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Abstract

Stochastic gradient descent (SGD) has become the method of choice to tackle large-scale
datasets due to its low computational cost and good practical performance. Learning rate
analysis, either capacity-independent or capacity-dependent, provides a unifying viewpoint
to study the computational and statistical properties of SGD, as well as the implicit reg-
ularization by tuning the number of passes. Existing capacity-independent learning rates
require a nontrivial bounded subgradient assumption and a smoothness assumption to be
optimal. Furthermore, existing capacity-dependent learning rates are only established for
the specific least squares loss with a special structure. In this paper, we provide both
optimal capacity-independent and capacity-dependent learning rates for SGD with general
convex loss functions. Our results require neither bounded subgradient assumptions nor
smoothness assumptions, and are stated with high probability. We achieve this improve-
ment by a refined estimate on the norm of SGD iterates based on a careful martingale
analysis and concentration inequalities on empirical processes.

Keywords: Stochastic gradient descent, learning theory, generalization bound

1. Introduction

1.1 Background

Stochastic gradient descent (SGD) has found wide applications in machine learning due to its
simplicity in implementation, low memory requirement and low computational complexity
per iteration, as well as good practical behavior (Zhang, 2004; Bach and Moulines, 2013;
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Rakhlin et al., 2012; Shamir and Zhang, 2013; Bottou et al., 2018; Orabona, 2019). As an
iterative method, SGD minimizes empirical risks by moving iterates along the direction of
a negative gradient calculated based on a loss function on either a single training example
or a batch of few examples. This strategy of processing few examples per iteration makes
SGD particularly suitable for practical applications with very large data sets (Zhang, 2004;
Bach and Moulines, 2013), which are becoming ubiquitous in the big data era.

Theoretical analysis of SGD was mainly conducted from an optimization viewpoint to
understand how the optimization error would decrease along the iterations (Zhang, 2004;
Nemirovski et al., 2009; Rakhlin et al., 2012; Shamir and Zhang, 2013). In a machine learn-
ing setting, we are more interested in the population risks of SGD, i.e., how the model
output by SGD would generalize to unseen examples (Bousquet and Bottou, 2008; Vapnik,
1998; Pillaud-Vivien et al., 2018a). To this aim, we need also to take into account simul-
taneously the difference between population risks and empirical risks, which are referred to
estimation errors in the statistical learning theory setting. Intuitively, optimization errors
would decrease along the SGD iterations, while the complexity of the SGD iterates and
therefore the estimation errors would increase meanwhile. This suggests that an implicit
regularization can be achieved by tuning the number of passes to balance the optimization
and estimation errors. A unifying consideration of optimization and estimation errors for
SGD would provide a theoretical principle towards this aim (Lin et al., 2016a; Lin and
Rosasco, 2017; Yao et al., 2007).

Existing learning rates of SGD are mainly derived in the setting with only one-pass
over the data allowed, i.e., each example can be used at most once (Ying and Pontil, 2008;
Orabona, 2014; Ying and Zhou, 2006; Bach and Moulines, 2011). However, in practical
applications the strategy of multi-pass SGD is often adopted to produce a model with good
generalization performance (Pillaud-Vivien et al., 2018b). The key difference between the
learning rate analysis is that the expectation of loss functions over the stochastic algorithm
for one-pass SGD is the population risk, while the expectation for multi-pass SGD is the
empirical risk. Therefore, the learning rate analysis of multi-pass SGD raises a new challenge
to control the estimation errors.

Motivated by the popularity of multi-pass SGD, the generalization properties of multi-
pass SGD have received increasing attention recently. Stability of multi-pass SGD were
established in Hardt et al. (2016), which in turn yields capacity-independent learning rates
ignoring the capacity information on the hypothesis spaces (Lin et al., 2016a; Feldman and
Vondrak, 2019). The learning rates in Hardt et al. (2016); Lin et al. (2016a); Feldman and
Vondrak (2019) require to impose a bounded subgradient assumption for iterates, and are
either stated for smooth loss functions (Hardt et al., 2016; Feldman and Vondrak, 2019)
or not optimal for non-smooth and Lipschitz loss functions (Lin et al., 2016a). Capacity-
dependent learning rates were also studied recently, where the information on the capacity
of hypothesis spaces is exploited to derive better learning rates (Rosasco and Villa, 2015;
Dieuleveut and Bach, 2016; Lin and Rosasco, 2017; Pillaud-Vivien et al., 2018b; Mücke
et al., 2019). However, to our best knowledge, the existing capacity-dependent learning
rates of multi-pass SGD are all stated for the specific least squares loss (Rosasco and Villa,
2015; Dieuleveut and Bach, 2016; Lin and Rosasco, 2017; Pillaud-Vivien et al., 2018b; Mücke
et al., 2019). Indeed, a key property in these analysis is the closed-form update of the SGD
iterates by integral operator which does not hold for general loss functions.
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1.2 Main Contributions

In this paper, we investigate both capacity-independent and capacity-dependent learning
rates for multi-pass SGD with general convex loss functions. Our results outperform the
existing capacity-independent analysis by removing bounded subgradient assumptions as
well as smoothness assumptions on loss functions (Hardt et al., 2016; Lin et al., 2016a;
Feldman and Vondrak, 2019), and complements the existing capacity-dependent analysis
for the specific least squares loss (Rosasco and Villa, 2015; Dieuleveut and Bach, 2016;
Lin and Rosasco, 2017) by considering general convex loss functions. Furthermore, our
results are stated with high probability and are optimal in the sense of matching the best
available bound for Tikhonov regularization where optimization errors are ignored. Our
results show that different number of passes are required for multi-pass SGD with different
polynomially decaying stepsizes to achieve optimal learning rates, which show in a clear way
how statistical errors and computational resources should be balanced for general convex loss
functions. Our novelty in the analysis consists in an exploitation of self-bounding properties
of loss functions to remove bounded subgradient assumptions, and a refined estimate on the
norm of SGD iterates based on a careful martingale analysis together with concentration
inequalities in empirical processes. In particular, we build a novel polynomial inequality to
relate the norm of an iterate to the norm of previous iterates.

This paper is extended from our previous conference article published in Advance in Neu-
ral Information Processing Systems 2018 (Lei and Tang, 2018), where capacity-independent
bounds were established. However, the analysis there requires to impose a non-intuitive as-
sumption on the existence of an empirical risk minimizer with a finite norm, which depends
on the sampling of training examples and is hard to check in practice. We successfully
remove this assumption by a different error decomposition with respect to (w.r.t.) a regu-
larized risk minimizer together with concentration inequalities to relate empirical risks to
population risks in the norm estimation. Furthermore, we also add new capacity-dependent
learning rates in this paper, which were not considered in the conference article. Our
capacity-dependent learning rates can be as fast as Õ(n−1)1 under suitable capacity as-
sumption on the hypothesis space and variance-expectation assumption, where n is the
sample size.

Organization of the paper. The remainder of this paper is organized as follows. We formulate
the problem and present main results in Section 2. We give the comparison of our results
with the state of the art in Section 3. We provide preliminary complexity control in Section
4, which is then used to study the capacity-independent and capacity-dependent rates in
Section 5 and Section 6, respectively. The conclusion is given in Section 7.

2. Problem Formulation and Main Results

Let ρ be a probability measure defined on a sample space Z = X ×Y with X being the input
space and Y ⊆ [−b, b] being the output space, where X may be any set equipped with a
measure. We assume a training sample z = {z1, . . . , zn} of size n ∈ N is drawn independently
from ρ, and our aim is to learn a hypothesis h : X 7→ R from a hypothesis space W with
good generalization performance. The quality of h at (x, y) is quantified by `(h(x), y), where

1. We use Õ to hide logarithmic factors.
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` : R×Y 7→ R+ is convex w.r.t. the first argument. The population risk and empirical risk
of h are defined respectively by E(h) = Ez

[
`(h(x), y)

]
and Ez(h) = 1

n

∑n
i=1 `

(
h(xi), yi

)
. The

best model minimizing the population risk then becomes hρ = arg minh E(h). We consider
a non-parametric learning setting withW being a reproducing kernel Hilbert space (RKHS)
associated to a Mercer kernel K : X ×X 7→ R which is continuous, symmetric and positive
semi-definite (Aronszajn, 1950; Schölkopf and Smola, 2001; Cristianini and Shawe-Taylor,
2000; Shawe-Taylor and Cristianini, 2004). Let Φ : X 7→ W be the associated feature map
satisfying K(x, x̃) = 〈Φ(x),Φ(x̃)〉 for all x, x̃ ∈ X . In this learning setting, the candidate
models take the form hw(x) = 〈w,Φ(x)〉 with w ∈ W. For brevity, we denote the norm in
the RKHS W by ‖ · ‖2 and introduce the abbreviations E(w) = E(hw), Ez(w) = Ez(hw) for
any w ∈ W. Let κ = supx∈X

√
K(x, x).

Let w1 = 0 and {ηt}t∈N be a positive stepsize sequence. At the t-th iteration, we
randomly choose an index jt from the uniform distribution over {1, . . . , n} and update
wt+1 as follows

wt+1 = wt − ηt`′
(
〈wt,Φ(xjt)〉, yjt

)
Φ(xjt) = wt − ηtf ′(wt, zjt), (2.1)

where `′ and f ′ respectively denote subgradients of ` and f w.r.t. the first argument, and
we introduce the notation f(w, z) = `(〈w,Φ(x)〉, y). In this paper, we are interested in the
population risk of the iterates produced by (2.1). To this aim, we need to introduce some
assumptions.

Our first assumption is the so-called self-bounding property of loss functions meaning
that the subgradient can be bounded by function values.

Assumption 1 We assume the existence of Ã and B̃ ≥ 0 such that

|`′(a, y)|2 ≤ Ã`(a, y) + B̃, ∀a ∈ R, y ∈ Y. (2.2)

Remark 1 Many popular loss functions satisfy (2.2), including the p-norm hinge loss
`(a, y) = max{0, 1 − ya}p (1 ≤ p ≤ 2) (Steinwart and Christmann, 2008), the logistic
loss `(a, y) = log(1 + exp(−ya)) for classification, and the p-th power absolute distance loss
`(a, y) = |a − y|p (1 ≤ p ≤ 2), the ε-insensitive loss `(a, y) = max{0, |y − a| − ε}, the
Huber loss `(a, y) = (a − y)2 if |a − y| ≤ 1 and `(a, y) = 2|a − y| − 1 otherwise for regres-
sion (Zhang, 2004). We refer the interested readers to Zhang (2004) for constants Ã, B̃ in
(2.2) with different loss functions `.

For loss functions satisfying (2.2), we have the following inequality useful for our learning
rate analysis (Part (a) of Lemma 16)

‖f ′(w, z)‖22 ≤ Af(w, z) +B, ∀w ∈ W and z ∈ Z, (2.3)

where A = Ãκ2 and B = B̃κ2.

Assumption 2 Let λ > 0 and wλ be the minimizer

wλ := arg min
w∈W

{
E(w) + λ‖w‖22

}
. (2.4)

The approximation error is defined by D(λ) = E(wλ) − E(hρ) + λ‖wλ‖22. We assume that
D(λ) enjoys a polynomial decay with exponent 0 < α ≤ 1 in the sense D(λ) ≤ cαλα, ∀λ > 0
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for some cα > 0.

Remark 2 Assumption 2 is standard in learning theory and satisfied under some mild con-
ditions on the smoothness of the function hρ and the representation power ofW (Cucker and
Zhou, 2007; Steinwart and Christmann, 2008). If ` is smooth, then D(λ) can be controlled
by D̃(λ) := infw∈W ‖hw − hρ‖2L2

ρX
+ λ‖w‖22, which quantifies the approximation of hρ by

RKHS in L2
ρX (square-integrable function class with marginal measure ρX ) and is well stud-

ied in approximation theory. D̃(λ) decays polynomially with α ∈ (0, 1] if hρ ∈ Lα/2K (L2
ρX ),

where LK : L2
ρX 7→ L2

ρX is the integral operator associated to K (Cucker and Zhou, 2007,
Proposition 8.5). Similar results hold if ` is Lipschitz continuous. Assumption 2 also holds
if we use Gaussian kernels with flexible variances and distributions with geometric noise
conditions (Steinwart and Scovel, 2007).

Our next assumption is to assume that the projection of a predicted output onto the
interval [−b, b] can always improve the prediction accuracy, which is natural since we assume
the output belongs to [−b, b]. Examples of loss functions satisfying this assumption include
the p-norm hinge loss, p-th power absolute distance loss (1 ≤ p ≤ 2), the Huber loss and
the ε-insensitive loss (Wu et al., 2007; Steinwart and Scovel, 2007). With this assumption,
we can further improve the learning performance by taking a projection (Steinwart and
Christmann, 2009; Cucker and Zhou, 2007; Steinwart and Christmann, 2008; Wu et al.,
2007). For any h : X 7→ R, we define ĥ : X 7→ [−b, b] by

ĥ(x) = min
{
b,max{−b, h(x)}

}
.

Assumption 3 We assume `(ĥ(x), y) ≤ `(h(x), y) for all h, x and y.

2.1 Capacity-independent Learning Rates

Our first main result is a probabilistic learning rate for an average of iterates produced by
(2.1). It is known that any nonnegative and convex loss function satisfying Assumption 1
would satisfy `(a, y) ≤ c(a2 + 1),∀a ∈ R and y ∈ Y for a constant c (Lei and Tang, 2018).
Therefore, we can introduce parameters to better quantify the behavior of `. Let q ∈ [1, 2]
and cq ≥ 0 be constants such that

`(a, y) ≤ cq(|a|q + 1), ∀a ∈ R, y ∈ Y. (2.5)

All Lipschitz loss functions satisfy (2.5) with q = 1, including the hinge loss function and
the logistic loss function. The p-norm hinge loss function and the p-th power absolute loss
function satisfy (2.5) with q = p (p ∈ [1, 2]).

Remark 3 We use Eq. (2.5) to further characterize the growth behavior of loss functions.
As we will show in Remark 11 and Remark 15, we recover (almost) exactly the existing
learning rates for Tikhonov regularization with Lipschitz loss functions (q = 1) and SGD
with the least squares loss (q = 2). This shows that the above growth assumption seems to
capture the learning rates of SGD in different scenario. A similar assumption as |`′(a, y)| ≤
cq(|α|q−1+1) for q ≥ 1 was also imposed in the literature (Lin et al., 2016b), and the learning
rates there also depend on the parameter q. It would be very interesting to investigate
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whether this assumption is really necessary or can be removed. This growth assumption
can be implied by assuming the loss function to be Nemitski when Y is bounded, which
is introduced in Vito et al. (2004) (see also Steinwart and Christmann (2008)). Nemitski
condition is satisfied by most loss functions and provides natural variational characterization
of loss functions.

The learning rate in the following theorem is capacity-independent since it does not
rely on an assumption on the capacity of the associated hypothesis spaces, e.g., covering
numbers. The proof of Theorem 4 is given in Section 5.3. The notation U � V means
that there are constants C̃1, C̃2 > 0 such that C̃1U ≤ V ≤ C̃2U , where C̃1 and C̃2 are two
expressions depending on other variables.

Theorem 4 Let Assumptions 1-3 hold. Assume δ ∈ (0, 1) and η1 ≤ 1/A. If {wt}t∈N is the
sequence produced by (2.1) with ηt = η1t

−θ, θ > 1/2. then with probability at least 1− δ we

have the following inequality for T � n
1

(1+α)(1−θ)

E(ĥw̄T )− E(hρ) = O(n−
α

1+α log
3
2
n

δ
),

where w̄T =
(∑T

t=1 ηt
)−1∑T

t=1 ηtwt is an average of the first T iterates.

Remark 5 The bound O
(
n−

α
1+α log

3
2
n
δ

)
coincides with O(n−

α
1+α log n) (up to a logarithmic

factor) established in expectation for convex and smooth loss functions (Lin et al., 2016a),

and largely improves the bound O(n−
α

1+2α log n) in expectation for convex and non-smooth
loss functions (Lin et al., 2016a). In particular, if α = 1 we derive the optimal bound

O(n−
1
2 log

3
2
n
δ ) in the capacity-independent analysis (up to a logarithmic factor). It is also

clear that SGD with different stepsizes can achieve similar learning rates. However, the
computational complexity (measured by T ) to fulfill this statistical potential can be signifi-
cantly different.

Remark 6 In the conference article (Lei and Tang, 2018), we also establish the learning

rate O
(
n−

α
1+α log

3
2
n
δ

)
with high probability. However, the discussion there requires to as-

sume the existence of an empirical risk minimizer wz = arg infw Ez(w) with ‖wz‖2 < ∞.
Since wz varies with different realizations of training examples, this assumption is not in-
tuitive and hard to check in practice. Furthermore, this assumption leads to a misleading
result that over-fitting would not happen for SGD. In Theorem 4, we establish the same
learning rate without imposing such an assumption.

2.2 Capacity-dependent Learning Rates

In this section, we show that learning rates faster than O(n−
1
2 ) are possible if we impose

assumptions on the capacity of the hypothesis space as well as a relationship between vari-
ance and expectation of excess loss functions. We measure the capacity of a function space
by empirical covering numbers defined as the number of elements required to approximate
the whole function space to some accuracy.

Definition 7 (Covering number) Let F̃ be a class of real-valued functions defined over
a space Z̃ and S̃ := {z̃1, . . . , z̃n} ⊂ Z̃ of cardinality n. For any ε > 0, the empirical `2-norm
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covering number N2(ε, F̃ , S̃) w.r.t. S̃ is defined as the minimal number m of a collection of
vectors v1, . . . ,vm ∈ Rn such that (vji is the i-th component of the vector vj)

sup
f∈F̃

min
j=1,...,m

n−
1
2

( n∑
i=1

|f(z̃i)− vji |
2
) 1

2 ≤ ε.

In the following assumption, we assume that the logarithm of covering numbers grows
polynomially w.r.t. the reciprocal of approximation accuracy. This is a standard assumption
in statistical learning theory which is closely related to an assumption on the eigenvalue
decay of the integral operator associated with K (Cucker and Zhou, 2007; Steinwart and
Christmann, 2008). Denote HR = {hw : ‖w‖2 ≤ R}.

Assumption 4 Let Sx ⊂ X be a set of random examples. We assume the existence of
some ζ ∈ (0, 2) and cζ > 0 such that ESx

[
logN2(ε,H1, Sx)

]
≤ cζε

−ζ for all ε > 0, where
ESx denotes the expectation w.r.t. Sx.

We also need to impose a variance-expectation assumption on excess loss functions,
which means that the variance of the function x 7→ `(h(x), y)− `(hρ(x), y) can be bounded
by its expectation (Bartlett et al., 2006; Tsybakov, 2004).

Assumption 5 We assume the existence of cβ > 0 and β ∈ (0, 1] such that the following
inequality holds for all h : X 7→ [−b, b]

E
[(
`(h(x), y))− `(hρ(x), y)

)2] ≤ cβ(E(h)− E(hρ)
)β
.

The variance-expectation assumption plays an important role in deriving fast learning
rates due to the intuitive observation that a good model with low population risk also ex-
hibits a low variance under Assumption 5, and therefore one can apply Bernstein-type con-
centration inequalities to exploit this variance assumption (Blanchard et al., 2008; Bartlett
et al., 2006; Tsybakov, 2004; Blanchard et al., 2003). It was shown that Assumption 5
holds for loss functions ` satisfying some strict convexity (Bartlett et al., 2006), which
include p-norm absolute distance loss, p-norm hinge loss with p ∈ (1, 2], truncated least
squares loss function, logistic loss function and exponential loss function (Bartlett et al.,
2006). Assumption 5 is also related to the property of marginal condition for classification
problems. For example, if the conditional property ρ(y|x) satisfies the so-called Tsybakov
margin condition (Tsybakov, 2004) as follows

ρX
({
x ∈ X : |ρ(1|x)− 1/2| ≤ δ

})
≤ Cδs

for some C and all δ > 0, then Assumption 5 holds with β = s
s+1 for the hinge loss.

Under the above assumptions, we now present our second main results on fast learning
rates of an average of SGD iterates. The proof of Theorem 8 is given in Section 6.3.

Theorem 8 Let Assumptions 1-5 hold. Assume δ ∈ (0, 1) and η1 ≤ 1/A. Let {wt}t∈N be
the sequence produced by (2.1) with ηt = η1t

−θ, θ > 1/2.

(a) If 2α + αβζ + ζ + αq ≥ αζ + 2αβ + q, then with T � n
2

(ζ+4α+αβζ−αζ−2αβ)(1−θ) we derive
the following inequality with probability at least 1− δ

E(ĥw̄T )− E(hρ) = O(log
3
2 (n/δ))n

2α
(α−1)ζ−4α+2αβ−αβζ . (2.6)
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(b) If 2α + αβζ + ζ + αq < αζ + 2αβ + q, then with T � n
2(2α−2αβ+αβζ−αζ−4+2β−βζ+ζ+αq−q)

(4−2β+βζ)(αq−2α−q)(1−θ)

we derive the following inequality with probability at least 1− δ

E(ĥw̄T )− E(hρ) = O(log
3
2 (n/δ))n

2α
αq−2α−q . (2.7)

Remark 9 According to Theorem 8, several parameters affect the generalization behavior
of SGD. In particular, we need to early stop SGD by considering two cases. Here, we give an
intuitive interpretation. As we will show in Lemma 19, we need to control Ez(wλ)−Ez(wk)
in the estimation of ‖wt‖2. Our idea is to relate Ez(wλ) − Ez(wk) by TA = Ez(wλ) −
Ez(hρ)−E(wλ) + E(hρ) and TB = Ez(hρ)−Ez(ĥwk)−E(hρ) + E(ĥwk) (Eq. (6.4)). To apply
Bernstein inequality to control TA, we need to control `(hwλ(x), y), which is bounded by

O(‖wλ‖q2) = O(λ
q(α−1)

2 ) due to Assumption 2 and Assumption (2.5) (we actually only use
Assumption (2.5) to control `(hwλ(x), y)). We apply concentration inequalities in empirical
process to control TB since wk is a random variable, which depends on the capacity of the
hypothesis space as reflected by the parameter ζ. It is clear that TA and TB increase with
increasing q and ζ, respectively. We distinguish the two cases in Theorem 8 by considering
whether TA or TB is dominant. If ζ is large then the term TB would be dominant. This
corresponds to the case (a) in Theorem 8 and this explains why the parameter q does not
affect the rate in (2.6). If q is large (as compared to ζ), then the dominant term between TA
and TB is TA. This corresponds to the case (b) and this explains why the parameter ζ does
not affect the generalization bound in (2.7). Notice that the capacity-independent analysis
corresponds to the case ζ = 2, and in this case TA is dominated by TB, and therefore the
associated learning rates do not depend on q. Furthermore, the generalization performance
always improves if α and β increase.

We now present some specific learning rates which follow directly from Theorem 8 with
specific instantiations of either q or β. We omit the proof for brevity. If we consider
Lipschitz continuous loss functions (e.g., hinge loss and ε-insensitive loss), we can derive the
following learning rates.

Corollary 10 Let Assumptions 1-5 hold and q = 1. Assume δ ∈ (0, 1) and η1 ≤ 1/A. Let
{wt}t∈N be the sequence produced by (2.1) with ηt = η1t

−θ, θ > 1/2.

(a) If 3α + αβζ + ζ ≥ αζ + 2αβ + 1, then with T � n
2

(ζ+4α+αβζ−αζ−2αβ)(1−θ) we derive the
following inequality with probability at least 1− δ

E(ĥw̄T )− E(hρ) = O(log
3
2 (n/δ))n

2α
(α−1)ζ−4α+2αβ−αβζ .

(b) If 3α+ αβζ + ζ < αζ + 2αβ + 1, then with T � n
2(3α−2αβ+αβζ−αζ−4+2β−βζ+ζ−1)

(4−2β+βζ)(αq−2α−q)(1−θ) we derive
the following inequality with probability at least 1− δ

E(ĥw̄T )− E(hρ) = O(log
3
2 (n/δ))n−

2α
α+1 .

Remark 11 The best learning rate for Tikhonov regularization with Lipschitz loss func-

tions is O(max
{
n

2α
(α−1)ζ−4α+2αβ−αβζ , n−

2α
α+1
}

), (see, e.g., Steinwart and Christmann, 2008,
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Chapter 7), which, however, does not take into account optimization errors. Corollary 10
shows that this best learning rate can be achieved by SGD (up to a logarithmic factor)
where the trade-off among optimization errors, approximation errors and estimation errors
is considered.

If Assumption 5 holds with β = 1, then we derive the following learning rates.

Corollary 12 Let Assumptions 1-5 hold and β = 1. Assume δ ∈ (0, 1) and η1 ≤ 1/A. Let
{wt}t∈N be the sequence produced by (2.1) with ηt = η1t

−θ, θ > 1/2.

(a) If ζ + αq ≥ q, then with T � n
2

(2α+ζ)(1−θ) we derive the following inequality with proba-
bility at least 1− δ

E(ĥw̄T )− E(hρ) = O(log
3
2 (n/δ))n

− 2α
2α+ζ .

(b) If ζ + αq < q, then with T � n
2(2+q−αq)

(2+ζ)(2α+q−αq)(1−θ) we derive the following inequality with
probability at least 1− δ

E(ĥw̄T )− E(hρ) = O(log
3
2 (n/δ))n

2α
αq−2α−q .

Remark 13 Fast learning rates of the order O(n
− 2α

2α+ζ ) were established for regularized risk
minimization with self-concordant loss functions (Marteau-Ferey et al., 2019), which include
generalized linear models. Their discussion makes a source assumption and a capacity
assumption in terms of Hessian at optimum, which are different from Assumption 2 and
Assumption 4, respectively. Furthermore, the variance-expectation assumption is removed
in their discussion due to the concordance of loss functions. A nice property of their analysis
is that it applies also to the case α > 1, and therefore does not suffer from the saturation
effect. As a comparison, our analysis applies only to α ∈ (0, 1]. Our analysis differs from
theirs by considering different assumptions and a different algorithm where the optimization
errors need to be addressed.

As a direct application of Corollary 12 with q = 2, we can derive the optimal learning
rates for SGD applied to learning problems with the least squares loss function (Lin and
Rosasco, 2017).

Corollary 14 (Least squares) Let Assumptions 2, 4 hold and the loss function be the
least squares. Assume δ ∈ (0, 1) and η1 ≤ 1/A. Let {wt}t∈N be the sequence produced by
(2.1) with ηt = η1t

−θ, θ > 1/2.

(a) If α + ζ/2 ≥ 1, then with T � n
2

(2α+ζ)(1−θ) , we derive the inequality E(ĥw̄T ) − E(hρ) =

O(log
3
2 (n/δ))n

− 2α
2α+ζ with probability at least 1− δ.

(b) If α + ζ/2 < 1, then with T � n
4−2α

(ζ+2)(1−θ) , we derive the inequality E(ĥw̄T ) − E(hρ) =

O(log
3
2 (n/δ))n−α with probability at least 1− δ.

Remark 15 Optimal learning rates for SGD have already been derived for the specific least

squares loss. In more details, learning rates of the order O(n
− 2α

2α+ζ ) and O(nε−α) for an
arbitrary small ε > 0 were derived for the case α+ζ/2 ≥ 1 and α+ζ/2 < 1 (up to logarithmic
factors), respectively (Lin and Rosasco, 2017). Our learning rates are consistent with theirs.
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3. Discussions

In this section, we compare our learning rates with state-of-the-art results. We first compare
our results to capacity-independent and capacity-dependent analysis of SGD, for each of
which we consider both one-pass SGD and multi-pass SGD. We also give discussions with
related work on stepsize, averaging and gradient descent (GD).

3.1 Related Work on Capacity-independent Analysis

One-pass SGD. One-pass SGD has been well studied in the literature (Ying and Pontil,
2008; Nemirovski et al., 2009; Rakhlin et al., 2012; Shamir and Zhang, 2013; Tarres and
Yao, 2014; Orabona, 2014; Ying and Zhou, 2006; Bach and Moulines, 2013; Orabona, 2019).

For the specific least squares loss, learning rates of the order O(n−
α
α+1 log n) were derived

for unregularized SGD (Ying and Pontil, 2008) and regularized SGD (Tarres and Yao,

2014). For general loss functions, learning rates of the order O(n
ε− α

2(α+1) log n) for an
arbitrary small ε > 0 were derived in Ying and Zhou (2006), which were improved to

O(n−
α
α+1 log n) in Lin and Zhou (2018). If one does not consider approximation errors

(α = 1), the minimax optimal learning rates of the order O(1/
√
n) were well-known for

one-pass SGD with averaging (Zhang, 2004; Nemirovski et al., 2009; Bach and Moulines,
2011). Some later work showed that one can go pass the rate O(1/

√
n) for an averaged

SGD with smooth self-concordant losses, e.g., the least square and logistic loss (Bach and
Moulines, 2013). More recently, an averaged SGD with a constant step size was shown to
be able to adapt the local strong convexity of the objective function with Lipschitz self-
concordant losses, leading to convergence rates of the order O(1/(nµ)) with µ being the
lowest eigenvalue of the Hessian at the global optimum (Bach, 2014). A nice property is
that the implementation does not require the information of µ. This result applies to logistic
loss and generalized linear models.

Multi-pass SGD. As compared to the one-pass SGD, the generalization performance of
multi-pass SGD was much less studied. The landmark work in Bousquet and Bottou (2008)
developed a framework to analyze the generalization performance of multi-pass stochastic
learning algorithms by taking into account the computational complexity of learning algo-
rithms. Under this framework, the interplay among estimation errors, optimization errors
and approximation errors can be studied, showing that an implicit regularization can be
achieved in the absence of penalization or constraints by tuning either the stepsize or the
number of passes (the number of iterations divided by the sample size) (Rosasco and Villa,
2015; Lin and Rosasco, 2017; Lin et al., 2016a; Hardt et al., 2016).

Multi-pass SGD with a fixed ordering at each pass was investigated for the specific
least squares loss, where learning rates O(n−

α
α+2 ) were established for a constant step-

size (Rosasco and Villa, 2015). In a parametric setting, it was shown that SGD is algorith-
mically stable (Bousquet and Elisseeff, 2002; Shalev-Shwartz et al., 2010) and the stability
measure of SGD with T iterations scales as O(n−1

∑T
t=1 ηt) (Hardt et al., 2016), based

on which a generalization bound E[E(w̄T )] − infw∈W E(w) = O(n−
1
2 ) was established for

ηt = O(1/
√
n) and T � n without considering approximation errors. The discussion in

Hardt et al. (2016) requires to impose a smoothness assumption on loss functions. Gener-
alization analysis was considered separately for smooth and non-smooth loss functions (Lin

10
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et al., 2016a). For smooth loss functions, it was shown E[E(w̄T )]−E(hρ) = O(n−
α

1+α log n)

for ηt = η1/
√
t with T � n

2
α+1 (Lin et al., 2016a), based on the stability property of

SGD established in Hardt et al. (2016). For non-smooth loss functions, it was shown

E[E(w̄T )] − E(hρ) = O(n−
α

2α+1 log n) for ηt = η1/
√
t and T � n

2
2α+1 (Lin et al., 2016a),

by controlling estimation errors with Rademacher complexities (Bartlett and Mendelson,
2002). Still, the bounds in Lin et al. (2016a); Hardt et al. (2016) require to impose a bound-
edness assumption on subgradients and are stated in expectation. Feldman and Vondrak
(2019) established a framework to get nearly optimal learning rates for uniformly stable
algorithm, and then applied it to projected SGD for Lipschitz and smooth loss functions.
For projected SGD with constant stepsize ηt = 1/

√
T and T � n, they derived almost

optimal learning rates O(log(n) log2(n/δ)/
√
n). The projected SGD requires a projection

of SGD iterates onto a compact domain at each iteration. As a comparison, we consider
projection-free algorithm and our purpose is to show that the implicit regularization can be
achieved without either a penalty or a constraint. Furthermore, our learning rate analysis
extends the analysis in Hardt et al. (2016) to non-smooth loss functions and substantially

improve the bound O(n−
α

2α+1 log n) (Lin et al., 2016a) in this setting. The generalization

error bound O
(
n−

α
1+α log

3
2
n
δ

)
in Theorem 4 is optimal in the sense that it matches the best

available bound for Tikhonov regularization (up to a logarithmic factor) (Cucker and Zhou,
2007; Steinwart and Christmann, 2008; Lin et al., 2016a). Our learning rates are stated
with high probability, which are beneficial to understand the variety of the learned model
as compared to the results in expectation (Hardt et al., 2016; Lin et al., 2016a). It should
be emphasized that our discussion requires no bounded subgradient assumption imposed in
the literature (Hardt et al., 2016; Lin et al., 2016a; Feldman and Vondrak, 2019).

Generalization bounds for multi-pass SGD were also studied from a PAC-Bayesian per-
spective (London, 2017). However, the high-probability bounds there require to impose
Lipschitz continuity, smoothness and strong convexity assumptions on loss functions, and
ignore optimization and approximation errors (London, 2017).

3.2 Related Work on Capacity-dependent Analysis

One-pass SGD. Better learning rates are possible if a capacity assumption is imposed
(Cucker and Zhou, 2007; Steinwart and Christmann, 2008). For the one-pass SGD with

the specific least squares loss, the learning rates O(n
− 2α

2α+ζ ) and O(n−α) have been derived
for the case α + ζ/2 ≥ 1 and α + ζ/2 < 1, respectively, under a source condition different
from Assumption 2 (Dieuleveut and Bach, 2016). Their results suffer from a saturation
effect, i.e., the learning rate does not improve after α reaching a critical point. It was
recently observed that this saturation effect is due to the use of uniform averaging (Mücke
et al., 2019), based on which the authors proposed a tail-averaging to successfully address
the saturation effect.

Multi-pass SGD. Optimal learning rates for multi-pass SGD with the least squares loss were

recently developed (Lin and Rosasco, 2017). Specifically, the learning rates O(n
− 2α

2α+ζ ) were

derived in the case α+ζ/2 ≥ 1 with T � n
2

2α+ζ
+1

, while the learning rates O(nε−α) with an
arbitrarily small ε > 0 were derived in the case α+ζ/2 < 1 with T � n2−ε. The results there
hold with high probability w.r.t. the random training examples and in expectation w.r.t.

11
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the random indices j1, . . . , jT . As a comparison, Corollary 14 slightly extends the results

in Lin and Rosasco (2017) from O(nε−α) to O(n−α log
3
2 (n)) in the case α + ζ/2 < 1, and

is stated with high probability w.r.t. both the random training examples and the random
indices. The results in Lin and Rosasco (2017) also cover the strategy with mini-batches
and an attainable case, which were then extended to multi-pass SGD with the least squares
loss in a distributed learning setting (Lin and Cevher, 2018). A refined analysis for the
case α + ζ/2 < 1 was further conducted by imposing an additional assumption on the
regularity of objective functions in the hypothesis space w.r.t. the `∞-norm (Pillaud-Vivien
et al., 2018b). It should be mentioned that, different from Assumption 4, a related capacity
assumption measured by the associated integral operator was imposed in these analysis (Lin
and Rosasco, 2017; Lin and Cevher, 2018; Dieuleveut and Bach, 2016; Pillaud-Vivien et al.,
2018b).

To our best knowledge, the existing capacity-dependent learning rates of multi-pass
SGD are all stated for the specific least squares loss function. In this paper, we establish
the first capacity-dependent learning rates of multi-pass SGD for a general convex loss
function. With specific instantiations, we immediately derive learning rates matching the
best one developed for the Tikhonov regularization with Lipschitz loss functions (Steinwart
and Christmann, 2008), and the minimax optimal one for the Tikhonov regularization with
the least squares loss function (Caponnetto and De Vito, 2007). It should be mentioned
that the optimization errors are ignored in the analysis for Tikhonov regularization. In this
sense, our analysis sheds new insights on how optimization errors, approximation errors and
estimation errors should be balanced to achieve an optimal generalization performance for
learning with general convex loss functions.

The optimal learning rates for general convex loss functions are achieved here by es-
tablishing a unifying norm estimate of wt applicable to both capacity-independent and
capacity-dependent case. We can apply different concentration inequalities (Boucheron
et al., 2013) in these two cases to control the associated random variables, which in turn
lead to explicit norm estimates of SGD iterates able to imply satisfactory learning rates.

3.3 Discussions on Stepsize and Averaging

In this paper, we consider averaged SGD with a decaying stepsize. In the literature, several
variants of SGD with different averaging schemes and stepsizes were shown to achieve
optimal generalization bounds with less computation (Bach and Moulines, 2013; Dieuleveut
and Bach, 2016; Pillaud-Vivien et al., 2018b; Mücke et al., 2019). For example, it was
shown that the uniform averaging allows for a large constant stepsize (Dieuleveut and
Bach, 2016). Recently, it was shown that tail-averaging and minibatch can further overcome
the saturation effect (Mücke et al., 2019). The consideration of a large constant stepsize
significantly reduces the number of passes required for getting optimal learning rates. In
particular, the optimal bounds in Dieuleveut and Bach (2016); Mücke et al. (2019) were
achieved for one-pass SGD. As a comparison, we require multi-pass SGD to get optimal
bounds due to the consideration of a decaying stepsize. The reason to consider a decaying
stepsize is that we study general convex loss functions, and use a uniform convergence
approach instead of the integral operator approach (Dieuleveut and Bach, 2016; Mücke
et al., 2019). In our approach, an essential ingredient is to estimate the norm of SGD
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iterates. A large constant stepsize makes these norm challenging to control. Actually our
estimation error analysis applies to any single SGD iterate and fails to use the advantage of
averaging schemes in allowing for a large stepsize. It would be very interesting to investigate
how to exploit the advantage of averaging in the uniform convergence approach, and how to
achieve optimal learning rates for one-pass SGD with a large constant stepsize for general
convex loss functions. The reason to consider averaged SGD is to simplify the optimization
error analysis. Optimization errors for the last iterate of SGD were studied in Shamir and
Zhang (2013); Harvey et al. (2019). However, the results in Shamir and Zhang (2013) are
stated in expectation, while the high-probability analysis in Harvey et al. (2019) imposes
assumptions on the boundedness of gradients and is performed for projected SGD. As
a comparison, our aim is to show the implicit regularization effect of SGD without any
explicit constraint and we also want to remove the bounded gradient assumptions. How to
remove these assumptions and get optimal learning rates for the last SGD iterate remains
an interesting problem for future study.

3.4 Related Work on Gradient Descent

In this subsection, we compare our results with related work on GD.

We first consider GD with general convex loss functions. The iterative regularization
effect of GD was studied in Lin et al. (2016b) for general convex loss functions, where the
iterates are updated by wG

t+1 = wG
t − ηtE ′z(wG

t ). If q = 1, it was shown that GD with

ηt = η1/
√
t and T � n

4
(2α+1)(2−β+βζ/2) satisfies E(wG

T ) − E(hρ) = Õ
(
n
− 2α

(2α+1)(2−β+βζ/2)
)
. It

can be checked that (α−1)ζ ≥ β−2−βζ/2 and α+1 ≤ (2α+1)(2−β+βζ/2), and therefore
the learning rates in Lin et al. (2016b) are worse than those in Corollary 10. In particular,

if α = 1, the discussion in Lin et al. (2016b) implies generalization bounds Õ(n
2

3(β−2−βζ/2) ),

while Corollary 10 implies better learning rates Õ(n
2

2β−4−βζ ). If the loss function is further

smooth, then it was shown that GD with a constant stepsize and T � n
2

(1+2α)(2−β+βζ/2) is

able to show the learning rate O(n
− 2α

(2α+1)(2−β+βζ/2) ) (Lin et al., 2016b), which is again slower
than our learning rate in Corollary 10.

We now consider GD with the least square loss. Capacity-independent learning rates
of the order O(n−

α
α+1 ) were developed in Bauer et al. (2007). Optimal capacity-dependent

learning rates O(n
− 2α

2α+ζ ) were established in Caponnetto and Yao (2010) by introducing
extra unlabeled data. If α + ζ/2 ≥ 1, it was shown that GD with a constant stepsize and

T � n
1

α+ζ/2 achieves the learning rate Õ(n
− 2α

2α+ζ ) (Lin and Rosasco, 2017). If α+ ζ/2 < 1,
then GD with T � n1−ε implies the learning rate Õ(n−α(1−ε)) (Lin and Rosasco, 2017). It
is clear that these learning rates match Corollary 14. If we choose θ = 1/2 in Corollary

14 (our results hold for θ arbitrarily close to 1/2), then Corollary 14 requires T � n
4

2α+ζ

for the case α + ζ/2 ≥ 1 and T � n
8−4α
ζ+2 for the case α + ζ/2 < 1. If α + ζ/2 ≥ 1,

then it is clear that 4/(2α + ζ) ≤ 2/(2α + ζ) + 1 (an iterate of GD corresponds to n
iterations of SGD) and therefore our analysis shows that SGD can achieve optimal learning
rates with less computation as compared with the results in Lin and Rosasco (2017). If
α + ζ/2 < 1, then our analysis requires more computation but achieves a slightly better
learning rate by removing ε. It should be mentioned that the discussions in Lin and Rosasco
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(2017) considered a source assumption hρ ∈ L
α/2
K (LαρX ) different from Assumption 2. A

nice property of these results is that their analysis also applies to the case α > 1 (Lin
and Rosasco, 2017), and the generalization improves if the regression function has more
regularity. As a comparison, our rates only apply to the case α ∈ (0, 1].

4. Complexity Control and Basic Idea

4.1 Basic Complexity Control

An essential component to control estimation errors and optimization errors is to control
the complexity of SGD iterates measured by the RKHS norm. In this subsection, we first
give a lemma to show ‖wt‖22 can be bounded by O(1)

∑t
k=1 ηk (Lemma 17), which is further

refined by showing ‖wt‖22 = O(1)
∑t

k=1 ηk max{0, Ez(wλ)− Ez(wk)} (Lemma 19). Further-
more, Lemma 17 gives a bound on

∑t
k=1 η

2
kf(wk, zjk), which together with the self-bounding

property of loss functions, gives a bound on
∑t

k=1 η
2
k‖f ′(wk, zjk)‖22. The existing studies re-

quire a bounded gradient assumption to show
∑t

k=1 η
2
k‖f ′(wk, zjk)‖22 = O

(∑t
k=1 η

2
k

)
(Hardt

et al., 2016; Lin et al., 2016a), which is removed here. Before introducing Lemma 17, we
give a simple lemma to be proved in Section B relating properties of loss functions ` to
properties of f . Without loss of generality, we always assume c̃q ≥ 1.

Lemma 16 (a) If the loss function ` satisfies (2.2), then (2.3) holds.

(b) If the loss function ` satisfies `(a, y) ≤ cq(|a|q + 1) for all a and y ∈ Y, then for any
w ∈ W we have f(w, z) ≤ c̃q

(
‖w‖q2 + 1

)
, where c̃q = cq max{κq, 1}.

Lemma 17 Let Assumption 1 hold and C1 = 2 supy `(0, y) + A−1B. Let {wt}t∈N be the
sequence produced by (2.1) with ηt ≤ 1/A. Then

‖wt+1‖22 ≤ C1

t∑
k=1

ηk (4.1)

and
t∑

k=1

η2
kf(wk, zjk) ≤ C1

t∑
k=1

η2
k. (4.2)

Proof It follows from (2.1), Part (a) of Lemma 16 and the convexity of f that

‖wt+1 −w‖22 =
∥∥wt − ηtf ′(wt, zjt)−w

∥∥2

2

= ‖wt −w‖22 + η2
t ‖f ′(wt, zjt)‖22 + 2

〈
w −wt, ηtf

′(wt, zjt)
〉

≤ ‖w −wt‖22 + η2
t

(
Af(wt, zjt) +B

)
+ 2
〈
w −wt, ηtf

′(wt, zjt)
〉

(4.3)

≤ ‖w −wt‖22 + η2
t

(
Af(wt, zjt) +B

)
+ 2ηt

(
f(w, zjt)− f(wt, zjt)

)
.

If we take w = 0 in the above inequality, then

‖wt+1‖22 ≤ ‖wt‖22 + η2
t

(
Af(wt, zjt) +B

)
+ 2ηt

(
`(0, yjt)− f(wt, zjt)

)
= ‖wt‖22 + ηtf(wt, zjt)(Aηt − 2) + ηt

(
2`(0, yjt) + ηtB

)
≤ ‖wt‖22 − ηtf(wt, zjt) + ηt

(
2`(0, yjt) +A−1B

)
, (4.4)

14



Multi-pass Stochastic Gradient Descent

where we have used ηt ≤ 1/A. Taking a summation of the above inequality then shows

‖wt+1‖22 = ‖w1‖22 +
t∑

k=1

[
‖wk+1‖22 − ‖wk‖22

]
≤ C1

t∑
k=1

ηk,

This establishes (4.1). We now prove (4.2). Multiplying both sides of (4.4) by ηt followed
with a reformulation gives

η2
t f(wt, zjt) ≤ ηt‖wt‖22 − ηt‖wt+1‖22 + η2

tC1

≤ ηt‖wt‖22 − ηt+1‖wt+1‖22 + C1η
2
t ,

where we have used ηt+1 ≤ ηt. A summation of the above inequality then implies

t∑
k=1

η2
kf(wk, zjk) ≤

t∑
k=1

(
ηk‖wk‖22 − ηk+1‖wk+1‖22

)
+ C1

t∑
k=1

η2
k ≤ C1

t∑
k=1

η2
k.

The proof is complete.

To prove Lemma 19, we first introduce a lemma to relate Ez(wλ) to E(wλ) with wλ

defined in (2.4). The proof is given in Section B.

Lemma 18 Let δ ∈ (0, 1), ρ ∈ (0, 1] and wλ be defined in (2.4). Then, the following
inequality holds with probability at least 1− δ

Ez(wλ)− E(wλ) ≤ ρE(0) + c̃q(ρn)−1
(
‖wλ‖q2 + 1

)
log(1/δ). (4.5)

Lemma 19 Let Assumption 1 hold. Assume n−1‖wλ‖q2 ≤ c
q
2
α and δ ∈ (0, 2/e) (e is the base

of the natural logarithm). If {wt}t∈N is the sequence produced by (2.1) with ηt ≤ 1/A, ηt+1 ≤
ηt and

∑∞
t=1 η

2
t <∞, then with probability at least 1− δ we have the following inequality

‖wt+1‖22 ≤ 8
t∑

k=1

ηk max{0, Ez(wλ)−Ez(wk)}+C2 log
2T

δ
(‖wλ‖22+1), ∀ t = 1, . . . , T, (4.6)

where C2 is a constant independent of T and n (explicitly given in the proof).

Proof Taking w = wλ in (4.3), we know

‖wt+1 −wλ‖22 ≤ ‖wt −wλ‖22 + η2
t

(
Af(wt, zjt) +B

)
+ 2ηt

〈
wλ −wt, f

′(wt, zjt)

− Ejt
[
f ′(wt, zjt)

]〉
+ 2ηt

〈
wλ −wt,Ejt

[
f ′(wt, zjt)

]
〉

≤ ‖wt −wλ‖22 + η2
t

(
Af(wt, zjt) +B

)
+ 2ηt

〈
wλ −wt, f

′(wt, zjt)

− Ejt
[
f ′(wt, zjt)

]〉
+ 2ηt

(
Ez(wλ)− Ez(wt)

)
,

where the last inequality is due to the convexity of f . Taking a summation of the above
inequality shows

‖wt+1−wλ‖22 ≤ ‖w1−wλ‖22+(AC1+B)
t∑

k=1

η2
k+2

t∑
k=1

ξk+2
t∑

k=1

ηk
(
Ez(wλ)−Ez(wk)

)
, (4.7)
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where we have used Lemma 17 and introduced

ξk = ηk
〈
wλ −wk, f

′(wk, zjk)− Ejk
[
f ′(wk, zjk)

]〉
. (4.8)

It is clear that Ejk [ξk] = 0 and therefore {ξk}k∈N is a martingale difference sequence. The
variance of ξk can be bounded by

Ejk [(ξk − Ejk [ξk])
2] = Ejk [ξ2

k] ≤ η2
kEjk

[〈
wλ −wk, f

′(wk, zjk)
〉2
]

≤ η2
k‖wλ −wk‖22Ejk

[∥∥f ′(wk, zjk)
∥∥2

2

]
≤ η2

k‖wλ −wk‖22Ejk
[
Af(wk, zjk) +B

]
= η2

k‖wλ −wk‖22
(
AEz(wk) +B

)
,

where in the first step we have used E[(ξ − E[ξ])2] ≤ E[ξ2] for any real-valued random
variable ξ and in the last second step we have used Part (a) of Lemma 16. A summation of
the above inequality then shows

t∑
k=1

Ejk
[(
ξk − Ejk [ξk]

)2]
≤ A

t∑
k=1

η2
k‖wλ −wk‖22 max{Ez(wk)− Ez(wλ), 0}+

(
AEz(wλ) +B

) t∑
k=1

η2
k‖wλ −wk‖22.

By the elementary inequality

(a+ b)2 ≤ 2(a2 + b2), ∀a, b ∈ R, (4.9)

we know

η2
k‖wλ −wk‖22≤2η2

k

(
‖wλ‖22+‖wk‖22

)
≤2ηk

(
‖wλ‖22ηk+ηkC1

k∑
j=1

ηj
)
≤ 2ηk

(
‖wλ‖22ηk+C1C3

)
,

where we have used Lemma 17 and introduced C3 := supk ηk
∑k

j=1 ηj ≤
∑k

j=1 η
2
j < ∞. It

then follows that

t∑
k=1

Ejk
[(
ξk − Ejk [ξk]

)2] ≤ 2A
t∑

k=1

ηk
(
‖wλ‖22ηk + C1C3

)
max{Ez(wk)− Ez(wλ), 0}

+
(
AEz(wλ) +B

) t∑
k=1

η2
k‖wλ −wk‖22.

By (4.9), we also have

|ξk| ≤
ηk
2

[
‖wλ −wk‖22 + ‖f ′(wk, zjk)− Ejk [f ′(wk, zjk)]‖22

]
≤ ηk

[
‖wλ‖22 + ‖wk‖22 + ‖f ′(wk, zjk)‖22 + ‖Ejk [f ′(wk, zjk)]‖22

]
. (4.10)
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It follows from Lemma 16 that

‖f ′(wk, zjk)‖22 ≤ Af(wk, zjk) +B ≤ Ac̃q
(
‖wk‖q2 + 1

)
+B ≤ Ac̃q‖wk‖22 + 2Ac̃q +B,

(4.11)

where we have used the inequality ‖wk‖q2 ≤ ‖wk‖22 + 1 for q ∈ [1, 2]. Combining the above
two inequalities together, we derive the following inequality on the magnitude of ξk−Ejk [ξk]

ξk − Ejk [ξk] ≤ η1

(
‖wλ‖22 + 4Ac̃q + 2B

)
+
(
2Ac̃q + 1

)
C1ηk

k∑
j=1

ηj ≤ C4

(
‖wλ‖22 + 1

)
,

where we have used (4.1), the definition of C3 and introduced C4 = max{η1(4Ac̃q + 2B) +
(2Ac̃q + 1)C1C3, η1}.

Plugging the above two bounds on magnitudes and variances of random variables into
Part (b) of Lemma A.1, we derive the following inequality with probability at least 1− δ/2

t∑
k=1

ξk ≤
ρ

C4(‖wλ‖22 + 1)

(
2A

t∑
k=1

ηk
(
‖wλ‖22ηk + C1C3

)
max{Ez(wk)− Ez(wλ), 0}

+
(
AEz(wλ) +B

) t∑
k=1

η2
k‖wλ −wk‖22

)
+
C4(‖wλ‖22 + 1) log 2

δ

ρ
,

where ρ = min{1, C4(‖wλ‖22+1)

2A(η1‖wλ‖22+C1C3)
}. For any t, combining the above inequality and (4.7)

together, we derive the following inequality with probability at least 1− δ/2

‖wt+1 −wλ‖22 ≤ ‖wλ‖22 + (AC1 +B)
t∑

k=1

η2
k + 2

t∑
k=1

ηk max{Ez(wk)− Ez(wλ), 0}

+
AEz(wλ) +B

AC1C3

t∑
k=1

η2
k‖wk −wλ‖22 +

2C4(‖wλ‖22 + 1) log 2
δ

ρ
+ 2

t∑
k=1

ηk
(
Ez(wλ)− Ez(wk)

)
= ‖wλ‖22 + (AC1 +B)

t∑
k=1

η2
k + 2

t∑
k=1

ηk max{0, Ez(wλ)− Ez(wk)}+

AEz(wλ) +B

AC1C3

( t1∑
k=1

η2
k‖wk −wλ‖22 +

t∑
k=t1+1

η2
k‖wk −wλ‖22

)
+

2C4(‖wλ‖22 + 1) log 2
δ

ρ
,

where t1 is an integer to be fixed later and we have used ρ ≤ C4(‖wλ‖22+1)

2A(η1‖wλ‖22+C1C3)
in the first

step. An union bound on probabilities of events then gives the following inequality with
probability at least 1− δ/2 for all t = 1, . . . , T

‖wt+1 −wλ‖22 ≤ ‖wλ‖22 + (AC1 +B)
t∑

k=1

η2
k + 2

t∑
k=1

ηk max{0, Ez(wλ)− Ez(wk)}

+
AEz(wλ) +B

AC1C3

( t1∑
k=1

η2
k‖wk−wλ‖22+ sup

1≤k̃≤t
‖wk̃−wλ‖22

t∑
k=t1+1

η2
k

)
+
C4(‖wλ‖22 + 1) log 2T

δ

ρ
.

17



Lei, Hu and Tang

On the other hand, Lemma 18 with ρ = 1 and n−1‖wλ‖q2 ≤ c
q
2
α implies the following

inequality with probability at least 1− δ/2

Ez(wλ)− E(wλ) ≤ E(0) + c̃q(c
q
2
α + 1) log(2/δ).

Combining the above two inequalities together with an union bound on probabilities of
events then gives the following inequality with probability at least 1− δ for all t = 1, . . . , T
(note E(wλ) ≤ E(0))

‖wt+1 −wλ‖22 ≤ ‖wλ‖22 + (AC1 +B)
t∑

k=1

η2
k + 2

t∑
k=1

ηk max{0, Ez(wλ)− Ez(wk)}+

AE(0)+B+C5 log 2
δ

AC1C3

( t1∑
k=1

η2
k‖wk−wλ‖22+ sup

1≤k̃≤t
‖wk̃−wλ‖22

t∑
k=t1+1

η2
k

)
+

2C4(‖wλ‖22 + 1) log 2T
δ

ρ
,

where C5 = A
(
E(0)+ c̃q(c

q
2
α +1)

)
. The assumption

∑∞
t=1 η

2
t <∞ guarantees the existence of

t1 such that
∑∞

k=t1+1 η
2
k <

2−1AC1C3

AE(0)+B+C5 log 2
δ

and therefore we derive the following inequality

with probability 1− δ for all t = 1, . . . , T (the right-hand side is an increasing function of t)

sup
t̃=1,...,t+1

‖wt̃ −wλ‖22 ≤ ‖wλ‖22 + (AC1 +B)
t∑

k=1

η2
k + 2

t∑
k=1

ηk max{0, Ez(wλ)− Ez(wk)}

+
AE(0) +B + C5 log 2

δ

AC1C3

t1∑
k=1

η2
k‖wk−wλ‖22+2−1 sup

1≤k̃≤t+1

‖wk̃−wλ‖22+
2C4(‖wλ‖22 + 1) log 2T

δ

ρ
,

from which we derive the following inequality with probability at least 1− δ

sup
t̃=1,...,t+1

‖wt̃ −wλ‖22 ≤ 2‖wλ‖22 + 2(AC1 +B)
t∑

k=1

η2
k + 4

t∑
k=1

ηk max{0, Ez(wλ)− Ez(wk)}

+
4AE(0) + 4B + 4C5 log 2

δ

AC1C3

(
C1C3

t1∑
k=1

ηk + ‖wλ‖22
t1∑
k=1

η2
k

)
+

4C4(‖wλ‖22 + 1) log 2T
δ

ρ
.

Here we have used the following inequality due to (4.9), Lemma 17 and the definition of C3

t1∑
k=1

η2
k‖wk −wλ‖22 ≤ 2C1

t1∑
k=1

η2
k

k∑
j=1

ηj + 2‖wλ‖22
t1∑
k=1

η2
k.

This together with Eq. (4.9) and the definition of ρ gives the stated result with C2 as

C2 = max

{
6 + 8 max

{
C4, 2Aη1

}
+

8AE(0) + 8B + 8C5

AC1C3

t1∑
k=1

η2
k,

8 max{C4, 2AC1C3}+ 4(AC1 +B)
t∑

k=1

η2
k + 8

(
E(0) +A−1B +A−1C5

) t1∑
k=1

ηk

}
.

The proof is complete.
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4.2 Challenge and Novelty of the Analysis

In this subsection, we present the challenge and novelty of our analysis. We describe the
challenge and novelty for both capacity-independent analysis as compared to the NeurIPS
article (Lei and Tang, 2018) and the capacity-dependent analysis as compared to the
capacity-independent analysis. Note that our novelty consists not only in Lemma 17 and
Lemma 19 we have established but also in the analysis we will present in Sections 5 and
Section 6. In particular, a challenge in Sections 5 and Section 6 is how to use Lemma 19 to
give satisfactory bounds of ‖wt‖2 for optimal learning rates, which are presented in Lemma
22 (capacity-independent case) and Lemma 27 (capacity-dependent case).

In our NeurIPS article (Lei and Tang, 2018), we assume the finite-norm of wz =
arg infw Ez(w). Under this assumption, we show

‖wt −wz‖22 ≤
t∑

k=1

ηk
(
Ez(wz)− Ez(wk)

)
+O

( t∑
k=1

η2
k

)
+ 2

t∑
k=1

ξ
(n)
k , (4.12)

where ξ
(n)
k = ηk〈wz−wk, f

′(wk; zik)−Eik [f ′(wk; zik)]〉. By Schwartz’s inequality and (2.3),

we control the variance of ξ
(n)
k by

Eik [(ξ
(n)
k )2] ≤ Aη2

k‖wz −wk‖22
(
Ez(wk)− Ez(wz)

)
+ η2

k‖wz −wk‖22
(
AEz(wz) +B

)
. (4.13)

Since Ez(wk) ≥ Ez(wz), we can use an upper bound of ‖wz −wk‖22 to control the variance

of ξ
(n)
k . A notable observation is that the term Ez(wk) − Ez(wz) in (4.13) can be offset by

the term Ez(wz)− Ez(wk) in (4.12). This leads to the result maxt=1,...,T ‖wt‖22 = O(log T )
(Theorem 3 in Lei and Tang (2018)). This result shows that wt always belongs to a small ball
and therefore the overfitting phenomenon will never happen for SGD. The underlying reason
is the strong assumption on the finite norm of wz, which depends on training examples and
is not intuitive.

In this paper, we do not impose a bounded-norm assumption. Therefore, we consider the
term ‖wλ−wk‖22 instead of ‖wz−wk‖22 as ‖wz‖2 may be infinite. The corresponding analysis
involves the estimation of the martingale difference sequence ξk = ηk

〈
wλ−wk, f

′(wk, zjk)−
Ejk
[
f ′(wk, zjk)

]〉
, whose variance can be bounded by

Ejk
[
ξ2
k

]
≤ Aη2

k‖wλ −wk‖22
(
Ez(wk)− Ez(wλ)

)
+
(
AEz(wλ) +B

)
η2
k‖wλ −wk‖22. (4.14)

A notable difference from (4.13) is that Ez(wk) − Ez(wλ) is no longer non-negative, and
therefore we can not plug an upper bound of ‖wλ − wk‖22 into (4.14) to give an upper
bound of Ejk

[
ξ2
k

]
. We have to replace Ez(wk) − Ez(wλ) by max{Ez(wk) − Ez(wλ), 0} to

ensure the nonnegativity. Then we can use an upper bound of ‖wλ − wk‖22 to control
(4.14), which, combined with (4.12), leads to an upper bound of ‖wt+1‖22 as follows

‖wt+1‖22 = O
( t∑
k=1

ηk max{0, Ez(wλ)− Ez(wk)}+ ‖wλ‖22 log T
)
. (4.15)

As compared to the bound ‖wt‖22 = O(log T ) (Lei and Tang, 2018), the above bound
involves an additional term

∑t
k=1 ηk max{0, Ez(wλ) − Ez(wk)} due to the removal of the
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bounded-norm assumption, which is the dominant term and much more challenging to
address.

We introduce new decompositions to control this term. For the capacity-independent
analysis, we use the decomposition (Eq. (5.2))

Ez(wλ)− Ez(wk) ≤ Ez(wλ)− E(wλ) + E(ĥwk)− Ez(ĥwk)︸ ︷︷ ︸
:=A

+E(wλ)− E(ĥwk).

We then use concentration inequalities to show that

A = O
(
n−

α
α+1 + n−

1
1+α ‖wλ‖q2 +RTn

− 1
2

)
,

where RT is an upper bound of maxk=1,...,T ‖wk‖2. We plug this inequality into (4.15) and
derive

‖wt‖2 = Õ
(
n−

1
2

T∑
k=1

ηk + ‖wλ‖2 +
( T∑
k=1

ηk

) 1
2
(
n
− 1

2(1+α) ‖wλ‖
q
2
2 + n

− α
2(1+α)

))
. (4.16)

A notable difference here is that this upper bound of ‖wt‖2 goes to infinity as we run more
and more iterations. Therefore, whether imposing a bounded-norm assumption makes the
analysis and results essentially different.

The bound (4.16) cannot imply optimal learning rates in the capacity-dependent anal-
ysis. To see this, if α = 1, ζ = 0, then Corollary 14 requires T � n2 iterations with θ = 1/2.

In this case, the bound (4.16) is larger than n−
1
2
∑n2

k=1 k
− 1

2 �
√
n from which one can only

get very crude learning rates. The underlying reason is that we require much more iterations
to get rates better than n−1/2 as compared to capacity-independent case (in the capacity-
independent case we only need to run T � n iterations to get almost optimal learning rate
Õ(n−1/2), and then the norm estimation in (4.16) is sufficient). To address this problem,
we use the following different error decomposition to fully use the variance-expectation
assumption and the capacity assumption (Eq. (6.4))

Ez(wλ)− Ez(wk) ≤ E(wλ)− E(ĥwk)+(
Ez(wλ)− Ez(hρ)− E(wλ) + E(hρ)

)
+
(
Ez(hρ)− Ez(ĥwk)− E(hρ) + E(ĥwk)

)︸ ︷︷ ︸
:=B

. (4.17)

We then use Bernstein-type inequalities to address the term Ez(wλ)−Ez(hρ)−E(wλ) +

E(hρ) (Lemma A.2) and the term Ez(hρ) − Ez(ĥwk) − E(hρ) + E(ĥwk) (Lemma 24), re-

spectively. In turn, we derive a novel polynomial inequality on an upper bound R̃T of
maxt=1,...,T ‖wt‖2 as follows

R̃2
T ≤ c̃1R̃

2ζ
4−2β+βζ

T + c̃2R̃
2ζ
2+ζ

T + c̃3,
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where c̃1, c̃2, c̃3 are quantities independent of R̃T . We solve this inequality by Lemma 21
and derive a refined estimation of ‖wt‖2 as follows

R̃T = Õ
(
n
− 1

4−2β+βζ−ζ
( T∑
k=1

ηk

) 4−2β+βζ
2(4−2β+βζ−ζ)

)
+ n−

1
2

( T∑
k=1

ηk

) 2+ζ
4

+ ‖wλ‖2

+
( T∑
k=1

ηk
) 1

2
(
E(wλ)− E(hρ) + n

1
β−2 + n−1‖wλ‖q2

) 1
2

)
.

For the least square loss, if we choose α = 1, ζ = 0, T � n2 (ζ can be arbitrarily close to 0)

and θ = 1/2, then the above upper bound is of the order of ‖wλ‖2+
(∑n2

k=1 ηk
) 1

2
(
n−

1
2 ‖wλ‖2+

λ
α
2

)
� ‖wλ‖2 (we choose λ � n−1 in this case and note q = 2, β = 1). That is, even we

need much more iterations in the capacity-dependent case, our analysis is still able to imply
a good estimation of ‖wt‖2, which is the key to get an almost optimal capacity-dependent
bound.

In summary, the estimation of ‖wt‖2 is much more challenging than the NeurIPS version
due to the removal of the bounded norm assumption. We need to introduce new decom-
position and concentration inequalities to address some additional terms. Furthermore,
it is more challenging to develop satisfactory bounds of ‖wt‖2 in the capacity-dependent
case since we need much more iterations (can be n2 versus n) to achieve optimal learning
rates (the bound of ‖wt‖2 in the capacity-independent case can be as large as O(

√
n)). We

notice that very nice capacity-dependent bounds for least squares regression are very well
developed in the literature (Dieuleveut and Bach, 2016; Pillaud-Vivien et al., 2018b; Mücke
et al., 2019; Lin and Rosasco, 2017). However, the analysis there uses integral operators
which can not be applied here. We have to develop totally different techniques for learning
with general convex loss functions.

4.3 Error Decomposition

Before proceeding the capacity-independent and capacity-dependent analysis, we introduce
the following error decomposition as a foundation of the subsequent analysis

E(ĥw̄T )− E(hρ) =
(
E(ĥw̄T )− Ez(ĥw̄T ) + Ez(wλ)− E(wλ)

)
+
(
Ez(ĥw̄T )− Ez(wλ)

)
+
(
E(wλ)− E(hρ)

)
. (4.18)

The term E(ĥw̄T ) − Ez(ĥw̄T ) + Ez(wλ) − E(wλ) is called an estimation error, which comes
from approximating the probability measure ρ by its empirical counterpart. The term
Ez(ĥw̄T ) − Ez(wλ) is called an optimization error since it is related to the optimization
algorithm for minimizing the empirical risk. The last term is an approximation error which
is related to the regularity of the model wλ and the approximation power of hypothesis
space. We will use powerful tools in statistical learning theory, optimization theory and
approximation theory to control estimation errors, optimization errors and approximation
errors, respectively.
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5. Capacity-independent Analysis

In this section, we perform a detailed capacity-independent analysis by estimating norms
of wt, optimization errors and learning rates.

5.1 Estimation of Norm

Our estimation of norm requires two additional lemmas. The following lemma controls the
uniform deviation between empirical risks and population risks over a RKHS ball. The
proof is standard and put to Section B.

Lemma 20 Let R ≥ 1 and define BR =
{
w ∈ W : ‖w‖2 ≤ R

}
. Then, for any δ ∈ (0, 1),

with probability at least 1− δ we have

sup
w∈BR

[
E(ĥw)− Ez(ĥw)

]
≤ C7Rn

− 1
2 log

1
2 (1/δ), (5.1)

where C7 is a constant independent of R and n (explicitly given in the proof).

We will use an induction strategy to estimate the norm of SGD iterates. Suppose
‖wĩ‖2 ≤ RT for ĩ = 1, . . . , t with RT defined in Lemma 22. We can essentially derive the
result

‖wt+1‖22 = O(log(T/δ))RT

T∑
k=1

ηkn
− 1

2 + C,

where C is independent of RT . This upper bound is a linear function of RT , which can be
upper bounded by R2

T according to the following inequality on univariate polynomials.

Lemma 21 (Cucker and Zhou 2007) Let s ∈ N, c1, . . . , cs > 0 and 2 > q1 > q2 > · · · >
qs−1 > 0. Then any

x ≥ max{(sc1)
1

2−q1 , (sc2)
1

2−q2 , . . . , (scs)
1
2 }

satisfies c1x
q1 + c2x

q2 + · · ·+ cs−1x
qs−1 + cs ≤ x2.

Based on the above two lemmas and Lemma 19, we can derive the following lemma on
the norm estimation of SGD iterates.

Lemma 22 Let Assumptions 1, 3 hold, n−1‖wλ‖q2 ≤ c
q
2
α and δ ∈ (0, 1). If {wt}t∈N is the

sequence produced by (2.1) with ηt+1 ≤ ηt ≤ 1/A and
∑∞

t=1 η
2
t <∞, then with probability at

least 1− δ we have ‖wt‖2 ≤ RT uniformly for all t = 1, . . . , T , where RT ≥ 1 is defined by

RT = C6 log
1
2 (4T/δ) max

{
T∑
k=1

ηkn
− 1

2 ,

(
‖wλ‖22 +

T∑
k=1

ηkn
− 1

1+α ‖wλ‖q2 +

T∑
k=1

ηk
(
E(wλ)− E(hρ) + n−

α
α+1
)

+ 1

) 1
2

}
,

and C6 is a constant independent of T, λ, n and δ (explicitly given in the proof).
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Proof By Ez(ĥw) ≤ Ez(w), Lemma 18 with ρ = n−
α

1+α and Lemma 20, we have the
following inequality with probability at least 1− δ uniformly for all w with ‖w‖2 ≤ RT

Ez(wλ)− Ez(w) ≤ Ez(wλ)− Ez(ĥw) = Ez(wλ)− E(wλ) + E(wλ)− E(ĥw) + E(ĥw)− Ez(ĥw)

≤ Ez(wλ)− E(wλ) + E(wλ)− E(hρ) + E(ĥw)− Ez(ĥw)

≤ C8 log
2

δ

(
n−

α
α+1 + n−

1
1+α ‖wλ‖q2

)
+ E(wλ)− E(hρ) + C7RTn

− 1
2 log

1
2

2

δ
, (5.2)

where C8 = E(0) + c̃q (c̃q ≥ 1). According to Lemma 19, Eq. (4.6) holds with probability
at least 1 − δ simultaneously for all t = 1, . . . , T . In the remainder of the proof we always
assume (4.6) and (5.2) hold, which happen with probability at least 1 − 2δ. We now use
the induction principle to show that under (4.6) and (5.2) we have ‖wĩ‖2 ≤ RT for all
ĩ = 1, . . . , T . The case ĩ = 1 is clear from the definition of RT and w1 = 0. Suppose
‖wĩ‖2 ≤ RT for ĩ = 1, . . . , t. We now need to show ‖wt+1‖2 ≤ RT . Plugging (5.2)
with w = w1, . . . ,wt back into (4.6) and using the induction assumption ‖wĩ‖2 ≤ RT for
ĩ = 1, . . . , t, we derive

‖wt+1‖22 ≤ C2 log
2T

δ

(
‖wλ‖22 + 1

)
+ 8C7 log

1
2

2

δ
RT

T∑
k=1

ηkn
− 1

2

+ 8
T∑
k=1

ηk log
2

δ

(
C8

(
n−

α
α+1 + n−

1
1+α ‖wλ‖q2

)
+
(
E(wλ)− E(hρ)

))
.

The right-hand side is a linear function of RT , which is no larger than R2
T by Lemma 21 if

RT satisfies

RT ≥ max

{
16C7 log

1
2

2

δ

T∑
k=1

ηkn
− 1

2 ,
√

2 log(2T/δ)
(
C2+C2‖wλ‖22+8C8

T∑
k=1

ηkn
− 1

1+α ‖wλ‖q2

+ 8
T∑
k=1

ηk
(
E(wλ)− E(hρ) + C8n

− α
α+1
)) 1

2

}
,

which is further satisfied by the definition ofRT with C6 defined by C6 = max
{

16C7,
√

2C2, 4
√
C8

}
.

This shows the stated inequality for ĩ = t+ 1 and finishes the proof.

Note that the upper bound established in Lemma 22 goes to infinity as we run more
SGD iterations, which is totally different from the almost finiteness of wt based on a norm-
bounded assumption ‖wz‖2 = O(1) (Lei and Tang, 2018). Our analysis here therefore
highlights the importance of early-stoping to achieve satisfactory learning rates.

5.2 Estimation of Optimization Errors

Based on the bound of ‖wt‖2 in Lemma 22, we can provide optimization error bounds stated
in Theorem 23. It should be noted that the existing probabilistic bound on optimization
errors of SGD requires to assume that either wt is bounded or the existence of wz with a
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finite norm (Lei and Tang, 2018). As a comparison, our optimization error bounds do not
require these assumptions. Our idea is to construct a different martingale sequence {ξ′t}
conditioned on the probabilistic bound of wt established in Lemma 22.

Theorem 23 Let Assumptions 1, 3 hold, n−1‖wλ‖q2 ≤ c
q
2
α and δ ∈ (0, 1). If {wt}t∈N is the

sequence produced by (2.1) with ηt+1 ≤ ηt ≤ 1/A and
∑∞

t=1 η
2
t < ∞, then with probability

at least 1− δ

Ez(w̄T )− Ez(wλ) = O(1) log
3
2

8T

δ

(
n−1

T∑
t=1

ηt +
( T∑
t=1

ηt
)−1‖wλ‖22

+ n−
1

1+α ‖wλ‖q2 + E(wλ)− E(hρ) + n−
α
α+1

)
.

Proof Eq. (4.7) can be reformulated as

T∑
t=1

ηt
(
Ez(wt)− Ez(wλ)

)
≤ 2−1‖wλ‖22 + 2−1(AC1 +B)

T∑
t=1

η2
t +

T∑
t=1

ξt, (5.3)

where {ξt} is defined in (4.8). Let

ξ′t = ηt
〈
wλ −wt, f

′(wt, zjt)− Ejt
[
f ′(wt, zjt)

]〉
I{‖wt‖2≤RT },

where RT is defined in Lemma 22 with δ replaced by δ/2 and IA denotes the indicator
function of an event A, i.e., IA = 1 if A happens and 0 otherwise. Analyzing analogously
to (4.10) and (4.11), we know

|ξ′t| ≤ ηt
[
‖wλ‖22 + (2Ac̃q + 1)‖wt‖22 + 2(2Ac̃q +B)

]
I{‖wt‖2≤RT }

≤ ηt
(
‖wλ‖22 + 2(2Ac̃q +B) + (2Ac̃q + 1)R2

T

)
.

It is clear that Ejt [ξ′t] = 0 and ξ′t depends only on j1, . . . , jt. According to Part (a) of
Lemma A.1, we can find an event ΩT with Pr{Ωt} ≥ 1 − δ

2 such that under the event ΩT

the following inequality holds

T∑
t=1

ξ′t ≤
(
‖wλ‖22 + 2(2Ac̃q +B) + (2Ac̃q + 1)R2

T

)(
2

T∑
t=1

η2
t log

2

δ

) 1
2
.

Furthermore, according to Lemma 22, there exists an event Ω′T with Pr{Ω′t} ≥ 1 − δ
2 such

that under the event Ω′T the inequality max1≤t≤T ‖wt‖22 ≤ R2
T holds. Under the intersection

of these two events, we have ξt = ξ′t and therefore

T∑
t=1

ξt =

T∑
t=1

ξ′t ≤
(
‖wλ‖22 + 2(2Ac̃q +B) + (2Ac̃q + 1)R2

T

)(
2

T∑
t=1

η2
t log

2

δ

) 1
2
, (5.4)
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which, together with Pr{ΩT ∩ Ω′T } ≥ 1 − δ and (5.3), shows the following inequality with
probability at least 1− δ

T∑
t=1

ηt
(
Ez(wt)− Ez(wλ)

)
≤ 2−1‖wλ‖22+2−1

(
AC1+B

) T∑
t=1

η2
t +
(
‖wλ‖22+2(2Ac̃q+B)+(2Ac̃q+1)R2

T

)(
2

T∑
t=1

η2
t log

2

δ

) 1
2

= O(1) log
3
2

8T

δ

(( T∑
t=1

ηt
)2
n−1+‖wλ‖22+

T∑
t=1

ηtn
− 1

1+α ‖wλ‖q2+
T∑
t=1

ηt
(
E(wλ)−E(hρ)+n−

α
α+1
))
.

In the above deduction we have used the definition of RT in Lemma 22 with δ replaced by
δ/2. The stated inequality then follows from the convexity of the empirical risk.

5.3 Estimation of Learning Rates

We are now ready to prove Theorem 4. As sketched in Section 4.3, our basic idea is to
decompose E(ĥw̄T ) − E(hρ) into estimation errors, optimization errors and approximation
errors. We will apply Lemma 20 together with the norm estimate in Lemma 22 to control
estimation errors, apply Theorem 23 to control optimization errors and apply Assumption
2 to control approximation errors.

Proof of Theorem 4 Let λ = n−
1

1+α . It follows from Assumption 2 that

λ‖wλ‖22 ≤ E(wλ)− E(hρ) + λ‖wλ‖22 ≤ cαλα,

from which we derive

‖wλ‖q2 ≤
(
cαλ

α−1
) q

2 = c
q
2
αn

(1−α)q
2+2α ≤ c

q
2
αn. (5.5)

Therefore, assumptions in Lemma 22 and Theorem 23 hold. We also have the following
elementary inequality

(1− θ)−1(T 1−θ − 1) ≤
T∑
t=1

t−θ ≤ (1− θ)−1T 1−θ, θ ∈ (0, 1). (5.6)

We use the following error decomposition w.r.t. wλ to study the excess population risk

E(ĥw̄T )− E(hρ) =
(
E(ĥw̄T )− Ez(ĥw̄T )

)
+
(
Ez(ĥw̄T )− Ez(wλ)

)
+
(
Ez(wλ)− E(wλ)

)
+
(
E(wλ)− E(hρ)

)
. (5.7)

According to Theorem 23 and (5.6) with T � n
1

(1+α)(1−θ) , we derive the following in-
equality with probability at least 1− δ/4 (notice ‖w‖q2 ≤ 1 + ‖w‖22)

Ez(ĥw̄T )− Ez(wλ) = O(1) log
3
2

32T

δ

(
n−

1
1+α ‖wλ‖22 + E(wλ)− E(hρ) + n−

α
α+1

)
. (5.8)
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We can apply Lemma 18 with ρ = n−
α

1+α to derive the following inequality with proba-
bility at least 1− δ/4

Ez(wλ)− E(wλ) ≤ C8 log
4

δ

(
n−

α
α+1 + n−

1
1+α ‖wλ‖q2

)
. (5.9)

According to Lemma 22, with probability at least 1− δ/4 we derive max1≤t≤T ‖wt‖2 ≤
RT with RT defined in Lemma 22 (δ replaced by δ/4), from which and the convexity of
norm we derive with probability at least 1− δ/4 that ‖w̄T ‖2 ≤ RT . According to Eq. (5.6)

with T � n
1

(1+α)(1−θ) , we know

RT = O(log
1
2 (16T/δ)) max

{
n

1
1+α
− 1

2 ,
(
‖wλ‖22 + ‖wλ‖q2 + n

1
1+α
(
E(wλ)− E(hρ)

)) 1
2

}
.

This, together with an application of Lemma 20 with R being RT and union bounds of
probability of events, implies the following inequality with probability at least 1− δ/2

E(ĥw̄T )−Ez(w̄T ) = O(log(16T/δ)) max

{
n−

α
1+α , n

− α
2(1+α)

(
n−

1
1+α ‖wλ‖22+E(wλ)−E(hρ)

) 1
2

}
.

(5.10)

Plugging (5.8), (5.9) and (5.10) into (5.7) and choosing λ = n−
1

1+α , we derive the
following inequality with probability at least 1− δ

E(ĥw̄T )− E(hρ) = O(1) log
3
2

32T

δ

(
n−

α
α+1 +D(n−

1
1+α ) + n

− α
2(1+α)

√
D(n−

1
α+1 )

)
.

This together with Assumption 2 establishes the stated inequality with probability at least
1− δ. The proof is complete.

6. Capacity-dependent Analysis

We now develop capacity-dependent learning rates. We will first estimate the norm of wt,
which is then used to study optimization errors and learning rates.

6.1 Estimation of Norm

As we state in Section 4.2, the norm estimation in Lemma 22 can only imply very crude
bounds in the capacity-dependent case since we require much more iterations to achieve
optimal learning rates here. We therefore need to resort the capacity assumption and
the variance-expectation assumption to develop refined estimates of ‖wt‖2. To this aim,
we introduce a different error decomposition (4.17) to tackle Ez(wλ) − Ez(wk), where the
involved term B can be shown to decay with a faster rate by applying Bernstein-type
concentration inequalities. Lemma 24 is a Bernstein-type inequality to control the uniform
deviation between empirical means from expectations for a class of random variables, where
the information on variances is included to investigate the concentration behavior.
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Lemma 24 (Wu et al. 2007) Let F̃ be a set of measurable functions defined on a space
Z̃ and S = {z1, . . . , zn} be n examples drawn randomly from Z̃. Let τ ∈ [0, 1],M, cτ
be constants such that each function f ∈ F̃ satisfies sup

z∈Z̃ |f(z)| ≤ M and E[f2(Z)] ≤
cτ (E[f(Z)])τ . If for some cζ ≥ M ζ and ζ ∈ (0, 2), ES

[
logN2(ε, F̃ , S)

]
≤ cζε

−ζ for all
ε > 0, then there exists a positive c′ζ depending only on ζ such that for any δ ∈ (0, 1), with

probability at least 1− δ the following inequality holds uniformly for all f ∈ F̃

E[f(Z)]− 1

n

n∑
i=1

f(zi) ≤
1

2
η1−τ(E[f(Z)]

)τ
+ c′ζη+ 2(cτn

−1 log(1/δ))
1

2−τ + 18Mn−1 log(1/δ),

where

η := max
{
c

2−ζ
4−2τ+ζτ
τ (cζn

−1)
2

4−2τ+ζτ ,M
2−ζ
2+ζ (cζn

−1)
2

2+ζ

}
.

Based on Lemma 24, we can derive a probabilistic bound on E(ĥw)−E(hρ)−Ez(ĥw) +
Ez(hρ) uniformly for all w ∈ BR, which is an essential component in Eq. (4.17).

Lemma 25 Let Assumptions 1, 3-5 hold. Let δ ∈ (0, 1) and R ≥ 1, then the following
inequality holds with probability at least 1− δ uniformly for all w ∈ BR

E(ĥw)− E(hρ)− Ez(ĥw) + Ez(hρ) ≤ 2−1
(
E(ĥw)− E(hρ)

)
+ ηR

2ζ
4−2β+βζ + η̃R

2ζ
2+ζ

+ 2(cβn
−1 log(1/δ))

1
2−β + 18n−1b̃ log(1/δ),

where b̃ = sup|y|,|ỹ|≤b `(ỹ, y), C9 = sup|y|,|ỹ|≤b |`′(ỹ, y)|, c′ζ is a constant depending only on ζ
and

η = (2−1 + c′ζ)c
2−ζ

4−2β+βζ

β

(
n−1cζC

ζ
9

) 2
4−2β+βζ , η̃ = (2−1 + c′ζ)b̃

2−ζ
2+ζ
(
n−1cζC

ζ
9

) 2
2+ζ . (6.1)

Proof Introduce the class of loss functions and excess loss functions as

FR =
{
`(ĥw(x), y) : w ∈ BR

}
and F∗R =

{
`(ĥw(x), y)− `(hρ(x), y) : w ∈ BR

}
.

For any w ∈ BR, we know

sup
z,‖w‖2≤R

∣∣`(ĥw(x), y)− `(hρ(x), y)
∣∣ ≤ sup

|y|,|ỹ|≤b
`(ỹ, y). (6.2)

and
∣∣`′(ĥw(x), y)

∣∣ ≤ sup|y|,|ỹ|≤b |`′(ỹ, y)| = C9. It then follows from the standard structural
result on covering numbers that

N2(ε,F∗R, S) = N2(ε,FR, S) ≤ N2(ε/C9,HR, Sx) = N2(ε/(C9R),H1, Sx),

where Sx = {x1, . . . , xn}. This together with Assumption 4 shows that

ES
[

logN2(ε,F∗R, S)
]
≤ cζ(C9R)ζε−ζ , ∀ε > 0. (6.3)
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An application of Lemma 24 with F̃ = F∗R together with (6.2) and (6.3) establishes the
following inequality with probability at least 1− δ for all w ∈ BR

E(ĥw)− E(hρ)− Ez(ĥw) + Ez(hρ)

≤ 2−1(η′)1−β(E(ĥw)− E(hρ)
)β

+ c′ζη
′ + 2(cβn

−1 log(1/δ))
1

2−β + 18n−1b̃ log(1/δ)

≤ 2−1
(
E(ĥw)− E(hρ)

)
+ (2−1 + c′ζ)η

′ + 2(cβn
−1 log(1/δ))

1
2−β + 18n−1b̃ log(1/δ),

where we have used (η′)1−β(E(ĥw)− E(hρ)
)β ≤ η′ + E(ĥw)− E(hρ), and introduced

η′ = max
{
c

2−ζ
4−2β+βζ

β

(
n−1cζC

ζ
9R

ζ
) 2

4−2β+βζ , b̃
2−ζ
2+ζ
(
n−1cζC

ζ
9R

ζ
) 2

2+ζ

}
.

The stated result then follows from the definition of η and η̃. The proof is complete.

Similarly, we can apply Bernstein inequality (Lemma A.2) to derive a probabilistic
bound for Ez(wλ) − Ez(hρ) − E(wλ) + E(hρ). The proof of Lemma 26 can be found in the
appendix.

Lemma 26 Let wλ be defined by (2.4), Assumption 5 hold and δ ∈ (0, 1). The following
inequality holds with probability at least 1− δ

Ez(wλ)−Ez(hρ)−E(wλ)+E(hρ) ≤
β

2

(
E(wλ)−E(hρ)

)
+C10n

1
β−2 log

2

δ
+C10n

−1
(
‖wλ‖q2+1

)
log

2

δ
,

where
C10 = max

{
2b̃/3 +

(
1− 2−1β

)
(2cβ)

1
2−β ,

(
2/3 + 1/β

)
c̃q

}
.

We are now able to present our bound of ‖wt‖2. Plugging Lemma 25 and Lemma 26
into (4.17), we can derive a probabilistic bound on Ez(wλ) − Ez(wk). Based on this we
can derive a bound on ‖wt‖2 with an induction strategy. Specifically, by an application of
Lemma 19 with the induction assumption ‖wĩ‖2 ≤ R̃T for ĩ = 1, . . . , t, we can show with

high probability ‖wt+1‖22 = O(1)
(
R̃

2ζ
4−2β+βζ

T + R̃
2ζ
2+ζ

T

)
+ D, where R̃T is defined in Lemma

27 and D is independent of R̃T . We can apply the inequality on univariate polynomials
(Lemma 21) to show that ‖wt+1‖2 ≤ R̃T with high probability.

Lemma 27 Let Assumptions 1, 3-5 hold, n−1‖wλ‖q2 ≤ c
q
2
α and δ ∈ (0, 1). If {wt}t∈N is the

sequence produced by (2.1) with ηt+1 ≤ ηt ≤ 1/A and
∑∞

t=1 η
2
t <∞, then with probability at

least 1− δ we have ‖wt‖2 ≤ R̃T uniformly for all t = 1, . . . , T , where R̃T ≥ 1 is defined by

R̃T = max

{(
24η

T∑
k=1

ηk

) 4−2β+βζ
8−4β+2βζ−2ζ

,
(

24η̃
T∑
k=1

ηk

) 2+ζ
4
, log

1
2

6T

δ

(
C11

(
‖wλ‖22+

n−1
T∑
k=1

ηk‖wλ‖q2
)

+ 12(β + 2)
(
E(wλ)− E(hρ)

) T∑
k=1

ηk + C12

(
1 + n

1
β−2

T∑
k=1

ηk
)) 1

2

}
,

η, η̃ are given in (6.1) and C11 ≥ 1, C12 are two constants independent of n, T and λ (ex-
plicitly given in the proof).
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Proof According to Lemma 19, Eq. (4.6) holds with probability at least 1−δ simultaneously
for all t = 1, . . . , T . In the remainder of the proof we always assume (4.6), Lemma 25 and
Lemma 26 hold, which happen with probability at least 1− 3δ. We now use the induction
principle to show that under (4.6), Lemma 25 and Lemma 26 we have ‖wĩ‖2 ≤ R̃T for all

ĩ = 1, . . . , T . The case ĩ = 1 is clear from the definition of R̃T . Suppose ‖wĩ‖2 ≤ R̃T for

ĩ = 1, . . . , t. We now need to show ‖wt+1‖2 ≤ R̃T . Since Ez(ĥwk) ≤ Ez(wk), we know

Ez(wλ)− Ez(wk) ≤ Ez(wλ)− Ez(ĥwk)

=
(
Ez(wλ)− Ez(hρ)− E(wλ) + E(hρ)

)
+
(
Ez(hρ)− Ez(ĥwk)− E(hρ) + E(ĥwk)

)
+ E(wλ)− E(ĥwk). (6.4)

Since ‖wk‖2 ≤ R̃T for k = 1, 2, . . . , t, we can combine Lemma 25 with w = wk, Lemma 26
and (6.4) together to derive the following inequality for all k = 1, . . . , t

Ez(wλ)− Ez(wk) ≤
(
1 + 2−1β

)
(E(wλ)− E(hρ)) + ηR̃

2ζ
4−2β+βζ

T + η̃R̃
2ζ
2+ζ

T +

n
1

β−2 (2c
1

2−β
β + C10) log(2/δ) + n−1

(
C10‖wλ‖q2 + C10 + 18b̃

)
log(2/δ), (6.5)

where we used 2−1
(
E(ĥw)−E(hρ)

)
≤ E(ĥw)−E(hρ) and the definition of η, η̃ given in (6.1).

Plugging (6.5) with w = w1, . . . ,wt back into (4.6) together with the induction assump-
tion, we derive

‖wt+1‖22 ≤ C2 log
2T

δ

(
‖wλ‖22 + 1

)
+ 8

t∑
k=1

ηk
(
ηR̃

2ζ
4−2β+βζ

T + η̃R̃
2ζ
2+ζ

T

)
+

8

t∑
k=1

ηk

((
1+2−1β

)
(E(wλ)−E(hρ))+n

1
β−2 (2c

1
2−β
β +C10) log(2/δ)+n−1

(
C10‖wλ‖q2+C10+18b̃

)
log(2/δ)

)
.

According to Lemma 21, the right-hand side of the above inequality is less than R̃2
T if R̃T

satisfies

R̃T ≥ max

{(
24η

T∑
k=1

ηk

) 4−2β+βζ
8−4β+2βζ−2ζ

,
(

24η̃

T∑
k=1

ηk

) 2+ζ
4
,

(
3C2 log

2T

δ

(
‖wλ‖22 + 1

)
+ 24

T∑
k=1

ηk

((
1 + 2−1β

)
(E(wλ)− E(hρ))+

n
1

β−2 (2c
1

2−β
β + C10) log(2/δ) + n−1

(
C10‖wλ‖q2 + C10 + 18b̃

)
log(2/δ)

)) 1
2

}
,

which is satisfied by R̃T of the stated form with δ replaced by δ/3 if we introduce

C11 = 3 max{C2, 8C10}, C12 = 3 max
{
C2, 16(c

1
2−β
β + C10 + 9b̃)

}
.

This establishes the induction assumption with ĩ = t+ 1 and finishes the proof.
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6.2 Estimation of Optimization Errors

Analogous to Theorem 23 but with the norm estimate in Lemma 27, we can immediately
derive the following theorem on optimization errors.

Theorem 28 Let Assumptions 1, 3-5 hold, n−1‖wλ‖q2 ≤ c
q
2
α and δ ∈ (0, 1). If {wt}t∈N is

given by (2.1) with ηt+1 ≤ ηt ≤ 1/A and
∑∞

t=1 η
2
t <∞, then with probability at least 1− δ

Ez(ĥw̄T )− Ez(wλ) = O(1) log
3
2

12T

δ
max

{
n
− 2

4−2β+βζ−ζ
( T∑
k=1

ηk

) ζ
4−2β+βζ−ζ

, n−1
( T∑
t=1

ηt

) ζ
2
,

E(wλ)− E(hρ) + n
1

β−2 +
( T∑
t=1

ηt
)−1‖wλ‖22 + n−1‖wλ‖q2

}
. (6.6)

Proof With probability at least 1 − δ/2, Lemma 27 implies that ‖wt‖2 ≤ R̃T with R̃T
defined in Lemma 27 but δ replaced by δ/2. According to the definition of η and η̃ given
by (6.1), it can be directly checked that

R̃2
T = O(1) log

12T

δ
max

{
n
− 2

4−2β+βζ−ζ
( T∑
k=1

ηk

) 4−2β+βζ
4−2β+βζ−ζ

, n−1
( T∑
k=1

ηk

) 2+ζ
2
,

(
E(wλ)− E(hρ) + n

1
β−2
) T∑
k=1

ηk + ‖wλ‖22 + n−1
T∑
k=1

ηk‖wλ‖q2

}
. (6.7)

Analogous to the proof of Theorem 23, it can be shown that (5.4) with RT replaced by R̃T
holds with probability at least 1− δ. This together with (5.3) and the above bound of R̃T
gives the stated inequality with probability at least 1− δ. The proof is complete.

6.3 Estimation of Learning Rates

Combining the norm estimate in Lemma 27 and optimization errors in Theorem 28 together,
we can finally derive capacity-dependent learning rates for SGD.

Proof of Theorem 8 We will choose appropriate λ such that n−1‖wλ‖q2 ≤ c
q
2
α (verified at

the end of the proof). We use the following error decomposition here

E(ĥw̄T )− E(hρ) = E(ĥw̄T )− E(hρ)− Ez(ĥw̄T ) + Ez(hρ)

+ Ez(wλ)− Ez(hρ)− E(wλ) + E(hρ)

+ Ez(ĥw̄T )− Ez(wλ) + E(wλ)− E(hρ). (6.8)
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Let η and η̃ be defined in (6.1), and R̃T be defined in Lemma 27 with δ replaced by δ/4.
By the Young’s inequality (B.5) we know

n
− 2

4−2β+βζ R̃
2ζ

4−2β+βζ

T =
(( T∑

t=1

ηt
)−1

R̃2
T

) ζ
4−2β+βζ

( T∑
t=1

ηt

) ζ
4−2β+βζ

n
− 2

4−2β+βζ

≤ ζ

4− 2β + βζ

( T∑
t=1

ηt

)−1
R̃2
T +

4− 2β + βζ − ζ
4− 2β + βζ

( T∑
t=1

ηt

) ζ
4−2β+βζ−ζ

n
− 2

4−2β+βζ−ζ

and

n
− 2

2+ζ R̃
2ζ
2+ζ

T =
(( T∑

t=1

ηt
)−1

R̃2
T

) ζ
2+ζ
( T∑
t=1

ηt

) ζ
2+ζ

n
− 2

2+ζ ≤ ζ

2 + ζ

( T∑
t=1

ηt

)−1
R̃2
T+

2

2 + ζ

( T∑
t=1

ηt

) ζ
2
n−1.

Therefore,

ηR̃
2ζ

4−2β+βζ

T +η̃R̃
2ζ
2+ζ

T = O(1)
(( T∑

t=1

ηt

)−1
R̃2
T+
( T∑
t=1

ηt

) ζ
4−2β+βζ−ζ

n
− 2

4−2β+βζ−ζ +
( T∑
t=1

ηt

) ζ
2
n−1

)
.

Since
(∑T

t=1 ηt

) ζ
4−2β+βζ−ζ

n
− 2

4−2β+βζ−ζ =
((∑T

t=1 ηt

) ζ
2
n−1

) 2
4−2β+βζ−ζ

and 2 ≤ 4−2β+βζ−
ζ, we can choose appropriate T, λ such that (indeed this is the case of interest)

( T∑
t=1

ηt

) ζ
2
n−1 = O(1) (6.9)

and therefore

ηR̃
2ζ

4−2β+βζ

T + η̃R̃
2ζ
2+ζ

T = O(1)
(( T∑

t=1

ηt

)−1
R̃2
T +

( T∑
t=1

ηt

) ζ
4−2β+βζ−ζ

n
− 2

4−2β+βζ−ζ
)
.

According to Lemma 27, with probability at least 1− δ/4 we have max1≤t≤T ‖wt‖2 ≤ R̃T ,
from which and the convexity of norm we know with probability at least 1 − δ/4 that
‖w̄T ‖2 ≤ R̃T . This together with an application of Lemma 25 with δ replaced by δ/4 plus
an union bound of probability of events shows the following inequality with probability at
least 1− δ/2

E(ĥw̄T )−E(hρ)−Ez(ĥw̄T )+Ez(hρ) ≤
1

2

(
E(ĥw̄T )−E(hρ)

)
+ηR̃

2ζ
4−2β+βζ

T +η̃R̃
2ζ
2+ζ

T +O(1)n
1

β−2 log
4

δ
.

Combining the above two inequalities together, we derive the following inequality with
probability at least 1− δ/2

E(ĥw̄T )− E(hρ)− Ez(ĥw̄T ) + Ez(hρ) ≤ 2−1
(
E(ĥw̄T )− E(hρ)

)
+O(1)n

1
β−2 log(4/δ)

+O(1)
(( T∑

t=1

ηt

)−1
R̃2
T +

( T∑
t=1

ηt

) ζ
4−2β+βζ−ζ

n
− 2

4−2β+βζ−ζ
)
.
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According to Theorem 28, with probability at least 1 − δ/4 we know that (6.6) and (6.7)
with δ replaced by δ/4 hold. This further shows the following inequality with probability
at least 1− 3δ/4 (note (6.9))

E(ĥw̄T )− E(hρ)− Ez(ĥw̄T ) + Ez(hρ) = 2−1
(
E(ĥw̄T )− E(hρ)

)
+O(log

3
2 (48T/δ))

×
(
E(wλ)−E(hρ)+n

1
β−2 +

( T∑
k=1

ηk
)−1‖wλ‖22+n−1‖wλ‖q2+

( T∑
t=1

ηt

) ζ
4−2β+βζ−ζ

n
− 2

4−2β+βζ−ζ

)
.

We can plug the inequality in Lemma 26, (6.6) with δ replaced by δ/4 and the above
inequality into (6.8) to derive the following inequality with probability at least 1− δ

E(ĥw̄T )− E(hρ) ≤ 2−1
(
E(ĥw̄T )− E(hρ)

)
+O(log

3
2 (48T/δ))

×
(
E(wλ)−E(hρ)+n

1
β−2 +

( T∑
k=1

ηk
)−1‖wλ‖22+n−1‖wλ‖q2+

( T∑
t=1

ηt

) ζ
4−2β+βζ−ζ

n
− 2

4−2β+βζ−ζ

)
.

By (5.5) and Assumption 2, we know ‖wλ‖q2 = O(1)
(
λ
q(α−1)

2

)
and E(wλ)− E(hρ) = O(λα),

which, together with the above inequality, gives the following inequality with probability at
least 1− δ

E(ĥw̄T )− E(hρ) = O(log
3
2 (48T/δ))

(
n

1
β−2 + λα +

( T∑
k=1

ηk
)−1

λα−1 + n−1λ
(α−1)q

2

+
( T∑
t=1

ηt

) ζ
4−2β+βζ−ζ

n
− 2

4−2β+βζ−ζ

)
.

If we choose an appropriate T such that

T∑
t=1

ηt � n
2

4−2β+βζ λ
(α−1)(4−2β+βζ−ζ)

4−2β+βζ , (6.10)

then with probability at least 1− δ there holds

E(ĥw̄T )−E(hρ) = O(log
3
2 (48T/δ))

(
λα +n

− 2
4−2β+βζ λ

(α−1)ζ
4−2β+βζ +n−1λ

(α−1)q
2 +n

1
β−2

)
. (6.11)

We first consider the case 2α + αβζ + ζ + αq ≥ αζ + 2αβ + q. In this case, we choose

λ = n
2

(α−1)ζ−4α+2αβ−αβζ , with which we know

n−1λ
(α−1)q

2 = n−1n
(α−1)q

(α−1)ζ−4α+2αβ−αβζ ≤ n
2α

(α−1)ζ−4α+2αβ−αβζ = λα = n
− 2

4−2β+βζ λ
(α−1)ζ

4−2β+βζ ,

where the inequality is due to 2α+αβζ + ζ +αq ≥ αζ + 2αβ+ q and the two identities are

due to the choice of λ. Plugging the above inequality back into (6.11) and using n
1

β−2 ≤
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n
2α

(α−1)ζ−4α+2αβ−αβζ implies the inequality (2.6) with probability at least 1− δ. Furthermore,

it is clear from (5.6) and T � n
2

(ζ+4α+αβζ−αζ−2αβ)(1−θ) that

T∑
t=1

ηt � n−
2

αζ−ζ−4α+2αβ−αβζ = n
2(α−1)(4−2β+βζ−ζ)

(4−2β+βζ)(αζ−ζ−4α+2αβ−αβζ)+ 2
4−2β+βζ ,

which shows that (6.9) and (6.10) hold with the choice of T . This proves Part (a).
We now consider the case 2α+αβζ+ ζ+αq < αζ+2αβ+q. In this case, we can choose

λ = n
2

αq−2α−q , with which we know

n
− 2

4−2β+βζ λ
(α−1)ζ

4−2β+βζ = n
− 2

4−2β+βζ n
2(α−1)ζ

(4−2β+βζ)(αq−2α−q)

= n
4α+2q−2αq+2αζ−2ζ
(4−2β+βζ)(αq−2α−q) ≤ n

2α
αq−2α−q = λα = n−1λ

(α−1)q
2 ,

where the inequality is due to 2α+αβζ+ζ+αq < αζ+2αβ+q and the two identities are due

to the choice of λ. Plugging the above inequality back into (6.11) and using n
1

β−2 ≤ n
2α

αq−2α−q

due to 2α+αβζ + ζ +αq < αζ + 2αβ+ q give the inequality (2.7) with probability at least

1− δ. Furthermore, it is clear from (5.6) and T � n
2(2α−2αβ+αβζ−αζ−4+2β−βζ+ζ+αq−q)

(4−2β+βζ)(αq−2α−q)(1−θ) that

T∑
t=1

ηt � n
2(2α−2αβ+αβζ−αζ−4+2β−βζ+ζ+αq−q)

(4−2β+βζ)(αq−2α−q) = n
2(α−1)(4−2β+βζ−ζ)
(4−2β+βζ)(αq−2α−q)+ 2

4−2β+βζ ,

which shows that (6.9) and (6.10) hold with the choice of T in this case. This proves Part
(b).

According to (5.5), it is clear that n−1‖wλ‖q2 ≤ c
q
2
αn−1λ

(α−1)q
2 ≤ c

q
2
α holds in both two

cases with our choice of λ. The proof is complete.

7. Conclusions

This paper presents a learning rate analysis of SGD with convex loss functions. We de-
velop both capacity-independent and capacity-dependent learning rates with high proba-
bility. Our capacity-independent learning rates remove the bounded subgradient assump-
tion (Hardt et al., 2016), the smoothness assumption (Hardt et al., 2016) and the assumption
on the existence of an empirical risk minimizer with a finite norm (Lei and Tang, 2018).
Our capacity-dependent rates extend the existing discussion from the least squares loss (Lin
and Rosasco, 2017) to general convex loss functions. It would be interesting to extend our
analysis to other learning setting, e.g., distributed learning (Lin and Cevher, 2018; Mücke
and Blanchard, 2018) and learning with random features (Carratino et al., 2018).
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Appendix A. Concentration Inequalities

In this section, we collect some concentration inequalities useful in our theoretical analysis.
We first introduce powerful concentration inequalities on martingales. Part (a) is the

Azuma-Hoeffding inequality for martingales with bounded increments (Boucheron et al.,
2013), and part (b) is a conditional Bernstein inequality using the conditional variance to
quantify better the concentration behavior of martingales (Zhang, 2005).

Lemma A.1 Let z1, . . . , zn be a sequence of random variables such that zk may depend on
the previous variables z1, . . . , zk−1 for all k = 1, . . . , n. Consider a sequence of functionals

ξk(z1, . . . , zk), k = 1, . . . , n. Let σ2
n =

∑n
k=1 Ezk

[(
ξk−Ezk [ξk]

)2]
be the conditional variance.

(a) Assume |ξk − Ezk [ξk]| ≤ bk for each k. Let δ ∈ (0, 1). With probability at least 1− δ
n∑
k=1

ξk −
n∑
k=1

Ezk [ξk] ≤
(

2
n∑
k=1

b2k log
1

δ

) 1
2
. (A.1)

(b) Assume that ξk − Ezk [ξk] ≤ b for each k. Let ρ ∈ (0, 1] and δ ∈ (0, 1). With probability
at least 1− δ we have

n∑
k=1

ξk −
n∑
k=1

Ezk [ξk] ≤
ρσ2

n

b
+
b log 1

δ

ρ
. (A.2)

We then introduce a Bernstein inequality which controls the deviation between empirical
means and expectation for random variables via information on variances.

Lemma A.2 (Bernstein inequality) Let {ξ(zi)}mi=1 be a sequence of real-valued random

variables and M̃ be a constant such that |ξ| ≤ M̃ and the variance Var(ξ) < ∞, then for
any 0 < δ < 1 with confidence at least 1− δ there holds

1

n

n∑
i=1

ξ(zi)− E[ξ] ≤
2M̃ log 1

δ

3n
+

√
2Var(ξ) log 1

δ

n
.

Finally, we introduce the McDiarmid’s inequality for real-valued functions of indepen-
dent random variables that satisfy a bounded increment condition (McDiarmid, 1989).

Lemma A.3 Let c1, . . . , cn ∈ R+. Let Z1, . . . , Zn be independent random variables taking
values in a set Z, and assume that f : Zn → R satisfies

sup
z1,...,zn,z̄k∈Z

|f(z1, · · · , zn)− f(z1, · · · , zk−1, z̄k, zk+1, · · · , zn)| ≤ ck (A.3)

for k = 1, . . . , n. Then, for any 0 < δ < 1, with probability at least 1− δ we have

f(Z1, . . . , Zn) ≤ E
[
f(Z1, . . . , Zn)

]
+

√∑n
k=1 c

2
k log(1/δ)

2
.
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Appendix B. Proofs of Some Lemmas

We collect here the proofs of some preliminary lemmas used in our learning rate analysis.
Proof of Lemma 16 We first prove Part (a). For any w ∈ W, z ∈ Z, Eq. (2.2) implies

‖f ′(w, z)‖22 =
∥∥`′(〈w,Φ(x)〉, y)Φ(x)

∥∥2

2
≤ κ2

(
Ã`(〈w,Φ(x)〉, y) + B̃

)
= κ2

(
Ãf(w, z) + B̃

)
.

We now turn to Part (b). For any w ∈ W and z ∈ Z, the definition of cq implies

f(w, z) = `(〈w,Φ(x)〉, y) ≤ cq
(
|〈w,Φ(x)〉|q + 1

)
≤ cq

(
‖w‖q2κ

q + 1
)
≤ c̃q

(
‖w‖q2 + 1

)
.

The proof is complete.

Proof of Lemma 18 Let ξi = f(wλ, zi), i = 1, . . . , n. According to the definition of
wλ, we know E(wλ) + λ‖wλ‖22 ≤ E(0). It then follows that ξi − E[ξi] ≤ supz f(wλ, z)
(non-negativity of ξi) and

E
[(
ξi − E[ξi]

)2] ≤ E[f2(wλ, zi)] ≤ sup
z
f(wλ, z)E[f(wλ, z)] ≤ sup

z
f(wλ, z)E(0).

Applying Part (b) of Lemma A.1 with ξi = f(wλ, zi) and the above bounds on variances
and magnitudes, we derive the following inequality with probability at least 1− δ

Ez(wλ)− E(wλ) =
1

n

n∑
i=1

ξi − E[ξ] ≤ ρn supz f(wλ, z)E(0)

n supz f(wλ, z)
+

supz f(wλ, z) log 1
δ

ρn
.

The stated inequality then follows directly from Part (b) of Lemma 16.

Proof of Lemma 20 We prove this lemma by McDiarmid’s inequality (Lemma A.3).
To this aim, we first show that the function z 7→ supw∈BR

[
E(ĥw) − Ez(ĥw)

]
satisfies a

bounded difference property. Indeed, for any z = {z1, . . . , zi−1, zi, zi+1, . . . , zn} and z̄ =
{z1, . . . , zi−1, z̄i, zi+1, . . . , zn}, we have∣∣∣ sup

w∈BR

[
E(ĥw)− Ez(ĥw)

]
− sup

w∈BR

[
E(ĥw)− Ez̄(ĥw)

]∣∣∣ ≤ sup
w∈BR

∣∣Ez(ĥw)− Ez̄(ĥw)
∣∣

≤ 1

n
sup

w∈BR

∣∣`(ĥw(xi), yi)− `(ĥw(x̄i), ȳi)
∣∣ ≤ 1

n
sup
|y|,|ỹ|≤b

`(y, ỹ).

Applying McDiarmid’s inequality with increments bounded above, we derive the following
inequality with probability at least 1− δ

sup
w∈BR

[
E(ĥw)− Ez(ĥw)

]
≤ Ez

[
sup

w∈BR

[
E(ĥw)− Ez(ĥw)

]]
+

√
log 1/δ

2n
sup
|y|,|ỹ|≤b

`(y, ỹ). (B.1)

We now control the term Ez

[
supw∈BR

[
E(ĥw) − Ez(ĥw)

]]
. Let z̃ = {z̃1, . . . , z̃n} be

training examples independently drawn from ρ and independent of z. Let σ1, . . . , σn be a
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sequence of independent Rademacher variables with Pr{σi = 1} = Pr{σi = −1} = 1
2 . By

Jensen’s inequality and the standard symmetrization technique, we get

Ez

[
sup

w∈BR

[
E(ĥw)− Ez(ĥw)

]]
= Ez

[
sup

w∈BR

[
Ez̃[Ez̃(ĥw)]− Ez(ĥw)

]]
≤ Ez,z̃

[
sup

w∈BR

[
Ez̃(ĥw)− Ez(ĥw)

]]
=

1

n
Ez,z̃

[
sup

w∈BR

n∑
i=1

(
`(ĥw(x̃i), ỹi)− `(ĥw(xi), yi)

)]
=

1

n
Ez,z̃,σ

[
sup

w∈BR

n∑
i=1

σi

(
`(ĥw(x̃i), ỹi)− `(ĥw(xi), yi)

)]
≤ 2

n
Ez,σ

[
sup

w∈BR

n∑
i=1

σi`(ĥw(xi), yi)
]
.

(B.2)

Since
∣∣`′(ĥw(x), y)

∣∣ ≤ C9, for any w,w′ ∈ W we know∣∣`(ĥw(x), y)− `(ĥw′(x), y)
∣∣ ≤ C9|ĥw(x)− ĥw′(x)| ≤ C9

∣∣〈w −w′,Φ(x)〉
∣∣.

Therefore, we can apply Talagrand’s contraction lemma (Ledoux and Talagrand, 1991) to
the last term of (B.2) to derive

Ez

[
sup

w∈BR

[
E(ĥw)− Ez(ĥw)

]]
≤ 2C9

n
Ez,σ

[
sup

w∈BR

n∑
i=1

σi〈w,Φ(xi)〉
]
. (B.3)

According to the Schwarz’s inequality and Jensen’s inequality, we get

Eσ
[

sup
w∈BR

n∑
i=1

σi〈w,Φ(xi)〉
]

= Eσ
[

sup
w∈BR

〈
w,

n∑
i=1

σiΦ(xi)
〉]
≤ Eσ

[
sup

w∈BR
‖w‖2

√√√√∥∥∥ n∑
i=1

σiΦ(xi)
∥∥∥2

2

]

≤ R

√√√√Eσ
〈 n∑
i=1

σiΦ(xi),
n∑
i=1

σiΦ(xi)
〉

= R

√√√√ n∑
i=1

‖Φ(xi)‖22 ≤ Rκ
√
n.

Combining the above inequality, (B.1) and (B.3), we derive the following inequality with
probability at least 1− δ

sup
w∈BR

[
E(ĥw)− Ez(ĥw)

]
≤ 2RκC9√

n
+

√
log 1/δ

2n
sup
|y|,|ỹ|≤b

`(y, ỹ),

which can be written as (5.1) with the C7 defined below

C7 = 2κC9 + 2−
1
2 sup
|y|,|ỹ|≤b

`(y, ỹ).

The proof is complete.

Proof of Lemma 26 Introduce two sequences of random variables as follows

ξi = `(ĥwλ(xi), yi)− `(hρ(xi), yi), ξ̃i = `(hwλ(xi), yi)− `(ĥwλ(xi), yi),
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i = 1, 2, . . . , n. It is clear that |ξi| ≤ b̃. An application of Lemma A.2 together with

E[ξ2] ≤ cβ
(
E[ξ]

)β
due to Assumption 5 then implies the following inequality with probability

at least 1− δ

1

n

n∑
i=1

ξi − E[ξ] ≤ 2b̃ log(1/δ)

3n
+

√
2cβ(E(ĥwλ)− E(hρ))β log 1

δ

n
. (B.4)

Furthermore, it follows from the Young’s inequality for all µ, v ∈ R, p−1 + q−1 = 1, p ≥ 0

µv ≤ p−1|µ|p + q−1|v|q (B.5)

that(
E(ĥwλ)− E(hρ)

)β
2

(2cβ log 1
δ

n

) 1
2 ≤ β

2

(
E(ĥwλ)− E(hρ)

)β
2

2
β +

(
1− β

2

)(2cβ log 1
δ

n

) 1
2−β

.

Plugging the above inequality into (B.4) establishes the following inequality with probability
at least 1− δ

Ez(ĥwλ)− Ez(hρ)− E(ĥwλ) + E(hρ) =
1

n

n∑
i=1

ξi − E[ξ]

≤ 2b̃ log(1/δ)

3n
+
β

2

(
E(ĥwλ)− E(hρ)

)
+
(
1− β

2

)(2cβ log 1
δ

n

) 1
2−β

. (B.6)

For any w ∈ BR, it follows from Assumption 3 and Part (b) of Lemma 16 that

0 ≤ ξ̃i = `(hwλ(xi), yi)− `(ĥwλ(xi), yi) ≤ `(hwλ(xi), yi) ≤ c̃q
(
‖wλ‖q2 + 1

)
.

Since ξ̃i, i = 1, . . . , n are non-negative random variables, we know E[ξ̃2] ≤ supz ξ̃(z)E[ξ̃]. An
application of Lemma A.2 together with the above bound on ξ̃i then implies the following
inequality with probability at least 1− δ

Ez(wλ)− Ez(ĥwλ)− E(wλ) + E(ĥwλ) =
1

n

n∑
i=1

ξ̃i − E[ξ̃]

≤
2c̃q
(
‖wλ‖q2 + 1

)
log 1

δ

3n
+

√
2c̃q
(
‖wλ‖q2 + 1

)(
E(wλ)− E(ĥwλ)

)
log 1

δ

n

≤
2c̃q
(
‖wλ‖q2 + 1

)
log 1

δ

3n
+
β

2

(
E(wλ)− E(ĥwλ)

)
+
c̃q
(
‖wλ‖q2 + 1

)
log 1

δ

nβ
. (B.7)

Combining (B.6) and (B.7) together establishes the following inequality with probability at
least 1− δ

Ez(wλ)−Ez(hρ)−E(wλ)+E(hρ) ≤
2b̃ log 2

δ

3n
+
β

2

(
E(wλ)−E(hρ)

)
+
(
1− β

2

)(2cβ log 2
δ

n

) 1
2−β

+
2c̃q
(
‖wλ‖q2 + 1

)
log 2

δ

3n
+
c̃q
(
‖wλ‖q2 + 1

)
log 2

δ

nβ
,

which further implies the stated inequality with probability at least 1− δ.
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