
Journal of Machine Learning Research 22 (2021) 1-83 Submitted 8/19; Revised 12/20; Published 4/21

Safe Policy Iteration: A Monotonically Improving
Approximate Policy Iteration Approach

Alberto Maria Metelli albertomaria.metelli@polimi.it
DEIB, Politecnico di Milano
Milano, Italy

Matteo Pirotta pirotta@fb.com
Facebook AI Research
Paris, France

Daniele Calandriello daniele.calandriello@iit.it
Istituto Italiano di Tecnologia
Genova, Italy

Marcello Restelli marcello.restelli@polimi.it

DEIB, Politecnico di Milano

Milano, Italy

Editor: Peter Auer

Abstract

This paper presents a study of the policy improvement step that can be usefully exploited
by approximate policy–iteration algorithms. When either the policy evaluation step or the
policy improvement step returns an approximated result, the sequence of policies produced
by policy iteration may not be monotonically increasing, and oscillations may occur. To
address this issue, we consider safe policy improvements, i.e., at each iteration, we search
for a policy that maximizes a lower bound to the policy improvement w.r.t. the current
policy, until no improving policy can be found. We propose three safe policy–iteration
schemas that differ in the way the next policy is chosen w.r.t. the estimated greedy policy.
Besides being theoretically derived and discussed, the proposed algorithms are empirically
evaluated and compared on some chain-walk domains, the prison domain, and on the
Blackjack card game.

Keywords: Reinforcement Learning, Approximate Dynamic Programming, Approximate
Policy Iteration, Policy Oscillation, Policy Chattering, Markov Decision Process

1. Introduction

Markov Decision Processes (MDPs) are widely used to model sequential decision-making
problems under uncertainty (Puterman, 2014). In the last decades, a large body of re-
search from control theory, operation research, and artificial intelligence has been devoted
to the solution of MDPs. When a model of the environment is available, MDPs can be
solved by dynamic programming algorithms or linear programming. On the contrary, when
no or little prior knowledge about the model is known or when the problem is too com-
plex for an exact solution, approximate methods need to be considered, like those studied

©2021 Alberto Maria Metelli, Matteo Pirotta, Daniele Calandriello, Marcello Restelli.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/19-707.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/19-707.html

Metelli, Pirotta, Calandriello, and Restelli

in the Reinforcement Learning (RL, Sutton and Barto, 2018) and Approximate Dynamic
Programming (ADP, Bertsekas, 2011).

In this paper, we focus on approaches derived from Policy Iteration (PI, Howard, 1960),
one of the two main classes of dynamic programming algorithms to solve MDPs. PI is
an iterative algorithm that alternates between two steps: policy evaluation and policy im-
provement. At each iteration, the current policy πk is evaluated computing the action–value
function Qπk and the new policy πk+1 is generated by taking the greedy policy w.r.t. Qπk ,
i.e., the policy that in each state takes the best action according to Qπk . Policy iteration
generates a sequence of monotonically improving policies that reaches the optimal policy in
a finite number of iterations (Ye, 2011; Scherrer, 2013a).

When either Qπk or the corresponding greedy policy πk+1 cannot be computed exactly,
Approximate Policy Iteration (API, Bertsekas, 2011) algorithms need to be considered. A
large number of methods tackling this problem have been proposed in the literature (Scher-
rer, 2014). The standard API (Bertsekas and Tsitsiklis, 1996) simply computes the greedy
policy w.r.t. to the estimated value function Q̂πk . However, in this case, the approximately
greedy policy πk+1 may perform worse than πk, leading, thus, to policy oscillation phe-
nomena (Bertsekas, 2011; Wagner, 2011). Empirically, the value Qπk rapidly improves in
the initial iterations, then gets stuck or oscillates without any further policy improvement
(named stationary phase Munos, 2003). Most API studies and algorithms focus on reducing
the approximation error in the policy evaluation step (Lagoudakis and Parr, 2003a; Munos,
2005; Lazaric et al., 2010; Gabillon et al., 2011), and, then, perform policy improvement by
taking the relative greedy policy. However, the quality of the sequence of generated policies
may oscillate or diverge when the policy evaluation is approximated, independently of the
policy evaluation method (Bertsekas and Tsitsiklis, 1996; Bertsekas, 2011).

Almost all the API algorithms intrinsically implement a generalized policy iteration
scheme (Sutton and Barto, 2018) because the improvement of the policy is performed over
an incomplete estimate of the value functions. This idea was used in Scherrer et al. (2012);
Scherrer (2013b) to generalize over Value Iteration (VI) and PI methods at the cost of
additional free parameters.

It has been pointed out that the key source of this oscillation phenomena is the discon-
tinuity introduced by the greedy improvement (De Farias and Van Roy, 2000; Perkins and
Pendrith, 2002; Perkins and Precup, 2002). Approximate Linear Programming (de Farias
and Roy, 2003) solves the RL problem in one shot, but typically assumes the knowledge
of the transition model and the approximation comes from the fact that the value function
is represented as a function approximator (e.g., linear in a vector of known features). As
noticed in the early stages of RL (Singh et al., 1994), stochastic policies may represent the
solution to many issues. A class of approaches deals with the oscillation phenomena by
proposing converging algorithms that exploit smaller updates (soft updates) in the space of
stochastic policies, instead of iterating on a sequence of greedy policies computed on ap-
proximated action–value functions (Perkins and Precup, 2002; Kakade and Langford, 2002;
Lagoudakis and Parr, 2003b; Wagner, 2011; Azar et al., 2012). The idea is that the action–
value function of a policy π can produce a good estimate of the performance of another
policy π′ when the two policies give rise to similar state distributions. This condition can
be guaranteed when the policies themselves are similar. Incremental policy updates are
also considered in the related class of policy gradient algorithms (e.g., Sutton et al., 1999;

2

Safe Policy Iteration

Kakade, 2001; Peters et al., 2005). These methods share a common rationale based on
managing the trade–off between jumping to the greedy policy according to the currently
estimated action–value function and remaining close to the current policy avoiding too un-
certain updates. From an intuitive point of view, the more we trust our value function
estimate, the more we can move far from the current policy. This very simple idea has been
developed in several works and for different purposes (e.g., Pirotta et al., 2013a; Abbasi-
Yadkori et al., 2016; Ghavamzadeh et al., 2016; Papini et al., 2017; Metelli et al., 2018) and
it represents the theoretical grounding of some of the most successful RL algorithms (e.g.,
Schulman et al., 2015).

Other works focus on the “optimistic” or “modified” PI approach. This variant of policy
iteration is based on an approximate evaluation of the preceding policy obtained by applying
the Bellman operator a finite number of times. While Scherrer et al. (2012) have derived a
convergence and finite samples analysis for the “optimistic” policy iteration generalization
of the classification–based policy iteration, Wagner (2013) has investigated the connection
between optimistic policy iteration and natural actor–critic algorithms. They have shown
that the natural actor–critic algorithm for Gibbs policy is a special case of optimistic policy
iteration. In addition, they suggested that it is possible to get convergence guarantees for
PI approaches exploiting the theory behind gradient methods. However, they proved that,
while having the potential of overcoming policy oscillation, Gibbs soft–greedy value function
approaches never converge to the optimal policy.

Another research line focuses on the exploitation of non–stationary policy sequences
(Scherrer and Lesner, 2012). The authors propose an algorithm that, at each iteration, ap-
proximates the value function of a policy that loops over the last m greedy policies generated
by the algorithm (possibly also considering all the policies generated from the beginning of
the algorithm). Thus, the resulting policy is non–stationary and has a regularizing effect on
the learning process. They show that, by employing non–stationary policies, it is possible
to obtain better convergence rates (Scherrer and Lesner, 2012; Lesner and Scherrer, 2013).
The methods have also been applied to the case of modified PI (Lesner and Scherrer, 2015).

Recently, one research line has imported the classical idea of delaying the backup op-
eration, successfully applied in the famous TD methods (Sutton and Barto, 2018), to the
PI framework by defining the multi–step greedy improvements (Efroni et al., 2018a). These
works overcome the 1–step greedy update by defining an h–greedy policy (h ≥ 1) as the
policy that, from every state, is optimal for h time steps. This new improvement operator
amounts to solve an h–horizon optimal control problem, reducing to the standard 1–step
operator for h = 1, converges to the optimal policy in a number of iterations that decreases
with h (Efroni et al., 2018a). Similarly to the TD(λ) case, it is possible to mix different
horizons using a parameter to tradeoff between the 1–step greedy improvement and more
far–sighted updates (Efroni et al., 2018a). The idea is then extended to the approximate
setting in Efroni et al. (2018b).

In this paper, we limit our scope to the classical API approaches, built on station-
ary policies1 and, following the approach of Conservative Policy Iteration (CPI, Kakade
and Langford, 2002), which adopts soft updates to avoid oscillation phenomena, and re-
cently extended to use deep architectures (Vieillard et al., 2020). We extend CPI Kakade

1. In the case of infinite–horizon γ–discounted MDPs, it is known that there exists a stationary optimal
policy.

3

Metelli, Pirotta, Calandriello, and Restelli

and Langford (2002) by introducing a tighter lower bound on the performance improve-
ment, that allows designing API algorithms useful both in model–free contexts and when
a restricted subset of policies is considered. These algorithms produce a sequence of mono-
tonically improving policies and are characterized by a faster-improving rate compared to
CPI. Furthermore, we devise an update schema that makes use of per–state combination
coefficients and a novel generalization, not present in Pirotta et al. (2013b), that employs
per–state–action coefficients.

The main contributions of this paper are theoretical, algorithmic, and experimental
consisting in:

1. the introduction of new, more general lower bounds on the policy improvement, tighter
than the one presented in Pirotta et al. (2013b) (Section 3);

2. the proposal of three approximate policy–iteration algorithms whose performance im-
provement moves toward the estimated greedy policy by maximizing the policy im-
provement bounds. The first two of them have already been presented in Pirotta
et al. (2013b), while the third and more general is novel and presented here in a
unified framework (Section 4);

3. a complete PAC analysis of the approximate version of the presented algorithms, with
finite–sample improvement guarantees for the single iteration (Section 5);

4. an empirical evaluation and comparison of the proposed algorithms with related ap-
proaches (Section 6).

The rest of the paper is organized as follows. Section 2 introduces notation and the
necessary background. Section 3 derives the bounds on the difference between the per-
formance of two policies and provides the policy improvement bounds. Based on these
bounds, we present the exact algorithms in Section 4 and the approximated in Section 5. In
Section 6, the algorithms are empirically evaluated and compared with other approximate
policy–iteration algorithms on several variants of the chain–walk domain (Lagoudakis and
Parr, 2003a), Prison environment (Azar et al., 2012), and in a simplified version of the
Blackjack (Dutech et al., 2005).

2. Preliminaries

In this section, we report the essential background that will be employed in the remainder
of the paper.

Markov Decision Processes A discrete–time finite Markov Decision Process (MDP,
Puterman, 2014) is defined as a 6–tuple M = (S,A,P,R, γ, µ), where S is a finite set
of states, A is a finite set of actions, P is a Markovian transition model where P(s′|s, a)
is the probability of making a transition to state s′ when taking action a from state s,
R : S × A → [0, 1] is the reward function, such that R(s, a) is the expected immediate
reward for the state–action pair (s, a), γ ∈ [0, 1) is the discount factor for future rewards,
and µ is the initial state distribution. The policy of an agent is characterized by a density
distribution π(a|s) that specifies the probability of taking action a in state s. When the
policy is deterministic, with little abuse of notation, we use π(s) to denote the action

4

Safe Policy Iteration

prescribed in state s. We consider infinite–horizon problems where the future rewards are
exponentially discounted with γ. For each state s, we define the utility of following a
stationary policy π as:

V π(s) = E
at∼π(·|st)

st+1∼P(·|st,at)

[
+∞∑

t=0

γtR(st, at)|s0 = s

]
.

It is known that V π is the unique solution of the following recursive (Bellman) equation:

V π(s) =
∑

a∈A
π(a|s)

(
R(s, a) + γ

∑

s′∈S
P(s′|s, a)V π(s′)

)
.

Policies can be ranked by their expected discounted reward starting from the state distri-
bution :

Jπ =
∑

s∈S
µ(s)V π(s) =

1

1− γ
∑

s∈S
dπ(s)

∑

a∈A
π(a|s)R(s, a),

where dπ(s) = (1−γ)
∑∞

t=0 γ
t Pr(st = s|π,M) is the γ–discounted future state distribution

for a starting state distribution (Sutton et al., 1999). Solving an MDP means to find a
policy π∗ that maximizes the expected long–term reward: π∗ ∈ arg maxπ∈ΠSR Jπ, where ΠSR

is the set of stationary Markovian randomized policies. For any MDP, there exists at least
one deterministic optimal policy that simultaneously maximizes V π(s), ∀s ∈ S, i.e., exists
π∗ ∈ ΠSD, where ΠSD is the set of stationary Markovian deterministic policies (Puterman,
2014). For control purposes, it is more convenient to consider the action–value function
Qπ(s, a), i.e., the value of taking action a in state s and following a policy π thereafter:

Qπ(s, a) = R(s, a) + γ
∑

s′∈S
P(s′|s, a)

∑

a′∈A
π(a′|s′)Qπ(s′, a′).

Given Qπ(s, a), we define a greedy policy as π+(s) ∈ arg maxa∈AQ
π(s, a). Furthermore, we

define the advantage function as:

Aπ(s, a) = Qπ(s, a)− V π(s),

that quantifies the convenience of performing action a in state s instead of following policy π.
Furthermore, for each state s, we define the advantage of a policy π′ over policy π as Aπ

′
π (s) =∑

a∈A π
′(a|s)Aπ(s, a) and, following what done by Kakade and Langford (2002), we define

its expected value w.r.t. the γ–discounted state distribution dπ as Aπ′π =
∑

s∈S d
π(s)Aπ

′
π (s).

Notation Vectors are assumed to be columns and are denoted with lowercase bold
letters, like v; while matrices are denoted with upper case bold letters, like M. For brevity,
in the following, we will use matrix notation, where I denotes the identity matrix and e
is a column vector of all ones (with sizes apparent from the context). Given a (column)
vector v, vT denotes the corresponding row vector. Whenever necessary, a d–dimensional
vector v will be treated as a d × 1 matrix, and, symmetrically, a row vector vT will be
treated as a 1 × d matrix. Given a matrix M, MT denotes its transpose, and, given a
non–singular square matrix M, M−1 denotes its inverse. For brevity, M−T =

(
MT
)−1

.
For a vector v, we indicate with v(i) its i–th component and for a matrix M, we indicate

5

Metelli, Pirotta, Calandriello, and Restelli

with M(i, j) the component at row i and column j. Let p ∈ [1,∞), we define the Lp–

norm of a d–dimensional vector v as ‖v‖pp =
∑d

i=1 |v(i)|p. The L∞–norm of v is given
by ‖v‖∞ = maxi∈{1,...,d} |v(i)|. Moreover, we define the span seminorm of v as sp(v) =
maxi∈{1,...,d} v(i) − mini∈{1,...,d} v(i). We consider the Lp–norms of matrices induced by
the corresponding vector norm, defined as ‖M‖p = supv : ‖v‖p≤1 ‖Mv‖p. In particular, the

L1–norm ‖M‖1 of a matrix M is its maximum absolute column sum, while its L∞–norm
‖M‖∞ is its maximum absolute row sum. It follows that ‖M‖1 =

∥∥MT
∥∥
∞ (Petersen and

Pedersen, 2012). If v is a probability column vector of size n and M is an n ×m matrix,
we indicate with ‖M‖p,v the expectation of the Lp–norm of the columns of M taken under

v, i.e., ‖M‖p,v =
∑n

i=1 v(i)
(∑m

j=1 |M(i, j)|p
)1/p

.

Matrix Notation for MDPs Using matrix notation, we can rewrite previous equations
as follows (e.g., Puterman, 2014; Wang et al., 2007):

vπ = π (r + γPvπ) = rπ + γPπvπ = (I− γPπ)−1 rπ

qπ = r + γPπqπ = r + γPvπ

dπ = (1− γ)µ + γPπTdπ = (1− γ)(I− γPπ)−Tµ

Jπ = µTvπ = µT (I− γPπ)−1 rπ =
1

1− γd
πTrπ

Aπ
′
π = dπTπ′aπ = dπTaπ

′
π ,

(1)

where Jπ and Aπ′π are scalars, vπ, rπ, dπ, µ, and aπ
′
π are vectors of size |S|, qπ, r, and aπ

are vectors of size |S||A|, P is a stochastic matrix of size (|S||A| × |S|) that contains the
transition model of the process P((s, a), s′) = P(s′|s, a), π is a stochastic matrix of size
(|S| × |S||A|) that describes policy π:

π(s, (s′, a)) =

{
π(a|s) if s′ = s

0 otherwise
,

and Pπ = πP is a stochastic matrix |S| × |S| that represents the state transition matrix
under policy π, i.e., Pπ(s′|s) =

∑
a∈A P(s′|s, a)π(a|s).

3. Bound on Policy Improvement

This section is devoted to the study of the performance improvement Jπ
′ − Jπ of a policy

π′ over a policy π given the policy advantage function Aπ
′
π . Specifically, we will present

two lower bounds of the improvement Jπ
′ − Jπ. The first bound (Theorem 3) is tighter,

but it is hard to optimize due to the presence of quantities that are typically unknown.
For this reason, it will be employed with USPI only. The second bound (Corollary 4) is a
relaxation of the previous one, allows a more straightforward optimization and it will be
used for SSPI and SASPI. The presented bounds are tighter compared to that by Kakade
and Langford (2002) and Pirotta et al. (2013b).2 As we will see, Aπ

′
π can provide a good

estimate of Jπ
′
only when the two policies π and π′ visit the states with similar probabilities,

2. A better bound allows faster improving rates while preserving the property of having a monotonically
improving sequence of policies.

6

Safe Policy Iteration

i.e., dπ
′ ' dπ. The following lemma provides an upper bound to the difference between the

two γ–discounted future state distributions.

Lemma 1. Let π and π′ be two stationary policies for an infinite horizon MDPM. The L1–
norm of the difference between their γ–discounted future state distributions under starting
state distribution µ can be upper bounded as follows:

∥∥∥dπ′ − dπ
∥∥∥

1
≤ γ

1− γ
∥∥π′ − π

∥∥
1,dπ

.

Proof To prove the lemma, we rewrite the difference dπ
′T − dπT as follows:

dπ
′T − dπT = (1− γ)µT + γdπ

′T
Pπ′ −

(
(1− γ)µT + γdπTPπ

)

= γdπ
′T
Pπ′ − γdπTPπ

= γ
(
dπ
′T − dπT

)
Pπ′ + γdπT

(
Pπ′ −Pπ

)

= γdπT
(
Pπ′ −Pπ

)(
I− γPπ′

)−1
,

where the first equality follows from the convergence of Neumann series (e.g., Wang
et al., 2007; Pirotta et al., 2013b). We restate here the result:

dπ = (1− γ)

[
+∞∑

t=0

(γπP)t
]T

µ = (1− γ)µ +

[
+∞∑

t=1

(γPπ)t
]T

µ

= (1− γ)µ +

[
+∞∑

τ=0

(γPπ)τ+1

]T
µ = (1− γ)µ + (γPπ)T

[
+∞∑

τ=0

(γPπ)τ
]T

µ

= (1− γ)µ + γPπTdπ.

It is worth to notice that the inverse of matrix I− γPπ′ exists for any γ < 1 since Pπ′

has the maximum eigenvalue equal to 1 being a stochastic matrix (Suzuki, 1976).

By recalling that dπT
(
Pπ′ −Pπ

)
is a row vector, we derive the following inequality

that will be employed for the L1–norm bound:

∥∥∥dπT
(
Pπ′ −Pπ

)∥∥∥
∞

=
∑

s′∈S

∣∣∣∣∣
∑

s∈S
dπ(s)

(
Pπ′(s′|s)− Pπ(s′|s)

)∣∣∣∣∣

≤
∑

s∈S
dπ(s)

∑

s′∈S

∣∣∣Pπ′(s′|s)− Pπ(s′|s)
∣∣∣

=
∑

s∈S
dπ(s)

∑

s′∈S

∣∣∣∣∣
∑

a∈A
P(s′|s, a)

(
π′(a|s)− π(a|s)

)
∣∣∣∣∣

≤
∑

s∈S
dπ(s)

∑

a∈A

∣∣π′(a|s)− π(a|s)
∣∣ ∑

s′∈S
P(s′|s, a)

=1

(P.1)

7

Metelli, Pirotta, Calandriello, and Restelli

≤
∑

s∈S
dπ(s)

∥∥π′(·|s)− π(·|s)
∥∥

1
, (P.2)

where line (P.1) derives from pushing the absolute value inside the summation and line (P.2)
is obtained from the definition of L1–norm. From the first equation, the bound on the L1–

norm follows recalling that dπ
′ − dπ is a column vector and, consequently, dπ

′T − dπT is a
row vector:

∥∥∥dπ′ − dπ
∥∥∥

1
=
∥∥∥dπ′T − dπT

∥∥∥
∞

≤ γ
∥∥∥dπT

(
Pπ′ −Pπ

)∥∥∥
∞

∥∥∥∥
(
I− γPπ′

)−1
∥∥∥∥
∞

≤ γ

1− γ
∥∥π′ − π

∥∥
1,dπ

.

For this part of the proof, we have exploited the consistency of the L∞–norm. In the
last equality, we have used the notion that dπ is a probability vector and observed that∥∥∥∥
(
I− γPπ′

)−1
∥∥∥∥
∞

= 1
1−γ .

As a further step to prove the main theorem, it is useful to rewrite the difference between
the performance of policy π′ and the one of policy π as a function of the policy advantage
function Aπ

′
π .

Lemma 2. (Kakade and Langford, 2002) For any stationary policies π and π′ and any
starting state distribution µ:

Jπ
′ − Jπ =

1

1− γd
π′Taπ

′
π .

Unfortunately, computing the improvement of policy π′ w.r.t. to π using the previous
lemma is very expensive, since it requires estimating dπ

′
for each candidate π′. In the

following, we will provide a bound to the policy improvement and we will show how it is
possible to find a policy π′ that optimizes its value.

Theorem 3. For any stationary policies π and π′ and any starting state distribution µ,
given any baseline policy πb, the difference between the performance of π′ and the one of π
can be lower bounded as follows:

Jπ
′ − Jπ ≥ 1

1− γd
πbTaπ

′
π −

γ

(1− γ)2

∥∥π′ − πb
∥∥

1,dπb

sp
(
aπ
′
π

)

2
.

Proof The proof can be obtained starting from Lemma 2:

(1− γ)
(
Jπ
′ − Jπ

)
= dπ

′T
aπ
′
π = dπbTaπ

′
π +

(
dπ
′T − dπbT

)
aπ
′
π

≥ dπbTaπ
′
π −

∣∣∣∣
(
dπ
′ − dπb

)T
aπ
′
π

∣∣∣∣ (P.3)

8

Safe Policy Iteration

≥ dπbTaπ
′
π −

∥∥∥dπ′ − dπb
∥∥∥

1

sp
(
aπ
′
π

)

2
(P.4)

≥ dπbTaπ
′
π −

γ

1− γ
∥∥π′ − πb

∥∥
1,dπb

sp
(
aπ
′
π

)

2
. (P.5)

Statement (P.3) is a simple mathematical manipulation (a + b ≥ a − |b|, ∀a, b ∈ R),
while the inequality (P.4) follows from Lemma 23 since c = dπ

′ − dπb is a vector satisfying

cTe = (dπ
′ − dπb)

T
e = 1 − 1 = 0. The theorem is proved in (P.5) by exploiting the bound

in Corollary 1.

The theorem is presented for a general baseline policy πb that, ideally, is employed to
collect the samples. In principle, πb can be different from both π and π′, although, typically,
we select πb = π. The bound is the sum of two terms: the advantage of policy π′ over policy
π averaged according to the distribution induced by policy πb and a penalization term that
is a function of the discrepancy between policy π′ and policy πb and the range of variability
of the advantage function Aπ

′
π .3

Remark 1 (Comparison with Pirotta et al., 2013b). The bound presented in Theorem 3
strictly improves Theorem 3.5 in Pirotta et al. (2013b), since the L∞–norm between the
policies π′ and π has been replaced with an expectation taken w.r.t. to the γ–discounted
stationary distribution dπ of the state–wise L1–norms. Indeed:

∥∥π′ − πb
∥∥

1,dπb
≤
∥∥π′ − πb

∥∥
∞ .

Since the bound provided by Pirotta et al. (2013b) was already tight (being an improvement
over CPI), it follows that our bound is tight as well. A similar derivation was previously
provided in Achiam et al. (2017, Corollary 1) and Metelli et al. (2018, Corollary 3.1). Now
we introduce a looser but simplified version of the bound in Theorem 3 that will be useful
later.

Corollary 4. For any stationary policies π and π′ and any starting state distribution µ, the
difference between the performance of π′ and the one of π can be lower bounded as follows:

Jπ
′ − Jπ ≥ 1

1− γA
π′
π −

γ

(1− γ)2

∥∥π′ − π
∥∥2

∞
‖qπ‖∞

2
.

For completeness, we mention that a different (looser) bound on the policy difference in
norm can be obtained by using Pinsker’s inequality (Csiszár and Körner, 2011) stating that

∥∥π′ − π
∥∥

1,dπ
= Es∼dπb

[
‖π(·|s)− πb(·|s)‖1

]
≤
√

1

2
Es∼dπb

[
DKL(π(·|s)‖πb(·|s))

]
.

This bound was initially used in Pirotta et al. (2013a) to derive a simplified lower–bound for
parametrized policies and it has been adopted frequently in the literature after that (e.g.,
Schulman et al., 2015; Achiam et al., 2017; Papini et al., 2017).

3. We tried to keep Theorem 3 as general as possible to favor its reuse in different contexts. Nonetheless,
in the following, we will consider the particular case where πb is equal to π. The possibility of selecting
a suitable πb 6= π opens new and interesting lines of research that are out of the scope of this paper.

9

Metelli, Pirotta, Calandriello, and Restelli

4. Exact Safe Policy Iteration

As we have already mentioned, Conservative Policy Iteration (CPI) approach successfully
aims at overcoming policy degradation issues in approximate contexts. Indeed, while PI
algorithms, moving from a greedy policy to another, guarantees to improve the perfor-
mance at each iteration until convergence to the optimal policy only when no approxi-
mation is involved, the CPI algorithm performs a more conservative improvement step to
ensure monotonically increasing policy performance even in the approximate setting. In
this framework, following the approach of CPI (Kakade and Langford, 2002), we propose a
new set of techniques, called Safe Policy Iteration (SPI) algorithms (Pirotta et al., 2013b).

The idea is to produce a sequence of monotonically improving policies and stop when
no improvement can be guaranteed. The policy improvement step is a trade-off between
the current policy π and a target policy π according to π′ = απ + (1 − α)π, where the
trade-off coefficient α ∈ [0, 1] results from a maximization of a lower bound on the policy
improvement. The main benefit of exploiting SPI methods instead of CPI one is quantifiable
in a faster convergence to the optimal solution, due to a maximization of a better lower
bounds w.r.t. that of CPI.

In the following, we analyze the exact case (in which the value functions are known
without approximation) and we propose three safe policy-iteration algorithms: Unique–
parameter Safe Policy Iteration (USPI), per–State–parameter Safe Policy Iteration (SSPI),
and per–State–Action–parameter Safe Policy Iteration (SASPI). The main differences be-
tween the three algorithms lie in: i) the set of policies that they consider in the policy
improvement step and ii) the policy improvement bounds (Section 3) employed. USPI
(Section 4.1) employs a single coefficient α and its value is selected by maximizing the
bound presented in Theorem 3. SSPI (Section 4.2) and SASPI (Section 4.3), instead, allow
for a larger policy improvement space, considering different coefficients for each state α(s)
and for each state-action pair α(s, a), respectively. Moreover, differently from USPI, they
make use of the looser bound of Corollary 4 to select the value of the coefficients.

4.1 Unique–parameter Safe Policy Improvement

Following the approach proposed in CPI, USPI iteratively updates the current policy using
a safe policy improvement. Given the current policy π and a target policy π (which may
be different from the greedy policy), we define the update rule of the policy improvement
step as:

π′ = απ + (1− α)π,

where α ∈ [0, 1] is the scalar trade–off coefficient. It can easily be shown that if Aππ(s) ≥ 0
for all s, then π′ is not worse than π for any α. This condition always holds when the target
policy π is the greedy policy π+. Nevertheless, we will show that the greedy target policy
is not always the optimal choice. In general, it is always possible to find an improving
step–size α whenever the target policy π belongs to the set {π ∈ ΠSR|Aππ ≥ 0}. At each
iteration, we seek the α that yields the maximal performance improvement in the worst
case. For this reason, α is chosen to maximize the bound in Theorem 3. By taking πb = π,
the value of α that maximizes this lower bound is given by the following corollary.

10

Safe Policy Iteration

Corollary 5. If Aππ ≥ 0, then, using α∗ = (1−γ)Aππ
γ‖π−π‖1,dπ sp(aππ)

, we set α = min{1, α∗}, so that

when α∗ ≤ 1 we can guarantee the following policy improvement:

Jπ
′ − Jπ ≥ (Aππ)2

2γ ‖π − π‖1,dπ sp(aππ)

and when α∗ > 1, we perform a full update towards the target policy π, i.e., we set α = 1
so that π′ = π. In such a case, the policy improvement is given by Theorem 3 by setting
πb = π and π′ = π.

Proof Setting πb = π and π′ = απ+(1−α)π, we can manipulate the bound in Theorem 3.
Let us consider the following derivation of the individual terms involved Theorem 3:

dπTaπ
′
π = dπT

(
π′ − π

)
qπ = dπT

(
απ + (1− α)π − π

)
qπ

= αdπT (π − π)qπ = αdπTaππ = αAππ

sp
(
aπ
′
π

)
= max

s,s′∈S

{∣∣∣aπ′π (s)− aπ
′
π (s′)

∣∣∣
}

= max
s,s′∈S

{∣∣∣∣∣
∑

a∈A

(
π′(a|s)− π(a|s)

)
Qπ(s, a)−

∑

a∈A

(
π′(a|s′)− π(a|s′)

)
Qπ(s′, a)

∣∣∣∣∣

}

= α max
s,s′∈S

{∣∣∣∣∣
∑

a∈A

(
π(a|s)− π(a|s)

)
Qπ(s, a)−

∑

a∈A

(
π(a|s′)− π(a|s′)

)
Qπ(s′, a)

∣∣∣∣∣

}

= max
s,s′∈S

{∣∣aππ(s)− aππ(s′)
∣∣} = α sp

(
aππ
)

‖π′(·|s)− π(·|s)‖1 = α ‖π(·|s)− π(·|s)‖1 , ∀s ∈ S.
By plugging the terms derived above in Theorem 3 we obtain:

Jπ
′ − Jπ ≥ α 1

1− γA
π
π − α2 γ

(1− γ)2
‖π − π‖1,dπ

sp
(
aππ
)

2
. (P.6)

The term α∗ is the value of α that maximizes the above bound, i.e., the value that sets the
partial derivative w.r.t. α to zero, as the bound is a quadratic function. By putting α∗ in
place of α in the last bound we derive the guaranteed performance improvement.

The pseudocode of USPI is reported in Algorithm 1. The algorithm takes as input the
MDP M, the target policy space Π ⊆ ΠSR and a policy chooser PC. The target policy
space Π is a (finite) set of policies from which the target policy π is selected. A standard
choice for Π is the set of all deterministic policies, i.e., Π = ΠSD. The policy chooser PC
is a function that takes as input the MDP M, the target policy space Π and the current
policy π and provides as output a target policy. We will discuss in the following possible
implementations of PC. Thus, the goal of SPI algorithms is to terminate with a policy π
such that for all π ∈ Π, Aππ ≤ 0.

From Corollary 4 and Corollary 5 it is straightforward to introduce a simplified USPI.

11

Metelli, Pirotta, Calandriello, and Restelli

Algorithm 1 Exact USPI.

input: MDP M, target policy space Π, policy chooser PC
Initialize π
π ← PC(M,Π, π)
while Aππ > 0 do

α← min

{
1, (1−γ)Aππ

γ‖π−π‖1,dπ sp(aππ)

}

π ← απ + (1− α)π
π ← PC(M,Π, π)

end while
return π

Corollary 6. If Aππ ≥ 0, then, using α∗ = (1−γ)Aππ
γ‖π−π‖2∞‖qπ‖∞

, we set α = min{1, α∗}, so that

when α∗ ≤ 1 we can guarantee the following policy improvement:

Jπ
′ − Jπ ≥ (Aππ)2

2γ ‖π − π‖2∞ ‖qπ‖∞
and when α∗ > 1, we perform a full update towards the target policy π, i.e., we set α = 1
so that π′ = π. In such a case, the policy improvement is given by Corollary 4 by setting
π′ = π.

Remark 2 (Comparison with Conservative Policy Iteration). Using the notation introduced
in this paper, we report the bound proposed in Conservative Policy Iteration CPI (refer to
Theorem 4.1 in Kakade and Langford, 2002 or Corollary 7.2.2 in Kakade, 2003) to be
compared with SPI (Equation P.6):

Jπ
′ − Jπ ≥ α 1

1− γA
π
π − α2 2γ

(1− γ) (1− γ(1− α))

∥∥aππ
∥∥
∞ .

Since
∥∥aππ

∥∥
∞ is unknown, the bound that is employed by the algorithm is obtained by

observing that
∥∥aππ

∥∥
∞ ≤ 1/(1− γ) and 0 ≤ α ≤ 1:4

Jπ
′ − Jπ ≥ α Aππ

1− γ − α
2 2γ

(1− γ)3
,

which yields the optimal coefficient α∗ = (1−γ)2Aππ
4γ and performance improvement is given

by (refer to Corollary 4.2 in Kakade and Langford, 2002 or Corollary 7.2.3 in Kakade, 2003):

Jπ
′ − Jπ ≥ (1− γ)(Aππ)2

8γ
. (2)

The only difference between such bound and the one of USPI (see Corollary 5) is in the
denominator. Since ‖π − π‖1,dπ sp

(
aππ
)
≤ 4

1−γ , the improvement guaranteed by USPI is

4. In Kakade and Langford (2002) and Kakade (2003), the bound that is actually optimized is a slightly
relaxed version in which the γ term at the numerator is bounded with 1.

12

Safe Policy Iteration

Algorithm 2 Greedy Policy Chooser (GPC).

input: MDP M, current policy π, target policy space Π
for each π† ∈ Π do

Compute Aπ†π
end for
return arg maxπ†∈Π Aπ†π

not worse than the one of CPI. From the tightness of CPI bound, it follows that also USPI
bound is tight. In general, the difference between the two approaches can be much larger
whenever π is not completely different from π (i.e., ‖π − π‖1,dπ < 2) and/or the values
of the advantage function are not spread from the theoretical minimum to the theoretical
maximum (i.e., sp

(
aππ
)
< 2

1−γ). In particular, using policy iteration algorithms without

approximation, where π is the greedy policy π+, as the sequence of policies approaches
the optimal policy, the discrepancy between the current policy π and the greedy policy π+

decreases and so happens for the advantage values Aπ
+

π , thus allowing USPI to guaran-
tee much larger improvements than CPI (whose convergence is only asymptotic, being its

coefficient α = (1−γ)2Aπ+π
4γ always less than 1).

Remark 3 (Target Policy Selection). So far we have not specified how to select the target
policy π ∈ Π. The Greedy Policy Chooser (GPC, Algorithm 2) selects, at each iteration,
as target policy the greedy policy π+, i.e., the one that maximizes Aπ+

π . While π+ is the
best target for CPI, it might not be optimal for USPI. This consideration comes from the
analysis of the policy performance bounds. While the greedy policy maximizes the bound of
CPI (Equation 2), as π+ is the target policy that yields the maximum advantage, π+ may
not be optimal for the bound of USPI due to the penalization term ‖π − π‖1,dπ . Indeed,
the USPI bound trades off between the expected advantage and the distance between the
target and current policy. In practice, when the approximation of Qπ is involved, the GPC
might produce frequent switching among several target policies that might slow down the
algorithm since the distance term ‖π − π‖1,dπ remains high.

As a heuristic, we can employ a persistent version of the GPC, similarly to what was
proposed in Metelli et al. (2018) (Section 4.3). This new policy chooser takes as input
also the target policy at the previous iteration π and selects between the greedy policy
and the target policy at the previous iteration, the one that yields a higher performance
improvement.

4.1.1 Convergence Guarantees for USPI

In this section, we discuss the convergence properties of USPI. The issue of convergence
has been treated for CPI (Kakade and Langford, 2002) and USPI (Pirotta et al., 2013b)
when considering a stopping condition of the form Aππ ≤ κ

1−γ , where κ > 0 is a user–defined

threshold. In this case, both CPI and USPI terminate in O
(

1
κ2

)
iterations. It was also

proved that when following a fixed target policy, USPI improves the convergence rate of
CPI, being able to terminate in O

(
1
κ

)
iterations (Pirotta et al., 2013b).

13

Metelli, Pirotta, Calandriello, and Restelli

Our contribution to the convergence analysis consists in analyzing the case κ = 0, as in
Algorithm 1. Of course, in this case, the convergence guarantees of CPI are vacuous. This
section is organized as follows. We start by proving that USPI (and CPI) converges asymp-
totically under some assumptions on the γ–discounted state distribution (Assumption 1).
Then, we show that, when the optimal policy is unique (Assumption 2), USPI converges
to the optimal policy in a finite number of iterations (Theorem 11). The proofs of all the
presented results are reported in Appendix A.2.

We start with the following lemma, which extends the Corollary 4.5 in Kakade and
Langford (2002), and relates the expected advantage to the performance difference.

Lemma 7. Let π, π′ ∈ ΠSR be two arbitrary policies and π+ be a greedy policy induced by
Qπ. Then, the expected advantage Aπ+

π can be lower bounded as:

Aπ+

π

1− γ ≥
∥∥∥∥∥
dπ
′

dπ

∥∥∥∥∥

−1

∞

(
Jπ
′ − Jπ

)
, (3)

where dπ
′

dπ is the vector obtained by the element–wise division between dπ
′

and dπ.

This result is very general since policy π′ is chosen arbitrarily. Clearly, the bound is
meaningful when Jπ

′
> Jπ as we know that Aπ+

π ≥ 0. A straightforward choice of π′ is, of
course, a greedy policy π+. In this case, we are able to lower bound the expected advantage
function Aπ+

π in terms of the performance gap itself:

Aπ+

π

1− γ ≥
∥∥∥∥∥
dπ

+

dπ

∥∥∥∥∥

−1

∞

(
Jπ

+ − Jπ
)
.

Remark 4 (On the γ–discounted stationary distribution). How can we ensure that

∥∥∥∥
dπ
′

dπ

∥∥∥∥
∞
<

+∞ is satisfied? A sufficient condition for

∥∥∥∥
dπ
′

dπ

∥∥∥∥
∞
< +∞ is that for any policy π and for

any state s, we have dπ(s) > 0. In particular, if the distribution of the initial state is positive
µ(s) > 0 for all states s ∈ S the condition is satisfied, indeed dπ = (1 − γ)µ + γPπTdπ ≥
(1 − γ). When dπ(s) > 0 for every s and policy π, it admits for every state s a positive
minimum over the set of Markovian stationary policies. This is a consequence of the fact
that dπ is a continuous function w.r.t. the policy π (Corollary 1 provides the Lipschitz
continuity of dπ w.r.t. π) and the set of Markovian stationary policies ΠSR is compact.
Moreover, if we consider finite state spaces dπ(s) admits a positive minimum also over the
state space, that we will denote with ∆d. Therefore, under this assumption, we can provide

the bound:

∥∥∥∥
dπ
′

dπ

∥∥∥∥
∞
≤ 1

∆d
. From now on, we are going to make the following assumption.

Assumption 1. For all π ∈ ΠSR it holds that ∆d > 0, where ∆d = mins∈S {dπ(s)}.

Assumption 1 requires that each state is visited a (discounted) number of times at least
equal to ∆d > 0. A sufficient condition is that the initial state distribution µ visits with
non–zero probability each state of the MDP. In such case, ∆d ≥ (1− γ) mins∈S{µ(s)}.

14

Safe Policy Iteration

Theorem 8 (Convergence Bound). Under Assumption 1, USPI (and CPI) with GPC and
termination condition Aπ+

π ≤ 0 asymptotically converges to the optimal policy, i.e., let N > 0
and πN be the policy visited by USPI (or CPI) at iteration N > 0, it holds that:

J∗ − JπN ≤ 8γ

N∆2
d(1− γ)3

.

Proof Let us consider a step of USPI starting from policy πi and getting to policy πi+1.
For Corollary 6, by noticing that ‖qπ‖∞ ≤ 1/(1 − γ) for any π ∈ ΠSR, the performance
improvement is given by:

Jπi+1 − Jπi ≥
(1− γ)

(
Aπ

+
i
πi

)2

2γ
∥∥π+

i − πi
∥∥2

∞

≥
(1− γ)

(
Aπ

+
i
πi

)2

8γ
, (P.7)

where π+
i is a deterministic greedy policy. We now define the performance gap w.r.t. the

optimal policy ∆i = J∗ − Jπi . By changing the sign on both sides of Equation (P.7),
summing J∗µ, and recalling the definition of ∆i we get the following inequality:

J∗ − Jπi+1 ≤ J∗ − Jπi −
(1− γ)

(
Aπ

+
i
πi

)2

8γ

∆i+1 ≤ ∆i −
(1− γ)

(
Aπ

+
i
πi

)2

8γ
.

We now determine the convergence bound. Using Lemma 7 choosing π′ = π∗ we can lower

bound the expected advantage function Aπ
+
i
πi and write:

∆i+1 ≤ ∆i −
∥∥∥∥∥
dπ

+
i

dπi

∥∥∥∥∥

−2

∞

(1− γ)3.(∆i)
2

8γ

Let us now consider the following expression:

1

∆i+1
− 1

∆i
=

∆i −∆i+1

∆i+1∆i
≥ ∆i −∆i+1

∆2
i

≥
∥∥∥∥∥
dπ

+
i

dπi

∥∥∥∥∥

−2

∞

(1− γ)3

8γ
,

where we simply exploited the monotonicity property of ∆i due to the guaranteed perfor-
mance improvement. We can now sum over i and exploiting the telescopic property we
get:

1

∆N
≥ 1

∆0
+

(1− γ)3

8γ

N−1∑

i=0

∥∥∥∥∥
dπ

+
i

dπi

∥∥∥∥∥

−2

∞

≥ N (1− γ)3

8γ
min

i∈{0,1,...,N−1}

∥∥∥∥∥
dπ

+
i

dπi

∥∥∥∥∥

−2

∞

.

Solving for ∆N we have:

∆N = J∗ − JπN ≤ 8γ

N(1− γ)3
max

i∈{0,1,...,N−1}

∥∥∥∥∥
dπ

+
i

dπi

∥∥∥∥∥

2

∞

≤ 8γ

N∆2
d(1− γ)3

.

15

Metelli, Pirotta, Calandriello, and Restelli

Thus, USPI converges asymptotically with convergence bound of order O(N−1). Notice
that in the Equation (P.7) we upper-bounded the policy distance with 2 and thus, we con-
sidered the same setting as CPI. As a consequence, this result applies as is to CPI.

Remark 5 (On the Convergence Bound). The convergence bound we derived in Theorem 8

has a polynomial dependence on the iteration number N , i.e., O
(

1
N(1−γ)3

)
. This appears

to be suboptimal compared to PI and VI both having a convergence bound that depends

exponentially on N , i.e., O
(
γN

1−γ

)
(Puterman, 2014). In addition, also CPI with a constant

learning rate α ∈ [0, 1] achieves an exponential convergence O
(

(1−α−γα)N

1−γ

)
(Scherrer, 2014).

It is not surprising that these algorithms allow for a better convergence bound. Indeed, in
the exact setting, having access to the true greedy policy, we can safely perform a complete
improvement step, i.e., setting α = 1. CPI and SPI are meant to be employed in the
approximate setting (Section 5) when only an approximately greedy policy is available and,
consequently, we cannot fully trust it.

We now prove that USPI converges to the optimal policy in a finite number of steps
when using GPC. We outline the steps of the proof. First, we need to guarantee that after
a finite number of steps, USPI selects an optimal policy as target policy (Lemma 9). This
follows by observing that the performance difference between an optimal policy and the
second-best deterministic policy is finite and by applying Theorem 8 to bound the number
of steps. Second, we need to ensure that when selecting an optimal policy as target, USPI
converges to it in a finite number of steps. This is the most delicate part of the proof, as the
finite convergence is a consequence of the interaction between the expected advantage Aπ∗π
and the distance ‖π∗−π‖∞. It must happen that the distance decreases at least as fast as
the advantage when π → π∗ (Lemma 10). With GPC, this can be guaranteed only in the
presence of a unique (deterministic) optimal policy. Therefore, in the presence of multiple
optimal policies, switching between one and another might prevent finite convergence. We
are unable to guarantee that, in the presence of multiple optimal policies, GPC keeps
selecting the same optimal policy; thus, we restrict our attention to the case in which the
optimal policy is unique. In the following, we denote with Π∗ for the set of optimal policies.

Lemma 9. Assume the same setting as Theorem 8. Let ∆J = J∗ −maxπ∈ΠSD\Π∗{Jπ} be
the performance gap between the optimal policies and the second-best deterministic policy,
where Π∗ = {π ∈ ΠSD : Jπ = J∗}. Then, USPI (and CPI) with GPC selects an optimal
policy as target policy after a finite number of iterations.

Clearly, once we select an optimal policy as target policy, we will never select a subpo-
timal policy as target later as it could only decrease the performance. We can now prove
that when following a deterministic optimal policy as target policy, the expected advantage
Aπ∗π can be lower bounded by a function of the distance ‖π∗ − π‖∞.

Lemma 10. Assume the same setting as Lemma 9. It π∗ is a deterministic optimal policy,
then, there exists a constant ∆+ > 0 such that:

Aπ
∗
π ≥

∆d∆+

2
‖π∗ − π‖∞ . (4)

16

Safe Policy Iteration

So far, we did not exploit the assumption on the uniqueness of the optimal policy. In
the following theorem, the assumption is crucial.

Assumption 2. The optimal policy π∗ is unique.

Lemma 10 shows that, apart from constants, the expected advantage Aπ∗π decreases
at most as fast as the distance ‖π∗ − π‖∞. We can exploit this result, together with
the uniqueness of the optimal policy, to prove that USPI converges in a finite number of
iterations.

Theorem 11 (Finite Convergence). Under Assumption 1 and 2, USPI with GPC and ter-
mination condition Aπ+

π ≤ 0 converges to the optimal policy in a finite number of iterations.

Proof First of all, we know from Lemma 9 that the algorithm will select the (unique)
optimal policy π∗ as target policy after a finite number of iterations, say N1. Thus, for
i > N1, we have that Jπi ≥ J∗ −∆J and moreover:

Jπi+1 − Jπi ≥
(1− γ)

(
Aπ∗πi

)2

2γ
∥∥π∗ − πi

∥∥2

∞

≥
(1− γ)∆2

d∆
2
+

∥∥π∗ − πi
∥∥2

∞

8γ
∥∥π∗ − πi

∥∥2

∞

=
(1− γ)∆2

d∆
2
+

8γ
,

where the first inequality is obtained from Equation (P.7) and the second inequality from
Lemma 10. Since at each iteration the performance improves by a finite quantity, the
algorithm will need additional N2 iterations to fill the gap ∆J between the performance of
the policy πN1 and the performance of the optimal policy π∗:

N2
(1− γ)∆2

d∆
2
+

8γ
≥ ∆J =⇒ N2 ≥

8γ∆J

∆2
d∆

2
+(1− γ)

.

Consequently, the algorithm will converge in N1 +N2 iterations.

4.2 per–State–parameter Safe Policy Improvement

The USPI approach aims at finding the convex combination between a starting policy π
and a target policy π that maximizes the bound on the performance improvement (either
Theorem 3 or Corollary 4). In this section, we consider a more general kind of update,
where the new policy π′ is generated using different convex combination coefficients for
each state:

π′(a|s) = α(s)π(a|s) +
(
1− α(s)

)
π(a|s), ∀s ∈ S, ∀a ∈ A, (5)

where α(s) ∈ [0, 1],∀s ∈ S. We name the resulting algorithm as per–State–parameter Safe
Policy Iteration (SSPI).5 When per-state parameters are exploited, the bound in Theorem 3
requires solving two dependent maximization problems over the state space that do not
admit a simple solution. Therefore, to compute the values α(s), we consider the simplified
bound from Corollary 4. We can state the following result.

5. SSPI was called Multiple–parameter Safe Policy Improvement (MSPI) in Pirotta et al. (2013b). The
reason for the change of the name is due to the fact that we will present another approach exploiting
multiple parameters (Section 4.3).

17

Metelli, Pirotta, Calandriello, and Restelli

Corollary 12. Let Sππ be the subset of states where the advantage of policy π over policy
π and dπ are positive: Sππ = {s ∈ S : dπ(s)Aππ(s) > 0}. The bound in Corollary 4 is

optimized by taking α(s) = 0, ∀s /∈ Sππ and α(s) = min
{

1, Υ ∗
‖π(·|s)−π(·|s)‖1

}
, ∀s ∈ Sππ , where

‖π(·|s)− π(·|s)‖1 =
∑

a∈A |π(a|s)−π(a|s)| and Υ ∗ is the value that maximizes the following
function:

B(Υ) =
1

1− γ
∑

s∈Sππ

min

{
1,

Υ

‖π(·|s)− π(·|s)‖1

}
dπ(s)Aππ(s)− Υ 2 γ

(1− γ)2

‖qπ‖∞
2

.

Proof This proof starts from the transformation of several terms involved in Corollary 4
exploiting the definition of π′ (see Equation 5). The average advantage Aππ can be stated
as follows for all s ∈ S:

dπ(s)Aπ
′
π (s) = dπ(s)

∑

a∈A

(
π′(a|s)− π(a|s)

)
Qπ(s, a)

= dπ(s)
∑

a∈A
α(s)

(
π(a|s)− π(a|s)

)
Qπ(s, a)

= α(s)dπ(s)Aππ(s).

Exploiting the definition of L∞–norm of a matrix, we can write:

∥∥π′ − π
∥∥
∞ = sup

s∈S

{∑

a∈A

∣∣∣π′(a|s)− π(a|s)
∣∣∣
}

= sup
s∈S
{α(s) ‖π(·|s)− π(·|s)‖1} .

We can now restate the bound of Corollary 4 into the proposed framework:

Jπ
′ − Jπ ≥ 1

1− γ
∑

s∈S
α(s)dπ(s)Aππ(s)

− γ

(1− γ)2
sup
s∈S
{α(s) ‖π(·|s)− π(·|s)‖1}2

‖qπ‖∞
2

.

(P.8)

The optimal values of α(s) do not admit a closed–form solution but can be computed
iteratively. Given a state s with negative advantage Aππ, the larger α(s) is, the lower will be
the bound on the policy improvement as expressed in Equation (P.8) (or in Corollary 4),
so the optimal choice for these states is to set α(s) = 0. Similarly, if dπ(s) = 0, state s does
not have any contribution to the bound, so we can set α(s) = 0.

Given these conditions, we define Sππ = {s ∈ S : dπ(s)Aππ(s) > 0}. Then, Υ denotes the
L∞–norm of the difference of the policies over Sππ :

Υ = sup
s∈Sππ

{α(s) ‖π(·|s)− π(·|s)‖1} ,

we can now introduce the following condition:

α(s) ‖π(·|s)− π(·|s)‖1 ≤ Υ, ∀s ∈ Sππ . (P.9)

18

Safe Policy Iteration

Algorithm 3 Exact SSPI.

input: MDP M, target policy space Π, policy chooser PC
Initialize π
π ← PC(M,Π, π)
Υ ∗ ← FBO(M, π, π) (see Alg. 4)
while Υ ∗ > 0 do

α(s)← min
{

1, Υ∗

‖π(·|s)−π(·|s)‖1

}
, ∀s ∈ S

π(a|s)← α(s)π(a|s) + (1− α(s))π(a|s), ∀s ∈ S, ∀a ∈ A
π ← PC(M,Π, π)
Υ ∗ ← FBO(M, π, π)

end while

If we suppose to fix Υ , the previous relationship and the knowledge of α ∈ [0, 1] impose the
following equivalence:

α(s) = min

{
1,

Υ

‖π(·|s)− π(·|s)‖1

}
, ∀s ∈ Sππ .

Consider Equation (P.8), once the supremum is fixed, we cannot do better than set the other
coefficients α(s) to the maximum feasible value that does not make α(s) ‖π(·|s)− π(·|s)‖1
exceed the supremum. As mentioned before, states with negative advantage play as oppo-
nents, their influence is minimized by putting α(s) = 0 in correspondence of such states.

Function B(Υ) is obtained by manipulating the bound (P.8) using these considerations.
As a result, the optimization of the bound over the set of |S| coefficients α(s) has been
translated into the maximization of the univariate function B(Υ). However, since the supe-
rior Υ is not known a priori, an iterative approach has to be carried out. Once the optimal
value Υ ∗ is obtained, the following rule can be applied:

α(s) =

{
min

{
1, Υ ∗
‖π(·|s)−π(·|s)‖1

}
∀s ∈ Sππ

0 otherwise
.

The pseudocode of SSPI is reported in Algorithm 3. The algorithm stops as the optimal
budget Υ ∗ becomes zero, i.e., when in all states the advantage Aππ(s) ≤ 0.

4.2.1 Computing Υ ∗

Differently from USPI, the coefficients of SSPI cannot be computed in closed form due to
their dependency from Υ ∗, whose value requires the maximization of a function with discon-
tinuous derivative (Corollary 12). This search formalizes the trade-off between increasing
the probability budget Υ , and incur in a larger penalty while obtaining a gain by moving
further towards the target policy. In order to solve this problem, we consider the graph in
Figure 1, where we can see that function B is a continuous quadratic piecewise function,
whose derivative is a discontinuous linear piecewise function. It is important to underline

that all the pieces of the partial derivative of B have the same slope m = −γ‖qπ‖∞
(1−γ)2

. Suppose

19

Metelli, Pirotta, Calandriello, and Restelli

0.23 0.4 1.03 1.25 1.49 1.82
−0.2

−0.1

0

0.1

Υ1 Υ2 Υ3 Υ4 Υ5 Υ6Υ ∗

−0.4

−0.2

0

0.2

Υ

M
a
gn

it
u
d
e
o
f
th
e
b
o
u
n
d

g0

M
a
g
n
it
u
d
e
o
f
th
e
gr
a
d
ie
n
t

B
∂B/∂Υ

(a)

0.23 0.4 1.03 1.25 1.49 1.82
−5 · 10−2

0

5 · 10−2

0.1

0.15

0.2
Υ1 Υ2 Υ3Υ4 Υ5 Υ6Υ ∗

0

0.2

0.4

Υ

M
ag
n
it
u
d
e
of

th
e
b
ou

n
d

g0

M
ag
n
it
u
d
e
of

th
e
gr
ad

ie
n
t

B
∂B/∂Υ

(b)

Figure 1: Bound B and its derivative. Blue–filled circles are set in correspondence with
the discontinuities, whereas the blue triangle represents the maximum value of
B. The gradient of B is depicted by the dashed brown piecewise linear function
where the red square represents g0, its evaluation in Υ = 0.

20

Safe Policy Iteration

Algorithm 4 Computing Υ ∗ (Forward Bound Optimizer - FBO)

input: MDP M, current policy π, target policy π

initialize: i← 1, m← −γ‖q
π‖∞

(1−γ)2 Υ0, q0 ← FJP(M, π, π), g0 ← q0

while Υi < 2 do
Υi, qi ← FJP(M, π, π) (see Alg. 5)
gi ← gi−1 +m · (Υi − Υi−1)
if gi ≤ 0 then

return Υi − gi
m

end if
gi ← gi − qi−1 + qi
if gi ≤ 0 then

return Υi
end if
i← i+ 1

end while
return Υi

we are given a function FJP (Find Jump Point) that returns the coordinates (Υ, q) of the
next discontinuity point of the derivative of B. Then, the maximization of B can be com-
puted using an iterative algorithm like the one proposed in Algorithm 4, Forward Bound
Optimizer (FBO).6 The idea is to start from Υ = 0 and to search for the zero–crossing
value of the derivative of B by running over the discontinuity points. The algorithm stops
when either the derivative of B becomes negative or when we reach the maximum value of
Υ , i.e., Υ = 2 (the last return in Algorithm 4). When the derivative becomes negative, two
different cases may happen: (i) the derivative equals zero at some value of Υ (as it happens
in Figure 1a), which is the case of the first return in Algorithm 4; (ii) the derivative becomes
negative in correspondence of a discontinuity without taking the value of zero (the second
return in Algorithm 4), i.e., the maximum falls on an angular point of B (see Figure 1b).
Notice that, as we presented it, Algorithm 4 can be used to optimize any function with
linear piecewise derivative, provided that all pieces have the same slope.

Clearly, we need to be able to determine the discontinuity points of the derivative, i.e.,
we need to specify function FJP. For this purpose, we write down explicitly the derivative:

∂

∂Υ
B(Υ) =

1

1− γ
∑

s∈SΥ

dπ(s)Aππ(s)

‖π(·|s)− π(·|s)‖1
− Υ γ ‖q

π‖∞
(1− γ)2

= g(Υ) +mΥ, (6)

where SΥ =
{
s ∈ Sππ : ‖π(·|s)− π(·|s)‖1 > Υ

}
is the set of all the states in which the

coefficient α(s) is dependent on Υ . Since the derivative is non-negative at Υ = 0, and it
is monotonically decreasing, B is guaranteed to have a unique maximum. The disconti-
nuity points correspond to values of Υ for which some state s saturates its coefficient to
1, so that, for larger values Υ , the coefficient α(s) does not depend on Υ anymore, thus
disappearing from the derivative whose value changes discontinuously with a jump equal to

dπ(s)Aππ(s)
(1−γ)‖π(·|s)−π(·|s)‖1

. The procedure for finding the discontinuity points (FJP) is formalized

in Algorithm 5.

6. Differently from Pirotta et al. (2013b), we decided to keep the optimization of the bound (FBO) and the
identification of the discontinuity points (FJP) separated so that we can reuse FBO in Section 4.3.

21

Metelli, Pirotta, Calandriello, and Restelli

Algorithm 5 Computing of the jump points for SSPI (Find Jump Point - FJP)

input: MDP M, current policy π, target policy π

initialize: t← 0, Sππ ← {s ∈ S : dπ(s)Aππ(s) > 0}, Υ0 ← 0, q0 ← 1
1−γ

∑
s∈Sππ

dπ(s)Aππ(s)
‖π(·|s)−π(·|s)‖1

Sort states in Sππ so that i < j =⇒ ‖π(·|si)− π(·|si)‖1 ≤ ‖π(·|sj)− π(·|sj)‖1
yield Υ0, q0

while Sππ 6= {} do
t← t+ 1
Υt ← ‖π(·|st)− π(·|st)‖1
qt ← qt−1 − dπ(st)A

π
π(st)

(1−γ)‖π(·|st)−π(·|st)‖1
Sππ ← Sππ \ {st}
yield Υt, qt

end while
yield 2, −∞

The computational complexity of FJP is dominated by the cost of computing the L1-
norm between the policies and the cost of sorting the states according to the discrepancy
between the current policy π and the target policy π, that is O (|S||A|+ |S| log |S|).
Remark 6 (On the policy space of SSPI). When using per–state coefficients α(s) the space
of policies accessible, by combining the target policies Π, is larger than that obtainable with
a single coefficient α. Clearly, it is possible to enhance Π with additional policies so that
even USPI, with a unique coefficient α, can represent the same policies as SSPI. However,
this transformation would produce, in the worst case, exponential growth in the number of
target policies. Consider, for instance, the set of target policies Π = {πi(s) = ai : ∀s ∈
S, i ∈ {1, ..., |A|}}. Thus, Π contains all the deterministic policies that perform the same
action in all states. Consequently, |Π| = |A|. Using per–state coefficients α(s), we are able
to represent all Markovian randomized policies ΠSR. Those are the policies accessible by
SSPI. Instead, starting with Π, USPI can represent just a subset of those. For USPI to
represent all Markovian randomized policies, we need to consider as target policy space
the set of all Markovian deterministic policies ΠSD, whose cardinality is |A||S|. We can
generalize the rationale to all the target policy spaces made up of deterministic policies.
Let AΠ(s) = {a ∈ A : ∃π ∈ Π, π(s) = a} be the set of all actions that are prescribed in
state s by the policies in Π. The transformation of the policy space is obtained as follows:

Π̃ =
{
π(s) = a : ∀a ∈ AΠ(s), ∀s ∈ S

}
(7)

It is worth noting that the cardinality of Π̃ is given by
∏
s∈S |AΠ(s)| ≤ |A||S|.

Remark 7 (Comparing USPI and SSPI). Although SSPI maximizes over a set of policies
that is a very large superset of the policies considered by USPI, it may happen that the
policy improvement bound found by SSPI is smaller than the one of USPI. The reason
is that the former optimizes the bound in Corollary 4 that is looser than the bound in
Theorem 3 optimized by the latter. Finally, notice that, following the same procedure
described in Remark 4 and constraining SSPI to use a single α for all the states (so that

the SSPI improvement is bounded by Aππ
2

2γ‖π−π‖2∞‖qπ‖∞
), we can prove, as done with USPI,

that the improvement of SSPI is never worse than the one of CPI.

22

Safe Policy Iteration

4.3 per–State–Action–parameter Safe Policy Improvement

We can further generalize SSPI by considering an update scheme in which the new policy
is generated using different convex combination coefficients for each state–action pair:

π′(a|s) = α(s, a)π(a|s) +
(
1− α(s, a)

)
π(a|s), (8)

where α(s, a) ∈ [0, 1], ∀s ∈ S, ∀a ∈ A. Note that, in order to ensure a valid probability
distribution we need to impose that, ∀s ∈ S,

∑
a∈A α(s, a) (π(a|s)− π(a|s)) = 0. As for

SSPI, the bound in Theorem 3 cannot be optimized easily, thus we consider again the
simplified bound in Corollary 4.

The novel idea of this improvement scheme called per–State–Action–parameter Safe Pol-
icy Improvement (SASPI), consists in the fact that, for each state, we can move probability
across the actions. For a given state s and action a, we define the probability increment in-
duced by coefficient α(s, a) as ∆(s, a) = π′(a|s)−π(a|s) = α(s, a) (π(a|s)− π(a|s)). Clearly,
we cannot change the probability arbitrarily, as we need to satisfy the following constraints:

∀s ∈ S,
∑

a∈A
∆(s, a) = 0, (9)

∀(s, a) ∈ S ×A,
{

0 ≤ ∆(s, a) ≤ π(a|s)− π(a|s) if π(a|s) ≥ π(a|s)
π(a|s)− π(a|s) ≤ ∆(s, a) ≤ 0 otherwise

. (10)

The constraint (9) ensures that the resulting policy π′(a|s) = π(a|s) + ∆(s, a) is a valid
probability distribution for all s ∈ S, while constraint (10) guarantees that the chosen
∆(s, a) realizes a convex combination of the entries of the current policy π and those of the
target policy π. As a consequence, for each state s ∈ S we can partition the actions into three
sets according to the sign of π(a|s)−π(a|s). A↑s = {a ∈ A : π(a|s) > π(a|s)} is the set of the

actions whose probability can only be increased, A↓s = {a ∈ A : π(a|s) < π(a|s)} is the set of
the actions whose probability can only be decreased, and if A=

s = {a ∈ A : π(a|s) = π(a|s)}
is the set of the actions whose probability cannot change whatever α(s, a) we pick.

To solve the problem of determining the optimal values of the ∆(s, a), we adopt an
approach similar to that of SSPI and we introduce a budget Υ = ‖π′ − π‖∞, with π′ as
defined in Equation (8). Notice that Υ can be spent independently in each state s, by
definition of L∞-norm. Suppose we are able to find the optimal budget value Υ ∗, our
optimization problem consists of maximizing the bound in Corollary 4 over the probability
increments ∆(s, a) having a fixed budget Υ and fulfilling the constraints (9) and (10).
Ideally, we would like to increase the probability of the actions with high Qπ and decrease
the probability of the actions with low Qπ. Notice that, in order to satisfy (9), for each state,
the amount of probability we add must coincide with the amount of probability we subtract
across all actions. Thus, given a budget Υ we can increase (resp. decrease) the probability
of the actions by Υ/2 at most. In order to define the update rule, let ρπs : A → {1, 2, . . . , |A|}
be an ordering of the actions for each state, such that if ρπs (a) < ρπs (a′) =⇒ Qπ(s, a) ≤
Qπ(s, a′). We define the following quantities:

G↑(s, a) =
∑

a′∈A↑s :
ρπs (a′)>ρπs (a)

(
π(a′|s)− π(a′|s)

)
,

23

Metelli, Pirotta, Calandriello, and Restelli

G↓(s, a) =
∑

a′∈A↓s :
ρπs (a′)<ρπs (a)

(
π(a′|s)− π(a′|s)

)
.

Given an action a ∈ A, G↑(s, a) represents the amount by which the total probability of
all the actions with Qπ larger than Qπ(s, a) can be increased. Symmetrically, for an action
a ∈ A, G↓(s, a) represents the amount by which the total probability of all the actions with
Qπ smaller than Qπ(s, a) can be decreased. Note that it is not always convenient to spend Υ
completely in every state. Indeed, it might be the case that in order to spend it all, we have
to increase the probability of actions with low Qπ and decrease the probability of actions
with high Qπ, which is clearly inconvenient. For this reason, we define the expendable budget
for an action a ∈ A in a state s ∈ S as:

Υ (s, a) =





max
{

0,min
{
π(a|s)− π(a|s), G↓(s, a)−G↑(s, a)

}}
if a ∈ A↑s

max
{

0,min
{
π(a|s)− π(a|s), G↑(s, a)−G↓(s, a)

}}
if a ∈ A↓s

0 otherwise

. (11)

To grasp the intuition behind the definition of expendable budget, consider an action a ∈ A↑s.
We have two conditions to satisfy in order to define the budget Υ (s, a). First, for a we can
increase its probability by at most π(a|s)− π(a|s). However, this might not be convenient
depending on how much the probability of actions with Qπ smaller than Qπ(s, a) can be
decreased, i.e., G↓(s, a). The best way of moving probability across actions consists of
increasing the probability of actions in decreasing order of Qπ and decreasing the probability
of actions in increasing order of Qπ. Thus, the second condition can be stated as follows.
Given an action a ∈ A↑s, recalling that we have increased the probability of all actions with
Qπ higher than Qπ(s, a) as much as possible, i.e., by G↑(s, a), the budget we have at our
disposal is at most G↓(s, a) − G↑(s, a). Therefore, to define Υ (s, a) we take the minimum
between the two cases, which leads to Equation (11). A similar rationale holds for actions

in A↓s. Clearly, for actions a ∈ A=
s we have Υ (s, a) = 0. We can also define the expendable

budget for a state s ∈ S as: Υ (s) =
∑

a∈A Υ (s, a). If Υ ≤ Υ (s) we can define the two

active actions, i.e., those of which we are currently increasing (a↑s) and decreasing (a↓s) the
probability:

a↑s = arg max
a∈A↑s :

G↑(s,a)≤Υ
2

{ρπs (a)} , a↓s = arg max
a∈A↓s :

G↓(s,a)≤Υ
2

{ρπs (a)} . (12)

We can now state the following optimality condition.

Corollary 13. Let Sππ = {s ∈ S : dπ(s) > 0} and Υ ∗ be the value that maximizes the
following function:

B(Υ) =
1

1− γ
∑

s∈Sππ

dπ(s)
∑

a∈A
∆(s, a, Υ)Qπ(s, a)− γ

(1− γ)2
Υ 2 ‖qπ‖∞

2
,

where

∆(s, a, Υ) =





max
{

0,min
{
Υ (s, a), Υ2 −G↑(s, a)

}}
if a ∈ A↑s

−max
{

0,min
{
Υ (s, a), Υ2 −G↓(s, a)

}}
if a ∈ A↓s

0 if a ∈ A=
s

.

24

Safe Policy Iteration

We set ∆(s, a, Υ) = 0 when dπ(s) = 0. Then, the bound in Corollary 4 is optimized by
taking

α(s, a) =

{
0 if π(a|s) = π(a|s)

∆(s,a,Υ ∗)
π(a|s)−π(a|s) otherwise

Proof First note that if dπ(s) = 0, state s does not have any contribution in the bound
value, thus we can set ∆(s, a) = 0 and restrict our analysis to the states in Sππ . We now
evaluate the contribution of each action to the bound in Corollary 4:

Jπ
′ − Jπ ≥ 1

1− γd
πTaπ

′
π −

γ

(1− γ)2

∥∥π′ − π
∥∥2

∞
‖qπ‖∞

2

=
1

1− γ
∑

s∈Sππ

dπ(s)
∑

a∈A

[
π′(a|s)Qπ(s, a)− π(a|s)Qπ(s, a)

]
− γ

(1− γ)2

∥∥π′ − π
∥∥2

∞
‖qπ‖∞

2

=
1

1− γ
∑

s∈Sππ

dπ(s)
∑

a∈A
∆(s, a)Qπ(s, a)− γ

(1− γ)2
Υ 2 ‖qπ‖∞

2
,

where we denoted with ∆(s, a) = π′(a|s) − π(a|s) and Υ 2 = ‖π′ − π‖2∞. Consider a fixed
budget Υ . Since we can spend Υ independently in each state, we can reason for a generic
state s ∈ S. In particular, Υ/2 can be used to increase the probability of some actions in

A↑s and Υ/2 to decrease the probability of some actions in A↓s. The best we can do is to
start increasing the probabilities of actions starting from the one with the highest Qπ value
and, at the same time, decreasing the probabilities of actions starting from the one with
the lowest Qπ value, until we ran out of budget. Thus, for an action a ∈ A↑s we increase its
probability as much as possible, i.e., by Υ (s, a). But we need to limit the increment if we
do not have enough budget. Thus, if Υ (s, a) > Υ/2 − G↑(s, a) we need to set the increase
to zero. Summing up, we have:

∆(s, a) = max

{
0,min

{
Υ (s, a),

Υ

2
−G↑(s, a)

}}
, ∀s ∈ S,∀a ∈ A↑s. (P.10)

Analogously, for all actions a ∈ A↓s we decrease the probability as much as possible, provided
that we have enough budget:

∆(s, a) = −max

{
0,min

{
Υ (s, a),

Υ

2
−G↓(s, a)

}}
, ∀s ∈ S, ∀a ∈ A↓s. (P.11)

For the actions a ∈ A=
s we need to set ∆(s, a) = 0. Recalling that α(s, a) = ∆(s,a)

π(a|s)−π(a|s) we
get the result.

Algorithm 6 provides the pseudocode of SASPI. Similarly to SSPI, the termination
condition is Υ ∗ = 0, i.e., when no improvement can be obtained with the target policy π.

4.3.1 Computing Υ ∗

Like for SASPI, we face the problem of computing Υ ∗, which requires the maximization of
a function with linear discontinuous derivative. Note that, once again, the slope of each

25

Metelli, Pirotta, Calandriello, and Restelli

Algorithm 6 Exact SASPI.

input: MDP M, target policy space Π, policy chooser PC
Initialize π
π ← PC(M,Π, π)
Υ ∗ ← FBO(M, π, π) (see Alg. 4)
while Υ ∗ > 0 do

Compute Υ (s, a), ∀s ∈ S, ∀a ∈ A

∆(s, a)←





max
{

0,min
{
Υ (s, a), Υ2 −G↑(s, a)

}}
if a ∈ A↑s,

−max
{

0,min
{
Υ (s, a), Υ2 −G↓(s, a)

}}
if a ∈ A↓s,

0 if a ∈ A=
s ,

∀s ∈ S,∀a ∈ A

α(s, a)← ∆(s,a)
π(a|s)−π(a|s) ∀s ∈ S,∀a ∈ A

π(a|s)← α(s, a)π(a|s) + (1− α(s, a))π(a|s), ∀s ∈ S, ∀a ∈ A
π ← PC(M,Π, π)
Υ ∗ ← FBO(M, π, π)

end while

piece is the same and equal to m = −γ‖q‖∞
(1−γ)2

. For this reason, provided that we are able

to compute the coordinates of the discontinuity points (by using a properly defined FJP),
we can employ Algorithm 4 to find Υ ∗. Let us now write the explicit expression of the
derivative of the bound:

∂

∂Υ
B(Υ) =

1

1− γ
∑

s∈SΥ

1

2
dπ(s)

(
Qπ(s, a↑s)−Qπ(s, a↓s)

)
− Υ γ ‖q

π‖∞
(1− γ)2

= g(Υ) +mΥ, (13)

where SΥ = {s ∈ S : Υ (s) ≤ Υ} is the set of states for which we still have budget (non-
saturated) and thus their contribution in the summation is dependent on Υ . In such a case,

there exist two active actions, as defined in Equation (12): a↑s of which we are increasing the

probability and a↓s of which we are decreasing the probability. The probability of the other
actions are either saturated to the maximum value or kept unchanged and thus, independent
of Υ . Similarly to what happens in SSPI, the derivative is non negative at Υ = 0, and it
is monotonically decreasing since both Qπ(s, a↑s) and −Qπ(s, a↓s) are decreasing functions

of Υ . Therefore, B is guaranteed to have a unique maximum since actions a↑s and a↓s are
considered in decreasing and increasing order of Qπ, respectively. The discontinuity points
correspond to values of Υ for which either one state saturates, i.e., Υ reaches Υ (s), or a↑s
or a↓s change. In order to find these discontinuity points, we can adopt Algorithm 7. The
idea of the algorithm is to go through state–action pairs sorted according to the budget
at which they are going to saturate. This information is provided by G↑(s, a) for actions
candidate to increase their probability and by G↓(s, a) for actions candidate to decrease their
probability. Therefore we consider two orderings ρ↑ and ρ↓ in which the state–action pairs
are sorted according to G↑(s, a) and G↓(s, a), respectively. At each iteration t we consider
the pair (s, a) that will saturate sooner (the first if). For this pair, two situations might
happen: (i) it is convenient to perform the update, i.e., the action at whose probability
is going to be increased (resp. decreased) has higher Qπ than the action we have just

decreased (resp. increased) the probability a↓st ; (ii) the update is not convenient. In case
(ii), we need to declare the state st as saturated and remove it from the set Sππ . The

26

Safe Policy Iteration

-1.369 -0.058 0.783 1.201 1.882
0

0.2

0.4

0.6

0.8

a1 a2 a3 a4 a5

0

1
0.5

0

0.8

ρπs

Υ = 0.4 Υ(s) = 0.4

Qπ

π(ai|s)
π(a|s)
π′(a|s)
π(a|s)

-1.369 -0.058 0.783 1.201 1.882
0

0.2

0.4

0.6

0.8

a1 a2 a3 a4 a5

0
1

0

0

1

ρπs

Υ = 0.4 Υ(s) = 0.2

Qπ

π(ai|s)
π(a|s)
π′(a|s)
π(a|s)

Figure 2: SASPI policy update.

computational complexity of Algorithm 7 is dominated by the computation of the orderings
ρ↑ and ρ↓, which costs O (|S||A| log |A||S|), as the computation of G↑(s, a) and G↓(s, a) has
cost O (|S||A| log |A|) and the loop is executed at most |S||A| times and at each iteration
the cost is constant. In the following, we report a couple of examples of policy update using
SASPI.

Example 1. The initial policy (blue area with dotted mark), the updated policy (orange
area with square mark) and the target policy (green area with diamond mark) are depicted
in Figure 2. Actions are ordered according to ρπs , i.e., in ascending order according to their
Q–values. We fix a budget Υ = 0.4. At the top, we show a case in which we are able to
spend the whole budget in state s, i.e., Υ (s) = 0.4. We start from the best a5 and the worst
a1 actions. We try to increase the probability of a5 and decrease that of a1, but we cannot
as π(a1|s) > π(a1|s), so we move to action a2. We decrease the probability of a2 by 0.1 and
we increase the probability of a5 by the same amount. Now, we move to action a3 and we
decrease its probability by 0.1 as well while increasing that of a5 by the same amount. Since
we have no further budget, we stop. At the bottom, we show a case where the expendable
budget Υ (s) = 0.2 is less than Υ . Again we start with a1 and a5. Similar to the case on the
left, we have to move to a2. Now, we can increase the probability of a5 by 0.1 and meanwhile
reduce the probability of a2 by the same amount. We could now decrease the probability of
a3 but we have not enough probability on a4 to compensate. Thus, we stop. The updates
∆(s, a) are reported in the figure as dashed arrows. Coefficients α(s, ai) are drawn above
the bars.

Remark 8 (SASPI vs SSPI). It is worth noting that the more flexible update rule intro-
duced by SASPI shows an advantage over SSPI only when considering problems with more
than two actions. Indeed, when A = {a1, a2} we have that α(s, a1) = α(s, a2) since from
Constraint (9) we have:

0 = ∆(s, a1) + ∆(s, a2) = α(s, a1) (π(a1|s)− π(a1|s)) + α(s, a2) (π(a2|s)− π(a2|s))

27

Metelli, Pirotta, Calandriello, and Restelli

Algorithm 7 Computing of the jump points for SASPI (Find Jump Point - FJP)

input: MDP M, current policy π, target policy π
initialize: t← 0, Sππ ← {s ∈ S : dπ(s) > 0}, Υ0

2 ← 0, i↑ ← 0, i↓ ← 0
Compute G↑(s, a) and G↓(s, a), ∀s ∈ S, ∀a ∈ A
Compute the two orderings ρ↑ and ρ↓ such that s.t. i < j =⇒ G↑(sρ↑i

, aρ↑i
) ≤ G↑(sρ↑j

, aρ↑j
) and

i < j =⇒ G↓(sρ↓i
, aρ↓i

) ≤ G↑(sρ↓j , aρ↓j)

Compute a↑s = arg maxa∈A {Qπ(s, a)} and a↓s = arg mina∈A {Qπ(s, a)}, ∀s ∈ S
q0 ← 1

1−γ
∑
s∈Sππ

1
2d
π(s)

(
Qπ(s, a↑s)−Qπ(s, a↓s)

)

yield Υ0, q0

while Sππ 6= {} do
t← t+ 1
if st ∈ Sππ then

if G↑(sρ↑
,i↑
aρ↑

i↑
) ≤ G↓(sρ↓

i↓
, aρ↓

i↓
) then

st, at ← sρ↑
i↑
, aρ↑

i↑

if Qπ(st, at) > Qπ(st, a
↓
st) then

qt ← qt−1 − 1
2d
π(st)

(
Qπ(st, a

↑
sit)−Qπ(st, at)

)

a↑st ← at
else

qt ← qt−1 − 1
2d
π(st)

(
Qπ(st, a

↑
st)−Qπ(st, a

↓
st)
)

Sππ \ {st}
end if
Υt
2 ← G↑(st, at)
i↑ ← i↑ + 1

else
st, at ← sρ↓

i↓
, aρ↓

i↓

if Qπ(st, at) < Qπ(st, a
↓
st) then

qt ← qt−1 − 1
2d
π(st)

(
Qπ(st, at)−Qπ(st, a

↓
st)
)

a↓st ← at
else

qt ← qt−1 − 1
2d
π(st)

(
Qπ(st, a

↑
st)−Qπ(st, a

↓
st)
)

Sππ \ {st}
end if
Υt
2 ← G↓(st, at)
i↓ ← i↓ + 1

end if
end if
yield Υt, qt

end while
yield 2, −∞

= (α(s, a1)− α(s, a2)) (π(a1|s)− π(a1|s)) =⇒ α(s, a1) = α(s, a2).

As a consequence, the coefficient α depends on the state only, like in SSPI.

Remark 9 (Optimality of USPI, SSPI and SASPI). In general, selecting a greedy policy
π+ as target policy for USPI and SSPI is not optimal in terms of bound value, i.e., there
might exist a target policy π 6= π+ that allows reaching higher values of the bound. Indeed,

28

Safe Policy Iteration

as proved in Appendix B, the policy that maximizes globally the bound, as defined in
Corollary 29, might be outside the space of representable policies given the USPI and SSPI
update rule. On the contrary, this policy is always representable with the update rule of
SASPI provided that we select π+ as target policy. Thus, SASPI is optimal in terms of
bound value using the GPC (Greedy Policy Chooser, Algorithm 2).

Remark 10 (On the Convergence of SSPI and SASPI). We have not provided a specific re-
sult for the convergence of SSPI and SASPI. It is worth noting that these two algorithms con-
verge to the optimal policy under the same assumptions enforced for USPI (Section 4.1.1).
Indeed, the convergence proof (Theorem 8) employs the performance improvement pro-
duced by USPI as in Corollary 6, i.e., USPI with the simplified bound. SSPI and SASPI
yield a larger policy improvement compared to that of Corollary 6 and, consequently, the
schema of the proof applies straightforwardly.

5. Approximate Safe Policy Iteration

The exact algorithms proposed in the previous sections are impractical in applications where
the state space is very large (or even continuous) or when the state–transition model is
unknown. In this section, we move to the approximate setting in which the quantities
involved in the bounds need to be estimated from samples. We start introducing the
approximate versions of the policy choosers (Section 5.1), then we present the approximate
versions of the three algorithms we introduced in Section 4: aUSPI (Section 5.2), aSSPI
(Section 5.3), and aSASPI (Section 5.4). For each of them, we present the algorithm, a
sample complexity analysis and, when possible, we discuss the convergence properties.

Since accurate estimates of L∞–norms (sp(a) for USPI and ‖qπ‖∞ for SSPI, and SASPI)
need many samples, for approximate settings, we consider a further simplified bound ob-
tained from Corollary 4 by observing that ‖qπ‖∞ ≤ 1

1−γ :

Jπ
′ − Jπ ≥ 1

1− γA
π′
π −

γ

2(1− γ)3

∥∥π′ − π
∥∥2

∞ . (14)

In this way, the only value that needs to be estimated is Aπ′π . Following Kakade (2003),
the goal of this section is to provide an analysis of the SPI algorithms presented when
dealing with tabular domains.

In the following, we will denote with the “hat” the estimated/approximated quantities.
We will employ this notation for both the value functions (e.g., Q̂π, Âππ) and the policies
(e.g., π̂). Approximation involves essentially two parts of the SPI algorithms. First, the
policy chooser needs samples to select in an approximate manner a suitable target policy.
We will discuss in Section 5.1 how to extend the Greedy Policy Chooser (GPC) to account
for samples. Second, once a target policy is available, we need to perform the policy update
computing the convex combination coefficients α. This latter phase heavily depends on
the SPI algorithm and we will discuss how to perform it for a fixed target policy in the
Sections 5.2–5.4. The proofs of all the presented results are reported in Appendix A.3.

29

Metelli, Pirotta, Calandriello, and Restelli

Algorithm 8 Approximate Greedy Policy Chooser (ĜPC).

input: current policy π, target policy space Π

initialize: N ←
⌈

32|A|2
9ε2

(
log(2|Π|) + log 1

δ

) ⌉
, T ←

⌈
logγ

ε
24

⌉

Compute a biased sample set {(si, ai, q̂i)}Ni=1.
for each π† ∈ Π do

Construct the estimate Q̂
π†

π = |A|
N

∑N
i=1 q̂

π
i π
†(ai|si)

end for

return arg maxπ†∈Π

{
Q̂
π†

π

}

5.1 Approximate Policy Choosers

Since we are in model–free setting, we need a new policy chooser that, at each iteration,
given a policy π, returns the target policy π ∈ Π selected using samples. We will discuss in
this section how to adapt the Greedy Policy Chooser (GPC) to the approximate framework.

Let us first focus on the requirements for a generic approximate policy chooser P̂C, which
outputs a target policy π. Given an accuracy level ε > 0 and an (exact) policy chooser

PC, the goal of the corresponding approximate policy chooser P̂C consists in returning an
approximate target policy π̂ such that with probability at least 1 − δ, we have that the
difference between the expected advantage Aππ of the true target policy π and the expected

advantage Aπ̂π of the approximate target policy π̂ is bounded:
∣∣∣Aππ − Aπ̂π

∣∣∣ ≤ ε

1− γ , (15)

where π is the target policy returned by the exact policy chooser PC. Note that equivalently
we can write that

π̂ ∈ arg max
π†∈Π

Âπ
†
π ,

where Âππ is the estimated expected advantage function of a candidate target policy π†.
Considering the GPC, it is worth noting that the requirement at Equation (15) is not
dissimilar from the typical requirement employed in API, i.e., the fact that the improvement
step is made by using an approximately greedy policy (Scherrer, 2014). Indeed, we can

rewrite the difference of the expected advantages as Aππ − Aπ̂π = dπT
(
π − π̂

)
qπ. Similar

conditions on the approximate greedy policy can be found in some fundamental works on
API (e.g., Lagoudakis and Parr, 2003a; Lazaric et al., 2016). The pseudocode of approximate

GPC (ĜPC) is reported in Algorithm 8. The following lemma provides a sufficient condition
to meet the previous requirement.

Lemma 14. If with probability at least 1− δ, simultaneously for all π† ∈ Π it holds that:
∣∣∣Q̂π†

π −Qπ†
π

∣∣∣ ≤ ε

2(1− γ)
, (16)

where Qπ†
π = dπTπ†qπ, then with probability at least 1− δ it holds that:

∣∣∣Aππ − Aπ̂π
∣∣∣ ≤ ε

1− γ ,

30

Safe Policy Iteration

where π is the target policy returned by GPC and π̂ is the policy returned by ĜPC (Algo-
rithm 8).

Proof Let us denote with π the policy returned by GPC and with π̂ the policy returned
by ĜPC. We consider the following sequence of inequalities:

Aππ − Aπ̂π = Aππ − Aπ̂π + Âπ̂π − Âπ̂π
≤ Aππ − Âππ + Âπ̂π − Aπ̂π
≤ 2 max

π†∈Π

{∣∣∣Aπ†π − Âπ
†
π

∣∣∣
}
,

where we exploited the fact that Âππ ≤ Âπ̂π, as ĜPC returns the policy π̂ that maximizes

Âπ̂π. We now observe that for any π† ∈ Π, Aπ†π = Qπ†
π − Qπ

π. The result then follows from
the hypothesis.

Thus, the problem translates into computing an ε
2(1−γ)–accurate estimation of Qπ†

π for

all π† ∈ Π. To this purpose, we present the following sampling procedure.
GPC Sampling Procedure The policy chooser generates a dataset {(si, ai, q̂i)}Ni=1 that for

each state-action pair (si, ai) reports an estimation of the Q-function of policy π, denoted by
q̂i. The state si must be extracted according to the γ–discounted future state distribution
dπ. In order to generate a sample si from dπ, we draw a state s0 from µ and then we follow
the policy π. Since γ represents the probability of continuing the simulation, at each step,
the obtained state si is accepted with probability γ and with probability 1−γ the simulation
ends. In this way, the state si is extracted according to the distribution dπ (see Thomas,
2014). The simulation is constrained to terminate in at most T steps. This condition has
the effect of introducing a bias, but, in the meantime, it ensures a termination even when
γ approaches 1 (Algorithm 14). The sample si ∼ dπ is then used to build the single sample
(si, ai, q̂i). The associated action ai is drawn uniform in the action space A. In order to
compute the approximate Q–value q̂i for the state-action pair (si, ai) a unique run under
policy π is simulated. The estimation is obtained by executing action ai in state si and,
then, following policy π. Starting from time t = 0, the simulation is repeated T–steps and
the final value q̂i is obtained as: q̂i =

∑T−1
t=0 γtrt+1, where rt+1 is the immediate reward at

time step t (Algorithm 15).
Once we have computed the biased sample set {(si, ai, q̂i)}Ni=1 we can estimate the future

state-action value function Qπ†
π of a stationary target policy π† w.r.t. the current policy π

as the weighted average of all q̂i according to the policy π†:

Q̂
π†

π =
|A|
N

N∑

i=1

π†(ai|si) · q̂i.

For the approximate greedy policy chooser ĜPC it suffices to return the policy π† ∈ ΠSR

that maximizes the sample–based Q-function Q̂
π†

π . We can easily obtain an approximate
version of Âππ, recalling that the average advantage Aππ can be written as follows:

Âππ = Q̂
π

π − V̂
π

= Q̂
π

π − Q̂
π

π, .

31

Metelli, Pirotta, Calandriello, and Restelli

Indeed, if we consider as greedy policy the target policy π, previous equation permits the

computation of Âππ without additional costs, because the estimates Q̂
π

π and Q̂
π

π are computed
during maximization process.

The following lemma gives a theoretical guarantee to the estimation process and to the
quality of the estimated quantity. The result is obtained as a straightforward adaptation of
Lemma 7.3.4 in Kakade (2003). Note that, in order to get an ε

1−γ –accurate estimation of

the average advantage Aππ, we need to consider the contribution of Q̂
π†

π and Q̂
π

π that must
be ε

2(1−γ)–accurate.

Lemma 15. Let Π ⊆ ΠSR be a class of stationary policies for an infinite horizon MDP.
Let

T =

⌈
logγ

ε

24

⌉
and N =

⌈
32|A|2

9ε2

(
log(2

∣∣Π
∣∣) + log

1

δ

)⌉
.

Upon input of a policy π, GPC Sampling Procedure constructs a function Q̂
π†

π such that
with probability 1− δ, simultaneously for all π† ∈ Π

∣∣∣∣Q̂
π†

π −Qπ†
π

∣∣∣∣ ≤
ε

2(1− γ)
.

Proof GPC Sampling Procedure has a form of bias due to the finite horizon T employed
to generate samples from dπ and to estimate Qπ. For the sake of the analysis, let us define
the T -horizon γ-discounted stationary distribution as:

dπT (s) =
1− γ

1− γT
T−1∑

t=0

γt Pr (st = s|π,M) ,

and the T -horizon action-value function:

QπT (s, a) = E
st+1∼P(·|st,at)
at+1∼π(·|st+1)

[
T−1∑

t=0

γtR(st, at)|s0 = s, a0 = a

]
,

and finally, we define:

Qπ†
π,T = E

s∼dπT
a∼π(·|s)

[QπT (s, a)] .

Given the horizon truncation, our estimator is unbiased for Qπ†
π,T . Therefore, we decompose

the difference into two terms:
∣∣∣∣Q̂

π†

π −Qπ†
π

∣∣∣∣ ≤
∣∣∣∣Q̂

π†

π −Qπ†
π,T

∣∣∣∣
(E1)

+
∣∣∣Qπ†

π,T −Qπ†
π

∣∣∣
(E2)

.

We want to obtain that, with a probability of 1− δ, the largest deviation of the estimation
from the true value is at most E1+E2 = ε

2(1−γ) . This can be achieved by setting E1 = 3ε
8(1−γ)

32

Safe Policy Iteration

and E2 = ε
8(1−γ) .7 Let us start with E1 and fix any strategy π† ∈ Π. The crucial observation

is that, the value q̂i generated by different trajectories are independent. This independence
implies that we can apply Heöffding’s bound for the deviation of an estimate from its mean.

Note that the values |A|q̂i π†(ai|si) involved in the estimation of Q̂
π†

π are limited in the

interval
[
0, |A|1−γ

]
(see GPC Sampling Procedure). Hoeffding’s bound implies that:

Pr

(∣∣∣∣Q̂
π†

π −Qπ†
π,T

∣∣∣∣ ≥
3ε

8(1− γ)

)
≤ 2e

−
2

(
3ε

8(1−γ)

)2
N2∑N

i=1
(bi−ai)2

= 2e
− 18ε2N2(1−γ)2

64(1−γ)2N|A|2 = 2e
− 9ε2N

32|A|2 .

So far, we have restricted our attention to a fixed policy π†. Exploiting the union bound
we have that the probability that any π† ∈ Π deviates by more than 3ε

8(1−γ) from its mean

is bounded by 2|Π|e−
9ε2N
32|A|2 ≤ δ. Solving the equation for N , we obtain:

e
− 9ε2N

32|A|2 ≤ δ

2|Π| =⇒ 9ε2N

32|A|2 ≥ − log
δ

2|Π| =⇒ N ≥ 32|A|2
9ε2

(
log(2

∣∣Π
∣∣) + log

1

δ

)
.

We now focus on E2 and we further decompose it, highlighting the contribution of the
finite horizon T :

∣∣∣Qπ†
π,T −Qπ†

π

∣∣∣ =

∣∣∣∣∣∣∣
E

s∼dπT
a∼π(·|s)

[QπT (s, a)]− E
s∼dπ

a∼π(·|s)

[Qπ(s, a)]± E
s∼dπ

a∼π(·|s)

[QπT (s, a)]

∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣
E

s∼dπT
a∼π(·|s)

[QπT (s, a)]− E
s∼dπ

a∼π(·|s)

[QπT (s, a)]

∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣
E

s∼dπ
a∼π(·|s)

[Qπ(s, a)−QπT (s, a)]

∣∣∣∣∣∣∣

≤ 1

1− γ ‖d
π − dπT ‖1 + ‖qπ − qπT ‖∞ ≤

3γT

1− γ .

where we exploited the fact that ‖qπT ‖∞ ≤ 1
1−γ and we used Lemma 26 and Lemma 27 to ob-

tain the last line from the last but one. The value of T is obtained by solving 3γT

1−γ = ε
8(1−γ) .

Hence, with a probability of 1− δ, the deviation from the true mean is ε
2(1−γ) .

The computation of the arg max in Algorithm 8 might yield multiple solutions, espe-
cially when there are states that are never visited in the collected trajectories. Since the
improvement ensured by the SPI algorithms is inversely proportional to the distance between
the current policy π and the target policy π† (Corollary 6), ties are broken by selecting

the policy minimizing
∥∥π − π†

∥∥
∞ among those maximizing Q̂π†

π,µ. This corresponds to set

π†(·|s) = π(·|s) in all states s that are never visited.

7. Other decompositions of the error are clearly possible.

33

Metelli, Pirotta, Calandriello, and Restelli

Aππ

0

ε
1−γ

Aππ

κ
1−γ Âππ,

Figure 3: Average advantage estimation. The graph shows the relationship between the
approximated and the real average advantage. At every iteration, the approx-
imate average advantage of policy π satisfies the condition Âππ > κ

1−γ , that is,

Aππ > κ−ε
1−γ . When the algorithm terminates (Âππ ≤ κ

1−γ), the policy π returned

by the algorithm guarantees by construction that, for all π† ∈ ΠSR, Aπ†π < κ+ε
1−γ

because π is the best policy in Π.

5.2 approximate Unique–parameter Safe Policy Iteration (aUSPI)

In this section, we discuss how to deal with approximation when considering USPI. Let us
start with some considerations about the requirements we need to enforce on the estimates.
In the exact case, the USPI algorithm stops when the advantage function becomes zero.
When approximation is involved, we need to take into account also the accuracy level ε
in order to define a proper threshold. Suppose we are provided with an ε

1−γ –accurate

approximation of Aππ, which threshold should we use for the termination condition of the
SPI algorithms? If we use as threshold the value κ

1−γ , for some κ > 0, we have that: i) the

algorithm stops when: Aππ ≤ κ+ε
1−γ ; ii) the algorithm continues when Aππ ≥ κ−ε

1−γ (Figure 3).
For sure, we require that κ− ε ≥ 0 because we want to avoid following target policies with
a negative advantage. We select κ = ε.

With this assumption and using the bound in Equation (14), Corollary 5 can be restated
in approximate setting as follows.

Corollary 16. Assume to have an ε
1−γ -accurate Aππ, named Âππ. If Âππ ≥ ε

1−γ , then, using

α∗ =
(1− γ)2

(
Âππ − ε

1−γ

)

γ ‖π − π‖2∞
we set α = min(1, α∗), so that when α∗ ≤ 1 we can guarantee the following policy improve-
ment:

34

Safe Policy Iteration

Algorithm 9 Approximate USPI.

input: target policy space Π, approximate policy chooser P̂C, accuracy ε
Initialize π
π ← P̂C(Π, π)
while Âππ ≥ ε

1−γ do

α← min

{
1,

(1−γ)2
(
Âππ− ε

1−γ

)
γ‖π−π‖2∞

}

π ← απ + (1− α)π

π ← P̂C(Π, π)
end while
return π

Jπ
′ − Jπ ≥

(1− γ)
(
Âππ − ε

1−γ

)2

2γ ‖π − π‖2∞
,

and when α∗ > 1, we perform a full update towards the target policy π with a policy im-
provement equal to the one specified in Equation (14).

Proof Let us consider the single component derivations in the proof of Theorem 5. The
bound in Equation (14) can be rewritten as:

Jπ
′ − Jπ ≥ α

1− γA
π
π − α2 γ

2(1− γ)3
‖π − π‖2∞ . (P.12)

Suppose now to have access to an ε
1−γ -accurate estimation of Aππ, called Âππ. We can

exploit such assumption to derive the optimal α and the guaranteed policy performance
improvement. We set in the worst-case scenario by considering

Aππ = Âππ −
ε

1− γ , (P.13)

that is, we suppose to have an overestimate of Aππ with maximum error. By replacing (P.13)
in the bound (P.12) we obtain:

Jπ
′ − Jπ ≥ α

1− γ

(
Âππ −

ε

1− γ

)
− α2 γ

2(1− γ)3
‖π − π‖2∞ . (P.14)

The term α∗ is the value of α that maximizes this bound, i.e. the value that set the partial
derivative w.r.t. α to zero. By putting α∗ in place of α in the last bound, we derive the
guaranteed performance improvement.

The general algorithm for the approximated version of USPI, called Approximate USPI
(aUSPI), is described in Algorithm 9. The skeleton of the algorithm is very similar to the
exact one: starting with an initial policy π at random, iteratively select a target policy
π and compute a conservative update toward it. The trade-off coefficient α is the one

35

Metelli, Pirotta, Calandriello, and Restelli

that maximizes the lower bound in Equation 14, i.e., α =
(1−γ)2(Âππ− ε

1−γ)

γ‖π−π‖2∞
. The procedure

continues until the average advantage Âππ remains greater than the threshold ε
1−γ . What

changes with respect to the exact case is that the quantities involved in the algorithm
are approximated. For this reason, both the update rule and the terminal condition are
arranged to consider the worst case, i.e., the Âππ is decreased by the maximal estimation
error ε

1−γ . We can now show that using an adaptive accuracy and threshold, aUSPI, when

selecting the greedy policy as target (ĜPC), converges to the global optimum.

Theorem 17 (Finite Convergence). There exists a constant η > 0 depending on the MDP

and a value of accuracy ε, such that under Assumptions 1 and 2, aUSPI with ĜPC with

condition Âπ+

π > κ
1−γ for keeping updating the policy, with approximations

∣∣∣Aπ+

π − Âπ+

π

∣∣∣ <
ε

1−γ converges to the optimal policy π∗ in a finite number of steps when using as κ =

ε+ η ‖π+ − π‖∞.

Proof The idea of the proof is to show that, with a suitable choice of ε and η, the algorithm
does not stop until the optimal policy is reached. Since Âπ+

π is an ε
1−γ -accurate estimation

of Aπ+

π and the algorithm stops as soon as Âπ+

π ≤ κ
1−γ , we have that at each iteration the

performance improvement can be lower bounded by a finite quantity, unless π = π+, i.e.,
unless we have reached the optimal policy:

Jπ
′ − Jπ ≥

(1− γ)
(
Âπ+

π − ε
1−γ

)2

2γ
∥∥π+ − π

∥∥2

∞

≥
(1− γ)

(
κ−ε
1−γ

)2

2γ
∥∥π+ − π

∥∥2

∞

=
η2

2γ(1− γ)
> 0, (P.15)

where the first inequality comes from Corollary 16, the second inequality from the condition
Âπ+

π > κ
1−γ , and the third inequality from the definition of κ = ε+ η ‖π+ − π‖∞. Recalling

that Jπ = 1
1−γd

πTrπ and ‖rπ‖∞ ≤ 1 since R(s, a) ∈ [0, 1] for all s ∈ S and a ∈ A, we have:

Jπ
′ − Jπ ≤ 1

1− γ
(
dπ
′ − dπ

)T
rπ ≤ 1

1− γ
∥∥∥dπ′ − dπ

∥∥∥
1
≤ γ

(1− γ)2

∥∥π′ − π
∥∥
∞ . (P.16)

From the previous two inequalities, if π 6= π∗, we can immediately lower bound the distance
between the greedy policy π+ and the current policy π, i.e., the minimum distance between
two consecutive policies visited by the algorithm:

η2

2γ(1− γ)
≤ Jπ′ − Jπ ≤ γ

(1− γ)2

∥∥π′ − π
∥∥
∞ =⇒

∥∥π′ − π
∥∥
∞ ≥

(1− γ)η2

2
> 0. (P.17)

The immediate consequence is that we will always make finite jumps in the space of policies,
similarly to what happens with performance. At each iteration, the algorithm achieves a
finite performance improvement, it will stop in a finite number of iterations N .8

Let us recall that the algorithm terminates Aπ+

π ≤ Âπ+

π + ε
1−γ ≤ κ+ε

1−γ . Therefore, by
using Lemma 7 and recalling the definition of κ, we can state the following condition that
must hold at iteration N :

(1−γ)∆d (J∗ − JπN) ≤ Aπ
+

πN
≤ 2ε+ η ‖π+ − πN‖∞

(1− γ)
=⇒ J∗−JπN ≤ 2(η + ε)

(1− γ)2∆d
, (P.18)

8. We are not interested, in this phase, in bounding the number of iterations N .

36

Safe Policy Iteration

having observed that ‖π+ − πN‖∞ ≤ 2. Up to now, we have proven that our algorithm
stops in a finite number of iterations with a performance gap w.r.t. the optimal performance
of at most 2(η+ε)

(1−γ)2∆d
. We will prove that, under certain conditions on η and ε we can also

achieve the finite convergence to the optimal policy. For this purpose, we need first to
guarantee that our algorithm will not stop before having exceeded the performance gap
between the optimal policy and the second-best policy ∆J (see Lemma 9):

2(η + ε)

(1− γ)2∆d
≤ ∆J =⇒ η ≤ 1

2
(1− γ)2∆d∆J − ε. (P.19)

It remains to prove is that the algorithm will not stop until it reaches the optimal policy.
Thus, it must happen that our threshold κ

1−γ is always larger than the minimum advantage

we can see during the path. As we know, from Lemma 10, that Aπ∗π ≥ ∆d∆+

2 ‖π∗ − π‖∞
we consider the condition:

∆d∆+

2
‖π∗ − π‖∞ ≥

1

1− γ (ε+ η ‖π∗ − π‖∞) =⇒ η ≤ 1

2
(1− γ)∆d∆+ −

ε

‖π∗ − π‖∞
.

By applying Equation (P.17), we enforce the stricter condition on η:

η ≤ 1

2
(1− γ)∆d∆+ −

2ε

(1− γ)η2
(P.20)

In order to complete the proof of the theorem we need to show that there exist η > 0 and
ε > 0 so that they satisfy the conditions at Equations (P.19) and (P.20). To this purpose,
we make the following choices of ε > 0 and η > 0:

η =
1

4
(1− γ)2∆d min{∆J ,∆+},

ε =
η3

2
.

It is immediate to prove that they fulfill both Equations (P.19) and (P.20). Concerning
Equation (P.19), we have:

η =
1

4
(1− γ)2∆d min{∆J ,∆+} ≤

1

2
(1− γ)2∆d∆J −

1

4
(1− γ)2∆d min{∆J ,∆+}

≤ 1

2
(1− γ)2∆d∆J −

1

2

(
1

4
(1− γ)2∆d min{∆J ,∆+}

)3

=
1

2
(1− γ)2∆d∆J −

η3

2
=

1

2
(1− γ)2∆d∆J − ε,

having observed that 1
4(1 − γ)2∆d min{∆J ,∆+} < 1. Regarding Equation (P.20), instead,

we have:

η =
1

4
(1− γ)2∆d min{∆J ,∆+} ≤

1

4
(1− γ)∆d min{∆J ,∆+}

≤ 1

2
(1− γ)∆d∆+ −

1

4
(1− γ)∆d min{∆J ,∆+}

37

Metelli, Pirotta, Calandriello, and Restelli

=
1

2
(1− γ)∆d∆+ −

η

1− γ
=

1

2
(1− γ)∆d∆+ −

2ε

(1− γ)η2
.

Theorem 17 proves that it is possible to set a non-zero value of ε and η such that
aUSPI converges to the optimal policy in a finite number of steps. Unfortunately, those
values depend on some unknown quantities (∆d, ∆J and ∆+) related, informally, to the
“difficulty” of the task.9 Previous literature (e.g., Kakade and Langford, 2002; Scherrer,
2014) typically analyzes the convergence to an approximately optimal policy in terms of
the error ε of the estimation of the relevant quantities (e.g., the advantage function). To
the best of our knowledge, this is the first analysis that proves a finite convergence to the
optimal policy, even admitting a positive error ε.

It is worth noting that when setting ε = 0, we reduce to the exact case. Therefore, this
convergence result, which exploits a termination condition different from Theorem 17, holds
also for the exact case, considering Aππ ≤ κ

1−γ as condition to keep updating the policy, with

κ = η ‖π+ − π‖∞.

aUSPI Sampling Procedure We now show how to obtain an ε
1−γ -accurate estimate of

Âππ. The sampling procedure is very similar to that presented for the approximate GPC
(GPC Sampling Procedure). We generate a sequence of N state-action pairs (si, ai), where
si ∼ dπ and ai ∼ π(·|si). For each of them, we generate a single rollout of length T , which is
used to estimate the Qπ(si, ai) (Algorithm 15). In the end, we get a dataset {(si, ai, q̂i)}Ni=1,
that can be used to estimate the expected advantage function as:

Âππ =
1

N

N∑

i=1

(π(ai|si)− π(ai|si)) q̂i. (17)

The following result provides the length T and the number of samples N to obtain an
ε

1−γ -accurate estimate.

Lemma 18. Let π, π ∈ ΠSR be two Markovian stationary policies for the same MDP M.
Let

T =

⌈
logγ

ε

12

⌉
and N =

⌈
16

9ε2
log

2

δ

⌉
.

The aUSPI Sampling Procedure construct a function Âππ such that with probability 1− δ:
∣∣∣Âππ − Aππ

∣∣∣ ≤ ε

1− γ .

9. ∆d is the minimum (discounted) probability with which a state is visited under any policy and it is related
to the ergodicity properties of the MDP. ∆J is the minimum performance gap between an optimal policy
and any other deterministic suboptimal policy. Finally, ∆+ is defined in Lemma 25 and it is somehow
related to the action gap.

38

Safe Policy Iteration

Remark 11 (On the Sample Complexity). Let us make some considerations on these
results. Provided that a target policy π is given, aUSPI needs N = d 16

9ε2
log 2

δ e trajectories
each of length T = dlogγ

ε
12e to estimate Aππ with an ε

1−γ accuracy level. Therefore, the total
number of samples needed in a single iteration is NT . We call this quantity per–iteration
sample complexity. Instead, if the target policy has to be computed as well, we need to add
the samples needed by the approximate policy chooser. Clearly, this number of samples
provides a theoretical guarantee for the single iteration only. If the algorithm is run for I
iterations, then a straightforward way to make the guarantee hold for all iterations is to
rescale the confidence level by I, i.e., for all iterations i = 1, 2, ..., I we set δi = δ

I . Instead, if
we seek for asymptotic convergence, and thus I might be infinite, we select a non–uniform
schedule for δ. The classical approach consists in setting δi = 6δ

π2i2
, so that

∑+∞
i=1 δi = δ.

5.3 approximate per–State–parameter Safe Policy Iteration (aSSPI)

As we have seen in Section 4.2, the optimal learning steps α(s) for the SSPI cannot be
computed in closed form and an iterative procedure must be carried out. The iterative
procedure aims at maximizing the bound in Corollary 12. Nevertheless, differently from
aUSPI, we need to estimate two elements: the set of states with non-negative advantage Sππ
and the derivative of the bound as in Equation (6). In this section, we derive the number of
samples needed so that, in high probability, aSSPI performs a policy update that improves
the performance. First of all, we observe that any subset of Sππ is a conservative choice, as
we would avoid updating states with a positive advantage. Therefore, we seek an estimation
of a subset of Sππ . For this purpose, we need to have an estimation of the advantage Aππ(s)
in every state s ∈ S. If we are able to provide an ε

2(1−γ) -accurate10 estimation Âππ(s) of

Aππ(s), then we know that Âππ − ε
2(1−γ) is a lower bound of Aππ. If we require Âππ ≥ ε

2(1−γ)

we are guaranteed that Aππ is non-negative. Therefore, we define the approximate set as:

Ŝππ =

{
s ∈ S : Âππ(s) ≥ ε

2(1− γ)

}
.

In this way, we can guarantee that Ŝππ ⊆ Sππ . We now discuss how to obtain an ε
2(1−γ) -

accurate estimation of Aππ(s).
aSSPI Sampling Procedure For each state s ∈ S, we generate N trajectories of length

T for each action a ∈ A, getting a set of independent estimates of Qπ(s, a) for all a ∈ A,

i.e.,
{
{(a, q̂i(s, a))}a∈A

}N
i=1

(Algorithm 16). Then we estimate the advantage function as:

Âππ(s) =
1

N

N∑

i=1

∑

a∈A
(π(a|s)− π(a|s)) q̂i(s, a). (18)

We now provide the following PAC-bound on the number of samples N needed and provide
a value for T .

Lemma 19. Let π, π ∈ ΠSR be two Markovian stationary policies for the same MDP M.
Let

T =

⌈
logγ

ε

8

⌉
and N =

⌈
128

9ε2
log

2|S|
δ

⌉
.

10. The choice of ε
2(1−γ) as accuracy threshold will be clarified later.

39

Metelli, Pirotta, Calandriello, and Restelli

The aSSPI Sampling Procedure constructs a function Aππ(s) such that with probability 1− δ,
simultaneously for all s ∈ S:

∣∣∣Âππ(s)−Aππ(s)
∣∣∣ ≤ ε

2(1− γ)
.

Once we have an estimation of Sππ we can use it to compute the derivative of the bound.
Note that in this case, we want to optimize a statistical lower bound of the derivative. To
avoid estimating also ‖qπ‖∞ from samples, we consider the slope equal to m = − γ

(1−γ)3
.

Since the derivative is a piece-wise linear decreasing function, a lower bound would intersect
the zero axes at a smaller value of Υ , allowing a smaller budget and being, therefore, more
conservative. Since we already estimated the advantage functions for each state Âππ(s), we
can reuse them for the derivative estimation. Suppose we have at our disposal a set of M
states {si}Mi=1 sampled independently from dπ, we can estimate the constant term in the
bound derivative as:

ĝ =
1

M(1− γ)

M∑

i=1

I
(
si ∈ Ŝππ

) Âππ(si)

‖π(·|si)− π(·|si)‖1
. (19)

We now provide a value for M to guarantee an ε
(1−γ)2

–accurate estimate.11

Lemma 20. Let π, π ∈ ΠSR be two Markovian stationary policies for the same MDP M.
Let

M =

⌈
8

ε2
log

2

δ

⌉
.

Under the assumptions of Lemma 19, with probability 1− 2δ it holds that:

ĝ − g ≤ ε

(1− γ)2
.

The aSSPI Sampling Procedure and Lemma 20 allow us to compute the per–iteration
sample complexity. Indeed, we sample N trajectories for every state and action pair, each of
length T , in order to have an estimate of Aππ(s) for all s ∈ S. Then, we need M samples to
compute g, taking a sample mean under dπ. Thus, overall we need NT |A||S|+M samples.
Algorithm 10 reports the pseudocode of the FJP function for aSSPI.

5.4 approximate per–State–Action–parameter Safe Policy Iteration (aSASPI)

Similarly to the case of SSPI, it is necessary to carry out an iterative procedure in order
to optimize the bound in Corollary 13. In this section, we derive the number of samples
needed so that aSASPI moves the policy in a direction that improves the performance.
Differently from aSSPI, we have several elements we have to estimate: i) the Q-function

for every state–action pair; ii) the set of non–saturated states Sππ ; iii) the active actions a↑s
and a↓s for each non–saturated state; iv) the expectation under dπ to compute the bound
derivative. We are going to partition the ε

1−γ accuracy over these four sources of error.

11. In this case, we seek for an ε
(1−γ)2 –accurate estimate instead of an ε

1−γ –accurate because g ranges in the

interval
[
0, 1

(1−γ)2
]
.

40

Safe Policy Iteration

Algorithm 10 Computing of the jump points for aSSPI (Find Jump Point - F̂JP)

input: current policy π, target policy π, accuracy ε, confidence δ

initialize: t← 0, M ← d 8
ε2 log 4

δ e, N ← d 128
9ε2 log 4|S|

δ e, T ← dlogγ
ε
8e, Υ0 ← 0

Compute an estimation of Aππ(s) for all s ∈ S using N trajectories of length T

Ŝππ ← {s ∈ S : Âππ(s) > ε
2(1−γ)}

q0 ← 1
M(1−γ)

∑M
i=1 I

(
si ∈ Ŝππ

)
Âππ(si)

‖π(·|si)−π(·|si)‖1
− ε

(1−γ)2

Sort states in Ŝππ so that i < j =⇒ ‖π(·|si)− π(·|si)‖1 ≤ ‖π(·|sj)− π(·|sj)‖1
yield Υ0, q0

while Ŝππ 6= {} do
t← t+ 1
Υt ← ‖π(·|st)− π(·|st)‖1
qt ← qt−1 − 1

M(1−γ)

∑M
i=1 I (si = st)

Âππ(si)
‖π(·|si)−π(·|si)‖1

Sππ ← Sππ \ {st}
yield Υt, qt

end while
yield 2, −∞

We start by showing how to estimate the Q-function, by using the following sampling
procedure.

aSASPI Sampling Procedure For each state–action pair, we generate N trajectories
of length T by executing policy π and for each of them, we compute the cumulative sum

of the rewards. In this way we get a set of approximations
{(
s, a, {q̂i(s, a)}Ni=1

)}
s∈S,a∈A

(Algorithm 17). Then we can estimate Qπ as:

Q̂π(s, a) =
1

N

N∑

i=1

q̂i(s, a). (20)

The following result provides the number of samples N and the rollout length T to have
an ε

12(1−γ)–accurate estimate of Qπ.

Lemma 21. Let π, π ∈ ΠSR be two Markovian stationary policies for the same MDP M.
Let

T =

⌈
logγ

ε

48

⌉
and N =

⌈
128

ε2
log

2|S||A|
δ

⌉
.

The sampling procedure constructs a function Q̂π(s, a) such that with probability 1 − δ,
simultaneously for all s ∈ S:

∣∣∣Q̂π(s, a)−Qπ(s, a)
∣∣∣ ≤ ε

12(1− γ)

Given the ε
12(1−γ)–accurate estimation of Q̂π we can state some consideration about the

other quantities we have to estimate. First, given a budget Υ , consider the active actions a↑s
and a↓s and the corresponding approximations â↑s and â↓s induced by Q̂(s, a). Let us focus

on a↑s. If a↑s 6= â↑s it means that we performed an incorrect ordering of the actions but this

41

Metelli, Pirotta, Calandriello, and Restelli

Qπ(s, a)

Qπ(s, â↑s)

Q̂π(s, â↑s)

Qπ(s, a↑s)

Q̂π(s, a↑s)

≤ ε

6(1 − γ)

Figure 4: Representation of the configuration of the confidence intervals for the estimated
Qπ. When a↑s 6= â↑s it must be that we have misestimated the value functions.
Precisely, we have Qπ(s, a↑s) > Qπ(s, â↑s) but Q̂π(s, a↑s) < Q̂π(s, â↑s). Thus, the
maximum error is given by the length of the interval, i.e., ε

6(1−γ) .

happens only when the confidence intervals of Q̂(s, a↑s) and Q̂(s, â↑s) overlap. Thanks to
Lemma 21, for every state s ∈ S and budget Υ we have:

∣∣∣Q̂π(s, a↑s)− Q̂π(s, â↑s)
∣∣∣ ≤ ε

6(1− γ)
, (21)

since two intervals cannot overlap for more than ε
6(1−γ) , i.e., the length of the confidence

interval (see Figure 4). The same holds for a↓s. We now define the set of active states as:

Ŝππ =

{
s ∈ S : Q̂π(s, â↑s)− Q̂π(s, â↓s) ≥

ε

2(1− γ)

}
.

Thus, in order to remove a state s from Ŝππ we require Q̂π(s, â↑s) − Q̂π(s, â↓s) ≤ ε
2(1−γ) .

Indeed, with this requirement, we can ensure that:

∣∣∣Q̂π(s, â↑s)− Q̂π(s, â↓s)
∣∣∣ ≤

∣∣∣Q̂π(s, a↑s)− Q̂π(s, a↓s)
∣∣∣+

ε

3(1− γ)

≤
∣∣∣Qπ(s, a↑s)−Qπ(s, a↓s)

∣∣∣+
ε

6(1− γ)
+

ε

3(1− γ)

=
∣∣∣Qπ(s, a↑s)−Qπ(s, a↓s)

∣∣∣+
ε

2(1− γ)
(22)

Once we have all these guarantees, all it takes is to estimate the constant term in the
derivative of the bound:

ĝ =
1

M(1− γ)

M∑

i=1

I
(
si ∈ Ŝππ

)(
Q̂π(si, â

↑
si)− Q̂π(si, â

↓
si)
)
. (23)

42

Safe Policy Iteration

Approach N M T Per–iteration sample complexity

aUSPI d 16
9ε2

log 2
δ e - dlogγ

ε
12e NT

aSSPI d128
9ε2

log 4|S|
δ e d 8

ε2
log 4

δ e dlogγ
ε
8e NT |S||A|+M

aSASPI d128
ε2

log 4|S||A|
δ e d 288

121ε2
log 4

δ e dlogγ
ε

48e NT |S||A|+M

Table 1: Per–iteration sample complexity for the presented approximate versions of the SPI
algorithms.

Lemma 22. Let π, π ∈ ΠSR be two Markovian stationary policies for the same MDP M.
Let

M =

⌈
288

121ε2
log

2

δ

⌉
.

Under the assumptions of Lemma 19, the sampling procedure constructs a function ĝ such
that with probability 1− 2δ:

ĝ − g ≤ ε

(1− γ)2
.

Algorithm 11 reports the pseudocode of the FJP function for aSASPI. The sampling
procedure and Lemma 22 allow us to compute the per–iteration sample complexity. Indeed,
we sample N trajectories for every state and action pair, each of length T , in order to have an
estimate of Qπ(s, a) for all (s, a) ∈ S ×A. Then, we need M samples to compute g, taking
a sample mean under dπ. Thus, overall we need NT |A||S| + M samples. Table 1 reports
a comparison of the per–iteration sample complexity of the approximate SPI algorithms
presented so far.

Remark 12 (Theoretical Guarantees Comparison). The theoretical guarantees that we
provide in this section aim at bounding the number of samples needed to ensure that, at
each iteration, we perform a policy update that yields a performance improvement with high
probability. These guarantees can be extended to multiple iterations, as done in Kakade
(2003), to prove that the SPI algorithms stop with an expected average advantage that
satisfies Aπ+

π ≤ κ
1−γ , where κ > 0 is a threshold. This kind of requirements is quite

different compared to several employed in the literature (e.g., Azar et al., 2012, 2011; Sidford
et al., 2018; Wainwright, 2019a,b), where the goal is to provide the conditions for which
the learned policy is κ–optimal, leading to a bound on the difference of value functions
‖q∗ − q̂‖. The two conditions are clearly related (see for instance Lemma 7), but, we
believe, not directly comparable. Furthermore, while for aUSPI we have provided the
convergence to an optimal policy in a finite number of iterations (Theorem 17) under specific
choices of the hyperparameters, we cannot directly extend this result for aSSPI and aSASPI.
Unfortunately, without further specifications on the value of ε they could stop short of
reaching the optimal policy.

6. Applications of SPI techniques

This section is devoted to the analysis of the performances of the algorithms in a discrete
environment. The tests are mainly intended to give empirical supports to the theoretical

43

Metelli, Pirotta, Calandriello, and Restelli

Algorithm 11 Computing of the jump points for aSASPI (FJP)

input: MDP M, current policy π, target policy π, accuracy ε, confidence δ

initialize: t← 0, M ← d 288
121ε2 log 4

δ e, N ← d 128
ε2 log 4|S||A|

δ e, T ← dlogγ
ε

48e, Υ0

2 ← 0, i↑, i↓ ← 0

Compute G↑(s, a) and G↓(s, a), ∀s ∈ S, ∀a ∈ A
Compute the two orderings ρ↑ and ρ↓ such that s.t. i < j =⇒ G↑(sρ↑i

, aρ↑i
) ≤ G↑(sρ↑j

, aρ↑j
) and

i < j =⇒ G↓(sρ↓i
, aρ↓i

) ≤ G↑(sρ↓j , aρ↓j)

Compute a↑s = arg maxa∈A
{
Q̂π(s, a)

}
and a↓s = arg mina∈A

{
Q̂π(s, a)

}
, ∀s ∈ S

Ŝππ ← {s ∈ S : Q̂π(s, a↑s)− Q̂π(s, a↓s) >
ε

2(1−γ)}
q0 ← 1

1−γ
∑
s∈Sππ

1
2d
π(s)

(
Qπ(s, a↑s)−Qπ(s, a↓s)

)
− ε

1−γ
yield Υ0, q0

while Ŝππ 6= {} do
t← t+ 1
if st ∈ Ŝππ then

if G↑(sρ↑
,i↑
aρ↑

i↑
) ≤ G↓(sρ↓

i↓
, aρ↓

i↓
) then

st, at ← sρ↑
i↑
, aρ↑

i↑

if Q̂π(st, at) > Q̂π(st, a
↓
st) + ε

2(1−γ) then

qt ← qt−1 − 1
2d
π(st)

(
Q̂π(st, a

↑
sit)− Q̂π(st, at)

)

a↑st ← at
else

qt ← qt−1 − 1
2d
π(st)

(
Q̂π(st, a

↑
st)− Q̂π(st, a

↓
st)
)

Ŝππ \ {st}
end if
Υt
2 ← G↑(st, at)
i↑ ← i↑ + 1

else
st, at ← sρ↓

i↓
, aρ↓

i↓

if Q̂π(st, at) < Q̂π(st, a
↓
st)− ε

2(1−γ) then

qt ← qt−1 − 1
2d
π(st)

(
Q̂π(st, at)− Q̂π(st, a

↓
st)
)

a↓st ← at
else

qt ← qt−1 − 1
2d
π(st)

(
Q̂π(st, a

↑
st)− Q̂π(st, a

↓
st)
)

Ŝππ \ {st}
end if
Υt
2 ← G↓(st, at)
i↓ ← i↓ + 1

end if
end if
yield Υt, qt

end while
yield 2, −∞

results derived in the previous section, illustrating the peculiar properties of the proposed
algorithms. Moreover, the application offers some practical aspects of the implementation

44

Safe Policy Iteration

Figure 5: The problematic chain identified in Koller and Parr (2000). While states with
double circle have a reward equal to 1, other states have null reward. Edges
are decorated with the caption of the action (“left” or “right”) and with the
probability of success.

of the Safe Policy Iteration (SPI) methods and illustrates the competitiveness of the SPIs
relative to the CPI.

We start considering exact settings and then we move to the approximate scenario. In
the latter case, we consider two sources of approximation: 1) we assume to have access to a

biased estimation of the action–value function Q̂
π

obtained through samples that induces an
approximate estimation of the greedy target policy; 2) we assume to have access to a limited
policy space that does not contain the optimal policy. In both the settings, results show
the superiority of SPI approaches w.r.t. to CPI in terms of computational performances.

6.1 Chain-Walk Domain

We have chosen the chain walk problem (Lagoudakis and Parr, 2003a) for its simplicity that
makes the comparison with other approaches straightforward and particular instructional.
The chain walk domain is modeled as an N -state chain (numbered from 1 to N). The
chain is traversed performing two actions, “left” (L) and “right” (R). Each action induces
a transition into the associated direction and to the opposite one with probability p and
1 − p (in the following experiments, p is set to 0.9), respectively. Reward +1 is assigned
only when the agent enters one of the two states located at a distance of N/4 from the
boundaries, otherwise the reward is 0. The starting state distribution is assumed uniform
over state space. None of the states is final and, thus, the chain can be potentially covered
infinite times. The starting state distribution is unknown, but we consider having access
to a reset distribution µ, which is assumed uniform over state space in any configuration.
Figure 5 shows an interesting 4-states chain walk domain.

6.1.1 Experiments in the Exact Case

We start the analysis by considering the case in which no approximation is involved (so that
π = π+). To give an idea of how the SPI algorithms work, in Figure 6, we compare their
performance with the ones of policy iteration (PI) and conservative policy iteration (CPI)
on a single run using a chain with 50 states and γ = 0.9. All the algorithms have been

45

Metelli, Pirotta, Calandriello, and Restelli

initialized with the policy uniform over actions. The graph shows, for each algorithm, the
value of Jπ, the coefficient α (since SSPI and SASPI have several α coefficients, we plot the
average of α(s) and α(s, a) respectively), the expected advantage function Aππ and the policy
dissimilarity ‖π − π‖1,dπ as a function of the number of iterations. As expected (since no
approximation is involved), PI converges to the optimal policy in only one iteration. At the
opposite end, CPI (whose convergence to the optimal policy is asymptotic) has a very slow
performance improving rate when compared to the other algorithms. All SPI algorithms
converge to the optimal policy in a finite number of iterations. USPI reaches the optimal
policy in 44 iterations, while SSPI and SASPI take more than 100 iterations. It is worth
noting that, since the chain domain has only two actions, the behavior of SSPI and SASPI
is exactly the same, as mentioned in Section 4.3. The faster convergence of USPI w.r.t.
SSPI and SASPI, although not theoretically proved, has been empirically verified in many
different versions of the chain-walk domain obtained by varying the discount factor and
the number of states. We can explain this behavior by recalling that USPI exploits a
better bound w.r.t. the one of SSPI and SASPI, and, in the exact context, the advantage
of choosing different convex combination coefficients for each state is not enough for SSPI
and SASPI (at least in this domain) to attain the same improving rate of USPI. In order
to obtain a fair comparison with SSPI and SASPI we considered a simplified version of
USPI, USPI-simp, that exploits the same bound used by SSPI and SASPI. We can see that
USPI-simp converges to the optimal policy in almost 300 iterations. Figure 6 also displays
how the values of the convex combination coefficients change over the iterations for CPI,
USPI, SSPI, SASPI, and USPI-simp. As expected, the value of α for CPI is always very low
and decreases with iterations. On the other hand, the coefficients for the SPI algorithms
start to increase when the current policy approaches the greedy one. This is also justified
by the quick drop of the expected advantage and policy dissimilarity experimented by the
SPI algorithms.

We further analyze the performance of the considered algorithms for different state-
space dimensions (N) and for different values of the discount factor γ. The algorithms
are tested over multiple runs, in particular 10 runs are performed starting from random
policies. Figure 7 shows the behavior of the algorithms in terms of the distance between
the performance of the policy at each iteration and the optimal performance (Error). It
can be seen that CPI is always outperformed by the SPI algorithms. At the same time,
the USPI achieves a significantly higher learning behavior than SSPI,12 that leads to faster
convergence to the optimal performance.

6.1.2 Experiments in the Approximate Case

To give a complete overview of the performance of the algorithms, we have moved to an
approximate framework. We consider the error induced by the estimation of the value
function via a set of samples. The dataset is built according to the technique explained in
Section 5, using the theoretical values for the number of transitions to collect (i.e., N , T
and M). In the approximate scenario, the improvement rate of Approximate SSPI (aSSPI)
is always faster than the one of Approximate USPI (aUSPI). Figure 8 shows a comparison
between aCPI, aUSPI, and aSSPI the 4-states chain walk domain, with 0.5 discount factor.

12. SASPI is not represented as its behavior is equal to that of SSPI.

46

Safe Policy Iteration

0 100 200 300 400 500

1

2

Iteration

J
π

0 100 200 300 400 500

0

0.5

1

Iteration

α

0 100 200 300 400 500

0

0.05

0.1

0.15

Iteration

A
π π

0 100 200 300 400 500

0

0.5

1

Iteration

‖π
−
π
‖ 1
,d

π

PI CPI USPI USPI-simp SSPI SASPI

Figure 6: Score Jπ, coefficient α, expected advantage Aππ and policy dissimilarity
‖π − π‖1,dπ as a function of iterations. The underline domain consists of a dis-
counted (0.9) chain with 50 states.

All the algorithms have been initialized with the same starting policy (LLRR), that is, the
complementary policy to the optimal one.

Each algorithm was run with two different values for the approximation error ε, i.e., 0.05
and 0.1, and with an estimate probability δ = 0.1. The higher is the accuracy required (small
values of ε), the larger is the number of iterations needed by the algorithms to converge.
However, notice that the rate of improvement is higher for smaller values of ε. The reason is
that low values of ε imply a more accurate estimate of the advantage function, thus allowing
the algorithms to take larger update steps. Moreover, ε has a direct impact on the quality
of the results (in terms of score Jπ) because it controls the terminal condition. A high value
of ε reflects in a wide terminal region, that is, few iterations and low performances. The
advantages of small ε comes at the price of significantly increasing of the number of samples
that at each iteration are used to obtain more accurate estimates of the Q-function. As

47

Metelli, Pirotta, Calandriello, and Restelli

0 200 400

0

0.5

Iteration

E
rr

or
(N, γ) = (10, 0.75)

0 200 400

0

0.5

1

Iteration

E
rr

or

(N, γ) = (10, 0.9)

0 200 400

0

0.5

1

Iteration

E
rr

or

(N, γ) = (10, 0.95)

0 200 400

0

0.5

Iteration

E
rr

or

(N, γ) = (20, 0.75)

0 200 400

0

0.5

1

Iteration

E
rr

or
(N, γ) = (20, 0.9)

0 200 400

0

0.5

1

Iteration

E
rr

or

(N, γ) = (20, 0.95)

0 200 400

0

0.5

1

Iteration

E
rr

or

(N, γ) = (50, 0.75)

0 200 400

0

0.5

1

Iteration

E
rr

or

(N, γ) = (50, 0.9)

0 200 400

0

0.5

1

Iteration

E
rr

or
(N, γ) = (50, 0.95)

CPI USPI USPI-simp SSPI

Figure 7: Error trend of policy w.r.t. the optimal performance Jπ in different N -states chain
walk domains with different γ values. 10 runs, 95% confidence intervals.

expected, aCPI takes much longer to converge w.r.t. both the approximated SPI algorithms,
and aSSPI is faster than aUSPI.

These considerations are also supported by the results reported in Table 2, where for
each algorithm, the average number of iterations (Table 2a) and the number of collected
transitions (Table 2b) are reported for different values of ε in a 4-states domain, varying

48

Safe Policy Iteration

0 10 20 30 40 50

0.5

1

1.5

Iteration

J
π

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

Iteration

A
π π

ε = 0.05 CPI USPI SSPI
ε = 0.1 CPI USPI SSPI

Figure 8: Score Jπ and average advantage Aππ as a function of iterations for different values
of the accuracy level ε. The underline domain consists of a discounted (0.5) chain
with 4 states with fixed initial policy LLRR.10 runs, 95% confidence intervals.

also the discount factor (0.5 and 0.65).13 Notice how quickly the number of iterations
increases for aCPI as ε decreases, while for the approximated SPI algorithms such growth is
significantly slower. Recall that, unlike the exact case, USPI and SSPI in the approximate
scenario optimize the same lower bound on the policy performance (Section 5.2). Finally,
it is worth noting that aSSPI is able to reach the optimal performance for all values of ε
tested.

6.1.3 Experiments with Linear Approximations

To complete the analysis in the approximate framework, we have considered the problematic
scenario obtained setting N = 4 (Koller and Parr, 2000). In this configuration, according to
the previous definition, reward +1 is assigned only to the two central states, other states get
0. The reward vector is represented by (0, +1, +1, 0). When the distribution is assumed
uniform over S, the optimal policy is RRLL. In Koller and Parr (2000) it was shown that
there exists a configuration where an approximate policy iteration, using an approximated
state-value function for evaluation and an exact improvement, oscillates between two non-
optimal policies. The mentioned configuration was obtained starting from the policy RRRR
and representing the state-value function as a linear combination of the following 3 basis
functions:

φ(s) =




1
s
s2


 , s ∈ {1, 2, 3, 4} (24)

13. When using the theoretical values for the number of samples, higher values of γ require to reduce ε,
making the number of transitions to collect for each iteration increase further.

49

Metelli, Pirotta, Calandriello, and Restelli

aCPI aUSPI aSSPI

N γ ε It Jπ It Jπ It Jπ

4 0.5 0.05 261.9 ± 20.32 1.593 ± 0.002 16.5 ± 0.5 1.601 ± 0.002 15.0 ± 0.0 1.8 ± 0.0
4 0.5 0.075 144.6 ± 19.845 1.482 ± 0.007 18.0 ± 1.183 1.497 ± 0.004 17.4 ± 0.49 1.8 ± 0.0
4 0.5 0.1 107.0 ± 9.37 1.378 ± 0.005 19.7 ± 1.1 1.399 ± 0.007 21.6 ± 0.49 1.8 ± 0.0
4 0.5 0.125 82.2 ± 10.458 1.271 ± 0.009 20.9 ± 1.64 1.293 ± 0.007 28.0 ± 0.0 1.8 ± 0.0
4 0.65 0.05 415.5 ± 27.156 2.142 ± 0.005 46.5 ± 2.291 2.156 ± 0.006 43.0 ± 0.0 2.571 ± 0.0
4 0.65 0.075 237.0 ± 22.996 1.915 ± 0.011 51.8 ± 4.423 1.945 ± 0.016 59.0 ± 0.0 2.571 ± 0.0
4 0.65 0.1 151.2 ± 17.503 1.679 ± 0.026 50.8 ± 3.124 1.72 ± 0.017 94.0 ± 0.0 2.571 ± 0.0
4 0.65 0.125 118.6 ± 16.62 1.466 ± 0.029 49.0 ± 2.408 1.491 ± 0.023 248.9 ± 0.7 2.571 ± 0.0

(a) Algorithm iterations and performances (sample mean ± standard deviation of the
mean estimation).

N γ ε aCPI aUSPI aSSPI

4 0.5 0.05 1936144 1936144 13266165
4 0.5 0.075 802175 802175 5427302
4 0.5 0.1 434812 434812 2863348
4 0.5 0.125 262550 262550 1742839
4 0.65 0.05 1936144 1936144 13266165
4 0.65 0.075 802175 802175 5427302
4 0.65 0.1 434812 434812 2863348
4 0.65 0.125 262550 262550 1742839

(b) Number of transitions collected per iteration.

Table 2: Results in approximate settings for the 4-states chain walk averaged over 10 runs
for all the algorithms. Initial policies were stochastic policies chosen at random.

Approximated state-value function was computed using weighted least square where
weights were represented by the stationary distribution. Starting from policy RRRR, policy
iteration oscillates between non-optimal policies RRRR and LLLL. The same problem was
addressed by Lagoudakis and Parr (2003a) where the same basis functions, repeated for
each action, were used to approximate the action-value function:

φ(s, a) =




I(a = L) · 1
I(a = L) · s
I(a = L) · s2

I(a = R) · 1
I(a = R) · s
I(a = R) · s2



, s ∈ {1, 2, 3, 4} , a ∈ {L,R} (25)

where I is the indicator function. They showed that Least-Square Policy Iteration (LSPI)
was able to find the optimal policy in a few iterations. In our experiments, we approach the
same problem using, where necessary, the set of features (25) to approximate the action-
value function. The main difference w.r.t. approach in Koller and Parr (2000) arises from the
fact that we use model-based least square method whereas they use (sample-based) Least-
Square Temporal Difference for Q-functions (LSTD-Q) approximator. For this setting, we

50

Safe Policy Iteration

0 200 400 600

2

4

6

8

10

Iteration

J
π

0 200 400 600

0

0.5

1

Iteration

A
π π

aPI aCPI aUSPI aSSPI DDP aCPI-const Soft-LSPI

Figure 9: Score Jπ and average advantage Aππ as a function of iterations when considering
linear approximators for the value function. The underline domain consists of
a discounted (0.9) chain with 4 states with fixed initial policy RRRR. A dotted
line is drawn in correspondence of the value of the optimal policy. 10 runs, 95%
confidence intervals.

considered additional baselines: Dynamic Policy Programming (DPP, Azar et al., 2012),
CPI with constant learning rate (aCPI-const, Scherrer, 2014), and Softened-LSPI (Soft-
LSPI, Pérolat et al., 2016). For aCPI-const we crossvalidated the learning rate α among
the values 0.01, 0.05, 0.1, and 0.5. Similarly, for DPP we consider the best value of the
inverse temperature parameter η among 0.1, 1, and 10.

The results of the experiment can be summarized as follows. Policy iteration algorithm
is confirmed to oscillate between policy LRRR and policy RLLL which both have the same
suboptimal performance. Similar behavior is displayed by Soft-LSPI, which tends to prefer
too large learning rates, importing the same problems of aPI. aCPI does not suffer from the
approximation and slowly converges (at infinity) to the optimal policy. On the other side,
the proposed algorithms aUSPI and aSSPI are able to reach the optimal policy in a finite
number of iterations without any loss of performance. aCPI-const with a learning rate set
to 0.5 is able to reach the optimal performance very quickly with no oscillation phenomena.
Instead, DPP, with an inverse temperature equal to 10, converges to a suboptimal policy.
Furthermore, it should be noted that aCPI-const and DPP require the specification of an
additional hyperparameter (the learning rate α and the inverse temperature η), whereas
the SPI algorithms are hyperparameter free. For all algorithms, we used N = 1000 samples
and a horizon of T = 20 for estimating the value function. For aSSPI, we used 1000 samples
with and horizon 20 for estimating the advantage function in each state and 100 samples
for estimating the derivative of the bound to be optimized. Figure 9 presents a general
overview of the trend of the tested algorithms.

51

Metelli, Pirotta, Calandriello, and Restelli

-0.71 -0.45 -0.32 -0.24 -0.20

-0.45 -0.19

-0.32 -1.00 -0.17

-0.24 -0.16

-0.20 -0.19 -0.17 -0.16 -0.14

0.6

Figure 10: The prison domain. The reward is depicted for wall states (dark cells) because all
the actions receive the same signal. Arrows represent the transitions associated
to the “SOUTH” action with a noise level of 0.4.

6.2 The Prison

The domain is a particular implementation of the classical grid world domain (Sutton and
Barto, 2018). This variant (Azar et al., 2012) is a M–squared grid world surrounded by
absorbing states (wall states). Each state s is determined by the coordinate of the cell
cs = (x, y), for some x, y = 1, . . . ,M . The wall states that surround the grid have a reward
that grows proportionally to the distance from the bottom–right corner:

R(s, a) = − 1

‖cs‖2
, ∀a ∈ A.

There is an additional absorbing state located at the center of the grid that has a reward
of −1. All the remaining inner states have a zero reward signal. Four discrete actions
A = {NORTH,SOUTH,WEST,EAST} are available in each state s. Taking an action a in
an inner (non–absorbing) state s causes a transition in the direction corresponding to the
action with a probability p, and a random move in a state s′ 6= s with a probability inversely
proportional to the Euclidean distance 1

‖cs−cs′‖2
. Due to the presence of absorbing states

surrounding the grid, the optimal behavior is to survive in the grid, avoiding also the central
wall. This domain is interesting due to the presence of absorbing states with negative reward
and to the presence of noise that causes many transitions from inner states. Furthermore,
having more than two actions lends itself to appreciate the advantages of SASPI over SSPI.

6.2.1 Experiments in the Exact Case

We first consider a set of experiments on the prison domain with M = 5 and γ = 0.9, in
the exact case. In Figure 11 we can see a behavior that preserves the ordering, in learning
speed, of the considered algorithms, compared to the chain domain. Indeed, PI converges to
the optimal policy in a small number of iterations and among the SPI and CPI algorithms,
USPI performs best. Again, we have the confirmation that the tighter bound exploited by
USPI is enough to overcome the limitation of the unique coefficient α. Similarly, CPI is the

52

Safe Policy Iteration

0 50 100 150 200 250

9

9.2

9.4

9.6

Iteration

J
π

0 50 100 150 200 250

0

0.5

1

Iteration

α

0 50 100 150 200 250

0

0.2

0.4

0.6

Iteration

A
π π

0 50 100 150 200 250

0

0.5

1

1.5

Iteration

‖π
−

π
‖ 1
,d

π

PI CPI USPI SSPI SASPI

Figure 11: Score Jπ, coefficient α, expected advantage Aππ and policy dissimilarity
‖π − π‖1,dπ as a function of iterations. The underline domain consists of a
discounted (0.9) prison environment in the exact setting.

worst performing algorithm. Between the latter two, we can now appreciate a difference in
the learning curve. Since the latter considers a more flexible update rule, it is able to reach
the optimal performance sooner.

6.2.2 Experiments in the Approximate Case

Compared to the Chain, the Prison domain poses significant challenges to the usage of the
approximate versions of the SPI algorithms with the theoretical values of the hyperparam-
eters. The reason of these limitations reside in the large number of deterministic policies
to test, i.e., |A||S| = 4M

2 ' 1.13 · 1015 for M = 5. Even if we disregard the terminal
states, as the action is those states has no effect, we reduce to 48 = 65536 policies. For this
reason, we decided to run the considered algorithms without the theoretical values of the
hyperparametes. More specifically, we employed 200 samples with horizon 50 for the policy
chooser, we used 50 with horizon 50 samples for estimating the state advantage function

53

Metelli, Pirotta, Calandriello, and Restelli

0 1,000 2,000 3,000

9

9.2

9.4

9.6

9.8

Iteration

J
π

0 1,000 2,000 3,000

0

0.2

0.4

0.6

Iteration

A
π π

aPI aCPI aUSPI aSSPI aSASPI DPP aCPI-const

Figure 12: Score Jπ and expected advantage Aππ as a function of iterations. The underline
domain consists of a discounted (0.9) prison environment in the approximate
setting. 10 runs, 95% confidence intervals.

and the Q-function for aSSPI and aSASPI, respectively, and 50 samples for computing the
bound derivative. Therefore, the number of collected transitions for aPI, aCPI, and aUSPI
is 10000, while for aSSPI and aSASPI we need to collect 260050 transitions (refer to Table 1
for the computation). Figure 12 shows the behavior of the compared algorithms. First of
all, we easily notice that aPI displays a considerable oscillation phenomenon, this is due to
the fact that it is continuously switching the policy between the optimal and some subop-
timal policies. Instead, CPI and USPI converge slowly towards the optimal policy with a
small advantage of USPI in terms of learning speed, but they are both outperformed by
aSSPI. We can see that aSASPI is able to outperform all the other SPI algorithms and
reach the optimal behavior with remarkable stability. aCPI-const with α = 0.05, as well
as DPP with η = 1 reach very quickly a good performance, although aCPI-const displays
a little instability. However, both aCPI-const and DPP converge to a policy with slightly
lower performance compared to that reached by aSASPI.

6.3 BlackJack Card Game

The BlackJack is a card game where the player seeks to beat the dealer by obtaining a total
score greater than the dealer’s one without exceeding 21 (refer to Dutech et al. (2005) for
more details). Each card counts as its numerical value (2 through 10) except for aces and
figures. The Jack, Queen, and King are worth 10, whereas the ace may value as either 1
or 11. The value of the ace is hand such that it produces the highest value equal to or less
than 21. A hand is called soft when the ace is counted as 11. The set of cards is composed
by 6 decks each one is a standard 52–cards deck.

At the beginning of the game, the dealer deals two cards to each player, including
himself. One card is faced up and the other is faced down. The player checks his two cards
and chooses to receiver a new card (hit) or to stop (stand). The player may ask for more

54

Safe Policy Iteration

cards as long as he does not bust, i.e., the sum of the card values does not overcome 21.
When all the players go bust or stops, is the turn of the dealer. In the beginning, the player
can also decide to double the score, i.e., he does not ask for any card and let the dealer play.
In this case, any score achieved by the player is doubled.

In Pirotta et al. (2013b) a simplified version, made of 260 states, of the blackjack game
by removing advanced actions as “doubling”, “splitting”, etc was considered. We now
extend those results by allowing the usage of the double action. The game is composed of
a player and a dealer. The state of the game is defined by three components: the sum of
the cards of the player (2 to 20), the dealer’s faced-up card (1 to 10) and the soft hand
flag. The player is forced to play “stand” action on blackjack and on 21. Moreover, the
soft hand flag is irrelevant when player’s value is greater than 11. As a consequence, the
cardinality of the state space is 260. The action space is composed of the three actions:
hit (H), stand (S), and double (D). The rewards assigned to the player are +1 for winning
(+1.5 for blackjack), -1 for loosing and 0 for every hit. All rewards are doubled when the
double action is performed. Rewards have been scaled to fit the interval [0, 1].

To evaluate the performance of the algorithms, we have exploited the simplified Black-
Jack model with discount factor equal to 0.814 and “stands on soft 17” strategy for the
dealer. The evaluation measure is the estimated player edge, i.e., the average reward over
multiple runs. We have been able to define a configuration where an approximate policy
iteration, using a sample-based policy evaluation step and an exact improvement, oscillates
between two non-optimal policies. This configuration has been obtained by limiting the
policy space to three policies. Two of them are the same employed in Pirotta et al. (2013b):
they select the best action (S) when player’s value is equal to 20 and opposite actions for
the other states (πS selects S and πH selects H). States with dealer’s value is at least 9 are
treated in an opposite way: policy πS selects H and policy πH chooses S. We introduce a
new policy πD, which performs the double (D) action when the player’s value is 9 and the
dealer’s value is between 3 and 6 or the player’s value is 10 and the dealer’s value is between
2 and 9. In all other cases, πD behaves like πH . To summarize, the policies are defined
according to the following rules:

πS =





H, if dealer’s value is greater or equal to 9

H, if player’s value is less than 1

S, otherwise

πH =





S, if dealer’s value is greater or equal to 9

S, if player’s value is greater than 19

H, otherwise

πD =





D, if player’s value is 9 and dealer’s value between 3 and 6

D, if player’s value is 10 and dealer’s value between 2 and 9

S, if player’s value is greater than 19

H, otherwise

14. We employed this value of the discount factor to mitigate the over-conservative behavior of the dissimi-
larity penalization.

55

Metelli, Pirotta, Calandriello, and Restelli

0 1,000 2,000 3,000

0.15

0.2

0.25

0.3

Iteration

Ĵ
π

0 1,000 2,000 3,000

−0.1

0

0.1

Iteration

Â
π π

aPI aCPI aUSPI aSSPI aSASPI

Figure 13: Estimated score Ĵπ and estimated expected advantage Âππ as a function of iter-
ations. The underline domain consists of a discounted (0.8) blackjack environ-
ment. 5 runs, 95% confidence intervals.

Policy πH has been chosen as initial policy. The goal of this experiment is to show
the advantages of aSSPI and aSASPI when having access to a very limited target policy
space. Indeed, by leveraging on the freedom granted by per–state and per–state–action
combination coefficients, the effective set of policies representable by aSSPI and aSASPI is
larger compared to that of aCPI and aUSPI.

Figure 13 reports the performance of the policies obtained by aPI, aCPI, aUSPI, aSSPI,
and aSASPI algorithms using 1000 samples with horizon 100 for the policy chooser, we
used 100 with horizon 100 samples for estimating the state advantage function and the
Q-function for aSSPI and aSASPI respectively and 100 samples for computing the bound
derivative. While aPI oscillates among the three policies, other algorithms do not get stuck
and converge towards better policies. In particular, aCPI and aUSPI converge to a mixture
of the three policies. It is worth underlining that, in this highly stochastic domain, the aSSPI
and aSASPI are able to exploit the flexibility given by the multiple convex coefficients and
to converge faster than aUSPI and aCPI, getting to policies that are not representable by
aCPI and aUSPI. In principle, we could exploit the transformation presented in Remark 6
to allow aCPI and aUSPI to have access to the same set of policies as aSSPI and aSASPI.
However, in this specific case, the number of target policies needed would be ' 1.43e+ 73,
which is clearly prohibitive.15

7. Discussion and Conclusions

In this section, we discuss the contributions of this paper and we present some future
research directions to overcome the limitations of the proposed approaches.

15. Notice that |A||S| ' 1.13e+ 124.

56

Safe Policy Iteration

This paper builds upon (Pirotta et al., 2013b) and extends the work on the theoretical,
algorithmic, and empirical sides. The main theoretical achievement, which was identified as
a crucial point in Pirotta et al. (2013b), is the proof of the convergence of the SPI algorithms
in a finite number of iterations in the exact setting (Section 4.1), opposed to the (only)
asymptotic convergence of CPI. We have shown that the finite convergence also extends
to the approximate setting, as long as the stopping threshold is chosen in an adaptive
way (Section 5.2). From the algorithmic point of view, we introduce a novel and more
general update rule based on per–state–action convex combination coefficients (SASPI,
Section 4.3), that we presented in a unified framework together with SSPI (Section 4.2),
which was already provided in Pirotta et al. (2013b). Moreover, we presented a complete
PAC analysis of the single iteration of the considered algorithms (Section 5) that extends
the one of Pirotta et al. (2013b) and Kakade and Langford (2002), allowing for the analysis
of the newly presented approaches. Finally, the empirical validation extends the results
of Pirotta et al. (2013b) by presenting the behavior of the new algorithms in the previous
domains and the introduction of a new domain, the prison, in which the advantage of SASPI
is clearly visible.

Although proved to be effective in terms of learning speed, aSSPI and aSASPI pose
significant challenges in their application to domains with a large number of states and
actions. Indeed, they require to approximate the advantage function and the Q-function
(possibly using independent samples) for each state and each state–action pair. To alleviate
this issue, it is possible to consider a slightly modified version of the algorithms, where the
state–action space is split into subregions (using state–action aggregation) and all the state–
action pairs in a region share the advantage function or Q-function. By changing the size of
these subregions, we can generate several different situations that range from the original
aSSPI and aSASPI approach (no aggregation) to the aUSPI one (where all the state and
actions are associated with the same coefficient).

A research direction, already mentioned in Pirotta et al. (2013b), but not investigated in
this paper, is to exploit the proposed bounds to perform approximate policy iteration in the
off–policy case, i.e., when the samples have been initially collected (once for all) following
some exploration strategy. In this case, we can use the bound in Theorem 3 where πb is the
exploration strategy.

57

Metelli, Pirotta, Calandriello, and Restelli

Acknowledgments

...

Appendix A. Additional Proofs and Derivations

In this appendix, we report the proofs of the results we omitted in the main paper.

A.1 Proofs of Section 3

Corollary 4. For any stationary policies π and π′ and any starting state distribution µ, the
difference between the performance of π′ and the one of π can be lower bounded as follows:

Jπ
′ − Jπ ≥ 1

1− γA
π′
π −

γ

(1− γ)2

∥∥π′ − π
∥∥2

∞
‖qπ‖∞

2
.

Proof The proof comes from a lower bound to the bound in Theorem 3 when πb = π.
Such lower bound involves two upper bounds. First, we perform the upper bound:

∥∥π′ − π
∥∥

1,dπ
≤
∥∥π′ − π

∥∥
∞ .

Second, upper bound the quantity
sp
(
aπ
′
π

)
2 :

sp
(
aπ
′
π

)

2
≤
∥∥∥aπ′π

∥∥∥
∞

=
∥∥(π′ − π

)
qπ
∥∥
∞

= max
s∈S

{∣∣∣∣∣
∑

a∈A

(
π′(a|s)− π(a|s)

)
Qπ(s, a)

∣∣∣∣∣

}

≤ max
s∈S

{∥∥π′(·|s)− π(·|s)
∥∥

1

sp(Qπ(s, ·))
2

}

≤ max
s∈S

{∥∥π′(·|s)− π(·|s)
∥∥

1

}
max
s∈S

{
sp(Qπ(s, ·))

2

}

≤
∥∥π′ − π

∥∥
∞
‖qπ‖∞

2
,

where the last inequality follows from the positiveness of Qπ and from norm properties.

The Corollary is proven by introducing this bound in place of
sp
(
aπ
′
π

)
2 in Theorem 3 and

replacing πb with a generic π.

A.2 Proofs of Section 4

Lemma 2. (Kakade and Langford, 2002) For any stationary policies π and π′ and any
starting state distribution µ:

58

Safe Policy Iteration

Jπ
′ − Jπ =

1

1− γd
π′Taπ

′
π .

Proof The reader may refer to (Neu et al., 2017) and the references therein. We report
the proof for completeness:

(1− γ)Jπ
′

= (1− γ)µTvπ
′

= (1− γ)µT (I− γPπ)−1 rπ = dπ
′T
rπ
′

= dπ
′T
rπ
′
+
(

(1− γ)µT + γdπ
′T
Pπ′
)
vπ − dπ

′T
vπ

= dπ
′T
(
rπ
′
+ γPπ′vπ − vπ

)
+ (1− γ)µTvπ

= dπ
′T
(
qπ
′
π − vπ

)
+ (1− γ)µTvπ = dπ

′T
aπ
′
π + (1− γ)Jπ.

We now present a general result for vectors that we will employ for the proof of Theo-
rem 3.

Lemma 23. (Haviv and Van der Heyden, 1984, Corollary 2.4) For any vector d and any
vector c such that cTe = 0,

∣∣cTd
∣∣ ≤ 1

2
‖c‖1 sp(d).

Lemma 7. Let π, π′ ∈ ΠSR be two arbitrary policies and π+ be a greedy policy induced by
Qπ. Then, the expected advantage Aπ+

π can be lower bounded as:

Aπ+

π

1− γ ≥
∥∥∥∥∥
dπ
′

dπ

∥∥∥∥∥

−1

∞

(
Jπ
′ − Jπ

)
, (3)

where dπ
′

dπ is the vector obtained by the element–wise division between dπ
′

and dπ.

Proof The lemma follows from the following decomposition:

Aπ
+

π = dπTAπ+

π

=
∑

s∈S
dπ(s)Aπ

+

π (s)

=
∑

s∈S
dπ(s) max

a∈A
Aπ(s, a)

=
∑

s∈S

dπ(s)

dπ′(s)
dπ
′
(s) max

a∈A
Aπ(s, a)

≥
(

min
s∈S

dπ(s)

dπ′(s)

)(∑

s∈S
dπ
′
(s) max

a∈A
Aπ(s, a)

)
(P.21)

≥
(

min
s∈S

dπ(s)

dπ′(s)

)(∑

s∈S
dπ
′
(s)
∑

a∈A
π′(a|s)Aπ(s, a)

)
(P.22)

59

Metelli, Pirotta, Calandriello, and Restelli

=

(
max
s∈S

dπ
′
(s)

dπ(s)

)−1∑

s∈S
dπ
′
(s)
∑

a∈A
π′(a|s)Aπ(s, a) (P.23)

=

∥∥∥∥∥
dπ
′

dπ

∥∥∥∥∥

−1

∞

dπ
′T
Aπ′
π

≥
∥∥∥∥∥
dπ
′

dπ

∥∥∥∥∥

−1

∞

(1− γ)
(
Jπ
′ − Jπ

)
, (P.24)

where (P.21) follows by observing that
∑

i x(i)y(i) ≥ mini x(i)
∑

i y(i), for x and y vec-
tors with non negative components. (P.22) follows from the fact that maxa∈AA

π(s, a) ≥∑
a∈A π

′(a|s)Aπ(s, a) for any policy π′. (P.23) derives from simply observing that mini x(i) =

(maxi{1/x(i)})−1. Finally, (P.24) is an application of Lemma 2.

Lemma 9. Assume the same setting as Theorem 8. Let ∆J = J∗ −maxπ∈ΠSD\Π∗{Jπ} be
the performance gap between the optimal policies and the second-best deterministic policy,
where Π∗ = {π ∈ ΠSD : Jπ = J∗}. Then, USPI (and CPI) with GPC selects an optimal
policy as target policy after a finite number of iterations.

Proof The result is a straightforward application of Theorem 8:

J∗ − JπN ≤ 8γ

N∆2
d(1− γ)3

≤ ∆J =⇒ N ≥ 8γ

∆J∆2
d(1− γ)3

.

In the following lemma, we prove that Qπ is Lipschitz continuous w.r.t. to π across all
state-action pairs. We will employ this property in the proof of Lemma 25.

Lemma 24. The Q-function Qπ(s, a) is Lipschitz continuous over the space of Markovian
stationary randomized policies ΠSR in L∞-norm, for all s ∈ S and a ∈ A. For all π, π′ ∈
ΠSR and for all s ∈ S and a ∈ A, it holds that:

∣∣∣Qπ′(s, a)−Qπ(s, a)
∣∣∣ ≤ γ

(1− γ)2

∥∥π′ − π
∥∥
∞ .

Proof As for the γ-stationary distribution we look at Qπ as a function Q•(s, a) : Π → R
for all s ∈ S and a ∈ A. Therefore, we have:

∣∣∣Qπ′(s, a)−Qπ(s, a)
∣∣∣ ≤

∥∥∥qπ′ − qπ
∥∥∥
∞
.

We now provide a bound for
∥∥∥qπ′ − qπ

∥∥∥
∞

. By exploiting the Bellman equation we can

write:

qπ
′ − qπ = r + γPπ′qπ

′ − r− γPπqπ

60

Safe Policy Iteration

= γPπ′qπ
′ − γPπ′qπ

′ ± γPπqπ

= γPπ′
(
qπ
′ − qπ

)
+ γ

(
Pπ′ −Pπ

)
qπ.

Now, we can take the L∞–norm and we obtain:

∥∥∥qπ′ − qπ
′
∥∥∥ ≤ γ

∥∥∥Pπ′
∥∥∥
∞

∥∥∥qπ′ − qπ
∥∥∥
∞

+ γ
∥∥∥Pπ′ −Pπ

∥∥∥
∞
‖qπ‖∞

≤ γ
∥∥∥qπ′ − qπ

∥∥∥
∞

+
γ

1− γ
∥∥∥Pπ′ −Pπ

∥∥∥
∞

≤ γ

(1− γ)2

∥∥∥Pπ′ −Pπ
∥∥∥
∞

≤ γ

(1− γ)2
‖P‖∞

∥∥π′ − π
∥∥
∞

=
γ

(1− γ)2

∥∥π′ − π
∥∥
∞ .

The following technical result is employed in the proof of Lemma 10, i.e., to prove that
the expected advantage can be lower–bounded by a function of the distance between the
current policy π and the greedy policy π+.

Lemma 25. Assume the same setting as Lemma 9. Let π∗ be an optimal policy and π0 ∈ Π
a suboptimal policy such that J∗ −∆J ≤ Jπ0 ≤ J∗. Let η ∈ [0, 1] and π = ηπ∗ + (1− η)π0.
Then, there exists a state s ∈ S and a constant ∆+ > 0 independent of η, such that the
function:

gs(π) =
∑

a∈A\{a+s }

π0(a|s)
(
Qπ(s, a+

s)−Qπ(s, a)
)
≥ ∆+, (26)

where a+
s ∈ arg maxa∈A {Qπ(s, a)} is a greedy action w.r.t. Qπ(s, a).

Proof The proof is divided in two parts. We first prove that for any s ∈ S, gs is continuous
over the set of policies Π̃ = {ηπ∗+ (1− η)π0 : η ∈ [0, 1]} and then we show that there exists
a state s− in which gs− it is strictly positive for any η ∈ [0, 1]. Being Π̃ a compact set, from
Weierstrass theorem, it follows that gs− admits a positive minimum.

Continuity of gs. Since the dependence on η is only in the term Qπ(s, a+
s) − Qπ(s, a),

all it takes is to prove that it is a continuous function over Π̃. By recalling that the greedy
action a+

s is the one that maximizes Qπ(s, ·) we have:

Qπ(s, a+
s)−Qπ(s, a) = max

a∈A
{Qπ(s, a)} −Qπ(s, a).

Since Qπ(s, a) is continuous for Lemma 24 and the maximum of a continuous function is
continuous we have that Qπ(s, a+

s)−Qπ(s, a) is continuous. gs(π) is obtained by applying
transformations that preserve continuity.

Positivity gs. By definition gs(π) ≥ 0. Suppose by contradiction that gs(π) = 0 for
all s ∈ S. Thus, in all states s ∈ S and for all actions a ∈ A \ {a+

s } we have that either
π0(a|s) = 0 or Qπ(s, a+

s) = Qπ(s, a). If in all states s ∈ S and for all actions a ∈ A \ {a+
s }

61

Metelli, Pirotta, Calandriello, and Restelli

we have that π0(a|s) = 0, then π0 gives probability one to greedy actions, i.e., π0 = π+.
Note that π+ is optimal, since we are in the setting of Lemma 9, and thus π0 is optimal,
which is a contradiction. Thus, there must exist a state at least one state s− and at least
one action a−s such that π0(a−s |s−) > 0. Now, suppose that for all those states s− and for
all those actions a−s , we had Qπ(s, a+

s) = Qπ(s−, a−s). It means that a−s is greedy and thus
optimal. Therefore, π0 is optimal, which is a contradiction.

Lemma 10. Assume the same setting as Lemma 9. It π∗ is a deterministic optimal policy,
then, there exists a constant ∆+ > 0 such that:

Aπ
∗
π ≥

∆d∆+

2
‖π∗ − π‖∞ . (4)

Proof The Lemma follows from the following decomposition:

Aπ
∗
π = dπTAπ∗

π

= dπT (π∗ − π)qπ

= (1− η)dπT (π∗ − π0)qπ (P.25)

= (1− η)
∑

s∈S
dπ(s)

∑

a∈A
(π∗(a|s)− π0(a|s))Qπ(s, a)

= (1− η)
∑

s∈S
dπ(s)


(1− π0(a∗s|s))Qπ(s, a∗s)−

∑

a∈A\{a∗s}

π0(a|s)Qπ(s, a)


 (P.26)

= (1− η)
∑

s∈S
dπ(s)

∑

a∈A\{a∗s}

π0(a|s) (Qπ(s, a∗s)−Qπ(s, a)) (P.27)

≥ (1− η) min
s∈S
{dπ(s)}

∑

s∈S

∑

a∈A\{a∗s}

π0(a|s) (Qπ(s, a∗s)−Qπ(s, a)) (P.28)

≥ (1− η) min
s∈S
{dπ(s)}max

s∈S





∑

a∈A\{a∗s}

π0(a|s) (Qπ(s, a∗s)−Qπ(s, a))



 (P.29)

≥ (1− η) min
s∈S
{dπ(s)}max

s∈S
{gs(π)} (P.30)

≥ (1− η)∆d∆+ (P.31)

= ∆d∆+
‖π∗ − π‖∞
‖π∗ − π0‖∞

(P.32)

≥ ∆d∆+

2
‖π∗ − π‖∞ , (P.33)

We now explain the steps of the derivation. (P.25) follows from observing that π =
ηπ∗ + (1 − η)π0 and so π∗ − π = (1 − η) (π∗ − π0). (P.26) is obtained by observing that
the optimal policy is unique and deterministic; whereas (P.27) derives from observing that
1− π0(a∗s|s) =

∑
a∈A\{a∗s} π0(a|s). (P.28) is obtained from

∑
i x(i)y(i) ≥ mini x(i)

∑
i y(i),

for x and y vectors with non negative components; while (P.29) exploits the trivial re-
lation

∑
i y(i) ≥ maxi y(i). (P.30) simply exploits the definition of gs(π) as defined in

62

Safe Policy Iteration

Lemma 25 and (P.31) applies Lemma 25. (P.32) derives from the fact that ‖π∗ − π‖∞ =
(1− η)‖π∗ − π0‖∞ and (P.33) by bounding ‖π∗ − π0‖∞ ≤ 2.

A.3 Proofs of Section 5

The following result upper–bounds the error, in L1-norm, when approximating the infinite-
horizon γ-discounted stationary distribution with a finite horizon T .

Lemma 26. Let dπ be the infinite-horizon γ-discounted stationary distribution and dπT be
the T -horizon γ-discounted stationary distribution, then it holds that:

‖dπ − dπT ‖1 ≤ 2γT .

Proof We use the definition of dπ and dπT :

‖dπ − dπT ‖1 =
∑

s∈S

∣∣∣∣(1− γ)

+∞∑

t=0

γt Pr (st = s|π,M)− 1− γ
1− γT

H−1∑

t=0

γt Pr (st = s|π,M)

∣∣∣∣

≤ (1− γ)
∑

s∈S

∣∣∣∣∣
+∞∑

t=T

γt Pr (st = s|π,M)

∣∣∣∣∣+
1− γ

1− γT γ
T
∑

s∈S

∣∣∣∣∣
T−1∑

t=0

γt Pr (st = s|π,M)

∣∣∣∣∣

≤ (1− γ)

+∞∑

t=T

γt
∑

s∈S
Pr (st = s|π,M) +

1− γ
1− γT γ

T
T−1∑

t=0

γt
∑

s∈S
Pr (st = s|π,M)

= (1− γ)
+∞∑

t=T

γt +
1− γ

1− γT γ
T
T−1∑

t=0

γt

= (1− γ)
γT

1− γ +
1− γ

1− γT γ
T 1− γT

1− γ = 2γT ,

where we exploited the fact that
∑

s∈S Pr (st = s|π,M) = 1 for every t and we used the
properties of the geometric series.

We now bound the error introduced when considering finite trajectories of horizon T in
the estimation of the action-value function.

Lemma 27. Let qπ be the infinite-horizon action-value function and qπT be the T -horizon
action-value function, then it holds that:

‖qπ − qπT ‖∞ ≤
γT

1− γ .

Proof We exploit the definition of the involved quantities. For any state s and action a it
holds that:

Qπ(s, a)−QπT (s, a) = E
st+1∼P(·|st,at)
at+1∼π(·|st+1)

[∞∑

t=0

γtR(st, at)|s0 = s, a0 = a

]

63

Metelli, Pirotta, Calandriello, and Restelli

− E
st+1∼P(·|st,at)
at+1∼π(·|st+1)

[
T−1∑

t=0

γtR(st, at)|s0 = s, a0 = a

]

= E
st+1∼P(·|st,at)
at+1∼π(·|st+1)

[∞∑

t=T

γtR(st, at)|s0 = s, a0 = a

]

≤ ‖r‖∞
∞∑

t=T

γt ≤ γT

1− γ ,

where we exploited the fact that ‖r‖∞ ≤ 1.

Lemma 18. Let π, π ∈ ΠSR be two Markovian stationary policies for the same MDP M.
Let

T =

⌈
logγ

ε

12

⌉
and N =

⌈
16

9ε2
log

2

δ

⌉
.

The aUSPI Sampling Procedure construct a function Âππ such that with probability 1− δ:
∣∣∣Âππ − Aππ

∣∣∣ ≤ ε

1− γ .

Proof The proof is analogous to that of Lemma 15. First, we define the expected advantage
function computed with horizon T :

Aππ,T = Qπ
π,T −Qπ

π,T .

Also in this case our estimation Âππ is unbiased for Aππ,T . We now partition the error
highlighting the bias terms:

∣∣∣Âππ − Aππ
∣∣∣ ≤

∣∣∣Âππ − Aππ,T
∣∣∣

(E1)

+
∣∣Aππ,T − Aππ

∣∣
(E2)

.

We now require that E1 = 3ε
4(1−γ) and E2 = ε

4(1−γ) , so that E1 = E2 = ε
1−γ . Then,

we apply Hoeffding’s inequality to bound the deviation E1, by observing that the terms

(π(a|s)− π(a|s)) q̂i in the estimation Âππ are all independent and belong to
[
− 1

1−γ ,
1

1−γ

]
.

Therefore, we have:

Pr

(∣∣∣Âππ − Aππ,T
∣∣∣ ≥ 3ε

4(1− γ)

)
≤ 2e

−
2

(
3ε

4(1−γ)

)2
N2∑N

i=1
(bi−ai)2

= 2e
− 18ε2N2(1−γ)2

32(1−γ)2N = 2e−
9ε2N
16 .

From which we get:

e−
9ε2N
16 ≤ δ

2
=⇒ 9ε2N

16
≤ − log

δ

2
=⇒ N ≥ 16

9ε2
log

2

δ
.

64

Safe Policy Iteration

For E2 we observe that:

∣∣Aππ,T − Aππ
∣∣ =

∣∣∣∣ E
s∼dπT

[
Aππ,T (s)

]
− E
s∼dπ

[
Aππ(s)

]
± E
s∼dπ

[
Aππ,T (s)

]∣∣∣∣

≤
∣∣∣∣ E
s∼dπT

[
Aππ,T (s)

]
− E
s∼dπ

[
Aππ,T (s)

]∣∣∣∣+

∣∣∣∣ E
s∼dπ

[
Aππ(s)−Aππ,T (s)

]∣∣∣∣

≤ 1

1− γ ‖d
π − dπT ‖1 +

∣∣∣∣∣ E
s∼dπ

[∑

a∈A
(π(a|s)− π(a|s)) (Qπ(s, a)−QπT (s, a))

]∣∣∣∣∣

≤ 2γT

1− γ +
1

2
E

s∼dπ
[‖π(·|s)− π(·|s)‖1 sp(Qπ(s, ·)−QπT (s, ·))]

≤ 2γT

1− γ +
γT

1− γ =
3γT

1− γ ,

where we exploited Lemma 23 in the last but one line and Lemma 27 in the last line. Thus,
by selecting T = dlogγ

ε
12e we have that the bias E2 is bounded by ε

4(1−γ) .

Lemma 19. Let π, π ∈ ΠSR be two Markovian stationary policies for the same MDP M.
Let

T =

⌈
logγ

ε

8

⌉
and N =

⌈
128

9ε2
log

2|S|
δ

⌉
.

The aSSPI Sampling Procedure constructs a function Aππ(s) such that with probability 1− δ,
simultaneously for all s ∈ S:

∣∣∣Âππ(s)−Aππ(s)
∣∣∣ ≤ ε

2(1− γ)
.

Proof Similarly to the proof of Lemma 15, we define the expected advantage function
computed with horizon T :

Aππ,T (s) =
∑

a∈A
(π(a|s)− π(a|s))QπT (s, a),

where QπT is the action-value function cut at horizon T . Once again, our estimator Âππ is
unbiased for Aππ,T . Therefore, we partition the error into:

∣∣∣Âππ(s)−Aππ(s)
∣∣∣ ≤

∣∣∣Âππ(s)−Aππ,T (s)
∣∣∣

(E1)

+
∣∣Aππ,T (s)−Aππ(s)

∣∣
(E2)

.

We set E1 = 3ε
8(1−γ) and E2 = ε

8(1−γ) so that E1 +E2 = ε
2(1−γ) . Then, we apply Hoeffding’s

inequality to bound the deviation E1, by observing that
∑

a∈A (π(a|s)− π(a|s)) q̂i(s, a)

involved in the estimation Âππ(s) are all independent and belong to
[
− 1

1−γ ,
1

1−γ

]
. Therefore,

we have:

Pr

(∣∣∣Âππ(s)−Aππ,T (s)
∣∣∣ ≥ 3ε

8(1− γ)

)
≤ 2e

−
2

(
3ε

8(1−γ)

)2
N2∑N

i=1
(bi−ai)2

= 2e
− 18ε2N2(1−γ)2

256(1−γ)2N = 2e−
9ε2N
128 .

65

Metelli, Pirotta, Calandriello, and Restelli

Taking the union bound over the state space S we have to solve for N

2|S|e− 9ε2N
128 ≤ δ =⇒ N ≥ 128

9ε2
log

2|S|
δ
.

We now manage the bias E2 due to the finite horizon:

∣∣Aππ,T (s)−Aππ(s)
∣∣ =

∣∣∣∣∣
∑

a∈A
(π(a|s)− π(a|s)) (QπT (s, a)−Qπ(s, a))

∣∣∣∣∣

≤ 1

2
‖π(·|s)− π(·|s)‖1 sp(QπT (s, ·)−Qπ(s, ·))

≤ ‖qπ − qπT ‖∞ ≤
γT

1− γ ,

where we exploited Lemma 23 in the second line and Lemma 27 in the last line. Thus, by
selecting T = dlogγ

ε
8e we have that the bias E2 is bounded by ε

8(1−γ) .

The following is an intermediate result that is employed for the proof of Lemma 20.

Lemma 28. Let π, π ∈ Π be two Markovian stationary policies for the same MDP M. Let

T =

⌈
logγ

ε

8

⌉
and N =

⌈
128

9ε2
log

2|S|
δ

⌉
.

The sampling procedure constructs a function Aππ(s) such that with probability 1− δ, simul-
taneously for all s ∈ S: ∣∣∣Âππ(s)−Aππ(s)

∣∣∣
‖π(·|s)− π(·|s)‖1

≤ ε

2(1− γ)
.

Proof The proof is not dissimilar from that of Lemma 18. We partition the error into:
∣∣∣Âππ(s)−Aππ(s)

∣∣∣
‖π(·|s)− π(·|s)‖1

≤

∣∣∣Âππ(s)−Aππ,T (s)
∣∣∣

‖π(·|s)− π(·|s)‖1
(E1)

+

∣∣∣Aππ,T (s)−Aππ(s)
∣∣∣

‖π(·|s)− π(·|s)‖1
(E2)

.

We set E1 = 3ε
8(1−γ) and E2 = ε

8(1−γ) so that E1 +E2 = ε
2(1−γ) . Then, we apply Hoeffding’s

inequality to bound the deviation E1. We first bound uniformly the terms involved in the
sample mean: ∣∣∑

a∈A (π(a|s)− π(a|s)) q̂i(s, a)
∣∣

‖π(·|s)− π(·|s)‖1
≤ 1

1− γ . (P.34)

Therefore, we can apply Hoeffding’s inequality with ranges
[
− 1

1−γ ,
1

1−γ

]
:

Pr




∣∣∣Âππ(s)−Aππ,T (s)
∣∣∣

‖π(·|s)− π(·|s)‖1
≥ 3ε

8(1− γ)


 ≤ 2e

−
2

(
3ε

8(1−γ)

)2
N2∑N

i=1
(bi−ai)2

= 2e
− 18ε2N2(1−γ)2

256(1−γ)2N = 2e−
9ε2N
128 .

66

Safe Policy Iteration

Performing a union bound over the state space S and solving for N , we get the first result.
Now we manage E2:

∣∣∣Aππ,T (s)−Aππ(s)
∣∣∣

‖π(·|s)− π(·|s)‖1
=

∣∣∑
a∈A (π(a|s)− π(a|s)) (QπT (s, a)−Qπ(s, a))

∣∣
‖π(·|s)− π(·|s)‖1

≤ 1

2
sp(QπT (s, ·)−Qπ(s, ·))

≤ 1

2
‖qπ − qπT ‖∞ ≤

γT

2(1− γ)
,

where we exploited Lemma 23 in the second line and Lemma 27 in the last line. Thus, by
selecting T = dlogγ

ε
4e we have that the bias E2 is bounded by ε

8(1−γ) . Even more so for

T = dlogγ
ε
8e as required by the statement.

Lemma 20. Let π, π ∈ ΠSR be two Markovian stationary policies for the same MDP M.
Let

M =

⌈
8

ε2
log

2

δ

⌉
.

Under the assumptions of Lemma 19, with probability 1− 2δ it holds that:

ĝ − g ≤ ε

(1− γ)2
.

Proof First, we rephrase g to highlight the presence of expectations:

g =
1

1− γ E
s∼dπ

[
I
(
s ∈ Sππ

) Aππ(s)

‖π(·|s)− π(·|s)‖1

]
. (P.35)

Second, we consider another quantity g̃ defined as the expected value under dπ of the
approximate advantage function and indicator function, estimated as in Lemma 19:

g̃ =
1

1− γ E
s∼dπ

[
I
(
s ∈ Ŝππ

) Âππ(s)

‖π(·|s)− π(·|s)‖1

]
. (P.36)

Third, we define the expected value under dπT of the approximate advantage function and
indicator function:

g̃T =
1

1− γ E
s∼dπT

[
I
(
s ∈ Ŝππ

) Âππ(s)

‖π(·|s)− π(·|s)‖1

]
. (P.37)

Now, we consider the following decomposition: ĝ − g = ĝ − g̃T
(E1)

+ g̃T − g̃
(E2)

+ g̃ − g
(E3)

. We parti-

tion the error in the following way:

E1 =
ε

4(1− γ)2
, E2 =

ε

4(1− γ)2
, E3 =

ε

2(1− γ)2
.

67

Metelli, Pirotta, Calandriello, and Restelli

Let us start with E1, by observing that ĝ is an unbiased estimator for g̃T :

ĝ − g̃T =
1

M(1− γ)

M∑

i=1

I
(
si ∈ Ŝππ

) Âππ(si)

‖π(·|si)− π(·|si)‖1

− 1

1− γ E
s∼dπT

[
I
(
s ∈ Ŝππ

) Âππ(s)

‖π(·|s)− π(·|s)‖1

]
.

If we rename f(s) = 1
1−γ I

(
s ∈ Ŝππ

)
Âππ(s)

‖π(·|s)−π(·|s)‖1
, we are comparing a sample mean ĝ and

the corresponding expectation g̃. Notice that, although f(s) are random variables as well
they are independent of the samples si ∼ dπT . First, we provide a uniform bound of f(si)

and then we apply Hoeffding’s inequality. When s /∈ Ŝππ , we have f(si) = 0. Otherwise,
by definition of Ŝππ , we have Âππ(si) ≥ ε

2(1−γ) and, in particular, f(si) ≥ 0. We now upper

bound f(si):

f(si) ≤
1

1− γ
Âππ(si)

‖π(·|si)− π(·|si)‖1

=
1

1− γ

∣∣∑
a∈A (π(a|si)− π(a|si)) qi(s, a)

∣∣
∑

a∈A |π(a|si)− π(a|si)|

≤ 1

(1− γ)2

∑
a∈A |π(a|si)− π(a|si)|∑
a∈A |π(a|si)− π(a|si)|

=
1

(1− γ)2
.

Thus for all si we have that f(si) ranges in
[
0, 1

(1−γ)2

]
. Therefore, we can apply Hoeffding’s

bound:

Pr

(
|ĝ − g̃T | ≥

ε

4(1− γ)2

)
≤ 2 exp


−

2
(

ε
4(1−γ)2

)2
M

1
(1−γ)4


 ≤ 2 exp

(
−ε

2M

8

)
,

from which we get the value of M . Let us now consider E2:

g̃T − g̃ =
1

1− γ E
s∼dπT

[
I
(
s ∈ Ŝππ

) Âππ(s)

‖π(·|s)− π(·|s)‖1

]

− 1

1− γ E
s∼dπ

[
I
(
s ∈ Ŝππ

) Âππ(s)

‖π(·|s)− π(·|s)‖1

]
.

We can bound the absolute value of the difference by recalling that |f(si)| ≤ 1
(1−γ)2

and
using Lemma 26:

|g̃T − g̃| ≤
1

(1− γ)2
‖dπ − dπT ‖1 ≤

2γT

(1− γ)2
.

Then, by selecting T = dlogγ
ε
8e, we are guaranteed that |ĝT − g̃| ≤ ε

4(1−γ)2
Let us now

consider E3. First observe that with probability at least 1 − δ, Ŝππ is a subset of Sππ and

68

Safe Policy Iteration

thus I
(
s ∈ Ŝππ

)
≤ I

(
s ∈ Sππ

)
. Therefore, we have:

g̃ − g =
1

1− γ E
s∼dπ

[
I
(
s ∈ Ŝππ

) Âππ(s)

‖π(·|s)− π(·|s)‖1

]
− E
s∼dπ

[
I
(
s ∈ Sππ

) Aππ(s)

‖π(·|s)− π(·|s)‖1

]

≤ 1

1− γ E
s∼dπ

[
I
(
s ∈ Ŝππ

) Âππ(s)

‖π(·|s)− π(·|s)‖1

]
− E
s∼dπ

[
I
(
s ∈ Ŝππ

) Aππ(s)

‖π(·|s)− π(·|s)‖1

]

=
1

1− γ E
s∼dπ




I
(
s ∈ Ŝππ

)

‖π(·|s)− π(·|s)‖1

(
Âππ(s)−Aππ(s)

)



≤ 1

1− γ E
s∼dπ




∣∣∣Âππ(s)−Aππ(s)
∣∣∣

‖π(·|s)− π(·|s)‖1


 .

This term can be treated in way similar to what done in Lemma 19. Lemma 28 proofs
that, with probability at least 1 − δ and estimating Âππ(s) with N samples and horizon T
as defined in Lemma 19 we have that, simultaneously for all states s ∈ S:

∣∣∣Âππ(s)−Aππ(s)
∣∣∣

‖π(·|s)− π(·|s)‖1
≤ 5ε

12(1− γ)
=⇒ g̃ − g ≤ ε

2(1− γ)2
.

Observing that we combined two results that hold with probability at least 1− δ, the state-
ment holds with probability at least 1− 2δ.

Lemma 21. Let π, π ∈ ΠSR be two Markovian stationary policies for the same MDP M.
Let

T =

⌈
logγ

ε

48

⌉
and N =

⌈
128

ε2
log

2|S||A|
δ

⌉
.

The sampling procedure constructs a function Q̂π(s, a) such that with probability 1 − δ,
simultaneously for all s ∈ S:

∣∣∣Q̂π(s, a)−Qπ(s, a)
∣∣∣ ≤ ε

12(1− γ)

Proof Similarly to the proof of Lemma 15, we partition the error into E1 = ε
16(1−γ) and

E2 = ε
48(1−γ) , so that E1 = E2 = ε

12(1−γ) . Then, we apply Hoeffding’s inequality to bound

the deviation, by observing that the terms q̂i(s, a) involved in the estimation Âππ(s) are all

independent and belong to
[
0, 1

1−γ

]
. Therefore, we have:

Pr

(∣∣∣Q̂π(s, a)−QπT (s, a)
∣∣∣ ≥ ε

16(1− γ)

)
≤ 2e

−
2

(
ε

(1−γ)

)2
N2∑N

i=1
(bi−ai)2

= 2e
− 2ε2N2(1−γ)2

256(1−γ)2N = 2e−
ε2N
128 .

69

Metelli, Pirotta, Calandriello, and Restelli

Taking the union bound over the state–action space S ×A and solving for N , we get:

2|S||A|e− ε
2N
128 ≤ δ =⇒ N ≥ 128

ε2
log

2|S||A|
δ

.

We now manage the bias introduced by the truncation on length T :

|QπT (s, a)−Qπ(s, a)| ≤ γT

1− γ .

By selecting T = dlogγ
ε

48e we have that the bias E2 is bounded by ε
48(1−γ) .

Lemma 22. Let π, π ∈ ΠSR be two Markovian stationary policies for the same MDP M.
Let

M =

⌈
288

121ε2
log

2

δ

⌉
.

Under the assumptions of Lemma 19, the sampling procedure constructs a function ĝ such
that with probability 1− 2δ:

ĝ − g ≤ ε

(1− γ)2
.

Proof The proof is analogous to that of Lemma 20. Let us first rephrase g:

g =
1

1− γ E
s∼dπ

[
I
(
s ∈ Sππ

) (
Qπ(s, a↑s)−Qπ(s, a↓s

)]
.

We now define g̃ and g̃T in a way analogous to Lemma 20:

g̃ =
1

1− γ E
s∼dπ

[
I
(
s ∈ Ŝππ

)(
Q̂π(s, â↑s)− Q̂π(s, â↓s

)]
,

g̃ =
1

1− γ E
s∼dπT

[
I
(
s ∈ Ŝππ

)(
Q̂π(s, â↑s)− Q̂π(s, â↓s

)]
.

Again we decompose the error into: ĝ − g = ĝ − g̃T
(E1)

+ g̃T − g̃
(E2)

+ g̃ − g
(E3)

and we partition the

error in the following way:

E1 =
11ε

24(1− γ)2
, E2 =

ε

24(1− γ)2
, E3 =

1ε

2(1− γ)2
.

Concerning E1, having observed that I
(
s ∈ Ŝππ

)(
Q̂π(s, â↑s)− Q̂π(s, â↓s

)
∈
[
0, 1

1−γ

]
, we can

apply Hoeffding’s inequality, as in Lemma 20:

Pr

(
|ĝ − g̃T | ≥

11ε

24(1− γ)2

)
≤ 2 exp


−

2
(

11ε
24(1−γ)2

)2
M

1
(1−γ)4




≤ 2 exp

(
−242ε2M

576

)

70

Safe Policy Iteration

= 2 exp

(
−121ε2M

288

)
,

from which, we get the same value of M . For E2, similarly to Lemma 20, we have:

|g̃T − g̃| ≤
1

(1− γ)2
‖dπ − dπT ‖1 ≤

2γT

(1− γ)2
,

obtaining the horizon value T = dlogγ
ε

48e. Finally, for E3 we have:

g̃ − g =
1

1− γ E
s∼dπ

[
I
(
s ∈ Ŝππ

)(
Q̂π(s, â↑s)− Q̂π(s, â↓s

)]

− 1

1− γ E
s∼dπ

[
I
(
s ∈ Sππ

) (
Qπ(s, a↑s)−Qπ(s, a↓s

)]

≤ 1

1− γ E
s∼dπ

[
I
(
s ∈ Ŝππ

)(
Q̂π(s, â↑s)− Q̂π(s, â↓s

)]

− 1

1− γ E
s∼dπ

[
I
(
s ∈ Ŝππ

)(
Qπ(s, a↑s)−Qπ(s, a↓s

)]

≤ 1

1− γ E
s∼dπ

[
I
(
s ∈ Ŝππ

) ∣∣∣
(
Q̂π(s, â↑s)− Q̂π(s, â↓s

)
−
(
Qπ(s, a↑s)−Qπ(s, a↓s

)∣∣∣
]

≤ 1

1− γ E
s∼dπ

[∣∣∣
(
Q̂π(s, â↑s)− Q̂π(s, â↓s

)
−
(
Qπ(s, a↑s)−Qπ(s, a↓s

)∣∣∣
]
≤ ε

2(1− γ)2
,

where we used Equation (22) in the last line. Putting all together and recalling that we
used two events that hold with probability at least 1− δ we get the result.

Appendix B. Global Safe Policy Improvement

In this appendix, we further investigate the optimization of the lower bound of Corollary 4,
without constraining the choice of a target policy. We name this approach Global Safe
Policy Iteration (GSPI) and will show that SASPI when selecting a greedy policy π+ as
target policy allows obtaining the global optimum of the bound.

The maximization of the bound in Corollary 4 can be formulated as a Quadratic Pro-
gramming (QP) problem over the policy space Π:

max
π′∈Π

dπT
(
π′ − π

)
qπ − γ

2(1− γ)2
‖qπ‖∞ z2

s.t. π′ij ≥ 0, ∀i, j
∑

j

π′ij = 1, ∀i
∑

j

∣∣π′ij − πij
∣∣ ≤ z, ∀i

However, previous formulation is not suited for a QP solver, it is necessary to introduce
additional auxiliary variables in order to remove absolute values. After this manipulation we

71

Metelli, Pirotta, Calandriello, and Restelli

obtain a QP problem with 2|S||A| variables. While QP problems can be solved using interior
point approaches (Boyd and Vandenberghe, 2004), we are going to present an iterative
algorithm that is able to attain the optimal solution and presents lower computational
complexity.

We adopt an approach analogous to that of SSPI and SASPI. If we were able to compute
the optimal budget Υ ∗, then we can move probability across actions provided that we satisfy
‖π′ − π‖∞ ≤ Υ ∗. The natural choice consists in trying to move as much probability as
possible on the action with highest Qπ, i.e., to one of the greedy actions a+

s , while taking
away probability from the suboptimal actions, starting from the worst action and following
an increasing order. The amount of probability we can move around is bounded by Y/2,
that we assume fixed. Let us start by stating the following optimality condition.

Corollary 29. Let Sππ be the subset of states dπ(s) is positive: Sππ = {s ∈ S : dπ(s) > 0}.
Let A+

s = {a ∈ A : Qπ(s, a) = maxa′∈AQ
π(s, a′)} be the set of greedy actions in state s ∈ S

and let a+
s ∈ A+

s . The bound in Corollary 4 is optimized any of the policies π′ defined as:

π′(a|s) =

{
min

{
Υ ∗
2 , 1− π (a|s)

}
if a = a+

s

max
{

0,min
{
π(a|s), Υ2 −G↓ (s, a)

}}
otherwise

,

where Υ ∗ is the value that maximizes the following function:

B(Υ) =
1

1− γ
∑

s∈Sππ

dπ(s) min

{
Υ

2
, 1− π

(
a+
s | s
)}

Qπ(s, a+
s)

− 1

1− γ
∑

s∈Sππ

dπ(s)
∑

a∈A\{a+s }
max

{
0,min

{
π (a| s) , Υ

2
−G↑(s, a)

}}
Qπ(s, a)

− γ

(1− γ)2
Υ 2 ‖qπ‖∞

2
.

Proof First of all we observe that if dπ(s) = 0, state s has no contribution to the bound,
thus we restrict our attention to the states in Sππ . Fix a budget Υ , as for SASPI, for every
state we can use Υ/2 to increase the probability of some actions in A↑s and Υ/2 to decrease

the probability of some actions in A↓s. As already mentioned, the best we can do is to move
as much probability as possible to the action with highest Qπ, i.e., to one of the greedy
actions a+

s ∈ A+
s .16 We need to compensate this operation by removing probability from

actions in A↓s in increasing order of Qπ. Therefore, we can rewrite Corollary 4 as:

Jπ
′ − Jπ ≥ 1

1− γd
πTaπ

′
π −

γ

(1− γ)2

∥∥π′ − π
∥∥2

∞
‖qπ‖∞

2

=
1

1− γ
∑

s∈S
dπ(s)

∑

a∈A

[
π′(a|s)Qπ(s, a)− π(a|s)Qπ(s, a)

]
− γ

(1− γ)2

∥∥π′ − π
∥∥2

∞ ‖q
π‖∞

=
1

1− γ
∑

s∈S
dπ(s)


∆(s, a+

s)Qπ(s, a+
s) +

∑

a∈A\{a+s }
∆(s, a)Qπ(s, a)


− γ

(1− γ)2
Υ 2 ‖qπ‖∞

2
,

16. For simplicity, we consider only deterministic greedy policies. Clearly, any mixture of them maximizes
the bound too.

72

Safe Policy Iteration

Algorithm 12 Exact GSPI.

input: MDP M
Initialize π
π+ ← GPC(M,ΠSD, π)
Υ ∗ ← FBO(M, π+, π)
while Υ ∗ > 0 do

Compute G↓s(a), ∀s ∈ S, ∀a ∈ A

π′(a|s)←
{

min
{
Υ∗

2 , 1− π (a|s)
}

if a = a+
s

max
{

0,min
{
π(a|s), Υ2 −G↓ (s, a)

}}
otherwise

, ∀s ∈ S, ∀a ∈ A

Υ ∗ ← FBO(M, π+, π)
end while

where we denoted with ∆(s, a) = π′(a|s)− π(a|s) and Υ 2 = ‖π′ − π‖2∞. In order to assign
as much probability as possible to one greedy action we need to set:

∆(s, a+
s) = min

{
Υ

2
, 1− π

(
a+
s |s
)}

, ∀s ∈ S. (P.38)

As explained before, an equivalent decrement must be partitioned over the non–greedy
actions according to the ordering in ρπs . The operation is summarized by the following
equation:

∆(s, a) = −max

{
0,min

{
π(a|s), Υ

2
−G↓ (s, a)

}}
, ∀s ∈ S,∀a 6= a+

s .

The pseudocode of GSPI is reported in Algorithm 12. Therefore, the only real problem
is now to find the optimal budget Υ ∗. This search formulates, once again, the trade-off
between further increasing the budget Υ , and incur in a larger penalty, while obtaining a
gain by exploiting the gap between Qπ(s, a+

s) and the smallest Qπ(s, a) that still has proba-
bilities to reduce. As the worst actions have their probability reduced to zero and saturates,
this gap becomes smaller. It is straightforward to see that GSPI is equivalent to SASPI
when selecting as target policy a greedy policy π+. For this reason, the computation of the
optimal budget Υ ∗ can be performed by employing the same FBO (Algorithm 4) and FJP
(Algorithm 7) functions. However, we are able to provide for this specific scenario a simpli-
fied algorithm, as reported in Algorithm 13. The computational complexity of Algorithm 13
is dominated by the sorting of state-action pairs and thus it is O(|S||A| log |S||A|).

Figure 14 reports an example of policy update.

Remark 13 (Global Optimality of GSPI). The optimality of the Υ ∗ computed with Algo-
rithm 4 is clearly guaranteed by the derivative. For a fixed Υ ∗ computing the best policy
π′ is also straightforward. The only detail left to guarantee that π′ is indeed the policy
that maximizes the bound in Corollary 4 is to note that all possible Υ ∈ [0, 2] are con-
sidered by the algorithm, and that for every fixed Υ the updates are carried out on the

73

Metelli, Pirotta, Calandriello, and Restelli

Algorithm 13 Computing of the jump points for GSPI (Find Jump Point - FJP)

input: MDP M, current policy π
Initialize t← 0, Υ0

2 ← 0
Compute G↓(s, a), ∀s ∈ S, ∀a ∈ A
Sort the state-action pairs in increasing order of G↓s(a), i.e., i < j =⇒ G↓si(ai) ≤ G↓sj (aj)
Compute a↑s = arg maxa∈A {Qπ(s, a)} and a↓s = arg mina∈A {Qπ(s, a)}, ∀s ∈ S
q0 ← 1

1−γ
∑
s∈Sππ d

π(s)
(
Qπ(s, a↑s)−Qπ(s, a↓s)

)

yield Υ0, q0

while Sππ 6= {} do
yield Υt, qt
t← t+ 1
if st ∈ then

if Qπ(st, at) < Qπ(st, a
↓
st) then

qt ← qt−1 − dπ(st)
(
Qπ(st, a

↓
st)−Qπ(st, at)

)

a↓st ← at
else

qt ← qt−1 − dπ(st)
(
Qπ(st, a

↓
st)−Qπ(st, at)

)

Sππ ← Sππ \ {st}
end if
Υt
2 ← G↓(st, at)

end if
yield Υt, qt

end while
yield 2,−∞

single state-action level. This implies that all possible stochastic policies, and therefore all
policies, are candidates for GSPI, and that the one selected is truly the one that maximizes
the improvement. As an example, USPI tunes only a single α parameter, and cannot fully
optimize the bound by using single state-actions update to always find the best gain when
choosing a larger ‖π′ − π‖∞.

Example 2. The initial policy (blue area with dotted mark) and the updated policy (orange
striked area with square mark) are depicted in Figure 14. Actions are ordered according
to ρπs , i.e., in ascending order according to their Q–values. Suppose that ∆(s, a+

s) = 0.6 ≤
1−π+(a+

s |s). Starting from the worse action (a1), we have to compensate for the increment.
Neither action a1 nor action a2 are able to consume the budget (∆(s, a1) = −0.1, ∆(s, a2) =
−0.3). When action a3 is faced the available budget is ∆(s, a+

s) − Gπ(s, a3) = ∆(s, a+
s) −

(π(a1|s) + π(a2|s)) = 0.2. Since the probability of action a3, the decrement ∆(s, a3) is
equal to the remaining budget (−0.2). The updates ∆(s, a) are reported in figure as dashed
arrows. The relationship between the value ∆(s, a) and the coefficient α(s, a) of the convex
combination between π and π+ is a factor (π+(a|s)− π(a|s))−1

. Coefficients α(s, ai) are
drawn above the bars.

Appendix C. Sampling Procedures

In this appendix, we report the pseudocodes of the sampling procedures employed in Sec-
tion 5.

74

Safe Policy Iteration

-1.369 -0.058 0.783 1.201 1.882
0

0.2

0.4

0.6

0.8

a1 a2 a3 a4 a+s

1

1
0.57

0

0.75

ρπs

Qπ

π(ai|s)
π(a|s)
π′(a|s)

Figure 14: GSPI policy update.

Algorithm 14 dπ Sampling Procedure (dπ-sample).

input: policy π, number of samples N
Initialize D ← {}
while |D| < N do

s0 ∼ µ
for j = 0, . . . , T − 1 do

X ∼ Ber(γ)
if X = 0 then
D ← D ∪ {sj}
break

end if
aj ∼ π(·|sj)
sj+1 ∼ P(·|sj , aj)

end for
end while
return D

75

Metelli, Pirotta, Calandriello, and Restelli

Algorithm 15 GPC and aUSPI Sampling Procedure (aUSPI-sample).

input: policy π, number of samples N
Initialize D ← {}
for i = 1, . . . , N do

si ∼ dπ-sample() . Sample the state
ai ∼ π(·|si) . Sample the action
q̂i ← 0
si,0 ← si
ai,0 ← ai
for j = 0, . . . , T − 1 do . Generate the rollout

q̂i ← q̂i + γjR(si,j , ai,j)
si,j+1 ∼ P(·|si,j , ai,j)
ai,j+1 ← π(·|si,j+1)

end for
D ← D ∪ {(si, ai, q̂i)}

end for
return D

Algorithm 16 aSSPI Sampling Procedure (aSSPI-sample).

input: policy π, number of samples N
Initialize D ← {}
for s ∈ S do
D(s)← {}
for i = 1, . . . , N do
Di(s)← {}
for a ∈ A do

q̂i(s, a)← 0
si,0 ← s
ai,0 ← a
for j = 0, . . . , T − 1 do

q̂i(s, a)← q̂i(s, a) + γjR(si,j , ai,j)
si,j+1 ∼ P(·|si,j , ai,j)
ai,j+1 ← π(·|si,j+1)

end for
Di(s)← {(a, q̂i(s, a))}

end for
D(s)← D(s) ∪ {Di(s)}

end for
D ← D ∪ {(s,D(s))}

end for
return D

76

Safe Policy Iteration

Algorithm 17 aSASPI Sampling Procedure (aSASPI-sample).

input: policy π, number of samples N
Initialize D ← {}
for s ∈ S do

for a ∈ A do
D(s, a)← {}
for i = 1, . . . , N do

q̂i(s, a)← 0
si,0 ← s
ai,0 ← a
for j = 0, . . . , T − 1 do

q̂i(s, a)← q̂i(s, a) + γjR(si,j , ai,j)
si,j+1 ∼ P(·|si,j , ai,j)
ai,j+1 ← π(·|si,j+1)

end for
D(s, a)← D(s, a) ∪ {q̂i(s, a)}

end for
D ← D ∪ {(s, a,D(s, a))}

end for
end for
return D

77

Metelli, Pirotta, Calandriello, and Restelli

References

Yasin Abbasi-Yadkori, Peter L. Bartlett, and Stephen J. Wright. A fast and reliable policy
improvement algorithm. In Arthur Gretton and Christian C. Robert, editors, Proceedings
of the 19th International Conference on Artificial Intelligence and Statistics, AISTATS
2016, Cadiz, Spain, May 9-11, 2016, volume 51 of JMLR Workshop and Conference
Proceedings, pages 1338–1346. JMLR.org, 2016.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimiza-
tion. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, volume 70 of Proceedings of Machine Learning Research, pages 22–31. PMLR,
2017.

Mohammad Gheshlaghi Azar, Rémi Munos, Mohammad Ghavamzadeh, and Hilbert J.
Kappen. Speedy q-learning. In John Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett,
Fernando C. N. Pereira, and Kilian Q. Weinberger, editors, Advances in Neural Informa-
tion Processing Systems 24: 25th Annual Conference on Neural Information Processing
Systems 2011. Proceedings of a meeting held 12-14 December 2011, Granada, Spain, pages
2411–2419, 2011.

Mohammad Gheshlaghi Azar, Vicenç Gómez, and Hilbert J. Kappen. Dynamic policy
programming. Journal of Machine Learning Research, 13:3207–3245, 2012.

Dimitri P Bertsekas. Approximate policy iteration: A survey and some new methods.
Journal of Control Theory and Applications, 9(3):310–335, 2011.

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scien-
tific, 1st edition, 1996. ISBN 1886529108.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, New York, NY, USA, 2004. ISBN 0521833787.

Imre Csiszár and János Körner. Information Theory - Coding Theorems for Discrete Memo-
ryless Systems, Second Edition. Cambridge University Press, 2011. ISBN 978-0-51192188-
9.

Daniela Pucci de Farias and Benjamin Van Roy. The linear programming approach to
approximate dynamic programming. Operations Research, 51(6):850–865, 2003.

Daniela Pucci De Farias and Benjamin Van Roy. On the existence of fixed points for
approximate value iteration and temporal-difference learning. Journal of Optimization
theory and Applications, 105(3):589–608, 2000.

Alain Dutech, Timothy Edmunds, Jelle Kok, Michail Lagoudakis, Michael Littman, Mar-
tin Riedmiller, Bryan Russell, Bruno Scherrer, Richard Sutton, Stephan Timmer, et al.
Reinforcement learning benchmarks and bake-offs II. Advances in Neural Information
Processing Systems (NIPS), 17:6, 2005.

78

Safe Policy Iteration

Yonathan Efroni, Gal Dalal, Bruno Scherrer, and Shie Mannor. Beyond the one-step greedy
approach in reinforcement learning. In Jennifer G. Dy and Andreas Krause, editors, Pro-
ceedings of the 35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 1386–1395. PMLR, 2018a.

Yonathan Efroni, Gal Dalal, Bruno Scherrer, and Shie Mannor. Multiple-step greedy policies
in approximate and online reinforcement learning. In Samy Bengio, Hanna M. Wallach,
Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 31: Annual Conference on Neu-
ral Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal,
Canada, pages 5244–5253, 2018b.

Victor Gabillon, Alessandro Lazaric, Mohammad Ghavamzadeh, and Bruno Scherrer.
Classification-based policy iteration with a critic. In Lise Getoor and Tobias Scheffer,
editors, Proceedings of the 28th International Conference on Machine Learning, ICML
2011, Bellevue, Washington, USA, June 28 - July 2, 2011, pages 1049–1056. Omnipress,
2011.

Mohammad Ghavamzadeh, Marek Petrik, and Yinlam Chow. Safe policy improvement
by minimizing robust baseline regret. In Daniel D. Lee, Masashi Sugiyama, Ulrike von
Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain, pages 2298–2306, 2016.

Moshe Haviv and Ludo Van der Heyden. Perturbation bounds for the stationary probabil-
ities of a finite Markov chain. Advances in Applied Probability, 16(4):804–818, 1984.

Ronald A Howard. Dynamic programming and Markov processes. 1960.

Sham M. Kakade. A natural policy gradient. In Thomas G. Dietterich, Suzanna Becker,
and Zoubin Ghahramani, editors, Advances in Neural Information Processing Systems 14
[Neural Information Processing Systems: Natural and Synthetic, NIPS 2001, December
3-8, 2001, Vancouver, British Columbia, Canada], pages 1531–1538. MIT Press, 2001.

Sham M. Kakade. On the sample complexity of reinforcement learning. PhD thesis, Uni-
versity of London London, England, 2003.

Sham M. Kakade and John Langford. Approximately optimal approximate reinforcement
learning. In Claude Sammut and Achim G. Hoffmann, editors, Machine Learning, Pro-
ceedings of the Nineteenth International Conference (ICML 2002), University of New
South Wales, Sydney, Australia, July 8-12, 2002, pages 267–274. Morgan Kaufmann,
2002.

Daphne Koller and Ronald Parr. Policy iteration for factored mdps. In Craig Boutilier and
Moisés Goldszmidt, editors, UAI ’00: Proceedings of the 16th Conference in Uncertainty
in Artificial Intelligence, Stanford University, Stanford, California, USA, June 30 - July
3, 2000, pages 326–334. Morgan Kaufmann, 2000.

79

Metelli, Pirotta, Calandriello, and Restelli

Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteration. Journal of Machine
Learning Research, 4:1107–1149, 2003a.

Michail G. Lagoudakis and Ronald Parr. Reinforcement learning as classification: Lever-
aging modern classifiers. In Tom Fawcett and Nina Mishra, editors, Machine Learning,
Proceedings of the Twentieth International Conference (ICML 2003), August 21-24, 2003,
Washington, DC, USA, pages 424–431. AAAI Press, 2003b.

Alessandro Lazaric, Mohammad Ghavamzadeh, and Rémi Munos. Analysis of a
classification-based policy iteration algorithm. In Johannes Fürnkranz and Thorsten
Joachims, editors, Proceedings of the 27th International Conference on Machine Learn-
ing (ICML-10), June 21-24, 2010, Haifa, Israel, pages 607–614. Omnipress, 2010.

Alessandro Lazaric, Mohammad Ghavamzadeh, and Rémi Munos. Analysis of classification-
based policy iteration algorithms. J. Mach. Learn. Res., 17:19:1–19:30, 2016.

Boris Lesner and Bruno Scherrer. Tight performance bounds for approximate modified
policy iteration with non-stationary policies. CoRR, abs/1304.5610, 2013.

Boris Lesner and Bruno Scherrer. Non-stationary approximate modified policy iteration.
In Francis R. Bach and David M. Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37
of JMLR Workshop and Conference Proceedings, pages 1567–1575. JMLR.org, 2015.

Alberto Maria Metelli, Mirco Mutti, and Marcello Restelli. Configurable Markov decision
processes. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th Inter-
national Conference on Machine Learning, volume 80 of Proceedings of Machine Learn-
ing Research, pages 3491–3500, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018.
PMLR.

Rémi Munos. Error bounds for approximate policy iteration. In Tom Fawcett and Nina
Mishra, editors, Machine Learning, Proceedings of the Twentieth International Confer-
ence (ICML 2003), August 21-24, 2003, Washington, DC, USA, pages 560–567. AAAI
Press, 2003.

Rémi Munos. Error bounds for approximate value iteration. In Manuela M. Veloso and
Subbarao Kambhampati, editors, Proceedings, The Twentieth National Conference on
Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelli-
gence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA, pages 1006–1011.
AAAI Press / The MIT Press, 2005.

Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized
Markov decision processes. CoRR, abs/1705.07798, 2017.

Matteo Papini, Matteo Pirotta, and Marcello Restelli. Adaptive batch size for safe policy
gradients. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural In-
formation Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 3591–3600, 2017.

80

Safe Policy Iteration

Theodore J. Perkins and Mark D. Pendrith. On the existence of fixed points for q-learning
and sarsa in partially observable domains. In Claude Sammut and Achim G. Hoff-
mann, editors, Machine Learning, Proceedings of the Nineteenth International Conference
(ICML 2002), University of New South Wales, Sydney, Australia, July 8-12, 2002, pages
490–497. Morgan Kaufmann, 2002.

Theodore J. Perkins and Doina Precup. A convergent form of approximate policy iteration.
In Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, editors, Advances in Neural
Information Processing Systems 15 [Neural Information Processing Systems, NIPS 2002,
December 9-14, 2002, Vancouver, British Columbia, Canada], pages 1595–1602. MIT
Press, 2002.

Julien Pérolat, Bilal Piot, Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. Soft-
ened approximate policy iteration for Markov games. In Maria-Florina Balcan and Kil-
ian Q. Weinberger, editors, Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR
Workshop and Conference Proceedings, pages 1860–1868. JMLR.org, 2016.

Jan Peters, Sethu Vijayakumar, and Stefan Schaal. Natural actor-critic. In João Gama,
Rui Camacho, Pavel Brazdil, Aĺıpio Jorge, and Lúıs Torgo, editors, Machine Learning:
ECML 2005, 16th European Conference on Machine Learning, Porto, Portugal, October
3-7, 2005, Proceedings, volume 3720 of Lecture Notes in Computer Science, pages 280–
291. Springer, 2005.

K. B. Petersen and M. S. Pedersen. The Matrix Cookbook. Technical University of Denmark,
nov 2012. Version 20121115.

Matteo Pirotta, Marcello Restelli, and Luca Bascetta. Adaptive step-size for policy gradient
methods. In Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q.
Weinberger, editors, Advances in Neural Information Processing Systems 26: 27th Annual
Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held
December 5-8, 2013, Lake Tahoe, Nevada, United States, pages 1394–1402, 2013a.

Matteo Pirotta, Marcello Restelli, Alessio Pecorino, and Daniele Calandriello. Safe policy
iteration. In Proceedings of the 30th International Conference on Machine Learning,
ICML 2013, Atlanta, GA, USA, 16-21 June 2013, volume 28 of JMLR Workshop and
Conference Proceedings, pages 307–315. JMLR.org, 2013b.

Martin L Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, 2014.

Bruno Scherrer. Improved and generalized upper bounds on the complexity of policy it-
eration. In Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q.
Weinberger, editors, Advances in Neural Information Processing Systems 26: 27th Annual
Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held
December 5-8, 2013, Lake Tahoe, Nevada, United States, pages 386–394, 2013a.

Bruno Scherrer. Performance bounds for λ policy iteration and application to the game of
tetris. Journal of Machine Learning Research, 14(Apr):1181–1227, 2013b.

81

Metelli, Pirotta, Calandriello, and Restelli

Bruno Scherrer. Approximate policy iteration schemes: A comparison. In Proceedings of the
31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26
June 2014, volume 32 of JMLR Workshop and Conference Proceedings, pages 1314–1322.
JMLR.org, 2014.

Bruno Scherrer and Boris Lesner. On the use of non-stationary policies for stationary
infinite-horizon Markov decision processes. In Peter L. Bartlett, Fernando C. N. Pereira,
Christopher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger, editors, Advances in
Neural Information Processing Systems 25: 26th Annual Conference on Neural Informa-
tion Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake
Tahoe, Nevada, United States, pages 1835–1843, 2012.

Bruno Scherrer, Victor Gabillon, Mohammad Ghavamzadeh, and Matthieu Geist. Approx-
imate modified policy iteration. In Proceedings of the 29th International Conference on
Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012. PMLR,
2012.

John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust
region policy optimization. In Francis R. Bach and David M. Blei, editors, Proceedings of
the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11
July 2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 1889–1897.
JMLR.org, 2015.

Aaron Sidford, Mengdi Wang, Xian Wu, Lin Yang, and Yinyu Ye. Near-optimal time
and sample complexities for solving Markov decision processes with a generative model.
In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-
Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Sys-
tems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS
2018, 3-8 December 2018, Montréal, Canada, pages 5192–5202, 2018.

Satinder P. Singh, Tommi S. Jaakkola, and Michael I. Jordan. Reinforcement learning with
soft state aggregation. In Gerald Tesauro, David S. Touretzky, and Todd K. Leen, edi-
tors, Advances in Neural Information Processing Systems 7, [NIPS Conference, Denver,
Colorado, USA, 1994], pages 361–368. MIT Press, 1994.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

Richard S. Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. In Sara A.
Solla, Todd K. Leen, and Klaus-Robert Müller, editors, Advances in Neural Informa-
tion Processing Systems 12, [NIPS Conference, Denver, Colorado, USA, November 29 -
December 4, 1999], pages 1057–1063. The MIT Press, 1999.

Noboru Suzuki. On the convergence of neumann series in Banach space. Mathematische
Annalen, 220(2):143–146, 1976.

Philip Thomas. Bias in natural actor-critic algorithms. In Proceedings of the 31th Interna-
tional Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014,

82

Safe Policy Iteration

volume 32 of JMLR Workshop and Conference Proceedings, pages 441–448. JMLR.org,
2014.

Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Deep conservative policy iteration. In
The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pages 6070–6077. AAAI Press, 2020.

Paul Wagner. A reinterpretation of the policy oscillation phenomenon in approximate policy
iteration. In John Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett, Fernando C. N.
Pereira, and Kilian Q. Weinberger, editors, Advances in Neural Information Processing
Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011.
Proceedings of a meeting held 12-14 December 2011, Granada, Spain, pages 2573–2581,
2011.

Paul Wagner. Optimistic policy iteration and natural actor-critic: A unifying view and a
non-optimality result. In Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani,
and Kilian Q. Weinberger, editors, Advances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings
of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, pages 1592–
1600, 2013.

Martin J. Wainwright. Stochastic approximation with cone-contractive operators: Sharp
`∞-bounds for q-learning. CoRR, abs/1905.06265, 2019a.

Martin J. Wainwright. Variance-reduced q-learning is minimax optimal. CoRR,
abs/1906.04697, 2019b.

Tao Wang, Michael Bowling, and Dale Schuurmans. Dual representations for dynamic
programming and reinforcement learning. In 2007 IEEE International Symposium on
Approximate Dynamic Programming and Reinforcement Learning, pages 44–51. IEEE,
2007.

Yinyu Ye. The simplex and policy-iteration methods are strongly polynomial for the Markov
decision problem with a fixed discount rate. Mathematics of Operations Research, 36(4):
593–603, 2011.

83

	Introduction
	Preliminaries
	Bound on Policy Improvement
	Exact Safe Policy Iteration
	Unique–parameter Safe Policy Improvement
	Convergence Guarantees for USPI

	per–State–parameter Safe Policy Improvement
	Computing *

	per–State–Action–parameter Safe Policy Improvement
	Computing *

	Approximate Safe Policy Iteration
	Approximate Policy Choosers
	approximate Unique–parameter Safe Policy Iteration (aUSPI)
	approximate per–State–parameter Safe Policy Iteration (aSSPI)
	approximate per–State–Action–parameter Safe Policy Iteration (aSASPI)

	Applications of SPI techniques
	Chain-Walk Domain
	Experiments in the Exact Case
	Experiments in the Approximate Case
	Experiments with Linear Approximations

	The Prison
	Experiments in the Exact Case
	Experiments in the Approximate Case

	BlackJack Card Game

	Discussion and Conclusions
	Additional Proofs and Derivations
	Proofs of Section 3
	Proofs of Section 4
	Proofs of Section 5

	Global Safe Policy Improvement
	Sampling Procedures

