) + 1

{
(A− P )i,·(ψ

(1) − z0) ≤ −C ′2ηρ3/2
n n/cn

}
(41)

where C ′1, C ′2 are constants depending on p0, q0. Similarly for i ∈ C2,

1{−ξ(2)
i ≤ x0} ≤ exp(−C ′1ηρ3/2

n n/cn) + 1

{
(A− P )i,·(ψ

(1) − z0) ≥ C ′2ηρ3/2
n n/cn

}
. (42)
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Summing (40) using (41) and (42),

‖ψ(2) − z0‖1 ≤ n exp(−C ′1ηρ3/2
n n/cn) +

∑
i

1

{∣∣∣(A− P )i,·(ψ
(1) − z0)

∣∣∣ ≥ C ′2ηρ3/2
n n/cn

}
≤ n exp(−C ′1ηρ3/2

n n/cn) +
c2
n(ψ(1) − z0)T (A− P )2(ψ(1) − z0)

(C ′2)2η2n2ρ3
n

≤ n exp(−C ′1ηρ3/2
n n/cn) +

c2
n‖A− P‖2op‖ψ(1) − z0‖22

(C ′2)2η2n2ρ3
n

≤ n exp(−C ′1ηρ3/2
n n/cn) +

C ′2c
2
n

η2nρ2
n

‖ψ(1) − z0‖1, (43)

redefining C ′2 in the last line, where we have used the fact that there exist r > 0 such that
‖A− P‖op = O(

√
nρn) with probability at least 1− n−r (Theorem 5.2 in Lei et al. (2015)).

The probability of (43) happening has the same lower bound as in (39).
The case for s(1)

1 < 0 is similar with z0 = 1C2 .
For later iterations, note that when z0 = 1C1 , ‖ψ(2) − z0‖1 = n/2− 〈ψ(2), u2〉, then (43)

implies

〈ψ(2), u2〉 ≥
n

2
− δnn

for some δn = o(1) slow enough such that δn > exp(−C1ηρ
3/2
n n/cn) + C2c2n

η2nρ2n
, and∑

i∈C1

(ψ
(2)
i − 1/2) ≥ n

4
− δnn.

Then since λ0 − q0 > 0, p0 + q0 − 2λ0 > 0,

s
(2)
1 = (λ0 − q0)〈ψ(2), u2〉+ (p0 + q0 − 2λ0)

∑
i∈C1

(ψ
(2)
i − 1/2)

≥ (λ0 − q0)(
n

2
− δnn) + (p0 + q0 − 2λ0)(

n

4
− δnn)

=
1

4
(p0 − q0)n− δn(p0 − λ0)n ≥ C0(p0 − q0)n (44)

for a general constant C0 < 1/4 independent of model parameters, and large n. Similarly,∑
i∈C2

(ψ
(2)
i − 1/2) ≤ −n

4
+ δnn,

s
(2)
2 = −(λ0 − q0)〈ψ(2), u2〉+ (p0 + q0 − 2λ0)

∑
i∈C2

(ψ
(2)
i − 1/2) ≤ −C0(p0 − q0)n.

The rest of the argument in (40)-(43) applies with above bounds for s(2)
1 and s

(2)
2 , x0 =

C0t0(p0 − q0)n, giving

‖ψ(3) − z0‖1 ≤ n exp(−C1t0(p0 − q0)n) +
C2ρn

(p0 − q0)2n
‖ψ(2) − z0‖1 (45)
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for some general constants C1, C2, independent of model parameters. The probability of (45)
happening still has the same lower bound as (39).

The same arguments can be repeated for all the later iterations.

Now we state and prove all the lemmas needed in the main proof. First we have a few
concentration lemmas.

Lemma 19 (Berry-Esseen bound)

sup
x∈R
|P
(
r

(0)
i /σψ ≤ x | ψ(0)

)
− Φ(x)| ≤ C0 ·

ρψ
σ3
ψ

,

where C0 is a general constant, ρψ and σψ depend on ψ(0).

Proof Define

σ2
ψ := p0(1− p0)

∑
i∈C1

(ψ
(0)
i − 1/2)2 + q0(1− q0)

∑
i∈C2

(ψ
(0)
i − 1/2)2,

ρψ := p0(1− p0)(1− 2p0 + 2p2
0)
∑
i∈C1

|ψ(0)
i − 1/2|3 + q0(1− q0)(1− 2q0 + 2q2

0)
∑
i∈C2

|ψ(0)
i − 1/2|3.

It follows by the Berry-Esseen bound that

sup
x∈R
|P
(
r

(0)
i /σψ ≤ x | ψ(0)

)
− Φ(x)| ≤ C0 ·

ρψ
σ3
ψ

for some general constant C0, where Φ is the CDF of standard Gaussian.

Lemma 20 (Littlewood-Offord) Let s1 = (p0−λ0)
∑

i∈C1(ψ
(0)
i −1/2)+(q0−λ0)

∑
i∈C2(ψ

(0)
i −

1/2), s2 = (q0 − λ0)
∑

i∈C1(ψ
(0)
i − 1/2) + (p0 − λ0)

∑
i∈C2(ψ

(0)
i − 1/2). Then

P (|s1| ≤ c) ≤ B ·
c

ρn
√
n

for c > 0, and some general constant B. The same bound holds for |s2|, |s1 − s2|.

Proof Noting that 2ψ
(0)
i − 1 ∈ {−1, 1} each with probability 1/2, and q0 < λ0 < p0, this is

a direct consequence of the Littlewood-Offord bound in Erdös (1945).

Lemma 21 (McDiarmid’s Inequality) Recall r(0)
i = (A − E(A|Z))(ψ(0) − 1

21) and let
h(r

(0)
i ) be a bounded function with ‖h‖∞ ≤M . Then

P

∣∣∣∣∣∣ 2n
∑
i∈C1

h(r
(0)
i )− E(h(r

(0)
i )|ψ(0))

∣∣∣∣∣∣ > w | ψ(0)

 ≤ exp

(
− w2

nM

)
.

The same bound holds for i ∈ C2.
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Proof Define φ = 2
n

∑
i∈C1 h(r

(0)
i ), then conditional on ψ(0), φ is only a function of

(Aij)i<j,i∈C1 . Replacing any Aij with A′ij ∈ {0, 1},

|φ(A12, . . . , Aij , . . . )− φ(A12, . . . , A
′
ij , . . . )| ≤

8M

n
.

and ∑
i<j,i∈C1

|φ(A12, . . . , Aij , . . . )− φ(A12, . . . , A
′
ij , . . . )| ≤ 2nM

The desired bound follows by McDiarmid’s inequality.

Using the normal approximation, we can also derive the following probability bound for
s1 and s2.

Lemma 22 For some constant 0 < c < 1,

P (0 ≤ s2 ≤ cs1) =
arctan(cu)

2π
− arctan(c`)

2π
+O(n−1/2),

where c` = (p0−λ0)+c(λ0−q0)
c(p0−λ0)+(λ0−q0) , cu = p0−λ0

λ0−q0 .

Proof For convenience, denote T1 =
∑

i∈C1(ψ
(0)
i − 1/2), T2 =

∑
i∈C2(ψ

(0)
i − 1/2), then

{0 ≤ s2 ≤ cs1} =

{
(p0 − λ0) + c(λ0 − q0)

c(p0 − λ0) + (λ0 − q0)
T2 ≤ T1 ≤

p0 − λ0

λ0 − q0
T2

}
:= {c`T2 ≤ T1 ≤ cuT2 and T1, T2 > 0}

where 1 < c` < cu. It is easy to see that E(T1) = E(T2) = 0, σ2
T := E(T 2

1 ) = E(T 2
1 ) � ρ2

nn,
E|T1|3 = E|T1|3 � ρ3

nn. Then

P (0 ≤ s2 ≤ cs1) = P (0 ≤ T1 ≤ cuT2)− P (0 ≤ T1 < c`T2). (46)

The first part can be calculated as

P (0 ≤ T1 ≤ cuT2) =
∑
t≥0

P (0 ≤ T1 ≤ cut|T2 = t)P (T2 = t)

=
∑
t≥0

P (0 ≤ Z1 ≤ cuT2σ
−1
T |T2 = t)P (T2 = t) +O(n−1/2)

= E
(
(Φ(cuT2σ

−1
T )− 1/2)1(T2 ≥ 0)

)
+O(n−1/2)

using the Berry-Esseen bound, Z1 ∼ N(0, 1). Now note that (Φ(cuT2σ
−1
T )− 1/2)1(T2 ≥ 0)

is continuous and monotonic in T2. For every t ∈ (0, 1], there exists a(t) > 0 such that
Φ(cuT2σ

−1
T )− 1/2 ≥ t⇔ T2σ

−1
T ≥ a(t). We have

E
(
(Φ(cuT2σ

−1
T )− 1/2)1(T2 ≥ 0)

)
=

∫ 1

0
P
(
(Φ(cuT2σ

−1
T )− 1/2)1(T2 ≥ 0) ≥ t

)
dt
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=

∫ 1

0
P (T2σ

−1
T ≥ a(t))dt

=

∫ 1

0
P (Z2 ≥ a(t))dt+O(n−1/2)

= E ((Φ(cuZ2)− 1/2)1(Z2 ≥ 0)) +O(n−1/2),

Z2 ∼ N(0, 1), independent of Z1. It remains to calculate the expectation, which can be
written as

w(x) =
1

2π

∫ ∞
0

∫ xz

0
exp(−u2/2) exp(−z2/2)dudz

for x = cu. Now

w′(x) =
1

2π

∫ ∞
0

z exp(−(1 + x2)z2/2)dz =
1

2π(1 + x2)

Integrating both sides, we get: w(x) = arctan(x)
2π + C, where C = 0 since w(0) = 0. Thus

w(cu) = arctan(cu)
2π . The same calculation can be done for P (0 ≤ T1 ≤ c`T2). Substituting

into (46),

P (0 ≤ s2 ≤ cs1) =
arctan(cu)

2π
− arctan(c`)

2π
+O(n−1/2)

Finally, we have the following general bounds for
∑

i∈C1 ψ
(1)
i and

∑
i∈C2 ψ

(1)
i .

Lemma 23 For any ∆1 > 0,∑
i∈C1

ψ
(1)
i ≥

n

2

(
1− Φ

(
−s1 −∆1

σψ

))
− n

2
e−4t0∆1 − C ′n ·

ρψ
σ3
ψ

−OP (
√
n),

∑
i∈C1

ψ
(1)
i ≤

n

2

(
1− Φ

(
−s1 + ∆1

σψ

))
+
n

2
e−4t0∆1 + C ′n ·

ρψ
σ3
ψ

+OP (
√
n), (47)

where Φ is the CDF of standard Gaussian, ρψ and σψ are constants depending on ψ(0) defined
in Lemma 19, and the OP (

√
n) terms are uniform for ψ(0). The same upper and lower bound

hold for i ∈ C2 and s2.

Proof Define an index set J+
1 = {i : r

(0)
i > −s1 + ∆1}, ∆1 > 0. Then for i ∈ C1 ∩ J+

1 ,

ψ
(1)
i = g(4t0(s1 + r

(0)
i )) ≥ g(4t0∆1) ≥ 1− e−4t0∆1 .

It follows then ∑
i∈C1

ψ
(1)
i ≥ |C1 ∩ J+

1 |(1− e
−4t0∆1) (48)
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To calculate the size of the set, note that

|C1 ∩ J+
1 | =

∑
i∈C1

1(r
(0)
i > −s1 + ∆1),

By Lemma 21,

|C1 ∩ J1| =
n

2
P (r

(0)
i > −s1 + ∆1) | ψ(0)) +OP (

√
n)

≥ n

2

(
P (r > −s1 + ∆1)− C0 ·

ρψ
σ3
ψ

)
−OP (

√
n)

=
n

2

(
1− Φ

(
−s1 −∆1

σψ

))
− C ′n ·

ρψ
σ3
ψ

−OP (
√
n), (49)

where the second line follows from Lemma 19, with Φ as the CDF of standard Gaussian,
r ∼ N(0, σ2

ψ) and the OP (
√
n) can be made uniform over ψ(0). (48) and (49) imply

∑
i∈C1

ψ
(1)
i ≥

n

2

(
1− Φ

(
−s1 −∆1

σψ

))
(1− e−4t0∆1)

− C ′n ·
ρψ
σ3
ψ

−OP (
√
n)

≥ n

2

(
1− Φ

(
−s1 −∆1

σψ

))
− n

2
e−4t0∆1

− C ′n ·
ρψ
σ3
ψ

−OP (
√
n). (50)

Similarly let J−1 = {i : r
(0)
i < −s1 −∆1}, ∆1 > 0. For i ∈ C1 ∩ J−1 ,

ψ
(1)
i = g(4t0(s1 + r

(0)
i )) ≤ g(−4t0∆1) ≤ e−4t0∆1 .

We have ∑
i∈C1

ψ
(1)
i ≤ |C1 ∩ J−1 |e

−4t0∆1 +
n

2
− |C1 ∩ J−1 |

=
n

2
− |C1 ∩ J−1 |(1− e

−4t0∆1), (51)

where

|C1 ∩ J−1 | =
n

2
P (r

(0)
i < −s1 −∆1) | ψ(0)) +OP (

√
n)

≥ n

2
Φ

(
−s1 + ∆1

σψ

)
− C ′n ·

ρψ
σ3
ψ

−OP (
√
n). (52)

(51) and (52) give ∑
i∈C1

ψ
(1)
i ≤

n

2
− n

2
Φ

(
−s1 + ∆1

σψ

)
(1− e−4t0∆1)
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+ C ′n ·
ρψ
σ3
ψ

+OP (
√
n)

≤ n

2

(
1− Φ

(
−s1 + ∆1

σψ

))
+
n

2
e−4t0∆1

+ C ′n ·
ρψ
σ3
ψ

+OP (
√
n). (53)

Proof [Proof of Corollary 11]
Let t̂, λ̂ be constants defined in the usual way in terms of p̂, q̂. First we observe using p̂, q̂

only replaces t, λ with t̂, λ̂ everywhere in (28). Now

ŝ1 = (p0 − λ̂)
∑
i∈C1

(ψ
(0)
i − 1/2) + (q0 − λ̂)

∑
i∈C2

(ψ
(0)
i − 1/2)

ŝ2 = (q0 − λ̂)
∑
i∈C1

(ψ
(0)
i − 1/2) + (p0 − λ̂)

∑
i∈C2

(ψ
(0)
i − 1/2)

We can check the rest of the analysis remains unchanged as long as p̂, q̂ � ρn, |p̂− q̂| = Ω(ρn),

1. p0+q0
2 > λ̂,

2. λ̂− q0 = Ω(ρn) > 0.

C.2 Proofs of results in Section 3.2

Proof [Proof of Proposition 13] That the described point is a stationary point is easy to
verify, because of the presence of the (ψi − 1

2) terms in the stationarity equations (19). Now,
from (20), we see that the Hessian matrix at (1

21,
1>A1
n(n−1) ,

1>A1
n(n−1) ,

1
2) is given by

H =

−4I 0 0

0> − n(n−1)
4â(1−â) 0

0> 0 − n(n−1)
4â(1−â)

 ,

where â = 1>A1
n(n−1) . Clearly, H is negative definite. This completes the proof.

Proof [Proof of Lemma 14] First note that conditioning on the true labels Z, E(A|Z) = P̃ .
For notation simplicity, we omit the superscript of ψ(0). For the update of p(1), we have

p(1) =
ψT P̃ψ + (1− ψ)T P̃ (1− ψ)

ψT (J − I)ψ + (1− ψ)T (J − I)(1− ψ)

+
ψT (A− P̃ )ψ + (1− ψ)T (A− P̃ )(1− ψ)

ψT (J − I)ψ + (1− ψ)T (J − I)(1− ψ)
, (54)
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where the first term can be written as

ψT (p0+q0
2 u1u

T
1 + p0−q0

2 u2u
T
2 − p0I)ψ + (1− ψ)T (p0+q0

2 u1u
T
1 + p0−q0

2 u2u
T
2 − p0I)(1− ψ)

ψT (u1uT1 − I)ψ + (1− ψ)T (u1uT1 − I)(1− ψ)

=
p0+q0

2 n2(ζ2
1 + (1− ζ1)2) + n2(p0 − q0)ζ2

2 − p0x

ζ2
1n

2 + (1− ζ1)2n2 − x

=
p0 + q0

2
+

(p0 − q0)(ζ2
2 − x/2n2)

ζ2
1 + (1− ζ1)2 − x/n2

,

where x = ψTψ + (1 − ψ)T (1 − ψ) ≥ n/4. The second term can be bounded by noting
E(ψT (A − P̃ )ψ) = 0 and Var(ψT (A − P̃ )ψ) ≤ 2n(n − 1)p0. By Chebyshev’s inequality,
ψT (A− P̃ )ψ = OP (

√
ρnn).

This is because

Eψ,A[ψT (A− P̃ )ψ] = EψEA[ψT (A− P̃ )ψ
∣∣∣ψ] = 0,

and

Varψ,A[ψT (A− P̃ )ψ] = E
(
Var(ψT (A− P̃ )ψ

∣∣∣ψ)
)

+ Var(E[ψT (A− P̃ )ψ
∣∣∣ψ])

= E
(
Var(ψT (A− P̃ )ψ

∣∣∣ψ)
)

= 4E
∑
i<j

ψiψjVar(Aij) ≤ 2n(n− 1)p0.

(1− ψ)T (A− P̃ )(1− ψ) can be handled similarly, and

ψT (J − I)ψ + (1− ψ)T (J − I)(1− ψ)

=

(∑
i

ψi

)2

+

(
n−

∑
i

ψi

)2

− ψTψ − (1− ψ)T (1− ψ)

≥n2/2− 2n,

since the first two terms are minimized at
∑

i ψi = n/2.
The result for q(1) is proved analogously.

Proof [Proof of Proposition 15] Let ψ = ζ1u1 +ζ2u2 +w, w ∈ span{u1, u2}⊥, be a stationary
point. We will consider the population version of all the updates and replace A with
E(A|Z) := P̃ and ρn → 0. By Lemma 14,

p̃ =
p0 + q0

2
+

(p0 − q0)(ζ2
2 − x/2n2)

ζ2
1 + (1− ζ1)2 − x/n2︸ ︷︷ ︸

ε′1

,

q̃ =
p0 + q0

2
− (p0 − q0)(ζ2

2 + y/2n2)

2ζ1(1− ζ1)− y/n2︸ ︷︷ ︸
ε′2

. (55)

35



Sarkar, Wang and Mukherjee

In this case, the update equation (8) becomes

ξ = 4t̃(P̃ − λ̃(J − I))(ψ(s) − 1

2
1)

= 4t̃n

((
ζ1 −

1

2

)(
p0 + q0

2
− λ̃
)
u1 +

p0 − q0

2
ζ2u2

)
+ 4t̃(λ̃− p0)

(
ψ − 1

2
1

)
:= nã+ b̃ (56)

where λ̃ and t̃ are defined in terms of p̃ and q̃. Since ψ is a stationary point, the above
update gives ψ = g(ξ).

We consider the following cases.
Case 1: ζ2

2 = Ω(1). Since ζ1(1 − ζ1) ≥ ζ2
2 , it is easy to see that (55) implies that

p̃ > p0+q0
2 > q̃, thus p̃ − q̃ = Ω(ρn), t̃ = Ω(1), p̃ < λ̃ < q̃. It follows then b̃i = O(ρn), and

|ãi| = Ω(ρn) for i ∈ C1 or i ∈ C2 (or both). In any of these cases, ‖w‖ = O(ρn
√
n) = o(

√
n).

Case 2: ζ2 = o(1). Note that ψT (1−ψ) ≥ 0 implies that ζ1(1−ζ1)− ‖w‖
2

n ≥ ζ2
2 . If ‖w‖2 =

o(n), we are done. If ‖w‖2 = Ω(n), ζ1(1 − ζ1) = Ω(1). In this case, p̃ = p0+q0
2 + O(ρnζ

2
2 ),

and similarly for q̃. It follows then that t̃ = O(ζ2
2 ) = o(1), λ̃ = p0+q0

2 + o(ρn) (we defer the
details to (59)- (63)). Also note that b̃i = O(ρnζ

2
2 ). When n|ãi| � b̃i, g(ξi) = g(nãi) + o(1).

Since g(nã) ∈ span{u1, u2}, this implies that ‖w‖ = o(
√
n). When n|ãi| � b̃i, ξi = o(1), and

so we have ‖w‖ = o(
√
n) again.

Proof [Proof of Theorem 16] Let a = (p0+q0)/2. By (10), define κ1 := 4t(1)
(
ζ1 − 1

2

)
(a−λ(1))

and κ2 = 4t(1)ζ2
p0−q0

2 . Consider the initial distribution ψ(0)
i

iid∼ fµ, where f is a distribution
supported on (0, 1) with mean µ. Note that we have the following:

ζ1 =
(ψ(0))T1

n
= µ+OP (1/

√
n), (57)

ζ2 =
(ψ(0))Tu2

n
= OP (1/

√
n).

Now using (12), recall that

p(1) =
p0 + q0

2
+

(p0 − q0)(ζ2
2 − x/2n2)

ζ2
1 + (1− ζ1)2 − x/n2︸ ︷︷ ︸

ε′1

+OP (
√
ρn/n)

︸ ︷︷ ︸
ε1

,

q(1) =
p0 + q0

2
− (p0 − q0)(ζ2

2 + y/2n2)

2ζ1(1− ζ1)− y/n2︸ ︷︷ ︸
ε′2

−OP (
√
ρn/n)

︸ ︷︷ ︸
ε2

. (58)

This gives

ε1 = ε′1 +OP

(√
ρn

n

)
= OP

(ρn
n

)
+OP

(√
ρn

n

)
= OP

(√
ρn

n

)
,

36



When random initializations help

ε2 = ε′2 +OP

(√
ρn

n

)
= OP

(√
ρn

n

)
.

We will use the following logarithmic inequalities for a > ε > 0:

2ε

a+ ε
≤ log

a+ ε

a− ε
≤ 2ε

a− ε
. (59)

Now we have

t(1) =
1

2

(
log

(
a+ ε1
a− ε2

)
+ log

(
1− a+ ε2
1− a− ε1

))
,

2t(1) ≥ ε1 + ε2
a+ ε1

+
ε1 + ε2

1− a+ ε2
≥ (ε1 + ε2)

(a+ ε1)(1− a+ ε2)
,

2t(1) ≤ (ε1 + ε2)

(a− ε2)(1− a− ε1)
. (60)

For λ(1), if ε1 + ε2 ≥ 0, we have

λ(1) =
log 1−q(1)

1−p(1)

log p(1)

q(1)
+ log 1−q(1)

1−p(1)
≤ ε1 + ε2

1− a− ε1

/(
ε1 + ε2
a+ ε1

+
ε1 + ε2

1− a− ε1

)
= a+ ε1. (61)

λ(1) ≥ ε1 + ε2
1− a+ ε2

/(
ε1 + ε2
a− ε2

+
ε1 + ε2

1− a+ ε2

)
= a− ε2. (62)

If ε1 + ε2 ≤ 0,

λ(1) =
log 1−q(1)

1−p(1)

log p(1)

q(1)
+ log 1−q(1)

1−p(1)
≥ ε1 + ε2

1− a− ε1

/(
ε1 + ε2
a+ ε1

+
ε1 + ε2

1− a− ε1

)
= a+ ε1, (63)

λ(1) ≤ ε1 + ε2
1− a+ ε2

/(
ε1 + ε2
a− ε2

+
ε1 + ε2

1− a+ ε2

)
= a− ε2.

The above analysis shows t(1) = OP ( 1
n
√
ρn

), |a− λ(1)| = OP (
√
ρn
n ).

We next try to generalize the above calculations for any iteration s. For convenience we
assume A has self loops, which makes no difference to the asymptotics. Note that, for some
|ξ′| < ξ, since g′′(0) = 0,

ψ = g(ξ) =
1

2
+

1

4
ξ + g′′′(ξ′)

ξ3

3!
=

1

2
+

1

4
ξ +O(ξ3) (64)

using the fact that g′′′(ξ) = O(1) ∀ξ. Substituting, we have:

ζ
(s)
1 =

1

n

〈
ψ(s),1

〉
=

1

2
+

1

4n

〈
ξ(s),1

〉
+O

(
‖(ξ(s))3‖2√

n

)

=
1

2
+
t(s)

n

〈
(A− λ(s)J)(ψ(s−1) − 1

2
1),1

〉
+O

(
‖(ξ(s))3‖2√

n

)
, (65)
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using the update equation for ξ(s) in (11) and assuming A has self loops for convenience.
Here using the decomposition A = P + (A− P ),〈

(P − λ(s)J)(ψ(s−1) − 1

2
1),1

〉
= n2

(
p0 + q0

2
− λ(s)

)
(ζ

(s−1)
1 − 1/2)〈

(A− P )(ψ(s−1) − 1

2
1),1

〉
≤
√
n‖A− P‖op‖ψ(s−1) − 1

2
1‖2

= OP (
√
n2ρn)‖ψ(s−1) − 1

2
1‖2,

where the first line follows from P − λ(s)J =
(p0+q0

2 − λ(s)
)
11T + p0−q0

2 u2u
T
2 . It follows then

|ζ(s)
1 − 1

2
|

≤4|t(s)|
n

(
n2

(
p0 + q0

2
− λ(s)

)
|ζ(s−1)

1 − 1/2|+OP (
√
n2ρn)‖ψ(s−1) − 1

2
1‖2
)

+O

(
‖(ξ(s))3‖2√

n

)

=4|t(s)|(n
(
p0 + q0

2
− λ(s)

)
|ζ(s−1)

1 − 1/2|+OP (
√
ρn)‖ψ(s−1) − 1

2
1‖2) +O

(
‖ξ(s)‖32√

n

)
(66)

since ‖v3‖2 =
√∑

i v
6
i ≤ ‖v‖2‖v‖2∞ ≤ ‖v‖32 for any v. Similarly, we have:

ζ
(s)
2 =

1

n

〈
ψ(s), u2

〉
=

1

4n

〈
ξ(s), u2

〉
+O

(
‖(ξ(s))3‖2√

n

)
,

=
t(s)

n

〈
(A− λ(s)J)(ψ(s−1) − 1

2
1), u2

〉
+O

(
‖(ξ(s))3‖2√

n

)
, (67)

|ζ(s)
2 | ≤

|t(s)|
n

(
n2(p0 − q0)

2
|ζ(s−1)

2 |+OP (
√
n2ρn)‖ψ(s−1) − 1

2
1‖2
)

+O

(
‖(ξ(s))3‖2√

n

)

= |t(s)|(O(nρn)|ζ(s−1)
2 |+OP (

√
ρn)‖ψ(s−1) − 1

2
1‖2) +O

(
‖ξ(s)‖32√

n

)
(68)

For the norm of ξ(s),

‖ξ(s)‖2 ≤ 4|t(s)|
(
n3/2

(∣∣∣∣(p0 + q0

2
− λ(s)

)
(ζ

(s−1)
1 − 1/2)

∣∣∣∣+O(ρn)|ζ(s−1)
2 |

)
+OP (

√
nρn)‖ψ(s−1) − 1

2
1‖2
)

(69)

using the same eigen-decomposition on P .
To bound t(s), we can first define ε(s)1 and ε

(s)
2 in the same way as (58), where the

order terms come from the second part of (54) (and an analogous equation for q(1), with
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general ψ(s−1) replacing ψ). Then provided ζ
(s−1)
1 is bounded away from 0 and 1, and

ε
(s)
1 , ε

(s)
2 = oP (ρn), by (60),

|t(s)| = OP (ζ
(s−1)
2 )2 +O(

1

n2ρn
)
(

(ψ(s−1))T (A− P )ψ(s−1) + (1− ψ(s−1))T (A− P )(1− ψ(s−1))
)

+OP (
1

n2ρn
)(ψ(s−1))T (A− P )(1− ψ(s−1)), (70)

where for any ψ,

ψT (A− P )ψ =
1

4
1T (A− P )1 + 1T (A− P )(ψ − 1

2
1) + (ψ − 1

2
1)T (A− P )(ψ − 1

2
1)

= OP (
√
n2ρn)(1 + ‖ψ − 1

2
1‖2) +OP (

√
nρn)‖ψ − 1

2
1‖22

= OP (
√
n2ρn)(1 + ‖ψ − 1

2
1‖2)

since ‖ψ(s−1) − 1
21‖ ≤

√
n. Similarly

ψT (A− P )1 = (ψ − 1

2
1)T (A− P )1 +

1

2
1T (A− P )1

= OP (
√
n2ρn)(1 + ‖ψ − 1

2
1‖2).

The upper bound on t(s) becomes:

|t(s)| = OP

(
|ζ(s−1)

2 |2
)

+OP

(
1√
n2ρn

)
(1 + ‖ψ(s−1) − 1

2
1‖2)

In a similar way to bound λ(s), note that defining general ε(s)1 , ε
(s)
2 in (60)-(63), as long

as ζ(s−1)
1 is bounded away from 0 and 1, and ε(s)1 , ε

(s)
2 = oP (ρn), we have:∣∣∣∣p0 + q0

2
− λ(s)

∣∣∣∣ = OP

(
ρnt

(s)
)

Finally,

‖ψ(s) − 1

2
1‖2 =

1

4
‖ξ(s)‖2 +O

(
‖(ξ(s))3‖2

)
=

1

4
‖ξ(s)‖2 +O

(
‖(ξ(s))‖32

)
(71)

For s = 1, we have the following:

t(1) = OP (
1

n
√
ρn

),
p0 + q0

2
− λ(1) = OP (

√
ρn

n
),

‖ξ(1)‖2, ‖ψ(1) − 1

2
1‖2 = OP (1),

|ζ(1)
1 − 1/2|, |ζ(1)

2 | = OP

(
1√
n

)
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where the second line follows from (69), (71), noting ζ(0)
1 = OP (1), ζ(0)

2 = OP (n−1/2). The
last line follows from (66) and (68).

For s = 2, note that the above bounds imply ζ(1)
1 is bounded away from 0 and 1, and

ε
(s)
1 , ε

(s)
2 = oP (ρn). Using the same set of equations again, we have:

t(2) = OP (
1

n
√
ρn

),
p0 + q0

2
− λ(2) = OP (

√
ρn

n
)

‖ξ(2)‖2, ‖ψ(2) − 1

2
1‖2 = OP (

√
ρn)

|ζ(2)
1 − 1/2|, |ζ(2)

2 | = OP

(√
ρn
n

)
(72)

In general, once ‖ψ(s−1)− 1
21‖2 = OP (1), |ζ(s−1)

1 −1/2| and |ζ(s−1)
2 | = OP (1/

√
n) we have

t(s) = OP (1/n
√
ρn), (p0 + q0)/2− λ(s) = OP (

√
ρn/n), ‖ξ(s)‖2 = OP (

√
ρn), |ζ(s)

1 − 1/2|, |ζ(s)
2 |

are both oP (1/
√
n) and ‖ψ(s) − 1

21‖2 = OP (
√
ρn).

We can further derive a contraction result from s = 2 onward. Since the rates in (72)
hold for s ≥ 2, and applying (64) to ψ(s),

‖ψ(s) − 1

2
1‖2 ≤

1

4
‖ξ(s)‖2 +O(‖(ξ(s))3‖2)

≤ 1

4
‖ξ(s)‖2 +OP (ρ3/2

n ). (73)

For ξ(s),

ξ(s) = 4t(s)
(

(P − λ(s)J)(ψ(s−1) − 1

2
1) + (A− P )(ψ(s−1) − 1

2
1)

)
,

where ‖(P −λ(s)J)(ψ(s−1)− 1
21)‖2 = OP (ρn)‖ψ(s−1)− 1

21‖2, and ‖(A−P )(ψ(s−1)− 1
21)‖2 =

OP (
√
nρn)‖ψ(s−1) − 1

21‖2. It follows from (73) and the rate of t(s),

‖ψ(s) − 1

2
1‖2 ≤ OP (1/

√
n)‖ψ(s−1) − 1

2
1‖2 +OP (ρ3/2

n ).

Proof [Proof of Theorem 17] Under the current initialization,

ζ1 =
1

2
+

1

n

n∑
i=1

ε
(0)
i ,

ζ2 = ∆µ+
1

n

∑
i∈1C1

ε
(0)
i −

1

n

∑
i∈1C2

ε
(0)
i . (74)

Define the event A1 = { 1
n

∑
i∈1C1

ε
(0)
i , 1

n

∑
i∈1C2

ε
(0)
i = O(

√
log n/n)}, then by Bernstein’s

inequality, this event happens with probability at least 1− exp(−Θ(log n)).
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Recall ε1 and ε2 from Eq (58). Define A2 = {(ψ(0))T (A− P̃ )ψ(0), (1−ψ(0))T (A− P̃ )(1−
ψ(0)) = O(n

√
ρn log n)}. By a similar Bernstein’s inequality, A2 has probability at least

1− exp(−Θ(log n)). Then under A1 ∩ A2,

ε1 = (p0 − q0)
ζ2

2 − x
2n2

1
2 +O(

√
log n/n)− x

n2

+O

(√
ρn log n

n

)
ε2 = (p0 − q0)

ζ2
2 + y

2n2

1
2 +O(

√
log n/n)− y

n2

+O

(√
ρn log n

n

)
,

using (74) and the same decomposition as in (54). The lower bound (15) on ∆µ implies
ζ2

2 �
√

log n/n, it follows 0 < ε1, ε2 < a since |ζ2| ≤ 1
2 , and ε1, ε2 = Θ((p0− q0)ζ2

2 ). Then by
(60)-(63),

t(1) = Θ(
ε1 + ε2
ρn

) = Θ
(
(p0 − q0)ζ2

2/ρn
)

|a− λ(1)| ≤ max{ε1, ε2}. (75)

Next define

κ1 = 4t(1)(ζ1 −
1

2
)(a− λ(1))

κ2 = 4t(1)ζ2
(p0 − q0)

2
. (76)

Using (74) - (76), under A1 ∩ A2,

κ1 + κ2 = 4t(1)

(
∆µ · p0 − q0

2
+O(ρn

√
log n/n)

)
,

κ1 − κ2 = 4t(1)

(
−∆µ · p0 − q0

2
+O(ρn

√
log n/n)

)
.

From (10) and adding the noise term from the sample version of the update,

ξ
(1)
i = n(κ1 + σiκ2) + b

(0)
i + nr

(0)
i , (77)

In (77), b(0)
i is of smaller order than the other terms and it suffices to consider n(κ1+σiκ2+r

(0)
i ).

By the argument in (27), A3 =
{

maxi |r(0)
i | = O

(√
ρn
n log n

)}
has probability at least

1− exp(−Θ(log n)). For any pair i ∈ C1 and j ∈ C2, under ∩3
k=1Ak, we have

(κ1 + κ2 + r
(0)
i )(κ1 − κ2 + r

(0)
j )

≤(κ2
1 − κ2

2) +O
(

max(|r(0)
i |, |r

(0)
j |) max(|κ1|, |κ2|)

)
≤16(t(1))2

(
−(∆µ)2 (p0 − q0)2

4
+O(ρ2

n

√
log n/n)

)
+ 2t(1)|ζ2|(p0 − q0)O(

√
ρn
n

log n)

≤Ct(1)(p0 − q0)|∆µ|
(
−t(1)|∆µ|(p0 − q0) +O(

√
ρn
n

log n)

)
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≤Ct(1)(p0 − q0)|∆µ|
(
−|∆µ|3(p0 − q0)2/ρn +O(

√
ρn
n

log n)

)
< 0

for |∆µ| > C

(
ρ
3/2
n
√

logn
(p0−q0)2

√
n

)1/3

= Θ
(√

logn
nρn

)1/3

�
(

logn
n

)1/4
for some general constant

C large enough, independent of n and model parameters. Thus n(κ1 + κ2 + r
(0)
i ) and

n(κ1 − κ2 + r
(0)
j ), for i, j in different blocks, have opposite signs.

We will now check if n(κ1 + σiκ2 + r
(0)
i )→∞, and it suffices to lower bound n(|κ2| −

|κ1| −maxi |r(0)
i |). By (75), (76),

n(|κ2| − |κ1| −max
i
|r(0)
i |) ≥ n

(
C|∆µ|3(p0 − q0)−O(

√
ρn
n

log n)

)
≥ Ω(

√
nρn log n)→∞

Thus n(κ1 +σiκ2 +r
(0)
i ) is growing to infinity with an order bounded below by Ω(

√
nρn log n),

with probability at least 1− exp(−Θ(log n)).
If n(κ1 + κ2 + r

(0)
i ) > 0, since ψ(1)

i = g(n(κ1 + σiκ2) + b
(0)
i + nr

(0)
i ), we have ψ(1) =

1C1 +O(exp(−Ω(
√
nρn log n)) with probability at least 1− exp(−Θ(log n)). The case κ1 +

κ2 + r
(0)
i < 0 is similar.

For later iterations, WLOG assume z0 = 1C1 , and A has self-loops for convenience.
First noting that the error term in ψ(1) is uniform, we can write ‖ψ(1) − 1C1‖1 = nηn,
where ηn = O(exp(−Ω(

√
nρn log n))) with high probability. We have ζ(1)

1 = 1
2 + O(ηn),

ζ
(1)
2 = 1

2 −O(ηn). To obtain p(2), q(2), we observe in Eq (58), x = n−Θ(nηn), y = Θ(nηn).
Using the decomposition in (54), define A4 = {‖A−P‖op = O(

√
nρn)} which has probability

at least 1− n−r, r > 0, then under A4,

|ψT (A− P )ψ| ≤ ‖A− P‖op‖ψ‖22 = OP (n3/2ρ1/2
n )

for general ψ. It follows then

p(2) =
p0 + q0

2
+
p0 − q0

2
(1 +O(ηn)) +O(

√
ρn/n)

= p0 −O(ρnηn) +O(
√
ρn/n),

q(2) =
p0 + q0

2
− p0 − q0

2
(1 +O(ηn)) +O(

√
ρn/n)

= q0 +O(ρnηn) +O(
√
ρn/n). (78)

To bound t(2) and λ(2), note that

log
p(2)

q(2)
= log

p(2) − p0 + p0

q(2) − q0 + q0
= log

p0

q0
+O(ηn) +O(1/

√
nρn),

log
1− q(2)

1− p(2)
= log

1− q0 − q(2) + q0

1− p0 − p(2) + p0
= log

1− q0

1− p0
+O(ρnηn) +O(

√
ρn/n), (79)
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then

t(2) = t0 +O(ηn) +O(1/
√
nρn), λ(2) = λ0 +O(ρnηn) +O(

√
ρn/n). (80)

To show that contraction starts from this iteration, we can use arguments similar to the
last part of the proof of Theorem 9. Writing

ξ(2) = 4t(2)(P − λ(2)J)(ψ(1) − 1

2
1) + 4t(2)(A− P )(ψ(1) − 1

2
1), (81)

the signal part is constant for i ∈ 1C1 and i ∈ 1C2 . Denote

s
(1)
1 = (p0 − λ(2))

∑
i∈C1

(ψ
(1)
i −

1

2
) + (q0 − λ(2))

∑
i∈C2

(ψ
(1)
i −

1

2
)

s
(1)
2 = (q0 − λ(2))

∑
i∈C1

(ψ
(1)
i −

1

2
) + (p0 − λ(2))

∑
i∈C2

(ψ
(1)
i −

1

2
).

It is easy to see that when n is large,

s
(1)
1 ≥ (p0 − q0)

(n
4
− ηnn

2

)
+ (λ0 − λ(2))ηnn

≥ C0(p0 − q0)n, (82)

for some general constant C0 < 1/4, independent of n and model parameters. and similarly
s

(1)
2 ≤ −C0(p0 − q0)n. Next in Eq (40), taking x0 = C0t0n(p0 − q0), using (80), (82),

1{ξ(2)
i ≤ x0} ≤ 1

{
4t(2)s

(1)
1 + 4t(2)(A− P )i,·(z0 −

1

2
1) ≤ 2x0

}
+ 1

{
4t(2)(A− P )i,·(ψ

(1) − z0) ≤ −x0

}
≤ exp

{
−2C0t0(p0 − q0)n+O(

√
nρn log n) +O(nρnηn)

}
+ 1

{
4t(2)(A− P )i,·(ψ

(1) − z0) ≤ −x0

}
.

(83)

Then using the same argument as in Eq (43), for large enough n, under A4,

‖ψ(2) − z0‖1 ≤ n exp(−c1t0(p0 − q0)n) +
c2ρn

(p0 − q0)2n
‖ψ(1) − z0‖1.

for some constants c1, c2 independent of n and model parameters. The same argument works
for later iterations under ∩4

k=1Ak, thus the high probability statement holds uniformly for
all iterations with probability at least 1− n−r, 0 < r.
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Appendix D. Additional simulation

We compare the effectiveness of the random initialization ψ
(0)
i

iid∼ Bernoulli(1/2) with in-
formative initializations obtained from spectral clustering and SDP. For SDP, we use the
algorithm in Li et al. (2018) with the tuning parameter selected using the method in Cai
et al. (2015). In Figure 6(a), we set the average degree of each graph to 20, n = 400, and
vary the p0/q0 ratio; smaller ratios mean weaker signal. We run BCAVI with three types
of initializations: ψ(0)

i
iid∼ Bernoulli(1/2) (blue), ψ(0)

i set to the result of running spectral
clustering (black), and ψ

(0)
i set to the result of running SDP (red). The plot shows the

mean accuracy and standard deviation from 20 random graphs at each point. As expected,
BCAVI initialized with spectral clustering and SDP have higher accuracy, although random
initializations have quite reasonable performance in high signal regimes. Figure 6(b) is similar
with average degree set to 30. In this denser case, the performance of random initializations
improve, and become very close to the other two methods.

(a) (b)

Figure 6: Average clustering accuracy of three types of initialization scheme for n = 400,
average degree equals 20 (a) and 30 (b).
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