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Abstract

We consider the problem of operator-valued kernel learning and investigate the possibility
of going beyond the well-known separable kernels. Borrowing tools and concepts from the
field of quantum computing, such as partial trace and entanglement, we propose a new
view on operator-valued kernels and define a general family of kernels that encompasses
previously known operator-valued kernels, including separable and transformable kernels.
Within this framework, we introduce another novel class of operator-valued kernels called
entangled kernels that are not separable. We propose an efficient two-step algorithm for
this framework, where the entangled kernel is learned based on a novel extension of kernel
alignment to operator-valued kernels. We illustrate our algorithm with an application to
supervised dimensionality reduction, and demonstrate its effectiveness with both artificial
and real data for multi-output regression.

Keywords: Kernel Learning, Entangled Kernels, Operator-valued Kernels, Vector-valued
RKHS, Multi-output Learning

1. Introduction

There is a growing body of learning problems for which each instance in the training set is
naturally associated with a set of discrete and/or continuous labels (Izenman, 1975; Caru-
ana, 1997; Micchelli and Pontil, 2005; Alvarez and Lawrence, 2011; Dembczynski et al.,
2012; Baldassarre et al., 2012). Output kernel learning algorithms approach these prob-
lems by learning simultaneously a vector-valued function in a reproducing kernel Hilbert
space (RKHS) and a positive semi-definite matrix that describes the relationships between
the labels (Dinuzzo et al., 2011; Dinuzzo and Fukumizu, 2011; Ciliberto et al., 2015; Jawan-
puria et al., 2015). The main idea of these methods is to learn a separable operator-valued
kernel.

Operator-valued kernels appropriately generalize the well-known notion of reproduc-
ing kernels and provide a means for extending the theory of reproducing kernel Hilbert
spaces from scalar- to vector-valued functions. They were introduced as a machine learn-
ing tool in Micchelli and Pontil (2005) and have since been investigated for use in various
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Figure 1: Ilustration on the restrictiveness of a separable kernel. K is the scalar-valued
kernel matrix, T is the output similarity matrix and G is the operator-valued
kernel matrix. Every block of the big kernel matrix G = K ® T has the same
structure, and thus models the output dependencies almost the same no matter
the input interactions in K.

machine learning tasks, including multi-task learning (Evgeniou et al., 2005), functional
regression (Kadri et al., 2016), structured output prediction (Brouard et al., 2016), quantile
learning (Sangnier et al., 2016), multi-view learning (Minh et al., 2016) and reinforcement
learning (Lever et al., 2016). The kernel function evaluated on two data samples in this
setting outputs a linear operator (a matrix in the case of finite-dimensional output spaces,
K(x,z) € RP*P with p the dimension of the output space) which encodes information about
multiple output variables. A challenging question in vector-valued learning is what sort of
interactions should the operator-valued kernel learn and quantify, and how should one build
and design these kernels. This is the main question investigated in the paper in the context
of non-separability between input and output variables.

Some classes of operator-valued kernels have been proposed in the literature (Capon-
netto et al., 2008; Alvarez et al., 2012), with separable kernels being one of the most widely
used for learning vector-valued functions due to their simplicity and computational effi-
ciency. These kernels are formulated as a product between a kernel function for the input
space alone, and a matrix that encodes the interactions among the outputs. Indeed, the
name of the class refers to the fact that dependencies between input and output variables are
considered separately. In order to overcome the need for choosing a kernel before the learn-
ing process, output kernel learning methods learn the output matrix from data (Dinuzzo
et al., 2011; Ciliberto et al., 2015; Jawanpuria et al., 2015). However there are limita-
tions in using separable kernels. These kernels use only one output matrix and one input
kernel function, and then cannot capture different kinds of dependencies and correlations.
Moreover the kernel matrix associated to separable operator-valued kernels is a rank-one
kronecker product matrix (i.e, computed by only one kronecker product K® T, where K is
the scalar-valued kernel matrix and T is the output similarity matrix), which is restrictive
as it assumes a strong repetitive structure in the operator-valued kernel matrix that models
input and output interactions as illustrated in Figure 1.

To go beyond separable kernels, some attempts have been made to learn a weighted
sum of them in the multiple kernel learning framework (Kadri et al., 2012; Sindhwani et al.,
2013; Gregorova et al., 2017). Another approach, proposed by Lim et al. (2015), is to
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learn a combination of a separable and a transformable kernel, the latter being a type of
non-separable kernel based on representing the data via label-dependent transformations. In
that work, the form of the transformable kernel is fixed in advance but allows to encode non-
separable dependencies between inputs and outputs. Despite these previous investigations,
the lack of knowledge about the full potential of operator-valued kernels and how to go
beyond the restrictive separable kernel clearly hampers their widespread use in machine
learning and other fields.

This paper deals with the problem of learning non-separable kernels. It is a signifi-
cant extension of our previous conference paper (Huusari and Kadri, 2019), giving more
thorough treatment of the background material, additional theoretical results, full proofs,
and more insights to the developed framework. It also provides a theoretical analysis of
the generalization error of the learning method, along with expanded experimental section.
Our main contributions are:

e By leveraging tools from the field of quantum computing, we introduce a novel class
of kernels based on the notion of partial trace which generalizes the trace opera-
tion to block matrices. This class of partial trace kernels we propose is very broad
and encompasses previously known operator-valued kernels, including separable and
transformable kernels, which we illustrate with examples.

e From the new class of partial-trace kernels we derive another new class of operator-
valued kernels, called entangled kernels, that are not separable. As far as we are
aware, this is the first time such an operator-valued kernel categorization has been
performed.

e We further study this class of kernels and develop a new algorithm called EKL (En-
tangled Kernel Learning) that in two steps learns an entangled kernel and a vector-
valued function. For the first step of kernel learning, we propose a novel definition
of alignment between an operator-valued kernel and labels of a multi-output learning
problem. To our knowledge, this is the first proposition on how to extend alignment
to the context of operator-valued kernels. Our algorithm offers improvements to the
high computational cost usually associated with learning with general operator-valued
kernels.

e We prove a bound on the generalization error of our method using the notion of
Rademacher complexity.

e We provide an empirical evaluation of EKL. First, we illustrate how EKL works
by applying it to the task of supervised dimensionality reduction in the multi-task
setting. We also thoroughly study its performance and demonstrate its effectiveness
on artificial data as well as real benchmarks. Finally we compare the running times
of learning with various classes of operator-valued kernels.

The remainder of this paper is organized as follows. We begin in Section 2 with a
short background on quantum entanglement and learning with operator-valued kernels. In
Section 3, we describe some known classes of operator-valued kernels and review previous
work on learning separable operator-valued kernels. Section 4 then introduces the new
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X input space Yy output space

k(- -) scalar-valued kernel K(--) operator-valued kernel

K reproducing kernel Hilbert || H reproducing kernel Hilbert
space of k space of K

K the kernel matrix of k G the (block) kernel matrix of K

10} feature map of k (from X to || T feature map of K (from X to
Y) LY. H))

L(A,B) the set of trace-class operators || L(A) the set L£(A, A)
from A to B

AT u"  the transpose of a matrix A or || A*, u* the adjoint of an operator A
a vector u or a vector u

A>0 a positive semi-definite (psd) || A(A,B) alignment between matrices
matrix A and B

A1 ® Ay the tensor product of Hilbert || A; ® Ay the tensor product of opera-
spaces A; and As tors A and Ay

tr(A) the trace of a matrix or an op- || tr4,(A) the partial trace of a matrix or
erator A € L(A) an operator A € L(A; ® Asg)

Table 1: Notation summary.

classes of partial-trace and entangled kernels. Our new algorithm EKL for learning entangled
kernels is given in Section 5, along with generalization analysis. In Section 6, we present
our experimental results for both synthetic and real-life data. We conclude in Section 7 and
present some technical details in the appendix.

1.1 Notation

We denote scalars, vectors and matrices as a, a and A respectively. The notation A > 0
will be used to denote a positive semi-definite (psd) matrix. Throughout the paper we use
n as the number of labeled data samples and p as the number of outputs corresponding to
one data sample. We denote our set of data samples by {z;,y;}I; on X x Y, where X is a
Polish space and ) is a separable Hilbert space. Usually, X and ) are respectively R? and
R? equipped with the standard Euclidean metric. Without loss of generality, we can assume
that X = R and ) = RP, and thus denote our data set as {x;,y;} ;. We use k(-,-) as
a scalar-valued, and K (-,-) as an operator-valued kernel function; the corresponding kernel
matrices are K € R™" and G € R™*"P_ the latter containing blocks of size p x p. We
denote by K and H the reproducing kernel Hilbert spaces (RKHS) associated to the kernels
k and K, respectively. Table 1.1 summarizes the notation used in this paper.
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2. Background

We now give some background about quantum entanglement, and review the basics of
learning with operator-valued kernels.

2.1 Quantum Entanglement

The field of quantum computing is vast, and rapidly growing. This section is not intended
to provide a broad overview or exhaustive survey of the literature on quantum etanglement,
but gives some notions on entanglement as a quantum property of mixed composite quantum
systems that inspired our entangled kernel design. We refer the reader to Horodecki et al.
(2009), Bengtsson and Zyczkowski (2017), and Rieffel and Polak (2011, chap. 10) for more
background information. We will now start with very basics of quantum computation, for
this we refer the reader to Rieffel and Polak (2011, chap. 2-3).

A major difference of quantum computing and quantum information theory to their
classical counterparts is that instead of bits the “particles” carrying information are qubits.
Unlike bits which have only two possible states, 0 and 1, qubits can exist in those and any
combination of them. More formally, a qubit takes values awg + by where 1y and v are
orthonormal basis vectors and a,b € C such that |a|? + [b> = 1.} In quantum information
theory the actual state awy—+b11 cannot be recovered by measurement; it is always measured
as either 1)y or 1 according to the probabilities proportional to multipliers a and b.

In the heart of quantum computing there is a notion of quantum systems, consisting of
one or more qubits. For a system of one qubit, the system’s basis consists of two-dimensional
vectors. For a system of n qubits, the description requires a 2"-dimensional Hilbert space
to capture all possible combinations of the qubit values. This brings forward the notion of
entanglement; any state that cannot be written as a tensor product of n single-qubit states
is said to be entangled. Perhaps the simplest example of an entangled state is

1
7 (too + ¥11) (1)
as it cannot be written as

(a1t + b)) ® (aztbo + bath1) = arazipoo + a1bator + brazihio + bibatbnn

with any multipliers a1, ao, b1 and bg, and where g1 = Yy ® 11, similarly for others.

A quantum system exists in a state, describing all the information that can be learned of
the system. A quantum system can also be divided into parts or subsystems. We focus here
only on bipartite quantum systems, i.e., systems composed of two distinct subsystems. The
Hilbert space F associated with a bipartite quantum system is given by the tensor product
F1 ® Fo of the spaces F; anf Fy corresponding to each of the subsystems. A question to
ask in this context is, what information of the system can be obtained by only considering
a part of it, either F7 or F27 A quantum state can be either “pure” or “mixed”. While
states of pure systems can be represented by a state vector ¢ € F, for mixed states the

1. In the field of quantum computing, it is more usual to use the Dirac’s bra-ket notation for the basis
vectors. In this notation “bra” (x| denotes a row vector and “ket” |z) a column vector, and a qubit
would take values a|0) + b|1).
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characterization is done with density operators (or matrices) p, positive Hermitian operators
with trace equal to one. Pure states can also be modeled with a density operator allowing
for uniform treatment, in this case p = .

The entanglement present in a bipartite quantum system can be modeled through the
partial trace of the system. Given the density operator p modeling the whole system, the
state of, say, the first subsytem is described by a reduced density matrix, given by taking
the partial trace of p over Fs. If the system can be accurately represented with only the
two subsystems, then it is not entangled. In the following we review the notions of partial
trace, separability and entanglement of bipartite quantum systems in more detail.

We denote the set of bounded linear operators from a Hilbert space B to B with finite
trace norm as £(B). Let F; and F> be separable Hilbert spaces.

Definition 1 (partial trace)

Let {e;}; be an orthonormal basis for Fa. For an operator A in L(F1 ® F2) its partial trace,
trr, A, is an operator in L(F1) defined by the relation

(z, (rrA)y) =D (@, Aly®@e;))

for all x,y € F1.

This definition follows the ones in Bhatia (2009, Equation 4.34) and Attal (2015b, Equa-
tion 2.10). In the finite-dimensional case where F; = RP and Fo = RY, the operator
A € RPN*PN g a block matrix where each block is of size N x N, and the partial trace is
obtained by computing the trace of each block (see Figure 2). To see this, let us denote the
orthonormal bases of F; and F3 by {g]} _, and {e;}¥,, respectively. Any block matrix
A € RPNXPN can be written as A = P 9s9; ® Ay, where Ay € RVXN s the (s,t)th
block of A. Now, when investigating one element of the operator trz, A at position (I,m)
we see that it exactly corresponds to the trace of block Ay,,:

N

[t Alim = (g1, (trr, A)gm) = Y (01 ® €5, A(gm ® €))
=1

N
(90 @ i, (9590 ® Ast)(gm @ €i)) =D > {91 @ €i, 959 gm @ Asres)

I
1=
NE

i=1 s,t=1 =1 s,t=1
N p N p N
= Z Z<gl X €5, 0s ® Asm€i> = Z Z glags 617 sm6i> = Z<eia Alm6i>
i=1 s=1 i=1 s=1 i=1
= tr(Apm,).

The last equality is easy to see from the definition of trace. The following theorem shows
how to compute partial trace for separable operators (Attal, 2015b, Theorem 2.29).

Theorem 2 (partial trace of a tensor product of operators)

Let B and C be operators in L(F1) and L(F2), respectively. If A is an operator in L(F1RF2)
of the form B ® C, then
trr,(A) = B tr(C).
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Trf_2 : : : —

Figure 2: Hlustration of partial trace operation. The partial trace operation applied to
N x N-blocks of a pN x pN matrix gives a p X p matrix as an output.

The notion of partial trace is a generalization of the trace operation to block structured
matrices (Rieffel and Polak, 2011, chap. 10). Note that there are two ways of generalizing
trace to block matrices. Another possibility would be the so-called block trace (Filipiak
et al., 2018) which, informally, is defined as a sum of the diagonal blocks of a matrix; with
A € RPVXPN it would be the sum Zle A in which each Ay is of size N x N. However
in this work we only consider the “blockwise trace” definition we discussed earlier.

In the case where the density matrix p of a mixed bipartite state can be written as
p = p1 ® p2, where p; and ps are density matrices on F; and Fy of the subsystems, the
partial trace of p with respect to F2 is p1. This form of mixed product states is restrictive
and does not exhibit correlations between the two subsystems. A convex sum of different
product states,

p=> piph®ph (2)
%

with p; > 0 and ), p; = 1, however, will in general represent certain types of correlations
between the subsystems of the composite quantum system. These correlations can be
described in terms of the classical probabilities p;, and are therefore considered classical.
States of the form (2) thus are called separable mixed states. In contrast, a mixed state is
entangled if it cannot be written as a convex combination of product states, i.e.,

ol ph,pi >0 suchthat p=> pip} @ ph. (3)

()

Entangled states are one of the most commonly encountered classes of bipartite states
possessing quantum correlations (Mintert et al., 2009).

A challenging problem in quantum computing is to identify necessary and sufficient
conditions for quantum separability. Given a density matrix p of a bipartite quantum state,
the quantum separability problem asks whether p is entangled or separable. A useful and
efficient necessary condition for checking if a given block density matrix is separable in
some block size partition, is to use positive partial transpose (PPT) condition, sometimes
also called Peres-Horodecki criterion (Peres, 1996; Horodecki, 1997). The partial transpose
of a pN x pN block matrix P with blocks (Pij)ﬁjzl is the block matrix of the same size

containing the transposed blocks (Pg)f Iy If a density matrix is separable, then it has

positive partial transpose. It is necessary for any separable density matrix to have positive
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partial transpose; yet in general this condition is not sufficient in guaranteeing separability,
as there might be non-separable density matrices fulfilling the PPT condition. However
this condition guarantees that if the partial transpose matrix has a negative eigenvalue, the
state is entangled.

2.2 Learning with Operator-valued Kernels

We now review the basics of operator-valued kernels (OvKs) and their associated vector-
valued reproducing kernel Hilbert spaces (RKHSs) in the setting of supervised learning.
Vector-valued RKHSs were introduced to the machine learning community by Micchelli
and Pontil (2005) as a way to extend kernel machines from scalar to vector outputs. Given
a set of training samples {x;,y;} ; on X x ), the optimization problem

arggcrgﬁ;‘/(yi,f(xi)) + Al £113, (4)

where f is a vector-valued function and V' : Y x Y — R, is a convex loss function, can
be solved in a vector-valued RKHS H by the means of a vector-valued extension of the
representer theorem.

Definition 3 (vector-valued RKHS)

A Hilbert space H of functions from X to Y is called a reproducing kernel Hilbert space if
there is a positive semi-definite L(Y)-valued kernel K on X x X such that:

i. the function z — K(x,z)y belongs to H, Vz,x € X, y € ),

i. VfeH,xe X, yel, (f,K(x,)y)n = (f(x),y)y (reproducing property).
Definition 4 (positive semi-definite operator-valued kernel)
A L(Y)-valued kernel K on X X X is a function K(-,-) : X x X — L()); it is positive
semi-definite if:

i. K(x,z)= K(z,x)*, where superscript * denotes the adjoint operator,

ii. and, for everyn € N and all {(x;,¥i)i=1,..n} € X X Y,
D Ayi K(xi,%))y5)y > 0.
2
Theorem 5 (bijection between vector-valued RKHS and positive semi-definite operator-
valued kernel)
An L(Y)-valued kernel K on X x X is the reproducing kernel of some Hilbert space H, if
and only if it is positive semi-definite.
Theorem 6 (representer theorem)

Let K be a positive semi-definite operator-valued kernel and H its corresponding vector-
valued RKHS. The solution f € H of the regularized optimization problem (4) has the
following form

f(x) = iK(x,xi)ci, with ¢; € Y. (5)

i=1
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With regard to the classical representer theorem, here the kernel K outputs a matrix and
the “weights” c; are vectors. The proofs of Theorem 5 and 6 can be found in Micchelli and
Pontil (2005) and Kadri et al. (2016). For further reading on operator-valued kernels and
their associated RKHSs, see, e.g., Caponnetto et al. (2008); Carmeli et al. (2010); Alvarez
et al. (2012).

3. Learning Operator-valued Kernels

In this section we first review some known classes of operator-valued kernels, before moving
on to describing ways to learn them. Most of the works in this field consider separable
kernels, but a few specialized methods exist also for non-separable kernels.

3.1 Known Classes of Operator-valued Kernels

Some well-known classes of operator-valued kernels include separable and transformable
kernels. Note that here and throughout the rest of the manuscript we consider the case
where the output space ) is of finite dimension p (i.e., Y = RP and L£(Y) = RP*P ).

Definition 7 (Separable operator-valued kernel)

A separable operator-valued kernel is a function K : X x X — RP*P, that can be written as
K(x,z) =k(x,2)T, Vx,z€eX, (6)

in which k is a scalar-valued kernel function, and T € RP*P is a positive semi-definite
matric.

This class of kernels is very attractive in terms of computational time, as it is easily decom-
posable. However the matrix T acts only on the outputs independently of the input data,
which makes it difficult for these kernels to capture input-output relations. In the same
spirit a more general class, sum of separable kernels, can be defined as follows.

Definition 8 (Sum of separable operator-valued kernels)

A sum of separable operator-valued kernels is a function K : X x X — RP*P that can be
written as
K(x,2) =Y k(x,2)T;, Vxz€AX, (7)
!

in which k; are a scalar-valued kernels and Ty € RP*P are positive semi-definite.

This class of operator-valued kernels can capture more complex similarities, but still assumes
that the unknown input-output dependencies can be decomposed into a product of two
separate kernel functions that encode interactions among inputs and outputs independently.

Definition 9 (Transformable operator-valued kernel)

A transformable operator-valued kernel is a function K : X x X — RP*P_ that can be written

as
p

K(x,z) = [E(Slx, sz)]l L Vx,ze X, (8)
in which k: X x X — R is a scalar-valued kernel function and {S;}}_, are mappings from

X to X.
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< non symmetric
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Figure 3: Illustration on differences of separable (left) and non-separable (right) operator-
valued kernels. For separable kernels the p x p output matrix is always a psd
symmetric matrix.

In transformable kernels the data is transformed with the mappings {S;}}_, before feeding
it to the scalar-valued kernel function; which transformations to use depends on which
outputs the element in K (x,z) corresponds to. The mappings S; operate on input data while
depending on outputs; however they are not intuitive nor easy to interpret and determine.
One example of such kernels, which was proposed in Caponnetto et al. (2008), is the
kernel function K (x,z) := (eZm®2 .| m € {1,...,p}) with & = (o) a positive semi-
definite matrix. In this transformable kernel the matrix entries outputted by the kernel are
computed using linear transformations of the data. Indeed, it is easy to see that K(x,z) =

(1) o(®) . . s
[Hle {51 %5m Z>]im:1, where o = >0, \iu;u; | s the eigenvalue decomposition of o and

St(l)x =V Augx, forallt =1,...,p.

Separable kernels are the most common operator-valued kernels to be used and learned.
As already mentioned, they are nevertheless a relatively restrictive class of kernels, as the
relationships between inputs and outputs are modelled independently of each other as was
already illustrated in Figure 1. Moreover, only certain types of interactions can be modelled,
as T should be a psd matrix, and symmetric. Figure 3 illustrates this.

3.2 Learning Separable Operator-valued Kernels

Most works on learning operator-valued kernels consider the Output Kernel Learning (OKL)
framework, where a separable operator-valued kernel is learned by fixing the scalar-valued
kernel and learning the operator T. The method is named for the observation that learning
T does not depend on input data values, but only on the outputs.

All the output kernel learning algorithms are based on joint optimization, that is, the
kernel is learned jointly with the learning problem, giving an optimization problem that
generally can be written as

n
min Y V(yi, fr.e(x:) + AQ(fr.e) +7O(T).
Te i3

Here V is the loss function for classification/regression and €2 is the accompanying regu-
larization term, while © regularizes the output matrix. With separable operator-valued
kernels, applying the representer theorem we get that frc(-) = >_7_ k(x;,)Tc;.

10
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Many algorithms solve the output kernel learning problem. The first output-kernel
learning algorithm was introduced in Dinuzzo et al. (2011) with Frobenius norm regularizer
on the output matrix T. Dinuzzo and Fukumizu (2011) considers learning low-rank output
kernels, that is, separable kernels where the rank of T is constrained to be less or equal to
some r. The optimization is performed with having also a regularizer on tr(T) in addition
to the rank constraint. More general or efficient formulations of output kernel learning have
been proposed in Ciliberto et al. (2015) and Jawanpuria et al. (2015).

To go beyond the standard OKL, Kadri et al. (2012) extended the multiple kernel learn-
ing framework (Gonen and Alpaydin, 2011) that is popular in learning scalar-valued kernels
into operator-valued kernel framework. The multiple kernel learning refers to paradigm
where given multiple (scalar-valued) kernels k;, a combination k(x,z) = 22:1 aiki(x,z) is
learned and then used in the predictive learning problem at hand. Similarly, Kadri et al.
(2012) focus on learning a finite linear combination of separable operator-valued kernels.
They consider two formulations of the optimization problem. In the first one the separable
operator-valued kernels all share the same output operator T, meaning that the full kernel

1S
K

K(x,z) = Z a;ki(x,z)T.

=1

The second formulation considers the case where also the output operators differ across the
operator-valued kernels in the sum, giving

K
K(x,z) = Z a;ki(x,z)T;.
i=1

In both of these versions only the multipliers «; are learned, and the kernels are fixed,
comparably to the case of multiple kernel learning (MKL) for scalar-valued kernels. Notably,
the operators T and T; are fixed in advance, which makes the use of this method difficult
as it is not obvious how one should choose T without learning it.

Some works have continued this line of investigation. Sindhwani et al. (2013) considers
learning a combination of separable kernels that share the operator T, while optimizing both
the combination of the basis scalar-valued kernels and the matrix T. Another approach by
Gregorova et al. (2017) considers combining a set of scalar-valued kernels with a set of output
matrices T;. However they impose diagonal structure on the output matrices, restricting
the types of relations they are able to model. In this setting the diagonal values can be
interpreted as model weights of the kernel in standard MKL setting.

3.3 Learning Non-separable Operator-valued Kernels

There are very few works that consider learning non-separable kernels. Lim et al. (2015)
considers an application to modelling time series data and goes further than separability
by learning a combination of a separable and a transformable kernel. They consider a
transformable kernel defined as

[Ktransf. (x7 z)}st = exp(—’y(xs - zt)2)7

11
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where x; and z; are the sth and tth elements of vectors x and z respectively. This trans-
formable kernel applies a Gaussian kernel to pairs of elements of the data vectors, giving a
d X d-matrix as an output if the data dimension is d. The separable kernel in their work is

Ksep.(xa Z) - eXp(—’}/HX - ZH2) T,

and the full kernel matrix they consider in learning is K = Kjqpnst. © Kgep., @ Hadamard or
element-wise matrix product of the two operator-valued kernel matrices. When they learn
this kernel, they consider learning the matrix T from the separable part of it. This class of
kernels cannot generalize to the learning problems we consider. The greatest restriction is,
that the kernel outputs a d X d matrix, d being the dimension of the input data. This is
very rarely the same as the dimension of the outputs.

Another specialized operator-valued kernel is that of Huusari et al. (2018), where a non-
separable kernel is learned in context of multi-view learning, by incorporating a learnable
metric operating between the views into the kernel. The output of a kernel is a v X v matrix
where v is the number of views in the data. Similarly to the previous work, this is not
applicable for a general multi-output setting we consider. Having only few specialized works
outside the separability framework motivates our more general entangled kernel learning
paradigm.

4. Partial Trace and Entangled Kernels

This section first revisits the known classes of operator-valued kernels and discusses the
inclusions between them. After that we introduce the two novel classes of operator-valued
kernels, the partial trace kernels that encompass the known classes of operator-valued ker-
nels, and the entangled kernels that are a class of kernels distinct from the separable.

While it is straightforward to see that separable kernels belong to the larger class of
sum of separable, the picture is less clear for transformable kernels. The following examples
clarify this situation.

Example 1 (transformable but not separable kernel)

On the space X = R, consider the kernel

2
Tz T2
K(x,z) = <$22 x2z2> , Vaz,zeX.

K is a transformable kernel, but not a (sum of) separable kernel. We obtain that K is
transformable simply by choosing in Def. 9 the kernel k(z, z) = xz, S1(x) = x, and Sy(z) =
x2. From the property of positive semi-definiteness of the operator-valued kernel, it is easy
to see that the matriz T of a separable kernel is symmetric (see Def. 7), and since the matriz
K(z,z) is not, K is not a separable kernel.

Example 2 (transformable and separable kernel)
Let K be the kernel function defined as

K(x,z) = (x,z)T, Vx,z€ X,

12
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All operator-valued kernels

Entangled

N

Transformable

Partial trace

Sum of Separable
< S

Separable

Figure 4: Illustration of inclusions among various operator-valued kernel classes.

where T € RP*P 4s a rank one positive semi-definite matriz. K is both separable and

transformable kernel. Since T is of rank one, it follows that (K (x, z))lm = wu,, (x,z), with

T =uu'. We can see that K is transformable by replacing in Def. 9 the kernel E(X,Z) by

(x,2z) and Si(x) by wx, t =1,...,p. K is separable by construction.

It is worth noting that separable kernels are not limited to finite-dimensional output spaces,
while transformable kernels are. Figure 4 depicts inclusions among kernel classes discussed
here and the two new families of operator-valued kernels we propose: partial trace kernels
and entangled kernels.

We now define the two novel classes of operator-valued kernels. The first one, the class of
partial trace kernels, encompasses both (sum of ) separable and transformable kernels, while
the second, entangled kernels, is a class of non-separable kernels. We start by introducing
the more general class of partial trace kernels. The intuition behind this class of kernels is
that in the scalar-valued case any kernel function k can be written as the trace of an operator
in £(K), where K is the reproducing kernel Hilbert space associated to the scalar-valued
kernel k. It is easy to see that k(x,z) = (¢(x),¢(z)) = tr(¢(x)¢(z)").2 The following
definition of partial trace kernels can be motivated as a generalization of the kernel trick by
using the partial trace operator instead of trace.

2. There is some abuse of notation in using the transpose symbol | for a feature map representation which
can be infinite-dimensional. In this case, we can write k(x,2z) = tr(¢(x)d(z)*), where ¢(x)d(z)* is the
rank one operator defined for all u € KC by (¢(x)p(z)")u = (¢(z), u)p(x).

13
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Definition 10 (Partial trace kernel)

A partial trace kernel is an operator-valued kernel function K having the following form

K(x,2) = trc(Pyx),6(2)) 9)

where Py (x) 4(z) 15 an operator on L(Y ® K), and tri is the partial trace on K (i.e., over
the inputs).

Depending on the choice of the operator P gy 4(5), partial trace kernels may not be positive
semi-definite. Since the partial trace preserves positive semi-definiteness (Filipiak et al.,
2018), it is clear that the partial trace kernel is positive semi-definite if for every n € N
and x1,...,X, € X the matrix [P¢(xi)7¢(xj)]§fj:1 is positive. Even though all the kernel
subclasses considered here and shown in Figure 4 are positive semi-definite, our definition
of partial trace kernel is general and flexible enough to cover many kernels and allows the
design of new ones that may or not be positive semi-definite. As for the scalar-valued case,
operator-valued kernels which are not positive semi-definite may be useful for learning in
reproducing kernel Krein spaces (Ong et al., 2004; Saha and Palaniappan, 2020).

The class of partial trace kernels is very broad and encompasses the classes of separable
and transformable kernels (see Figure 4). From the definition of the partial trace operation,
we can see that if we choose Py 5z = >y Ti @ (d1(x)¢i(2)*), where ¢(x)p(z)* is the
rank one operator defined in Footnote 2, we recover the case of sum of separable kernels.
In the same way, if we fix [P(E(x),g(z)]zm:l = (50 Sl(x)) (qgo Sm(z))—r in Eq. 9, computing
the trace of each block using the partial trace will give the transformable kernel. With
this in mind, we can use the partial trace kernel formulation to induce a novel class for
operator-valued kernels which are not separable, with the goal to characterize inseparable
correlations between inputs and outputs.

Definition 11 (Entangled kernel)

An entangled operator-valued kernel K is defined as
K(x,2z) = tre (U(T ® (¢(x)¢(2)"))U”) (10)
in which T € L(Y) is a positive semi-definite operator, and U € L(Y ® K) is not separable.

When ) and K have finite dimensions p and N, respectively, £() ® K) is simply the set
of matrices of dimensions pN x pN and ¢(x)$(z)* is the matrix ¢(x)p(z) ", where ¢(z) "
denotes the transpose of ¢(z). In the following we abuse the notation and denote N as
the dimensionality of feature representation ¢(x). However we do not restrict ourselves to
finite dimensions and N in this notation can also be infinite. In this definition, U not being
separable means that it cannot be written as U = B ® C, with B € RP*P and C € RV*N,
The term T ® (¢(x)¢(z) ") represents a separable kernel function over inputs and outputs,
while U characterizes the entanglement shared between them. We note that U not being
equal to B ® C marks the crucial difference to separable kernels; if U were B ® C, then the
class described above would be part of separable kernels (see Theorem 2).

Some intuition to U can be seen from its role of an “entangled” similarity in the joint
feature space. It is entangled in the sense that it cannot be decomposed into two “sub”-
matrices of similarity between inputs and between outputs independently. The partial
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trace is the operation used to recover the sub-similarity matrix between the outputs from
the entangled joint similarity matrix. In the particular case of separability, the partial trace
will give the output metric.

Theorem 12 Entangled kernels given by the Definition 11 are positive semi-definite ker-
nels.

Proof The proof is based on the observation that T ® (¢(x)¢(x)") = O4(x)TO} ), where
Oy (x) is the operator defined by

O¢(X) Y — YK
y —y ® é(x),
and Oz(x) is its adjoint defined by:
Y ® u— (p(x),u)y.
Indeed, Vy € Y, u € K, we have
(T@ (@(x)d(2)"))(y @ u) = Ty ® ¢(x)¢(z) 'u
= (¢(2),u) Ty ® ¢(x)

= O¢(x)T<¢(Z)7 u>y

Now, to show that the entangled kernel defined by Eq. 10 is positive semi-definite, let us
compute

> (i K(xi,xp)y)y = Z <yz'7tl"lc (U(T ® (¢(Xz‘)¢(Xj)T))UT> Yj>

— Yy
Z7]

2¥)
= o (0 9L U(T® (@(x)o(x)))UT (y; @11n))

= >t (37 @ Ln) U(Opix TO3( ) U (3 © 1))
1,7
= tr(STS*) > 0,

as clearly tr(STS*) = tr(SVV'S*) = tr((SV(SV)*) and trace preserves positivity. Here
we have denoted S = >, (y; ® In)UOyx,)- Moreover, from the fact that trc(AT) =
trc(A) T, we immediately obtain that K(x,z) = K(z,x)*, which completes the proof.

|

While by definition entangled kernels cannot be separable, the following example shows
that an entangled kernel can be transformable.

3. See Filipiak et al. (2018, Lemma 2.11).
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Example 3 (Entangled and transformable kernel)
An entangled kernel given by Definition 11 with symmetric and supersymmetric U (that is,
all its N x N blocks are symmetric), T = ]lp]lg € RP*P and with a scalar-valued kernel with
finite-dimensional feature mapping, ¢(x) € RN, is a transformable kernel.

This can be seen from the following calculation:

- p
p
Py).om = | D Uio(x)6(z) Uy,
[5=1 I,m=1
[ [ »p p m?
=D Uyo(x) (Z Uim¢(z)>
L \J=1 =1 4 1m=1
[ [ »p p Nk
= || D Uyo(x) (Z Umi¢(z)>
L J=1 i=1 dim=1
Now S;(x) = > _1_, Und(x); recall that transformable kernels can be obtained from partial
trace kernels (9) with [P, 5(z)]f,m:1 = (¢po0Si(x))(po Sm(z))T.

Choice of the matrix U is crucial to the class of entangled kernels. In the next section
we develop an algorithm that learns an entangled kernel from data.

5. Entangled Kernel Learning

In general, there is no knowing whether input and output data are or are not entangled.
In this sense, learning the entangled K in Eq. 10 by imposing that U is inseparable can
sometimes be restrictive. In our entangled kernel learning approach we do not impose any
separability restriction, with the hope that our learning algorithm can automatically detect
the lack or presence of entanglement. Key to our method is a reformulation of the entangled
kernel K (Eq. 10) via Choi-Kraus representation.

Theorem 13 (Choi-Kraus representation Choi, 1975; Kraus, 1983; Rieffel and Polak, 2011)
The map K (x,z) = tric (U(T @ (¢(x)¢(z) ")) U") can be generated by an operator sum rep-
resentation

-
K(x,2) = > Mig(x)p(z) M/, (11)
i=1
where r is called the Kraus rank and M; € RPN gre the Kraus operators.

Proof See Appendix A [ |

Using this formulation, entangled kernel learning consists of finding a (possibly low-rank
when r is small) decomposition of the kernel by learning the matrices M;, ¢ = 1,...,7,
where these matrices “merge” the matrices T and U.

Looking at the simpler class of separable kernels, they model the relations between
tasks (i.e., ouputs) using only the output matrix T of size p x p. The matrix T acts as a
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covariance matrix on the labels independently of the inputs and if connected to the existing
deep neural network approaches for multi-task learning (i.e. the task-decoder methods
which learn a shared representation at a high-level layer followed by task-specific decoders,
see, e.g., Meyerson and Miikkulainen, 2018), can then play the role of a decoder that
predicts labels using the outputs of related tasks. Entangled kernels, however, capture task
relatedness through the matrices M, of size p x N modeling the relationships of tasks and
features. A small value of r is a (Kraus) low-rank assumption which reduces the number of
parameters and promotes sharing information and knowledge between tasks. This would be
more similar to the column-based approaches in deep multi-task learning, which consider
multiple deep neural networks in parallel and share the layer parameters between these
networks (Meyerson and Miikkulainen, 2018).

It is not easy to see from the theorem how exactly T, U and M; interact. While the
proof of the theorem (see Appendix A) gives the explicit relation between them, in order
to make this more clear let us consider only one element of the output of the kernel. From
the Choi-Kraus representation (11) we have

[K(x,2)]s: = Z Mils, :Jo(x)(z) (Mt :])

and on the other hand from the definition of the entangled kernels (Definition 11) we get
that

p p p
(K (x,2)]ss = tr (ZZUSkal¢ )TU;> =) Tué(z) UjUgd(x).

I=1 k=1 Lk=1

Here we have used notation M;[s,:] to refer to the row s of matrix M;, T;; to refer to
the element in position (¢, j) in T, and Uj; similarly ordered to the block of size N x N in U.
From this we see that both the rows of M; and rows of (blocks of) U act on transforming
the features ¢(x). If we restrict the “rank” of the entangled kernel by restricting the r
n (11), we are in essence restricting the row space of (blocks of) U

It is important to note, that while every entangled kernel can be represented like this,
the representation is not restricted only to entangled kernels. Thus by learning the M; we
expect to learn the meaningful relationships in the data, be they entangled or not. Yet,
when learning even a low-rank entangled kernel, we are bound to learn more parameters
in the M; than we could learn from just (full-rank) T, thus making the class of kernels we
consider much more expressive.

To make this explicit, let us consider the separable kernels in the Choi-Kraus represe-
nation framework. For the class of separable kernels U equals identity, and the T in (10)
is the same as the T in Definition 7. We can describe the operator T with a set of vectors
t; € R? for which T = Y t;t].

Remark 14 (Choi-Kraus representation of seprabale kernels)
For separable kernels, each M; in the Choi-Kraus represenation (11) can be described as

M, =Mj;, = tje;—, with j = 1,...,p, k= 1,..., N and {ex}r is an orthonormal basis of R .
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This can be confirmed with the following calculation:

K(x,z) = iMm(x) z)'M,] = ZZt en p(x)o(z) ept]
=1

N =1 k= 1N
= e d(x)¢ eth =3 (6(x)6(2) Ter, e)T
k=1 k=1

— tr (¢<x>¢<z>T) T = (§(x), $(2)) T = k(x,2) T.

It is clear that the class of entangled kernels is much more expressive than the class of
separable kernels. With this in mind, we now turn our attention to describing the framework
in which we can learn the M; in entangled kernels.

Because the feature space of the scalar-valued kernel can be of very large dimensional-
ity (or infinite-dimensional), we consider an approximation to speed up the computation.
For example random Fourier features or Nystrom approximation (Rahimi and Recht, 2008;
Williams and Seeger, 2001) give us qg such that

k(x,2) = ($(x), $(2)) = ($(x), $(2)).

We note that our approximation is on scalar-valued kernels, not operator-valued, although
there are methods for approximating them, too, directly (Brault et al., 2016; Minh, 2016).
Our approximated kernel is thus

ZM@ z) M, (12)

where é(x) € R™ and M; € RP*™ from where our goal is to learn the M,;. We can write
our np X np kernel matrix as

Z vee(M;®) vec(M;®) T (13)

A~

= i((i)T ®I,) vec(Mi) VeC(Mz')T(‘I’ ® 1) 4
i=1

(x1),- - ,®(xp)] is of size m x n. Further, if we denote

Gw

where & = |

D= Z vec(M;) vec( )T, (14)

we can simply write

G=(®"®L)D®xL). (15)

To learn an entangled kernel, we need to learn the psd matrix D.

4. Matrix cookbook Eq. (520): http://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf.
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It is good to note that also from this formulation of the learnable entangled kernel,
we can easily recover the class of separable kernels. Indeed, as we already mentioned, the
representation (11) is not restricted to only entangled kernels, and thus it is possible to
recover other frameworks also from (15). In this case, if we choose D = (Iy ® T) with
T € RP*P (note that requirement for D to be psd and symmetric also restricts T to be
such), we can write

G=(@ L) (INoT)(®x1I,)=(® Iy®®LTI,)=KoT,

and see that we have recovered a separable kernel. Notably, we can see that our proposed
class of learnable kernels are much more expressive than that of separable kernels, as they
can be recovered as a special case.

5.1 The Learning Algorithm

We will now describe how to learn the psd matrix D from the entangled kernel (15), and
how to efficiently formulate the vector-valued learning problem.

Kernel alignment (Cristianini et al., 2002; Cortes et al., 2012) is a measure of similarity
between two (scalar-valued) kernels. Alignment between two matrices M and N is defined
* (M., N.)

cyiNe/)F

AN = I INC 16)
where subscript ¢ refers to centered matrices, that is, M, = HMH where H = I,, —
%111 if M is a n X n matrix. Here 0 < A(M,N) < 1, with higher value showing better
alignment and higher similarity. Kernel alignment has been used in learning a kernel by
considering the so-called ideal kernel as the target of the alignment. In the context of binary
classification, the ideal kernel is defined as yy' where y = [y1,...,y,]" is the n-vector of
class labels (Cristianini et al., 2002). The work of Kandola et al. (2002) extends the ideal
kernel to regression and to unbalanced classification where there are more samples from one
class than from the other.

We extend the concept of alignment into the case of multiple outputs. As already
mentioned, in the previous works the ideal kernel has been the linear kernel defined on
output values, yy . Extended to multi-output setting, it is natural to consider the linear
kernel Ky = Y'Y, where Y is of size p x n, containing the labels associated to data sample
i on its ith column. Yet, if we wish to use this ideal kernel in learning our entangled kernel
we face problems as we would be trying to align a np x np matrix with a n x n one. We
thus propose as the first part of our optimization problem to align the partial trace of our
entangled kernel matrix, trp(é), to the output kernel Ky . As this term does not consider
the full operator-valued kernel matrix, for the second term we consider y = vec(Y), a
vectorization of the matrix containing the labels, and take matrix K, = yy ' as the second
ideal kernel in our setting. In this kernel each p x p block is an outer product between
the labels associated with the samples, or [K,|;; = yiy;r, and we can directly align the

np X np matrix K, to the full entangled kernel G. Our optimization problem is thus a
convex combination

max (1-7)A (trp(é.), YTY) by A (G,ny> , (17)
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Algorithm 1 Entangled Kernel Learning (EKL)
Input: matrix of features ®, labels Y
// 1) Kernel learning:
Solve for Q in eq.17 (D = QQT) within a sphere manifold
// 2) Learning the predictive function:
if Predict with scalar-valued kernel then

cr = (trp(G) + AD)~1Y T O(m?® + mnp)
else R
cg = (G + AI)~!vec(Y) O(r® + mnp?)

Return D =QQ', ¢

where v € [0, 1]. We note that by applying Lemma 2.11 from Filipiak et al. (2018), we can
write tr,(G) = ® " tr,(D)®.

Intuitively the first alignment learns a scalar-valued kernel matrix that can be obtained
via partial trace applied to the more complex operator-valued kernel, while the second term
focuses on the possibly entangled relationships in the data. One possibility for using the
entangled kernel framework is to learn a scalar-valued kernel for multi-output problem using
the partial-trace formulation and to use it in a kernel machine.

The optimization problem is solved with a gradient-based approach. To make sure that
the resulting kernel is valid (psd), we write D = QQT with Q of size mp x r with r at
most mp, and perform the optimization over Q. The gradients for alignment terms are
straightforward to calculate. The optimization is performed on sphere manifold as a way
to normalize D.?

After we have learned the entangled kernel, we solve the learning problem by choosing
the squared loss function

min || vec(Y) — Ge||? + M(Ge, c). (18)
C

For this ¢ update we can find the classical closed-form solution, ¢ = (G+AI)~! vec(Y). Note
that this computation is, by considering the entangled structure of G, more computationally
efficient than a general (say, some transformable) operator-valued kernel. Generally we can
say that the complexity of calculating the predictive function with nonseparable operator-
valued kernels is O(n3p3). In our proposed network, however, we can apply the Woodbury
formula for the matrix inversion and only invert a r X r matrix. We can assume that
m < n and often in multi-output data sets p < n. Furthermore as r < mp, we can
see that n dominates the complexity calculations. Thus we write the complexity of the c-
update as O(r3 +mnp?), where we have also considered the most costly steps of the matrix
multiplications involved.

Moreover it is possible, with our kernel learning framework, to learn a scalar-valued
kernel by first learning the entangled kernel as proposed and then extracting the scalar-
valued one by using partial trace operator. The scalar-valued kernel proposed to be used in

predicting is now K = tr,(G), and it can be used in regression setting as usual; calculating
cx = (K+ AI)7'Y" and using that to obtain predictions. We note that even here our

5. We used the toolbox from pymanopt.github.io for the implementation (Townsend et al., 2016).
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learning c predicting Y
No structure O(n3p3) O(tnp?)
Separable O(n3 + p?) (tnp + np?)
Low-rank separable O(m3 +m?n +p?)  O(tp? + (n + t)pm)
Entangled O(r® + mnp?) O((t +n+ r)pm)
Entangled, ptr O(m3 + mnp) O(tm? + (n + t)pm)

Table 2: Complexities of calculating parameters of predictive function (vector c¢), and pre-
dicting labels (calculating Gic with G, of size tp x np) with various operator-
valued kernels. The “low-rank separable” refers to the case when the scalar-
valued kernel matrix of the separable kernel has a low-rank approximation, i.e.
G=K®T=UU' ®T with some U of size n x m with m < n.

framework brings forward advancements in computational complexity; after having an en-
tangled kernel the cost of calculating cx using again Woodbury formula is centered around
inverting a m x m matrix. Again when we assume m < n, and consider the most dominant
term arising from the matrix multiplications, the complexity of the c-step is O(m?3+mnp).

There are also gains in predictive complexity. Predicting with a general operator-valued
kernel has the complexity O(tnp?). With an entangled kernel of our formulation, this
reduces to O((n+1t+r)mp). For the ptrEKL kernel, assuming partial trace of D is already
calculated, the predictive complexity is O(tm?+(n-+t)mp) instead of O(tnp), beneficial with
small m. The complexities of calculating the parameters (c) of the predictive function and
predicting with various operator-valued kernels are summarized in Table 2. It is good to note
that the complexities for separable kernels could be reduced by approximating the scalar-
valued kernel matrix, as well as that it would be also possible to approximate a general
operator-valued kernel matrix. While we show this approximation for separable kernels
in Table 2 for completeness, it is good to remember that these kind of approximations
are not intrinsic to the approaches, unlike with our entangled kernels. Additionally we
have assumed in the complexities for general and separable kernels that the big operator-
valued kernel matrix G and scalar-valued kernel matrix K as well as the output matrix T
are already known at the time of the computations. Similarly, we have assumed that for
entangled kernels the ® and Q are already available at the time of these calculations.

5.2 Rademacher Generalization Bound

We now provide a generalization analysis of our EKL algorithm using Rademacher com-
plexities (Bartlett and Mendelson, 2002). The notion of Rademacher complexity has been
generalized to vector-valued hypothesis spaces (Maurer, 2006; Sindhwani et al., 2013; Sang-
nier et al., 2016). Previous work has analyzed the case where the matrix-valued kernel is
fixed prior to learning, while our analysis considers the kernel learning problem, similarly
to the bound in Huusari et al. (2018). It provides a Rademacher bound for our algorithm
when both the vector-valued function f and the kernel via Q, are learnt. We start by
recalling that the feature map associated to the matrix-valued kernel K is the mapping
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' : X - L()V,Hk), where X is the input space, ) = RP, and L(Y,Hk) is the set of
bounded linear operators from ) to Hx (see, e.g., Micchelli and Pontil, 2005; Carmeli
et al., 2010 for more details). It is known that K (x,z) = I'(x)*I'(z). We denote by I'q the
feature map associated to our entangled kernel (Equation 15).

The hypothesis class of EKL is

Hg ={x— fuq(x) =Tq(x)"u: Q€ A,lulx < B},
with A = {Q : ||Q||r = 1} and S is a regularization parameter. Let o71,...,0, be an iid
family of vectors of independent Rademacher variables where o; € RP, Vi =1,...,n. The
empirical Rademacher complexity of the vector-valued class Hs is the function R, (Hg)

defined as

A~

1
Rn(Hg) = —E

n
L [sup sup 3o gl

fEH QeA i1 ]
Theorem 15 (Rademacher complezity bound for EKL)

The empirical Rademacher complexity of Hg can be upper bounded as

A~

Ru(Hs) < By/ %

for kernels k that satisfy k(x,x) < k,Vx € X.

The proof for the theorem can be found in Appendix B. We now make use of this
result to bound the generalization error of EKL for the case where the second stage of the
algorithm is kernel ridge regression (Equation 18). Similar results can be given using other
algorithms such as SVMs in the second stage.

Corollary 16 (Generalization bound for EKL)

Let M > 0. Assume that ||f(x) —y|ly < M for all (x,y) € X x Y and f € Hg. Then, the
following holds with probability larger than 1 — & over samples of size n for all f € Hg:

2
R(f) < R(f)+4\f2M\/Bzﬁp+3M\/lo2i5, (19)

where R(f) := By [IIf(x) = yl3)] is the expected risk w.r.t. the square loss and R(f) :=
LS I f(xi) — yill3 is the empirical risk of f.

The proof of Corollary 16, which is deferred to Appendix C, is based on a general Rademacher
complexity learning bound provided in Bartlett and Mendelson (2002) (see also Mohri et al.
2018, Theorem 3.3) and a vector-contraction inequality for the Rademacher complexity of
classes of vector-valued functions proved in Maurer (2016).

6. Experiments

In this section we investigate the performance of our algorithm with real and artificial data
sets. We start with an illustration of its behaviour, and move on to experiments on the
predictive performance. In this latter setting, we compare our proposed Entangled Kernel
Learning (EKL)% algorithm to OKL (Dinuzzo et al., 2011); a kernel learning method for

6. Code is available at RH’s personal website, riikkahuusari.com.
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separable kernels (we use the code provided by the authors 7), and KRR; kernel ridge re-
gression. Furhtermore, we investigate performance of predicting with scalar-valued kernel
extracted from the operator-valued kernel matrix EKL learns, and call this ptrEKL. In all
the experiments we cross-validate over various regularization parameters A, and for EKL
also the s controlling the combination of alignments. In the experiments we consider (nor-
malized) mean squared error (nMSE) and normalized improvement to KRR (nl) (Ciliberto
et al., 2015) as error measures. Finally we conclude the experimental section by comparing
the performance of learning and predicting with various operator-valued kernels, showing
the advantage of entangled kernels.

6.1 Illustration

We consider the digits data set available at scikit-learn ® (Pedregosa et al., 2011) and make
it into multi-task data set by encoding class-memberships into vectors consisting of values
—1,41. We consider only the first four classes (digits 0-3) for clarity of illustration; in
this case for example label vector [—1 -1 +1 —1] stands for digit 2. We took 25 data
samples from each class as training samples, and further 25 from each for test data samples.

We trained EKL by restricting the number of columns in matrix Q, r, to two. This
drastic reduction of learnable parameters is not expected to produce the best accuracy (as
shown in the later experiments), but instead to allow us to visualize and illustrate a part
on how EKL works.

In this setting the learned EKL matrix is not separable, according to the PPT condi-
tion (end of Section 2.1). Figure 5 shows parts of the entangled kernel matrix, so that in
each part the samples making it up belong to one class of digits. We can see that for each
class the task relationships are modelled differently. This is vastly different from the OKL
approach, where the p x p output matrix has the same structure for all the data samples, as
we illustrated in Figure 1. In our case the output matrix structure is extremely dependent
on the inputs.

Another way to see this dependency is via an application to supervised multi-task di-
mensionality reduction. We note that Z = (<i>T ®1I,)Q, is a matrix of size np x r and acts
as an approximated feature map of the operator-valued kernel matrix, in the sense that the
full kernel is ZZ". We can interpret the Z to give dimensionality reduction of the data
with respect to all the outputs individually, as in we have p dimensionality reductions of
size n X r. As a way to project data to lower dimensions, our illustrative approach closely
resembles supervised dimensionality reduction (Fukumizu et al., 2004; Sugiyama, 2006). We
note that the focus of our work is not in this specific task, nor is our framework directly
applicable to those works. We consider multi-output learning, making the application of
EKL to this problem the first in supervised multi-task dimensionality reduction, as far as
we know.

Figure 6 shows the results of the low-dimensional projection for each of the tasks. The
supervised dimensionality reduction is successful for all the tasks: we can see that each task
is modelled individually, as the samples corresponding to task under question are projected
to a separate cluster from the other samples. An advantage of our approach is that our

7. http://people.tuebingen.mpg.de/fdinuzzo/okl.html
8. https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html
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Figure 5: Small selections (bottom and right images) of the np x np entangled kernel matrix
G (top left) trained on digits data set. The data in big matrix is ordered so,
that all samples of class 0 come first, then 1, 2 and finally of 3, and for clarity
of illustration white lines separate the classes. Each small selection contains 3
samples of the class(es) indicated in the title of the subfigure. For this data the
output of the kernel function is a 4 x 4 matrix. The structure of the output matrix
is extremely dependent on the inputs. The off-diagonal p x p blocks of the kernel
matrix are not symmetrical unlike with separable kernels.
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Figure 6: Supervised dimensionality reduction results on two dimensions for each of the four
tasks in digits data sets, task in question indicated by the subfigure title. The
classes of the projected data samples are indicated with colours, and the shape
of the blob indicates whether the sample was used in training stage (round) or
projected as test sample (triangle).

model allows calculating new reduced features for new data samples; given &, a matrix of
features of new samples, the “predicted reduced features” are now simply Z; = ((i);r ®I,)Q.
These projections are for the most part very accurate as shown in Figure 6, respecting the
task clusters especially for the easiest classes.

6.2 Performance of EKL

We now turn to consider the predictive performance of EKL. We first show experiments on
artificial data, before turning to real-world data sets.

6.2.1 ARTIFICIAL DATA

EKL is expected to learn complex relationships within the data. To illustrate this, we
created data with bi-linear model TCA 4+ ICK =Y, where T, C and A are randomly
created p X p, p X n, and n X n matrices respectively. K is linear kernel calculated from
randomly generated data X € R™ ?; this scalar-valued kernel is given to all the learning
algorithms along with noisy labels Y.

The results are shown in Figure 7. We can see that when p is larger than n (or com-
parable) the predictive capabilities of EKL are much better than for other methods. Here
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Figure 7: Results (mean squared error) of the simulated experiments with fixed amount of
inputs and varying number of outputs (top), and fixed amount of outputs and
varying inputs (bottom).The advantage of learning complex relationships is the
biggest with small n.
n: 20, p: 100
0.14 ‘
~4-- KRR
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‘ ‘ ‘ ‘ ‘ ‘ —f— OKL
0.10 | | EKL
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Figure 8: Results (mean squared error) on the simulated data set with varying number of

columns used in learning Q with n = 20 and p = 100. The number of columns,
or rank level, is shown as percentage of the full possible rank. OKL And KRR
are plotted as a reference, naturally the rank constraint of EKL does not affect
these methods.

predicting with the scalar-valued kernel extracted form learned entangled kernel gives the
best results.

We also investigated the effect the choice of rank r (number of columns in matrix Q) has
for EKL performance (Figure 8). As the rank increases, the performance of EKL gets better.
This is true to an extent also for ptrEKL, however there seems not to be as strong effect
as with EKL. This is not so surprising; ptrEKL has fewer parameters affecting predictive
performance, so decreasing the amount of them shouldn’t change the results as much as for

full EKL.
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n =50 n =100 n = 200 n = 1000
method nMSE nl nMSE nl nMSE nl nMSE nl
KRR 0.2418 + 0.0281 0.0000 0.1668 + 0.0097 ~ 0.0000 0.1441 £ 0.0037 = 0.0000 0.1273 4+ 0.0006 ~ 0.0000
OKL 0.2445 £+ 0.0296 = -0.0109 0.1672 + 0.0099 ' -0.0026 0.1442 £ 0.0037 = -0.0009 0.1273 4+ 0.0006 = -0.0000

EKL/ptrEKL  0.2381 + 0.0250 ~ 0.0139 0.1661 & 0.0097 = 0.0040 0.1440 £ 0.0037 = 0.0003 0.1273 £ 0.0006 = 0.0001

Table 3: Results on Sarcos data set with various number of training samples used, averaged
over 10 data partitions. The advantage of learning complex relationships decreases
with amount of data samples increasing.

n=>5 n =10 n =15
method nMSE nl nMSE nl nMSE nl
KRR 0.951 £+ 0.101 0.000 0.813 + 0.141 0.000 0.761 4+ 0.037 0.000
OKL 1.062 £+ 0.250 -0.092 0.900 + 0.196 -0.094 0.788 + 0.058 = -0.034

EKL/ptrEKL 0.840 + 0.084 = 0.124 0.722 + 0.036 0.107 0.728 £ 0.033  0.044

Table 4: Results on Weather data set averaged over 5 data partitions.

6.2.2 REAL DATA

We consider the following regression data sets: Concrete slump test” with 103 data samples
and three output variables; Sarcos ! is a data set characterizing robot arm movements with
7 tasks; Weather!! has daily weather data (p = 365) from 35 stations. With these data
sets, we considered linear kernels and used the original features in EKL, and full rank in
learning Q. Furthermore, we consider the uWaveGesture data set'?, a multi-view data set
for classification, which we use in a setting of predicting a view from another, giving us a
regression problem with 314 output variables. We again consider linear kernels with the
data set, and investigate also the effect of chosen rank of a matrix Q.

The main advantage of learning complex dependencies in the data lies in the setting
where number of samples is relatively low; a phenomenon observed already in output kernel
learning setting (Ciliberto et al., 2015; Jawanpuria et al., 2015). With small amounts of
data learning the complex relationships in EKL is even more beneficial than learning the
output dependencies of OKL. Figure 9 shows this advantage on Concrete data set when
number of instances used in training is small. Here, in contrast to our simulated data, EKL
performs better than ptrEKL. For Sarcos data set we consider the setting in Ciliberto et al.
(2015) and show the results in Table 3 (predicting is done to all 5000 test samples). As can
be expected, the results with the Sarcos data set which has very few outputs (p = 7) do
not show improvement over the compared methods when the number of samples is large.
However we can ascertain that our EKL finds the same solutions than the other methods
with the large sample sizes - indeed the methods perform identically when n increases. We
expect that the main improvement of the EKL lies in the cases when n and p are comparable,

9. UCI data set repository
10. www.gaussianprocess.org/gpml/data/
11. https://www.psych.mcgill.ca/misc/fda/
12. http://www.cs.ucr.edu/~eamonn/time_series_data/
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Figure 9: Results (normalized mean squared error) on the concrete data set with varying
amount of training data (n) used. The advantage of learning complex relation-
ships is biggest on small n.
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Figure 10: Running times in seconds (including calculating the predictive function given a
kernel and predicting) on the concrete data set with varying amount of training
data (n) used.

n =12 n =20 n =40
method nMSE nl nMSE nl nMSE nl

KRR 1.070 £ 0.347 = 0.000 0.710 £ 0.183 = 0.000 0.552 + 0.065  0.000
OKL 1.069 £ 0.347 = 0.001 0.710 £ 0.183 = 0.001 0.552 = 0.064  0.000
EKL 0.796 = 0.164  0.266 0.634 £ 0.103 = 0.097 0.547 £ 0.046  0.007
ptrEKL 0.843 £ 0.186 = 0.212 0.726 £ 0.170 = -0.023 0.627 = 0.058 =~ -0.130

Table 5: Results on Concrete data set, averaged over 10 data partitions.
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n =20 n =30 n =40
KRR 3.012 £ 0.2337 2.853 £ 0.0780 2.262 £+ 0.3157
Class 1 OKL 3.403 = 0.0899 3.232 + 0.1877 2.440 + 0.3451
EKL 1.136 £ 0.0937 1.123 £ 0.0852 1.107 £ 0.1019
ptrEKL 1.323 £+ 0.1807 1.208 £ 0.0932 1.132 4+ 0.1221
KRR 1.773 &= 0.0655 2.008 & 0.3391 1.937 £ 0.3170
Class 2 OKL 1.802 £ 0.0603 2.096 & 0.3673 2.074 4+ 0.3483
EKL 0.991 £+ 0.0517 0.943 £+ 0.0237 0.908 £+ 0.0130
ptrEKL  1.026 + 0.0509 0.940 + 0.0143 0.914 4+ 0.0138
KRR 1.081 £ 0.1437 1.028 = 0.1235 0.902 £ 0.1020
Class 3 OKL 1.173 £0.1720 1.146 £ 0.1753 0.993 £ 0.1486
EKL 0.671 = 0.0202 0.638 =+ 0.0214 0.632 = 0.0325
ptrEKL 0.681 + 0.0226 0.651 & 0.0345 0.632 + 0.0307

Table 6: Normalized mean squared errors over three runs on the uWaveGesture data set,
classes 1-3, with varying amount of training data and full rank of the EKL.

rank 100% rank 60% rank 20%
Class 1 EKL 1.123 £ 0.0852 1.134 £ 0.0762 1.171 £+ 0.1199
a ptrEKL  1.208 £ 0.0932 1.228 £+ 0.0970 1.325 4+ 0.1630
Class 2 EKL 0.943 £+ 0.0237 0.939 = 0.0091 0.941 + 0.0074
ptrEKL  0.940 + 0.0143 0.958 + 0.0053 0.987 + 0.0137
Class 3 EKL 0.638 4 0.0214 0.644 4+ 0.0222 0.654 + 0.0271
ptrEKL 0.651 + 0.0345 0.647 £ 0.0344 0.647 £+ 0.0394

Table 7: Normalized mean squared errors over three runs with n = 30 on the uWaveGesture
data set, classes 1-3, with varying rank of the EKL.

or p > n. This is clearly seen with the Weather data set, where number of outputs is much
larger than the number of data samples (Table 4).

While we investigate the running times of the compared algorithms more in depth in
next subsection, we here in Figure 10 display them for the Concrete data set. The Figure
shows the combined time for both calculating the predictive function given the kernel, and
predicting.

To show further the advantage of our method in the case where n < p, we turn our
attention to uWaveGesture data set with three views. Each of the views is of dimensionality
314. The training set partition contains in total 896 data samples from the three views and
eight classes. However as we want to investigate the case with large distinction between n
and p, we only consider the smaller sets of data belonging to each class, with around 100
samples each which we divide into training and testing sets for the compared algorithms.
Tables 6 and 7 show the results. In Table 6 we present the errors for the first three classes
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Figure 11: Times for training (top row) or predicting (bottom row) with the various
operator-valued kernels with fixed n/p indicated in the subtitle of the figures. For
entangled and partial trace entangled we show the results with various choices
of m and r, indicated with the number after method name in the legend. For
example “entangled 0.75” means that m = 0.75 - n and r = 0.75 - mp, meaning

with full rank parameter r in the EKL algorithms. This setting is very extreme with the
tiny sample size and large p, and it is clear that our method obtains the best result. We also
detail in Table 7 the EKL results with respect to the rank parameter r on 100%, 60% and
20% of the full rank. Even though the error rises a little in most cases, it is not significant
especially compared to the results with KRR and OKL. This further justifies the use of our

both are 75% of the largest possible value. t = n for all the experiments.

algorithm in the more efficient, low-rank setting.

6.3 Running Times of Learning with OvKs

As we show in Table 2, there is a big difference in computational complexities between
various operator-valued kernels. Namely, the complexities under question are those of cal-
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Figure 12: A closer look at the times for training (top row) or predicting (bottom row) with
the various operator-valued kernels with fixed n/p indicated in the subtitle of
the figures. For entangled and partial trace entangled we show the results with
various choices of m and r, indicated with the number after method name in the
legend. For example “entangled 0.75” means that m = 0.75-n and r = 0.75-mp,
meaning both are 75% of the largest possible value. ¢ = n for all the experiments.

culating the parameters c of the predictive function, and of calculating the label predictions.
In this section we perform experiments to highlight these differences. We note that here we
do not learn the kernels, but only compare in the experiments the differences on pre-defined
entangled /separable or general operator-valued kernels.

In our experiments we created random data (random kernel matrices, random c¢ from
which labels were calculated) with which we performed our calculations. We repeated our
experiments five times with different random data, and each time timed the execution of

learning and predicting five times. In our results (Figures 11 and 12) we present averages
of these runs.
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Figure 11 shows the times of the runs for all the methods listed in Table 2. As expected,
the operator-valued kernels with no structure are among the worst in every run, with scalar-
valued kernels much better than them. The performance of entangled kernels naturally rests
on the crucial parameters m and r. In the experiments we modify both at the same time,
from full values to 75% and 50% of the full value. With maximum m and r entangled kernels
are as slow as the general operator-valued kernels, but outperform them in predictive step.
With 75% they train comparably to separable kernels, while outperforming them with 50%.
Partial trace version of entangled kernels naturally has the lowest computational cost in
training step. In predicting, entangled kernels are always better than general operator-
valued kernels. Separable and partial trace kernels perform similarly, which can be seen
better in Figure 12 showing a closer look to separable and entangled kernels.

7. Conclusion

In this work we shed new light on meaning of inseparable kernels by defining a general
framework for constructing operator-valued kernels based on the notion of partial trace and
using ideas borrowed from the field of quantum computing. Instances of our framework
include entangled kernels, a new conceptually interesting class of kernels that is designed
to capture more complex dependencies between input and output variables as the more
restricted class of separable kernels. We have proposed a new algorithm, entangled kernel
learning (EKL), that learns this entangled kernel in kernel alignment framework. The first
step uses a definition of kernel alignment, extended here for use with operator-valued kernels
with help of partial trace operator. In contrast to output kernel learning (OKL), EKL is able
to learn inseparable kernels and can model a larger variety of interactions between input
and output data. Moreover, the structure of the entangled kernels enables more efficient
computation than that with general operator-valued kernels. Our illustration on artificial
data and experiments on real data give validation to our approach.

Like with previous work with separable kernels, the main advantage of learning complex
relations in the data lies in setting where number of data samples is relatively low. In
the experimental section, we observed that difference in performance between EKL and
OKL decreases as sample size increases. We think that one possible reason for that is that
number of outputs relative to samples is not as large in this case, and it will be interesting
to thoroughly investigate EKL in the setting where the number of outputs is even larger.
Moreover, the effect of choosing the number of columns in matrix Q (or choosing the rank
of the entangled kernel) would warrant further study, especially with small values (low rank
kernel setting). It is also well-known that feature representation of a kernel is not unique,
and we leveraged this in our work. Studying the effect on this could be worthwhile, as well
as any theoretical consequences it has.

Using the Kraus representation, entangled kernels can be viewed as a mapping from
a covariance matrix on the input features to a covariance matrix on the output labels.
Recently, Riemannian networks for symmetric positive definite (SPD) learning have been
introduced in Huang and Gool (2017). These networks receive SPD matrices, such as
covariance descriptors, as inputs, and preserve their SPD structure across the layers. The
SPD structure is preserved via the bilinear mapping (BiMap) layer, which can be seen as
a particular case of a Choi-Kraus representation with Kraus rank equal to 1. Generalizing
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SPD networks to higher Kraus ranks could provide a way to efficiently learn entangled
kernels with deep learning machinery, and would be an interesting direction to explore in
future work.

Overall, we hope that our work featuring the first comprehensive description on how
to learn non-separable operator-valued kernels will give a boost to the field of learning
inseparable kernels.
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Appendix A. Proof for Choi-Kraus representation theorem (Theorem 13)

The following result is useful to prove Theorem 13.

Theorem 17 (Watrous, 2018, Theorem 2.22)
Let @ be a linear map from L(K) to L(Y), where K and Y are Euclidean spaces. The
following statements are equivalent:

1. There exists an operator A € LIK,Y ® Z) for a some choice of an Fuclidean space
Z, such that

O(x) = trz(AXAY)
forall X € X.

2. There existes a collection {A, : a € ¥}, for some choice of an alphabet X, for which
O(x) = AXA;
forall X € X.

As mentioned in Watrous (2018), this theorem is an amalgamation of results that are
generally attributed to Stinespring (1955); Kraus (1971, 1983); Choi (1975), and presents
only the finite-dimensional analogues of the results they proved which hold for infinite-
dimensional spaces.

Proof of Theorem 13 The proof follows the same arguments as the proof of Theorem 6.5
from Attal (2015a), which holds for infinite dimensional spaces. It is based on the observa-
tion that for v € ) we have vv' ® (¢(x)p(x)T) = Oy(p(x)¢(x)T)O%, in which Oy is the

v

33



HUUSARI AND KADRI

operator defined by

Oy:K—YaK
uU+——VvQeu,

and Of, is its adjoint defined by

Of,:y®/C—>IC
Yy Qu+— (v,y)u.

The entangled kernel K can now be written as follows
K(x,2) = trg (U(T ® (¢(x)¢(Z)T))UT>
=3 e (U(vtvtT ® (qb(x)qb(z)T))UT)
t

=t (U(Ov(6(x)6(2) )O3, )UT)
=Y tre (Su6(x)6(2)T)S; )

where S; = UOvt. Using Theorem 17, which is also valid for infinite-dimensional spaces (Wa-
trous, 2018), we obtain that there exists a set of matrices {M;,1 < i < r} for which
K(x,z) =>"_ Mi¢(x)é(z) "M, . This completes the proof.

[

Appendix B. Proof of Theorem 15 (Rademacher bound for EKL)

We provide here the proof for our Rademacher complexity bound.

Proof of Theorem 15 We start by recalling that the feature map associated to the
operator-valued kernel K is the mapping I' : X — L£(Y, H), where X is the input space, ) =
RP and L£(Y,H) is the set of bounded linear operators from ) to H (see, e.g., Micchelli and
Pontil (2005); Carmeli et al. (2010) for more details). It is known that K (x,z) = I'(x)*I'(z).
We denote by I'q the feature map associated to our entangled kernel (Equation 15). We
also define the matrix ¥ = (o)}, € R"

X 10 n
Rn(Hp) = —E |sup sup E o'inu,Q(xi)
n | feH QeA T

S

i n
= —E |sup sgp Z<0’i, Fq(x;)” U>Rp]
v i=1

S|

=—E supsupZ(Fq(xi)ai,wH] (1)
voQ o
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IN
=

S|

sgp [ ZFQ(Xi)Ui”’H] (2)

=1

n 2

sup > o, Kq(xi, X;) 0 ) (3)
ij=1

&=

S|

sgp (%, GQ2>RnP)1/2]

|
S e
=

|
S e
=

sup(Z, [@7T @ 1,]QQ" [@ ® Ip]2>1/2]
Q

|
SR
=

suptr([@ @ LES (@7 2 L,)QQ")Y 2]
Q

IN

S|
=

suptr(([@ 0 LJEST[@ w L)) 1r(QQT Q") ] ()
Q

IN

S|
=

suptr([® @ L)@ @ L,]sx")Y 2tr(QQTQQT)1/4]
Q

IN
=

suptr([@® @ I,)2xT)1/?
Q

=

(K @ Ip]zzf)l/ﬂ

E [tr([K ® Ip]zzT)Dl/2 (5)

IN

tr [[K ® 1) E(EET)D1/2

/N

S oIl @II®II® I

~
<

(K)p.

Here (1) and (3) are obtained with reproducing property, (2) and (4) with Cauchy-Schwarz
inequality, and (5) with Jensen’s inequality.
For kernels k that satisfy tr(K) < kn, we obtain that

: NG
Rn(H/a) < i

Appendix C. Proof of Corollary 16 (Generalization bound for EKL)

The following two results are useful to prove Corollary 16. First, Bartlett and Mendelson
(2002) provides the following generalization bound based on Rademacher complexity (see
also Mohri et al. 2018, Theorem 3.3).
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Theorem 18 (Mohri et al. 2018, Theorem 3.3)

Let G be a family of functions mapping from an arbitrary input space Z to [0,M]. Then, for
any 0 > 0, with probability at least 1 — § over the draw of an i.i.d. sample S of size n, the
following holds for all g € G:

(20)

where ﬁn(g) is the empirical Rademacher complexity of G.

The second result, from Maurer (2016), provides a contraction inequality for the Rademacher
complexity of classes of vector-valued functions.

Corollary 19 (Maurer 2016, Corollary 1)

Let X be any set, (x1,...,%Xp) € X", let F be a class of functions f : X — {3 and let
h; : €9 — R have Lipschitz norm L. Then

IEsupZUihi(f(xi)) < V2LE sup Z oi; fi(xi), (21)

fer—; fer iz

where o;; is an independent doubly indexed Rademacher sequence and f;(x;) is the j-th
component of f(x;).

We now make use of the above results to prove the generalization error bound of EKL.

Proof of Corollary 16

Since || f(x) —yl|ly < M for all (x,y) € X xY and f € Hg, for any y’ the function y — ||y —
y’H%, is 2M-Lipschitz. Then by Corollary 19, for any sample S = ((x1,¥1),- -+, (Xn,¥n)),
the Rademacher complexity of the family G = {(x,y) — ||f(x) = yl3 : f € Hz} is upper
bounded as follows:

Rn(G) < 2V2MR,(Hp). (22)

Combining this inequality with the general Rademacher complexity learning bound of The-
orem 18 and the Rademacher complexity bound of Hg given in Theorem 15 completes the

proof.
|
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