
Journal of Machine Learning Research 22 (2021) 1-38 Submitted 7/19; Revised 11/20; Published 1/21

A Two-Level Decomposition Framework Exploiting First and
Second Order Information for SVM Training Problems

Giulio Galvan giulio.galvan@unifi.it

Dipartimento di Ingegneria dell’Informazione

Università di Firenze

Matteo Lapucci matteo.lapucci@unifi.it

Dipartimento di Ingegneria dell’Informazione

Università di Firenze

Chih-Jen Lin cjlin@csie.ntu.edu.tw

Department of Computer Science

National Taiwan University

Marco Sciandrone marco.sciandrone@unifi.it

Dipartimento di Ingegneria dell’Informazione

Università di Firenze

Editor: Zaid Harchaoui

Abstract

In this work we present a novel way to solve the sub-problems that originate when us-
ing decomposition algorithms to train Support Vector Machines (SVMs). State-of-the-art
Sequential Minimization Optimization (SMO) solvers reduce the original problem to a se-
quence of sub-problems of two variables for which the solution is analytical. Although
considering more than two variables at a time usually results in a lower number of itera-
tions needed to train an SVM model, solving the sub-problem becomes much harder and
the overall computational gains are limited, if any. We propose to apply the two-variables
decomposition method to solve the sub-problems themselves and experimentally show that
it is a viable and efficient way to deal with sub-problems of up to 50 variables. As a second
contribution we explore different ways to select the working set and its size, combining first-
order and second-order working set selection rules together with a strategy for exploiting
cached elements of the Hessian matrix. An extensive numerical comparison shows that the
method performs considerably better than state-of-the-art software.

Keywords: SVM, Support Vector Machines, Decomposition Method, Working Set Se-
lection, Sequential Minimal Optimization .

1. Introduction

Support Vector Machines (Boser et al., 1992; Cortes and Vapnik, 1995) have been widely and
effectively employed for binary classification for the last two decades, often achieving state
of arts results in different contexts. Given a data set of n training vectors vi ∈ Rm and their
associated labels yi ∈ {−1, 1}, training an SVM amounts to solve a convex optimization
problem. Its dual formulation, which is often preferred for easily employing non-linear
kernels, consists of the following linearly and bound constrained quadratic optimization

c©2021 Giulio Galvan, Matteo Lapucci, Chih-Jen Lin and Marco Sciandrone.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/19-632.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/19-632.html

Galvan, Lapucci, Lin and Sciandrone

problem:

min
α

f(α) =
1

2
αTQα− αT e

s.t. yTα = 0,

0 ≤ α ≤ C,

(1)

where e is the n-dimensional vector of all ones, α ∈ Rn and Q ∈ Rn×n is positive semi-
definite. Matrix Q is given by Qij = yiyjKij , where K is the kernel matrix with Kij =
φ(vi)

Tφ(vj), for some mapping φ to a higher (possibly infinite) dimensional space.

Problem (1) has been extensively studied (see the work of Bottou et al., 2007 or Piccialli
and Sciandrone, 2018 for an extensive survey on optimization methods for SVM training)
by both the machine learning and optimization communities over the years especially as
data sets are becoming ever larger. Indeed, when the number of data point n is huge (as in
many big data applications) the Hessian matrix Q, which is dense, cannot be fully stored
in memory so that standard methods for quadratic programming cannot be used.

Decomposition methods, which are the focus of this work, are particularly well suited
to deal with this issue, since the original problem is divided into a sequence of smaller
subproblems obtained by fixing subsets of variables. The key aspects of a decomposition
algorithm are hence 1) how we decompose the problem in smaller sub-problems and 2) how
we solve the subproblems themselves.

The contribution of this work is thus twofold. Firstly we study how to effectively solve
the subproblems. In particular we focus on solving subproblems of more than two variables,
which originate from the novel working set selection rule that is the second contribution of
this work.

The paper is organized as follows. We review the literature on decomposition methods
for SVM in Section 2. Then we summarize the proposed algorithm in Section 3 before giving
the details on solution of the subproblem in Section 3.1 and on the novel working set selection
rule in Section 3.2. Extensive numerical experiments are presented in Section 4, where, after
providing setup details (Section 4.1) and giving a brief description of performance profiles
(Section 4.2) we analyze first the efficiency of the solver for the subproblem (Section 4.3),
then the performance of different working set selection rules (Sections 4.4, 4.5 and 4.6),
before comparing the whole algorithm against the state-of-art solver LIBSVM (Chang and
Lin, 2011) in Section 4.7. We also provide a brief additional analysis about the relevance
of the cache size in Section 4.8. Finally, we give some concluding remarks in Section 5.

2. Decomposition methods for SVM training

The literature on decomposition methods is wide and their convergence properties very
well understood. General decomposition algorithms, however, are either applied to uncon-
strained optimization problems or when the feasible set has a simple structure, for instance
the Cartesian product of subsets in smaller spaces. In SVM training problems, however,
the feasible set cannot be simply partitioned into blocks and hence, custom decomposition
methods are needed.

In a decomposition method for SVM training problems, at each iteration k two sets of
indexes W ⊂ {1, . . . , n} (referred to as working set (WS)) and W = {1, . . . , n} \ W are

2

Two-Level Decomposition for SVM Training

identified, with q = |W | � n, and a subproblem of the following form is solved.

min
αW

f(αW , α
k
W) =

1

2
αTWQWWαW + pTWαW

s.t. yTWαW = −yT
W
αk

W
,

0 ≤ αW ≤ C,

(2)

where pW = −eW + QWWαW . The feasible set F(αW) for the sub-problem is given by
{αW ∈ Rq | 0 ≤ αW ≤ C, yTWαW = −yT

W
αW}. To construct the subproblem, exploiting the

symmetry of Q, columns QW of the Hessian matrix corresponding to the indexes in W are
needed:

QW =

[
QWW

QWW

]
(3)

The general framework of a decomposition scheme is described in Algorithm 1.

Algorithm 1 General Decomposition Framework for SVM Training Problems

Input: α0 = 0, ∇f(α0) = −e, k = 0
1: while the stopping criterion is not satisfied do
2: select the working set W k

3: retrieve the columns QW identified by (3)
4: set W = W k and compute a solution α?W of subproblem (2)

5: set αk+1
i =

{
α?i for i ∈W
αki otherwise

6: set

∇f(αk+1) = ∇f(αk) +QW (αk+1 − αk) = ∇f(αk) +
∑
i∈W

Qi(α
k+1
i − αki)

where Qi is the i-th column of Q
7: set k = k + 1
8: end while
9: return α? = αk

In terms of computational cost, the most expensive step at each iteration of a decom-
position method is, especially for large data sets, the computation of the columns of the
Hessian matrix corresponding to the indices in the working set W . In particular, if each Kij

costs O(m) (as with typically employed kernels), the cost for one column is O(nm). These
columns are needed in (3) for setting up subproblems (2) and then at step 6 of Algorithm
1 for updating the gradients. The other operations that may require a computational effort
are, as we will clarify in the following, the working set selection procedure itself, the solution
of subproblems and the update of gradients.

The cardinality q of the working set, i.e. the dimension of the sub-problem, has to be
strictly greater than 1, otherwise we would have αk+1 = αk. Based on q, two cases can be
distinguished:

• Sequential Minimal Optimization (SMO) algorithms, where q = 2;

3

Galvan, Lapucci, Lin and Sciandrone

• General Decomposition Algorithms, where q > 2.

The main difference between SMO and General Decomposition Algorithms lies in how
the sub-problems are solved. When q = 2, variables can be updated by an analytical
formula, as shown by Platt (1999), whereas for larger working sets the adoption of an
iterative method is necessary, e.g., the software MINOS (Osuna et al., 1997), the LOQO
primal-dual interior point method (Saunders et al., 1998; Vanderbei, 1999; Joachims, 1999)
or gradient projection (Dai and Fletcher, 2006; Zanni, 2006). In General Decomposition
Algorithms, the working set rarely contains more than a few tens of variables, otherwise a
single iteration might become too expensive. In fact, the inefficiency and complexity of QP
solvers is the main reason why researchers stopped using working sets of q > 2 variables
and the interest in SMO algorithms arose.

Concerning the working set selection rule (WSSR), let us first consider SMO algorithms,
whose related literature is older and wider. At a feasible point α, the index sets

R(α) = {h ∈ {1, . . . , n} | 0 < αh < C ∨ (αh = 0 ∧ yh = 1) ∨ (αh = C ∧ yh = −1)}
S(α) = {h ∈ {1, . . . , n} | 0 < αh < C ∨ (αh = 0 ∧ yh = −1) ∨ (αh = C ∧ yh = 1)}

(4)

characterize the status of the variables. In particular, it can be shown (see, e.g., Lin, 2002b)
that α is a solution of (1) if and only if

max
i∈R(α)

{−yi∇f(α)i} ≤ min
j∈S(α)

{−yj∇f(α)j}. (5)

Given a non-optimal, feasible point α, a pair {i, j} ∈ R(α)× S(α) such that

−yi∇f(α)i > −yj∇f(α)j

is referred to as a violating pair. If

i? ∈ arg max
i∈R(α)

{−yi∇f(α)i} j? ∈ arg min
j∈S(α)

{−yj∇f(α)j}, (6)

then {i?, j?} is called a most violating pair (MVP).
A classical way of choosing the working set for SMO is choosing a most violating pair

(Joachims, 1999; Keerthi et al., 2001). This selection is cheap to compute, as it is done
in O(n) time, and it can be proved that SMO algorithm with this working set selection
strategy is globally convergent (Lin, 2001, 2002a). In the following we will refer to this rule
as WSS1. WSS1 is based on first order information: indeed, i? and j? identify the direction
with only two non-null (unit) components that minimizes the first order approximation

f(αk + d) ' f(αk) +∇f(αk)Td.

Other working set selection rules with global convergence properties are described by
Chen et al. (2006), Chang et al. (2000), Lin et al. (2009), Lucidi et al. (2007) and Fan et al.
(2005). Amongst those, the most widely employed one in practice (e.g., in LIBSVM) is the
one from Fan et al. (2005), which exploits second order information. We will refer to this
rule as WSS2. Since f is quadratic, the exact reduction of the objective value is given by:

f(αk)− f(αk + d) = −∇f(αk)Td− 1

2
dT∇2f(αk)d. (7)

4

Two-Level Decomposition for SVM Training

Unfortunately, searching the pair of indices that identify the feasible direction with two
non-zero components maximizing the objective decrease requires O(n2) operations and is
thus impractical. The idea is therefore that of choosing one variable as in WSS1 and, having
that fixed, identifying the other index so that (7) is maximized. This is done, assuming the
kernel is positive-definite, by setting

i ∈ arg max
t∈R(αk)

{−yt∇f(αk)t}

j ∈ arg min
h∈S(αk)

{
−
δ2ih
ρih
| −yh∇f(αk)h < −yi∇f(αk)i

}
,

(8)

where

ρih = Kii +Khh − 2Kih δih = −yi∇f(αk)i + yh∇f(αk)h, (9)

being K the kernel matrix. This procedure has cost O(n), even though it is in fact slightly
more expensive than WSS1.

The notion of MVP gives also rise to the simple and widely employed stopping criterion

m(αk) ≤M(αk) + ε, (10)

where ε > 0 and

m(α) = max
h∈R(α)

−yh∇f(α)h M(α) = min
h∈S(α)

−yh∇f(α)h. (11)

Note that m(α) ≤ M(α) is exactly the optimality condition (5). It has been proved (Lin,
2002b) that all rules selecting constant-factor violating pairs (Chen et al., 2006) generate
sequences {αk} such that m(αk)−M(αk)→ 0, i.e. algorithms of this type satisfy stopping
criterion (10) in a finite number of iterations for any ε > 0. A violating pair {i, j} is referred
to as a constant-factor violating pair if

yi∇f(αk)i − yj∇f(αk)j ≤ σ
(
yi?∇f(αk)i? − yj?∇f(αk)j?

)
, (12)

being 0 < σ ≤ 1 and {i?, j?} the MVP. WSS1 and WSS2 are indeed instances of the
constant-factor violating pair rule and thus lead to finite termination.

In Algorithm 2 we summarize the SMO decomposition method with WSS1, also referred
to as SMO-MVP algorithm.

5

Galvan, Lapucci, Lin and Sciandrone

Algorithm 2 SMO-MVP Algorithm

Input: α0 = 0, ∇f(α0) = −e, k = 0
1: while m(αk)−M(αk) > ε do
2: select the working set W k = {ik, jk} according to

ik ∈ arg max
i∈R(αk)

−yi∇f(αk)i

jk ∈ arg min
j∈S(αk)

−yj∇f(αk)j

3: set W = W k, W̄ = {1, . . . , n} \W and analytically compute a solution α?W of sub-
problem (2)

4: set αk+1
h =

{
α?h for h ∈W
αkh otherwise

5: set ∇f(αk+1) = ∇f(αk) +Qik(αk+1
ik
− αk

ik
) +Qjk(αk+1

jk
− αk

jk
)

6: set k = k + 1
7: end while
8: return αk

As for General Decomposition Methods, a first working set selection rule has been
proposed by Joachims (1999) and the asymptotic convergence of the decomposition method
based on such rule is proved by Lin (2001). The finite termination is shown by Lin (2002b).
The scheme used in the SVMlight software, selects a working set W with an even number q
of variables by solving the following problem:

min
d
∇f(αk)Td

s.t. yTd = 0, −1 ≤ di ≤ 1 ∀ i = 1, . . . , n,

di ≥ 0 if αki = 0, di ≤ 0 if αki = C,

|{di | di 6= 0}| ≤ q.

(13)

With the above problem, the steepest feasible direction with at most q non-zero components
is identified. Optimal W according to (13) can be efficiently found, similarly as for WSS1,
by selecting the q/2 most violating pairs. In fact, WSS1 is the particular case of (13) when
q = 2. This selection strategy guarantees global convergence, at the cost of a limited freedom
in choosing variables. We will also refer to this WSSR in the following as extended-WSS1.

The theoretical issue about convergence with more arbitrary selection rules is open.
Asymptotic convergence to optimal solutions has not been proven in this scenario. However,
Zhang et al. (2018) proved finite termination of Algorithm 1 with stopping criterion (10)
under the assumption that at each iteration at least one pair of indexes {i, j} ∈ R(αk) ×
S(αk) is present in the working set such that

−yi∇f(αk)i > −yj∇f(αk)j + ε.

This result improves the work of Takahashi and Nishi (2006), where relaxed definitions of
sets R(αk) and S(αk) are considered.

6

Two-Level Decomposition for SVM Training

Note that, by the above result, any working set selection rule that inserts the MVP
into the WS is guaranteed to generate a finite sequence of iterates. This fact is quite
important, allowing to consider sophisticated mixed selection strategies without any risk of
non-termination. In particular, selection rules can safely be considered that better exploit
the commonly used caching technique, consisting of storing the recently used columns of
the Hessian matrix in order to avoid their recalculation. Glasmachers and Igel (2006),
Lucidi et al. (2009) and Lin et al. (2009) have studied decomposition methods designed to
couple convergence properties and the exploitation of the caching strategy. Serafini and
Zanni (2005) proposed an experimentally efficient way of choosing the working set based on
MVPs and caching, but asymptotic convergence properties have not been proven for this
rule.

2.1 Related methods for SVM training

An SVM dual problem slightly different from (1) has been suggested by Frie et al. (1998),
where the parameter C is added to the diagonal of Q and αi becomes unbounded, i.e.,

min
α

1

2
αT
(
Q+

I

C

)
α− eTα

s.t. α ≥ 0,

yTα = 0,

(14)

where I is the identity matrix. This problem is very close to (1), so most optimization
methods developed for one can be applicable to the other. An example is the decomposition
method studied in this work. On the other hand, some methods specific for (14) have been
proposed. For example, (14) can be converted into the problem of computing the nearest
points between two convex polytopes and solved by certain iterative algorithms (Keerthi
et al., 2000).

The general decomposition framework in Algorithm 1 considers a fixed (or bounded)
size of the working set throughout iterations. In another line of research, some works
(Vishwanathan and Murty, 2002; Abe, 2008) take the property that support vectors are
a subset of data points and dynamically adjust the working set to eventually cover all
support vectors (i.e., all data points with αi > 0 at an optimal α). A concern of such
approaches is that for large problems with many support vectors, the complexity of solving
each sub-problem may be prohibitive.

A more significant change of the SVM dual problem, leading to a formulation only having
box constraints, was proposed by Mangasarian and Musicant (1999). A Successive Over-
relaxation scheme was proposed to solve the problem in the aforementioned work, while
Hsu and Lin (2002) designed a specific decomposition method, making use of a specialized
version of TRON (Lin and Moré, 1999) to solve the subproblems.

3. The proposed algorithm

In this work we propose a new variant of the non-SMO decomposition method for kernel
SVMs training which is based on two main ideas:

7

Galvan, Lapucci, Lin and Sciandrone

Algorithm 3 Two-Level Decomposition Method for SVM Training

Input: α0 = 0, ∇f(α0) = −e, k = 0, q ≥ 4
1: while m(αk)−M(αk) > ε do
2: select 4 variables to define the working set W ⊂ {1, . . . , n} according to (21)
3: eventually add q− 4 variables to W , corresponding to cached columns of the Hessian

matrix by Algorithm 5.
4: compute αk+1

W by applying Algorithm 4 to minαW∈F(αk
W

) f(αW , α
k
W

)

5: αk+1
W

= αk
W

6: ∇f(αk+1) = ∇f(αk) +
∑

h∈W Qh(αk+1
h − αkh)

7: set k = k + 1
8: end while
9: return αk

• the q-variables sub-problems are solved by means of an inner SMO procedure, so that
no line-search procedures are required;

• a novel working set selection rule for q > 2 variables that exploits both first and
second order information is employed.

An outline of the algorithm is summarized by the pseudocode in Algorithm 3.
We first detail the solution of the subproblems and then describe the novel proposed

working set selection rule.

3.1 Solving the subproblems

The subproblem with the q variables in the working set W generated at each iteration k by
the decomposition procedure is given by (2). For the sake of simplicity, let us change the
notation to

min
x

1

2
xT Q̃x+ pTx

s.t. aTx = b,

0 ≤ x ≤ C.

(15)

Except for the fact that the constant term of the equality constraint is not zero and p 6= e,
the subproblems have exactly the same form as (1). Thus, classical SVM decomposition
schemes can be applied also to the subproblems. In fact, we will show that SMO technique
works extremely well not only on large problems, but also with small problems such as the
subproblems here.

The efficiency of SMO algorithms mainly comes from the fact that all the updates of
the variables are performed in closed form, not requiring the computational effort of a
line-search algorithm.

These observations led us to adopt SMO-MVP to solve the subproblems. We can hence
see the whole training algorithm as a two-level decomposition scheme, where the inner
subproblems are solved by Algorithm 2. In the following, we will also refer to this two-level
decomposition scheme as TLD-ISMO (Two Level Decomposition with Inner Sequential
Minimal Optimization).

8

Two-Level Decomposition for SVM Training

It should be noted that the idea of a double decomposition have been considered before
in the literature, although in different contexts or with different intents. In the work of
Pérez-Cruz et al. (2004) an SVM instance is solved by repeatedly forming a sub-problem
consisting in a “large chunk” of thousands of examples. This large sub-problem is solved
with a decomposition algorithm itself (this time exploiting only a few variables at a time).
At each iteration the large chunk is updated with the samples which do not satisfy optimality
conditions until convergence.

Perhaps more closely related to our work is the analysis to be found in Yu et al. (2011).
In this study the focus is on logistic regression and maximum entropy models. The authors
propose to solve the problems in the dual space with decomposition methods as is done
for SVMs problems. The resulting sub-problems, however, are significantly different from
the sub-problems that originates in the case of SVM. In particular the authors note that
is possible to solve the sub-problems with a coordinate descent decomposition algorithm
(which cannot be used in SVM since at least 2 variables are to be moved at a time).

Our subproblems solver is described in detail in Algorithm 4. Let W = {h1, . . . , hq} so
that xi corresponds to αhi and ai corresponds to yhi .

Given a feasible point x for the subproblem, we can define, similarly as (4), the sets

R̃(x) = {` ∈ {1, . . . , q} | 0 < x` < C ∨ (x` = 0 ∧ a` = 1) ∨ (x` = C ∧ a` = −1)},
S̃(x) = {` ∈ {1, . . . , q} | 0 < x` < C ∨ (x` = 0 ∧ a` = −1) ∨ (x` = C ∧ a` = 1)}.

(16)

Then, the most violating pair {i, j} ∈ R̃(x)× S̃(x) at x can be defined, similarly as (6), as

i = arg max
`∈R̃(x)

{−a`((Q̃x)` + p`)} j = arg min
`∈S̃(x)

{−a`((Q̃x)` + p`)}. (17)

Finally, we can introduce the quantities

M̃(x) = max
`∈R̃(x)

{−a`((Q̃x)` + p`)} m̃(x) = min
`∈S̃(x)

{−a`((Q̃x)` + p`)}, (18)

similarly as (11), in order to define the stopping criterion

m̃(x) ≤ M̃(x) + εin, (19)

where εin is a tolerance.
At each inner iteration κ we select two variables from W via WSS1. The small dimension

of the subproblems may not require more sophisticated selection rules. We then solve the
sub-subproblem

min
xi,xj

1

2

(
xi xj

)(Q̃ii Q̃ij
Q̃ji Q̃jj

)(
xi
xj

)
+

q∑
`=1
`6=i,j

(Q̃`jx
κ
` xj + Q̃`ix

κ
` xi) + pixi + pjxj

s.t. aixi + ajxj = aix
κ
i + ajx

κ
j

0 ≤ xi, xj ≤ C,

(20)

which can be done in closed form as described, e.g., by Chang and Lin (2011). The sub-
procedure employed to solve the subproblems is summarized in Algorithm 4. It is worth

9

Galvan, Lapucci, Lin and Sciandrone

remarking that, differently from the case of problem (1), matrix Q̃ is fully available to
Algorithm 4 that solves (15).

Algorithm 4 Inner SMO Algorithm

Input: x0 = αkW , κ = 0
1: while m̃(xκ)− M̃(xκ) > εin do
2: select {i, j} ⊂W according to (17)
3: compute xκ+1

i , xκ+1
j by solving analytically problem (20)

4: set xκ+1
` = xκ` for all ` 6= i, j

5: update the gradients
6: set κ = κ+ 1
7: end while
8: return xκ+1

The inner solver stops when KKT conditions are (approximately) satisfied for the sub-
problem. Note that, since we employ Algorithm 2, this is proven to happen in a finite
number of iterations for any εin > 0. Also note that, although x0 may be initialized with
any feasible point, it is particularly useful in practice starting from the current estimate.

3.2 A novel working set selection rule

SMO algorithms are widely considered the state-of-the-art decomposition methods for Sup-
port Vector Machines training (see e.g. Piccialli and Sciandrone (2018)), and WSS2 intro-
duced by Fan et al. (2005) is accepted as more efficient than WSS1 originally introduced
by Keerthi et al. (2001) although numerical experience shows that, while WSS2 is indeed
generally better in terms of number of iterations, WSS1 can still be competitive in terms
of computational time in some cases (as numerical evidence will show in Section 4.5).

The core idea of the proposed working set selection rule is, thus, leveraging on the
efficiency of the subproblem solver, to exploit the benefits of both WSS1 and WSS2 selecting
two variables according to WSS1 and other two variables according to WSS2. Formally, we
choose the working set W = {i1, i2, j1, j2} as follows:

i1 = arg max
h∈R(αk)

{
−yh∇hf(αk)

}
,

j1 = arg min
h∈S(αk)

{
−yh∇hf(αk)

}
,

i2 = arg max
h∈R(αk),h6=i1

{
−yh∇hf(αk)

}
,

j2 = arg min
h∈S(αk),h 6=j1

{
−
δ2i2h
pi2h

∣∣∣∣ − yh∇hf(αk) < −yi2∇i2f(αk)

}
.

(21)

We will refer to the working set selection rule (21) as WSS-MIX. As a matter of fact,
swapping the order of the two pairs, i.e., selecting the first pair by WSS2 and the second
one by WSS1, is a possibility. In fact, from preliminary experiments we observed that such
change does not significantly affect the performance.

10

Two-Level Decomposition for SVM Training

Algorithm 5 Working Set Filling

Input: W k, |W k| = q̄, W k−1, |W k−1| = q
1: Let

F = {h ∈W k−1 | 0 < αkh < C}

L = {h ∈W k−1 | αkh = 0}

U = {h ∈W k−1 | αkh = C}

2: while |W k| ≤ q and F \W k 6= ∅ do
3: Add to W k the index h ∈ F \ W k that has been in the working set for the least

number of iterations.
4: end while
5: while |W k| ≤ q and L \W k 6= ∅ do
6: Add to W k the index h ∈ L \ W k that has been in the working set for the least

number of iterations.
7: end while
8: while |W k| ≤ q and U \W k 6= ∅ do
9: Add to W k the index h ∈ U \ W k that has been in the working set for the least

number of iterations.
10: end while

A crucial technique employed in all of state-of-art decomposition method for SVM is
to cache the most recently computed Hessian matrix columns for later reuse, thus saving
up in the number of kernel computations. Moreover it is has been shown to be beneficial,
especially for large data sets, to make use of the cached columns by augmenting the working
set with additional variables of which the correspondent Hessian columns are currently
cached (Serafini and Zanni, 2005). This idea fits nicely in our framework, since we are able
to deal with large working sets of variables. We thus enhance WSS-MIX by adding cached
variables.

A refined version of the rule from Serafini and Zanni (2005) is proposed by Zanni (2006).
By such a rule, the working set is filled as follows: q̄ variables are selected according to
extended-WSS1. Then they add to the working set q − q̄ variables as described by Algo-
rithm 5. Priority is given to free variables, then lower bound variables and last upper bound
variables. The idea is that upper bound variables have probably reached their final value,
while free variables are completing the optimization process. Also, indexes that have been
in the working set for less iterations are preferred. For our method, we borrow Algorithm 5
to complete the working set after the first 4 variables are selected according to WSS-MIX.

Zanni (2006) fixes arbitrarily the size of the working set at the beginning and then
adaptively tunes the proportion of variables that are selected with extended-WSS1 and
with Algorithm 5. Here we follow a slightly different approach and keep both the number
of variables chosen with WSS-MIX and of cached variables fixed from the beginning.

Identifying the ideal number of extra variables to add at each iteration for each problem
is not an easy task. It seems unlikely that choosing more than 20 variables is useful; indeed,
if the data set is very large, the cache will typically not be large enough to store more

11

Galvan, Lapucci, Lin and Sciandrone

than ∼ 20 - 30 variables, while if the data set is not enough large, the time saved by
not recomputing kernels is lost in performing unnecessary computation. Furthermore, the
higher cost of solving subproblems is another reason for not using large values of q. Indeed,
in past non-SMO works q have usually been set around 10 or 20 (Joachims, 1999; Hsu and
Lin, 2002).

We found that a rule of thumb for choosing the number of additional variables with a
problem from a given data set can be obtained starting from the following formula. Let

S =
cachesize

8× n2 ×m
(22)

be the fraction of Hessian matrix elements that can be cached (assuming elements are double
precision values) divided by the number of features (the cost of computing one element of
the Hessian is proportional to this quantity). The rule is as follows:

• if S > 10−3 do not select additional variables,

• if 10−3 < S < 10−5 select 6 additional variables to the working set by means of
Algorithm 5,

• if S < 10−5 select 14 additional variables to the working set by means of Algorithm
5.

The idea is that the addition of cached variables is useful if variables often get out
of cache before being used again and if kernel computation is expensive; note the cost of
computing one Hessian column is O(mn), where n is the number of examples in the data
set and m the number of features. Clearly, situations where the cache size is too small to
store the number of additional variables resulting from the above rule may happen; in such
cases the number of selected variables should be equal to the cache capacity.

3.3 Convergence properties of the proposed algorithm

To start the discussion we note that the algorithm is well defined, i.e. the inner loop (Algo-
rithm 4) stops in a finite number of steps. This trivially comes from the finite termination
property of SMO-MVP algorithm (Lin, 2002a,b).

Finite termination of the whole algorithm is, instead, still an open issue. Indeed WSS-
MIX (both with or without cached variables) does not satisfy the sufficient conditions for
asymptotic global convergence and finite termination stated by Lin (2002a,b). Under the
assumption that the sub-problem are solved exactly, however, finite termination of the
procedure is guaranteed by the result proven by Zhang et al. (2018). Nonetheless, the
proposed algorithm solves the sub-problems up to εin precision and, since M(α) and m(α)
are not continuous, even letting εin → 0 does not guarantee that the result from Zhang
et al. (2018) holds. We can however show that

1. the objective function is monotonically non increasing;

2. at each iteration the variables are updated;

12

Two-Level Decomposition for SVM Training

3. the working set changes at every iteration, so that it cannot happen that the algorithm
infinitely loops on the same sub-problem.

Point 1. is trivial, we prove points 2. and 3.

Let Wk be the working set at the (outer) iteration k. Let εin and ε be the stopping
tolerances of the inner and outer loops respectively, with εin ≤ ε.

Let us define

R̄(αkWk
) = Wk ∩R(αk) S̄(αkWk

) = Wk ∩ S(αk).

From the above definition, we have that if {i, j} ⊂ Wk and {i, j} ∈ R(αk) × S(αk), then
{i, j} ∈ R̄(αkWk

)× S̄(αkWk
).

From the instructions of the algorithm and the definition of WSS-MIX, we have that at
the beginning of iteration k there exists {i, j} ∈ R̄(αkWk

)× S̄(αkWk
) such that

−yi∇f(αk)i + yj∇f(αk) > ε. (23)

Moreover, from the instructions of Algorithm 4, at the end of the k-th outer iteration
we get αk+1 such that, for all {i, j} ∈ R̄(αk+1

Wk
)× S̄(αk+1

Wk
), it holds

−yi∇f(αk+1)i + yj∇f(αk+1) ≤ εin ≤ ε. (24)

If it was αk = αk+1, (23) and (24) would be in contradiction. Therefore we have that
αk+1 6= αk, i.e., point 2. holds.

From the definition of WSS-MIX, we also know that the working set Wk+1 contains a
pair {ik+1, jk+1} ∈ R(αk+1)× S(αk+1) such that

−yik+1
∇f(αk+1)ik+1

+ yjk+1
∇f(αk+1)jk+1

> ε, (25)

otherwise the outer stopping criterion would have been satisfied. We will prove that
{ik+1, jk+1} *Wk, so Wk+1 6= Wk. Assume by contradiction that {ik+1, jk+1} ⊂Wk. Then,
since {ik+1, jk+1} ∈ R(αk+1) × S(αk+1), it has to be {ik+1, jk+1} ∈ R̄(αk+1

Wk
) × S̄(αk+1

Wk
).

Thus, both (24) for {i, j} = {ik+1, jk+1} and (25) hold, which is absurd. Point 3. is thus
proved.

4. Numerical experiments

In this section we provide numerical evidence to back up each component of the proposed
algorithm before comparing the efficiency of the method as a whole. We use several data
sets of different dimensions from the LIBSVM collection to obtain different instances of
SVM training problems for several values of the hyper-parameters. We detail the common
setup of all the experiments in the next Section.

4.1 Benchmark problems and experiments setup

All the trials were carried out on the same computer (Intel Xeon CPU 12 cores, 16 GB
RAM). All implementations of the decomposition methods for SVM training considered in

13

Galvan, Lapucci, Lin and Sciandrone

Data set Training Size Features Class

splice 1,000 60 small

a1a 1,605 123 small

leukemia 38 7,129 small

a9a 32,561 123 medium size

w8a 49,749 300 medium-size

ijcnn1 49,990 22 medium-size

rcv1.binary 20,242 47,236 large

real-sim 72,309 20,958 large

covtype.binary 581,012 54 huge

Table 1: Details of the 9 initial data sets.

this work include the use of a cache of size 100MB to store Hessian matrix values; note
that 100MB were always enough to store at least 20 Hessian columns in the problems
considered in the presented experiments. Also, kernels computation procedure has always
been parallelized on 10 cores, for accelerating the experimental process. The effects of the
shrinking heuristic (Joachims, 1999; Fan et al., 2005; Chang and Lin, 2011) often applied
by SVM solvers, were not investigated; we thus set it off in all the algorithms used in the
experiments of this work.

We initially considered a collection of 9 data sets for binary classification, taken from
LIBSVM data sets collection webpage 1. These data sets were used to evaluate the perfor-
mances during the development of the new algorithm. In selecting these data sets we aimed
at building a test suite that could cover a variety of situations in terms of data set dimen-
sions. In Table 1 we list them, specifying their characteristics, i.e., number of examples and
features.

The data sets a1a, a9a and covtype.binary are from the UCI Machine Learning Repos-
itory (Dua and Karra Taniskidou, 2017); binarization of problem covtype was done by
Collobert et al. (2002); a1a and a9a have been compiled by Platt (1999); w8a is also from
Platt (1999); splice comes from are from the Delve archive (http://www.cs.toronto.
edu/~delve); rcv1 has been published by Lewis et al. (2004). ijcnn1 is the first of IJCNN
2001 challenge problems (Prokhorov, 2001); leukemia dataset comes from Golub et al.
(1999), while real-sim original data can be found at https://people.cs.umass.edu/

~mccallum/data.html.

To fairly measure the performance of the considered methods, we mimic a true appli-
cation context. To do so, we built up our experimental benchmark as follows: for each
data set, we generated a set of 25 RBF kernel SVM training problems, obtained by varying
the values of the hyperparameters C and γ on a 5 × 5 grid. The grid takes values from
{10k · C̄ | k = −2,−1, 0, 1, 2} and {10k · γ̄ | k = −2,−1, 0, 1, 2}, where C̄ and γ̄ are suit-
able values found through a preliminary validation procedure conducted with LIBSVM. We
recall that the RBF kernel is defined as

K(v, u) = exp
(
−γ‖v − u‖2

)
.

1. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

14

http://www.cs.toronto.edu/~delve
http://www.cs.toronto.edu/~delve
https://people.cs.umass.edu/~mccallum/data.html
https://people.cs.umass.edu/~mccallum/data.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

Two-Level Decomposition for SVM Training

Data set Training Size Features

phishing 11,055 68

cod-rna 59,535 8

skin nonskin 245,057 3

epsilon-subset 50,000 2,000

news20.binary 19,996 1,355,191

cifar-resnetv2-emb 60,000 1,024

SUSY-subset 500,000 18

HIGGS-subset 500,000 28

Table 2: Details of the 8 additional data sets.

Note that the classification of a data set in terms of dimensions (i.e., the data set
scale) partially depends on the cache size. The diversity of datasets we employ allows
us to simulate contexts where either the whole kernel matrix can be stored or repeated
and expensive kernel computations are needed. We roughly grouped the datasets into
four classes: small (a1a, splice, leukemia), medium-size (a9a, w8a, ijcnn1), large (rcv1,
real-sim) and huge (covtype).

At the end of the development process, we selected 8 additional data sets and thus
created 200 additional problems to evaluate the efficiency of our procedure. This was done
in order to ensure that the good overall performance assessment of our method was not the
result of an excessive specialization carried out during the development but that, on the
contrary, our algorithm performs well in general, on new problems that could emerge in
applications.

The additional 8 data sets are cod-rna (Uzilov et al., 2006), phishing (UCI),
news20.binary (Keerthi and DeCoste, 2005), skin nonskin (UCI), cifar-resnetv2-emb
and subsets of epsilon, preprocessed as by Yuan et al. (2012), SUSY and HIGGS, both by
Baldi et al. (2014). The data sets are again all taken from LIBSVM data sets collection
webpage, except for the cifar-resnetv2-emb data set, which was obtained by training a
ResNetv2 (He et al., 2016) convolutional neural network with 29 layers on the CIFAR-10
dataset (Krizhevsky, 2009) and extracting the embeddings before the final averaging layer.
The network has been trained by SGD with early stopping on a 20% validation set extracted
form the training part. The embeddings have been extracted after the training procedure
for the whole training and test sets. The dimensions of the data sets are reported in Table
2. For these data sets, the values of C̄ and γ̄ were set respectively to the default 1 and 1/m,
in order to simulate applications.

In the experiment regarding the inner subproblems solvers, we employed for all algo-
rithms stopping condition (19) with tolerance εin = 10−5.

As for the various versions of Algorithm 1, the implementation exploits the structure
of LIBSVM (Chang and Lin, 2011). The considered methods share stopping criterion (10),
with ε = 10−3, which is the default tolerance in LIBSVM. Different values of ε have also
preliminarily been tried, leading to similar outcomes as ε = 10−3, i.e. the results of our
computational study seem to be consistent w.r.t. different values of ε. The inner stopping
tolerance for TLD-ISMO was again set to εin = 10−5, which satisfies the condition εin ≤ ε
required in the analysis in Section 3.3. Such a value was selected, after a preliminary

15

Galvan, Lapucci, Lin and Sciandrone

experimental work, as a compromise. In fact, if the tolerance value is too small, a large
amount of time is wasted at solving subproblems to unnecessary precision. On the other
hand, too large values of εin lead to not exploiting enough the variables in the working set.

4.2 Performance profiles

In this work, the comparisons have mainly been carried out by means of performance
profiles. Performance profiles have been proposed by Dolan and Moré (2002) as a mean
to compare the performance of different solvers on a suite of test problems. Performance
profiles provide a unified view of relative performance of the solvers that overcome the
limitations of previous approaches: they do not involve interpreting long tables of values,
nor do they suffer from the shortcomings of comparing, for instance, the number of wins,
the average performance, quantiles, or other cumulative statistics (as argued by Dolan and
Moré (2002)). For these reasons they have been adopted by an ever growing number of
researches over the last decade.

Formally, consider a test suit of P problems and a set of solvers S. For each solver s ∈ S
and problem p ∈ P define

tp,s = the cost for solver s to solve problem p,

where cost is the performance metric we are interested in. For example the cost can be the
number of function evaluations, the number of iterations or the CPU time. Define also the
ratio

rp,s =
tp,s

mins∈S{tp,s}
,

which expresses a relative measure of the performance on problem p of solver s against the
performance of the best solver for this problem. If (and only if) a solver fails to solve a
problem we put rp,s = rM with rM ≥ rp,s ∀s, p.

The performance profile for a solver s is thus the function

ρs(τ) =
1

|P|
· |{p ∈ P | rp,s ≤ τ}| ,

which represents the probability for solver s that a performance ratio rp,s is within a factor
τ ∈ R of the best possible ratio. The function ρs(τ) : [1,+∞] → [0, 1] is, in fact, the
cumulative distribution function for the performance ratio.

The value of ρs(1) is the probability that the solver will win over the rest of the solvers
while limτ→r−M

ρs(τ) is the probability that the solver solves a problem.

We are now ready to start our analysis, by focusing on the solution of the subproblems.

4.3 Computational evidence on inner SMO efficiency

In order to evaluate the efficiency of the inner SMO scheme at solving subproblems arising in
Algorithm 1, we compared it against two state-of-art solvers for problems with bounds and
a single linear constraint employed in decomposition schemes for SVM training. Namely we
considered the Generalized Variable Projection Method (GVPM) proposed by Zanni (2006)
and the Dai-Fletcher method described in Dai and Fletcher (2006).

16

Two-Level Decomposition for SVM Training

The inner SMO procedure have been implemented from scratch, while we used the imple-
mentations of GVPM and Dai-Fletcher methods available at http://cdm.unimo.it/home/
matematica/zanni.luca/. All three algorithms were then employed in the decomposition
scheme whose implementation is highly based on that of LIBSVM (Chang and Lin, 2011).
Each of the three solvers employs the warm-star strategy, i.e. they initialize the subproblem
variables with the current solution estimate.

The comparison is carried out on 50 Gaussian kernel SVM training problems, generated
from data sets a1a and splice as described in Section 4.1.

For each test problem, we computed the average time spent by each solver to solve one
subproblem of q variables during a training run conducted with Algorithm 1 with extended-
WSS1. Different values of q have been considered, in particular we repeated the experiment
for q ∈ {4, 10, 20, 50}. The results are shown in Figure 1. Here, as well as in the rest of the
paper, comparisons are carried out by means of performance profiles.

5 10 15 20

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n
 o

f
p
ro

b
le

m
s

SMO-MVP

GVPM

Dai-Fletcher

(a) q = 4

5 10 15 20

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0
fr
a
ct

io
n
 o

f
p
ro

b
le

m
s

SMO-MVP

GVPM

Dai-Fletcher

(b) q = 10

5 10 15 20

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n
 o

f
p
ro

b
le

m
s

SMO-MVP

GVPM

Dai-Fletcher

(c) q = 20

5 10 15 20

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n
 o

f
p
ro

b
le

m
s

SMO-MVP

GVPM

Dai-Fletcher

(d) q = 50

Figure 1: Performance profiles of mean subproblem solution time required by different
solvers (SMO-MVP, GVPM, Dai-Fletcher) in the decomposition method for SVM
training with the extended-WSS1, run on 50 RBF kernel SVM training problems
from a1a and splice, for different values of q.

17

http://cdm.unimo.it/home/matematica/zanni.luca/
http://cdm.unimo.it/home/matematica/zanni.luca/

Galvan, Lapucci, Lin and Sciandrone

We can see that, for limited values of q, SMO-MVP is almost always the best algorithm,
often by a large factor. Dai-Fletcher method appears to be overall superior to GVPM (in
accordance with the observations of Zanni (2006)). As the dimension of the working set
grows, the gap in performance shrinks: for q = 20, the profiles of SMO-MVP and Dai-
Fletcher nearly overlap. Finally, when q = 50, Dai-Fletcher substantially outperforms the
other two methods, which behave similarly.

Now, this trend is in fact not surprising. The good scalability properties of GVPM and
Dai-Fletcher algorithms are known from the literature (Zanni, 2006).

The results of the preceding test make us confident that for General Decomposition
Algorithms with q > 2 the Two-Level Decomposition scheme is the best one to adopt, at
least for values of q not too large.

4.4 Evaluation of different working set sizes

It is now interesting to evaluate the benefits, if any, of using larger working sets, being
an efficient subproblems solver available. We thus compare the performance, in terms of
runtime, number of iterations and kernel computations of Algorithm 1 equipped with the
extended-WSS1 the inner SMO solver, for different values of q. For the case q = 2, the
employed algorithm is nothing but the standard SMO-MVP on the whole problem. The
test for q = 50 was repeated by using the Dai-Fletcher solver, as it appears to be, from the
results in Figure 1d, the best solver for such working set size.

This experiment is performed on 150 SVM training problems generated from data sets
a1a, splice, a9a, ijcnn1, w8a and rcv1 as described in Section 4.1. This is a collection of
problems from small, medium-sized and large (although not huge) data sets, constituting
therefore a diverse enough test suite.

The results of the experiment are shown in Figure 2. Better performance, in terms of
runtime, can be observed for the non-extreme working set sizes. As we could reasonably
expect, the number of iterations generally decreases as the size of the working set increases.
On the other hand, we can see that the number of kernel evaluations has the opposite
behavior. We can interpret the result as follows: choosing more variables altogether has the
advantage of reducing the number of iterations and consequently the number of times the
selection procedure is performed; this is particularly beneficial with the extended-WSS1,
since the cost of this selection rule is constant with respect to the WS size; however, the
variables are selected in a less careful way: this is paid off by computing possibly unnecessary
Hessian columns. Moreover, the computational effort required to solve the subproblem
becomes greater as the size of the working set grows. Therefore, intermediate values of
q, such as q = 4, are not surprisingly good in terms of runtime. It is interesting to note
that the performance of q = 50 does not change much when the internal solver is changed;
we can explain this behavior highlighting that kernel evaluation and working set selection
are much more relevant in determining the total runtime w.r.t. the subproblem solution.
We can conclude that the availability of an efficient solver for subproblems with more than
two variables allows to concretely consider the use of non-SMO decomposition strategy, at
least for reasonable values of q. In particular, more sophisticated and combined variables
selection rules can be employed, and also the caching mechanism can be exploited in a more
systematic way.

18

Two-Level Decomposition for SVM Training

1.0 1.5 2.0 2.5 3.0 3.5 4.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

q = 2

q = 4

q = 10

q = 20

q = 50

q = 50-DF

(a) Runtime

1 2 3 4 5 6 7 8 9 10

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

q = 2

q = 4

q = 10

q = 20

q = 50

q = 50-DF

(b) Number of (outer) iterations

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

q = 2

q = 4

q = 10

q = 20

q = 50

q = 50-DF

(c) Number of kernel evaluations.

Figure 2: Performance profiles of runtimes (a), iterations (b) and number of kernel evalu-
ations (c) of the decomposition method with extended-WSS1, run on 150 RBF
kernel SVM training problems with different values of q. The problems were gen-
erated from data sets a1a, splice, a9a, w8a, ijcnn1 and rcv1. We employed
SMO as inner solver. The test for q = 50 was repeated using Dai-Fletcher method
since from the results in Figure 1d it appears to be the optimal choice for such
working set size.

We now turn to evaluating the performance of the novel working set selection rule.

19

Galvan, Lapucci, Lin and Sciandrone

4.5 Experimental analysis of working set selection rules

We start the discussion on the working set selection rule with a preliminary comparison
of WSS1 and WSS2, both in terms of iterations and CPU time. The results are given in
Figure 3.

1.0 1.5 2.0 2.5 3.0

performance ratio

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

2nd order selection

1st order selection

(a) Number of iterations.

1.0 1.5 2.0 2.5 3.0

performance ratio

0.4

0.5

0.6

0.7

0.8

0.9

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

2nd order selection

1st order selection

(b) Runtime.

Figure 3: Performance profiles comparing the performance, in terms of number of iterations
and runtime, of SMO equipped with WSS1 and WSS2, run on 225 RBF kernel
SVM training problems. The problems were generated as described in Section 4.1
from data sets a1a, splice, leukemia, a9a, w8a, ijcnn1, rcv1, real-sim and
covtype.

We observe that, in terms of iterations, WSS2 is indeed clearly superior to WSS1. This
confirms the results shown by Fan et al. (2005), which make WSS2 more appealing especially
with large datasets (less iterations are assumed to require less kernel evaluations). However,
if we consider the computing time, the difference is less marked and in a good number of
cases WSS1 seems a fairly good solution. In particular, in about a half of the situations,
WSS1 led to a faster training.

An explanation to this inconsistency between iterations and time can be found in the
cost of the working set selection rule itself. In fact, a deeper analysis of the results re-
vealed that this behavior, although common to all problems, is particularly pronounced on
problems generated from the small data sets. For such problems the time spent on kernel
computations is not only less dominant (even if still relevant) in the composition of total
runtime, but also it is almost equal for the two different algorithms, since the Hessian ma-
trix can be entirely stored and thus approximately only Hessian columns associated with
support vectors are computed, once and only once. Therefore, the computational cost of
the variables selection procedure gets much more weight in such cases.

Finally, let us consider the extensions to the general, non-SMO case of WSS1 and WSS2.
The cost of WSS1 procedure does not depend on the number of selected variables; on the
other hand, the cost of WSS2 linearly increases with the size of the working set. Therefore,
we may expect that the behavior observed in Figure 3 is even more evident when dealing
with General Decomposition Algorithms.

20

Two-Level Decomposition for SVM Training

Next, we propose a comparison between all combinations of WSS1 and WSS2 for q equal
to 2 or 4. In essence, we consider

• 4-WSS-MIX: Algorithm 1 with q = 4 and WSS-MIX;

• 2-WSS2: SMO with WSS2;

• 2-WSS1: SMO-MVP;

• 4-WSS1: Algorithm 1 with q = 4 and the extended-WSS1, i.e. the rule from Joachims
(1999);

• 4-WSS2: Algorithm 1 with q = 4 and an extension of WSS2; in particular, the
generalization of WSS2 that we considered selects two pairs of variables with WSS2,
but for the second pair the “roles” of sets R(αk) and S(αk) are inverted, so that it’s
the variable chosen from S(αk) the one which is fixed; formally:

i1 = arg max
h∈R(αk)

{
−yh∇hf(αk)

}
,

j1 = arg min
h∈S(αk)

{
−
δ2i1h
pi1h

∣∣∣∣ − yh∇hf(αk) < −yi1∇i1f(αk)

}
,

j2 = arg min
h∈S(αk),h 6=j1

{
−yh∇hf(αk)

}
,

i2 = arg min
h∈R(αk),h6=i1

{
−
δ2j2h
pj2h

∣∣∣∣ − yh∇hf(αk) > −yj2∇j2f(αk)

}
.

(26)

We applied the above five algorithms to 175 Gaussian kernel SVM training problems, ob-
tained from data sets a1a, splice, a9a, w8a, ijcnn1, rcv1 and real-sim as described in
Section 4.1. Concerning the methods with q = 4, we employed the TLD-ISMO scheme.

The comparison has been made on the basis of runtime, number of iterations and number
of kernel evaluations. These three quantities should provide a sufficiently good insight about
the behavior of the algorithms. We report in Figures 4 and 5 the results of the tests. Figures
4a, 4c and 4e illustrate the results on the problems from small data sets (a1a, splice);
Figures 4b, 4d and 4f concern the medium-sized data sets (a9a, w8a, ijcnn1); Figures 5a,
5c and 5e show the results on the problems from large data sets (rcv1, real-sim); finally,
Figures 5b, 5d and 5f summarize the results upon all 175 problems.

We can observe that with small data sets choosing larger working sets is convenient in
terms of runtime, in particular by using WSS1. In fact, doubling the size of the working
set on average reduces the number of iterations to slightly less than a half. As previously
outlined, the number of kernel evaluations is almost constant w.r.t. the WSSRs. WSS2
and WSS-MIX are slightly more efficient, in terms of number of iterations, w.r.t. WSS1;
however, when it comes to runtime, WSS1 seems to be the best choice; we can thus deduce
that the cost of the selection procedure itself is particularly relevant with these problems.

The situation is quite different with large data sets. The presence of at least one pair of
variables selected by WSS2 is often useful to reduce the number of iterations. This quantity
is indeed strictly related to the number of kernel evaluations in this case, since the cache

21

Galvan, Lapucci, Lin and Sciandrone

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(a) small data sets - runtime

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(b) medium-sized data sets - runtime

1.0 1.5 2.0 2.5 3.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(c) small data sets - number of (outer) iterations

1.0 1.5 2.0 2.5 3.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(d) medium data sets - number of (outer) iterations

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(e) small data sets - number of kernel evaluations

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(f) medium data sets - number of kernel evaluations

Figure 4: Performance profiles comparing the performance, in terms of runtime (first row),
number of (outer) iterations (second row) and number of kernel columns eval-
uations (third row), of Algorithm 1 equipped with combinations of WSS1 and
WSS2, run on problems generated from the small data sets a1a, splice (first
column) and from the medium-sized data sets a9a, w8a, ijcnn1 (second column).

22

Two-Level Decomposition for SVM Training

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(a) large data sets - runtime

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(b) all data sets - runtime

1.0 1.5 2.0 2.5 3.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(c) large data sets - number of (outer) iterations

1.0 1.5 2.0 2.5 3.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(d) all data sets - number of (outer) iterations

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(e) large data sets - number of kernel evaluations

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

4-WSS-MIX

2-WSS2

2-WSS1

4-WSS1

4-WSS2

(f) all data sets - number of kernel evaluations

Figure 5: Performance profiles comparing the performance, in terms of runtime (first row),
number of (outer) iterations (second row) and number of kernel columns evalua-
tions (third row), of Algorithm 1 equipped with combinations of WSS1 and WSS2,
run on problems generated from the large data sets rcv1, real-sim (first column)
and from all the data sets a1a, splice, a9a, w8a, ijcnn1, rcv1, real-sim.

23

Galvan, Lapucci, Lin and Sciandrone

is relatively small. Being the runtime almost entirely determined by the cost of kernel
computations, using second order information is thus beneficial.

The case of medium-sized data sets appears to be the most complicated. The number
of iterations, the cost of working set selection rule and the number of kernel evaluations
are all relevant to the total runtime. WSS-MIX apparently balances these components of
the cost to obtain the best performance overall. It is worth mentioning that for some of
these problems, the absence of variables selected by second order information resulted in
particularly critical cases in terms of iterations.

The aggregate results from all 175 problems show a behavior, not surprisingly, some-
where in between the cases of large data sets and small data sets and similar to the case of
medium-sized data sets. One variable selected using second order information is necessary
in order to avoid disasters in terms of iterations; at the same time, selecting more variables
at once, especially if most of them are chosen by the cheap WSS1, can reduce the time
spent on the selection procedures. WSS-MIX thus appears as the most suited option to be
applied on a generic problem.

4.6 Analysis of the effects of adding cached variables

We conclude the analysis on the working set selection rule, before evaluating the efficiency
of the full method, by analyzing the effect of adding additional cached variables to the
working set.

We therefore analyze how the selection of additional “cached” variables actually affects
the total number of kernel evaluations required by Algorithm 1 on both cases of small and
large problems.

With small data sets, the Hessian matrix can entirely be stored; therefore, Hessian
columns corresponding to support vectors need to be computed only once, while, with rea-
sonable WSS rules, few other columns are computed throughout the optimization process.
This consideration is supported by empirical evidence, as shown in Figure 6a, concerning
the number of kernels evaluated by Algorithm 1 with different WSS rules.

On the contrary, with large problems, the selection of the extra variables corresponding
to cached Hessian columns helps much at speeding up the entire process. In fact, as we
see in Figure 6b, base WSS-MIX, being an hybrid rule combining WSS1 and WSS2, has an
intermediate behavior w.r.t. these two basic rules. When the working set is enlarged with
the addition of the stored variables, however, the performance greatly improves.

4.7 Overall evaluation of TLD-ISMO with WSS-MIX

In this section, the overall efficiency performance of Algorithm 3 is finally evaluated. We
compare the TLD-ISMO to the most widely used decomposition schemes for SVM, i.e. SMO
methods equipped with WSS1 and WSS2.

Concerning the working set selection rule of TLD-ISMO, rule (21) was integrated with
the selection of a number of variables from the preceding working according to Algorithm
5. The final dimension of the working set for each problem was decided by means of the
heuristic rule (22).

Since we solve a convex problem and for all algorithms we used the same stopping
condition, we obtain from the different algorithms equivalent solutions, except for numerical

24

Two-Level Decomposition for SVM Training

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

WSS-MIX q=4

WSS-MIX q=10

WSS-MIX q=20

SMO-WSS2

SMO-WSS1

(a) 50 small problems

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

WSS-MIX q=4

WSS-MIX q=10

WSS-MIX q=20

SMO-WSS2

SMO-WSS1

(b) 75 large problems

Figure 6: Performance profiles in number of Hessian columns computed by Algorithm 1
with different WSS rules. WSS-MIX with q = 10 and q = 20 include the addition
of 6 and 16 “cached” variables respectively. Figure 6a concerns 50 test RBF kernel
SVM problems generated from small data sets a1a and splice as described in
Section 4.1. Figure 6b describes the results of the experiments on 75 problems
from large data sets rcv1, real-sim and the very large covtype.

imprecision issues. This is mirrored also in the test accuracy of the models obtained by
the different algorithms. Therefore, it makes sense comparing the algorithms in terms of
efficiency, i.e. runtime. We first ran the three algorithms on the 225 RBF kernel SVM
training problems generated from data sets a1a, splice, leukemia, a9a, w8a, ijcnn1,
rcv1, real-sim and covtype as described in Section 4.1.

A summary of the obtained results can be found in Figures 7 and 8. In Figure 7 the
performance profile of the efficiency of the three algorithms on all 225 problems is shown.
We can see that not only TLD-ISMO in general performs better than SMO algorithms, but
also it often provides a significant speed-up.

In Figure 8 we show the same comparison, but we focus the analysis on the different data
sets scales. We can observe that the dominance of TLD-ISMO spreads to any situation.

We repeated the experiment on 8 extra problems, generated as described in Section 4.1
from data sets phishing, cifar-resnetv2-emb and news20, cod-rna, skin nonskin and
(subsets of) epsilon, SUSY and HIGGS. For the tests on the latter two data sets we introduced
a time limit of 100,000 seconds per single run, since some hyperparameter configurations led
to problems that proved to be too hard for the decomposition algorithms with the hardware
at our disposal. This test was carried out so as to ensure that the efficiency of TLD-ISMO
portrayed by Figures 7 and 8 was not the result of an excessively specific implementation.

In fact, the results observable in Figures 9 and 10 suggest that it is not the case: on the
contrary, the advantage of TLD-ISMO is even more pronounced.

Performance profiles are a useful tool to summarize and explain the behavior of several
algorithms on an enormous number of test problems. To enrich the analysis, we provide
some complementary information about runtimes absolute values. In the model validation

25

Galvan, Lapucci, Lin and Sciandrone

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

TLD-ISMO

SMO-WSS2

SMO-WSS1

Figure 7: Comparison of the efficiency of TLD-ISMO and SMO algorithms (equipped with
WSS1 and WSS2) on all 225 test problems.

26

Two-Level Decomposition for SVM Training

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

TLD-ISMO

SMO-WSS2

SMO-WSS1

(a) 75 problems from the three small data sets.

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

TLD-ISMO

SMO-WSS2

SMO-WSS1

(b) 75 problems from the three medium-sized data
sets.

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

TLD-ISMO

SMO-WSS2

SMO-WSS1

(c) 50 problems from the two large data sets.

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

TLD-ISMO

SMO-WSS2

SMO-WSS1

(d) 25 problems from the huge data set.

Figure 8: Performance profiles comparing the efficiency, in terms of runtime, of TLD-ISMO
and SMO (equipped with WSS1 and WSS2), on different classes of RBF kernel
SVM problems. The problems are obtained, by varying the hyperparameters,
from data sets a1a, splice, leukemia (small), a9a, w8a, ijcnn1 (medium-sized),
rcv1, real-sim (large) and covtype (huge).

27

Galvan, Lapucci, Lin and Sciandrone

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

TLD-ISMO

SMO-WSS2

SMO-WSS1

(a) 25 problems from phishing data set.

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

TLD-ISMO

SMO-WSS2

SMO-WSS1

(b) 25 problems from cod-rna data set.

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

TLD-ISMO

SMO-WSS2

SMO-WSS1

(c) 25 problems from skin nonskin data set.

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

TLD-ISMO

SMO-WSS2

SMO-WSS1

(d) 25 problems from a subset of epsilon data set.

Figure 9: Performance profiles comparing the efficiency, in terms of runtime, of TLD-ISMO
and SMO (equipped with WSS1 and WSS2), on RBF kernel SVM problems
problems from four different data sets: phishing, cod-rna, skin nonskin and a
subset of epsilon .

28

Two-Level Decomposition for SVM Training

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

TLD-ISMO

SMO-WSS2

SMO-WSS1

(a) 25 problems from cifar-resnetv2-emb data set.

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

TLD-ISMO

SMO-WSS2

SMO-WSS1

(b) 25 problems from news20 data set.

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

TLD-ISMO

SMO-WSS2

SMO-WSS1

(c) 25 problems from a subset of SUSY data set.

1.0 1.2 1.4 1.6 1.8 2.0

performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct
io
n
 o
f
p
ro
b
le
m
s

TLD-ISMO

SMO-WSS2

SMO-WSS1

(d) 25 problems from from a subset of HIGGS data set.

Figure 10: Performance profiles comparing the efficiency, in terms of runtime, of TLD-
ISMO and SMO (equipped with WSS1 and WSS2), on RBF kernel SVM prob-
lems problems from four different data sets: cifar-resnetv2-emb, news20 and
subsets of SUSY and HIGGS.

29

Galvan, Lapucci, Lin and Sciandrone

dataset TLD-ISMO SMO-WSS1 SMO-WSS2

a1a 2.20 2.79 2.64

splice 1.43 1.68 1.78

leukemia 0.51 0.52 0.56

w8a 1808.37 2213.93 2275.07

ijcnn1 2023.05 5109.01 2541.04

a9a 3003.09 7708.22 4203.10

rcv1 2432.89 2585.81 2509.33

real-sim 22780.93 24116.95 24495.85

covtype 518847.84 2213224.58 651239.04

epsilon-subset 182127.99 217016.02 191457.61

phishing 64.64 81.12 80.64

cod-rna 1999.17 26490.30 4698.16

skin nonskin 10465.35 12810.54 13364.90

cifar-resnetv2-emb 25876.53 35630.19 29719.72

news20 10704.85 11263.44 10980.03

SUSY-subset 715706 (3) 918867 (5) 746725 (3)

HIGGS-subset 1011667 (3) 1166775 (5) 1119047 (5)

Table 3: Total time (in seconds) spent by TLD-ISMO, SMO-WSS1 and SMO-WSS2 at
solving the problem grid generated as described in Section 4.1 by each dataset. The
number in brackets, when present, denotes the number of times the solver could
not complete the optimization process within the time limit of 100.000 seconds.

phase of machine learning applications, which is often the most time consuming, users are
typically required to solve an entire grid of problems. So, great interest lies in the sum of
runtimes obtained over such grids.

For this reason, we show in Table 3 the total runtime for the three considered algorithms
over each grid of problems generated from data sets of Tables 1 and 2. We can see that
TLD-ISMO has been faster at solving the 25 problems with respect to the two versions of
SMO with each of the 17 employed data sets. In particular, in some cases, e.g. for a9a,
covtype and cod-rna, the amount of time saved is massive. Also, in the case of HIGGS,
in addition to reducing the total runtime, TLD-ISMO proved to be able to complete the
training process within the time limit in cases where the SMO procedures could not.

4.8 Relevance of the cache size

Up to this point we have been keeping the cache size fixed throughout all of our experiments.
The rational behind such a choice is that of analyzing cases where only a certain percentage
of the Hessian matrix can be stored, no matter of the actual size of the data.

However, it is indeed interesting seeing what the real impact is of exploiting, when
possible, a larger amount of memory. We conducted supplementary experiments to this
aim.

30

Two-Level Decomposition for SVM Training

10
2

10
3

10
4

Ca
ch

e
siz

e
(M

B)

13
2

13
4

13
6

13
8

14
0

14
2

14
4

14
6

14
8

runtime (s)

C:
 1

, g
am

m
a:

 0
.0

12

TL
D-

IS
M

O
SM

O-
W

SS
2

SM
O-

W
SS

1

10
2

10
3

10
4

Ca
ch

e
siz

e
(M

B)

70809010
0

11
0

12
0

runtime (s)

C:
 1

0,
 g

am
m

a:
 0

.0
12

TL
D-

IS
M

O
SM

O-
W

SS
2

SM
O-

W
SS

1

10
2

10
3

10
4

Ca
ch

e
siz

e
(M

B)

5010
0

15
0

20
0

25
0

30
0

35
0

40
0

runtime (s)

C:
 1

00
, g

am
m

a:
 0

.0
12

TL
D-

IS
M

O
SM

O-
W

SS
2

SM
O-

W
SS

1

10
2

10
3

10
4

Ca
ch

e
siz

e
(M

B)

10
0

15
0

20
0

25
0

30
0

runtime (s)

C:
 1

, g
am

m
a:

 1
.2

TL
D-

IS
M

O
SM

O-
W

SS
2

SM
O-

W
SS

1

10
2

10
3

10
4

Ca
ch

e
siz

e
(M

B)

10
0

15
0

20
0

25
0

30
0

35
0

runtime (s)

C:
 1

0,
 g

am
m

a:
 1

.2

TL
D-

IS
M

O
SM

O-
W

SS
2

SM
O-

W
SS

1

10
2

10
3

10
4

Ca
ch

e
siz

e
(M

B)

10
0

15
0

20
0

25
0

30
0

35
0

40
0

runtime (s)

C:
 1

00
, g

am
m

a:
 1

.2

TL
D-

IS
M

O
SM

O-
W

SS
2

SM
O-

W
SS

1

10
2

10
3

10
4

Ca
ch

e
siz

e
(M

B)

40
0

60
0

80
0

10
00

12
00

runtime (s)

C:
 1

, g
am

m
a:

 1
20

TL
D-

IS
M

O
SM

O-
W

SS
2

SM
O-

W
SS

1

10
2

10
3

10
4

Ca
ch

e
siz

e
(M

B)

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

runtime (s)

C:
 1

0,
 g

am
m

a:
 1

20

TL
D-

IS
M

O
SM

O-
W

SS
2

SM
O-

W
SS

1

10
2

10
3

10
4

Ca
ch

e
siz

e
(M

B)

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

runtime (s)

C:
 1

00
, g

am
m

a:
 1

20

TL
D-

IS
M

O
SM

O-
W

SS
2

SM
O-

W
SS

1

F
ig

u
re

11
:

R
u

n
ti

m
es

ob
ta

in
ed

b
y

T
L

D
-I

S
M

O
an

d
S

M
O

(e
q
u

ip
p

ed
w

it
h

W
S

S
1

an
d

W
S

S
2)

o
n

d
iff

er
en

t
p

ro
b

le
m

s,
va

ry
in

g
th

e
si

ze
of

th
e

ca
ch

e.
T

h
e

p
ro

b
le

m
s

ar
e

ob
ta

in
ed

fr
om

th
e
r
e
a
l
-
s
i
m

d
at

a
se

t,
w

it
h

d
iff

er
en

t
h
y
p

er
p

a
ra

m
et

er
s

se
tt

in
g
s.

31

Galvan, Lapucci, Lin and Sciandrone

For this experiment we employed a different computer w.r.t. the tests described in the
previous sections; specifically, we used an Intel Xeon Gold 5120 with 26 cores and a 40 GB
RAM. We made this choice in order to have enough memory for possibly storing the entire
Hessian matrix of one of the large problems, which are particularly significant in practice.
We indeed picked the real-sim data set, i.e., the largest data set in our benchmark whose
Hessian matrix is less than 40 GB (it actually occupies nearly 20 GB), to carry out the
experiment.

The experiment consisted in repeating the training process on a set of SVM training
problems, with a number of different setups in terms of cache size, using TLD-ISMO (q = 20)
and SMO equipped with WSS1 and WSS2 . Since we had to vary the cache size parameter
in addition to the hyperparameters C and γ, this time we defined a 3× 3 grid of problems,
generated from the real-sim data set. We tested for each problem 10 different values for
the cache size, selected by a logarithmic scale from the base size 100 MB to the 20 GB
required to store the entire Hessian matrix.

The results, in terms of runtime, are shown in Figure 11. We can observe that in most
cases the performance of the algorithms does not have significant improvements as the cache
size increases. This trend only changes when the available memory starts to be relatively
large w.r.t. the full Hessian size. We can also see that TLD-ISMO typically maintains its
competitiveness, independently of the cache size.

In order to better understand these results, analyzing how the number of kernel com-
putations changes with the cache size is interesting. Indeed, kernel computation is the
component of the computational cost that can be reduced by increasing the memory at
one’s disposal. We show in Figure 12 how many times the Hessian columns have been
(re)computed in each run of each considered algorithm. We also plot lines that indicate the
number of columns of the entire Hessian matrix, i.e., the number of columns that are com-
puted if kernels were precomputed and stored, and of the number of support vectors, i.e.,
approximately the number of the columns that are actually used during the optimization
process.

We can then see that the plots resemble those concerning the runtimes, particularly
for problems with larger C, which is not surprising. We can also note that the number of
computed columns really always converges, as the cache size increases, to approximately
the number of support vectors. Moreover, we see that in many cases the decomposition
methods compute, if enough memory is available, less kernels than we would have done by
pre-computing and storing the entire Hessian matrix.

32

Two-Level Decomposition for SVM Training

10
2

10
3

10
4

Ca
ch

e
siz

e
(M

B)

32
50

0

33
00

0

33
50

0

34
00

0

34
50

0

35
00

0
computed Hessian columns

C:
 1

, g
am

m
a:

 0
.0

12

TL
D-

IS
M

O
SM

O-
W

SS
2

SM
O-

W
SS

1
Su

pp
or

t V
ec

to
rs

10
2

10
3

10
4

Ca
ch

e
siz

e
(M

B)

15
00

0

17
50

0

20
00

0

22
50

0

25
00

0

27
50

0

30
00

0

32
50

0

computed Hessian columns

C:
 1

0,
 g

am
m

a:
 0

.0
12

TL
D-

IS
M

O
SM

O-
W

SS
2

SM
O-

W
SS

1
Su

pp
or

t V
ec

to
rs

10
2

10
3

10
4

Ca
ch

e
siz

e
(M

B)

20
00

0

40
00

0

60
00

0

80
00

0

10
00

00

12
00

00

computed Hessian columns

C:
 1

00
, g

am
m

a:
 0

.0
12

TL
D-

IS
M

O
SM

O-
W

SS
2

SM
O-

W
SS

1
Su

pp
or

t V
ec

to
rs

Pr
ec

om
pu

te
d

10
2

10
3

10
4

Ca
ch

e
siz

e
(M

B)

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

computed Hessian columns

C:
 1

, g
am

m
a:

 1
.2

TL
D-

IS
M

O
SM

O-
W

SS
2

SM
O-

W
SS

1
Su

pp
or

t V
ec

to
rs

Pr
ec

om
pu

te
d

10
2

10
3

10
4

Ca
ch

e
siz

e
(M

B)

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

computed Hessian columns

C:
 1

0,
 g

am
m

a:
 1

.2

TL
D-

IS
M

O
SM

O-
W

SS
2

SM
O-

W
SS

1
Su

pp
or

t V
ec

to
rs

Pr
ec

om
pu

te
d

10
2

10
3

10
4

Ca
ch

e
siz

e
(M

B)

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

computed Hessian columns

C:
 1

00
, g

am
m

a:
 1

.2

TL
D-

IS
M

O
SM

O-
W

SS
2

SM
O-

W
SS

1
Su

pp
or

t V
ec

to
rs

Pr
ec

om
pu

te
d

10
2

10
3

10
4

Ca
ch

e
siz

e
(M

B)

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

computed Hessian columns

C:
 1

, g
am

m
a:

 1
20

TL
D-

IS
M

O
SM

O-
W

SS
2

SM
O-

W
SS

1
Su

pp
or

t V
ec

to
rs

Pr
ec

om
pu

te
d

10
2

10
3

10
4

Ca
ch

e
siz

e
(M

B)

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

40
00

00

computed Hessian columns

C:
 1

0,
 g

am
m

a:
 1

20

TL
D-

IS
M

O
SM

O-
W

SS
2

SM
O-

W
SS

1
Su

pp
or

t V
ec

to
rs

Pr
ec

om
pu

te
d

10
2

10
3

10
4

Ca
ch

e
siz

e
(M

B)

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

40
00

00

computed Hessian columns

C:
 1

00
, g

am
m

a:
 1

20

TL
D-

IS
M

O
SM

O-
W

SS
2

SM
O-

W
SS

1
Su

pp
or

t V
ec

to
rs

Pr
ec

om
pu

te
d

F
ig

u
re

12
:

N
u

m
b

er
o
f

H
es

si
an

co
lu

m
n

s
(r

e)
co

m
p

u
te

d
b
y

T
L

D
-I

S
M

O
an

d
S

M
O

(e
q
u

ip
p

ed
w

it
h

W
S

S
1

a
n

d
W

S
S

2)
on

d
iff

er
en

t
p

ro
b

le
m

s,
va

ry
in

g
th

e
si

ze
o
f

th
e

ca
ch

e.
T

h
e

p
ro

b
le

m
s

ar
e

ob
ta

in
ed

fr
om

th
e
r
e
a
l
-
s
i
m

d
a
ta

se
t,

w
it

h
d
iff

er
en

t
h
y
p

er
p

ar
am

et
er

s
se

tt
in

gs
.

33

Galvan, Lapucci, Lin and Sciandrone

5. Conclusions

Decomposition schemes are a popular and effective way to solve the optimization problem
underlying the training stage of kernel SVMs. A decomposition algorithm reduces the
training problem to the solution of several smaller sub-problems of 2 or more variables.
However, solving sub-problems of more than two variables is often significantly harder and,
thus, not computationally convenient.

In this work we proposed a novel way to deal with sub-problems of more than two
variables. Namely, since the sub-problems share the same structure and formulation of the
original SVM training problem, we solved the sub-problems with the same SMO technique
that is used in state-of-art solvers like LIBSVM to solve the original problem.

Numerical evidence is provided to show that employing SMO to solve the sub-problems
compares favorably, for up to 50 variables, with other state-of-the-art solvers designed to
solve sub-problems of more than two variables, like GVPM and the Dai-Fletcher method.

We then equipped the decomposition algorithm with a novel working set selection rule
which exploits both first and second order information, with the addition of “cached vari-
ables” for large data sets. The rule yields sub-problems of a minimum of 4 variables for
small data sets to a few tens for larger ones.

Finally we compared the whole decomposition scheme, where the sub-problems gener-
ated by the novel working set selection rule are solved with SMO, against state-of-art solvers
like LIBSVM. The numerical evidence shows that the proposed approach significantly out-
performs LIBSVM on a large and diverse range of data sets.

Future work will be devoted to investigate the use of sub-problems of more than 50
variables, where the benefits of the current approach start to wear off. A potentially effective
way to deal with larger sub-problems could be that of further decomposing them into sub-
sub-problem and use, again, SMO to solve them in a recursive way.

Moreover, an in-depth study to investigate the effects of the shrinking heuristic combined
with a working set selection rule exploiting cached information, such as the one proposed
in this work, might be of particular interest.

Acknowledgments

We would like to thank the action editor and the anoymous reviewers whose comments
helped us to improve the quality of the paper.

References

Shigeo Abe. Batch support vector training based on exact incremental training. In Inter-
national Conference on Artificial Neural Networks, pages 295–304. Springer, 2008.

Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-
energy physics with deep learning. Nature communications, 5:4308, 2014.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for
optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, pages 144–152. ACM, 1992.

34

Two-Level Decomposition for SVM Training

Leon Bottou, Olivier Chapelle, Dennis DeCoste, and Jason Weston. Support Vector Machine
Solvers. MIT Press, 2007.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27, 2011.

Chih-Chung Chang, Chih-Wei Hsu, and Chih-Jen Lin. The analysis of decomposition meth-
ods for support vector machines. IEEE Transactions on Neural Networks, 11(4):1003–
1008, 2000.

Pai-Hsuen Chen, Rong-En Fan, and Chih-Jen Lin. A study on SMO-type decomposition
methods for support vector machines. IEEE Transactions on Neural Networks, 17(4):
893–908, 2006.

Ronan Collobert, Samy Bengio, and Yoshua Bengio. A parallel mixture of SVMs for very
large scale problems. In Advances in Neural Information Processing Systems, pages 633–
640, 2002.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):
273–297, 1995.

Yu-Hong Dai and Roger Fletcher. New algorithms for singly linearly constrained quadratic
programs subject to lower and upper bounds. Mathematical Programming, 106(3):403–
421, 2006.

Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with perfor-
mance profiles. Mathematical programming, 91(2):201–213, 2002.

Dheeru Dua and Efi Karra Taniskidou. UCI machine learning repository, 2017. URL
http://archive.ics.uci.edu/ml.

Rong-En Fan, Pai-Hsuen Chen, and Chih-Jen Lin. Working set selection using second order
information for training support vector machines. Journal of Machine Learning Research,
6(Dec):1889–1918, 2005.

Thilo-Thomas Frie, Nello Cristianini, and Colin Campbell. The kernel-adatron algorithm:
a fast and simple learning procedure for support vector machines. In Machine Learning:
Proceedings of the Fifteenth International Conference (ICML’98), pages 188–196, 1998.

Tobias Glasmachers and Christian Igel. Maximum-gain working set selection for SVMs.
Journal of Machine Learning Research, 7(Jul):1437–1466, 2006.

Todd R. Golub, Donna K. Slonim, Pablo Tamayo, Christine Huard, Michelle Gaasenbeek,
Jill P. Mesirov, Hilary Coller, Mignon L. Loh, James R. Downing, Mark A. Caligiuri,
et al. Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring. Science, 286(5439):531–537, 1999.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep
residual networks. In European conference on computer vision, pages 630–645. Springer,
2016.

35

http://archive.ics.uci.edu/ml

Galvan, Lapucci, Lin and Sciandrone

Chih-Wei Hsu and Chih-Jen Lin. A simple decomposition method for support vector ma-
chines. Machine Learning, 46(1-3):291–314, 2002.

Thorsten Joachims. Making large-scale support vector machine learning practical. In Bern-
hard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Advances in
Kernel Methods, pages 169–184. MIT Press, Cambridge, MA, USA, 1999. ISBN 0-262-
19416-3.

Sathiya S. Keerthi and Dennis DeCoste. A modified finite Newton method for fast solution
of large scale linear SVMs. Journal of Machine Learning Research, 6(Mar):341–361, 2005.

Sathiya S. Keerthi, Shirish K. Shevade, Chiranjib Bhattacharyya, and Krishna R.K. Murthy.
A fast iterative nearest point algorithm for support vector machine classifier design. IEEE
Transactions on Neural Networks, 11(1):124–136, 2000.

Sathiya S. Keerthi, Shirish K. Shevade, Chiranjib Bhattacharyya, and Karuturi R.K.
Murthy. Improvements to Platt’s SMO algorithm for SVM classifier design. Neural
Computation, 13(3):637–649, 2001.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
2009.

David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. Rcv1: A new benchmark collection
for text categorization research. Journal of Machine Learning Research, 5(Apr):361–397,
2004.

Chih-Jen Lin. On the convergence of the decomposition method for support vector machines.
IEEE Transactions on Neural Networks, 12(6):1288–1298, 2001.

Chih-Jen Lin. Asymptotic convergence of an SMO algorithm without any assumptions.
IEEE Transactions on Neural networks, 13(1):248–250, 2002a.

Chih-Jen Lin. A formal analysis of stopping criteria of decomposition methods for support
vector machines. IEEE Transactions on Neural Networks, 13(5):1045–1052, 2002b.

Chih-Jen Lin and Jorge J Moré. Newton’s method for large bound-constrained optimization
problems. SIAM Journal on Optimization, 9(4):1100–1127, 1999.

Chih-Jen Lin, Stefano Lucidi, Laura Palagi, Arnaldo Risi, and Marco Sciandrone. Decom-
position algorithm model for singly linearly-constrained problems subject to lower and
upper bounds. Journal of Optimization Theory and Applications, 141(1):107–126, 2009.

Stefano Lucidi, Laura Palagi, Arnaldo Risi, and Marco Sciandrone. A convergent decom-
position algorithm for support vector machines. Computational Optimization and Appli-
cations, 38(2):217–234, 2007.

Stefano Lucidi, Laura Palagi, Arnaldo Risi, and Marco Sciandrone. A convergent hybrid de-
composition algorithm model for SVM training. IEEE Transactions on Neural Networks,
20(6):1055–1060, 2009.

36

Two-Level Decomposition for SVM Training

Olvi L Mangasarian and David R Musicant. Successive overrelaxation for support vector
machines. IEEE Transactions on Neural Networks, 10(5):1032–1037, 1999.

Edgar Osuna, Robert Freund, and Federico Girosi. An improved training algorithm for
support vector machines. In Neural Networks for Signal Processing VII. Proceedings of
the 1997 IEEE Signal Processing Society Workshop, pages 276–285. IEEE, 1997.

Fernando Pérez-Cruz, Anıbal R Figueiras-Vidal, and Antonio Artés-Rodŕıguez. Double
chunking for solving svms for very large datasets. Proceedings of Learning, 2004.

Veronica Piccialli and Marco Sciandrone. Nonlinear optimization and support vector ma-
chines. 4OR, 16(2):111–149, 2018.

John C. Platt. Advances in kernel methods. chapter Fast Training of Support Vector
Machines Using Sequential Minimal Optimization, pages 185–208. MIT Press, Cambridge,
MA, USA, 1999.

Danil Prokhorov. IJCNN 2001 neural network competition. Slide presentation in IJCNN,
2001.

Craig Saunders, Mark O Stitson, Jason Weston, Leon Bottou, A Smola, et al. Support
vector machine reference manual. Technical Report CSD-TR-98-03, 1998.

Thomas Serafini and Luca Zanni. On the working set selection in gradient projection-
based decomposition techniques for support vector machines. Optimization Methods and
Software, 20(4-5):583–596, 2005.

Norikazu Takahashi and Tetsuo Nishi. Global convergence of decomposition learning meth-
ods for support vector machines. IEEE Transactions on Neural Networks, 17(6):1362–
1369, 2006.

Andrew V Uzilov, Joshua M Keegan, and David H Mathews. Detection of non-coding
rnas on the basis of predicted secondary structure formation free energy change. BMC
Bioinformatics, 7(1):173, 2006.

Robert J Vanderbei. Loqo: An interior point code for quadratic programming. Optimization
Methods and Software, 11(1-4):451–484, 1999.

SVM Vishwanathan and M Narasimha Murty. SSVM: a simple SVM algorithm. In Pro-
ceedings of the 2002 International Joint Conference on Neural Networks. IJCNN’02.,
volume 3, pages 2393–2398. IEEE, 2002.

Hsiang-Fu Yu, Fang-Lan Huang, and Chih-Jen Lin. Dual coordinate descent methods for
logistic regression and maximum entropy models. Machine Learning, 85(1-2):41–75, 2011.

Guo-Xun Yuan, Chia-Hua Ho, and Chih-Jen Lin. An improved GLMNET for l1-regularized
logistic regression. Journal of Machine Learning Research, 13(Jun):1999–2030, 2012.

Luca Zanni. An improved gradient projection-based decomposition technique for support
vector machines. Computational Management Science, 3(2):131–145, 2006.

37

Galvan, Lapucci, Lin and Sciandrone

Qiaozhi Zhang, Di Wang, and Yanguo Wang. Convergence of decomposition methods for
support vector machines. Neurocomputing, 317:179–187, 2018.

38

	Introduction
	Decomposition methods for SVM training
	Related methods for SVM training

	The proposed algorithm
	Solving the subproblems
	A novel working set selection rule
	Convergence properties of the proposed algorithm

	Numerical experiments
	Benchmark problems and experiments setup
	Performance profiles
	Computational evidence on inner SMO efficiency
	Evaluation of different working set sizes
	Experimental analysis of working set selection rules
	Analysis of the effects of adding cached variables
	Overall evaluation of TLD-ISMO with WSS-MIX
	Relevance of the cache size

	Conclusions

