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Abstract

The pervasive prevalence of algorithmic decision-making in societal domains necessitates
that these algorithms satisfy reasonable notions of fairness. One compelling notion is that of
individual fairness (IF), which advocates that similar individuals should be treated similarly
(Dwork et al. 2012). In this paper, we extend the notion of IF to online contextual decision-
making in settings where there exists a common notion of conduciveness of decisions as
perceived by the affected individuals. We introduce two definitions: (i) fairness-across-
time (FT) and (ii) fairness-in-hindsight (FH). FT requires the treatment of individuals to
be individually fair relative to the past as well as future, while FH only requires individual
fairness of a decision at the time of the decision. We show that these two definitions can
have drastically different implications when the principal needs to learn the utility model.
Linear regret relative to optimal individually fair decisions is generally unavoidable under
FT. On the other hand, we design a new algorithm: Cautious Fair Exploration (CaFE),
which satisfies FH and achieves order-optimal sublinear regret guarantees for a broad range
of settings.
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1. Introduction

Algorithms facilitate decisions in increasingly critical aspects of modern life – ranging from
search, social media, news, e-commerce, finance to determining credit-worthiness of con-
sumers, estimating a felon’s risk of reoffending, determining candidacy for clinical trials,
etc. Their pervasive prevalence has motivated a large body of scientific literature in recent
years that examines the effect of automated decisions on human well-being, and in partic-
ular, seeks to understand whether these effects are fair under various notions of fairness
(Dwork et al. 2012, Sweeney 2013, Kleinberg et al. 2017, Angwin et al. 2016, Hardt et al.
2016, Chouldechova 2017, Chouldechova and G’Sell 2017, Corbett-Davies and Goel 2018).

In this context of automated decisions, fairness is often considered in a relative sense
rather than an absolute sense. In his 1979 Tanner lectures, economist Amartya Sen elo-
quently argued that the heart of the issue rests on clarifying the “equality of what?” problem
(Sen 2013). Equality can be desired with respect to opportunity (Hardt et al. 2016), out-
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comes (Phillips 2004), treatment (Dwork et al. 2012), or even mistreatment (Zafar et al.
2017). In this paper, we consider the notion of individual fairness (Dwork et al. 2012), that
relies on the premise of equality of treatment, requiring that “similar” individuals must
be treated “similarly”. This intuitively compelling notion of fairness was proposed in the
influential work of Dwork et al. (2012) in the context of classification in supervised learning
and has since been studied under several settings (see Yona and Rothblum 2018, Dwork and
Ilvento 2018, Heidari and Krause 2018). The key idea is to introduce a Lipschitz condition
on the decisions of a classifier, such that for any two individuals x, y that are at distance
d(x, y), the corresponding distributions over decisions M(x) and M(y) are also statistically
close within a distance of some multiple of d(x, y).

Individual fairness, as initially defined, is a static notion that pertains to offline or batch
decisions. Because many algorithms for automated decision-making are sequential, in this
paper, we propose an extension of individual fairness that explicitly accounts for the time
at which decisions are made. We specifically focus on settings where there exists a common
notion of conduciveness of decisions from the perspective of the individuals affected by these
decisions; e.g., approval of a higher loan amount is more conducive to a loan applicant than
the approval of a smaller amount, a shorter jail term is more conducive from the perspective
of a convict, lower prices are more conducive for shoppers, etc.

As a motivating example, suppose two similar1 persons A and B apply for a loan at
a bank, and the bank approves a substantially higher loan amount to B than to A. This
would be perceived as unfair (in the colloquial sense) by A, but maybe not by B. Under
the classical definition of individual fairness, this distinction is irrelevant—implicitly, it is
sufficient that either of the two similar individuals finds a drastically different treatment
problematic, and hence the loan amounts approved for A and B must be similar.

The introduction of time allows for a richer treatment of the case above. For instance,
if A applied for the loan earlier than B, then the treatment of A can still be defined to be
fair as long as A got approved of a loan that is (approximately) at least as much as that
approved for similar people who applied before her. In other words, A’s treatment by the
bank can be deemed to be fair solely based on the history of decisions at the time when
the loan was approved, despite the fact that this treatment turns out to be “individually
unfair” in retrospect when B later gets approved for a substantially higher amount.

Armed with this basic intuition, we define fairness-in-hindsight: decisions are said to
be fair in hindsight if the decisions for incoming individuals are individually fair relative
to the past decisions for similar individuals, in the sense that they become more conducive
over time by respecting a certain lower bound for rewards or an upper bound for penalties.
To contrast this notion and to serve as a baseline, we also consider a more straightforward
temporal extension of individual fairness, which we call fairness-across-time, where the
treatments of individuals are required to be individually-fair relative to the past as well
as the future. This means that similar individuals must always receive similar treatment
irrespective of when they arrive: neither more conducive nor less conducive than what is
justified by their degree of dissimilarity.

Our main technical contribution is to study the implications of these fairness constraints
in situations where an algorithm operates under partial information and needs to learn good

1. We discuss issues with defining such similarity in Section 2, but for now assume that this means two
persons with exactly same observable attributes.
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decisions over time. Formally, we consider a general online decision-making problem under
uncertainty that falls into the class of stochastic contextual bandit problems that have
been well-studied in literature (see, for example, Section 5 of Lattimore and Szepesvári
(2020) for an overview). In this problem, individuals with observable contextual information
(henceforth, we will refer to these as simply “contexts”) arrive over time, and they have to
be mapped to decisions by an algorithm. We assume that the contexts belong to a finite set.
We further assume that the decisions are scalar and lie in a compact set identified with [0, 1],
e.g., a decision can represent the loan approved to a context or a price offered to a customer.
The utility generated for each context and decision pair is random, whose distributional
dependence on the pair is unknown to the algorithm; the specification of this dependence
is henceforth referred to as the utility model. Our main assumption is that the uncertainty
in the knowledge of the utility model is over a finite set of possible models. This restriction
to a finite set allows a convenient abstraction to illustrate the key ideas in operationalizing
fairness-in-hindsight. Continuous parameterizations of model uncertainty may have to be
chosen dependent on the application in question and are interesting directions for future
research; we discuss this in Section 6.

A standard performance metric in any such sequential decision-making settings featuring
learning is the regret incurred by an oblivious algorithm that does not a priori know the
utility model. This is defined as the difference between the optimal utility if the underlying
utility model was known and the utility achieved under the algorithm. It is desirable that
an algorithm ensures that the average asymptotic regret converges to 0, i.e., informally, it
eventually learns the utility model and settles on optimal decisions.

The notion of treating similar individuals similarly, always, seems restrictive in such
uncertain settings where it is a priori unclear which decisions are good. The large body
of literature on sequential decision-making under uncertainty has shown that a certain
degree of experimentation, at least in the early stages, could be fundamentally necessary
to learn good decisions in the long run. But under the fairness-across-time constraint, bad
decisions made in the early stages of experimentation may have to be repeated forever.
This feature typically has dire consequences on regret. Under fairness-across-time, except
for trivial settings, the expected regret against the benchmark of an optimal individually
fair decision-rule grows linearly with the decision horizon. This is a fairly straightforward
observation, illustrated in the example below, that is nevertheless worth formalizing.

Example 1 Consider a bank making loan approval decisions in a new market that it has
just entered. The decision space is X = [0, 1] representing the amount of loan sanctioned
(normalized to 1). Consider a hypothetical setting where the only feature that the bank
observes is the applicant’s age, and it does not a priori know whether age is positively or
negatively correlated with default probability. If the first applicant A is young, say 18 years
old, and is given a loan of amount $M, then any future applicant B aged 18 must be given
$M to satisfy fairness-across-time. But this decision of $M loan is bound to be suboptimal
and leads to a linear regret in either situation: (a) when M is small, and age is positively
correlated with default probability, or (b) when M is large, and age is negatively correlated
with default probability.

In contrast, we demonstrate that the situation is not as pessimistic under fairness-
in-hindsight: the possibility that decisions can become more conducive over time gives a
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powerful leeway that allows algorithms to learn and settle on good decisions over time.
Formally, we design an algorithm that we call Cautious Fair Exploration (CaFE), which is
individually fair in hindsight and attains sub-linear regret guarantees as compared to the
optimal individually-fair benchmark in a wide range of settings.

CaFE operates in two phases, exploration and exploitation. In the exploration phase,
the decisions are conservative, and the goal is to learn the utility model. Once the utility
model is learned with the appropriate confidence, the algorithm enters the exploitation
phase, when the decisions are then allowed to become more conducive for the appropriate
individuals while ensuring individual fairness. The following example illustrates this point.

Example 2 Consider Example 1. In this case, the bank can approve a small amount of
loan, say ε, to each applicant in an initial exploration phase. Once the bank learns the
correlation structure with appropriate confidence, it can start approving loans for larger
amounts as appropriate in an individually fair manner while guaranteeing a loan of ε to
everyone. This ensures fairness-in-hindsight.

CaFE critically relies on the ability to learn with conservative decisions. But in many
situations, learning is slow in the conservative regime. For instance, in the examples above,
when the loan amount ε is small, the default probability is expected to be small irrespective
of the individual’s age. Hence, learning the correlation structure might take prohibitively
long. On the other hand, if ε is large, then after having learned the model, the bank is
forced to approve an amount of at least ε to individuals with a high default probability,
leading to high regret. Thus, in these situations, there is a fundamental tradeoff between
conservatism and the learning rate that is relevant to the overall regret incurred. Our
technical results shed light on how decisions should be chosen in the exploration phase to
balance this tradeoff to minimize regret. Our sublinear upper bounds on the regret of the
resulting algorithm are accompanied by matching lower bounds that justify our design.

The paper is organized as follows. We build on the motivation for fairness-in-hindsight
in the next section and survey relevant literature in Section 3. We then present the model
and the fairness definitions in Section 4. We next present the learning problem in Section 5,
where we present most of our main technical results. In Section 6, we discuss possible
extensions and future directions. We conclude the paper in Section 7.

2. Motivation and Discussion

The notion of individual fairness over time is already ingrained in many of our societal
systems, where it provides a dynamic, tangible frame of reference for our sense of social
justice:

1. Law: In many legal systems, once a precedent is set by a ruling, decisions for similar
cases observed in the future must follow these precedents. This is often referred to as stare
decisis, i.e., to stand by things decided.2 Further, rulings at any point in time affect future
decisions by setting a precedent (prospective application of the law). In contrast, they
seldom change the decisions of past rulings (retrospective application of the law)(Friedland

2. See https://www.law.cornell.edu/wex/stare_decisis.
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1974). Therefore, the effect of a ruling is not symmetric with respect to past and future
decisions, thus bearing similarities to our unidirectional notion of fairness-in-hindsight.

2. Whataboutism: There has been a growing culture of whataboutism in society, which is
an argumentative device used to prove mistreatment by pointing to another similar context
that received a different, more conducive, treatment in the past. For example, politicians
might defend their questionable actions or advocate no-penalty since a prior political scandal
of an opposition party did not go through due process or face significant consequences.3

3. Pricing: Bolton et al. (2003) find that customers’ impression of fairness of prices criti-
cally relies on past prices that act as reference points. In particular, they find that any price
increases beyond that justified by an increase in perceived costs, e.g., due to inflationary
effects, are perceived as price gouging and unfair by the customers, and moreover, to make
matters worse for the firm, customers tend to underestimate these costs.

Given the prevalence of this notion in practice, it is natural to expect societal algorithms
to uphold these same principles. An immediate question that arises then is: what are the
implications of these constraints on the long-run performance of algorithms that typically
operate under system uncertainty? As we show through CaFE, unlike the more stringent
notion of fairness-across-time under which high regret is usually inevitable, fairness-in-
hindsight does allow us to learn and settle on good decisions over time. The conservative
exploration then exploitation structure of CaFE is intuitive and bears a resemblance to
certain features seen in existing societal systems. For instance, it is typical for legal stances
on new issues to be more conservative initially and then potentially become more liberal
over time as the impact and nuances of these issues become clear, e.g., decriminalization
laws remove penalties for actions perceived as crimes in the past. Another example is that
of markdowns in retail, where the prices of new goods that did not see anticipated demand
are decreased over time.

The issue of the metric. Dwork et al. (2012) admit that the existence and availability
of a similarity metric between individuals for a particular decision-making problem is one
of the most challenging aspects of the notion of individual fairness.

Our approach is centered around the notion of a task-specific similarity metric
describing the extent to which pairs of individuals should be regarded as similar
for the classification task at hand. The similarity metric expresses ground truth.
When ground truth is unavailable, the metric may reflect the “best” available
approximation as agreed upon by society. Following established tradition (Rawls
2001) the metric is assumed to be public and open to discussion and continual
refinement. Indeed, we envision that, typically, the distance metric would be
externally imposed, for example, by a regulatory body or externally proposed by
a civil rights organization. (Dwork et al. 2012)

3. A common argument used by the defenders of the republican US President Richard Nixon’s administra-
tion after the Watergate scandal in the United States was to point to an older unfortunate case of the
Chappaquiddick accident that democrat Ted Kennedy was implicated in; see https://bit.ly/2ORRj8L.
A similar instance is the “What about Hillary?” rhetoric used by supporters of US President Donald
Trump; see https://bit.ly/2GHRCC8.
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In the context of automated decisions, individuals typically appear as a vector of attributes
to an algorithm. However, several challenges arise in defining a metric: it is a priori unclear
which attributes of an individual should be considered to be relevant to a decision-making
task from a fairness perspective, what is the relative importance of these attributes, which
attributes must be ignored completely, etc. This choice is especially non-trivial because
there could be seemingly non-controversial attributes, e.g., a preferred genre of music, ed-
ucation, zip code, etc., that are correlated with membership in protected population sub-
groups, which could be the basis for disparate treatment under an individually fair algorithm
(Pedreshi et al. 2008).

We acknowledge that our proposal of fairness-in-hindsight inherits these concerns. How-
ever, recent works have offered compelling resolutions that attempt to achieve individual
fairness in algorithmic decisions under weaker assumptions on the knowledge of the metric.
For example, Jung et al. (2019) assumes access to a sample of pairs of individuals that
must be treated approximately equally rather than having access to the similarity metric.
Along similar lines, Gillen et al. (2018) and Bechavod et al. (2020) assume that only noisy
feedback about the similarity metric is available to the algorithm via an auditor who detects
fairness violations. We are optimistic that techniques in these works can be employed in con-
junction with CaFE to achieve fairness-in-hindsight when the metric is not precisely known.

Time as a feature. Individual fairness advocates similar treatment of similar individu-
als. A natural question is whether the time at which a decision is taken can be incorporated
as a feature, allowing increasingly different treatment of similar individuals as more time
passes. This will make learning in the online framework easier since it will allow more
flexibility of recourse in decisions. Our proposal of fairness-in-hindsight does not resort to
such a technical workaround. It stems from the belief that time is inherently not a valid
basis for allowing discriminatory decisions (in the sense of individual fairness). Such in-
corporation of time would allow, for example, giving conducive treatment to an individual
from group A and then later giving an unfavorable treatment to a similar individual from
group B, justified simply by the passage of time. Fairness-in-hindsight, on the other hand,
guarantees that the treatment of a person is individually fair at the time of the decision.

3. Related Literature

Early research on fairness in machine learning focused on the offline setting of batch super-
vised learning from observational data (Pedreshi et al. 2008, Kamiran and Calders 2009,
Calders and Verwer 2010, Kamishima et al. 2011, Dwork et al. 2012, Hardt et al. 2016,
Kleinberg et al. 2017). Only recently has the literature started looking at the implications
of fairness constraints in online learning settings. Our model and results complement a
small but growing body of literature in this domain (Joseph et al. 2016b, Liu et al. 2017,
Gillen et al. 2018, Heidari and Krause 2018, Celis et al. 2018, Joseph et al. 2016a, Elzayn
et al. 2019). The two papers most related to our work are Joseph et al. (2016b) and Heidari
and Krause (2018) that we discuss below.

Joseph et al. (2016b) pioneered the study of the impact of fairness constraints on learning
in a contextual multi-armed bandit setting under a utility maximization objective. They
propose a meritocratic notion of fairness so that with high probability over the entire decision
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horizon, the probability of picking an arm (i.e., a subgroup) at any time is monotonic in its
underlying mean reward. Their notion of fairness is, however, limited to individuals that
appear within each time period. In contrast, our notion of fairness is defined relative to all
those who arrived in the past.

In a recent work of Heidari and Krause (2018), the authors extend individual fairness
to account for the notion of time and study its impact on learning. They consider an
online supervised learning problem from a class of model hypotheses under the probably-
approximately-correct (PAC) learning framework and propose that decisions for individuals
that arrive within a fixed number of time periods (say M) of each other must satisfy
individual fairness. They design an algorithm that is asymptotically consistent, i.e., it learns
and settles on the true hypothesis with high probability. In contrast, we propose fairness-in-
hindsight by only requiring lower bounds on present decisions to satisfy individual fairness
relative to all past decisions, motivated by the notion of conduciveness of decisions. We
do not require an exogenous choice of the window of time periods (i.e., M) across which
individual fairness must hold. Moreover, our focus is on learning for utility maximization
as opposed to pure learning.

Several other works have recently appeared in this domain. Jabbari et al. (2017) extend
the notion of fairness in Joseph et al. (2016b) to the setting of reinforcement learning.
Liu et al. (2017) and Gillen et al. (2018) study the model of Joseph et al. (2016b) under
different notions of individual fairness. Liu et al. (2017) require similar probabilities of
picking two arms whose quality distribution is similar. They study calibration under this
requirement since the definition is not restrictive enough, e.g., it does not require that these
probabilities are monotonic in the average quality. Gillen et al. (2018) require that similar
individuals must face a similar probability of being chosen by the algorithm, except that
only noisy feedback about the distance metric between individuals is available. They study
the problem of regret minimization compared to optimal individually fair policy relative
to the true metric. Celis et al. (2018) consider a contextual bandit problem arising in
personalization and address the problem of ensuring another notion of fairness called group
fairness4 across time. In all of these works, the settings, the models, and the fairness
constraints are different from those we consider in the present work.

4. Static and Dynamic Models

We now define the models of contextual decision-making that we will focus on in the rest
of the paper. The first model is static and does not feature time, while the second is a
dynamic model explicitly incorporating time.

4.1 The static model

Consider a principal responsible for mapping contexts c ∈ C to scalar decisions x ∈ X =
[0, 1], where C is a finite set with |C| = C. We assume that the contexts are drawn from
some distribution D over C. For a context c and decision x, the principal observes a

4. Group fairness tries to address the issue of disparate impact in automated decisions: which refers to
practices that collectively allocate a more favorable outcome to one population subgroup compared to
another. An algorithm satisfies group fairness, aka statistical parity, if its decisions are independent of
membership in any subgroup.
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random utility U drawn from some distribution F(x, c) over R and we will often work
with the corresponding expected utility ū(x, c) , EF(x,c)(U). We assume that ū(x, c) is
continuous and concave in x ∈ X for each c ∈ C. Continuity implies that that ū(x, c) is
uniformly bounded, i.e., maxc∈C,x∈X |ū(x, c)| ≤ B < ∞. We first consider the case when
the distribution F is known to the principal; i.e., no learning is required and we will later
consider the case where this distribution needs to be learned in Section 5.

Example 3 Suppose that the principal is a bank that is making loan approval decisions.
The decision space is X = [0, 1] representing the amount of loan sanctioned (normalized to
1). The probability of loan default depends on both the loan amount x and the type c of the
applicant belonging to the finite set of types C. Suppose that for a type c and a loan amount
x, the probability of loan default is estimated to be p(x, c). For a decision, x, the utility of
the bank is −x if there is a default and it is βx (the net present value of the interest) if
there is no default, i.e.,

U =

{
−x w.p. p(x, c)
βx w.p. 1− p(x, c).

Then, the expected utility is ū(x, c) = −xp(x, c) + βx(1− p(x, c)) = x(β − p(x, c)(1 + β)).

Suppose that for any two contexts in C, there exists a commonly agreed-upon distance
between them as defined by a function dC : C × C → R+. We assume that this function
defines a metric on C; in particular, it is non-negative, satisfies the triangle inequality, and
the distance of a context to itself is zero. Consider the following definition of an individually
fair decision-rule in the spirit of Dwork et al. (2012).

Definition 1 (Dwork et al. 2012) A decision-rule φ is K-Lipschitz for K ∈ [0,∞) if

|φ(c)− φ(c′)| ≤ KdC(c, c′) for all c, c′ ∈ C. (1)

Let ΦK : C → X be the space of K-Lipschitz decision-rules that map contexts to decisions.
The optimization problem of the principal is to choose a K-Lipschitz decision-rule that
maximizes the expected utility. We define the maximum expected utility over K-Lipschitz
decision-rules as:

UK , max
φ∈ΦK

ED[ū(φ(c), c)]. (2)

Given the concavity of ū(x, c) in x ∈ X for each c ∈ C, this problem can be solved as a finite
convex program, since C is assumed to be finite.

4.2 The dynamic model

Consider now a discrete time dynamic setting where time is denoted as t = 1, · · · , T and
contexts ct ∈ C are drawn i.i.d. from the distribution D over C at each time period. The
principal makes a decision xt ∈ X = [0, 1], using a policy ψ that maps the sequence of
contexts seen up to time t, the corresponding decisions up to time t − 1, and the utility
outcomes up to time t − 1 to the decision xt (for all t ≥ 1). Note that a policy is distinct
from a decision-rule: a decision-rule is a static object that maps every possible context to a
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decision, whereas a policy adaptively maps contexts to decisions as it encounters them, pos-
sibly mapping the same context to different decisions across time. As in the static case, for
context ct and decision xt, the principal obtains a random utility Ut, drawn from the distri-
bution F(xt, ct) independently of the past. Given the contexts observed and decisions taken,
the expected utility of the principal until time T is given by

∑T
t=1 E[Ut] =

∑T
t=1 ū(xt, ct).

We consider the following two definitions of fairness of policies.

Definition 2 (Fairness-across-time) We say that a policy is fair-across-time (FT) with
respect to the function K(s) : N → R+ if the decisions it generates for any sequence of
contexts satisfy,

|xt − xt′ | ≤ K(|t′ − t|)dC(ct, ct′) for all t′ 6= t. (3)

When K(s) = K for some K ∈ [0,∞), we say that the policy is K-fair-across-time (K-FT).

Note that by setting K(·) to be a monotone increasing function, one can model the scenario
where the past decisions have a diminishing impact on the future decisions dependent on
the amount of time passed. However, even if K is monotone increasing, fairness-across-time
requires that any particular context must be mapped to the same decision irrespective of
when it arrives in time (and this hinders learnability as we discuss further in Section 5).

Definition 3 (Fairness-in-hindsight) We say that a policy is fair-in-hindsight (FH) with
respect to the function K(s) : N → R+ if the decisions it generates for any sequence of
contexts satisfy,

xt ≥ xt′ −K(t− t′)dC(ct, ct′) for all t ≥ t′. (4)

When K(s) = K for some K ∈ [0,∞), we say that the policy is K-fair-in-hindsight (K-FH).

Note that fair-in-hindsight policies must make monotone (non-decreasing) decisions over
time for any given context, assuming that higher decisions are more conducive5. In fact,
setting K(s) = 0 for all s, we recover policies that make monotone decisions over time
irrespective of the context.

Let ΨT
K-FT and ΨT

K-FH be the space of T -horizon policies that are K-FT and K-FH
respectively. Let the maximum attainable expected utility up to time T using K-FT and
K-FH policies be UTK-FT and UTK-FH:

UTK-FT := max
ψ∈ΨTK-FT

T∑
t=1

ED[ū(xt, ct)], UTK-FH := max
ψ∈ΨTK-FH

T∑
t=1

ED[ū(xt, ct)]. (5)

It is clear that both UTK-FT ≥ TUK and UTK-FH ≥ TUK , since one can simply use the optimal
K-Lipschitz decision-rule at every stage. But for small horizons, one can potentially do
better. Intuitively, this is because you may not expect to encounter all the contexts within
a short horizon; hence the fairness constraints are expected to be less constraining, thus

5. If lower decisions are more conducive from the perspective of an individual (e.g., x is the amount of
penalty), then we can transform the decision space by mapping x to 1−x so that the higher transformed
decisions are more conducive.
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offering more flexibility in mapping contexts to decisions. For the interested reader, we
present an example below to show that one can attain a higher utility under FH than under
FT, and both these notions can lead to a higher utility that following the static optimal
K-Lipschitz decision-rule when the horizon is small.

Example 4 Let T = 2. Suppose there are two contexts: A, B where A is seen with
probability 1/12 and B is seen with probability 11/12. Let the expected utility be ū(A, x) =
−x (defaulters) and ū(B, x) = 1.2x (non-defaulters) for decisions x ∈ [0, 1]. Note that
optimum unconstrained decision for A is 0 and optimum unconstrained decision for B is 1.
Let d(A,B) = 1 and K = 0.5. In the optimal K-Lipschitz decision rule, the decision for A
is 0.5 and the decision for B is 1.

Now any K-FT policy ψ must give loans x1 to A and x2 to B such that |x1 − x2| ≤ 0.5
irrespective of the time periods they arrive in. Any K-FH policy ψ′ must ensure that if loan
x1 was given to context c1 at t = 1, then at least the same amount of loan must be given to
the same context, and at least x1−0.5 must be given to the other context at t = 2, dependent
on which context arrives. Suppose now that at t = 1, A arrives. Then, one can verify that
the optimal K-FT policy must give a loan of 0.5 in anticipation of B in the next time step
(so that a loan of 1 can be given to B), whereas the optimal K-FH policy can give a loan of
0 to A at t = 1. If A arrives at t = 2, then K-FH can still give a loan of 0; if B arrives,
then it can give a loan of 1. Thus one can attain a higher utility under FH than under FT.

To see that both the notions FT and FH can lead to a higher utility than that under the
static optimal K-Lipschitz decision-rule, observe that if there is only a single stage, i.e.,
T = 1, then the decision for A can be 0 under any FT or FH policy, whereas the optimal
K-Lipschitz decision-rule must choose 0.5.

We can show, however, that when the horizon gets longer, one cannot do any better
than achieving the static optimum average expected utility UK (as defined in (8)).

Proposition 4 For any K ∈ [0,∞), we have UTK-FT ≤ TUK + 2BC and UTK-FH ≤ TUK +
2BC where B is the upper bound on the possible expected utility, i.e., maxc∈C, x∈X |ū(x, c)| ≤
B <∞, and C = |C|. Hence,

lim
T→∞

UTK-FT

T
= lim

T→∞

UTK-FH

T
= UK .

Proof Note that UTK-FT ≤ UTK-FH since FT implies FH. Hence, we show the result only for
UTK-FH. The corresponding result for UTK-FT follows.

Fix an FH policy. At any given time t, let `t(c) be the tightest lower bound on the
decision for c, for each c ∈ C, based on decisions taken in the past. Note that if a decision x
has been taken for a context c at any time before t, then `t(c) ≥ x due to the FH constraint.

First, we show that `t specifies a K-Lipschitz decision-rule. To see this, consider two
contexts c and c′, and w.l.o.g., assume that `t(c) ≥ `t(c

′). If `t(c) = 0, then clearly `t(c) =
`t(c

′) = 0. Next, if for some time t′ < t, the context c was mapped to decision `t(c), then
from the FH constraint, it follows that `t(c

′) ≥ `t(c) − KdC(c, c′). Thus |`t(c) − `t(c′)| ≤
KdC(c, c

′). Finally, suppose that either the context c had never appeared before time t, or
it had appeared and the highest decision taken for this context so far is some x < `t(c)

10
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(note again that the highest decision in the past for context c cannot be larger than `t(c)).
In this case, there is some other context c∗ that was mapped to some decision x∗ at some
time in the past and `t(c) = x∗ −KdC(c∗, c) (since `t(c) is the tightest lower bound). But
this also means that `t(c

′) ≥ x∗−KdC(c∗, c′). Thus `t(c
′)− `t(c) ≥ K(dC(c

∗, c)−dC(c∗, c′)).
But by the triangle inequality, we have dC(c

∗, c′) ≤ dC(c
∗, c) + dC(c, c

′). Thus we have
`t(c

′) ≥ `t(c) −KdC(c, c′). Thus again, |`t(c) − `t(c′)| ≤ KdC(c, c
′). This shows that `t is

K-Lipschitz.
Now consider the decision rule φt chosen by the policy at time t (this depends on the

history of actions and observations in the past). We will show that the total incremental
utility obtained by the policy over time by replacing `t at each time t by φt is bounded by
a constant independent of T .

To see this, let tc1, tc2, · · · , tcFc , be the (random) times until time T when the context
that arrives is c, assuming that Fc ≥ 1. Then the total additional utility obtained by the
principal across all times by replacing `t at each time t by φt can be written as,

T∑
t=1

ū(φt(ct), ct)− ū(`t(ct), ct) =
∑
c∈C

1{Fc≥1}

Fc∑
k=1

ū(φtck(c), c)− ū(`tck(c), c), (6)

where ct is the context that arrives at time t. However, due to the FH constraint, if
Fc ≥ 1, then φtck(c) ≥ `tck(c), and if Fc ≥ 2 then `tck(c) ≥ φtck−1

(c) for Fc ≥ k ≥ 2. Thus, the
intervals [`tck(c), φtck(c)) for 1 ≤ k ≤ Fc are non-overlapping subsets of [0, 1]. Hence, we have

Fc∑
k=1

ū(φtck(c), c)− ū(`tck(c), c) ≤ 2B. (7)

This inequality follows from concavity of ū(x, c) in x ∈ [0, 1] for each c ∈ C and the fact that
maxc∈C, x∈X |ū(x, c)| ≤ B. Thus, to conclude, the total additional utility obtained by the
principal by deviating from `t in each time period is at most 2B|C|. Since `t is a K-Lipschitz
decision-rule, the expected utility under this decision-rule is at most UK . Hence, we have
an upper bound on the expected utility under any policy equal to TUK + 2BC.

This, in particular, shows that relaxing the fairness-across-time constraint to only requiring
fairness-in-hindsight does not lead to any long-run gains in objective. The policy of simply
choosing the optimal static K-Lipschitz decision-rule at every stage is approximately opti-
mal for a large horizon T . Next, we show that the situation is drastically different when
there is learning involved.

5. Dynamic Model with Learning

Consider now a setting where the distribution of the utility given a context and a decision
is unknown to the principal and must be learned. Formally, this distribution depends on
an additional unknown parameter w, which we assume to belong to a finite set W. With
some abuse of notation, for each w ∈ W, c ∈ C and x ∈ X , the distribution of the utility of
the principal is given by F(x, c, w). We assume that this distribution has a finite support
U(x, c), i.e. maxx,c |U(x, c)| < ∞,6 and for each u ∈ U(x, c), the probability of observing

6. This is satisfied in Example 4.1 where there are only two possibilities: either the person defaults on the
loan or doesn’t.

11
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u is given by p(u | x, c, w). We assume that p(u | x, c, w) > 0, for each u ∈ U(x, c) for all
c ∈ C, w ∈ W, and for all x in the interior of X , i.e., x ∈ (0, 1). Finally, we assume that
the principal knows possible feasible parameters W but does not know the true parameter
w, which must be learned by adaptively assigning decisions to contexts and observing the
outcomes.

We now redefine some previously defined quantities (with some abuse of notation) to
capture the dependence on the parameter w. First, we define ū(x, c, w) , EF(x,c,w)(U),
i.e., the mean utility for a given x ∈ X , c ∈ C and w ∈ W. As before, we assume that
ū(x, c, w) is continuous and concave in x ∈ X for each c ∈ C and w ∈ W. Continuity implies
that ū(x, c, w) is uniformly bounded, i.e., maxc∈C, x∈X , w∈W |ū(x, c, w)| ≤ B <∞. Next, we
define UK(w) to be the highest expected utility attainable under a K-Lipschitz decision
rule, for a given parameter w, i.e.,

UK(w) , max
φ∈ΦK

ED[ū(φ(c), c, w)]. (8)

Let φ∗w denote the optimal K-Lipschitz decision rule that attains this maximum.

For a given horizon T , for any dynamic policy in ΨT
K-FT or ΨT

K-FH that is oblivious of
w, we can define a notion of regret that compares its expected utility against the long-run
optimal benchmark TUK(w). For any policy ψ ∈ ΨT

K-FT, for a fixed w, we denote its total
utility at the end of the horizon as UTK-FT(w,ψ) (similarly, UTK-FH(w,ψ)). Then, for any
ψ ∈ ΨT

K-FT, let the regret be denoted as:

RegretTK-FT(w,ψ) , TUK(w)− UTK-FT(w,ψ), (9)

and similarly, for any ψ ∈ ΨT
K-FH, we define,

RegretTK-FH(w,ψ) , TUK(w)− UTK-FH(w,ψ). (10)

5.1 Learning under FT

We show that under the FT constraint, except for trivial settings, a regret that asymptot-
ically grows linearly in T is unavoidable. The reason is that once a context is mapped to
a decision, we are forced to map that context to the same decision forever under FT. We
can show that with some positive probability, a bad decision in the first step for some w is
inevitable, which then must be repeated forever, thus incurring linear regret. This intuition
is illustrated in Example 1.1 in Section 1.

Proposition 5 Suppose there is some pair w′, w′′ ∈ W such that a) φ∗w′ and φ∗w′′ are
the unique optimal (static) K-Lipschitz decision-rules for w′ and w′′ respectively,7 and b)
φ∗w′ 6= φ∗w′′. Then there exists an instance dependent constant κ > 0 and a time T ′ ≥ 1 such
that for any T ≥ T ′ and any K-FT policy ψ ∈ ΨT

K-FT,

max
w∈W

RegretTK-FT(w,ψ) ≥ κT.

7. Note that the set of K-Lipschitz decision rules given a finite set of contexts is convex. By adding a small
random perturbation to the expected utility function, we can ensure that the optimal decision rules are
unique for each w ∈ W.
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Proof Fix some T ≥ 1 and consider a K-FT policy ψ ∈ ΨT
K-FT. Since φ∗w′ 6= φ∗w′′ , there

exists some c′ ∈ C such that φ∗w′(c
′) 6= φ∗w′′(c

′). Let φ1 be the decision-rule followed by
policy ψ at time 1, and let φ1(c′) = x′. Consider a K-FT policy ψo, which knows w and
maximizes the T -period utility for each w, except that it is constrained to use the decision
rule φ1 at time 1 irrespective of w, i.e., x1 = φ1(c1) under ψo. It is then clear that for each
w ∈ W,

RegretTK-FT(w,ψ) ≥ RegretTK-FT(w,ψo). (11)

Consider now the event that the context seen at time 1 is c′, i.e., event {c1 = c′} happens.
On this event, we can show that the policy ψo can achieve at most δT = 2B(C+ 1)/T more
than U ′(w, x′) on an average, where

U ′(w, x′) = max
φ∈ΦK ;φ(c′)=x′

ED[ū(φ(c), c, w)]. (12)

To see this, suppose that `t(c) is the lower bound on the decisions under the policy ψo at
time t ≥ 2 due to the FT constraint. We know that `t(c

′) = x′. Also, by similar arguments
as that in the proof of Proposition 4, `t can be argued to be a K-Lipschitz decision rule.
Thus `t is feasible in problem (12) and hence the expected utility under this rule is at most
U ′(w, x′). Now consider the decision rule φt chosen by the policy ψo at time t ≥ 2. We will
show that the total incremental utility obtained by the policy over time by replacing `t at
each time t by φt is bounded by a constant independent of T .

To see this, let tc1, tc2, · · · , tcFc , be the (random) times after time t = 1 and until time T ,
when the context that arrives is c, assuming that Fc ≥ 1. Then the total additional utility
obtained by the principal across all times by replacing `t at each time t by φt can be written
as,

T∑
t=2

ū(φt(ct), ct, w)− ū(`t(ct), ct, w) =
∑
c∈C

1{Fc≥1}

Fc∑
k=1

ū(φtck(c), c, w)− ū(`tck(c), c, w). (13)

However, due to the FT constraint, if Fc ≥ 2, then for any Fc ≥ k ≥ 2, we have that
φtck(c) = `tck(c) and `tck(c) = φtck−1

(c). Hence, if Fc ≥ 1, then we have

Fc∑
k=1

ū(φtck(c), c, w)− ū(`tck(c), c, w) = ū(φtc1(c), c, w)− ū(`tc1(c), c, w) ≤ 2B. (14)

This inequality follows from the fact that maxc∈C,w∈W, x∈X |ū(x, c, w)| ≤ B. Thus, to
conclude, the total additional utility obtained by the principal by deviating from `t in each
time period t ≥ 2 is at most 2B|C|. Since `t is feasible in problem (12), the expected utility
under this decision-rule is at most U ′(w, x′). Moreover, the utility earned by the policy
ψo at time t = 1 is at most B. Hence, we have an upper bound on the total expected
utility of ψo on the event {c1 = c′}, equal to B + (T − 1)U ′(w, x′) + 2BC, which is at most
TU ′(w, x′) + 2B(C + 1).

Next, we have,

max
w∈{w′,w′′}

RegretTK-FT(w,ψo) ≥ P(c1 = c′)
[

max
w∈{w′,w′′}

T
(
UK(w)− U ′(w, x′)− δT

)]
= P(c1 = c′)

[
max

w∈{w′,w′′}
T
(
UK(w)− U ′(w, x′)

)
− 2B(C + 1)

]
.
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Clearly, UK(w) ≥ U ′(w, x′) for any w, and hence maxw∈{w′,w′′}(UK(w)−U ′(w, x′)) ≥ 0.
If maxw∈{w′,w′′}(UK(w)−U ′(w, x′)) = 0, then this implies that UK(w) = U ′(w, x′) for both
w = w′ and w = w′′. But this implies the existence of K-Lipschitz decision-rules for w′

and w′′ that are optimal, and such that they both map c′ to x′. This contradicts the fact
that φ∗w′ and φ∗w′′ are the unique optimal K-Lipschitz decision-rules, since they map c′ to
different decisions. Thus maxw∈{w′,w′′} UK(w)−U ′(w, x′) > 0 for each x′ ∈ X . This in turn

implies that minx′∈X maxw∈{w′,w′′} UK(w)−U ′(w, x′) , γ′ > 0 (the minimum is well-defined
since U ′(w, x′) is a continuous function of x′ for each w).

Hence, maxw∈{w′,w′′}RegretTK-FT(w,ψo) ≥ P(c1 = c′)[γ′T − 2B(C + 1)]. Using (11), we
get the result.

This shows that fairness-across-time can result in significant losses in utility relative to the
static optimum when learning is involved.

5.2 Learning under FH

The situation is not as bleak under the FH constraint as we now show. The problem with
the FT constraint is that one is forced to repeat mistakes by mapping each context to the
same decision that was made when the context was first encountered. The FH constraint
allows for some flexibility: the decisions for every context can potentially increase over time.
This presents the following possibility: one can try to cautiously learn w with small and
equal decisions for all contexts, and then increase decisions for contexts as needed once w
is learned with appropriate confidence. This was illustrated in Example 1.2 in Section 1.
Formally, we propose an online learning algorithm that we call Cautious Fair Exploration
or CaFE in Algorithm 1.

In order to describe our performance bound for CaFE, we first need to define a few
quantities. For any w, w′ ∈ W, x ∈ (0, 1) and c ∈ C, we define

KL(w,w′|x, c) ,
∑

u∈U(x,c)

p(u | x, c, w) log
p(u | x, c, w)

p(u | x, c, w′)
. (15)

This quantity is commonly known as the Kullback-Leibler (KL) divergence between the
distributions F(x, c, w) and F(x, c, w′).

Also, recall that c ∼ D and for each x ∈ (0, 1), define:

L(x) , min
w,w′

ED[KL(w,w′|x, c)]. (16)

L(x) captures how well we can distinguish between the different parameter values given
a decision x: a low value of L(x) implies that there is a pair (w, w′) that is difficult to
distinguish at decision x. We also define for each x ∈ X :

D(x) , min
c∈C, w∈W, u∈U(x,c)

p(u | x, c, w). (17)

D(x) captures the smallest probability assigned to a utility value over all possibilities for w
and c, as a function of the decision x. Finally, we make the following assumption.
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Assumption 1 ū(x, c, w) is Lipschitz continuous on X for each c ∈ C and w ∈ W, with a
Lipschitz constant R > 0, i.e.,

|ū(x, c, w)− ū(x′, c, w)| ≤ R|x− x′|,

for all x, x′ ∈ X , c ∈ C, and w ∈ W.

This assumption simply ensures that the loss in utility due to a small deviation from the
optimal decision for a particular context isn’t arbitrarily high. Without this requirement,
one cannot hope to obtain non-trivial regret rates in general.8

Algorithm 1: Cautious Fair Exploration (CaFE)

Input: T ∈ N, (F(x, c, w); c ∈ C, x ∈ X , w ∈ W), ε ∈ [0, 1], Lipschitz constant K.
Definitions: For 1 ≤ t ≤ T , let λt(w) be the likelihood of w ∈ W based on
observations until time t, i.e.,

λt(w) =
t∏
i=1

p(Ui | xi, ci, w).

For each w,w′ ∈ W, define Λ0(w,w′) = 0 and Λt(w,w
′) = log λt(w)

λt(w′)
for 1 ≤ t ≤ T .

Policy: While 1 ≤ t ≤ T do:

1. Explore: While there is no w such that for every w′ 6= w,
max
s<t

Λs(w,w
′) ≥ log T , assign xt = ε. Note that there can only be one

such w.

2. Exit from Explore:
If there is a w such that for every w′ 6= w, max

s<t
Λs(w,w

′) ≥ log T , define

w∗ , w and permanently enter the Exploit phase.

3. Exploit: Use the static optimal decision rule in Xε = [ε, 1] assuming the model
parameter is w∗, i.e., use the decision rule that solves:

max
φ:C→Xε

ED[ū(φ(c), c, w∗)] (18)

s.t. |φ(c)− φ(c′)| ≤ KdC(c, c′) for all c, c′ ∈ C.

We present the following main result that characterizes the performance of CaFE.

8. It turns out that this matters only around the x = 0 decision. One could alternatively assume a bounded
derivative at 0 or a polynomial approximation for the utility function close to 0. Replacing Lipschitzness
with these alternatives, however, does not change the nature of results obtained nor provide additional
insights.
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Theorem 6 Fix a K ∈ [0,∞).

1. CaFE is a K-FH policy.

2. Suppose Assumption 1 holds. Also, suppose that L(x) = Ω(xM ) (defined in (16)) and
D(x) = Ω(xH) (defined in (17)) for some M ≥ 0 and H ≥ 0 as x→ 0, then,

RegretTK-FH(w,CaFET ) ≤ βT
M
M+1 log T (1 + o(1)),

as T → ∞, where CaFET is CaFE initialized with ε = εT = 1/T
1

M+1 , and β > 0
is a constant that depends on L(.), |W|, R, M, and H. In particular, if M = 0, then
CaFE initialized with ε = εT = 1/T attains a regret of O(log T ).

The intuition behind these upper bounds is as follows. In the Explore phase, the pa-
rameter w is learned with a probability of error 1/T by choosing xt = εT irrespective of
ct.

From that point onwards, the policy enters the exploitation phase: it simply assumes the
learned w∗ to be the truth and chooses a K-Lipschitz decision rule defined on the decision
space Xε = [ε, 1]. This defines a K-FH policy. Since the decisions are lower bounded by ε
for every context during the exploitation phase, one incurs a loss of O(ε) per step. Thus we
want to choose ε to be as small as possible; in fact, ideally, we would want to pick ε = 0.
But choosing a small ε may force us to learn w prohibitively slowly, thus increasing the
length of the Explore phase and hence the overall regret. For example, consider again the
setting where the bank is unsure whether age is positively or negatively correlated with loan
default rates. It could be the case that overall default rates, irrespective of the context, are
small when the loan amounts are small, making it difficult to learn the correlation structure
with small loans.

If L(x) = Ω(1) (i.e., M = 0) as x → 0 then we can indeed learn at an adequate rate
by picking εT = 1/T (in fact, any smaller ε suffices), and in this case, we can achieve an
overall regret of O(log T ). On the other hand, if L(x) = Θ(xM ) for M > 0, then εT cannot
be chosen to be too small so that the Explore phase is not prohibitively long; in this case,
the choice of εT = 1/T 1/(M+1) optimizes the tradeoff between regret incurred during the

Explore and Exploit phases, leading to an overall loss of Õ(T
M
M+1 ).

Proof (Theorem 6) We divide the proof into the following claims.

1. CaFE is K fair-in-hindsight. First, we show that CaFE is K-FH. To see this, note
that the policy is fixed irrespective of the context in the learning phase and hence FH. In
the exploitation phase, it is FH with respect to any time in the exploitation phase since
the exploitation phase uses a K-Lipschitz decision rule. Finally, it is also FH with respect
to the Explore phase in the Exploit phase since decisions for each context only increase in
going from Explore to Exploit.

2. Bound on the expected time for exploration: For a fixed T , define T ′ to be the
minimum of T and the (random) time at which the Explore phase ends, i.e.,

T ′ = max{1 ≤ t ≤ T | @w′ ∈ W, max
s<t

Λs(w
′, w′′) ≥ log T ∀ w′′ 6= w′}. (19)
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Note that if the Explore phase doesn’t end before time T , then T ′ = T . We want to find
an upper bound on the expected value of T ′.

(a) Bound on expected time to distinguish any fixed w from w′: We will first
bound the expected time until any fixed parameter w gets distinguished from each
w′ 6= w. Consider a new coupled stochastic process (Λ̄t(w,w

′))t∈N that is identical
to (Λt(w,w

′))t≤T up to time T ′ and then it continues as if the Explore phase did
not end (i.e., the allocations are εT for all contexts forever). Define Tw

′
w to be the

minimum of T and the random time at which w gets “distinguished” from w′ in this
new stochastic process, i.e., when the log-likelihood ratio of w relative to w′ based on
when the observations cross the threshold of log T . Formally,

Tw
′

w = max{1 ≤ t ≤ T | max
s<t

Λ̄s(w,w
′) < log T}. (20)

Now, it is easy to show that the process(
Λ̄t(w,w

′)− tED(KL(w,w′|εT , c))
)
t∈N

is a martingale and Tw
′

w is a bounded stopping time (Ross 1996). Thus, by the optional
stopping theorem,

E(Λ̄Tw′w
(w,w′)− Tw′w ED(KL(w,w′|εT , c)) = 0,

that is,

E(Tw
′

w ) =
E(Λ̄Tw′w

(w,w′))

ED(KL(w,w′|εT , c))
≤

log T + E(log
p(U

Tw
′

w
|εT ,c

Tw
′

w
,w)

p(U
Tw
′

w
|εT ,c

Tw
′

w
,w′))

L(εT )

(by the definition of Tw
′

w )

≤
log T + E(log 1

bεHT
)

L(εT )

(for large enough T for some b > 0, since D(x) = Ω(xH))

≤ log T + b′ −H log εT
L(εT )

(for large enough T ),

where b′ = − log b.

(b) Use Tww′ to bound T ′: Define Tw = maxw′ 6=w T
w′
w , i.e., Tw is the minimum of T and

the random time at which w gets “distinguished” from all w′ 6= w. Then, the time it
takes to differentiate the optimal parameter from all other parameters is in expectation
E(Tw) = E(maxw′ 6=w T

w′
w ) ≤

∑
w′ 6=w E(Tw

′
w ), which implies

E(T ′) ≤ (|W| − 1|) log T + b′ −H log εT
L(εT )

for large enough T . (21)
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3. Bound on exploitation regret when parameter learnt is wrong: Next, suppose
that w∗ is the parameter value that CaFE learns at the end of Explore and the true
parameter is w. If we denote P errw to be the probability that w∗ 6= w when the true
parameter is w, then we can show that P errw ≤ 1/T . This follows from the fact that
under the true w, the sequence of likelihood ratios (exp(−Λt(w,w

′)))0≤t≤T is a martingale
and hence by Doob’s martingale inequality (Ross 1996), Pw(maxt≤T Λt(w

′, w) > log T ) =
Pw(maxt≤T exp(−Λt(w,w

′)) > T ) ≤ 1/T for any w′ 6= w. This means that the expected
regret during the exploitation stage in CaFE is bounded by

Pw(w∗ 6= w)(T − E[T ′ | w∗ 6= w])R,

where R is the Lipschitz constant of the expected utility function.

4. Bound on exploitation regret due to exploration at εT : Finally, if we denote
U εTK (w) to be the optimal value of the optimization problem (18) with exploration parameter
εT when w∗ = w, then we can show that U εTK (w) ≥ UK(w)− εTR. This is because we can
take the optimal K-Lipschitz decision rule φ in X = [0, 1] that attains utility UK(w), and
we can define a new decision rule φ′ such that φ′(c) , φ(c) if φ(c) ≥ εT and φ′(c) , εT
otherwise. It is easy to verify that this decision rule is K-Lipschitz and all the decisions are
in XεT ; hence it is feasible in problem (18). Clearly, the expected utility of this decision rule
is at least UK(w) − εTR because of our assumption that ū(x, c, w) is Lipschitz continuous
in x for each c and w, with a Lipschitz constant R. This bounds the expected regret due
to exploration at εT (in spite of w = w∗) to be:

Pw(w∗ = w)(T − E[T ′ | w∗ = w])RεT .

5. Total expected regret: Thus, we finally have that for a fixed model parameter w, the
following upper bound holds for the total regret under CaFE:

RegretTK-FT(w,CaFE) ≤ RE(T ′)︸ ︷︷ ︸
(a)

+Pw(w∗ 6= w)(T − E[T ′ | w∗ 6= w])R︸ ︷︷ ︸
(b)

+ Pw(w∗ = w)(T − E[T ′ | w∗ = w])RεT︸ ︷︷ ︸
(c)

≤ RE(T ′) +
1

T
(TR) + TRεT

= RE(T ′) +R+ TRεT

≤ R(|W| − 1|) log T + b′ −H log εT
L(εT )

+R+ TRεT ,

for any T large enough, where (a) is the upper bound on the regret incurred during Explore,
(b) is the upper bound on the regret incurred during Exploit on the event {w∗ 6= w}, and
(c) is the upper bound on the regret incurred during Exploit on the event {w∗ = w}.

Now since L(x) = Ω(xM ) as x → 0, there exists a > 0 such that L(x) ≥ axM . Hence,
we have

RegretTK-FT(w,CaFE) ≤ R(|W| − 1|) log T + b′ −H log εT

aεMT
+R+ TRεT ,
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for any T large enough. Plugging in εT = 1/T
1

M+1 , we obtain that for a large enough T ,

RegretTK-FT(w,CaFET ) ≤ R(|W| − 1|)T
M
M+1

log T + b′ + H
M+1 log T

a
+R+ T

M
M+1R.

Thus,

lim sup
T→∞

RegretTK-FT(w,CaFET )

T
M
M+1 log T

≤
R(|W| − 1|)(1 + H

M+1)

a
.

This proves the statement of the theorem.

Remark 1. If there exists a set of optimal K-Lipschitz decision-rules (φ∗w)w∈W such that

min
c∈C,w∈W

φ∗w = x∗ ∈ (0, 1),

then, although the performance in Theorem 6 still holds in this case, one can obtain a better
performance by transforming the decision space to identify x∗ with 0. Formally, one can
transform the decision space [x∗, 1] by mapping any decision x in this set to (x−x∗)/(1−x∗),
thus ensuring that the transformed decisions lie in [0, 1], and the smallest optimal decision
across all parameters and contexts is 0.

Remark 2. We believe that in most practical situations, for any closed set S in the relative
interior of [0, 1], i.e., S ⊆ [0, 1] \ {0, 1}, we will have minx∈S L(x) > 0, i.e., any decision
in the set S will be able to distinguish between any pair w,w′. Thus, informally, only the
extreme decisions {0,1} are problematic and hence the distinguishability between w,w′ as
one approaches either 0 or 1 impacts performance. An important class of settings, where
this assumption on L(x) is trivially true is, when there are two actions A and B, and a
decision x ∈ [0, 1] represents the probability with which action B is chosen (say, B is more
conducive than A). For example, the decision x could simply be the probability with which
an applicant gets approved for a pre-determined amount of loan (A = denial, B = approval).

In these cases, one can, without loss of generality, assume that for every possible pair
w,w′, either action A or B can distinguish this pair under some context (although, any
single action may not allow distinguishability of all pairs). This is because if there is a
pair of parameters w,w′ that cannot be distinguished by either of the actions under any
context, then one can simply aggregate this pair into a single parameter value. Hence,
any decision x that chooses both the actions with a positive probability, i.e., x is in the
relative interior of [0, 1], can distinguish between all pairs of parameter values. For exam-
ple, denial of the loan application (action A) may not provide any information about the
utility model. However, approval (action B) would provide relevant information. In such
settings, if minc∈C,w∈W φ∗w = x∗ > 0, then O(log T ) regret is achievable using CaFE by the
transformation of decision space mentioned in Remark 1.

Remark 3. It is easy to show that if it is necessary to distinguish some pair w,w′ because
the corresponding optimal individually fair decision rules are different, and low decisions
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do not allow such a distinction, then linear regret may be inevitable if high decisions are
sub-optimal for either w or w′. For instance, suppose there are only two possible parame-
ter values w and w′, and there is a single context. The optimal decision under w for this
context is 0 and optimal decision under w′ is 1. Suppose that there is a δ > 0 such such
that KL(w,w′|x) = 0 for any x ∈ [0, δ]. Then in order to get o(T ) regret for w, one must
take Ω(T ) decisions in [0, δ]. But since these decisions offer no distinction between w and
w′, Ω(T ) regret is inevitable under w′.

Remark 4. The linear dependence of the regret on |W| can be eliminated for the case where
L(x) = Ω(1) as x→ 0. The source of this dependence is the union bound that was utilized
in bounding E(Tw) in the proof. Recall that Tw is the minimum of T and the time taken
until the random walks of the log-likelihood ratios of observations under w and w′, for the
different values of w′, all cross the threshold of log T . Our proof bounds this quantity by
the sum of the times taken by each of the random walks to cross this threshold, leading
to the |W| dependence. In the case where L(x) = Ω(1), we can directly bound E(Tw) by
arguing that the time taken by all the random walks to cross this threshold is essentially
governed by the slowest random walk, i.e., the one corresponding to the parameter value
w′ for which the drift ED(KL(w,w′|ε, c)) is the smallest. This is expressed in the following
result, which follows from Lemma 4.3 in Agrawal et al. (1989). It crucially leverages the
fact that as T →∞, the drift ED(KL(w,w′|εT , c)) is bounded below by a positive constant
for each w′ 6= w.

Proposition 7 (Agrawal et al. 1989) For each w′ ∈ W\{w}, consider the stochastic process
(Λ̄t(w,w

′))t∈N of log-likelihood ratios of observations under w and under w′ generated by
choosing the decision εT = 1/T at each time. Let Tw

′
w be as defined in (20) and define

Tw = maxw′ 6=w T
w′
w . Suppose that L(x) ≥ a for any small enough x > 0. Then,

lim sup
T→∞

E(Tw)

log T
≤ 1

a
. (22)

In the general case where L(x) = Ω(xM ) for M > 0 as x→∞, the underlying argument
doesn’t naturally extend, because, informally, the drifts of these random walks shrink to 0
as time T →∞, and thus the growing variation in the time taken by each random walk to
cross the threshold of log T starts to become the dominating factor in the determination of
the expected time taken for all walks to cross the threshold. In this case, it is unclear if the
dependence of the regret on |W| can be improved, and we leave this as an open question.

5.3 Lower bounds on regret under FH

The upper bound on the performance of CaFE in Theorem 6 depends on the exponent
(i.e., M) of some polynomial lower bound that is known for L(x) for x→ 0. This exponent
determines the order of T in the bound. We now construct examples and corresponding
lower bounds on regret, which demonstrate that this dependence of CaFE’s regret on T is
order-optimal.

The proofs of these bounds rely on the following high-level argument. Suppose there are
two hypotheses about the state of the world: one in which high decisions are optimal and
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the other in which low decisions are optimal. If a policy raises decisions too quickly (and
importantly, irrevocably, because of the FH constraint) without obtaining sufficiently strong
empirical evidence for the hypothesis that it is indeed in a situation where high decisions
are optimal, then (a “change of measure” argument shows that) there is a good chance that
the hypothesis is incorrect, and because of the FH constraint, the policy will incur a high
regret. The fact that a policy is good, i.e., it does not incur high regret irrespective of the
true hypothesis, implies an upper bound on the probability of this policy raising decisions
too quickly without obtaining sufficient empirical evidence to justify it. This means that
any good policy must obtain sufficient evidence before raising decisions. But it takes time
to obtain this evidence, which means that it is inevitable that the policy will incur some
regret in the case that high decisions are optimal. In the case where limx→0 L(x) = 0
(i.e., M > 0), the situation is worse: while the decisions are low, it takes even longer to
obtain sufficient empirical evidence to justify higher decisions, thus increasing the amount
of inevitable regret.

5.3.1 Case: L(x) = Θ(xM ).

First, we construct an instance with L(x) = Θ(xM ) as x→ 0 where a regret of ω(T
M
M+1

−β)
is inevitable for any β > 0. Suppose that C = {0}, i.e., there is only one context. Hence the
choice of the Lipschitz constant K is immaterial, and the FH constraint simply means that
the decisions must be non-decreasing over time. Let W = {A,B} and let the distribution
of utility given the decision x and parameter w be defined as:

U
(w=A)

=

{
x1−M/2 w.p. 0.5(1 + xM/2),

−x1−M/2 w.p. 0.5(1− xM/2),

and

U
(w=B)

=

{
x1−M/2 w.p. 0.5(1− xM/2),

−x1−M/2 w.p. 0.5(1 + xM/2).
(23)

It is convenient to define p(u | x,w) as the probability of observing u ∈ {x1−M/2,−x1−M/2}
for a fixed w ∈ W, and x ∈ X .9 It is easy to see that the mean utilities are: ū(x,A) = x and
ū(x,B) = −x (where we have suppressed the dependence on the context). Clearly, the opti-
mal decision is x = 1 if w = A and x = 0 if w = B. For any p, q ∈ (0, 1), let DKL(p‖q) denote
the the K-L divergence of a Bernoulli(p) distribution relative to a Bernoulli(q) distribution,
i.e., DKL(p‖q) = p log(p/q) + (1−p) log((1−p)/(1− q)). Recall that L(x) was defined to be
the minimum expected KL-divergence over any two parameters w,w′ (see (16)). For this
instance, note that DKL(0.5(1+xM/2)‖0.5(1−xM/2) = DKL(0.5(1−xM/2)‖0.5(1+xM/2)) =

xM/2 log 1+xM/2

1−xM/2 , and hence

L(x) = min(DKL(0.5(1 + xM/2)‖0.5(1− xM/2)), DKL(0.5(1− xM/2)‖0.5(1 + xM/2)))

= xM/2 log
1 + xM/2

1− xM/2
. (24)

9. Here p(x1−M/2 | x,A) = p(−x1−M/2 | x,B) = 0.5(1 + x
M
2 ), p(−x1−M/2 | x,A) = p(x1−M/2 | x,B) =

0.5(1− x
M
2 ) and 0 otherwise.
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Note that L(x) is increasing in x and one can show that L(x) = Θ(xM ) as x→ 0. This
means that for x small enough and for some 0 < v < V , we have

vxM ≤ L(x) ≤ V xM . (25)

Proposition 8 Consider the instance defined above. Suppose there is a sequence of K-FH
policies (ψT )T∈N that satisfy,

RegretTK-FH(w,ψT ) = o(Tα),

as T →∞ for each α > M
M+1 and each w ∈ {A,B}. Then

RegretTK-FH(A,ψT ) = ω(T β),

as T →∞ for each β < M
M+1 .

Proof For any underlying w, the policy ψT along with the distributions of utilities con-
ditioned on decisions given in (23), induce a probability distribution on the sequence of
decision and utility pairs (X1, U1, X2, U2, · · · , XT , UT ). Let Pw and Ew denote the prob-
abilities of events and expectations, respectively, under w = A and w = B. Here Xt

is measurable with respect to the σ-algebra generated by (X1, U1, X2, U2, · · · , Xt−1, Ut−1),
and Ut is conditionally independent of the past given Xt. This, in particular, means that
for any function f : R×X → R, and each w ∈ {A,B},

Ew[f(Ut, Xt) | X1, U1, X2, U2, · · · , Xt] = Ew[f(Ut, Xt) | Xt]. (26)

Define the (random) sequence of empirical log-likelihood ratios of w = A relative to w = B,
(Λt)t≤T , where

Λt =

t∑
s=1

log
p(Us | Xs, A)

p(Us | Xs, B)
. (27)

Also, we will be using a “centered” sequence (Λt)0≤t≤T , where Λt = Λt − µt and (µt)0≤t≤T
is the mean process defined as µ0 = 0 and for any 1 ≤ t ≤ T ,

µt =
t∑

s=1

EA
[
log

p(Us | Xs, 1)

p(Us | Xs, 0)

∣∣∣∣Xs

]
, (28)

Using (26), it is easy to see that (Λt)0≤t≤T is a martingale.
The proof is now divided into two parts.

Part A. One cannot raise decisions too quickly without obtaining sufficient empir-
ical evidence to justify it.

Let us call a policy ψT good if RegretTK-FH(B,ψT ) = o(Tα) as T → ∞ for each
α > M

M+1 . In this part, we will define a threshold τ(T ) ∈ X = [0, 1]. When w = A, we
will show that under any good policy ψT , the probability of raising the decision beyond
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τ(T ) despite the fact that there is insufficient evidence for w = A (i.e., log-likelihood
ratio of A relative to B is low) is o(1).

Let the threshold be τ(T ) = T
M
M+1

+γ−1 for any γ ∈ (0, 1/(M + 1)). Note that
τ(T ) = o(1) as T →∞. Define kT to be the first time that the policy raises decisions
higher than τ(T ) (kT = T if it doesn’t), i.e., kT = max{1 ≤ k ≤ T s.t. Xk < τ(T )}.
Define the event:

CT ,

{
kT ≤

γ log T

2L(τ(T ))
and ΛkT ≤

3γ

4
log T

}
.

Informally, this event says that the decision crosses τ(T ) before time γ log T
2L(τ(T )) and at

the time of crossing, the empirical log-likelihood ratio of A relative to B is low, i.e.,
it is below 3γ

4 log T . Then we have

PB(CT ) = EB(1CT )
(a)
= EA(1CT exp(−ΛkT )) ≥ PA(CT )T−3γ/4. (29)

Here, (a) is the standard change of measure identity. Hence,

RegretTK-FH(B,ψT )
(a)

≥ PB(CT )τ(T ) (T − kT )

(b)

≥ PB(CT )τ(T )

(
T − γ log T

2L(τ(T ))

)
(c)

≥ PA(CT )T−3γ/4τ(T )

(
T − γ log T

2L(τ(T ))

)
(d)

≥ PA(CT )T−3γ/4τ(T )

(
T − γ log T

2v τ(T )M

)
,

for a large enough T . Here (a) follows from the fact that when w = B, then on the
event CT , the policy will incur a regret of at least τ(T ) in each time period after time
kT . (b) is simply using the definition of CT , (c) follows from (29), and (d) follows
from (25). Now, since,

1

τ(T )M
= T (−M2/M+1)−Mγ+M ≤ T (−M2/M+1)+M = T

M
M+1 ,

we have that γ log T
2vτ(T )M

= o(T ). Thus, we finally have,

RegretTK-FH(B,ψT ) ≥ PA(CT )T−3γ/4+( M
M+1

)+γ−1(T − o(T ))

= PA(CT )T γ/4+( M
M+1

)(1− o(1)).

Since RegretTK-FH(B,ψT ) = o(Tα) for each α > M
M+1 , we have PA(CT ) = o(1). Thus,

for CT , the complement of the event CT , we get:

PA(CT ) = PA

kT > γ log T

2L(τ(T ))︸ ︷︷ ︸
(?)

or ΛkT >
3γ

4
log T︸ ︷︷ ︸

(†)

 = 1− o(1). (30)
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This shows that when w = A, any good policy must wait for a sufficiently long time
before raising the decisions beyond τ(T ) (?), or there must be sufficient empirical
evidence for w = A at the time when the decision is raised beyond τ(T ) (†). We
next show that it is inevitable that one has to wait sufficiently long before raising
the decision beyond τ(T ). This will follow from the fact that it takes time for the
log-likelihood ratio of w = A relative to w = B to grow sufficiently.

Part B. It takes time (and hence regret) to gather sufficient empirical evidence.

We now show that PA
(
kT ≤

γ log T

2L(τ(T ))
and ΛkT >

3γ

4
log T

)
= o(1). Denote z(T ) =

b γ log T
2L(τ(T ))c. Then we have,

PA
(
kT ≤

γ log T

2L(τ(T ))
and ΛkT >

3γ

4
log T

)
= PA

(
kT ≤ z(T ) and Λmin(kT ,z(T )) >

3γ

4
log T

)
≤ PA

(
Λmin(kT ,z(T )) >

3γ

4
log T

)
= PA

(
Λmin(kT ,z(T )) >

3γ

4
log T − µmin(kT ,z(T ))

)
(a)

≤ PA
(

Λmin(kT ,z(T )) >
3γ

4
log T − z(T )L(τ(T ))

)
≤ PA

(
Λmin(kT ,z(T )) >

γ

4
log T

)
.

Here, (a) follows from the definition of µt in equation (28) and from the fact that

EA
[
log

p(Us | Xs, 1)

p(Us | Xs, 0)
| Xs

]
= L(Xs) ≤ L(τ(T )),

almost surely for all s ≤ kT , since Xs < τ(T ) for all s ≤ kT , and L(·) is increasing.

We now define a new policy ψ′T with associated random variables that will be dif-
ferentiated from the corresponding random variables under ψT by adding a “prime”
superscript, e.g., X → X ′. This new policy follows the prescriptions of ψT until one
of the two events happen:

(a) Λ
′
t >

γ
4 log T , in which case it increases decision to τ(T ) and chooses τ(T ) until

the end of the horizon.

(b) ψT prescribes raising the decision from some x′ < τ(T ) to some x′′ ≥ τ(T ), in
which case it continues to play x′ until either condition (1) is satisfied, or until
the end of the horizon.
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Effectively, this policy raises decision to τ(T ) exactly when Λ′t >
γ
4 log T and then

fixes the decisions at τ(T ). Define the random variable

k′T , max
{
k ≤ T s.t. X ′k < τ(T )

}
= max

{
k ≤ T s.t. sup

s<k
Λ
′
s ≤

γ

4
log T

}
. (31)

Suppose that the sample paths under the two policies are coupled until the point that
these two policies have identical prescriptions. Then, by the construction of ψ′T , it

is clear that on each sample path that Λmin(kT ,z(T )) >
γ
4 log T occurs, Λ

′
min(k′T ,z(T )) >

γ
4 log T occurs as well. Thus,

PA
(

Λmin(kT ,z(T )) >
γ

4
log T

)
) ≤ PA

(
Λ
′
min(k′T ,z(T )) >

γ

4
log T

)
= PA

(
k′T ≤ z(T )

)
≤ PA

(
sup
s≤z(T )

Λ
′
s >

γ

4
log T

)

≤
var(Λ

′
z(T ))

(log T )2

(by Kolmogorov’s maximal inequality (Ross 1996))

=

∑z(T )
t=1 var

(
log

p(U ′t|X′t,w)
p(U ′t|X′t,w′)

− EA
[
log

p(U ′t|X′t,w)
p(U ′t|X′t,w′)

| X ′t
] )

(log T )2

=

∑z(T )
t=1 EA

(
var
(

log
p(U ′t|X′t,w)
p(U ′t|X′t,w′)

| X ′t
))

(log T )2
.

The random variable log
p(U ′t|X′t,w)
p(U ′t|X′t,w′)

lies in [− log
1+(X′t)

M/2

1−(X′t)
M/2 , log

1+(X′t)
M/2

1−(X′t)
M/2 ]. Under pol-

icy ψ′T , X ′t ≤ τ(T ) almost surely for all t ≤ T . Thus the range of log
p(U ′t|X′t,w)
p(U ′t|X′t,w′)

is

at most
[
− log 1+τ(T )M/2

1−τ(T )M/2
, log 1+τ(T )M/2

1−τ(T )M/2

]
. Hence, by Popoviciou’s inequality for the

variances,10

var

(
log

p(U ′t | X ′t, w)

p(U ′t | X ′t, w′)

∣∣∣∣X ′t) ≤
(

log
1 + τ(T )M/2

1− τ(T )M/2

)2

= O(τ(T )M ),

as τ(T )→ 0. Hence, we finally have

PA
(

Λ
′
min(kT ,z(T )) >

γ

4
log T

)
≤ z(T )O(τ(T )M )

(log T )2
≤ γO(τ(T )M )

L(τ(T )) log T

(a)

≤ γO(τ(T )M )

vτ(T )M log T
= o(1),

where (a) follows from (25). Thus, to reiterate, we have shown that

PA
(
kT ≤

γ log T

2L(τ(T ))
and ΛkT >

3γ

4
log T

)
= o(1),

thus showing part B.

10. If a random variable takes values in [a, b], then its variance is at most (b− a)2/4.
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Coupled with (30), this implies that PA
(
kT >

γ log T
2L(τ(T ))

)
= 1− o(1). Hence,

RegretTK-FH(A,ψT ) ≥ (1− o(1))(1− τ(T ))
γ log T

2L(τ(T ))

≥ (1− o(1))(1− o(1))
γ log T

2V τ(T )M
(for a large enough T )

≥ (1− o(1))
γ

2V
T

M
M+1

−Mγ log T (for a large enough T ).

Thus RegretTK-FH(A,ψT ) = ω(T
M
M+1

−Mγ) for every γ > 0, hence proving the claim.

Remark 5. If there was no FH constraint, a cumulative regret of at most 1 can be achieved
in this instance: one can simply choose x1 = 1, which immediately reveals whether w = 1
(if U1 = 1) or w = 0 if (U1 = −1). This demonstrates the stark impact of the FH constraint
on regret.

This lower bound, however, does not resolve whether in the setting where L(x) = Θ(1),
a regret of O(log T ) is necessary, as our upper bound suggests. We show next that this is
indeed the case.

5.3.2 Case: L(x) = Θ(1).

We now construct an instance with L(x) = Θ(1) as x → 0 where an expected regret of
Ω(log T ) is inevitable. Suppose that C = {0} and let W = {A,B}. Again, since there is
only one context, the choice of the Lipschitz constant K is immaterial, and the FH con-
straint simply means that the decisions must be non-decreasing over time. The utility at
time t given the decision xt and parameter w is given by Ut = xtFt where Ft is i.i.d. across
time, distributed as:

cccccccccFt
(w=A)

=

{
1 w.p. 0.75,
−1 w.p. 0.25

and Ft
(w=B)

=

{
1 w.p. 0.25,
−1 w.p. 0.75

.

Clearly, the optimal decision is x = 1 if w = A and x = 0 if w = B.

Proposition 9 Consider the instance defined above. Suppose there is a sequence of K-FH
policies (ψT )T∈N that satisfy,

RegretTK-FH(w,ψT ) = o(Tα)

as T →∞ for each α > 0 and each w ∈ {A,B}. Then as T →∞,

RegretTK-FH(A,ψT ) ≥ Ω(log T ).

The structure of the proof for this case is similar to that of Proposition 3; in fact, the
arguments are simpler since the KL-divergence of w = A relative to w = B (or vice-versa)
is independent of the decisions taken by the policy for non-zero decisions. We detail the
proof below for completeness.
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Proof The policy ψT along with the distribution of Ft induces a probability distribution
on the sequence of decision and utility pairs (X1, U1, X2, U2, · · · , XT , UT ). Here Xt is mea-
surable with respect to the σ-algebra generated by (X1, U1, X2, U2, · · · , Xt−1, Ut−1), and Ut
is conditionally independent of the past given Xt. Let Pw and Ew denote the probabilities
of events and expectations, respectively, under w = A and w = B.

Define the (random) sequence of empirical log-likelihood ratios of w = A relative to
w = B, (Λt)0≤t≤T , where Λ0 = 0 and for 1 ≤ t ≤ T ,

Λt =
t∑

s=1

1{Xt>0} log
0.751{Ft=1} + 0.251{Ft=−1}

0.751{Ft=−1} + 0.251{Ft=1}
. (32)

This is the sequence seen by the policy whenever a non-zero decision is taken (otherwise
Ft is not observed). We denote the complete sequence of empirical log-likelihood ratios by
(Λct)0≤t≤T , where Λc0 = 0 and for 1 ≤ t ≤ T ,

Λct =

t∑
s=1

log
0.751{Ft=1} + 0.251{Ft=−1}

0.751{Ft=−1} + 0.251{Ft=1}
. (33)

Note that this sequence only depends on Ft and is independent of the decisions Xt taken
by the policy. Similar to Proposition 8, the proof is now divided into two parts.

Part A. One cannot raise decisions too quickly without obtaining sufficient empir-
ical evidence to justify it.

Define a threshold τ(T ) = 1/T γ/4 for γ > 0 and let kT = max{1 ≤ k ≤ T s.t. xk <
1/T γ/4}. Consider the following event:

CT ,

{
kT ≤

(1− γ) log T

DKL(0.75‖0.25)
and ΛkT ≤ (1− γ

2
) log T

}
. (34)

By the change of measure identity, we have that

PB(CT ) = EB(1CT ) = EA(1CT exp(−ΛkT )) ≥ PA(CT )T−1+γ/2. (35)

Hence,

RegretTK-FH(B,ψT )
(a)

≥ PB(CT )
1

T γ/4
(T − kT )

(b)

≥ PA(CT )
T−1+γ/2

T γ/4
(T − kT )

(c)

≥ PA(CT )
T−1+γ/2

T γ/4

(
T − (1− γ) log T

DKL(0.75‖0.25)

)
.

Here, (a) follows from the fact that for w = B, on event CT , one incurs a regret of
T−γ/4 per time step after kT . (b) follows from (35), and (c) follows from the fact that
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on event CT , kT ≤ (1−γ) log T
DKL(0.75‖0.25) . Since RegretTK-FH(w,ψT ) = o(Tα) for each α > 0

and for each w, we have PA(CT ) = o(1). Thus, if we denote CT to be the complement
of the event CT , then we have,

PA(CT ) = PA
(
kT >

(1− γ) log T

DKL(0.75‖0.25)
or ΛkT > (1− γ

2
) log T

)
= 1− o(1). (36)

Part B. It takes time (and hence regret) to gather sufficient empirical evidence.

Next, denote b(T ) = b (1−γ) log T
DKL(0.75‖0.25)c. Then

PA
(
kT ≤

(1− γ) log T

DKL(0.75‖0.25)
and ΛkT > (1− γ

2
) log T

)
= PA

(
kT ≤ b(T ) and ΛkT > (1− γ

2
) log T

)
≤ PA

(
kT ≤ b(T ) and sup

t≤b(T )
Λt > (1− γ

2
) log T

)

≤ PA

(
sup
t≤b(T )

Λt > (1− γ

2
) log T

)

≤ PA

(
sup
t≤b(T )

Λct > (1− γ

2
) log T

)

≤ PA

(
1

b(T )
sup
t≤b(T )

Λct >
(1− γ

2 )

1− γ
DKL(0.75‖0.25)

)
)

= o(1). (37)

The last inequality results from the fact that, by the maximal version of the strong
law of large numbers (see Theorem 2.2 of Bubeck et al. (2012)),

1

b(T )
sup
t≤b(T )

Λct
a.s.−→ DKL(0.75‖0.25) as T →∞.

Combining (36) and (37), we finally have,

PA
(
kT ≥

(1− γ) log T

DKL(0.75‖0.25)

)
= 1− o(1).

Hence,

RegretTK-FH(A,ψT ) ≥ (1− o(1))

(
1− 1

T γ/4

)
(1− γ) log T

DKL(0.75‖0.25)
.

This implies the result.

28



Individual Fairness in Hindsight

Remark 6. In the absence of FH constraint, we can show that a O(1) cumulative regret
can be guaranteed in the instance above. This can, for instance, be achieved by the following
policy that always chooses xt > 0. Let F̄t = (1/t)

∑t
s=1 Ut/xt = (1/t)

∑t
s=1 Ft. Then choose

x1 = 1 and for t ≥ 2, choose xt = 1 if F̄t−1 ≥ 0 and xt = e−t if F̄t−1 < 0. Thus the total
expected regret on the event w = 1 is upper bounded by

∑T
t=1 PA(F̄t−1 < 0), and the total

expected regret on the event w = 1 is upper bounded by

T∑
t=1

e−tPB(F̄t−1 < 0) + PB(F̄t−1 ≥ 0) ≤
T∑
t=1

e−t + PB(F̄t−1 ≥ 0).

Both these quantities are O(1) as T →∞ since by the Hoeffding bound, PB(F̄t ≥ 0) ≤ e−ν1t
and PA(F̄t < 0) ≤ e−ν2t for some instance dependent constants ν1, ν2 > 0.

5.4 Knowledge of T is necessary to obtain a good FH algorithm

When the time horizon T is unknown, a technique known as the “doubling trick” often
allows one to achieve the same order of regret as that what is possible with the knowledge
of T (for example, see Besson and Kaufmann (2018)). However, since the constraints for
individual fairness in hindsight do not allow changes to a less conducive decision over time,
the doubling trick does not work in our setting. In fact, it is simply not possible to obtain
an algorithm with good guarantees without knowing the horizon T . We show this in the
context of the instance defined in Section 5.3.2. In particular, we show that for this instance,
there is no sequence of T horizon policies that can simultaneously achieve a o(log T ) regret
on the horizon of duration Θ(log T ) and a O(Tα) regret for the horizon of duration T for any
α < 1. The informal argument is as follows. When the parameter is w = A (the decision 1
is optimal in this case), in order to guarantee a regret of at most o(log T ) for the Θ(log T )
horizon, one can spend at most o(log T ) time choosing low decisions, e.g., decisions less
than 1/2. However, raising the decisions that quickly does not allow sufficient distinction
from the case where w = B, when the decision 0 is optimal; in particular, it doesn’t allow a
distinction that is sufficient enough to guarantee O(Tα) regret for the longer time horizon
T for any α < 1.

Proposition 10 Consider the instance defined in Section 5.3.2. Define D = 1/DKL(0.75‖0.25).
Suppose that there is a sequence of K-FH policies (ψT )T∈N that satisfy,

RegretD log T
K-FH (A,ψT ) ≤ o(log T ),

as T →∞. Then

RegretTK-FH(B,ψT ) ≥ Ω(Tα),

for every α < 1 as T →∞.

Proof Let κT be the (possibly random) time until which the policy ψT chooses deci-
sions below 0.5. Then, since the policy incurs a regret of at least 0.25 for each time
step in which the decision is less than 0.5 and the parameter is w = A, we have that
RegretD log T

K-FH (A,ψT ) ≥ EA(min(κT , D log T ))× 0.25. Since RegretD log T
K-FH (A,ψT ) ≤ o(log T ),
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we have that EA(min(κT , D log T )) ≤ o(log T ). Thus, for a fixed γ ∈ (0, 1), by Markov’s
inequality, we have,

PA
(

min(κT , D log T ) ≥ (1− γ) log T

DKL(0.75‖0.25)

)
≤ DKL(0.75‖0.25)× o(log T )

(1− γ) log T
= o(1). (38)

We thus have that,

PA
(
κT <

(1− γ) log T

DKL(0.75‖0.25)

)
= PA

(
min(κT , D log T ) <

(1− γ) log T

DKL(0.75‖0.25)

)
≥ 1− o(1).

(39)

The equality follows by the definition of D and because D log T > D(1− γ) log T .
Next, fix a β > 0. Then by an identical argument to that leading to Equation 37 in the

proof of Proposition 9, we have that

PA
(
κT <

(1− γ) log T

DKL(0.75‖0.25)
and ΛκT ≥ (1− γ

1 + β
) log T

)
≤ o(1). (40)

Thus (39) and (40) together imply that

PA
(
κT <

(1− γ) log T

DKL(0.75‖0.25)
and ΛκT < (1− γ

1 + β
) log T

)
≥ 1− o(1). (41)

Let C denote the event
{
κT <

(1−γ) log T
DKL(0.75‖0.25) and ΛκT < (1− γ

1+β ) log T
}

. We then have the

following inequality by the change of measure identity.

PA(C) = EB(1C exp(ΛκT )) ≥ 1− o(1). (42)

Since ΛκT < (1− γ
1+β ) log T on the event C, we thus have that,

EB
(

1C exp((1− γ

1 + β
) log T

)
≥ EB(1C exp(ΛκT )) ≥ 1− o(1). (43)

Thus we have,

PB(C) ≥ 1− o(1)

exp((1− γ
1+β ) log T )

= T
−1+ γ

1+β (1− o(1)). (44)

However, when w = B, the optimal decision is 0, and hence κT < (1−γ) log T
DKL(0.75‖0.25) implies

that the per time-step regret is at least 0.25 after (1−γ) log T
DKL(0.75‖0.25) time periods due to the FH

constraint that doesn’t allow the decisions to be lower than 0.5 after κT . Hence, we have
that

RegretTK-FH(B,ψT ) ≥ 0.25×
(
T − (1− γ) log T

DKL(0.75‖0.25)

)
(1− o(1))T

−1+ γ
1+β = Ω(T

γ
1+β ).

(45)

Since γ ∈ (0, 1) and β > 0 are arbitrary, the result follows.
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6. Extensions and future directions

We now discuss some extensions of our proposal and comment on interesting directions for
future work.

1. Continuous parameter settings. As we mentioned in the introduction, the assumption
of a finite set of possible utility models, allows for a convenient abstraction to demonstrate
the operational properties of individual fairness in hindsight in an otherwise fairly general
setting. However, extensions to continuous parameter settings may be a practical necessity
to operationalize this notion in specific applications. Such extensions are interesting direc-
tions for future work. We expect that the broad approach of conservative exploration then
exploitation would lead to sublinear regret guarantees in these settings. However, achieving
optimal regret rates may necessitate algorithmic innovation. The parametric model would
typically depend on the application in question. For instance, a relevant application of
notions based on individual fairness is to online personalized pricing. A recent model intro-
duced in Ban and Keskin (2018) is as follows. Individuals with contextual information or
features arrive over time. These contexts are represented by a sequence of feature vectors
(Xt), where Xt ∈ Rd. They are presented with a sequence of prices (pt) by the seller (who is
the principal in this setting) in an online fashion. The probability of a context Xt accepting
a price pt is given by

f(X ′tα− (X ′tβ)pt),

where f is a known function (e.g., the logistic function) and α, β ∈ Rd are unknown param-
eters lying in some known compact set. If a context accepts the price pt, then the seller
obtains a revenue of pt. Traditionally (e.g., in Ban and Keskin (2018)), the goal of the seller
is to maximize the expected revenue over a time horizon. In our setting, we will have the
same goal while ensuring that the prices additionally satisfy fairness-in-hindsight, i.e., e.g.,
for some K > 0, and some r > 0,

pt ≤ pt′ +K‖Xt −Xt′‖r for all t ≥ t′. (46)

It would be interesting to characterize “good” fair-in-hindsight pricing policies that can
maximize revenue.

2. Strategic concerns. A possible criticism of CaFE (and more generally the notion of
fairness-in-hindsight) is that, since early decisions are conservative, individuals may prefer
to arrive later when the algorithm has entered the “Exploit” phase. We argue that in many
practical settings, individuals can only afford a limited delay from the time they require
a decision to the time they approach the principal for a decision. For instance, when
an individual needs a loan, it is for some time-sensitive project which cannot be delayed
arbitrarily. In such situations, strategic arrival within some limited window of requiring a
decision will not impact the performance of CaFE. On the other hand, there are situations
where individuals may have heterogeneous costs for the delay, which may correlate with their
contextual information and uncertain model parameters. In these situations, understanding
the tradeoffs between individual fairness and robustness to strategic behavior are interesting
directions for future work.

On a similar note, there could be heterogeneity across population groups with regard to
their arrival times. For instance, when a new loan program is introduced by a bank, it could
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be the case that early applicants are the ones with dire financial need, and such need could
potentially be correlated with membership in certain groups. In such cases, CaFE could be
perceived to be unfair due to its disparate impact across groups since groups arriving earlier
will receive more conservative decisions compared to those that arrive later. In the presence
of such heterogeneity in arrivals across time, it seems unlikely that it is possible to learn
good decisions while ensuring group fairness as well as individual fairness in hindsight, even
in cases where the principal’s utilities do not depend on group membership.11 We leave
such investigations of the precise tradeoffs between utility maximization and notions of
group and individual fairness in dynamic contextual decision-making as an important open
direction for research.

3. Vector-valued decisions. Extension to vector-valued decisions, i.e., where decisions lie in
the set X = [0, 1]d for some d > 1, is relatively straightforward assuming that the distance
between decisions is measured under the L∞ norm. In this case, a K-Lipschitz decision rule
is the one that satisfies:

‖φ(c)− φ(c′)‖∞ ≤ KdC(c, c′) for all c, c′ ∈ C. (47)

A policy is K-fair-in-hindsight for some K > 0 if the decisions (xt)t=1,··· ,T it generates for

any sequence of contexts, where xt = (x
(i)
t )i=1,··· ,d, satisfy,

x
(i)
t ≥ x

(i)
t′ −K(t− t′)dC(ct, ct′) for all t ≥ t′ and for all i = 1, · · · , d. (48)

CaFE can be easily adapted to this setting by defining the decision to be ε on all dimensions
during the Explore phase, which in turn leads to a lower bound of ε on decisions on each
dimension during the Exploit phase. A sublinear regret bound similar to Theorem 6 can be
proved for CaFE in this setting under similar assumptions.

7. Conclusion

In this paper, we proposed a new notion of fairness, fairness-in-hindsight, that extends
the concept of individual fairness to account for temporal considerations. Our proposal is
simple, intuitive, and importantly, we show that it assimilates well with sequential decision-
making settings that involve learning, unlike the more straightforward notion of fairness-
across-time. This latter aspect inspires optimism since it suggests that similar temporal
fairness notions that are already embedded in our critical societal systems like law need
not necessarily hinder learning of good policies over time; as we pointed out earlier, con-
servative exploration then exploitation structure of our fair-in-hindsight learning algorithm
CaFE is already observed in these contexts. Thus, to summarize, fairness-in-hindsight can
be a practical, first-order safeguard against claims of discrimination in modern algorithmic
deployments.

In many settings, however, the utility model of the principal itself changes over time
(i.e., what were perceived to be good policies are not good anymore), or the distance metric
changes over time (i.e., contexts that seemed different are actually closer to each other). Our

11. Relevant paper in this regard is Blum et al. (2018), which shows the incompatibility of ensuring certain
notions of group fairness and achieving good classifications in the online learning problem of combining
fair expert classifiers when the arrivals are adversarial.
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model and results are inapplicable in such settings since we assume that the utility model
and the distance metric remain fixed throughout the time horizon. Defining appropriate
notions of fairness in such settings and optimizing the related utility-fairness tradeoffs is an
important direction for future research in this area.
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