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Abstract

We address the problem of learning the parameters of a stable linear time invariant (LTI)
system with unknown latent space dimension, or order, from a single time–series of noisy
input-output data. We focus on learning the best lower order approximation allowed by finite
data. Motivated by subspace algorithms in systems theory, where the doubly infinite system
Hankel matrix captures both order and good lower order approximations, we construct a
Hankel-like matrix from noisy finite data using ordinary least squares. This circumvents the
non-convexities that arise in system identification, and allows accurate estimation of the
underlying LTI system. Our results rely on careful analysis of self-normalized martingale
difference terms that helps bound identification error up to logarithmic factors of the lower
bound. We provide a data-dependent scheme for order selection and find an accurate
realization of system parameters, corresponding to that order, by an approach that is closely
related to the Ho-Kalman subspace algorithm. We demonstrate that the proposed model
order selection procedure is not overly conservative, i.e., for the given data length it is
not possible to estimate higher order models or find higher order approximations with
reasonable accuracy.

Keywords: Linear Dynamical Systems, System Identification, Non–parametric statistics,
control theory, Statistical Learning theory

1. Introduction

Finite-time system identification—the problem of estimating the system parameters given
a finite single time series of its output—is an important problem in the context of control
theory, time series analysis, robotics, and economics, among many others. In this work,
we focus on parameter estimation and model approximation of linear time invariant (LTI)
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systems or linear dynamical system (LDS), which are described by

Xt+1 = AXt +BUt + ηt+1

Yt = CXt + wt. (1)

Here C ∈ Rp×n, A ∈ Rn×n, B ∈ Rn×m; {ηt, wt}∞t=1 are process and output noise, Ut is an
external control input, Xt is the latent state variable and Yt is the observed output. The
goal here is parameter estimation, i.e., learning (C,A,B) from a single finite time series of
{Yt, Ut}Tt=1 when the order, n, is unknown. Since typically p,m < n, it becomes challenging
to find suitable parametrizations of LTI systems for provably efficient learning. When
{Xj}∞j=1 are observed (or, C is known to be the identity matrix), identification of (C,A,B)
in Eq. (1) is significantly easier, and ordinary least squares (OLS) is a statistically optimal
estimator. It is, in general, unclear how (or if) OLS can be employed in the case when Xt’s
are not observed.

To motivate the study of a lower-order approximation of a high-order system, consider
the following example:

Example 1 Consider M1 = (A1, B1, C1) with

A1 =


0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1
−a 0 0 0 . . . 0


n×n

B1 =


0
0
...
0
1


n×1

C1 = B>1 (2)

where na� 1 and n > 20. Here the order of M1 is n. However, it can be approximated well
by M2 which is of a much lower order and given by

A2 =

[
0 0
1 0

]
B2 =

[
0
1

]
C2 = B>2 . (3)

For the same input Ut, if Y
(1)
t , Y

(2)
t be the output generated by M1 and M2 respectively then

a simple computation shows that

sup
U

∞∑
t=1

(Y
(1)
t − Y (2)

t )2

U2
t

≤ 4n2a2 � 1

This suggests that the actual value of n is not important; rather there exists an effective
order, r (which is 2 in this case). This lower order model captures “most” of the LTI system.

Since the true model order is not known in many cases, we emphasize a nonparametric
approach to identification: one which adaptively selects the best model order for the given
data and approximates the underlying LTI system better as T (length of data) grows. The
key to this approach will be designing an estimator M̂ from which we obtain a realization
(Ĉ, Â, B̂) of the selected order.
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1.1 Related Work

Linear time invariant systems are an extensively studied class of models in control and
systems theory. These models are used in feedback control systems (for example in planetary
soft landing systems for rockets (Açıkmeşe et al., 2013)) and as linear approximations
to many non–linear systems that nevertheless work well in practice. In the absence of
process and output noise, subspace-based system identification methods are known to learn
(C,A,B) (up to similarity transformation)(Ljung, 1987; Van Overschee and De Moor, 2012).
These typically involve constructing a Hankel matrix from the input–output pairs and
then obtaining system parameters by a singular value decomposition. Such methods are
inspired by the celebrated Ho-Kalman realization algorithm (Ho and Kalman, 1966). The
correctness of these methods is predicated on the knowledge of n or presence of infinite data.
Other approaches include rank minimization-based methods for system identification (Fazel
et al., 2013; Grussler et al., 2018), further relaxing the rank constraint to a suitable convex
formulation. However, there is a lack of statistical guarantees for these algorithms, and it is
unclear how much data is required to obtain accurate estimates of system parameters from
finite noisy data. Empirical methods such as the EM algorithm (Dempster et al., 1977) are
also used in practice; however, these suffer from non-convexity in problem formulation and
can get trapped in local minima. Learning simpler approximations to complex models in the
presence of finite noisy data was studied in Venkatesh and Dahleh (2001) where identification
error is decomposed into error due to approximation and error due to noise; however the
analysis assumes the knowledge of a “good” parametrization and does not provide statistical
guarantees for learning the system parameters of such an approximation.

More recently, there has been a resurgence in the study of statistical identification of
LTI systems from a single time series in the machine learning community. In cases when
C = I, i.e., Xt is observed directly, sharp finite time error bounds for identification of A,B
from a single time series are provided in Faradonbeh et al. (2017); Simchowitz et al. (2018);
Sarkar and Rakhlin (2018). The approach to finding A,B is based on a standard ordinary
least squares (OLS) given by

(Â, B̂) = arg min
A,B

T∑
t=1

||Xt+1 − [A,B][X>t , U
>
t ]>||22.

Another closely related area is that of online prediction in time series Hazan et al. (2018);
Agarwal et al. (2018). Finite time regret guarantees for prediction in linear time series
are provided in Hazan et al. (2018). The approach there circumvents the need for system
identification and instead uses a filtering technique that convolves the time series with
eigenvectors of a specific Hankel matrix.

Closest to our work is that of Oymak and Ozay (2018). Their algorithm, which takes
inspiration from the Kalman–Ho algorithm, assumes the knowledge of model order n. This
limits the applicability of the algorithm in two ways: first, it is unclear how the techniques
can be extended to the case when n is unknown—as is usually the case—and, second,
in many cases n is very large and a much lower order LTI system can be a very good
approximation of the original system. In such cases, constructing the order n estimate
might be unnecessarily conservative (See Example 1). Consequently, the error bounds do
not reflect accurate dependence on the system parameters.
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When n is unknown, it is unclear when a singular value decomposition should be
performed to obtain the parameter estimates via Ho-Kalman algorithm. This leads to the
question of model order selection from data. For subspace based methods, such problems have
been addressed in Shibata (1976) and Bauer (2001). These papers address the question of
estimating order in the context of subspace methods. Specifically, order estimation is achieved
by analyzing the information contained in the estimated singular values and/or estimated
innovation variance. Furthermore, they provide guarantees for asymptotic consistency of
the methods described. It is unclear, however, if these techniques and guarantees can be
extended to the case when only finite data is available. Another line of literature studied
in Ljung et al. (2015) for example, approaches the identification of systems with unknown
order by first learning the largest possible model that fits the data and then performing
model reduction to obtain the final system. Although one can show that asymptotically this
method outputs the true model, we show that such a two step procedure may underperform
in a finite time setting. A possible explanation for this could be that learning the largest
possible model with finite data over-fits on the exogenous noise and therefore gives poor
model estimates. The key difference from prior work is that we provide a direct approach to
model selection, instead of learning the largest possible model from data and subsequent
model truncation, and provide finite time guarantees.

Other related work on identifying finite impulse response approximations include Gold-
enshluger (1998); Tu et al. (2017); but they do not discuss parameter estimation or reduced
order modeling. Several authors Campi and Weyer (2002); Shah et al. (2012); Hardt et al.
(2016) and references therein have studied the problem of system identification in different
contexts. However, they fail to capture the correct dependence of system parameters on
error rates. More importantly, they suffer from the same limitation as Oymak and Ozay
(2018) that they require the knowledge of n.

2. Mathematical Preliminaries

Throughout the paper, we will refer to an LTI system with dynamics as Eq. (1) by M =
(C,A,B). For a matrix A, let σi(A) be the ith singular value of A with σi(A) ≥ σi+1(A).
Further, σmax(A) = σ1(A) = σ(A). Similarly, we define ρi(A) = |λi(A)|, where λi(A) is an
eigenvalue of A with ρi(A) ≥ ρi+1(A). Again, ρmax(A) = ρ1(A) = ρ(A).

Definition 1 A matrix A is Schur stable if ρmax(A) < 1.

We will only be interested in the class of LTI systems that are Schur stable. Fix γ > 0
(and possibly much greater than 1). The model class Mr of LTI systems parametrized by
r ∈ Z+ is defined as

Mr = {(C,A,B) | C ∈ Rp×r, A ∈ Rr×r, B ∈ Rr×m, ρ(A) < 1, σ(A) ≤ γ}. (4)
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Definition 2 The (k, p, q)–dimensional Hankel matrix for M = (C,A,B) as

Hk,p,q(M) =


CAkB CAk+1B . . . CAq+k−1B
CAk+1B CAk+2B . . . CAq+kB

...
...

. . .
...

CAp+k−1B . . . . . . CAp+q+k−2B


and its associated Toeplitz matrix as

Tk,d(M) =


0 0 . . . 0 0

CAkB 0 . . . 0 0
...

. . .
. . .

... 0
CAd+k−3B . . . CAkB 0 0
CAd+k−2B CAd+k−3B . . . CAkB 0

 .

We will slightly abuse notation by referring to Hk,p,q(M) = Hk,p,q. Similarly for the Toeplitz
matrices Tk,d(M) = Tk,d. The matrix H0,∞,∞(M) is known as the system Hankel matrix
corresponding to M , and its rank is known as the model order (or simply order) of M .
The system Hankel matrix has two well-known properties that make it useful for system
identification. First, the rank of H0,∞,∞ has an upper bound n. Second, it maps the
“past” inputs to “future” outputs. These properties are discussed in detail in appendix
as Section 9.2. For infinite matrices H0,∞,∞, ||H0,∞,∞||2, ||H0,∞,∞||op, i.e., the operator
norm.

Definition 3 The transfer function of M = (C,A,B) is given by G(z) = C(zI − A)−1B
where z ∈ C.

The transfer function plays a critical role in control theory as it relates the input to the
output. Succinctly, the transfer function of an LTI system is the Z–transform of the output
in response to a unit impulse input. Since for any invertible S the LTI systems M1 =
(CS−1, SAS−1, SB),M2 = (C,A,B) have identical transfer functions, identification may not
be unique, but equivalent up to a transformation S, i.e., (C,A,B) ≡ (CS, S−1AS, S−1B).
Next, we define a system norm that will be important from the perspective of model
identification and approximation.

Definition 4 The H∞–system norm of a Schur stable LTI system M is given by

||M ||∞= sup
ω∈R

σmax(G(ejω)).

Here, G(·) is the transfer function of M . The r–truncation of the transfer function is defined
as

Gr := [CB,CAB, . . . , CAr−1B]. (5)

For a stable LTI system M we have

Proposition 2.1 (Lemma 2.2 Glover (1987)) Let M be a LTI system then

||M ||H= σ1 ≤ ||M ||∞≤ 2(σ1 + . . .+ σn)

where σi are the singular values of H0,∞,∞(M).
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For any matrix Z, define Zm:n,p:q as the submatrix including row m to n and column p to q.
Further, Zm:n,: is the submatrix including row m to n and all columns and a similar notion
exists for Z:,p:q. Finally, we define balanced truncated models which will play an important
role in our algorithm.

Definition 5 (Kung and Lin (1981)) Let H0,∞,∞(M) = UΣV > where Σ ∈ Rn×n (n is
the model order). Then for any r ≤ n, the r–order balanced truncated model parameters are
given by

Cr = [UΣ1/2]1:p,1:r, Ar = Σ
−1/2
1:r,1:rU

>
:,1:r[UΣ1/2]p+1:,1:r, Br = [Σ1/2V >]1:r,1:m.

For r > n, the r–order balanced truncated model parameters are the n–order truncated model
parameters.

Definition 6 We say a random vector v ∈ Rd is subgaussian with variance proxy τ2 if

sup
||θ||2=1

sup
p≥1

{
p−1/2 (E[|〈v, θ〉|p])1/p

}
= τ

and E[v] = 0. We denote this by v ∼ subg(τ2).

A fundamental result in model reduction from systems theory is the following

Theorem 2.1 (Theorem 21.26 Zhou et al. (1996)) Let M = (C,A,B) be the true
model of order n and Mr = (Cr, Ar, Br) be its balance truncated model of order r < n.
Assume that σr 6= σr+1. Then

||M −Mr||∞≤ 2(σr+1 + σr+2 + . . .+ σn)

where σi are the Hankel singular values of M .

Critical to obtaining refined error rates, will be a result from the theory of self–normalized
martingales, an application of the pseudo-maximization technique in (Peña et al., 2008,
Theorem 14.7):

Theorem 2.2 Let {F t}∞t=0 be a filtration. Let {ηt ∈ Rm, Xt ∈ Rd}∞t=1 be stochastic processes
such that ηt, Xt are F t measurable and ηt is F t−1-conditionally subg(L2) for some L > 0.
For any t ≥ 0, define Vt =

∑t
s=1XsX

′
s, St =

∑t
s=1 ηs+1Xs. Then for any δ > 0, V � 0 and

all t ≥ 0 we have with probability at least 1− δ

S>t (V + Vt)
−1St ≤ 4L2

(
log

1

δ
+ log

det(V + Vt)

det(V )
+m

)
.

The proof of this result can be found as Theorem 8.5.
We denote by c universal constants which can change from line to line. For numbers a, b,

we define a ∧ b , min (a, b) and a ∨ b , max (a, b).

Finally, for two matrices M1 ∈ Rl1×l1 ,M2 ∈ Rl2×l2 with l1 < l2, M1 −M2 , M̃1 −M2

where M̃1 =

[
M1 0l1×l2−l1

0l2−l1×l1 0l2−l1×l2−l1

]
.
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Proposition 2.2 (System Reduction) Let ||S − P ||≤ ε and the singular values of S be
arranged as follows:

σ1(S) > . . . > σr−1(S) > σr(S) ≥ σr+1(S) ≥ . . . ≥ σs(S) > σs+1(S) > . . . σn(S) > σn+1(S) = 0

Furthermore, let ε be such that

ε ≤ inf
{1≤i≤r−1}∪{s+1≤i≤n}

(σi(P )− σi+1(P )

2

)
. (6)

Define K0 = [1, 2, . . . , r − 1] ∪ [s+ 1, s+ 2, . . . , n], then

||USK0
(ΣS

K0
)1/2 − UPK0

(ΣP
K0

)1/2||2 ≤ 2

√√√√r−1∑
i=1

σiε2

(σi − σi+1)2 ∧ (σi−1 − σi)2

+ 2

√
σsε2

((σr−1 − σs) ∧ (σr − σs+1))2
+ sup

1≤i≤s
|
√
σi −

√
σ̂i|

and σi = σi(S), σ̂i = σi(P ).

The proof is provided in Proposition 12.4 in the appendix. This is an extension of Wedin’s
result that allows us to scale the recovery error of the rth singular vector by only condition
number of that singular vector. This is useful to represent the error of identifying a r-order
approximation as a function of the rth-singular value only.

We briefly summarize our contributions below.

3. Contributions

In this paper we provide a purely data-driven approach to system identification from a single
time–series of finite noisy data. Drawing from tools in systems theory and the theory of
self–normalized martingales, we offer a nearly optimal OLS-based algorithm to learn the
system parameters. We summarize our contributions below:

• The central theme of our approach is to estimate the infinite system Hankel matrix (to
be defined below) with increasing accuracy as the length T of data grows. By utilizing
a specific reformulation of the input–output relation in Eq. (1) we reduce the problem
of Hankel matrix identification to that of regression between appropriately transformed
versions of output and input. The OLS solution is a matrix Ĥ of size d̂. More precisely,
we show that with probability at least 1− δ,

∣∣∣∣∣∣Ĥ − H0,d̂,d̂

∣∣∣∣∣∣
2
.

√
β2d̂

T

√
pd̂+ log

T

δ

for T above a certain threshold, where H0,d̂,d̂ is the pd̂×md̂ principal submatrix of the
system Hankel. Here β is the H∞–system norm.

• We show that by growing d̂ with T in a specific fashion, Ĥ becomes the minimax optimal
estimator of the system Hankel matrix. The choice of d̂ for a fixed T is purely data-
dependent and does not depend on spectral radius of A or n.
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• It is well known in systems theory that SVD of the doubly infinite system Hankel matrix
gives us A,B,C. However, the presence of finite noisy data prevents learning these
parameters accurately. We show that it is always possible to learn the parameters of a
lower-order approximation of the underlying system. This is achieved by selecting the
top k singular vectors of Ĥ. The estimation guarantee corresponds to model selection in
Statistics. More precisely, for every k ≤ d̂ if (Ak, Bk, Ck) are the parameters of a k-order
balanced approximation of the original LTI system and (Âk, B̂k, Ĉk) are the estimates of
our algorithm then for T above a certain threshold we have

||Ck − Ĉk||2+||Ak − Âk||2+||Bk − B̂k||2 .

√
β2d̂

σ̂2
kT

√
pd̂+ log

T

δ

with probability at least 1− δ where σ̂i is the ith largest singular value of Ĥ.

4. Problem Formulation and Discussion

4.1 Data Generation

Assume there exists an unknown M = (C,A,B) ∈Mn for some unknown n. Let the transfer
function of M be G(z). Suppose we observe the noisy output time series {Yt ∈ Rp×1}Tt=1 in
response to user chosen input series, {Ut ∈ Rm×1}Tt=1. We refer to this data generated by M
as ZT = {(Ut, Yt)}Tt=1. We enforce the following assumptions on M .

Assumption 1 The noise process {ηt, wt}∞t=1 in the dynamics of M given by Eq. (1) are
i.i.d. and ηt, wt are isotropic with subGaussian parameter 1. Furthermore, X0 = 0 almost
surely. We will only select inputs, {Ut}Tt=1, that are isotropic subGaussian with subGaussian
parameter 1.

The input–output map of Eq. (1) can be represented in multiple alternate ways. One
commonly used reformulation of the input–output map in systems and control theory is the
following 

Y1

Y2
...
YT

 = T0,T


U1

U2
...
UT

+ T O0,T


η1

η2
...
ηT

+


w1

w2
...
wT


where T Ok,d is defined as the Toeplitz matrix corresponding to process noise ηt (similar to
Definition 2):

T Ok,d =


0 0 . . . 0 0

CAk 0 . . . 0 0
...

. . .
. . .

... 0
CAd+k−3 . . . CAk 0 0
CAd+k−2 CAd+k−3 . . . CAk 0

 .

||T0,T ||2, ||T O0,T ||2 denote observed amplifications of the control input and process noise
respectively. Note that stability of A ensures ||T0,∞||2, ||T O0,∞||2< ∞. Suppose both
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m: Input dimension, p: Output dimension

γ: Known upper bound on ||A||2
δ: Error probability

c, C: Known absolute constants

R: Known noise to signal ratio, or,
||T O0,∞||2
||T0,∞||2

β: Known upper bound on H∞-norm of LTI system

D(T ) = {d|T ≥ cm2d log2 (d) log2 (m2/δ) + cd log3 (2d)}
σA =

∑d
l=1||CAlB||2, σB =

∑d
l=1||CAl||2

σC =

√
σ
(∑d

k=1 T >d+k,TTd+k,T

)
, σD =

√
σ
(∑d

k=1 T O>d+k,TT Od+k,T

)
α(l) =

√
l

(√
lp+log (T/δ)+m

T

)
Table 1: Summary of constants

ηt, wt = 0 in Eq. (1). Then it is a well-known fact that

||M ||∞= sup
Ut

√∑∞
t=0 Y

>
t Yt∑∞

t=0 U
>
t Ut

=⇒ ||M ||∞= ||T0,∞||2≥ ||H0,∞,∞||2. (7)

Assumption 2 There exist universal constants β,R ≥ 1 such that ||T0,∞||2≤ β, ||T O0,∞||2
||T0,∞||2 ≤

R.

Remark 7 (H∞-norm estimation) Assumption 2 implies that an upper bound to the
H∞–norm of the system. It is possible to estimate ||M ||∞ from data (See Tu et al. (2018a)
and references therein). It is reasonable to expect that error rates for identification of the

parameters (C,A,B) depend on the noise-to-signal ratio
||T O0,∞||2
||T0,∞||2 , i.e., identification is

much harder when the ratio is large.

Remark 8 (R estimation) The noise to signal ratio hyperparameter can also be estimated
from data, by allowing the system to run with Ut = 0 and taking the average `2 norm of
the output Yt, i.e., (1/T )

∑T
t=1‖Yt‖22. For the purpose of the results of the paper we simply

assume an upper bound on R. If Ut was subg(L) instead of subg(1), the noise-to-signal ratio
is modified to R/L instead.
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5. Algorithmic Details

We will now represent the input–output relationship in terms of the Hankel and Toeplitz
matrices defined before. Fix a d, then for any l we have

Yl
Yl+1

...
Yl+d−1

 = H0,d,d


Ul−1

Ul−2
...

Ul−d

+ T0,d


Ul
Ul+1

...
Ul+d−1

+O0,d,d


ηl−1

ηl−2
...

ηl−d+1

+ T O0,d


ηl
ηl+1

...
ηl+d−1



+Hd,d,l−d−1


Ul−d−1

Ul−d−1
...
U1

+Od,d,l−d−1


ηl−d−1

ηl−d−1
...
η1

+


wl
wl+1

...
wl+d−1

 (8)

or, succinctly,

Ỹ +
l,d = H0,d,dŨ

−
l−1,d + T0,dŨ

+
l,d +Hd,d,l−d−1Ũ

−
l−d−1,l−d−1

+O0,d,dη̃
−
l−1,d + T O0,dη̃

+
l,d +Od,d,l−d−1η̃

−
l−d−1,l−d−1 + w̃+

l,d (9)

Here

Ok,p,q =


CAk CAk+1 . . . CAq+k−1

CAk+1 CAk+2 . . . CAd+k

...
...

. . .
...

CAp+k−1 . . . . . . CAp+q+k−2

 , Ỹ −l,d =


Yl
Yl−1

...
Yl−d+1

 , Ỹ +
l,d =


Yl
Yl+1

...
Yl+d−1

 .
Furthermore, Ũ−l,d, η̃

−
l,d are defined similar to Ỹ −l,d and Ũ+

l,d, η̃
+
l,d, w̃

+
l,d are similar to Ỹ +

l,d. The +
and − signs indicate moving forward and backward in time respectively. This representation
will be at the center of our analysis.

There are three key steps in our algorithm which we describe in the following sections:

(a) Hankel submatrix estimation: Estimating H0,l,l for every 1 ≤ l ≤ T . We refer to the

estimators as {Ĥ0,l,l}Tl=1.

(b) Model Selection: From the estimators {Ĥ0,l,l}Tl=1 select Ĥ0,d̂,d̂ in a data dependent way
such that it “best” estimates H0,∞,∞.

(c) Parameter Recovery: For every k ≤ d̂, we do a singular value decomposition of Ĥ0,d̂,d̂
to obtain parameter estimates for a “good” k-order approximation of the true model.

5.1 Hankel Submatrix Estimation

The goal of our systems identification is to estimate either H0,n,n or H0,∞,∞. Since we only
have finite data and no apriori knowledge of n it is not possible to directly estimate the
unknown matrices. The first step then is to estimate all possible Hankel submatrices that
are “allowed” by data, i.e., H0,d,d for d ≤ T . For a fixed d, Algorithm 1 estimates the d× d
principal submatrix H0,d,d.

10



Finite Time LTI System Identification

Algorithm 1 LearnSystem(T, d,m, p)

Input T = Horizon for learning
d = Hankel Size
m = Input dimension
p = Output dimension
Output System Parameters: Ĥ0,d,d

1: Generate 2T i.i.d. inputs {Uj ∼ N (0, Im×m)}2Tj=1.

2: Collect 2T input–output pairs {Uj , Yj}2Tj=1.

3: Ĥ0,d,d = arg minH
∑T−1

l=0 ||Ỹ
+
l+d+1,d −HŨ

−
l+d,d||

2
2

4: return Ĥ0,d,d

It can be shown that

Ĥ0,d,d =
( T−1∑
l=0

Ỹ +
l+d+1,d(Ũ

−
l+d,d)

>
)( T−1∑

l=0

Ũ−l+d,d(Ũ
−
l+d,d)

>
)+

(10)

and by running the algorithm T times, we obtain {Ĥ0,d,,d}Td=1. A key step in showing

that Ĥ0,d,d is a good estimator for H0,d,d is to prove the finite time isometry of VT =∑T−1
l=0 Ũ−l+d,d(Ũ

−
l+d,d)

>, i.e., the sample covariance matrix.

Lemma 5.1 Define

T0(δ, d) = cm2d log2 (d) log2 (m2/δ) + cd log3 (2d)

where c is some universal constant. Define the sample covariance matrix VT :=
∑T−1

l=0 Ũ−l+d,d(Ũ
−
l+d,d)

>.
We have with probability 1− δ and for T > T0(δ, d)

1

2
TI � VT �

3

2
TI (11)

Lemma 5.1 allows us to write Eq. (10) as Ĥ0,d,d =
(∑T−1

l=0 Ỹ +
l+d+1,d(Ũ

−
l+d,d)

>
)(∑T−1

l=0 Ũ−l+d,d(Ũ
−
l+d,d)

>
)−1

with high probability and upper bound estimation error for d× d principal submatrix.

Theorem 5.1 Fix d and let Ĥ0,d,d be the output of Algorithm 1. Then for any 0 < δ < 1
and T ≥ T0(δ, d), we have with probability at least 1− δ

∣∣∣∣∣∣Ĥ0,d,d −H0,d,d

∣∣∣∣∣∣
2
≤ 4σ

√
1

T

√
pd+ log

1

δ
+m.

Here T0(δ, d) = cm2d log2 (d) log2 (m2/δ) + cd log3 (2d), c is a universal constant and σ =
max (σA, σB, σC , σD) from Table 1.

Proof We outline the proof here. Recall Eq. (8), (9). Then for a fixed d

Ĥ0,d,d =
( T−1∑
l=0

Ỹ +
l+d+1,d(Ũ

−
l+d,d)

>
)
V +
T .

11
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Then the identification error is

∣∣∣∣∣∣Ĥ0,d,d −H0,d,d

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣V +

T

( T−1∑
l=0

Ũ−l+d,dŨ
+>
l+d+1,dT

>
0,d + Ũ−l+d,dŨ

−>
l,l H

>
d,d,l + Ũ−l+d,dw̃

+>
l+d+1,d

+ Ũ−l+d,dη̃
−>
l+d,dO

>
0,d,d + Ũ−l+d,dη̃

+>
l+d+1,dT O

>
0,d + Ũ−l+d,dη̃

−>
l,l O

>
d,d,l

)∣∣∣∣∣∣
2

= ||V +
T E||2 (12)

with

E =
T−1∑
l=0

Ũ−l+d,dŨ
+>
l+d+1,dT

>
0,d + Ũ−l+d,dŨ

−>
l,l H

>
d,d,l + Ũ−l+d,dw̃

+>
l+d+1,d

+ Ũ−l+d,dη̃
−>
l+d,dO

>
0,d,d + Ũ−l+d,dη̃

+>
l+d+1,dT O

>
0,d + Ũ−l+d,dη̃

−>
l,l O

>
d,d,l.

By Lemma 5.1 we have, whenever T ≥ T0(δ, d), with probability at least 1− δ

TI

2
� VT �

3TI

2
. (13)

This ensures that, with high probability, that V −1
T exists and decays as O(T−1). The

next step involves showing that ||E||2 grows at most as
√
T with high probability. This

is reminiscent of Theorem 2.2 and the theory of self–normalized martingales. However,
unlike that cases the conditional sub-Gaussianity requirements do not hold here. For
example, let F l = σ(η1, . . . , ηl) then E[v>η̃−l+1,l+1|F l] 6= 0 for all v since {η̃−l+1,l+1}

T−1
l=0 is

not an independent sequence. As a result it is not immediately obvious on how to apply
Theorem 2.2 to our case. Under the event when Eq. (13) holds (which happens with high

probability), a careful analysis of the normalized cross terms, i.e., V
−1/2
T E shows that

||V −1/2
T E||2= O(1) with high probability. This is summarized in Propositions 11.1-11.3. The

idea is to decompose E into a linear combination of independent subgaussians and reduce it
to a form where we can apply Theorem 2.2. This comes at the cost of additional scaling in
the form of system dependent constants – such as the H∞–norm. Then we can conclude with

high probability that ||Ĥ −H0,d,d||2≤ ||V
−1/2
T ||2||V −1/2

T E||2≤ T−1/2O(1). The full proof has
been deferred to Section 11.1 in Appendix 11.

Remark 9 Recall D(T ) from Table 1. Since

d ∈ D(T ) =⇒ T ≥ T0(δ, d)

we can restate Theorem 5.1 as follows: for a fixed T , we have with probability at least 1− δ
that ∣∣∣∣∣∣Ĥ0,d,d −H0,d,d

∣∣∣∣∣∣
2
≤ 4σ

√
1

T

√
pd+ log

1

δ
+m

when d ∈ D(T ).

12
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We next present bounds on σ in Theorem 5.1. From the perspective of model selection in
later sections, we require that σ be known. In the next proposition we present two bounds
on σ, the first one depends on unknown parameters and recovers the precise dependence on
d. The second bound is an apriori known upper bound and incurs an additional factor of√
d.

Proposition 5.1 σ upper bound independent of d:

σ ≤ cn
(1− ρ(A))2

where cn depends only on n.

σ upper bound dependent on d:

σ ≤ βR
√
d.

where R is the noise-to-signal ratio as in Table 1

Proof
By Gelfand’s formula, since ||Ad||2≤ c(n)ρmax(A)d where ρmax(A) < 1 and c(n) is a

constant that only depends on n, it implies that

σA =
d∑
l=0

||CAlB||2≤
∞∑
l=0

||CAlB||2≤
∞∑
l=0

c(n)ρ(A)l =
c(n)

1− ρ(A)
,

and

||Td+k,T ||2≤
T−1∑
l=0

||CAd+k+lB||2≤
c(n)ρ(A)d+k

1− ρ(A)
.

Then

σC =

√√√√σ

(
d∑

k=1

T >d+k,TTd+k,T

)
≤ c(n)ρ(A)d

(1− ρ(A))2
≤ c(n)

(1− ρ(A))2
.

Similarly, there exists a finite upper bound on σB, σD by replacing CAlB and Td+k,T with
CAl and T Od+k,T respectively. For the d independent upper bound, we have

σA =
d∑
l=0

||CAlB||2≤
√
d

√√√√ d∑
l=0

||CAlB||22 ≤
√
d||M ||H≤

√
dβ.

Since σ
(
T >d+k,TTd+k,T

)
≤ β, then

σC =

√√√√σ

(
d∑

k=1

T >d+k,TTd+k,T

)
≤ β
√
d.

13
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For the σB, σD we get an extra R because T O0,∞ ≤ βR.

The key feature of the data dependent upper bound is that it only depends on β and R
which are known apriori.

Recall that Gd = [CB,CAB, . . . , CAd−1B], i.e., the d-order FIR truncation of G(z).
Since the p rows of the H0,d,d matrix corresponds to Gd we can obtain estimators for any
d-order FIR.

Corollary 5.1 Let Ĝd = Ĥ0,d,d[1 : p, :] denote the first p-rows of Ĥ0,d,d. Then for any
0 < δ < 1 and T ≥ T0(δ, d), we have with probability at least 1− δ,

||Ĝd −Gd||2≤ 4σ

√
1

T

√
pd+ log

1

δ
+m.

Proof Proof follows because Gd = H0,d,d[1 : p, :] and Theorem 5.1.

Next, we show that the error in Theorem 5.1 is minimax optimal (up to logarithmic
factors) and cannot be improved by any estimation method.

Proposition 5.2 Let
√
T ≥ c where c is an absolute constant. Then for any estimator Ĥ

of H0,∞,∞ we have

sup
Ĥ

E[||Ĥ − H0,∞,∞||2] ≥ cn ·
√

log T

T

where cn > 0 is a constant that is independent of T but can depend on system level parameters.

Proof Assume the contrary that

sup
Ĥ

E[||Ĥ − H0,∞,∞||2] = o

(√
log T

T

)
.

Then recall that [H0,∞,∞]1:p,: = [CB,CAB, . . . , ] and G(z) = z−1CB + z−2CAB + . . ..
Similarly we have Ĝ(z). Define

||G− Ĝ||2=

√√√√ ∞∑
k=0

||CAkB − ĈÂkB̂||22.

If supĤ E[||Ĥ − H0,∞,∞||2] = o
(√

log T
T

)
, then since ||Ĥ − H0,∞,∞||2≥ ||G − Ĝ||2 we can

conclude that

E[||G− Ĝ||2] = o

(√
log T

T

)
which contradicts Theorem 5 in (Goldenshluger, 1998). Thus, supĤ E[||Ĥ − H0,∞,∞||2] ≥

cn ·
√

log T
T .

14
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5.2 Model Selection

At a high level, we want to choose Ĥ0,d̂,d̂ from {Ĥ0,d,d}Td=1 such that Ĥ0,d̂,d̂ is a good estimator

of H0,∞,∞. Our idea of model selection is motivated by (Goldenshluger, 1998). For any
Ĥ0,d,d, the error from H0,∞,∞ can be broken as:

||Ĥ0,d,d −H0,∞,∞||2≤ ||Ĥ0,d,d −H0,d,d||2︸ ︷︷ ︸
=Estimation Error

+ ||H0,d,d −H0,∞,∞||2︸ ︷︷ ︸
=Truncation Error

.

We would like to select a d = d̂ such that it balances the truncation and estimation error in
the following way:

c2 ·Data dependent upper bound ≥ c1 · Estimation Error ≥ Truncation Error

where ci are absolute constants. Such a balancing ensures that

||Ĥ0,d̂,d̂ −H0,∞,∞||2≤ c2 · (1/c1 + 1) ·Data dependent upper bound . (14)

Note that such a balancing is possible because the estimation error increases as d grows
and truncation error decreases with d. Furthermore, a data dependent upper bound for
estimation error can be obtained from Theorem 5.1. Unfortunately (C,A,B) are unknown
and it is not immediately clear on how to obtain such a bound for truncation error.

To achieve this, we first define a truncation error proxy, i.e., how much do we truncate
if a specific Ĥ0,d,d is used. For a given d, we look at ||Ĥ0,d,d − Ĥ0,l,l||2 for l ∈ D(T ) ≥ d.

This measures the additional error incurred if we choose Ĥ0,d,d as an estimator for H0,∞,∞
instead of Ĥ0,l,l for l > d. Then we pick d̂ as follows:

d̂ := inf

{
d

∣∣∣∣∣||Ĥ0,d,d − Ĥ0,l,l||2≤ 16βR · α(l) ∀l ∈ D(T ) ≥ d

}
. (15)

Recall that α(l) =

√
l log (l/δ)+pl2+ml

T , where

√
log (l/δ)+pl+m

T denotes how much estimation

error is incurred in learning l × l Hankel submatrix, the extra β
√
l is incurred because we

need a data dependent, albeit coarse, upper bound on the estimation error.

A key step will be to show that for any l ≥ d, whenever

||Ĥ0,d,d − Ĥ0,l,l||2≤ cβR · α(l)

ensures that

||Ĥ0,d,d −H0,∞,∞||2≤ cβR · α(l) and ||Ĥ0,l,l −H0,∞,∞||2≤ cβR · α(l)

and there is no gain in choosing a larger Hankel submatrix estimate. By picking the smallest
d for which such a property holds for all larger Hankel submatrices, we ensure that a
regularized model is estimated that “agrees” with the data.
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Algorithm 2 Choice of d

Output Ĥ0,d̂,d̂, d̂

1: D(T ) =
{
d
∣∣∣d ≤ T

cm2 log3 (Tm/δ)

}
, α(h) =

√
h
(√

m+hp+log (Tδ )
T

)
.

2: d0(T, δ) = inf
{
l
∣∣∣||Ĥ0,l,l − Ĥ0,h,h||2≤ 16βR(α(h) + 2α(l)) ∀h ∈ D(T ), h ≥ l

}
.

3: d̂ = max
(
d0(T, δ), log

(
T
δ

))
4: return Ĥ0,d̂,d̂, d̂

We now state the main estimation result for H0,∞,∞ for d = d̂ as chosen in Algorithm 2.
Define

T∗(δ) = inf
{
T
∣∣∣d∗(T, δ) ∈ D(T ), d∗(T, δ) ≤ 2d∗

(
T

256
, δ

)}
(16)

where

d∗(T, δ) = inf

{
d

∣∣∣∣∣16βRα(d) ≥ ||H0,d,d −H0,∞,∞||2

}
. (17)

A close look at Eq. (17) reveals that picking d = d∗(T, δ) ensures the balancing of Eq. (14).
However, d∗(T, δ) depends on unknown quantities and is unknown. In such a case, d̂ in
Eq. (15) becomes a proxy for d∗(T, δ). From an algorithmic stand point, we no longer need
any unknown information; the unknown parameter only appear in T∗(δ), which is only
required to make the theoretical guarantee of Theorem 5.2 below.

Theorem 5.2 Whenever we have T ≥ T∗(δ) we have with probability at least 1− δ that

||Ĥ0,d̂,d̂ −H0,∞,∞||2≤ 12cβR

√md̂+ pd̂2 + d̂ log T
δ

T

.
The proof of Theorem 5.2 can be found as Proposition 13.8 in Appendix 13. We see that
the error between Ĥ0,d̂,d̂ and H0,∞,∞ can be upper bounded by a purely data dependent

quantity. The next proposition shows that d̂ does not grow more that logarithmically in T .

Proposition 5.3 Let T ≥ T∗(δ), d∗(T, δ) be as in Eq. (17). Then with probability at least
1− δ we have

d̂ ≤ d∗(T, δ) ∨ log
(T
δ

)
.

Furthermore,

d∗(T, δ) ≤
c log (cT + log 1

δ )− logR+ log β

log 1
ρ(A)

.

The effect of unknown quantities, such as the spectral radius, are subsumed in the finite
time condition T ≥ T∗(δ) and appear in an upper bound for d̂; however this information is
not needed from an algorithmic perspective as the selection of d̂ is agnostic to the knowledge
of ρ(A). The proof of proposition can be found as Propositions 13.7 and 13.4.
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5.3 Parameter Recovery

Next we discuss finding the system parameters. To obtain system parameters we use a
balanced truncation algorithm on Ĥ0,d̂,d̂ where d̂ is the output of Algorithm 2. The details

are summarized in Algorithm 3 where H = Ĥ0,d̂,d̂.

Algorithm 3 Hankel2Sys(T, d̂, k,m, p)

Input T = Horizon for Learning
d̂ = Hankel Size
m = Input dimension
p = Output dimension
Output System Parameters: (Ĉd̂, Âd̂, B̂d̂)

1: H = H0,d̂,d̂

2: Pad H with zeros to make of dimension 4pd̂× 4md̂
3: U,Σ, V ← SVD of H
4: Ud̂, Vd̂ ← top d̂ singular vectors

5: Ĉd̂ ← first p rows of Ud̂Σ
1/2

d̂

6: B̂d̂ ← first m columns of Σ
1/2

d̂
V >
d̂

7: Z0 = [Ud̂Σ
1/2

d̂
]1:4pd̂−p,:, Z1 = [Ud̂Σ

1/2

d̂
]p+1:,:

8: Âd̂ ← (Z>0 Z0)−1Z>0 Z1.

9: return (Ĉd̂, Âd̂, B̂d̂)

To state the main result we define a quantity that measures the singular value weighted
subspace gap of a matrix S:

Γ(S, ε) =
√
σ1

max/ζ
2
1 + σ2

max/ζ
2
2 + . . .+ σlmax/ζ

2
l ,

where S = UΣV > and Σ is arranged into blocks of singular values such that in each block i
we have supj σ

i
j − σij+1 ≤ ε, i.e.,

Σ =


Λ1 0 . . . 0
0 Λ2 . . . 0
...

...
. . . 0

0 0 . . . Λl


where Λi are diagonal matrices, σij is the jth singular value in the block Λi and σimin, σ

i
max

are the minimum and maximum singular values of block i respectively. Furthermore,

ζi = min (σi−1
min − σ

i
max, σ

i
min − σi+1

max)

for 1 < i < l, ζ1 = σ1
min − σ2

max and ζl = min (σl−1
min − σlmax, σ

l
min). Informally, the ζi measure

the singular value gaps between each blocks. It should be noted that l, the number of
separated blocks, is a function of ε itself. For example: if ε = 0 then the number of blocks
correspond to the number of distinct singular values. On the other hand, if ε is very large
then l = 1.
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Theorem 5.3 Let M be the true unknown model and

ε = 12cβR

√md̂+ pd̂2 + d̂ log T
δ

T

.
Then whenever T ≥ T∗(δ), we have with probability at least 1− δ:

||Cd̂ − Ĉd̂||2
||Bd̂ − B̂d̂||2
||Ad̂ − Âd̂||2

 ≤ γ̄εΓ(Ĥ0,d̂,d̂, 2ε) + γ̄ sup
1≤i≤d̂

(√
σ̂imax −

√
σ̂imin

)
+ γ̄ ·

ε ∧
√
σ̂d̂ε√
σ̂d̂

where sup1≤i≤d̂
√
σ̂imax −

√
σ̂imin ≤

2√
σ̂d̂
εd̂ ∧

√
2d̂ε and γ̄ = max (4γ, 8).

Theorem 5.3 holds for all k ≤ d̂ and proof follows directly from Theorem 13.8 where we show

||Ĥ0,d̂,d̂ −H0,∞,∞||2≤ ε

and Proposition 14.2. Theorem 5.3 provides an error bound between parameters (of model
order d̂) when true order is unknown. The subspace gap measure, Γ(Ĥ0,d̂,d̂, 2ε), is bounded

even when ε = 0. To see this, note that when ε = 0, Ĥ0,d̂,d̂ corresponds exactly to H0,d̂,d̂. In
that case, the number of blocks correspond to the number of distinct singular values of H0,d̂,d̂,
and ζni then corresponds to singular value gap between the unequal singular values. As a

result Γ(Ĥ0,d̂,d̂, 2ε) = ∆ <∞. Then the bound decays as ε = O

(√
d̂2/T

)
for singular values

σ̂d̂ > d̂ε, but for much smaller singular values the bound decays as
√
ε = O

((
d2/T

)1/4)
.

To shed more light on the behavior of our bounds, we consider the special case of known
order. If n is the model order, then we can set d̂ = n. If σi = σi(H0,∞,∞), then for large
enough T one can ensure that

min
σi 6=σi+1

(σi − σi+1)/2 > ε,

i.e., ε is less than the singular value gap and small enough that the spectrum of Ĥ0,n,n is
very close to that of H0,∞,∞. Consequently σ̂n ≥ σn/2 and we have that

||Cn − Ĉn||2
||Bn − B̂n||2
||An − Ân||2

 ≤ γ̄ε∆ + γ̄ε/
√
σn = cβγ̄R

√pn2 + n log T
δ

σnT

. (18)

This upper bound is (nearly) identical to the bounds obtained in Oymak and Ozay (2018)
for the known order case. We get an improvement in the bounds when σn ≤ 1

n , which is a
consequence of the fact that we know where to threshold our Hankel matrix. The major
advantage of our result is that we do not require any information/assumption on the LTI
system besides β. Nonparametric approaches to estimating β have been studied in Tu et al.
(2017).
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5.4 Order Estimation Lower Bound

In Theorem 5.3 it is shown that whenever T = Ω

(
1
σ2
d̂

)
we can find an accurate d̂–order

approximation. Now we show that if T = O

(
1
σ2
d̂

)
then there is always some non–zero

probability with which we can not recover the singular vector corresponding to the σd̂+1.

We prove the following lower bound for model order estimation when inputs {Ut}Tt=1 are
active and bounded which we define below

Definition 10 An input sequence {Ut}Tt=1 is said to be active if Ut is allowed to depend on
past history {Ul, Yl}t−1

l=1. The input sequence is bounded if E[U>t Ut] ≤ 1 for all t.

Active inputs allow for the case when input selection can be adaptive due to feedback.

Theorem 5.4 Fix δ > 0, ζ ∈ (0, 1/2). Let M1,M2 be two LTI systems and σ
(1)
i , σ

(2)
i be

the ith-Hankel singular values respectively. Let
σ
(1)
1

σ
(1)
2

≤ 2
ζ and σ

(2)
2 = 0. Then whenever

T ≤ CR2

ζ2
log 2

δ we have

sup
M∈{M1,M2}

PZT∼M (order(M̂(ZT )) 6= order(M)) ≥ δ

Here ZT = {Ut, Yt}Tt=1 ∼M means M generates T data points {Yt}Tt=1 in response to active
and bounded inputs {Ut}Tt=1 and M̂(ZT ) is any estimator.

Proof The proof can be found in appendix in Section 15 and involves using Fano’s (or
Birge’s) inequality to compute the minimax risk between the probability density functions
generated by two different LTI systems:

A0 =

0 1 0
0 0 0
ζ 0 0

 , A1 = A0, B0 =

 0
0√
β/R

 , B1 =

 0√
β/R√
β/R

 , C0 =
[
0 0

√
βR
]
, C1 = C0.

(19)

A0, A1 are Schur stable whenever |ζ|< 1.

Theorem 5.4 shows that when the time required to recover higher order models depends
inversely on the condition number, where the condition number is the ratio of largest and
least singular values of the Hankel matrix. Specifically, to correctly distinguish between an
order 1 and order 2 model T ≥ Ω(2/ζ2) where ζ is the condition number of the 2-order model.
We compare this to our upper bound in Theorem 5.3 and Eq. (18), assume Γ(Ĥ0,d̂,d̂, 2ε) ≤ ∆

for all ε ∈ [0, 1] and d̂ε ≤ σ̂d̂, then since parameter error, E , is upper bounded as

E ≤ cβ∆R

√md̂+ pd̂2 + d̂ log T
δ

σd̂T

,
we need

T

log T
δ

≥ Ω

(
β2∆2R2d̂2

σ2
d̂

)
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to correctly identify d̂-order model. The ratio (β/σd̂) is equal to the condition number of the
Hankel matrix. In this sense, the model selection followed by singular value thresholding is
not too conservative in terms of R (the signal-to-noise ratio) and conditioning of the Hankel
matrix.

6. Experiments

The experiments in this paper are for the single trajectory case. A detailed analysis for
system identification from multiple trajectories can be found in Tu et al. (2017). Suppose
that the LTI system generating data, M , has transfer function given by

G(z) = α0 +

149∑
l=1

αlρ
lz−l, ρ < 1 (20)

where αi ∼ N (0, 1). M is a finite dimensional LTI system or order 150 with parameters as
M = (C ∈ R1×150, A ∈ R150×150, B ∈ R150×1). For these illustrations, we assume a balanced
system and choose R = 1, δ = 0.05. We estimate β0.6 = 15, β0.9 = 40, β0.99 = 140, pick
Ut ∼ N (0, 1) and {wt, ηt} ∼ {N (0, 1),N (0, I)} respectively. We note that our algorithm
requires the knowledge of universal constant c. Theoretically, it can be shown that c < 100
but in practice a value c ≤ 16 works well for simulations.

Figure 1: Variation of Hankel size = d̂ with T for different values of ρ

Fig. 1 shows how d = d̂ change with the number of data points for different values of
ρ. When ρ = 0.6, i.e., small, d̂ does not grow too big with T even when the number of
data points is increased. This shows that a small model order is sufficient to specify system
dynamics. On the other hand, when ρ = 0.99, i.e., closer to instability the d̂ required is
much larger, indicating the need for a higher order. Although d̂ implicitly captures the effect
of spectral radius, the knowledge of ρ is not required for d̂ selection.

In principle, our algorithm increases the Hankel size to the “appropriate” size as the data
increases. We compare this to a deterministic growth policy d = log (T ) and the SSREGEST
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algorithm Ljung et al. (2015). The SSREGEST algorithm first learns a large model from
data and then performs model reduction to obtain a final model. In contrast, we go to
reduced model directly by picking a small d̂. This reduces the sensitivity to noise.

In Fig. 2 shows the model errors for a deterministic growth policy d = log (T ) and our
algorithm. Although the difference is negligible when ρ = 0.6 (small), we see that our
algorithm does better ρ = 0.99 due to its adaptive nature, i.e., d̂ responds faster for our
algorithm.

Figure 2: Variation of ||M − M̂k||op for different values of ρ. Here k = d̂ for our algorithm and
k = log (T ). Furthermore, ||·||op is the Hankel norm.

Finally, for the case when ρ = 0.9, β = 40, we show the model errors for SSREGEST
and our algorithm as T increases. Although asymptotically both algorithms perform the
same, it is clear that for small T our algorithm is more robust to the presence of noise.

T SSREGEST Our Algorithm

500 6.21± 1.35 13.37± 3.7

≈ 850 30.20± 7.55 11.25± 2.89

≈ 1200 26.80± 8.94 9.83± 2.60

1500 23.27± 10.65 9.17± 2.30

2000 26.38± 12.88 7.70± 1.60

7. Discussion

We propose a new approach to system identification when we observe only finite noisy data.
Typically, the order of an LTI system is large and unknown and a priori parametrizations
may fail to yield accurate estimates of the underlying system. However, our results suggest
that there always exists a lower order approximation of the original LTI system that can be
learned with high probability. The central theme of our approach is to recover a good lower
order approximation that can be accurately learned. Specifically, we show that identification
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of such approximations is closely related to the singular values of the system Hankel matrix.

In fact, the time required to learn a d̂–order approximation scales as T = Ω(β
2

σ2
d̂

) where σd̂ is

the d̂–the singular value of system Hankel matrix. This means that system identification
does not explicitly depend on the model order n, rather depends on n through σn. As a
result, in the presence of finite data it is preferable to learn only the “significant” (and
perhaps much smaller) part of the system when n is very large and σn � 1. Algorithm 1 and
3 provide a guided mechanism for learning the parameters of such significant approximations
with optimal rules for hyperparameter selection given in Algorithm 2.

Future directions for our work include extending the existing low–rank optimization-based
identification techniques, such as (Fazel et al., 2013; Grussler et al., 2018), which typically
lack statistical guarantees. Since Hankel based operators occur quite naturally in general
(not necessarily linear) dynamical systems, exploring if our methods could be extended for
identification of such systems appears to be an exciting direction.
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Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press, 2013.

Marco C Campi and Erik Weyer. Finite sample properties of system identification methods.
IEEE Transactions on Automatic Control, 47(8):1329–1334, 2002.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the royal statistical society. Series B
(methodological), pages 1–38, 1977.

Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari, and George Michailidis. Finite time
identification in unstable linear systems. arXiv preprint arXiv:1710.01852, 2017.

22



Finite Time LTI System Identification

Maryam Fazel, Ting Kei Pong, Defeng Sun, and Paul Tseng. Hankel matrix rank minimization
with applications to system identification and realization. SIAM Journal on Matrix
Analysis and Applications, 34(3):946–977, 2013.

Keith Glover. All optimal hankel-norm approximations of linear multivariable systems and
their l∞-error bounds. International journal of control, 39(6):1115–1193, 1984.

Keith Glover. Model reduction: a tutorial on hankel-norm methods and lower bounds on l2
errors. IFAC Proceedings Volumes, 20(5):293–298, 1987.

Alexander Goldenshluger. Nonparametric estimation of transfer functions: rates of con-
vergence and adaptation. IEEE Transactions on Information Theory, 44(2):644–658,
1998.

Christian Grussler, Anders Rantzer, and Pontus Giselsson. Low-rank optimization with
convex constraints. IEEE Transactions on Automatic Control, 2018.

Moritz Hardt, Tengyu Ma, and Benjamin Recht. Gradient descent learns linear dynamical
systems. arXiv preprint arXiv:1609.05191, 2016.

Elad Hazan, Holden Lee, Karan Singh, Cyril Zhang, and Yi Zhang. Spectral filtering for
general linear dynamical systems. arXiv preprint arXiv:1802.03981, 2018.

BL Ho and Rudolph E Kalman. Effective construction of linear state-variable models from
input/output functions. at-Automatisierungstechnik, 14(1-12):545–548, 1966.

S Kung and D Lin. Optimal hankel-norm model reductions: Multivariable systems. IEEE
Transactions on Automatic Control, 26(4):832–852, 1981.

Lennart Ljung. System identification: theory for the user. Prentice-hall, 1987.

Lennart Ljung, Rajiv Singh, and Tianshi Chen. Regularization features in the system
identification toolbox. IFAC-PapersOnLine, 48(28):745–750, 2015.

Mark Meckes et al. On the spectral norm of a random toeplitz matrix. Electronic Commu-
nications in Probability, 12:315–325, 2007.

Samet Oymak and Necmiye Ozay. Non-asymptotic identification of lti systems from a single
trajectory. arXiv preprint arXiv:1806.05722, 2018.

Victor H Peña, Tze Leung Lai, and Qi-Man Shao. Self-normalized processes: Limit theory
and Statistical Applications. Springer Science & Business Media, 2008.

Tuhin Sarkar and Alexander Rakhlin. How fast can linear dynamical systems be learned?
arXiv preprint arXiv:1812.0125, 2018.

Parikshit Shah, Badri Narayan Bhaskar, Gongguo Tang, and Benjamin Recht. Linear system
identification via atomic norm regularization. In 2012 IEEE 51st IEEE Conference on
Decision and Control (CDC), pages 6265–6270. IEEE, 2012.

23



T. Sarkar and A. Rakhlin and M. A. Dahleh

Ritei Shibata. Selection of the order of an autoregressive model by akaike’s information
criterion. Biometrika, 63(1):117–126, 1976.

Max Simchowitz, Horia Mania, Stephen Tu, Michael I Jordan, and Benjamin Recht. Learning
without mixing: Towards a sharp analysis of linear system identification. arXiv preprint
arXiv:1802.08334, 2018.

Stephen Tu, Ross Boczar, Andrew Packard, and Benjamin Recht. Non-asymptotic analysis
of robust control from coarse-grained identification. arXiv preprint arXiv:1707.04791,
2017.

Stephen Tu, Ross Boczar, and Benjamin Recht. On the approximation of toeplitz operators
for nonparametric H∞–norm estimation. In 2018 Annual American Control Conference
(ACC), pages 1867–1872. IEEE, 2018a.

Stephen Tu, Ross Boczar, and Benjamin Recht. Minimax lower bounds for H∞-norm
estimation. arXiv preprint arXiv:1809.10855, 2018b.

Eugene E Tyrtyshnikov. A brief introduction to numerical analysis. Springer Science &
Business Media, 2012.

Sara van de Geer and Johannes Lederer. The bernstein–orlicz norm and deviation inequalities.
Probability theory and related fields, 157(1-2):225–250, 2013.

Aad W Van Der Vaart and Jon A Wellner. Weak convergence. In Weak convergence and
empirical processes, pages 16–28. Springer, 1996.

Peter Van Overschee and BL De Moor. Subspace identification for linear systems: The-
ory—Implementation—Applications. Springer Science & Business Media, 2012.

Saligrama R Venkatesh and Munther A Dahleh. On system identification of complex systems
from finite data. IEEE Transactions on Automatic Control, 46(2):235–257, 2001.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv
preprint arXiv:1011.3027, 2010.
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8. Preliminaries

Theorem 8.1 (Theorem 5.39 Vershynin (2010)) if E is a T ×md matrix with inde-
pendent sub–Gaussian isotropic rows with subGaussian parameter 1 then with probability at
least 1− 2e−ct

2
we have

√
T − C

√
md− t ≤ σmin(E) ≤

√
T + C

√
md+ t

Proposition 8.1 (Vershynin (2010)) We have for any ε < 1 and any w ∈ Sd−1 that

P(||M ||> z) ≤ (1 + 2/ε)dP

(
||Mw||> z

(1− ε)

)
Theorem 8.2 (Theorem 1 Meckes et al. (2007)) ] Suppose {Xi ∈ Rm}∞i=1 are inde-
pendent, E[Xj ] = 0 for all j, and Xij are independent subg(1) random variables. Then

P(||Td||≥ cm
√
d log 2d+ t) ≤ e−t2/d where

Tn =


X0 X1 . . . Xd−1

X1 X0 . . . Xd−2
...

. . .
. . .

...
Xd−1 . . . . . . X0


Theorem 8.3 (Hanson–Wright Inequality) Given a subgaussian vector X = [X1, X2, . . . , Xn] ∈
Rn with supi‖Xi‖ψ2

≤ K. Then for any B ∈ Rn×n and t ≥ 0

P
(
‖XBX> − E[XBX>]‖≤ t

)
≤ 2 exp

(
max

(
−ct

K2‖B‖
,
−ct2

K4‖B‖2HS

))
.

Proposition 8.2 (Lecture 2 Tyrtyshnikov (2012)) Suppose that L is the lower trian-
gular part of a matrix A ∈ Rd×d. Then

‖L‖2 ≤ log2 (2d)‖A‖2.

Let ψ be a nondecreasing, convex function with ψ(0) = 0 and X a random variable.
Then the Orlicz norm ||X||ψ is defined as

||X||ψ= inf
{
α > 0 : E[ψ(|X|/α)] ≤ 1

}
.

Let (B, d) be an arbitrary semi–metric space. Denote by N(ε, d) is the minimal number of
balls of radius ε needed to cover B.

Theorem 8.4 (Corollary 2.2.5 in Van Der Vaart and Wellner (1996)) The constant
K can be chosen such that

||sup
s,t
|Xs −Xt|||ψ≤ K

∫ diam(B)

0
ψ−1(N(ε/2, d))dε

where diam(B) is the diameter of B and d(s, t) = ||Xs −Xt||ψ.
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Theorem 8.5 (Theorem 1 in Abbasi-Yadkori et al. (2011)) Let {F t}∞t=0 be a filtra-
tion. Let {ηt ∈ Rm, Xt ∈ Rd}∞t=1 be stochastic processes such that ηt, Xt are F t mea-
surable and ηt is F t−1-conditionally subg(L2) for some L > 0. For any t ≥ 0, define
Vt =

∑t
s=1XsX

′
s, St =

∑t
s=1Xsη

>
s+1. Then for any δ > 0, V � 0 and all t ≥ 0 we have with

probability at least 1− δ

S>t (V + Vt)
−1St ≤ 2L2

(
log

1

δ
+ log

det(V + Vt)

det(V )
+m

)
.

Proof Define M = (V + Vt)
−1/2St. Now we use Proposition 8.1 and setting ε = 1/2,

P(||M ||2> z) ≤ 5mP(||Mw||2> 2z)

for w ∈ Sm−1. Then we can use Theorem 1 in Abbasi-Yadkori et al. (2011), and with
probability at least 1− δ we have

||Mw||22≤ 2L2

(
log

1

δ
+ log

det(V + Vt)

det(V )

)
.

By δ → 5−mδ, we have with probability at least 1− 5−mδ

||Mw||2≤
√

2L

√(
m log (5) + log

1

δ
+ log

det(V + Vt)

det(V )

)
.

Then with probability at least 1− δ,

||M ||2≤
√

log (5)

2
L

√(
m+ log

1

δ
+ log

det(V + Vt)

det(V )

)
.

Lemma 8.1 For any M = (C,A,B), we have that

||BvT×mT ||=

√√√√σ
( d∑
k=1

T >d+k,TTd+k,T

)
Here BvT×mT is defined as follows: β = H>d,d,T v = [β>1 , β

>
2 , . . . , β

>
T ]>.

BvT×mT =


β>1 0 0 . . .
β>2 β>1 0 . . .
...

...
. . .

...
β>T β>T−1 . . . β>1


and ||v||2= 1.
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Proof For the matrix Bv we have

Bvu =


β>1 u1

β>1 u2 + β>2 u1

β>1 u3 + β>2 u2 + β>3 u1
...

β>1 uT + β>2 uT−1 + . . .+ β>T u1

 =



v>


CAd+1Bu1

CAd+2Bu1
...

CA2dBu1



v>


CAd+2Bu1 + CAd+1Bu2

CAd+3Bu1 + CAd+2Bu2
...

CA2d+1Bu1 + CA2dBu2


...

v>


CAT+dBu1 + . . .+ CAd+1BuT
CAT+d+2Bu1 + . . .+ CAd+2BuT

...
CAT+2d−1Bu1 + . . .+ CA2dBuT





= V




CAd+1Bu1

CAd+2Bu1
...

CA2dBu1



CAd+2Bu1 + CAd+1Bu2

CAd+3Bu1 + CAd+2Bu2
...

CA2d+1Bu1 + CA2dBu2


...

CAT+dBu1 + . . .+ CAd+1BuT
CAT+d+2Bu1 + . . .+ CAd+2BuT

...
CAT+2d−1Bu1 + . . .+ CA2dBuT





= V



CAd+1B 0 0 . . . 0
CAd+2B 0 0 . . . 0

...
...

...
...

...
CA2dB 0 0 . . . 0
CAd+2B CAd+1B 0 . . . 0
CAd+3B CAd+2B 0 . . . 0

...
...

...
...

...
CA2d+1B CA2dB 0 . . . 0

...
...

...
...

...
CAT+d−1B CAT+dB CAT+d−1B . . . CAd+1B
CAT+d+2B CAT+d+1B CAT+dB . . . CAd+2B

...
...

...
...

...
CAT+2d−1B CAT+2d−1B CAT+2d−2B . . . CA2dB


︸ ︷︷ ︸

=S


u1

u2
...
uT


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It is clear that ||V||2, ||u||2= 1 and for any matrix S, ||S|| does not change if we interchange
rows of S. Then we have

||S||2 = σ





CAd+1B 0 0 . . . 0
CAd+2B CAd+1B 0 . . . 0

...
...

...
...

...
CAT+d+1B CAT+dB CAT+d−1B . . . CAd+1B
CAd+2B 0 0 . . . 0
CAd+3B CAd+2B 0 . . . 0

...
...

...
...

...
CAT+d+2B CAT+d+1B CAT+dB . . . CAd+2B

...
...

...
...

...
CA2dB 0 0 . . . 0
CA2d+1B CA2dB 0 . . . 0

...
...

...
...

...
CAT+2d−1B CAT+2d−1B CAT+2d−2B . . . CA2dB





= σ



Td+1,T

Td+2,T
...
T2d,T


 =

√√√√σ
( d∑
k=1

T >d+k,TTd+k,T

)

Proposition 8.3 (Lemma 4.1 Simchowitz et al. (2018)) Let S be an invertible matrix
and κ(S) be its condition number. Then for a 1

4κ–net of Sd−1 and an arbitrary matrix A,
we have

||SA||2≤ 2 sup
v∈N 1

4κ

||v′A||2
||v′S−1||2

Proof For any vector v ∈ N 1
4κ

and w be such that ||SA||2= ||w′A||2
||w′S−1||2 we have

||SA||2−
||v′A||2
||v′S−1||2

≤
∣∣∣ ||w′A||2||w′S−1||2

− ||v′A||2
||v′S−1||2

∣∣∣
=
∣∣∣ ||w′A||2||w′S−1||2

− ||v′A||2
||w′S−1||2

+
||v′A||2
||w′S−1||2

− ||v′A||2
||v′S−1||2

∣∣∣
≤ ||SA||2

1
4κ ||S

−1||2
||w′S−1||2

+ ||SA||2
∣∣∣ ||v′S−1||2
||w′S−1||2

− 1
∣∣∣

≤ ||SA||2
2
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9. Control and Systems Theory Preliminaries

9.1 Sylvester Matrix Equation

Define the discrete time Sylvester operator SA,B : Rn×n → Rn×n

LA,B(X) = X −AXB (21)

Then we have the following properties for LA,B(·).

Proposition 9.1 Let λi, µi be the eigenvalues of A,B then LA,B is invertible if and only if
for all i, j

λiµj 6= 1

Define the discrete time Lyapunov operator for a matrix A as LA,A′(·) = S−1
A,A′(·). Clearly

it follows from Proposition 9.1 that whenever λmax(A) < 1 we have that the SA,A′(·) is an
invertible operator.

Now let Q � 0 then

SA,A′(Q) = X

=⇒ X = AXA′ +Q

=⇒ X =
∞∑
k=0

AkQA′k (22)

Eq. (22) follows directly by substitution and by Proposition 9.1 is unique if ρ(A) < 1.
Further, let Q1 � Q2 � 0 and X1, X2 be the corresponding solutions to the Lyapunov
operator then from Eq. (22) that

X1, X2 � 0

X1 � X2

9.2 Properties of System Hankel matrix

• Rank of system Hankel matrix: For M = (C,A,B) ∈ Mn, the system Hankel
matrix, H0,∞,∞(M), can be decomposed as follows:

H0,∞,∞(M) =


C
CA

...
CAd

...


︸ ︷︷ ︸

=O

[
B AB . . . AdB . . .

]︸ ︷︷ ︸
=R

(23)

It follows from definition that rank(O), rank(R) ≤ n and as a result rank(OR) ≤ n.
The system Hankel matrix rank, or rank(OR), which is also the model order(or
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simply order), captures the complexity of M . If SVD(H0,∞,∞) = UΣV >, then
O = UΣ1/2S,R = S−1Σ1/2V >. By noting that

CAlS = CS(S−1AS)l, S−1AlB = (S−1AS)lS−1B

we have obtained a way of recovering the system parameters (up to similarity transfor-
mations). Furthermore, H0,∞,∞ uniquely (up to similarity transformation) recovers
(C,A,B).

• Mapping Past to Future: H0,∞,∞ can also be viewed as an operator that maps
“past” inputs to “future” outputs. In Eq. (1) assume that {ηt, wt} = 0. Then consider
the following class of inputs Ut such that Ut = 0 for all t ≥ T but Ut may not be zero
for t < T . Here T is chosen arbitrarily. Then

YT
YT+1

YT+2
...


︸ ︷︷ ︸

Future

= H0,∞,∞


UT−1

UT−2

UT−3
...


︸ ︷︷ ︸

Past

(24)

9.3 Model Reduction

Given an LTI system M = (C,A,B) of order n with its doubly infinite system Hankel matrix
as H0,∞,∞. We are interested in finding the best k order lower dimensional approximation of
M , i.e., for every k < n we would like to find Mk of model order k such that ||M −Mk||∞
is minimized. Systems theory gives us a class of model approximations, known as balanced
truncated approximations, that provide strong theoretical guarantees (See Glover (1984) and
Section 21.6 in Zhou et al. (1996)). We summarize some of the basics of model reduction
below. Assume that M has distinct Hankel singular values.

Recall that a model M = (C,A,B) is equivalent to M̃ = (CS, S−1AS, S−1B) with
respect to its transfer function. Define

Q = A>QA+ C>C

P = APA> +BB>

For two positive definite matrices P,Q it is a known fact that there exist a transformation
S such that S>QS = S−1PS−1> = Σ where Σ is diagonal and the diagonal elements are
decreasing. Further, σi is the ith singular value of H0,∞,∞. Then let Ã = S−1AS, C̃ =

CS, B̃ = S−1B. Clearly M̃ = (Ã, B̃, C̃) is equivalent to M and we have

Σ = Ã>ΣÃ+ C̃>C̃

Σ = ÃΣÃ> + B̃B̃> (25)

Here C̃, Ã, B̃ is a balanced realization of M .
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Proposition 9.2 Let H0,∞,∞ = UΣV >. Here Σ � 0 ∈ Rn×n. Then

C̃ = [UΣ1/2]1:p,:

Ã = Σ−1/2U>[UΣ1/2]p+1:,:

B̃ = [Σ1/2V >]:,1:m

The triple (C̃, Ã, B̃) is a balanced realization of M . For any matrix L, L:,m:n (or Lm:n,:)
denotes the submatrix with only columns (or rows) m through n.

Proof Let the SVD ofH0,∞,∞ = UΣV >. ThenM can constructed as follows: UΣ1/2,Σ1/2V >

are of the form

UΣ1/2 =


CS
CAS
CA2S

...

 ,Σ1/2V > =
[
S−1B S−1AB S−1A2B . . .

]

where S is the transformation which gives us Eq. (25). This follows because

Σ1/2U>UΣ1/2 =
∞∑
k=0

S>Ak>C>CAkS

=
∞∑
k=0

S>Ak>S−1>S>C>CSS−1AkS

=
∞∑
k=0

Ãk>C̃>C̃Ãk = Ã>ΣÃ+ C̃>C̃ = Σ

Then C̃ = UΣ
1/2
1:p,: and

UΣ1/2Ã = [UΣ1/2]p+1:,:

Ã = Σ−1/2U>[UΣ1/2]p+1:,:

We do a similar computation for B.

It should be noted that a balanced realization C̃, Ã, B̃ is unique except when there are some
Hankel singular values that are equal. To see this, assume that we have

σ1 > . . . > σr−1 > σr = σr+1 = . . . = σs > σs+1 > . . . σn

where s− r > 0. For any unitary matrix Q ∈ R(s−r+1)×(s−r+1), define Q0

Q0 =

I(r−1)×(r−1) 0 0

0 Q 0
0 0 I(n−s)×(n−s)

 (26)
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Then every triple (C̃Q0, Q
>
0 ÃQ0, Q

>
0 B̃) satisfies Eq. (25) and is a balanced realization. Let

Mk = (C̃k, Ãkk, B̃k) where

Ã =

[
Ãkk Ã0k

Ãk0 Ã00

]
, B̃ =

[
B̃k
B̃0

]
, C̃ =

[
C̃k C̃0

]
(27)

Here Ãkk is the k × k submatrix and corresponding partitions of B̃, C̃. The realization
Mk = (C̃k, Ãkk, B̃k) is the k–order balanced truncated model. Clearly M ≡Mn which gives
us C̃ = C̃nn, Ã = Ãnn, B̃ = B̃nn, i.e., the balanced version of the true model. We will show
that for the balanced truncation model we only need to care about the top k singular vectors
and not the entire model.

Proposition 9.3 For the k order balanced truncated model Mk, we only need top k singular
values and singular vectors of H0,∞,∞.

Proof From the preceding discussion in Proposition 9.2 and Eq. (27) it is clear that the
first p× k block submatrix of UΣ1/2 (corresponding to the top k singular vectors) gives us
C̃k. Since

Ã = Σ−1/2U>[UΣ1/2]p+1:,:

we observe that Ãkk depend only on the top k singular vectors Uk and corresponding singular
values. This can be seen as follows: [UΣ1/2]p+1:,: denotes the submatrix of UΣ1/2 with top p
rows removed. Now in UΣ1/2 each column of U is scaled by the corresponding singular value.
Then the Ãkk submatrix depends only on top k rows of Σ−1/2U> and the top k columns of
[UΣ1/2]p+1:,: which correspond to the top k singular vectors.

10. Isometry of Input Matrix: Proof of Lemma 5.1

Theorem 11 Define

U :=


Ud Ud+1 . . . UT+d−1

Ud−1 Ud . . . UT+d−2
...

...
. . .

...
U1 U2 . . . UT


where each Ui ∼ subg(1) and isotropic. Then there exists an absolute constant c such that U
satisfies:

(1/2)T ≤ σmin(UU>) ≤ σmax(UU>) ≤ (3/2)T

whenever T ≥ cm2d(log2 (d) log2 (m2/δ) + log3 (2d)) with probability at least 1− δ.

Proof
Define

Amd×md :=


0 0 0 . . . 0
I 0 0 . . . 0
...

. . .
. . .

...
...

0 . . . I 0 0
0 . . . 0 I 0

 , Bmd×m :=


I
0
...
0

 , Ûk := Ud+k
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Since

U =


Ud Ud+1 . . . UT+d−1

Ud−1 Ud . . . UT+d−2
...

... . . .
...

U1 U2 . . . UT


we can reformulate it so that each column is the output of an LTI system in the following
sense:

xk+1 = Axk +BÛ(k + 1) (28)

where UU> =
∑T−1

k=0 xkx
>
k and x0 =


Ud
Ud−1

...
U1

. From Theorem 8.1 we have that

3

4
TI �

T−1∑
k=0

ÛkÛ
>
k �

5

4
TI

with probability at least 1− δ whenever T ≥ c
(
m+ log 2

δ

)
. Define Vt =

∑t−1
l=0 xkx

>
k then,

VT = AVT−1A
> +B

(
T−1∑
k=0

ÛkÛ
>
k

)
B> +

T−2∑
k=0

(
AxkÛ

>
k+1B

> +BÛk+1x
>
k A
>
)

(29)

It can be easily checked that xk =


Ud+k

Ud+k−1
...

Uk+1

 and consequently

T−2∑
k=0

AxkÛ
>
k+1B

> =
T−2∑
k=0



0 0 . . . 0 0
Ud+kU

>
d+k+1 0 . . . 0 0

Ud+k−1U
>
d+k+1 0 . . . 0 0

...
...

. . .
...

...
...

...
...

. . .
...

Uk+2U
>
d+k+1 0 . . . 0 0


.

Define Lj :=
∑T−2

k=0 Ud+k−j+1U
>
d+k+1 and Lj is a m×m block matrix. Then

Td =

d−1∑
l=0

Al

(
T−2∑
k=0

AxkÛ
>
k+1B

>

)
Al> =



0 0 . . . 0 0 0
L1 0 . . . 0 0 0
L2 L1 . . . 0 0 0
...

...
. . .

...
...

...
...

...
...

. . .
...

...
Ld−1 0 . . . 0 L1 0


.
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Use Lemma 10.1 to show that

‖Td‖ ≤ cm
√
Td log (d) log (m2/δ) (30)

with probability at least 1− δ. Then

VT =
d−1∑
l=0

AlB

(
T−1∑
k=0

ÛkÛ
>
k

)
B>Al> + Td −

d−1∑
l=0

AlxT−1x
>
T−1A

l>.

From Theorem 8.1 we have with probability atleast 1− δ that

(3/4)TI �
d−1∑
l=0

AlB

(
T−1∑
k=0

ÛkÛ
>
k

)
B>Al> � (5/4)TI (31)

whenever T ≥ c
(
m+ log 2

δ

)
. Observe that∥∥∥∥∥

d∑
l=1

AlxT−1x
>
T−1A

l>

∥∥∥∥∥ = σ2
1([AxT−1, A

2xT−1, . . . , A
dxT−1])

The matrix [AxT−1, A
2xT−1, . . . , A

dxT−1] is the lower triangular submatrix of a random
Toeplitz matrix with i.i.d subg(1) entries as in Theorem 8.2. Then using Theorem 8.2 and
Proposition 8.2 we get that with probability at least 1− δ we have∥∥∥[AxT−1, A

2xT−1, . . . , A
dxT−1]

∥∥∥ ≤ cm(
√
d log (2d) log (2d) +

√
d log (1/δ)). (32)

Then
∥∥∥∑d

l=1A
lxT−1x

>
T−1A

l>
∥∥∥ ≤ cm2d(log3 (2d) + log (1/δ) + log (2d)

√
log (2d) log (1/δ))

with probability at least 1− δ. By ensuring that Eqs. (30), (31) and (32) hold simultane-
ously we can ensure that cm

√
Td log (d) log (m2/δ) ≤ T/8 and cm2d(log3 (2d) + log (1/δ) +

log (2d)
√

log (2d) log (1/δ)) ≤ T/8 for large enough T and absolute constant c.

Lemma 10.1 Let {Uj ∈ Rm×1}T+d
j=1 be independent subg(1) random vectors. Define Lj :=∑T−2

k=0 Ud+k−j+1U
>
d+k+1 for all j ≥ 1 and

Td :=



0 0 . . . 0 0 0
L1 0 . . . 0 0 0
L2 L1 . . . 0 0 0
...

...
. . .

...
...

...
...

...
...

. . .
...

...
Ld−1 0 . . . 0 L1 0


.

Then with probability at least 1− δ we have

‖Td‖ ≤ cm
√
Td log (d) log (m/δ).
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Proof Since Ljs are block matrices, the techniques in Meckes et al. (2007) cannot be directly
applied. However, by noting that E can be broken into a sum of m matrices where the norm
of each matrix can be bounded by a Toeplitz matrix we can use the result from Meckes et al.
(2007). For instance if m = 2 and {ui}∞i=1 are independent subg(1) random variables then
we have

Td =



[
0 0
0 0

] [
0 0
0 0

]
. . .[

u1 u2

u3 u4

] [
0 0
0 0

]
. . .[

u5 u6

u7 u8

] [
u1 u2

u3 u4

]
. . .

...
...

. . .


.

Now,

Td =



[
0 0
0 0

] [
0 0
0 0

]
. . .[

u1 0
u3 0

] [
0 0
0 0

]
. . .[

u5 0
u7 0

] [
u1 0
u3 0

]
. . .

...
...

. . .


︸ ︷︷ ︸

=M1

+



[
0 0
0 0

] [
0 0
0 0

]
. . .[

0 u2

0 u4

] [
0 0
0 0

]
. . .[

0 u6

0 u8

] [
0 u2

0 u4

]
. . .

...
...

. . .


︸ ︷︷ ︸

=M2

,

then ||Td||≤ sup1≤i≤2||Mi||. Furthermore for each Mi we have

M1 =



[
0 0
0 0

] [
0 0
0 0

]
. . .[

u1 0
0 0

] [
0 0
0 0

]
. . .[

u5 0
0 0

] [
u1 0
0 0

]
. . .

...
...

. . .


︸ ︷︷ ︸

=M11

+



[
0 0
0 0

] [
0 0
0 0

]
. . .[

0 0
u3 0

] [
0 0
0 0

]
. . .[

0 0
u7 0

] [
0 0
u3 0

]
. . .

...
...

. . .


︸ ︷︷ ︸

=M12

,

and ||M1||≤ ||M11||+||M12||. The key idea is to show that Mi1 are Toeplitz matrices (after
removing the zeros in the blocks) and we can use the standard techniques described in proof
of Theorem 1 in Meckes et al. (2007). Then we will show that each ||Mij ||≤ C with high
probability and ||Td||≤ mC.

For brevity, we will assume for now that Ui are scalars and at the end we will scale by m.
By standard techniques described in proof of Theorem 1 in Meckes et al. (2007), we have
that the finite Toeplitz matrix Td + T>d is d× d submatrix of the infinite Laurent matrix

M = [L|j−k|1|j−k|<d−1]j,k∈Z.
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Consider M as an operator on `2(Z) in the canonical way, and let ψ : `2(Z)→ L2[0, 1] denote
the usual linear trigonometric isometry ψ(ej)(x) = e2πijx. Then ψMdψ

−1 : L2 → L2 is the
operator correpsonding to

f(x) =
d−1∑

j=−(d−1)

L|j|e
2πijx = L0 + 2

d−1∑
j=1

cos (2πjx)Lj

Therefore, ∥∥∥Td + T>d

∥∥∥ ≤ ‖M‖ = ‖f‖∞ = sup
0≤x≤1

|Yx|

where Yx = 2
∑d−1

j=1 cos (2πjx)Lj . Furthermore note that Yx has the following form

Yx = U>



0 cx1 cx2 . . . cxd−1 0 . . . 0
0 0 cx1 . . . cxd−1 0 . . . 0
...

... . . .
. . . . . .

. . .
...

...
...

...
...

...
. . .

...
. . .

...
0 0 . . . 0 0 cx1 . . . cxd−1

0 0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
...

...


︸ ︷︷ ︸

=Cx

U. (33)

Here U =


U1

U2
...

UT+d

 and cxj = 2 cos (2πjx). For any x and assuming Uj ∼ subg(1), we have

from Theorem 8.3
P
(∣∣∣Yx/√Td∣∣∣ ≤ t) ≤ 2 exp

{
−c(t ∧ t2)

}
(34)

The tail behavior of Yx/
√
Td is not strictly subgaussian and we need to use Theorem 8.4.

The function ψ can be found as Eq. 1 of van de Geer and Lederer (2013) (equivalent upto
universal constants) with L = 2 and its inverse being

ψ−1(t) =
√

log (1 + t) + log (1 + t).

We have that ∥∥∥∥sup
t
|Yt|
∥∥∥∥
ψ

≤ ‖Y0‖ψ +K
√
Td

∫ 1

0
ψ−1(N(ε/2, d))dε,

where d(s, t) =
∥∥∥(Ys − Yt)/

√
Td
∥∥∥
ψ

and N(ε, d) is the minimal number of balls of radius

ε needed to cover [0, 1] where d(·, ·) is the pseudometric. Since Ys has distribution as in
Eq. (34), it follows that d(s, t) ≤ c|s− t| for some absolute constant c. Then∫ 1

0
ψ−1(N(ε/2, d))dε ≤ c
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for some universal constant c > 0. This ensures that ‖supt|Yt|‖ψ ≤ c
√
Td. Since E[X] ≤

‖X‖ψ we have that E[sup0≤x≤1|Yx|] ≤
√
Td. This implies E[

∥∥Td + T>d
∥∥] ≤

√
Td, and using

Proposition 8.2 we have E[‖Td‖] ≤ c
√
Td log (d). Furthermore, we can make a stronger

statement because ‖supt|Yt|‖ψ ≤ c
√
Td which implies that

‖Td‖ ≤ c
√
Td log (d) log (1/δ)

with probability at least 1− δ. Then recalling that in the general case that Ljs of Td were
m×m block matrices we scale by m and get with probability at least 1− δ

‖Td‖ ≤ cm
√
Td log (d) log (m2/δ)

where the union is over all m2 elements being less that c
√
Td log (d) log (m2/δ). Note that c

hides the universal constant K from Theorem 8.4.

11. Error Analysis for Theorem 5.1

For this section we assume that Ut ∼ subg(L2).

11.1 Proof of Theorem 5.1

Recall Eq. (8) and (9), i.e.,

Ỹ +
l,d = H0,d,dŨ

−
l−1,d + T0,dŨ

+
l,d +Hd,d,l−d−1Ũ

−
l−d−1,l−d−1

+O0,d,dη̃
−
l−1,d + T O0,dη̃

+
l,d +Od,d,l−d−1η̃

−
l−d−1,l−d−1 + w̃+

l,d (35)

Assume for now that we have T + 2d data points instead of T . It is clear that

Ĥ0,d,d = arg min
H

T−1∑
l=0

||Ỹ +
l+d+1,d −HŨ

−
l+d,d||

2
2=

(
T−1∑
l=0

Ỹ +
l+d+1,d

(
Ũ−l+d,d

)>)
V +
T

where

VT =

T−1∑
l=0

Ũ−l+d,dŨ
−′
l+d,d, (36)

or

VT = UU ′

where

U :=


Ud Ud+1 . . . UT+d−1

Ud−1 Ud . . . UT+d−2
...

...
. . .

...
U1 U2 . . . UT

 .
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It is show in Theorem 11 that VT is invertible with probability at least 1 − δ. So in our
analysis we can write this as(

T−1∑
l=0

Ũ−l+d,dŨ
−>
l+d,d

)+

=

(
T−1∑
l=0

Ũ−l+d,dŨ
−>
l+d,d

)−1

From this one can conclude that

∣∣∣∣∣∣Ĥ − H0,d,d

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣( T−1∑

l=0

Ũ−l+d,dŨ
−>
l+d,d

)−1( T−1∑
l=0

Ũ−l+d,dŨ
+>
l+d+1,dT

>
0,d

+ Ũ−l+d,dŨ
−>
l,l H

>
d,d,l + Ũ−l+d,dη̃

−>
l+d,dO

>
0,d,d

+ Ũ−l+d,dη̃
+>
l+d+1,dT O

>
0,d + Ũ−l+d,dη̃

−>
l,l O

>
d,d,l + Ũ−l+d,dw̃

+>
l+d+1,d

)∣∣∣∣∣∣
2

(37)

Here as we can observe Ũ−>l,l , η̃
−>
l,l grow with T in dimension. Based on this we divide our

error terms in two parts:

E1 =
( T−1∑
l=0

Ũ−l+d,dŨ
−>
l+d,d

)−1
(
Ũ−l+d,dŨ

−>
l,l H

>
d,d,l + Ũ−l+d,dη̃

−>
l,l O

>
d,d,l

)
(38)

and

E2 =
( T−1∑
l=0

Ũ−l+d,dŨ
−>
l+d,d

)−1
(
Ũ−l+d,dη̃

+>
l+d+1,dT O

>
0,d + Ũ−l+d,dŨ

+>
l+d+1,dT

>
0,d+ (39)

Ũ−l+d,dη̃
+>
l+d+1,dT O

>
0,d + Ũ−l+d,dw̃

+>
l+d+1,d

)

Then the proof of Theorem 5.1 will reduce to Propositions 11.1–11.3. We first analyze

∣∣∣∣∣∣V −1/2
T

( T−1∑
l=0

Ũ−l+d,dŨ
−>
l,l H

>
d,d,l

)∣∣∣∣∣∣
2

The analysis of ||V −1/2
T (

∑T−1
l=0 Ũ−l+d,dη̃

−>
l,l O

>
d,d,l)|| will be almost identical and will only differ

in constants.

Proposition 11.1 For 0 < δ < 1, we have with probability at least 1− 2δ

∣∣∣∣∣∣V −1/2
T

( T−1∑
l=0

Ũ−l+d,dŨ
−>
l,l H

>
d,d,l

)∣∣∣∣∣∣
2
≤ 4σ

√
log

1

δ
+ pd+m

where σ =
√
σ(
∑d

k=1 T >d+k,TTd+k,T ).
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Proof We proved that TI
2 � VT �

3TI
2 with high probability, then

P
(∣∣∣∣∣∣V −1/2

T

( T−1∑
l=0

Ũ−l+d,dŨ
−′
l,l H

′
d,d,l

)∣∣∣∣∣∣
2
≥ a, TI

2
� VT �

3TI

2

)
≤ P

(∣∣∣∣∣∣√ 2

T

( T−1∑
l=0

Ũ−l+d,dŨ
−′
l,l H

′
d,d,l

)∣∣∣∣∣∣
2
≥ a, TI

2
� VT �

3TI

2

)
≤ P

(
2 sup
v∈N 1

2

∣∣∣∣∣∣√ 2

T

( T−1∑
l=0

Ũ−l+d,dŨ
−′
l,l H

′
d,d,lv

)∣∣∣∣∣∣
2
≥ a

)
+ P

(TI
2
� VT �

3TI

2

)
− 1

≤ 5pdP
(

2
∣∣∣∣∣∣√ 2

T

( T−1∑
l=0

Ũ−l+d,dŨ
−′
l,l H

′
d,d,lv

)∣∣∣∣∣∣
2
≥ a

)
− δ. (40)

Define the following ηl,d = Ũ−>l,l H
>
d,d,lv,Xl,d =

√
2
T Ũ
−
l+d,d. Observe that ηl,d, ηl+1,d have con-

tributions from Ul−1, Ul−2 etc. and do not immediately satisfy the conditions of Theorem 2.2.
Instead we will use the fact that Xi,d is independent of Uj for all j ≤ i.

∣∣∣∣∣∣V −1/2
T

( T−1∑
l=0

Ũ−l+d,dŨ
−′
l,l H

′
d,d,l

)∣∣∣∣∣∣
2
≤ 2 sup

v∈N 1
2

||
√

2

T

T−1∑
l=0

Ũ−l+d,dŨ
−′
l,l H

′
d,d,lv||

≤ 2 sup
v∈N 1

2

||
T−1∑
l=0

Xl,dηl,d||.

Define H>d,d,lv = [β>1 , β
>
2 , . . . , β

>
l ]>. βi are m× 1 vectors when LTI system is MIMO. Then

ηl,d =
∑l−1

k=0 U
>
l−kβk+1. Let αl = Xl,d. Then consider the matrix

BT×mT =


β>1 0 0 . . .
β>2 β>1 0 . . .
...

...
. . .

...
β>T β>T−1 . . . β>1

 .
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Observe that the matrix ||BT×mT ||2=
√
σ(
∑d

k=1 T >d+k,TTd+k,T ) ≤
√
d||Td,∞||2< ∞ which

follows from Lemma 8.1. Then

T−1∑
l=0

Xl,dηl,d = [α1, . . . , αT ]B


U1

U2
...
UT



= [
T∑
k=1

αkβ
>
k ,

T∑
k=2

αkβ
>
k−1, . . . , αTβ

>
1 ]


U1

U2
...
UT


=

T∑
j=1

( T∑
k=j

αkβ
>
k Uj

)
.

Here αi = Xi,d and recall that Xi,d is independent of Uj for all i ≥ j. Let γ′ = α′B. Define
GT+d−k = σ̃({Uk+1, Uk+2, . . . , UT+d}) where σ̃(A) is the sigma algebra containing the set
A with G0 = φ. Then Gk−1 ⊂ Gk. Furthermore, since γj−1, Uj are GT+d+1−j measurable
and Uj is conditionally (on GT+d−j) subGaussian, we can use Theorem 2.2 on γ′U = α′BU
(where γj = XT+d−j , Uj = ηT+d−j+1 in the notation of Theorem 2.2). Then with probability
at least 1− δ we have∣∣∣∣∣∣(α′BB′α+ V

)−1/2
γ′U

∣∣∣∣∣∣ ≤ L√( log
1

δ
+ log

det(α′BB′α+ V )

det(V )

)
. (41)

For any fixed V > 0. With probability at least 1 − δ, we know from Theorem 11 that

α′α � 3I
2 =⇒ α′BB′α � 3σ2

1(B)I
2 . By combining this event and the event in Eq. (41) and

setting V =
3σ2

1(B)I
2 , we get with probability at least 1− 2δ that

||α′BU ||2= ||γ′U ||2≤
√

3σ1(B)L

√(
log

1

δ
+ pd log 3 +m

)
. (42)

Replacing δ → 5−pd δ2 , we get from Eq. (40)

∣∣∣∣∣∣V −1/2
T

( T−1∑
l=0

Ũ−l+d,dŨ
−′
l,l H

′
d,d,l

)∣∣∣∣∣∣
2
≤
√

6 log (5)Lσ1(B)

√
log

1

δ
+ pd+m

with probability at least 1− δ. Since L = 1 we get our desired result.

Then similar to Proposition 11.1, we analyze
∣∣∣∣∣∣V −1/2

T

(∑T−1
l=0 Ũ−l+d,dŨ

+>
l+d+1,dT

>
0,d

)∣∣∣∣∣∣
2

Proposition 11.2 For 0 < δ < 1 and large enough T , we have with probability at least 1−δ

∣∣∣∣∣∣V −1/2
T

( T−1∑
l=0

Ũ−l+d,dŨ
+>
l+d+1,dT

>
0,d

)∣∣∣∣∣∣
2
≤ 4σ

√
log

1

δ
+ pd+m
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where

σ ≤ sup
||v||2=1

∣∣∣∣∣∣

v>CAdB v>CAd−1B v>CAd−2B . . . v>CB 0

0
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . .

. . .
. . .

0 v>CAdB v>CAd−1B . . . . . . v>CB


∣∣∣∣∣∣

2
≤

d∑
j=0

||CAjB||2≤ β
√
d.

Proof

Note
∣∣∣∣∣∣V −1/2

T

(∑T−1
l=0 Ũ−l+d,dŨ

+>
l+d+1,dT

>
0,d

)∣∣∣∣∣∣
2
≤
∣∣∣∣∣∣√ 2

T

(∑T−1
l=0 Ũ−l+d,dŨ

+>
l+d+1,dT

>
0,d

)∣∣∣∣∣∣
2

with

probability at least 1 − δ for large enough T . Here T >0,d is md × pd matrix. Then define

Xl =
√

2
T Ũ
−
l+d,d and the vector Ml ∈ Rpd as M>l = Ũ+>

l+d+1,dT
>

0,d. Then

P(||
T−1∑
l=0

XlM
>
l ||2≥ t) ≤︸︷︷︸

1
2
−net

5pdP(||
T−1∑
l=0

XlM
>
l v||2≥ t/2)

where M>l v is a real value. Let β := T >0,dv, then M>l v = Ũ+>
l+d+1,dβ. This allows us to write

XlM
>
l v in a form that will enable us to apply Theorem 2.2.

T−1∑
l=0

XlM
>
l v = [X0, X1, . . . , XT−1]︸ ︷︷ ︸

=X


β>1 β>2 . . . β>d . . . 0

0 β>1
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
. . .

0 . . . 0 β>1 . . . β>d


︸ ︷︷ ︸

=I


Ud+1

Ud+2
...

UT+2d


︸ ︷︷ ︸

=N

(43)

Here I is RT×(mT+md). It is known from Theorem 11 that XX> � 3I
2 with high probability

and consequently XII>X> � 3σ2
1(I)I
2 . Define F l = σ̃({Ul}d+l

j=1) as the sigma field generated

by ({Ul}d+l
j=1. Furthermore Nl is F l measurable, and [XI]l is F l−1 measurable and we can

apply Theorem 2.2. Now the proof is similar to Proposition 11.1. Following the same steps
as before we get with probability at least 1− δ

||
T−1∑
l=0

XlM
>
l v||2= ||

T−1∑
l=0

[XI]lNl||2≤
√

3σ1(I)L

√
log

1

δ
+ pd log 3 +m

and substituting δ → 5−pdδ we get

||
T−1∑
l=0

XlM
>
l ||2≤

√
6 log (5)σ1(I)L

√
log

1

δ
+ pd+m

and

||
T−1∑
l=0

XlMl||2≤ 4σ1(I)L

√
log

1

δ
+ pd+m. (44)

41



T. Sarkar and A. Rakhlin and M. A. Dahleh

The proof for noise and covariate cross terms is almost identical to Proposition 11.2 but easier

because of independence. Finally note that σ1(I) ≤
√∑d

i=1‖βi‖22
√
d =

√
‖T >0,dv‖22

√
d ≤

β
√
d.

Proposition 11.3 For 0 < δ < 1, we have with probability at least 1− δ∣∣∣∣∣∣V −1/2
T

( T∑
k=0

Ũ−l+d,dη̃
+′
l+1+d,dT O

′
0,d

)∣∣∣∣∣∣
2
≤ 4σA

√
log

1

δ
+ pd+m

∣∣∣∣∣∣V −1/2
T

( T∑
k=0

Ũ−l+d,dη̃
−′
l,lO

′
d,d,l

)∣∣∣∣∣∣
2
≤ 4σB

√
log

1

δ
+ pd+m

∣∣∣∣∣∣V −1/2
T

( T∑
k=0

Ũ−l+d,dη̃
−′
l+d,dO

′
0,d,d

)∣∣∣∣∣∣
2
≤ 4σC

√
log

1

δ
+ pd+m

∣∣∣∣∣∣V −1/2
T

( T∑
k=0

Ũ−l+d,dw̃
+′
l+1+d,d

)∣∣∣∣∣∣
2
≤ 4σD

√
log

1

δ
+ pd+m

Here σ = max (σA, σB, σC , σD) where

σA ∨ σC ≤ sup
||v||2=1

∣∣∣∣∣∣

v>CAd v>CAd−1 v>CAd−2 . . . 0

0
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .

0 . . . v>CAd . . . v>C


∣∣∣∣∣∣

2
≤

d∑
j=0

||CAj ||2≤ βR
√
d

σB =
√
σ(
∑d

k=1 T O>d+k,TT Od+k,T ) ≤ βR
√
d, σD ≤ c.

By taking the intersection of all the aforementioned events for a fixed δ we then have with
probability at least 1− δ

∣∣∣∣∣∣Ĥ0,d,d −H0,d,d

∣∣∣∣∣∣
2
≤ 16σ

√
1

T

√
m+ pd+ log

d

δ

12. Subspace Perturbation Results

In this section we present variants of the famous Wedin’s theorem (Section 3 of Wedin
(1972)) that depends on the distribution of Hankel singular values. These will be “sign
free” generalizations of the gap–Free Wedin Theorem from Allen-Zhu and Li (2016). The
major difference from the traditional Wedin’s theorem is that the Frobenius error bound
can include the dimension of the matrix; however in our case the Hankel matrix is allow to
grow with T and such a bound may not be ideal. To address we introduce this mild variant
of Wedin’s theorem.

First we define the Hermitian dilation of a matrix.

H(S) =

[
0 S
S′ 0

]
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The Hermitian dilation has the property that ||S1 − S2||≤ ε ⇐⇒ ||H(S1) − H(S2)||≤ ε.
Hermitian dilations will be useful in applying Wedin’s theorem for general (not symmetric)
matrices.

Proposition 12.1 Let S, Ŝ be symmetric matrices and ||S − Ŝ||≤ ε. Further, let vj , v̂j
correspond to the jth eigenvector of S, Ŝ respectively such that λ1 ≥ λ2 ≥ . . . ≥ λn and
λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂n. Then we have

|〈vj , v̂k〉|≤
ε

|λj − λ̂k|
(45)

if either λj or λ̂k is not zero.

Proof Let S = λjvjv
′
j +V Λ−jV

′ and Ŝ = λ̂kv̂kv̂
′
k+ V̂ Λ̂−kV̂

′, wlog assume |λj |≤ |λ̂k|. Define

R = S − Ŝ

S = Ŝ +R

v′jSv̂k = v′jŜv̂k + v′jRv̂k

Since vj , v̂k are eigenvectors of S and Ŝ respectively.

λjv
′
j v̂k = λ̂kv

′
j v̂k + v′jRv̂k

|λj − λ̂k||v′j v̂k| ≤ ε

Proposition 12.1 gives an eigenvector subjective Wedin’s theorem. Next, we show how to
extend these results to arbitrary subsets of eigenvectors.

Proposition 12.2 For ε > 0, let S, P be two symmetric matrices such that ||S − P ||2≤ ε.
Let

S = UΣSU>, P = V ΣPV >

Let V+ correspond to the eigenvectors of singular values ≥ β, V− correspond to the eigenvec-
tors of singular values ≤ α and V̄ are the remaining ones. Define a similar partition for S.
Let α < β

||U>−V+|| ≤
ε

β − α

Proof The proof is similar to before. S, P have a spectral decomposition of the form

S = U+ΣS
+U
′
+ + U−ΣS

−U
′
− + ŪΣS

0Ū
′

P = V+ΣP
+V
′

+ + V−ΣP
−V
′
− + V̄ ΣP

0V̄
′

Let R = S − P and since U+ is orthogonal to U−, Ū and similarly for V

U ′−S = ΣS
−U
′
− = U ′−P + U ′−R

ΣS
−U
′
−V+ = U ′−V+ΣP

+ + U ′−RV+
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Diving both sides by ΣP

ΣS
−U
′
−V+(ΣP

+)−1 = U ′−V+ + U ′−RV+(ΣP
+)−1

||ΣS
−U
′
−V+(ΣP

+)−1|| ≥ ||U ′−V+||−||U ′−RV+(ΣP
+)−1||

α

β
||U ′−V+|| ≥ ||U ′−V+||−

ε

β

||U ′−V+|| ≤
ε

β − α

Let Sk, Pk be the best rank k approximations of S, P respectively. We develop a sequence of
results to see how ||Sk − Pk|| varies when ||S − P ||≤ ε as a function of k.

Proposition 12.3 Let S, P be such that

||S − P ||≤ ε

Furthermore, let ε be such that

ε ≤ inf
{1≤i≤r−1}∪{s+1≤i≤n}

(σi(P )− σi+1(P )

2

)
(46)

and USj , V
S
j be the left and right singular vectors of S corresponding to σj(S). There exists

a unitary transformation Q such that

σmax([UPr , . . . , U
P
s ]Q− [USr , . . . , U

S
s ]) ≤ 2ε

min
(
σr−1(P )− σr(S), σs(S)− σs+1(P )

)
σmax([V P

r , . . . , V
P
s ]Q− [V S

r , . . . , V
S
s ]) ≤ 2ε

min
(
σr−1(P )− σr(S), σs(S)− σs+1(P )

) .
Proof Let r ≤ k ≤ s. First divide the indices [1, n] into 3 parts K1 = [1, r − 1],K2 =
[r, s],K3 = [s + 1, n]. Although we focus on only three groups extension to general case
will be a straight forward extension of this proof. Define the Hermitian dilation of S, P as
H(S),H(P ) respectively. Then we know that the eigenvalues of H(S) are

∪ni=1{σi(S),−σi(S)}

Further the eigenvectors corresponding to these are

∪ni=1

{
1√
2

[
uSi
vSi

]
,

1√
2

[
uSi
−vSi

]}

Similarly define the respective quantities for H(P ). Now clearly, ||H(S)−H(P )||≤ ε since
||S − P ||≤ ε. Then by Weyl’s inequality we have that

|σi(S)− σi(P )|≤ ε
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Now we can use Proposition 12.1. To ease notation, define σi(S) = λi(H(S)) and λ−i(H(S)) =
−σi(S) and let the corresponding eigenvectors be ai, a−i for S and bi, b−i for P respectively.
Note that we can make the assumption that 〈ai, bi〉 ≥ 0 for every i. This does not change
any of our results because ai, bi are just stacking of left and right singular vectors and uiv

>
i

is identical for ui, vi and −ui,−vi.
Then using Proposition 12.1 we get for every (i, j) 6∈ K2 ×K2 and i 6= j

|〈ai, bj〉|≤
ε

|σi(S)− σj(P )|
(47)

similarly

|〈a−i, bj〉|≤
ε

|σi(S) + σj(P )|
(48)

Since

ai =
1√
2

[
uSi
vSi

]
, a−i =

1√
2

[
uSi
−vSi

]
, bj =

1√
2

[
uPi
vPi

]
and σi(S), σi(P ) ≥ 0 we have by adding Eq. (47),(48) that

max
(
|〈uSi , uPj 〉|, |〈vSi , vPj 〉|

)
≤ ε

|σi(S)− σj(P )|

Define USKi to be the matrix formed by the orthornormal vectors {aj}j∈Ki and USK−i to be
the matrix formed by the orthonormal vectors {aj}j∈−Ki . Define similar quantities for P .
Then

(USK2
)>UPK2

(UPK2
)>USK2

= (USK2
)>(I −

∑
j 6=2

UPKj (U
P
Kj )
>)USK2

= (USK2
)>(I −

∑
|j|6=2

UPKj (U
P
Kj )
> − UPK−2

(UPK−2
)>)USK2

= I − (USK2
)>
∑
|j|6=2

UPKj (U
P
Kj )
>USK2

− (USK2
)>UPK−2

(UPK−2
)>USK2

(49)

Now K1,K−1 corresponds to eigenvectors where singular values ≥ σr−1(P ), K3,K−3 cor-
responds to eigenvectors where singular values ≤ σs+1(P ). We are in a position to use
Proposition 12.2. Using that on Eq. (49) we get the following relation

(UPK2
)>USK2

(USK2
)>UPK2

� I

(
1− ε2

(σr−1(P )− σs(S))2
− ε2

(σs(S)− σs+1(P ))2

)
− (USK2

)>UPK−2
(UPK−2

)>USK2
(50)

In the Eq. (50) we need to upper bound (USK2
)>UPK−2

(UPK−2
)>USK2

. To this end we will exploit

the fact that all singular values corresponding to USK2
are the same. Since ||H(S)−H(P )||≤ ε,

then

H(S) = USK2
ΣS
K2

(USK2
)> + USK−2

ΣS
K−2

(USK−2
)> + USK0

ΣS
K0

(USK0
)>

H(P ) = UPK2
ΣP
K2

(UPK2
)> + UPK−2

ΣP
K−2

(UPK−2
)> + UPK0

ΣP
K0

(UPK0
)>
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Then by pre–multiplying and post–multiplying we get

(USK2
)>H(S)UPK−2

= ΣS
K2

(USK2
)>UPK−2

(USK2
)>H(P )UPK−2

= (USK2
)>UPK−2

ΣP
K−2

Let H(S)−H(P ) = R then

(USK2
)>(H(S)−H(P ))UPK−2

= (USK2
)>RUPK−2

ΣS
K2

(USK2
)>UPK−2

− (USK2
)>UPK−2

ΣP
K−2

= (USK2
)>RUPK−2

Since ΣS
K2

= σs(A)I then

||(USK2
)>UPK−2

(σs(S)I − ΣP
K−2

)|| = ||(USK2
)>RUPK−2

||

||(USK2
)>UPK−2

|| ≤ ε

σs(S) + σs(P )

Similarly

||(UPK2
)>USK−2

||≤ ε

σs(P ) + σs(S)

Since σs(P ) + σs(S) ≥ σs(S)− σs+1(P ) combining this with Eq. (50) we get

σmin((USK2
)>UPK2

) ≥ 1− 3ε2

min
(
σr−1(P )− σs(S), σs(S)− σs+1(P )

)2 (51)

Since

ε ≤ inf
i

(σi(P )− σi+1(P )

2

)
,

for Eq. (51), we use the inequality
√

1− x2 ≥ 1 − x2 whenever x < 1 which is true when
Eq. (46) is true. This means that there exists unitary transformation Q such that

||USK2
− UPK2

Q||≤ 2ε

min
(
σr−1(P )− σs(S), σs(S)− σs+1(P )

)

Remark 12 Note that S, P will be Hermitian dilations of H0,∞,∞, Ĥ0,d̂,d̂ respectively in our

case. Since the singular vectors of S (and P ) are simply stacked version of singular vectors
of H0,∞,∞ (and Ĥ0,d̂,d̂), our results hold directly for the singular vectors of H0,∞,∞ (and

Ĥ0,d̂,d̂)

Let r ≤ k ≤ s. First divide the indices [1, n] into 3 parts K1 = [1, r−1],K2 = [r, s],K3 =
[s+ 1, n].
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Proposition 12.4 (System Reduction) Let ||S −P ||≤ ε and the singular values of S be
arranged as follows:

σ1(S) > . . . > σr−1(S) > σr(S) ≥ σr+1(S) ≥ . . . ≥ σs(S) > σs+1(S) > . . . σn(S) > σn+1(S) = 0

Furthermore, let ε be such that

ε ≤ inf
{1≤i≤r−1}∪{s+1≤i≤n}

(σi(P )− σi+1(P )

2

)
. (52)

Define K0 = K1 ∪K2, then

||USK0
(ΣS

K0
)1/2 − UPK0

(ΣP
K0

)1/2||2 ≤ 2ε

√√√√r−1∑
i=1

σi/ζ2
i + σr/ζ2

r + sup
1≤i≤s

|
√
σi −

√
σ̂i|

and σi = σi(S), σ̂i = σi(P ). Here ζi = min (σi − σi+1, σi − σi+1) and ζr = min (σr−1 − σr, σs − σs+1).

Proof

Since USK0
= [USK1

USK2
] and likewise for B, we can separate the analysis for K1,K2 as

follows

||USK0
(ΣS

K0
)1/2 − UPK0

(ΣP
K0

)1/2|| ≤ ||(USK0
− UPK0

)(ΣS
K0

)1/2||+||UPK0
((ΣS

K0
)1/2 − (ΣP

K0
)1/2)||

≤
√
||(USK1

− UPK1
)(ΣS

K1
)1/2||22+||(USK2

− UPK2
)(ΣS

K2
)1/2||22

+ ||(ΣS
K0

)1/2 − (ΣP
K0

)1/2||

Now ||(ΣS
K0

)1/2 − (ΣP
K0

)1/2||= supl|
√
σl(S)−

√
σl(P )|. Recall that σr(S) = . . . = σk(S) =

. . . = σs−1(S) and by conditions on ε we are guaranteed that ε
σi−σj < 1/2 for all 1 ≤ i 6= j ≤ r.

We will combine our previous results in Proposition 12.1–12.3 to prove this claim. Specifically
from Proposition 12.3 we have

||(USK2
− UPK2

)(ΣS
K2

)1/2|| ≤
2ε
√
σr(S)

min
(
σr−1(P )− σr(S), σr(S)− σs+1(P )

)
On the remaining term we will use Proposition 12.3 on each column

||(USK1
− UPK1

)(ΣS
K1

)1/2|| ≤ ||[
√
σ1(S)c1, . . . ,

√
σ|K1|(S)c|K1|]||≤

√√√√r−1∑
j=1

σ2
j ||cj ||2

≤ ε

√√√√√r−1∑
j=1

2σj(S)

min
(
σj−1(P )− σj(S), σj(S)− σj+1(P )

)2

In the context of our system identification, S = H0,∞,∞ and P = Ĥ0,d̂,d̂. P will be made
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compatible by padding it with zeros to make it doubly infinite. Then USK0
, UPK0

(after

padding) has infinite rows. Define Z0 = USK0
(ΣS

K0
)1/2(1 :, :), Z1 = USK0

(ΣS
K0

)1/2(p + 1 :, :)

(both infinite length) and similarly we will have Ẑ0, Ẑ1. Note that from a computational
perspective we do not need to Z0, Z1; we only need to work with Ẑ0 = UPK0

(ΣP
K0

)1/2(1 :

, :), Ẑ1 = UPK0
(ΣP

K0
)1/2(p + 1 :, :) and since most of it is just zero padding we can simply

compute on Ẑ0(1 : pd, :), Ẑ1(1 : pd, :).

Proposition 12.5 Assume Z1 = Z0A. Furthermore, ||S − P ||2≤ ε and let ε be such that

ε ≤ inf
{1≤i≤r−1}∪{s+1≤i≤n}

(σi(P )− σi+1(P )

2

)
(53)

then

||(Z ′0Z0)−1Z ′0Z1 − (Ẑ ′0Ẑ0)−1Ẑ ′0Ẑ1|| ≤
Cε(γ + 1)

σs

(√
σ2
s

((σs − σs+1) ∧ (σr−1 − σs))2

+

√√√√r−1∑
i=1

σiσs
(σi − σi+1)2 ∧ (σi−1 − σi)2

)

where σ1(A) ≤ γ.

Proof Note that Z1 = Z0A, then

||(Z ′0Z0)−1Z ′0Z1 − (Ẑ ′0Ẑ0)−1Ẑ ′0Ẑ1||2
=||A− (Ẑ ′0Ẑ0)−1Ẑ ′0Ẑ1||2= ||(Ẑ ′0Ẑ0)−1Ẑ ′0Ẑ0A− (Ẑ ′0Ẑ0)−1Ẑ ′0Ẑ1||2
=||(Ẑ ′0Ẑ0)−1Ẑ ′0Ẑ0A− (Ẑ ′0Ẑ0)−1Ẑ ′0Z0A+ (Ẑ ′0Ẑ0)−1Ẑ ′0Z0A− (Ẑ ′0Ẑ0)−1Ẑ ′0Ẑ1||2
≤||(Ẑ ′0Ẑ0)−1Ẑ ′0Ẑ0A− (Ẑ ′0Ẑ0)−1Ẑ ′0Z0A||2+||(Ẑ ′0Ẑ0)−1Ẑ ′0Z0A− (Ẑ ′0Ẑ0)−1Ẑ ′0Ẑ1||2

≤||(Ẑ ′0Ẑ0)−1Ẑ ′0||2
(
||Z0A− Ẑ0A||2+|| Z0A︸︷︷︸

Shifted version of Z0

−Ẑ1||2
)

Now, ||(Ẑ ′0Ẑ0)−1Ẑ ′0||2≤ (
√
σs − ε)−1, ||Z0A − Ẑ1||2≤ ||Z0 − Ẑ0||2 since Z1 = Z0A is a

submatrix of Z0 and Ẑ1 is a submatrix of Ẑ0 we have ||Z0A − Ẑ1||2≤ ||Z0 − Ẑ0||2 and
||Z0A− Ẑ0A||2≤ ||A||2||Z0 − Ẑ0||2

≤cε(γ + 1)

σs

(√
σ2
s

((σs − σs+1) ∧ (σr−1 − σs))2
+

√√√√r−1∑
i=1

σiσs
(σi − σi+1)2 ∧ (σi−1 − σi)2

)
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13. Hankel Matrix Estimation Results

In this section we provide the proof for Theorem 5.2. For any matrix P , we define its doubly
infinite extension P̄ as

P̄ =

P 0 . . .
0 0 . . .
...

...
...

 (54)

Proposition 13.1 Fix d > 0. Then we have

||Hd,∞,∞||2≤ ||H0,∞,∞ − H̄0,d,d||2≤
√

2||Hd,∞,∞||2≤
√

2||Td,∞||2

Proof Define C̃d, B̃d as follows

C̃d =


0md×n
C
CA

...


B̃d =

[
0n×pd B AB . . .

]
Now pad H0,d,d with zeros to make it a doubly infinite matrix and call it H̄0,d,d and we get
that

||H̄0,d,d −H0,∞,∞|| =
[

0 M12

M21 M22

]

Note here that M21 and M0 =

[
M12

M22

]
are infinite matrices. Further ||Hd,∞,∞||2= ||M0||2≥

||M21||2. Then

||H̄0,d,d −H0,∞,∞|| ≤
√
||M12||22+||M0||22 ≤

√
2||Hd,∞,∞||2

Further ||H̄0,d,d −H0,∞,∞||≥ ||M0||= ||Hd,∞,∞||2.

Proposition 13.2 For any d1 ≥ d2, we have

||H0,∞,∞ − H̄0,d1,d1 ||2≤
√

2||H0,∞,∞ − H̄0,d2,d2 ||2

Proof Since ||Hd1,∞,∞||2≤ ||H0,∞,∞ − H̄0,d1,d1 ||2≤
√

2||Hd1,∞,∞||2 from Proposition 13.1.
It is clear that ||Hd1,∞,∞||2≤ ||Hd2,∞,∞||2. Then

1√
2
||H0,∞,∞ − H̄0,d1,d1 ||2≤ ||Hd1,∞,∞||2≤ ||Hd2,∞,∞||2≤ ||H0,∞,∞ − H̄0,d2,d2 ||2
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Proposition 13.3 Fix d > 0. Then

||Td,∞(M)||2≤
M̃ρ(A)d

1− ρ(A)

Proof Recall that

Td,∞(M) =


0 0 0 . . . 0

CAdB 0 0 . . . 0
CAd+1B CAdB 0 . . . 0

...
. . .

. . .
...

...


Then ||Td,∞(M)||2≤

∑∞
j=d||CAjB||2. Now from Eq. 4.1 and Lemma 4.1 in Tu et al. (2017)

we get that ||CAjB||2≤ M̃ρ(A)j . Then

∞∑
j=d

||CAjB||2≤
M̃ρ(A)d

1− ρ(A)

Remark 13 Proposition 13.3 is just needed to show exponential decay and is not precise.
Please refer to Tu et al. (2017) for explicit rates.

Next we show that T
(κ)
∗ (δ) and d∗(T, δ) defined in Eq. (16) given by

d∗(T, δ) = inf

{
d

∣∣∣∣∣16βR
√
d

√
m+ pd+ log T

δ

T
≥ ||H0,d,d −H0,∞,∞||2

}

T
(κ)
∗ (δ) = inf

{
T
∣∣∣ T

cm2 log3 (Tm/δ)
≥ d∗(T, δ), d∗(T, δ) ≤

κd∗(
T
κ2
, δ)

8

}
(55)

The existence of d∗(T, δ) is predicated on the finiteness of T
(κ)
∗ (δ) which we discuss below.

13.1 Existence of T
(κ)
∗ (δ) <∞

Construct two sets

T1(δ) = inf
{
T
∣∣∣d∗(T, δ) ∈ D(T )

}
(56)

T2(δ) = inf
{
T
∣∣∣d∗(t, δ) ≤ κd∗(

t
κ2
, δ)

8
, ∀t ≥ T

}
(57)

Clearly, T
(κ)
∗ (δ) < T1(δ) ∨ T2(δ). A key assumption in the statement of our results is that

T
(κ)
∗ (δ) <∞. We will show that it is indeed true. Let κ ≥ 16.

Proposition 13.4 For a fixed δ > 0, T1(δ) <∞ with d∗(T, δ) ≤
c log (cT+log 1

δ
)−logR+log (M̃/β)

log 1
ρ

.

Here ρ = ρ(A).
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Proof Note the form for d∗(T, δ), it is the minimum d that satisfies

16βR
√
d

√
m+ pd+ log T

δ

T
≥ ||H0,d,d −H0,∞,∞||2

Since from Proposition 13.1 and 13.3 we have ||H0,d,d−H0,∞,∞||2≤ 3M̃ρd

1−ρ(A) , then d∗(T, δ) ≤ d
that satisfies

16βR
√
d

√
m+ pd+ log T

δ

T
≥ 3M̃ρd

1− ρ(A)

which immediately implies d∗(T, δ) ≤ d =
c log (cT−logR+log 1

δ
)+log (M̃/β)

log 1
ρ

, i.e., d∗(T, δ) is at

most logarithmic in T . As a result, for a large enough T

cm2d log2 (d) log2 (m2/δ) + cd log3 (2d) ≥
c log (cT + log 1

δ )− logR+ log (M̃/β)

log 1
ρ

The intuition behind T2(δ) is the following: d∗(T, δ) grows at most logarithmically in T , as
is clear from the previous proof. Then T2(δ) is the point where d∗(T, δ) is still growing as√
T (i.e., “mixing” has not happened) but at a slightly reduced rate.

Proposition 13.5 For a fixed δ > 0, T2(δ) <∞.

Proof Recall from the proof of Proposition 13.1 that ||Hd,∞,∞||≤ ||H0,∞,∞ − H0,d,d||≤√
2||Hd,∞,∞||. Now Hd,∞,∞ can be written as

Hd,∞,∞ =

 C
CA

...


︸ ︷︷ ︸

=C̃

Ad [B,AB, . . .]︸ ︷︷ ︸
=B̃

Define Pd = AdB̃B̃>(Ad)>. Let dκ be such that for every d ≥ dκ and κ ≥ 16

Pd �
1

4κ
P0 (58)

Clearly such a dκ <∞ would exist because P0 6= 0 but limd→∞ Pd = 0. Then observe that
P2d � 1

4κPd. Then for every d ≥ dκ we have that

||Hd,∞,∞||≥ 4κ||H2d,∞,∞||

Let

T ≥ 4dκ · (16)2 · β2R2

σ2
0

(dκp+ log (T/δ)) (59)

51



T. Sarkar and A. Rakhlin and M. A. Dahleh

where σ0 = ||Hdκ,∞,∞||. Assume that σ0 > 0 (if not then are condition is trivially true).
Then simple computation shows that

||H0,dκ,dκ −H0,∞,∞|| ≥ ||Hdκ,∞,∞||≥ 16βR
√
dκ

√
m+ pdκ + log T

δ

T︸ ︷︷ ︸
<
σ0
2

This implies that d∗ = d∗(T, δ) ≥ dκ for T prescribed as above (ensured by Proposition 13.2).
But from our discussion above we also have

||H0,d∗,d∗ −H0,∞,∞||≥ ||Hd∗,∞,∞||≥ 4κ||H2d∗,∞,∞||≥ 2κ||H0,2d∗,2d∗ −H0,∞,∞||

This means that if

||H0,d∗,d∗ −H0,∞,∞|| ≤ 16βR
√
d∗

√
m+ pd∗ + log T

δ

T

then

||H0,2d∗,2d∗ −H0,∞,∞|| ≤
16

2κ
βR
√
d∗

√
m+ pd∗ + log T

δ

T
≤ 16βR

√
2d∗

√
m+ 2pd∗ + log κ2T

δ

κ2T

which implies that d∗(κ
2T, δ) ≤ 2d∗(T, δ). The inequality follows from the definition of

d∗(κ
2T, δ). Furthermore, if κ ≥ 16, 2d∗(T, δ) ≤ κ

8d∗(T, δ) whenever T is greater than a
certain finite threshold of Eq. (59).

Eq. (58) happens when σ(Ad)2 ≤ 1
4κ =⇒ dκ = O

(
log κ

log 1
ρ

)
where ρ = ρ(A) and T2(δ) ≤ cT1(δ).

It should be noted that the dependence of Ti(δ) on log 1
ρ is worst case, i.e., there exists some

“bad” LTI system that gives this dependence and it is quite likely Ti(δ) is much smaller. The
condition T ≥ T1(δ) ∨ T2(δ) simply requires that we capture some reasonable portion of the
dynamics and not necessarily the entire dynamics.

13.2 Proof of Theorem 5.2

Proposition 13.6 Let T ≥ T (κ)
∗ (δ) and d∗ = d∗(T, δ) then

||H0,∞,∞ − Ĥ0,d∗,d∗ ||≤ 2cβR

√
d∗
T

√
m+ pd∗ + log

T

δ

Proof Consider the following error

||H0,∞,∞ − Ĥ0,d∗,d∗ ||2 ≤ ||H0,d∗,d∗ − Ĥ0,d∗,d∗ ||2+||H0,∞,∞ −H0,d∗,d∗ ||2

From Proposition 13.1 and Eq. (55) we get that

||H0,∞,∞ −H0,d∗,d∗ ||2≤ 16βR

√
d∗
T

√
m+ pd∗ + log

T

δ
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Since from Theorem 5.1

||H0,d∗,d∗ − Ĥ0,d∗,d∗ ||2 ≤ 16βR

√
d∗
T

√
m+ pd∗ + log

T

δ

||H0,∞,∞ − Ĥ0,d∗,d∗ ||2 ≤ 32βR

√
d∗
T

√
m+ pd∗ + log

T

δ
(60)

Recall the adaptive rule to choose d in Algorithm 1. From Theorem 5.1 we know that for
every d ∈ D(T ) we have with probability at least 1− δ.

||H0,d,d − Ĥ0,d,d||2≤ 16βR
√
d

√m+
dp

T
+

log T
δ

T


Let α(l) =

√
l
(√

lp
T +

log T
δ

T

)
. Then consider the following adaptive rule

d0(T, δ) = inf
{
l
∣∣∣||Ĥ0,l,l − Ĥ0,h,h||2≤ 16βR(2α(l) + α(h)) ∀h ∈ D(T ), h ≥ l

}
(61)

d̂ = d̂(T, δ) = d0(T, δ) ∨ log

(
T

δ

)
(62)

for the same universal constant c as Theorem 5.1. Let d∗(T, δ) be as Eq. (55). Recall
that d∗ = d∗(T, δ) is the point where estimation error dominates the finite truncation error.
Unfortunately, we do not have apriori knowledge of d∗(T, δ) to use in the algorithm. Therefore,
we will simply use Eq. (62) as our proxy. The goal will be to bound ||Ĥ0,d̂,d̂ −H0,∞,∞||2

Proposition 13.7 Let T ≥ T
(κ)
∗ (δ), d∗(T, δ) be as in Eq. (55) and d̂ be as in Eq. (62).

Then with probability at least 1− δ we have

d̂ ≤ d∗(T, δ) ∨ log
(T
δ

)
Proof Let d∗ = d∗(T, δ). First for all h ∈ D(T ) ≥ d∗, we note

||Ĥ0,d∗,d∗ − Ĥ0,h,h||2 ≤ ||Ĥ0,d∗,d∗ −H0,d∗,d∗ ||+||H0,h,h − Ĥ0,h,h||2+||H0,h,h −H0,d∗,d∗ ||2
≤︸︷︷︸

∞>h≥d∗

||Ĥ0,d∗,d∗ −H0,d∗,d∗ ||2+||H0,h,h − Ĥ0,h,h||2+||H0,∞,∞ −H0,d∗,d∗ ||2.

We use the property that ||H0,∞,∞−H0,d∗,d∗ ||2≥ ||H0,h,h−H0,d∗,d∗ ||2. Furthermore, because
of the properties of d∗ we have

||H0,∞,∞ −H0,d∗,d∗ ||2≤ 16βRα(d∗)

and

||Ĥ0,d∗,d∗ −H0,d∗,d∗ ||2 ≤ 16βRα(d∗), ||H0,h,h − Ĥ0,h,h||2≤ 16βRα(h). (63)
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and
||Ĥ0,d∗,d∗ − Ĥ0,h,h||2≤ 16βR(2α(d∗) + α(h)).

This implies that d0(T, δ) ≤ d∗ and the assertion follows.

We have the following key lemma about the behavior of Ĥ0,d̂,d̂.

Lemma 13.1 For a fixed κ ≥ 20, whenever T ≥ T
(κ)
∗ (δ) we have with probability at least

1− δ
||H0,∞,∞ − Ĥ0,d̂,d̂||2≤ 3cβRα

(
max

(
d∗(T, δ), log

(
T

δ

)))
(64)

Furthermore, d̂ = O(log T
δ ).

Proof Let d∗ > d̂ then

||H0,∞,∞ − Ĥ0,d̂,d̂||2 ≤ ||H0,∞,∞ −H0,d∗,d∗ ||2+||Ĥ0,d̂,d̂ −H0,d̂,d̂||2+||Ĥ0,d∗,d∗ −H0,d∗,d∗ ||2
≤ 3cβRα(d∗)

If d̂ > d∗ then

||H0,∞,∞ − Ĥ0,d̂,d̂||2 ≤ ||H0,∞,∞ −H0,d̂,d̂||2+||Ĥ0,d̂,d̂ −H0,d̂,d̂||2= 2||Ĥ0,d̂,d̂ −H0,d̂,d̂||2

≤ 2cβRα(d̂) = 2cβRα

(
log
(T
δ

))
where the equality follows from Proposition 13.7. The fact that d̂ = O(log T

δ ) follows from
Proposition 13.1.

In the following we will use Hl = H0,l,l for shorthand.

Proposition 13.8 Fix κ ≥ 16, and T ≥ T (κ)
∗ (δ). Then

||Ĥ0,d̂(T,δ),d̂(T,δ) −H0,∞,∞||2≤ 12cβR

√
d̂(T, δ)

√
m+ pd̂(T, δ) + log T

δ

T

with probability at least 1− δ.

Proof Assume that log
(
T
δ

)
≤ d∗(T, δ). Recall the following functions

d∗(T, δ) = inf
{
d
∣∣∣cβR√d

√
m+ pd+ log T

δ

T
≥ ||Hd −H∞||2

}
d0(T, δ) = inf

{
l
∣∣∣||Ĥl − Ĥh||2≤ cβR(α(h) + 2α(l)) ∀h ≥ l, h ∈ D(T )

}
d̂(T, δ) = d0(T, δ) ∨ log

(T
δ

)
It is clear that d∗(κ

2T, δ) ≤ (1 + 1
2p)κd∗(T, δ) for any κ ≥ 16. Assume the following

• d∗(T, δ) ≤ κ
8d∗(κ

−2T, δ) (This relation is true whenever T ≥ T (κ)
∗ (δ)),
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• ||Hd̂(T,δ) −H∞||2≥ 6cβR

√
d̂(T, δ)

√
m+pd̂(T,δ)+log T

δ
T ,

• d̂(T, δ) < d∗(κ
−2T, δ)− 1.

The key will be to show that with high probability that all three assumptions can not hold

with high probability. For shorthand we define d
(1)
∗ = d∗(T, δ), d

(κ2)
∗ = d∗(κ

−2T, δ), d̂(1) =
d̂(T, δ), d̂(κ2) = d̂(κ−2T, δ) and Hl = H0,l,l, Ĥl = Ĥ0,l,l. Let T̃ = κ−2T . Then this implies
that

cβR(

√
d

(1)
∗ + 2

√
d̂(1))

κ

√
m+ pd

(1)
∗ + log κ2T̃

δ

T̃
≥ ||Ĥd̂(1) − Ĥd(1)∗ ||2

||Ĥd̂(1) − Ĥd(1)∗ ||2 ≥ ||Ĥd̂(1) −H∞||2−||Ĥd(1)∗ −H∞||2

||Ĥ
d
(1)
∗
−H∞||2+||Ĥd̂(1) − Ĥd(1)∗ ||2 ≥ ||Ĥd̂(1) −H∞||2

||Ĥ
d
(1)
∗
−H

d
(1)
∗
||2+||H

d
(1)
∗
−H∞||2+||Ĥd̂(1) − Ĥd(1)∗ ||2 ≥ ||Ĥd̂(1) −H∞||2

Since by definition of d∗(·, ·) we have

||Ĥ
d
(1)
∗
−H

d
(1)
∗
||2+||H

d
(1)
∗
−H∞||2≤

2cβR

κ

√
d

(1)
∗

√
m+ pd

(1)
∗ + log κ2T̃

δ

T̃

and by assumptions d
(1)
∗ ≤ κ

8d
(κ2)
∗ , d̂(1) ≤ d

(κ2)
∗ then as a result (

√
d

(1)
∗ + 2

√
d̂(1))

√
d

(1)
∗ ≤

(2κ
8 + 1)d

(κ2)
∗

||Ĥd̂(1) −H∞||2≤ ||Ĥd(1)∗ −Hd(1)∗ ||2+||H
d
(1)
∗
−H∞||2+ ||Ĥd̂(1) − Ĥd(1)∗ ||2︸ ︷︷ ︸

⇓

≤
2cβR

√
d

(1)
∗

κ

√
m+ pd

(1)
∗ + log κ2T̃

δ

T̃︸ ︷︷ ︸
Prop. 13.6

+
cβR(

√
d

(1)
∗ + 2

√
d̂(1))

κ

√
m+ pd

(1)
∗ + log κ2T̃

δ

T̃︸ ︷︷ ︸
Definition of d̂(1)

||Ĥd̂(1) −H∞||2≤
(1

2
+

1

κ

)
cβR

√
d

(κ2)
∗

√
m+ pd

(κ2)
∗ + log T̃

δ

T̃

where the last inequality follows from (

√
d

(1)
∗ + 2

√
d̂(1))

√
d

(1)
∗ ≤ (2κ

8 + 1)d
(κ2)
∗ . Now by

assumption

||Hd̂(1) −H∞||2≥ 6cβR
√
d̂(1)

√
m+ pd̂(1) + log κ2T̃

δ

κ2T̃

it is clear that

||Ĥd̂(1) −H∞||2≥
5

6
||Hd̂(1) −H∞||2

and we can conclude that, since 6
5

(
1
2 + 1

κ

)
< 1√

2
,

||Hd̂(1) −H∞||2< cβR

√
d

(κ2)
∗
2

√
m+ pd

(κ2)
∗ + log T̃

δ

T̃

55



T. Sarkar and A. Rakhlin and M. A. Dahleh

which implies that d̂(1) ≥ d(κ2)
∗ − 1. This is because by definition of d

(κ2)
∗ we know that d

(κ2)
∗

is the minimum such that

||H
d
(κ2)
∗
−H∞||2≤ cβR

√
d

(κ2)
∗
2

√
m+ pd

(κ2)
∗ + log T̃

δ

T̃

and furthermore from Proposition 13.2 we have for any d1 ≤ d2

||H0,∞,∞ −H0,d1,d1 ||≥
1√
2
||H0,∞,∞ −H0,d2,d2 ||.

This contradicts Assumption 3. So, this means that one of three assumptions do not hold.
Clearly if assumption 3 is invalid then we have a suitable lower bound on the chosen d̂(·, ·),
i.e., since d∗(κ

−2T, δ) ≤ d∗(T, δ) ≤ κ
8d∗(κ

−2T, δ) we get

κ

8
d̂(κ2T̃ , δ) ≥ κ

8
d∗(T̃ , δ)−

κ

8
≥ d∗(κ2T̃ , δ)− κ

8
≥ d̂(κ2T̃ , δ)− κ

8
≥ d∗(T̃ , δ)−

κ

8

which implies from Lemma 13.1 that (since we pick κ = 16, for large enough T d∗(T̃ , δ) ≥ 4)
and we have

||Ĥd̂(κ2T̃ ,δ) −H∞||2 ≤ 3cβR

√
d∗(κ2T̃ , δ)

√
pd∗(κ2T̃ , δ) + log κ2T̃

δ

κ2T̃

≤ 3κ

8
cβR

√
d̂(κ2T̃ , δ)

√
pd̂(κ2T̃ , δ) + log κ2T̃

δ

κ2T̃

Similarly, if assumption 2 is invalid then we get that

||Hd̂(κ2T̃ ,δ) −H∞||2< 6cβR

√
d̂(κ2T̃ , δ)

√
pd̂(κ2T̃ , δ) + log κ2T̃

δ

κ2T̃

and because d̂(κ2T̃ , δ) ≤ d∗(κ2T̃ , δ) and ||Ĥd̂(κ2T̃ ,δ)−H∞||2≤ ||Hd̂(κ2T̃ ,δ)−H∞||2+||Ĥd̂(κ2T̃ ,δ)−
H∞||2 we get in a similar fashion to Proposition 13.6

||Ĥd̂(κ2T̃ ,δ) −H∞||2≤ 12cβR

√
d̂(κ2T̃ , δ)

√
pd̂(κ2T̃ , δ) + log κ2T̃

δ

κ2T̃

Replacing κ2T̃ = T it is clear that for any κ ≥ 16

||Ĥd̂(T,δ) −H∞||2≤ 12cβR

√
d̂(T, δ)

√
pd̂(T, δ) + log T

δ

T
(65)

If d∗(T, δ) ≤ log
(
T
δ

)
then we can simply apply Lemma 13.1 and our assertion holds.
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14. Model Selection Results

Proposition 14.1 Let H0,∞,∞ = UΣV >, Ĥ0,d̂,d̂ = Û Σ̂V̂ > and

||H0,∞,∞ − Ĥ0,d̂,d̂||≤ ε.

Let Σ̂ be arranged into blocks of singular values such that in each block i we have

sup
j
σ̂ij − σ̂ij+1 ≤ χε

for some χ ≥ 2, i.e.,

Σ̂ =


Λ1 0 . . . 0
0 Λ2 . . . 0
...

...
. . . 0

0 0 . . . Λl


where Λi are diagonal matrices and σ̂ij is the jth singular value in the block Λi. Then there
exists an orthogonal transformation, Q, such that

||Û Σ̂1/2Q− UΣ1/2||2 ≤ 2ε
√
σ̂1/ζ2

n1
+ σ̂n1+1/ζ2

n2
+ . . .+ σ̂∑l−1

i=1 ni+1/ζ
2
nl

+ 2 sup
1≤i≤l

√
σ̂imax −

√
σ̂imin +

ε√
σ̂d̂
∧
√
ε.

Here sup1≤i≤l
√
σ̂imax −

√
σ̂imin ≤

χ√
σ̂imax

εd̂ ∧
√
χd̂ε and

ζni = min (σ̂
ni−1

min − σ̂
ni
max, σ̂

ni
min − σ̂

ni+1
max )

for 1 < i < l, ζn1 = σ̂n1
min − σ̂n2

max and ζnl = min (σ̂
nl−1

min − σ̂nlmax, σ̂
nl
min).

Proof Let Û Σ̂V̂ > = SVD(Ĥ0,d̂,d̂) and UΣV > = SVD(H0,∞,∞) where ||Ĥ0,d̂,d̂−H0,∞,∞||2≤ ε.
Σ̂ is arranged into blocks of singular values such that in each block i we have σ̂ij − σ̂ij+1 ≤ χε,
i.e.,

Σ̂ =


Λ1 0 . . . 0
0 Λ2 . . . 0
...

...
. . . 0

0 0 . . . Λl


where Λi are diagonal matrices and σ̂ij is the jth singular value in the block Λi. Furthermore,

σ̂i−1
min − σ̂imax > χε. From Σ̂ define

¯̂
Σ as follows:

¯̂
Σ =


¯̂σ1In1×n1 0 . . . 0

0 ¯̂σ2In2×n2 . . . 0
...

...
. . . 0

0 0 . . . ¯̂σlInl×nl

 (66)
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where Λi is a ni × ni matrix and ¯̂σi = 1
ni

∑
j σ̂

i
j . The key idea of the proof is the following:

(A,B,C) ≡ (QAQ>, QB,CQ>) where Q is a orthogonal transformation and we will show
that there exists a block diagonal unitary matrix Q of the form

Q =


Qn1×n1 0 . . . 0

0 Qn2×n2 . . . 0
...

...
. . . 0

0 0 . . . Qnl×nl

 (67)

such that each block Qni×ni corresponds to a orthogonal matrix of dimensions ni × ni
and that ||Û Σ̂1/2Q − UΣ1/2||2 is small if ||Ĥ0,d̂,d̂ −H0,∞,∞||2 is small. Each of the blocks
correspond to the set of singular values where the inter-singular value distance is “small”.
To start off, note that from Propositon 12.4 there must exist a Q that is block diagonal with
orthogonal entries such that

||ÛQΣ̂1/2 − UΣ1/2||2 ≤ cε
√
σ̂1/ζ2

n1
+ σ̂n1+1/ζ2

n2
+ . . .+ σ̂∑l−1

i=1 ni+1/ζ
2
nl

+ sup
1≤i≤d̂

|
√
σi −

√
σ̂i|

(68)

Here
ζni = min (σ̂

ni−1

min − σ̂
ni
max, σ̂

ni
min − σ̂

ni+1
max )

for 1 < i < l, ζn1 = σ̂n1
min − σ̂n2

max and ζnl = min (σ̂
nl−1

min − σ̂nlmax, σ̂
nl
min). Informally, the ζi

measure the singular value gaps between each blocks.
Furthermore, it can be shown that for any Q of the form in Eq. (67)

||ÛQΣ̂1/2 − Û Σ̂1/2Q||2 ≤ ||ÛQ ¯̂
Σ

1/2
− ÛQΣ̂1/2||2+||Û Σ̂1/2Q− Û ¯̂

Σ
1/2
Q||2≤ 2||Σ̂1/2 − ¯̂

Σ1/2||2

because ÛQ
¯̂
Σ

1/2
= Û

¯̂
Σ

1/2
Q. Note that ||Σ̂1/2 − ¯̂

Σ1/2||2≤ sup1≤i≤l
√
σ̂imax −

√
σ̂imin. Now,

when σ̂imax ≥ χniε, then
√
σ̂imax −

√
σ̂imin ≤

χε√
σ̂imax

; on the other hand when σ̂imax < χniε

then
√
σ̂imax −

√
¯̂σi ≤ √χniε and this implies that

sup
1≤i≤l

√
σ̂imax −

√
σ̂imin ≤

χni√
σ̂imax

ε ∧√χniε.

Finally,

||Û Σ̂1/2Q− UΣ1/2||2 ≤ ||ÛQΣ̂1/2 − UΣ1/2||2+||ÛQΣ̂1/2 − Û Σ̂1/2Q||2
= 2ε

√
σ̂1/ζ2

n1
+ σ̂n1+1/ζ2

n2
+ . . .+ σ̂∑l−1

i=1 ni+1/ζ
2
nl

+ sup
1≤i≤d̂

|
√
σi −

√
σ̂i|

+
χε√
σ̂imax

∧√χε.

Our assertion follows since sup1≤i≤d̂|
√
σi −

√
σ̂i|≤ ε√

σ̂d̂
∧
√
ε.
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Proposition 14.2 Let H0,∞,∞ = UΣV >, Ĥ0,d̂,d̂ = Û Σ̂V̂ > and

||H0,∞,∞ − Ĥ0,d̂,d̂||≤ ε.

Let Σ̂ be arranged into blocks of singular values such that in each block i we have

sup
j
σ̂ij − σ̂ij+1 ≤ χε

for some χ ≥ 2, i.e.,

Σ̂ =


Λ1 0 . . . 0
0 Λ2 . . . 0
...

...
. . . 0

0 0 . . . Λl


where Λi are diagonal matrices and σ̂ij is the jth singular value in the block Λi. Then there
exists an orthogonal transformation, Q, such that

max
(
||Ĉ − C||2, ||B̂ −B||2

)
≤ 2ε

√
σ̂1/ζ2

n1
+ σ̂n1+1/ζ2

n2
+ . . .+ σ̂∑l−1

i=1 ni+1/ζ
2
nl

+ 2 sup
1≤i≤l

√
σ̂imax −

√
σ̂imin +

ε√
σ̂d̂
∧
√
ε = ζ,

||A− Â||2 ≤ 4γ · ζ/
√
σ̂d̂.

Here sup1≤i≤l
√
σ̂imax −

√
σ̂imin ≤

χ√
σ̂imax

εd̂ ∧
√
χd̂ε and

ζni = min (σ̂
ni−1

min − σ̂
ni
max, σ̂

ni
min − σ̂

ni+1
max )

for 1 < i < l, ζn1 = σ̂n1
min − σ̂n2

max and ζnl = min (σ̂
nl−1

min − σ̂nlmax, σ̂
nl
min).

Proof The proof follows because all parameters are equivalent up to a orthogonal transform
(See discussion preceding Proposition 9.2). Following that we use Propositions 12.4 and 12.5.

15. Order Estimation Lower Bound

Lemma 14 (Theorem 4.21 in Boucheron et al. (2013)) Let {Pi}Ni=0 be probability laws
over (Σ,A) and let {Ai ∈ A}Ni=0 be disjoint events. If a = mini=0,...,N Pi(Ai) ≥ 1/(N + 1),

a ≤ a log
( Na

1− a

)
+ (1− a) log

( 1− a
1− 1−a

N

)
≤ 1

N

N∑
i=1

KL(Pi||P0) (69)

Lemma 15 (Le Cam’s Method) Let P0, P1 be two probability laws then

sup
θ∈{0,1}

Pθ[M 6= M̂ ] ≥ 1

2
− 1

2

√
1

2
KL(P0||P1)
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Proposition 15.1 Let N0,N1 be two multivariate Gaussians with mean µ0 ∈ RT , µ1 ∈ RT

and covariance matrix Σ0 ∈ RT×T ,Σ1 ∈ RT×T respectively. Then the KL(N0,N1) =
1
2

(
tr(Σ−1

1 Σ0)− T + log det(Σ1)

det(Σ0)
+ Eµ1,µ0 [(µ1 − µ0)>Σ−1

1 (µ1 − µ0)]
)

.

In this section we will prove a lower bound on the finite time error for model approximation. In
systems theory subspace based methods are useful in estimating the true system parameters.
Intuitively, it should be harder to correctly estimate the subspace that corresponds to lower
Hankel singular values, or “energy” due to the presence of noise. However, due to strong
structural constraints on Hankel matrix finding a minimax lower bound is a much harder
proposition for LTI systems. Specifically, it is not clear if standard subspace identification
lower bounds can provide reasonable estimates for a structured and non i.i.d. setting such
as our case. To alleviate some of the technical difficulties that arise in obtaining the lower
bounds, we will focus on a small set of LTI systems which are simply parametrized by a
number ζ. Consider the following canonical form order 1 and 2 LTI systems respectively
with m = p = 1 and let R be the noise-to-signal ratio bound.

A0 =

0 1 0
0 0 0
ζ 0 0

 , A1 = A0, B0 =

 0
0√
β/R

 , B1 =

 0√
β/R√
β/R

 , C0 =
[
0 0

√
βR
]
, C1 = C0

(70)

A0, A1 are Schur stable whenever |ζ|< 1.

Hζ,0 = β



1 0 0 0 0 . . .
0 0 0 0 0 . . .
0 0 0 0 0 . . .
0 0 0 0 0 . . .
0 0 0 0 0 . . .
...

...
...

...
...

...



Hζ,1 = β



1 0 ζ 0 0 . . .
0 ζ 0 0 0 . . .
ζ 0 0 0 0 . . .
0 0 0 0 0 . . .
0 0 0 0 0 . . .
...

...
...

...
...

...


(71)

Here Hζ,0,Hζ,1 are the Hankel matrices generated by (C0, A0, B0), (C1, A1, B1) respectively.

It is easy to check that for Hζ,1 we have 1
ζ ≤

σ1
σ2
≤ 1+ζ

ζ where σi are Hankel singular values.

Further the rank of Hζ,0 is 1 and that of Hζ,1 is at least 2. Also,
||T O0,∞((Ci,Ai,Bi))||2
||T0,∞((Ci,Ai,Bi))||2 ≤ R.

This construction will be key to show that identification of a particular rank realization
depends on the condition number of the Hankel matrix. An alternate representation of the
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input–output behavior is
yT
yT−1

...
y1

 =


CB CAiB . . . CAT−1

i B

0 CB . . . CAT−2
i B

...
...

. . .
...

0 0 . . . CB


︸ ︷︷ ︸

Πi


uT+1

uT
...
u2


︸ ︷︷ ︸

U

+


C CAi . . . CAT−1

i

0 C . . . CAT−2
i

...
...

. . .
...

0 0 . . . C


︸ ︷︷ ︸

Oi


ηT+1

ηT
...
η2

+


wT
wT−1

...
w1

 (72)

where Ai ∈ {A0, A1}. We will prove this result for a general class of inputs, i.e., active
inputs. Then we will follow the same steps as in proof of Theorem 2 in Tu et al. (2018b).

KL(P0||P1) = EP0

[
log

T∏
t=1

γt(ut|{ul, yl}t−1
l=1)P0(yt|{ul}t−1

l=1)

γt(ut|{ul, yl}t−1
l=1)P1(yt|{ul}t−1

l=1)

]

= EP0

[
log

T∏
t=1

P0(yt|{ul}t−1
l=1)

P1(yt|{ul}t−1
l=1)

]

Here γt(·|·) is the active rule for choosing ut from past data. From Eq. (72) it is clear that
conditional on {ul}Tl=1, {yl}Tl=1 is Gaussian with mean given by ΠiU . Then we use Birge’s
inequality (Lemma 14). In our case Σ0 = O0O

>
0 + I,Σ1 = O1O

>
1 + I where Oi is given in

Eq. (72). We will apply a combination of Lemma 14, Proposition 15.1 and assume ηi are i.i.d
Gaussian to obtain our desired result. Note that O1 = O0 but Π1 6= Π0. Therefore, from

Proposition 15.1 KL(N0,N1) = Eµ1,µ0 [(µ1 − µ0)>Σ−1
1 (µ1 − µ0)] ≤ T ζ2

R2 where µi = ΠiU .
For any δ ∈ (0, 1/4), set a = 1− δ in Proposition 14, then we get whenever

δ log
( δ

1− δ

)
+ (1− δ) log

(1− δ
δ

)
≥ Tζ2

R2
(73)

we have supi 6=j PAi(Aj) ≥ δ. For δ ∈ [1/4, 1) we use Le Cam’s method in Lemma 15 and

show that if 8δ2 ≥ Tζ2

R2 then supi 6=j PAi(Aj) ≥ δ. Since δ2 ≥ c log 1
δ when δ ∈ [1/4, 1) for an

absolute constant, our assertion holds.
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