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91405 Orsay, France.

CREST, Ensae, Institut Polytechnique de Paris, 91120 Palaiseau, France.

Editor: Edo Airoldi

Abstract

Network complexity has been studied for over half a century and has found a wide range
of applications. Many methods have been developed to characterize and estimate the
complexity of networks. However, there has been little research with statistical guarantees.
In this paper, we develop a statistical theory of graph complexity in a general model of
random graphs, the so-called graphon model.

Given a graphon, we endow the latent space of the nodes with the neighborhood dis-
tance. Our complexity index is then based on the covering number and the Minkowksi
dimension of this metric space. Although the latent space is not identifiable, these indices
turn out to be identifiable. This notion of complexity has simple interpretations on popular
examples: it matches the number of communities in stochastic block models; the dimension
of the Euclidean space in random geometric graphs; the regularity of the link function in
Hölder graphons.

From a single observation of the graph, we construct an estimator of the neighborhood-
distance and show universal non-asymptotic bounds for its risk, matching minimax lower
bounds. Based on this estimated distance, we compute the corresponding covering number
and Minkowski dimension and we provide optimal non-asymptotic error bounds for these
two plug-in estimators.

Keywords: random graph model, graphon, neighborhood distance, covering number,
Minkowski dimension

1. Introduction

Networks appear in many areas where data is a collection of objects interacting with each
other. Examples include numerous phenomena in the fields of physics, biology, neuroscience
and social sciences. A major issue is to extract information from these data repositories.
This exciting challenge has led researchers to seek characterizations of networks, among
which their complexity has received a lot of attention for more than half a century. See
(Dehmer and Mowshowitz, 2011; Zenil et al., 2018) for two recent reviews. Indeed, net-
work complexity is a key feature used in various applications, for example, to quantify the
complexity of chemical structures (Bonchev and Buck, 2005), to describe business processes
(Latva-Koivisto), to characterize software libraries (Veldhuizen, 2005), and to study general
graphs (Constantine, 1990).
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The definition and estimation of network complexity is an active line of research (Morzy
et al., 2017; Zufiria and Barriales-Valbuena, 2017; Claussen, 2007). However, there appear
to be little (or no) mathematical results on the statistical side of the problem. In this paper,
we develop a statistical theory of graph complexity in a universal model of random graphs.
To the best of our knowledge, it is the first contribution on complexity estimation with
statistical guarantees.

1.1 Modeling Assumption

Statistical inference on random graphs is a fast-growing area of research (Matias and Robin,
2014; Rácz et al., 2017; Abbe, 2017) and has found a wide range of applications (Goldenberg
et al., 2010; Sarkar et al., 2011). Usually, it assumes there exists an unknown feature in
the underlying model and the goal is to recover this feature from a single realization of the
random graph.

Here, we follow this direction with the W-random graph model (also known as graphon
model). This general model falls into the category of non-parametric descriptions of net-
works (Bickel and Chen, 2009) and satisfies some forms of universality (Diaconis and Jan-
son, 2007). See section 1.3 for details. In this paper, we define a notion of complexity for
this model and then consider the problem of inferring this complexity from a single graph
observation.

W-random graphs allow to model many real-world networks, such as social networks
where nodes represent different people and edges people’s friendships. In this example, one
may expect that the friendship probability pij between individual i and j depends on their
personal attributes (like jobs, ages, leisure). To model such mechanism, one may assume
the observed graph is generated according to the W-random graph model, i.e. (1) for each
node i of the network, an attribute ωi is drawn from a distribution µ on a space Ω (where
Ω can be seen as the social space of all possible individual features: jobs, ages,. . . ); (2) two
people are friends, independently of the others, with probability pij = W (ωi, ωj), where
W : Ω × Ω → [0, 1] is a symmetric function. Thus, a W-random graph is specified by the
triplet of parameters (Ω, µ,W ), often called graphon in the literature (Lovász, 2012).

Such modeling falls into the popular “latent space approach” (Hoff et al., 2002). Indeed,
the personal attributes may not be observed in practice and accordingly, the W-random
graph model assumes that the ωi and Ω are latent (unobserved). In fact, all parameters of
the graphon (Ω, µ,W ) are unknown, and the only observation is the edges of the graph, i.e.
the adjacency matrix A where Aij = 1 stands for the presence of an edge between the ith

and jth nodes, and Aij = 0 otherwise. See Section 2 for a formal presentation of this model.

1.2 Contribution

1.2.1 Complexity Index

Our first objective is the definition of a complexity index in the W-random graph model. As
a natural candidate, one might think of the dimension of the latent space, like d if Ω = [0, 1]d.
However, this index is inadequate because of a major identifiability issue. Indeed, it is known
that (see Lovász, 2012) the attribute space Ω is not identifiable from the observed adjacency
matrix A. Even worse, it has been shown that all W-random graph distributions can be

2



Graphon Dimension

represented on the specific space Ω = [0, 1] (Lovász, 2012). It is therefore pointless to think
about the graph complexity purely in terms of the latent space. Likewise, the regularity of
the link function (like α if W is α-Hölder) is not suited due to the non-identifiability of W .

These issues motivate the introduction of a more abstract index. Given a graphon
(Ω, µ,W ), we endow the latent space Ω with the so-called neighborhood distance

rW (ω, ω′) =

(∫
Ω

∣∣W (ω, ω′′)−W (ω′, ω′′)
∣∣2 µ(dω′′)

)1/2

. (1)

From the above description of a W-random graph, we can see that the quantity rW (ωi, ωj)
measures the propensity of the nodes i and j to be connected with similar nodes. Our
complexity index is then defined as the covering number and the Minkowski dimension of a
purified version of the (pseudo-) metric space (Ω, rW ). The purification process is detailed
in section 3.1. Recall the definitions of these two standard measures for metric spaces: the

ε-covering number N
(c)
Ω (ε) is the minimal number of balls of radius ε required to entirely

cover the (pseudo-) metric space (Ω, rW ). And the Minkowski dimension is the following
limit on the covering number

dimΩ := lim
ε→0

log N
(c)
Ω (ε)

−log ε
(2)

when the limit exists. In particular, the Minkowski dimension does not have to be an
integer.

Although none of the three parameters Ω, µ and W are identifiable in the W-ranom
graph model, we prove that the covering number and the Minkowski dimension of a purified
version of (Ω, rW ) are identifiable.

We also illustrate that this notion of complexity is sound on classic examples of random

graphs. Specifically, we show that N
(c)
Ω (ε) is equal to the number of well-spaced communities

in the stochastic block model; that dimΩ matches the dimension of the Euclidean space
in some random geometric graphs; and that dimΩ is equal to the regularity of the link
function in some Hölder graphon models. See Section 3.2 for details.

In addition to all applications listed in the introduction, these complexity indices may
also be useful to adjust analytical methods to particular networks, for example, when esti-
mating the link function W (see section 1.3 and 3.2 for related comments) or in learning
representation where the goal is to find an informative metric space to place/represent the
nodes of the network (Hoff et al., 2002; Perozzi et al., 2014; Grover and Leskovec, 2016).

1.2.2 Statistical Estimation

From the observed adjacency matrix A of a W-random graph, we estimate the neighborhood
distance (1) on the sampled points ω1, . . . , ωn. The corresponding distance estimator r̂ is
defined in Section 4.1. We show universal non-asymptotic bounds for its risk (Theorem 1).
Let ωm(i) ∈ {ω1, . . . , ωn} \ {ωi} denote a nearest neighbor of ωi with respect to the distance
rW .

Theorem 1 Consider the distance estimator r̂, defined in Section 4.1. Then, for any
graphon (Ω, µ,W ), we have
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∀i, j ∈ [n], ∣∣r2
W (ωi, ωj)− r̂2(i, j)

∣∣ . rW (ωj , ωm(j) ) + rW (ωi, ωm(i) ) +
√

log(n)/n

with probability at least 1− 2/n.

In the upper bound, there is a bias term rW (ωj , ωm(j) ) which is the distance between the
sampled point ωj and its nearest neighbor ωm(i) (w.r.t. the neighborhood distance). This
bias depends on the form of the underlying graphon (Ω, µ,W ), for example, it is equal
to zero w.h.p. in the stochastic block model (i.e., when the link function W is piecewise
constant on Ω = [0, 1]). We also derive a minimax lower bound that matches the upper
bound of Theorem 1. See Section 4.2 for details on the distance estimation.

Based on the estimated distances r̂(i, j), we estimate the covering number N
(c)
Ω (ε) by

plug-in and provide universal non-asymptotic error bounds for this estimator. See Section
4.3 for details. Our results on the distance and covering number are therefore valid for all
graphons, unlike most results in the graphon literature.

Combining the above covering number estimator N̂
(c)
Ω with formula (2), we derive an

estimator of the Minkowski dimension

d̂imD :=
log N̂

(c)
Ω (εD)

−log εD

which satisfies a high probability convergence rate (Theorem 2). For this result, we assume
the Mikowski dimension is upper bounded by some constant D and use a particular radius
εD defined in Section 4.4. We also make some mild assumptions on the graphon geometry,
which are inspired by the problem of estimation of manifold dimension (see section 1.3
for this related literature). Besides, we show that this set of assumptions is minimal, in
the sense that, if any of these assumptions is removed, all dimension estimators make an
estimation error of the order 1.

Theorem 2 Under some mild assumptions, defined in Section 4.4, the following holds. If
dimΩ is any real in [0, D], then∣∣∣ d̂imD − dimΩ

∣∣∣ . 1

logn

with probability at least 1− C ′/n for some constant C ′ independent of n.

Finally, we prove that the upper bound log−1 n is optimal, which means that no estimator
can improve on this error. For detailed results, see Section 4.4.

As extensions, we show that the above results also cover the important setting of sparse
networks, which has been considered several times in the literature (see Bickel et al., 2011;
Wolfe and Olhede, 2013; Klopp et al., 2017; Xu et al., 2014). In addition, we describe
a polynomial-time algorithm to approximate the covering number estimator; we do so by
using a classic greedy algorithm that is known to satisfy some theoretical guarantees. See
Section 6 for these two extensions.

Finally, we test if the packing number (of a purified version of (Ω, rW )) is smaller than K,
with a specific care for controlling the type I error probability uniformly over all graphons.
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We prove this error is smaller than 2/n for any graphon. For technical reasons detailed
in Section 5, we use here the packing number instead of the covering number, which are
essentially the same measures (see Appendix A for a reminder about these usual measures
for metric spaces).

1.3 Connection with the Literature

1.3.1 W-random Graph Model

The most simple random graph is the Erdös-Rényi model where each edge has the same
probability p of being present, independently of the other edges. The study of this generative
model has been impressively fruitful in mathematics (Bollobás, 1998) but does not replicate
even the simplest properties of real-world networks. Hence, the assumption of a constant
connection probability p has been relaxed in the celebrated stochastic block model (Holland
et al., 1983) where the connection probabilities may vary with the community membership
of each node. Although this model has attracted a lot of attention (Abbe, 2017), it fails
to catch some subtle aspects of very large graphs. Such modeling issues have led to a non-
parametric view of network analysis (Bickel and Chen, 2009), in particular the introduction
of the W-random graph model (Diaconis and Janson, 2007).

The universality of the W-random graphs has two parts. On the one hand, the graphon
(Ω, µ,W ) plays a key role in network analysis as a powerful representation of many graph
properties. Indeed, it has been shown that many sequences of growing graphs can be
represented by graphons. For details, see the theory of graph limits introduced by Lovász
and Szegedy (2006) or the comprehensive monograph by Lovász (2012). On the other
hand, the W-random graph model is connected with the theory of exchangeable random
graphs. In fact, every distribution on random graphs that is invariant by permutation of
nodes can be expressed with W-random graphs (Diaconis and Janson, 2007; Aldous, 1981;
Kallenberg, 1989). Thus, the W-random graphs encompass many random graph models,
including stochastic block models, random geometric graphs (Penrose et al., 2003) and
random dot product graphs (Tang et al., 2013; Athreya et al., 2017).

1.3.2 Graphon Estimation

There has been much interest in the recovery of the function W (or the matrix of probabil-
ities [W (ωi, ωj)]i,j≤n) on the specific space Ω = [0, 1]. Usually, authors assume the graphon
has some regularity (e.g. W is Hölder continuous on [0, 1]) and then use an approximation by
SBM, which can be seen as an approximation by constant piecewise functions of W (Borgs
et al., 2015; Wolfe and Olhede, 2013; Gao et al., 2015; Klopp et al., 2017; Latouche and
Robin, 2016). We also mention an alternative approach based on neighborhood-smoothing
(Zhang et al., 2015; Xu et al., 2014). In comparison with this literature, our objective is less
ambitious since we only estimate a feature of the graph (its complexity). In return, we carry
out a general analysis and do not assume any smoothness condition on Ω = [0, 1]. Indeed,
our results on the neighborhood distance and covering number estimations are valid for all
graphons. For the dimension, we make mild assumptions which are similar to those in the
“intrinsic dimension estimation” literature (see subsection 1.3.3 for a brief description of
this related problem).
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In the estimation problem of W , the latent space [0, 1] is sometimes considered instead
of Ω. This choice is not restrictive (if no assumption is made on the function W on [0, 1])
because both settings generate the same W-random graph distributions (Lovász, 2012).
However, the restricted setting [0, 1] is not always convenient to work with, whereas the
general setting Ω leads to simpler and cleaner situations (Lovász, 2012). Indeed, many
random graph distributions are naturally represented on Ω so that their properties are easy
to interpret. See Section 3.2 for illustrative examples.

The l2-neighborhood distance (1) is a variant of the l1-neighborhood distance introduced
by Lovász (2012). This variant has been leveraged several times for the estimation of
[W (ωi, ωj)]i,j≤n (Zhang et al., 2015; Xu et al., 2014) where the authors use it as a criterion
to select neighborhoods of nodes. Here, our estimator of the l2-neighborhood distance is
inspired by the work of Zhang et al. (2015), as will be discussed later.

In sparse settings as well, the matrix [W (ωi, ωj)]i,j≤n can be estimated by averaging over
”similar” observed entries, where “similar” is defined by some neighbor estimator. In (Li
et al., 2019) for example, the neighbor estimator is simply the l2-distance between two rows
in the observed matrix, and the random fraction of observed entries is larger than n−1/2+δ

for any δ > 0. We also consider this sparse regime for the estimation of the l2-neighborhood
distance, but we do not use the same estimator as Li et al. (2019) since it suffers from a
constant bias O(1). For details, see the equations page 7 in (Li et al., 2019).

However, the distance estimators in (Li et al., 2019; Zhang et al., 2015) and the current
paper are only based on immediate neighborhoods, which are not sufficiently informative in
very sparse regimes, where the fraction of observed entries is o(n−1/2). Although this is not
the focus of our paper, we mention that that there exist successful methods in such very
sparse regimes. For example, the similarity between two nodes can be estimated by compar-
ing the two sets of paths starting from these nodes (Borgs et al., 2017). By considering paths
of length (strictly) larger than 1, this approach allows to gather information within larger
neighborhoods than immediate neighbors. However, the theoretical guarantees proved for
this method (Borgs et al., 2017) are restricted to functions W of finite spectrum and defined
on [0, 1], whereas we study any function on any space Ω.

1.3.3 Intrinsic Dimension Estimation

There is a considerable body of literature on the estimation of intrinsic dimension of a
manifold (Kim et al., 2016; Kégl, 2003; Koltchinskii, 2000; Levina and Bickel, 2005). In the
simplest setting, points are sampled on a manifold of Rm whose dimension is an integer,
and the objective is to recover this dimension from the sample. In contrast, here we do
not assume the dimension is an integer, we do not observe the n sampled points ω1, . . . , ωn,
and we are not in the Euclidean metric space Rm. Indeed, the neighborhood distance rW
is unknown, and our only observation is the connections of the graph.

Outline of the Paper. Section 2 gives a formal presentation of the problem. Sec-
tion 3 presents the complexity index and some illustrations. In Section 4, we focus on
statistical estimation (distance, covering number, dimension). In Section 5, we test the
graph complexity. In Section 6, we provide two extensions (estimation on sparse graphs,
and a polynomial-time algorithm). Proofs are deferred to the appendix.
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Notation. we write a . b, if there exists a constant C such that a ≤ Cb; and note
a � b, if there exist two constants c, c′ such that ca ≤ b ≤ c′a. We denote by a ∨ b
(respectively a∧ b) the maximum (resp. minimum) between a and b; by [a]+ the maximum
between 0 and a; by [n] the set {1, . . . , n}; by B(x, ε) a ball of radius ε and center x. We
note 1E the indicator function corresponding to any event E . We write “a.e.” for “almost
everywhere”; and “w.r.t.” for “with respect to”; and “w.h.p.” for ”with high probability”,
which means that the probability converges to 1 as the number of graph nodes tends to
infinity.

2. Model

2.1 Setting

For a set of vertices V = {1, . . . , n}, a W-random graph G = (V,E) is generated as follows.
Let (Ω, µ,W ) be an unknown triplet of parameters, which is composed of a measurable set
Ω, a probability measure µ on Ω, and a symmetric (measurable) function W : Ω×Ω→ [0, 1].
Such a triplet is called a graphon and we write W the collection of all graphons. For each
node i ∈ V , an unknown attribute ωi ∈ Ω is drawn in an i.i.d. manner from the distribution
µ. Conditionally to the attributes ω = (ω1, . . . , ωn), an edge connects two vertices i and j,
independently of the other edges, with probability W (ωi, ωj).

P
(
(i, j) ∈ E

∣∣ω) = W (ωi, ωj) (3)

Our data are a single observation of the W-random graph. Formally, it is an adjacency
matrix A = [Aij ]i,j≤n defined by Aij = 1 if (i, j) ∈ E, and 0 otherwise. This symmetric
binary matrix with zero-entries on the diagonal represents an undirected, unweighted graph
with no self edges. The distribution of A is called the data distribution and is denoted by

P(n)
(Ω,µ,W ). The goal will be to define an index characterizing the complexity of the limiting

distribution P(∞)
(Ω,µ,W ). In particular, the index should be identifiable from all distributions

P(n)
(Ω,µ,W ), 1 ≤ n ≤ ∞, in order to be estimated from the data A. The dependence in n is

often dropped out in the rest of the paper.

2.2 Non-identifiability and Equivalence Class of Graphons

From the observation A, the function W is not identifiable. Indeed, for any measure-
preserving bijection φ : Ω → Ω, we can observe that the map W φ(x, y) = W (φ(x), φ(y))
leaves the data distribution unchanged, i.e.:

P(Ω,µ,W ) = P(Ω,µ,Wφ).

In fact, even the latent space Ω is not identifiable. The full picture is described by Lovász
(2012, chap.10):

Two graphons (Ω, µ,W ) and (Ω′, µ′,W ′) parametrize the same data distributions
for all n, if and only if, there exist some measure-preserving maps φ : [0, 1]→ Ω
and ψ : [0, 1]→ Ω′ such that W φ(x, y) = W ′ψ(x, y) a.e.
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where [0, 1] is the probability space endowed with the uniform measure. This characteriza-
tion will be useful to prove the identifiability of our complexity index. For clarity of this
future discussion, we consider the corresponding quotient space W/ ∼, which is the set of
equivalence classes of graphons leading to the same data distributions.

3. Complexity Index

Given a graphon (Ω, µ,W ), we endow the latent space Ω with the neighborhood distance

rW (ω, ω′) =

(∫
Ω

∣∣W (ω, ω′′)−W (ω′, ω′′)
∣∣2 µ(dω′′)

)1/2

(4)

which is the l2-norm ||W (ω, .)−W (ω′, .)||2,µ between the slices of the function W in ω and
ω′. Then, we measure the complexity of the pseudo-metric space (Ω, rW ) in a classic way,

using its covering number N
(c)
Ω (ε) and its Minkowski dimension:

dimΩ := lim
ε→0

log N
(c)
Ω (ε)

−log ε
(5)

when the limit exists. See appendix A for additional information about these two standard
measures of metric spaces.

Unfortunately, the covering number and the Minkowski dimension of a graphon are not
identifiable from the data distribution P(Ω,µ,W ). Indeed, they are not robust to changes
of the graphon on null-sets, whereas such changes leave the data distribution unaltered (a
null-set is a set of zero measure in the probability space (Ω, µ)). This fact is illustrated
in the following example where two equivalent graphons (i.e. leading to the same data
distributions) have two different Minkowski dimensions. As we can see, this problem is due
to the presence of a “big” null-set in Ω.

Example. Let Ω := {2} and Ω′ : = {2} t [0, 1] be two latent spaces endowed with a
common probability distribution µ such that µ[{2}] = 1. Let W ′ be a function defined on
Ω′×Ω′ such that W ′(x′, y′) = (x′+y′)/3 for x′, y′ ∈ [0, 1]. Let W be any measurable function
on Ω× Ω such that W (2, 2) = W ′(2, 2). Then, the two graphons (Ω, µ,W ), (Ω′, µ,W ′) are
equivalent, and yet they have two different Minkowski dimensions: dimΩ = 0 since rW = 0
on Ω, while dimΩ′ = 1 since rW ′(x

′, z′) = |x′ − z′|/3 for x′, z′ ∈ [0, 1]. �

3.1 Purification Process for Identifiability

To define an identifiable index of complexity, we need to take care of “big” null-sets (seen
in the above example). Usually, these pathological sets are not present in standard repre-
sentations (Ω, µ,W ) and even useless in terms of modeling. Thus, we get rid of them; we
do so by using a general remedy, called pure graphon.

Definition (Lovász, 2012, chap.13) A graphon (Ω, µ,W ) is called pure if (Ω, rW ) is a
complete separable metric space and the probability measure has full support (that is, every
ball of non-zero radius has positive measure). Besides, there is a pure graphon in each
equivalence class of graphons.
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For illustrative examples of pure graphons, see Section 3.2. There is no “big” null-set
in pure graphons (since their measure µ has full support by definition) and the complexity
index takes the same value on the pure graphons of a same equivalence class of W/ ∼
(Lemma 3).

Lemma 3 If two pure graphons are equivalent, then their covering numbers are equal.

The proof of Lemma 3 is written in Appendix C.2. Lemma 3 directly implies that
the Minkowski dimension takes the same value for two equivalent pure graphons. Thus,

for any limiting W-random graph distribution P(∞)
(Ω,µ,W ), we define its complexity as the

covering number and the Minkowski dimension of any pure graphon from the corresponding
equivalence class. According to the above lemma, these indices are identifiable from all

data distributions P(n)
(Ω,µ,W ), 1 ≤ n ≤ ∞. From now on, we can work exclusively with pure

graphons without the loss of generality, since there are pure graphons in each equivalence
class ofW/ ∼. In the remaining of the subsection, we describe two consequences of working
with pure graphons.

The metric properties are preserved between equivalent pure graphons (Lemma 4).

Lemma 4 Let (Ω, µ,W ) and (Ω′, µ′,W ′) be two pure graphons, endowed with their respec-
tive neighborhood distances rW and rW ′. If the two graphons are in a same equivalence class
of W/ ∼, then for some bijective measure-preserving map φ : Ω′ → Ω, we have

rW ′ (x, y) = rW (φ(x), φ(y)) almost surely on Ω′ × Ω′.

Lemma 4 states that the metric spaces (Ω, rW ) and (Ω′, rW ′) are isometric up to a null-
set, it is therefore not surprising that they share the same covering number (Lemma 3).
The proof of lemma 4 is written in Appendix C.1. Note that Lemma 4 ensures that the
future distance estimation is a well-posed problem.

Another consequence of working with pure graphon is that the sample ω1, . . . , ωn is
asymptotically dense in Ω. Lemma 5 is proved in Appendix C.3.

Lemma 5 For a pure graphon (Ω, µ,W ) such that N
(c)
Ω (ε) < ∞ for all ε > 0, the sample

ω1, . . . , ωn is asymptotically dense in the metric space (Ω, rW ). That is, for all radii ε > 0,
the event

E(ε) = {each ball of radius ε in (Ω, rW ) contains at least a sampled point ωi}

holds with a probability tending to one as n→∞.

3.2 Illustrative Examples

We exemplify the complexity index with instances of W-random graphs that are often
considered in the literature: a stochastic block model (Holland et al., 1983; Abbe, 2017), a
random Hölder graph (Gao et al., 2015; Zhang et al., 2015) and a random geometric graph
(Penrose et al., 2003; Arias-Castro et al., 2018; De Castro et al., 2017; Bubeck et al., 2016).

Stochastic Block Model. It produces a structure of community dividing the node
set into K subsets of nodes which share a same pattern of connection. More precisely, the
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edges are independently sampled from each others, and the probability of an edge between
two nodes only depends on their community membership. The SBM with K communities
can be written in the framework of the W-random graph model, by setting Ω = {c1, . . . , cK},
so that each node belongs to one of the K communities ci, and connects to each other
with probability W (ci, cj). A natural notion of complexity for SBM is the number K of
communities, which coincides with the ε-covering number of {c1, . . . , cK} for small radii ε.

Approximation by SBM. In the estimation of W based on the classic approximation
by SBM (Gao et al., 2015; Klopp et al., 2017), the right number of communities can be
selected using the covering number. Indeed, Proposition 6 states that, for any graphon
(Ω, µ,W ), the function W can be “O(ε)-approximated” in l2-norm by an SBM with at most

N
(c)
Ω (ε) communities. The proof is written in Appendix B.1.

Proposition 6 Consider any graphon (Ω, µ,W ) and its ε-covering number N
(c)
Ω (ε), defined

in Section 3. There exists a graphon (Ω, µ,W ) equivalent to an SBM with N
(c)
Ω (ε) commu-

nities, such that, ∫
Ω2

(W (ω, ω′)−W (ω, ω′))2µ(dω)µ(dω′) ≤ (4ε)2.

Random Hölder graph. Let Ω = [0, 1]d be endowed with the uniform measure, and
W fulfill a double Hölder condition:

m
∣∣∣∣ω′ − ω∣∣∣∣α

2
≤
∣∣W (ω′, ω′′)−W (ω, ω′′)

∣∣ ≤M ∣∣∣∣ω′ − ω∣∣∣∣α
2

(6)

for some Hölder exponent α > 0 (and some constants m,M > 0). This means that each
node has its specific attribute of d variables, and connects to another node with a probability
that smoothly depends on the node attributes. A natural notion of complexity for this graph
distribution should increase with the number d of variables, and decrease with the level α of
smoothness. This intuitive notion is matched by the Minkowski dimension, which is equal
to d/α. See Appendix A for details.

Random geometric graph. It generates simple spatial networks placing nodes in a
Euclidean metric space and connecting two nodes if their Euclidean distance is small. Let
Ω = [0, 1]d be endowed with the uniform measure and the indicator function W (ω, ω′) =
I||ω−ω′||2≤δ for some constant δ > 0. Appendix A shows that dimΩ = 2d. Thus, the
Minkowski dimension matches the Euclidean dimension of the latent space, up to a factor
2.

4. Estimation of the Complexity Index

Given a pure graphon (Ω, µ,W ), assume a W-random graph is generated from the probabil-
ity distribution P(Ω,µ,W ) defined in Section 2.1. From a single observation of the adjacency
matrix A of this graph, we want to estimate the complexity index (introduced in Section
3.1). In particular, the underlying graphon (Ω, µ,W ) is unknown, and the sampled points
ω1, . . . , ωn are not observed.

This section is organized in the following manner. We first estimate the neighborhood
distance (4) on the sampled points ω1, . . . , ωn. Based on these estimated distances, we then

estimate the ε-covering number of ({ω1, . . . , ωn}, rW ) by plug-in. Denote by N̂
(c)
Ω (ε) this

10
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estimator. We finally estimate the Minkowski dimension using − log N̂
(c)
Ω (ε)

/
log ε at a well

chosen radius ε.

4.1 Distance-estimator

Let us explain the construction of the distance estimator. The l2-neighborhood distance
is naturally associated with a structure of inner product. Given some square-integrable
functions f and g on Ω, we write their inner product 〈f, g〉 :=

∫
Ω f(z)g(z)µ(dz). Let

W (ωi, .) denote the function x 7→ W (ωi, x), then the neighborhood distance admits the
following decomposition

r2
W (ωi, ωj) = 〈W (ωi, .),W (ωi, .)〉+ 〈W (ωj , .),W (ωj , .)〉 − 2〈W (ωi, .),W (ωj , .)〉. (7)

We estimate separately the crossed term and the two quadratic terms of (7).
Note Ai the ith row vector of the adjacency matrix A, and 〈Ai, Aj〉n =

∑n
i=1AikAjk/n

the inner product between two such rows. Given ωi, ωj , we observe that 〈Ai, Aj〉n is (almost)
a sum of i.i.d. random variables (up to a duplicated entry because of the symmetry of the
adjacency matrix A). Indeed, the n − 2 random variables {AikAjk : k ∈ [n] and k 6= i, j}
are independent with the same mean conditionally to ωi, ωj :

E [AikAjk|ωi, ωj ] = 〈W (ωi, .),W (ωj , .)〉

where the mean E is taken over the data distribution P(Ω,µ,W ). It is therefore possible to use

Hoeffding’s inequality to prove that |〈Ai, Aj〉n − 〈W (ωi, .),W (ωj , .)〉 | .
√

log n/n w.h.p.
(see Proposition 26 in Appendix D.1). Thus, the inner product between two different rows
is a consistent estimator of the crossed term 〈W (ωi, .),W (ωj , .)〉 in (7).

To estimate the remaining quadratic term 〈W (ωi, .),W (ωi, .)〉 in (7), we cannot proceed
in the same way since 1

n〈Ai, Ai〉 is an inconsistent estimator of 〈W (ωi, .),W (ωi, .)〉; indeed,
we have

E
[
AikAik|ωi

]
= E

[
Aik|ωi

]
= 〈W (ωi, .), 1〉 6= 〈W (ωi, .),W (ωi, .)〉.

To work around this issue, we simply approximate the quadratic term by a crossed term to
be back to the previous case. Specifically, the approximation consists in replacing a sampled
point by its nearest neighbor as follows: let ωm(i) ∈ {ω1, . . . , ωn} denote a nearest neighbor
of ωi according to the distance rW , that is m(i) ∈ argmint: t6=i rW (ωi, ωt), then we have the
following approximation:

|
〈
W (ωi, .),W (ωi, .)

〉
−
〈
W (ωi, .),W (ωm(i), .)

〉
| = |

〈
W (ωi, .),W (ωi, .)−W (ωm(i), .)

〉
|

≤ rW (ωi, ωm(i)) (8)

using Cauchy-Schwarz inequality. Thus, the nearest neighbor approximation (8) entails a
bias in our estimation procedure, which is equal to the distance between ωi and its nearest
neighbor ωm(i).

Since the index m(i) is unknown, we define an index estimator m̂(i) such that ωm̂(i) is
hopefully close to ωi according to rW , and then we use 〈Ai, Am̂(i)〉n to estimate the quadratic

term. Formally, m̂(i) is a minimizer of the distance function j 7→ f̂(i, j) defined by

f̂(i, j) = max
k: k 6=i,j

|〈Ak, Ai −Aj〉n| (9)

11
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where f̂(i, j) represents a proxy for the distance between the ith and jth rows of the adjacency
matrix, which is enough to define the index estimator

m̂(i) = argmin
j: j 6=i

f̂(i, j). (10)

Note that f̂(i, j) is small in expectation if ωi and ωj are close according to the neighbor-

hood distance; indeed, E
[
f̂(i, j)|ωi, ωj , ωk

]
= maxk 6=i,j |

〈
W (ωi, .) −W (ωj , .),W (ωk, .)

〉
| ≤

rW (ωi, ωj) using Cauchy-Schwarz inequality.
Putting together the estimators of the crossed term and the two quadratic terms, we

get the following estimator of the square distance r2
W (ωi, ωj):

r̂2(i, j) = 〈Ai, Am̂(i)〉n + 〈Aj , Am̂(j)〉n − 2 〈Ai, Aj〉n (11)

for all i, j ∈ [n], where m̂(i) is given by (10).

Remark: The distance-estimator (11) is inspired by the work of Zhang et al. (2015),
in which the authors want to recover the expectation of the adjacency matrix A, based
on neighborhood smoothing. They rely on the proxy (9) to select neighborhood of points
with respect to the neighborhood distance. Restricting themselves on graphons of the form
([0, 1], λ,W ) with λ the uniform measure and W a piecewise Lipschitz function, they derive
risk bounds for the estimation of W. In contrast, here we do not make any assumption on
the graphon, and our objective is to provide an estimator of the neighborhood distance per
se.

4.2 Consistency of the Distance-estimator

The statistical recovery of the set of distances {rW (ωi, ωj) : i, j ∈ [n]} is a well-posed
problem, since the neighborhood distance is invariant on each equivalence class of graphons
(Lemma 4). Theorem 7 gives non-asymptotic error bounds for the distance-estimator (11).
The proof is written in Appendix D.1.

Theorem 7 Given any (pure) graphon (Ω, µ,W ), consider the data distribution P(Ω,µ,W )

defined in model (3). For all 1 ≤ i ≤ n, let ωm(i) ∈ {ω1, . . . , ωn} \ {ωi} denote a nearest
neighbor of ωi according to the distance rW . Then, for the distance-estimator (11), the
event

Edist =
{
∀i, j ∈ [n] :

∣∣r2
W (ωi, ωj)− r̂2(i, j)

∣∣ ≤ 3rW (ωj , ωm(j) ) + 3rW (ωi, ωm(i) ) + 36
√

log(n)/n
}

holds with probability P(Ω,µ,W )[Edist] ≥ 1− 2
n .

Theorem 7 implies that the distance-estimator (11) is a consistent estimator of the
neighborhood distance (4), provided that the ε-covering number is finite for all radii ε >
0. Indeed, for a finite covering number, Lemma 5 ensures that the sample ω1, . . . , ωn is
asymptotically dense in (Ω, rW ), which implies that the bias rW (ωi, ωm(i) ) is convergent in
probability to zero as n grows to infinity.

Let us describe the upper bound of Theorem 7. On the one hand, there is a fluctua-
tion term

√
log(n)/n that corresponds to the convergence property of the inner products

12
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between rows of A, i.e.: |〈Ai, Aj〉n − 〈W (ωi, .),W (ωj , .)〉 | .
√

log n/n w.h.p. for i 6= j. On
the other hand, there is a bias term rW (ωi, ωm(i) ) that results from the nearest neighbor
approximation (8). Its value depends on the graphon regularity. For instance, in the SBM
example of Section 3.2, the bias term rW (ωi, ωm(i) ) is equal to zero w.h.p. (indeed, ωi
and its nearest neighbor ωm(i) are in the same community w.h.p., and thus separated by
a distance zero w.r.t. rW ). In the random Hölder graph example, the bias term is of the
order of (log(n)/n)α/d w.h.p..

The next result gives a lower bound matching the upper bound of Theorem 7, up to
a numerical constant. Specifically, there exists a graphon (Ω, µ,Wn) for each sample size
n ≥ 1, such that the lower bound holds for (at least) some of the O(n2) distances.

Theorem 8 There exists a sequence of graphons (Ω, µ,Wn)n∈N and some numerical con-
stants p, c, c′ > 0, such that the following holds for any estimator d̂ and any permutation σ
of the n indices. With a probability larger than p, the lower bound∣∣∣r2

Wn
(ωi, ωj)− d̂2(σ(i), σ(j))

∣∣∣ ≥ c′(rWn(ωj , ωm(j) ) + rWn(ωi, ωm(i) ) +

√
logn

n

)

is satisfied for (at least) c n different pairs (i, j).

The lower bound in Theorem 8 holds regardless of the nodes labels i ∈ {1, . . . , n} since
it is satisfied for any permutation σ of the n indices {1, . . . , n}. This is relevant in the model
(3) where the data distribution is invariant by relabeling of the nodes.

In particular, Theorem 8 can be written for a graphon (Ω, µ,Wn)n whose bias rWn(ωi, ωm(i) )
is equal to a numerical constant, thus giving the next result.

Theorem 9 There exists a sequence of graphons (Ω, µ,Wn)n∈N and some numerical con-
stants p, c > 0, such that the following holds for any estimator d̂ and any permutation σ of
the n indices. With a probability larger than p, the lower bound∣∣∣r2

Wn
(ωi, ωj)− d̂2(σ(i), σ(j))

∣∣∣ ≥ 1

800

is satisfied for (at least) c n different pairs (i, j).

The constant error in this lower bound does not violate the vanishing error bound in
Theorem 7. Indeed, the graphon changes with n in the above lower bounds whereas it
remains fixed in the upper bound of Theorem 7.

Although Theorem 8 is a standard way of stating lower bounds in the literature, it is not
sufficient to show that the right dependence on the bias rW (ωi, ωm(i) ) is linear. For example,
if rW (ωi, ωm(i) ) is equal to a numerical constant, then one can replace rW (ωi, ωm(i) ) with
r2
W (ωi, ωm(i) ) in Theorem 8 (by adapting the numerical constant c′ which was not tight

anyway). One can observe that such a change from rW (ωi, ωm(i) ) to r2
W (ωi, ωm(i) ) is also

possible in the case where rW (ωi, ωm(i) ) is smaller than the fluctuation term
√

log(n)/n.
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Therefore, neither the lower bound of Theorem 8 nor the lower bound of Theorem 9 is enough
informative to decipher whether the optimal rate is of the order of r2

W (ωi, ωm(i) )+
√

log(n)/n

or rW (ωi, ωm(i) ) +
√

log(n)/n.

A quadratic dependency r2
W (ωi, ωm(i) ) would improve on the linear dependency since

the neighborhood distance rW is always smaller than 1 by definition. Hence, one may
wonder whether such an improvement is possible, especially that Theorem 7 is an error

bound on square distances,
∣∣∣r2
W (ωi, ωj)− d̂2(i, j)

∣∣∣. It turns out that even replacing the

bias rW (ωi, ωm(i) ) with r1+γ
W (ωi, ωm(i)) for some γ > 0 is impossible. In other words, no

estimator d̂ simultaneously satisfies the following inequalities, with high probability, over
all graphons (Ω, µ,W ):
∀i, j ∈ [n] :∣∣∣r2

W (ωi, ωj)− d̂2(i, j)
∣∣∣ ≤ C (r1+γ

W (ωj , ωm(j) ) + r1+γ
W (ωi, ωm(i) ) +

√
log(n)/n

)
(12)

where C is a numerical constant. Indeed, Theorem 10 ensures that the uniform bound
(12) cannot be achieved by any estimator d̂ as soon as γ > 0, thus proving that the bias-
dependence is linear (γ = 0) at best.

Theorem 10 There exists a sequence of graphons (Ω, µ,Wn)n∈N and some numerical con-
stants p > 0 , γ ≥ 0 and c > 0, such that the following holds for any estimator d̂ and any
permutation σ of the n indices. With a probability larger than p, the following lower bound
is satisfied for (at least) c n different pairs (i, j),

∣∣∣r2
Wn

(ωi, ωj)− d̂2(σ(i), σ(j))
∣∣∣ & κn(γ)

(
r1+γ
Wn

(ωj , ωm(j) ) + r1+γ
Wn

(ωi, ωm(i) ) +

√
logn

n

)

where κn(γ) −→
n
∞ as soon as γ > 0, and κn(0) = O(1).

Theorem 8 is a direct consequence of Theorem 10 for γ = 0. The proof of Theorem 10
can be found in Appendix D.2.

In conclusion, the upper bounds in Theorem 7 have the right dependence on the bias.

4.2.1 Discussion about the Distance Estimation and Open Questions

The lower bound in Theorem 8 only holds for O(n) distances among the O(n2) ones. As
to whether this could be extended to O(n2) distances, the question is left open. This
generalization would confirm that the dependence on the bias should be linear and thus
that the upper bounds of Theorem 7 have the optimal bias-dependence.

This gap may come from technical shortcomings of our proof, rather than an inherent
feature of the estimation problem. Indeed, the instance of W-random graph constructed for
the lower bounds, has only one outlier node whose O(n) distances are incorrectly estimated.
A possible difficulty for generalizing the proof to O(n2) distances is the randomness of the

sample ω1, . . . , ωn
iid∼ µ and the symmetry of the matrix A, as they bring regularization

effects to the problem.
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Another element suggesting that the lower bounds in Theorem 8 may not be specific to
one outlier, is that the upper bounds in Theorem 7 are not sensitive to O(1) nodes. Indeed,
by reading the proof of Theorem 7, one can observe that the upper bounds will not improve
after removing O(1) nodes.

Note that our lower bound has probably no direct consequences on graphon estimation
since the bound only hinges on O(1) outlier nodes, which would be negligible in the esti-
mation of the probabilities matrix [W (ωi, ωj)]1≤i,j≤n with respect to the Frobenius norm.

The fluctuation term fn :=
√

log(n)/n in the upper bounds of Theorem 7 is natural,
as each inner product is computed with Θ(n) entries, leading to an error 1/

√
n, and the√

log(n) allows us to show high probability bounds for each of the Θ(n2) distances. However,
this explanation is specific to our estimator, and the optimality of fn with respect to all
estimators remains to be proved. The fact that fn appears in the lower bound of Theorem 8
does not prove that fn is inevitable since fn is actually negligible compared to the bias term
rWn(ωi, ωm(i)) in this lower bound. Indeed, Theorem 8 is based on an instance of graphon
Wn satisfying rWn(ωi, ωm(i)) & fn.

4.3 Consistency of the Covering Number Estimator

We have defined the ε-covering number estimator N̂
(c)
Ω (ε) as the covering number of the set

{1, . . . , n} w.r.t. the distance-estimator r̂. Consider esup the supremum of the errors of r̂ :

esup := sup
i,j∈[n]

|rW (ωi, ωj)− r̂(i, j)| .

Then, the covering number estimator is linked with the true covering number of {ω1, . . . , ωn}
by the following inequalities

∀ε > esup, N (c)
ω1,...,ωn (ε+ esup) ≤ N̂ (c)

Ω (ε) ≤ N (c)
ω1,...,ωn (ε− esup) .

To compare the covering numbers of {ω1, . . . , ωn} and Ω, we need to measure the differ-
ence between the sample ω1, . . . , ωn and the space Ω. We do so by introducing the sampling
error sω defined as

sω = sup
ω∈Ω

inf
i∈{1,...,n}

rW (ω, ωi) (13)

which is the greatest distance that separates a point of Ω from the set {ω1, . . . , ωn}. Thus,
the covering numbers (w.r.t. the true distance rW ) of ω1, . . . , ωn and Ω are linked by the
following inequalities

∀ε > sω, N
(c)
Ω (ε+ sω) ≤ N (c)

ω1,...,ωn (ε) ≤ N (c)
Ω (ε− sω) .

Finally, for

b2sup := 6 sup
i∈[n]

rW (ωi, ωm(i) ) + 36
√

log(n)/n, (14)

Theorem 7 ensures that esup ≤ bsup with probability at least 1 − 2/n. From the above
displays, we obtain the following proposition.
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Proposition 11 Given any (pure) graphon (Ω, µ,W ), consider the data distribution P(Ω,µ,W )

defined in model (3). Let bsup and sω be the distance error bound (14) and the sampling

error (13). Then, the estimator N̂
(c)
Ω satisfies the following non-asymptotic bounds

∀ε > bsup + sω, N
(c)
Ω (ε+ bsup + sω) ≤ N̂

(c)
Ω (ε) ≤ N (c)

Ω (ε− bsup − sω) (15)

with probability at least 1− 2
n according to the distribution P(Ω,µ,W ).

As a result, we have a consistent estimation of the ε-covering number for almost every

ε, provided that the covering number is finite for all radii. Indeed, if N
(c)
Ω (ε) < ∞ for all

ε > 0, then the sample ω1, . . . ωn is asymptotically dense in (Ω, rW ) by Lemma 5, which
implies that bsup and sω converge in probability to zero; Then, taking the limit n → ∞ in

(15), one has the convergence in probability of N̂
(c)
Ω towards N

(c)
Ω (ε), for all ε where the step

function ε 7→ N
(c)
Ω (ε) is continuous (i.e., for almost every ε).

4.4 Consistency of the Dimension Estimator

We estimate the Minkowski dimension of (Ω, rW ) using the data-function− log N̂
(c)
Ω (ε)

/
log ε

at a well chosen radius ε. The following observation makes it clear that each graphon re-
quires a specific choice of radius, and thus no (universal) radius is suited for all graphons.

Observation. (1) at very small scale (i.e. very small ε), the covering number
may just count the points of the sample ω1, . . . , ωn and the data look zero-
dimensional; (2) if the scale is comparable to the noise due to the distance

estimation, the covering number estimator N̂
(c)
Ω (ε) is not reliable; (3) for an

intermediate scale, it is possible to have a good estimation of the dimension, as
we shall see in Theorem 12; (4) at very big scale, the apparent geometry may
not reflect the Minkowski dimension (which is, by definition, a measure of the
complexity at infinitesimal scale).

Hence, we consider a subset of graphons for which there exists a radius that is well-suited
for dimension estimation. We sometimes denote dimΩ by d for brevity, and write B(ω, ε)
the ball of center ω ∈ Ω with radius ε (w.r.t. the neighborhood distance). Given constants
D, v, α > 0 and M ≥ 1 ≥ m > 0 , we define the set W(D,α,m,M, v) of all (pure) graphons
(Ω, µ,W ) satisfying

1. dimΩ ≤ D.

2. For dimΩ := d and all ε ∈ (0, v],

α εd ≤ µ
[
B(ω, ε)

]
(Hα,v

1 )

mε−d ≤ N
(c)
Ω (ε) ≤ Mε−d. (Hm,M,v

2 )

The assumption Hm,M,v
2 links the covering number with the Minkowski dimension of the

graphon. The condition Hα,v
1 enforces a minimal measure for each ball of (Ω, rW ); in
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particular, it strengthens the non-zero measure of balls of pure graphons, seen in Section
3.1. Mention can be made of the problem of recovery of the dimension of a manifold, where
similar hypotheses are often considered (see Koltchinskii, 2000, for example). Besides, Hα,v

1

may be seen as a small-ball condition used in learning problems (Mendelson, 2014; Lecué
et al., 2018).

With the radius

εD �
(

logn

n

)1/(4∨2D)

(16)

we consistently estimate the Minkowski dimension (Theorem 12) using the following esti-
mator

d̂imD :=
log N̂

(c)
Ω (εD)

−log εD
. (17)

Theorem 12 For all graphons (Ω, µ,W ) in W(D,α,m,M, v) and all large enough n, we
have ∣∣∣ d̂imD − dimΩ

∣∣∣ ≤ C(D,α,m,M)

logn

with probability at least 1 − C ′(α,M)/n w.r.t. the distribution P(Ω,µ,W ), and for some
constants C ′(α,M) and C(D,α,m,M) that are independent of n.

Theorem 12 is a corollary of Theorem 35 in Appendix E.1, which gives a non-asymptotic

high probability bound for −log N̂
(c)
Ω (ε)

/
log ε at any radius ε.

One can observe that the convergence rate log−1 n of Theorem 12 is optimal, in the sense

that faster convergence rates cannot be achieved by any estimator of the form log N̂
(c)
Ω (ε̂)/−

log ε̂ 1. To see it, take a graphon of dimension d > 1 with covering number N
(c)
Ω (ε) = mε−d

for some constant m > 1. Even if there exists a covering number estimator that gives a

perfect estimation, i.e. N̂
(c)
Ω = N

(c)
Ω , this still entails an error for the dimension estimation.

Indeed, in such a case we have: ∣∣∣∣∣ log N̂
(c)
Ω (ε)

−log ε
− d

∣∣∣∣∣ =
logm

−log ε

which is (at least) of the order log−1 n since the radius ε cannot be taken smaller than n−1

in general (otherwise, the estimator of the covering number may just count the n sampled
points). Thus, the convergence rate log−1 n is optimal for the classical method of estimation
of the Minkowski dimension, which is based on the the plug-in of a covering number estimate
into formula (5).

Next we show that no estimator 2 can improve on the error bound log−1 n, over the
following sequence of sets. Given n > 0, let Wn(D,α,m,M, v) be the class of all (pure)

1. N̂
(c)
Ω is any consistent estimator of the covering number, and ε̂ is any estimator of a “well chosen radius”.

2. An estimator is defined as a function of the adjacency matrix A ∈ {0, 1}n×n.
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graphons fulfillingHα,v
1 andHm,M,v

2 for all ε ∈ (1/n, v] instead of ε ∈ (0, v], soWn(D,α,m,M, v)
is a subset of W(D,α,m,M, v). On this sequence of sets, one can readily extend Theorem
12 and retrieve the same error bound, using the same estimator (17). This means that there
exist some constants C(D,α,m,M) and C ′(α,M) that are independent of n, such that for
all graphons in Wn(D,α,m,M, v) and all large enough n, the following error bound holds∣∣∣ d̂imD − dimΩ

∣∣∣ ≤ C(D,α,m,M)

logn
(18)

with probability at least 1 − C ′(α,M)/n. Then, Theorem 13 shows that no estimator can
improve on the (order of the) bound (18). The proof is written in Appendix E.2.2.

Theorem 13 For any D > 2, some numerical constants α,m,M, v > 0 and all large
enough n, we have

inf
d̂

sup
Wn(D,α,m,M,v)

P(Ω,µ,W )

[
|d̂− dimΩ| ≥ 1

2 log(n)

]
≥ 1

4

where inf
d̂

is the infimum over all estimators.

Let us discuss the minimal aspect of the conditions defining Wn(D,α,m, M, v). First,
the assumption that the dimension is upper bounded seems natural, as our available data
A ∈ {0, 1}n×n is a finite set. Indeed, for metric spaces (Ωn, rWn) with arbitrary large
dimensions (like dimΩn/n→∞ for instance), a finite sample ω1, . . . , ωn may look like a set
of distant and isolated points, which does not reflect the true geometry of (Ωn, rWn). Since
this situation is not conducive to accurate estimates of the complexity of Ωn, we avoid it by
assuming the dimension is upper bounded. Second, we show that the assumptions Hα,v

1 and

Hm,M,v
2 are minimal, in the sense that, removing any one of them entails a large loss for any

estimator. Specifically, let Wmin(j)
n (D,α,m,M, v) be the collection of all (pure) graphons

satisfying all conditions of the set Wn(D,α,m,M, v) except the condition Hj (where Hj

denotes Hα,v
1 or Hm,M,v

2 according to the value of j ∈ {1, 2}). Then, Theorem 14 shows that

any estimator suffers from an error of the order D, over the class Wmin(j)
n (D,α,m,M, v).

The proof is written in Appendix E.2.2.

Theorem 14 For any D > 2, some numerical constants α,m,M, v > 0, all j ∈ {1, 2} and
all large enough n, we have

inf
d̂

sup
Wmin(j)
n (D,α,m,M,v)

P(Ω,µ,W )

[
|d̂− dimΩ| ≥ D

2

]
≥ 1

4

where inf
d̂

is the infimum over all estimators.

Remark: our optimal rate of estimation may seem at odds with the faster rates of
convergence in the literature about intrinsic dimension estimation, see (Kim et al., 2016)
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for instance. This is due to the important differences in the modeling assumptions. In the
work of Kim et al. (2016), for example, the observed data are n i.i.d. sampled points from
a well-behaved manifold in Rm whose dimension is an integer. In contrast, here we do not
assume the dimension is an integer, we do not observe the n sampled points ω1, . . . , ωn, and
do not know the metric rW .

Comments on Hα,v
1 , Hm,M,v

2 : we only make the assumptions Hα,v
1 , Hm,M,v

2 at a small

scale, that is for ε ∈ (0, v]. Besides, the right hand side of Hm,M,v
2 is almost free since it

is already implied by Hα,v
1 for M = 2d/α. Let us briefly explain how these assumptions

imply the error bound of Theorem 12. The assumption Hα,v
1 ensures that the difference

between the sampled points ω1, . . . , ωn and the latent space Ω is not too large. By def-
inition, this implies that the sampling error (13) and the distance error (14) are small.
Accordingly, we can choose a radius εD that is larger than these two errors, and reliably

estimate the εD-covering number N
(c)
Ω (εD) by Proposition 11. Then, we use a plug-in to

estimate the quantity − log N
(c)
Ω (εD)

/
log εD, which is a good approximation of the dimen-

sion by assumption Hm,M,v
2 . To sum up, the radius εD must be larger than the sampling

and distance errors, but still small enough to well approximate the Minkowski dimension

with − log N
(c)
Ω (εD)

/
log εD.

5. Testing the Complexity

Given the adjacency matrix of a W-random graph, we want to known if the graph is simple

or complex. In other words, we would like to test the null-hypothesis N
(c)
Ω (ε) ≤ K for a

given K > 0, with a specific care for minimizing the assumptions on the graphon. However,

instead of using the covering number we use the packing number N
(p)
Ω (ε) for some reasons

to be specified in Section 5.1. For now, note that it is essentially the same measure as
the covering number, and all previous results of the paper can be adapted to the packing
number (without any significant difference). See Appendix A for a reminder of this usual
measure for metric spaces.

In hypothesis testing, it is common to be conservative and focus on the minimization
of the type I error, which is the probability of rejecting the null-hypothesis incorrectly.
Accordingly, our objective is to control the type I error without any assumption on the
graphon, while keeping a control of the type II error under reasonable assumptions. (the
type II error is the probability of accepting the null-hypothesis incorrectly)

5.1 Testing the Null-hypothesis without Assumption on the Graphon, via
Under-estimation of the Packing Number

To test the null-hypothesis without assumption on the graphon, we want to define a com-
plexity estimator that does not overestimate the true complexity w.h.p.. Unfortunately, the
inequality on the covering number estimator from Proposition 11

N̂
(c)
Ω (ε+ bsup + sω) ≤ N (c)

Ω (ε)

is difficult to leverage for an under-estimation since the errors bsup and sω are unknown
and take specific values for each graphon. However, we show below that the sampling error
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sω can be removed, by working with the packing number instead of the covering number.
Then, we show that the distance error bound bsup can be handled with a slight modification
of the distance-estimator r̂, defined earlier by (11).

Based on the distance estimator r̂, we can define a plug-in estimator N̂
(p)
Ω (ε) of the

packing number, as we did for the covering number estimator. This estimator satisfies
almost the same non-asymptotic bounds as the covering number estimator, see the following
proposition, which is a slight variant of Proposition 11. The proof is omitted.

Proposition 15 Given any graphon (Ω, µ,W ), consider the data distribution P(Ω,µ,W ) de-
fined in model (3). Let bsup and sω be the distance error bound (14) and the sampling error

(13). Then, the packing number estimator N̂
(p)
Ω satisfies the following inequalities

∀ε > bsup, N
(p)
Ω (ε+ bsup + 2sω) ≤ N̂ (p)

Ω (ε) ≤ N (p)
Ω (ε− bsup)

with probability at least 1− 2
n with respect to the distribution P(Ω,µ,W ).

Hence, we have

N̂
(p)
Ω (ε+ bsup) ≤ N (p)

Ω (ε)

without the sampling error sω anymore.
The next step is to control the remaining error term bsup coming from the estimator r̂.

Obviously, when bsup is positive and relatively large, the estimator r̂ over-estimates some

distances, and thus the plug-in estimator N̂
(p)
Ω based on r̂ may over-estimate the packing

number. In order to avoid such an over-estimation, we modify the previous estimator r̂, by
taking a maximum in front of the negative term involved in (the expression of) r̂2 :

r̂2new(i, j) :=

[
〈Ai, Am̂(i)〉n + 〈Aj , Am̂(j)〉n − 2 max

k∈{i,m̂(i)},l∈{j,m̂(j)}
〈Ak, Al〉n

]
+

(19)

We show in Appendix G.1 that the new distance estimator r̂new satisfies the same upper
bound as r̂ in Theorem 7 (up to a numerical constant 5/3) but also successfully under-
estimates the neighborhood distance rW in some sense (see Lemma 42 for details). Then,

defining a new packing number estimator based on r̂new, which is denoted by N̂
(p.new)
Ω in the

following, we finally get the wanted under-estimation of the packing number, see Theorem
16 below. The proof is written in Appendix G.1.

Theorem 16 Given any graphon (Ω, µ,W ), consider the data distribution P(Ω,µ,W ) defined

in model (3). Then, for the radius ε̂ =
√
ε2 + tn with tn = 12

√
logn
n , the estimator N̂

(p.new)
Ω

satisfies the following inequalities

∀ε > 0, N
(p)
Ω

(
ε̂+

5

3
bsup + 2sω

)
≤ N̂ (p.new)

Ω (ε̂ ) ≤ N (p)
Ω (ε) (20)

with probability at least 1− 2
n with respect to the distribution P(Ω,µ,W ).

Thus, without any assumption on the graphon, the estimator N̂
(p.new)
Ω (ε̂ ) does not overesti-

mate the ε-packing number with high probability. Besides, the left hand side of (20) shows

that it does not under-estimate (significantly) more than the previous estimator N̂
(p)
Ω of the

packing number (seen in Proposition 15).
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5.2 Results on the Packing Number Test

We accept the null hypothesis if and only if N̂
(p.new)
Ω (ε̂ ) ≤ K. The upper bound (20) ensures

that the type I error is controlled for all graphons, which gives the following result.

Corollary 17 For any graphon, the type I error is lower than 2
n with respect to the distri-

bution P(Ω,µ,W ).

By definition of the packing number, the type II error is small as soon as K+1 sampled
points are separated by at least a distance ε̂ + err, where err upper bounds all errors of
distance estimation between the K + 1 points. This condition on the sampled points is
satisfied w.h.p. by each of the following graphons.

Given two parameters η > 0 and β > 1/n, let W(η, β) denote a collection of graphons
for which there exist K + 1 balls B(x1, η1), . . . , B(xK+1, ηK+1) in (Ω, rW ) such that

1. the K + 1 balls are weighted enough: µ [B(xi, ηi)] ≥ β for all i ∈ [K + 1],

2. the radii are small enough: ηi ≤ η/2 for all i ∈ [K + 1],

3. the centers are spaced enough: rW (xi, xj) ≥
√
ε2 + 10η + 6tn + η.

The small-ball condition 1. is similar to the assumption Hα,v
1 for the dimension estimation;

it ensures that some of the sampled points ω1, . . . , ωn belong to the K+ 1 balls w.h.p.. The
third condition 3. ensures that these balls are enough distant from each other, so that the

sampled points in these balls are separated enough, in order to have N̂
(p.new)
Ω (ε̂) ≥ K + 1

and confirm the alternative hypothesis correctly.

Theorem 18 Assume the graphon (Ω, µ,W ) belongs to W(η, β) for some β > 1/n. Then,
the type II error is smaller than

2

n
+ 2βn(K + 1) exp[−β(n− 1)]

with respect to the distribution P(Ω,µ,W ).

The proof of Theorem 18 is written in Appendix G.2.2. This result implies that, for any
graphon in W(η, β), the type II error is convergent to zero as soon as the measure of each
ball B(xi, ηi) is large enough to satisfy β & n−1. For example, if each of the K + 1 balls
has a measure that is larger than log[Kn]/n, then the type II error is smaller than log(n)/n
up to some numerical constant. In Appendix A.3, Theorem 18 is improved by using the
graphon regularity at a finer level (see Theorem 21).

6. Further Considerations

6.1 Estimation of the Complexity with Sparse Observations

In the W-random graph model (3), each node has an average degree that is linear with n
the total number of nodes. However, real-world networks are often sparse with node degrees
varying from zero to n. This motivates to consider a model of sparse graph where the node
degree can be an order of magnitude smaller than n.
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Given a sequence ρn such that ρn → 0, the definition of model (3) can be modified to
have average node degrees of the order of ρnn. Consider the adjacency matrix A, defined
by model (3), whose edges are independently retained with probability ρn and erased with
probability 1−ρn. We refer to this set-up as “the sparse setting” and denote by P(Ω,µ,W ),ρn

the corresponding data distribution. This model has been considered several times in the
literature (see Bickel et al., 2011; Wolfe and Olhede, 2013; Klopp et al., 2017; Xu et al.,
2014).

We now extend the results of Section 4 to this sparse setting. Corollary 19 gives non-
asymtotic error bounds for the distance estimation. It is a slight variant of Theorem 7. For
completeness, the proof is written in Appendix F.1.

Corollary 19 Assume the scaling parameter ρn is lower bounded by

ρn ≥ 2
√

log(n)/(n− 2). (21)

Then, the following event

Espdist =

{
∀i, j ∈ [n] :

∣∣ρ2
nr

2
W (ωi, ωj)− r̂2(i, j)

∣∣
≤ 3ρn

(
ρnrW (ωj , ωm(j)) + ρnrW (ωi, ωm(i)) + 20

√
log(n)/n

)}
holds with probability P(Ω,µ,W ),ρn

(
Espdist

)
≥ 1− 2

n .

We estimate the Minkowski dimension using the following radius

εD,ρn �
(

logn

n

)1/(2D)

∨ ρ−1/2
n

(
logn

n

)1/4

(22)

Corollary 20 is an adaptation of Theorem 12 for the sparse setting. The proof is written in
Appendix F.2.

Corollary 20 For all graphons (Ω, µ,W ) in W(D,α,m,M, v), all scaling parameters ρn
fulfilling (21), and all radii satisfying (22), the following rate of estimation of the dimension
holds with probability tending to 1 as n→∞ (w.r.t. the distribution P(Ω,µ,W ),ρn).

∣∣∣∣∣ log N̂
(c)
Ω (εD,ρn)

−log εD,ρn
− d

∣∣∣∣∣ ≤ C(D,α,m,M, t)


1 if ρn �

√
log(n)/n,

(logn)−1 if ρn � (log(n)/n)(1/2)−t ,

where t ∈ (0, 1/2) and C(D,α,m,M, t) is some constant independent of n.

6.1.1 Discussion about the Distance Estimation in Sparse Regimes and Open
Question

Corollary 19 extends the upper bounds to the sparse setting where each entry of the ad-
jacency matrix [Aij ]1≤i,j≤n is observed with probability ρn independently. The scaling

22



Graphon Dimension

parameter is assumed to satisfy ρn &
√

log(n)/n where the
√

log(n) in the numerator al-
lows us to show high probability concentration, and the 1/

√
n ensures that there are enough

data for the distance estimator to work. Indeed, the distance estimator is a linear com-
bination of scalar products, and most scalar products are equal to zero in the very sparse
regime ρn = o(

√
1/n) where pairs of nodes tend to have no common neighbors (i.e. common

non-zero entries in the adjacency matrix).
Therefore, one needs to find new strategies to estimate the distances in very sparse

regimes. A direction of research could be, for example, the nearest neighbor method
in (Borgs et al., 2017) which is successfully applied to matrix estimation when ρn &
n−1 log(n)2. Overall, it would be interesting to complete the picture of the distance es-
timation problem according to different regimes of sparsity.

6.2 Polynomial-time Algorithm (with Theoretical Guarantee)

In contrast with the previous sections, here we take into account the computational aspect
of the problem. Computing the covering number of a finite set is NP-hard, hence we
approximate it with a greedy algorithm (Chvatal, 1979).

For completeness, the polynomial-time procedure for estimating N
(c)
Ω (ε) is described

below. The algorithm proceeds in two steps: Step 1 computes all distances r̂(i, j) using
the distance-estimator (11); in particular, this step requires the computation of all index
estimators m̂(j) defined by (10). Step 2 approximates the ε-covering number of {1, . . . , n}
w.r.t. the distance estimator r̂, by sequentially selecting balls (of radius ε) according to one
rule: at each stage, select the ball that contains the largest number of uncovered elements.
At the end of the process, the number of selected balls is returned. This output is denoted

by N̂
(ap.c)
Ω (ε).
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Covering Number Algorithm

Input: A = [Aij ] adjacency matrix of size n× n, a radius ε.

Step 1 : constructing the distance-estimator r̂

1. Compute the nearest neighbor’s index of each sampled point ωi:
∀i ∈ {1, . . . , n}, m̂(i) = argmin

j: j 6=i
max

k: k 6=i,j

∣∣〈Ak, Ai −Aj〉n∣∣.
2. Compute all the distances:
∀i, j ∈ {1, . . . , n}, r̂(i, j) = 〈Ai, Am̂(i)〉n + 〈Aj , Am̂(j)〉n − 2 〈Ai, Aj〉n.

Step 2 : computing an approximation of the ε-covering number

3. In the space S0 = {1, . . . , n} endowed with the distance function r̂,
consider B0 = {Bj}j≤n the set of all the balls of radius ε.

4. Obtain a cover of {1, . . . , n} as follows:
Set i = 0. While Si 6= ∅, do:

(a) Select a ball B in Bi that contains the largest number of elements
of Si.

(b) Set Si+1 = Si \B to remove the elements covered by B,

(c) Set Bi+1 = Bi \ {B} to update the set of available balls,

(d) Set i = i+ 1 to continue the algorithm.

Output: the number i of selected balls, denoted by N̂
(ap.c)
Ω (ε).

We also suggest an heuristic for tuning ε in the estimation of the Minkowski dimension.
First, run several times Covering Number Algorithm for a range of different radii

ε1, . . . , εt, and then plot log N̂
(ap.c)
Ω (εj)

/
log εj for j = 1, . . . , t. As in Figure 1, we look for a

graph function that (roughly) admits the three following parts: (1) for big radii, the shape
of the curve is irregular and seems sawtooth; (2) for medium radii, there is almost a plateau
whose value is the dimension estimate; (3) for small radii, there is an abrupt drop towards
zero.

According to the theoretical guarantee of the greedy algorithm (Chvatal, 1979), one has

N̂
(c)
Ω (ε) ≤ N̂ (ap.c)

Ω (ε) ≤ 2 log(n)N̂
(c)
Ω (ε)

where N̂
(c)
Ω (ε) is the consistent estimator introduced in Section 4. Then, for graphons fulfill-

ing the assumptions of Theorem 12, there exist some radii ε such that −log N̂
(ap.c)
Ω (ε)

/
log ε

is close to the Minkowski dimension up to a small error term −log
(
2 log(n)

)/
log ε.

We shortly illustrate the empirical performance of our algorithm on the random geo-
metric graph, introduced in Section 3.2. Consider the latent space [0, 1], endowed with
the uniform measure and the function W (x, y) = I||x−y||2≤0.1, which has a Minkowski di-
mension 2 and satisfies the assumptions of Theorem 12. We sample n = 1000 points

uniformly on [0, 1] and plot the outputs −log N̂
(ap.c)
Ω (ε)

/
log ε over the range of radii ε ∈
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Figure 1: W-random graph with Minkowski dimension 2

{
0.005 + k ∗ 0.005 ; k ∈ {0, . . . , 100}

}
. This is represented by the red curve in Figure 1.

As we can see, it is close to the true dimension at some intermediate radii, which coincides
with our theoretical results. Specifically, we observe the three typical parts in the graph
function: (1) on the right of the figure, the sawtooth-shaped curve means that the radius is
too big for approaching the Minkowski dimension (which is by definition a limit in ε→ 0);
(2) on the middle, there is a plateau whose value is close to the dimension; (3) on the left,
there is an abrupt drop because the covering number estimator eventually just counts the

sampled points ω1, . . . , ωn. As a reference, we also plot −logN
(ap.c)
ω1,...,ωn(ε)

/
log ε in blue, where

N
(ap.c)
ω1,...,ωn(ε) is the approximated covering number of the sample {ω1, . . . , ωn} w.r.t. to the

true distance rW .

7. Discussion

7.1 On the Definition of our Complexity Index

We have introduced an index of complexity for the limiting distributions P(∞)
(Ω,µ,W ) of W -

random graphs. It has some geometric flavor as the index is based on the Minkowski
dimension of the metric space (Ω, rW ), where Ω is the latent space of the W -random graph
and rW is the neighborhood distance defined on Ω. Accordingly, the index inherits from
the general features of the Minkowski dimension which hold for any metric space. One
of these features is the following maximum property: for any metric space (X, d) which
admits a partition X = X1 t . . . tXk, it is known that the Minkowski dimension of X is
equal to the maximum of the Minkowski dimensions of the Xi, i ∈ [k]. Thus, our index
captures a maximum complexity of (Ω, rW ), which is an interesting information about the
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distributions P(∞)
(Ω,µ,W ) of W -random graphs. In order to complete our index, however,

it would be worthwhile to investigate other notions of complexity as well. For example,
one could think of some sort of average complexity instead of the maximum complexity
measured by our index, maybe replacing the Minkowski dimension with a dimension that
satisfies the following kind of property: for any metric space X = X1 t . . . tXk endowed
with a probability distribution µ, the dimension of X would be equal to an average of the
dimensions of the Xi weighted according to µ. However, for such an index based on a
dimension of (Ω, rW ), we remind that a major difficulty is to verify the identifiability of the

index from the distribution P(∞)
(Ω,µ,W ).

We have approximated the Minkowski dimension using a greedy algorithm in section
6.2, because the computational cost of this dimension is prohibitive. As an alternative, the
correlation dimension is widely-used in manifold learning for its computational simplicity.

Given sampled points x1, . . . , xn
iid∼ µ in a metric space (X, d) endowed with a probability

distribution µ, the correlation integral is usually defined as

C(ε) = lim
n→∞

2

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

I{d(xi,xj)<ε}

where IA denotes the indicator function of any event A. If the limit exists, the correlation
dimension of (X, d) is

Dcorr = lim
ε→0

log C(ε)

log ε
.

It is known thatDcorr approximates well the Minkowski dimension when the distribution µ is
nearly uniform on X, whereas it may be smaller for non-uniform distributions (Kégl, 2003).
In fact, one can observe that Dcorr satisfies a minimum property, that is, the correlation
dimension of X = X1 t . . . tXk is equal to the minimum of the correlation dimensions of
the Xi, i ∈ [k]. A direction of research could be to extend the correlation dimension to W -
random graph distributions, so that one get a complexity index that is simple to compute.
To this end, one could consider the following form of the correlation integral

C(ε) = Eω1∼µ
ω2∼µ

[
I{rW (ω1,ω2)<ε}

]
with respect to the metric space (Ω, rW ) associated with a graphon (Ω, µ,W ).

7.2 On the Rates of Estimation

The focus of the current paper is on the whole class of graphons, which is a very general
setting. In particular, our error bounds for the neighborhood distance and the covering
number hold for any graphon. Therefore, a natural question is whether faster rates could
be derived on sub-classes of graphons.

To estimate the Minkowski dimension of (Ω, rW ), we consider traditional assumptions in
manifold learning, namely (Hα,v

1 ) and (Hm,M,v
2 ), which essentially say that the metric space

(Ω, rW ) behaves like a Euclidean space of dimension d endowed with a uniform distribution
µ. Under these Euclidean-type assumptions, we prove that the optimal rate of estimation is
log−1 n. This rate matches known results for the Minkowski dimension in manifold learning,
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see for instance (Koltchinskii, 2000). A future direction of research for W -random graph
complexity could be the definition of new indices that enjoy faster rates of estimation.
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Appendix A. Additional Information

A.1 Basic Information on the Covering and Packing Numbers and the
Minkowski Dimension

Given any set S, its covering number N (c)(ε) is the minimal number of balls of radius
ε required to entirely cover S, with the constraint that the ball centers are in S. This
measure is widely used for general metric spaces. Likewise, the packing number N (p)(ε)
is the maximum number of points in a given space (strictly) separated by at least a given
distance ε. Both measures are similar and linked by the following inequalities N (c)(ε) ≤
N (p)(ε) ≤ N (c)(ε/2). In all the paper (except the last subsection 5), our results are mostly
stated with the covering number, but each of them can be adapted to the packing number.

The covering number requires to choose the scale ε at which we look at the data. To get
rid of this parameter, it is common to consider the Minkowski dimension which is defined
by limε→0 − logN (c)(ε)

/
log ε. Note that the same formula holds with the packing number

instead. The Minkowski dimension is used for infinite (separable) spaces, when the covering
number diverges to infinity as ε goes to zero. This dimension is therefore complementary to
the covering number. It is known to match with some other classical notions of dimension
in simple cases, for example the Minkowski dimension of the hypercube [0, 1]d is equal to
its Euclidean dimension d. The Minkowski dimension has the advantage to be applicable
on a wide range of spaces (whose dimension is not necessarily an integer) and to be easy to
compute (in comparison with the Hausdorff dimension for example).

A.2 Details on the Illustrative Examples

Random Hölder graph. Recall that the graphon (Ω, µ,W ) is ([0, 1]d, λ,W ) where λ is
the uniform measure on [0, 1]d and W satisfies the following condition: there exist three
constants m,M,α > 0 such that for all ω, ω′, ω′′ ∈ [0, 1]d,

m
∣∣∣∣ω′ − ω∣∣∣∣α

2
≤
∣∣W (ω′, ω′′)−W (ω, ω′′)

∣∣ ≤M ∣∣∣∣ω′ − ω∣∣∣∣α
2

where α is the level of regularity of the function W and ||ω′−ω||2 is the Euclidean distance
between ω′ and ω in [0, 1]d. From the above display, we directly deduce some bounds on
the neighborhood distance (4) :
∀ω, ω′ ∈ [0, 1]d,

m||ω′ − ω||α2 ≤ rW (ω′, ω) ≤M ||ω′ − ω||α2 .
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Thus, the distance rW behaves (up to some constants) like the Euclidean distance on [0, 1]d

raised to the power of α. As the covering number of the Euclidean hypercube ([0, 1]d, ||.||2)
is approximately equal to ε−d for small radii, we have

(ε/m)−d/α . N (c)
Ω (ε) . (ε/M)−d/α .

Hence dimΩ = d/α, which means that the Minkowski dimension of (Ω, rW ) is equal to the
ratio between the Euclidean dimension of the latent space [0, 1]d and the regularity of the
function W .

Random geometric graph example. Recall that the graphon is ([0, 1]d, λ,W ) where
λ is the uniform measure, and W is defined as W (ω, ω′) = I||ω−ω′||2≤δ for some parameter

δ ∈]0, 1[, and ||ω − ω′||2 is the Euclidean distance between ω, ω′ ∈ [0, 1]d. Here, the bounds
on the neighborhood distance are rather involved and deferred to the Appendix B.2. The
main message is that

rW (ω, ω′) �
√
||ω − ω′||2

if ||ω−ω′||2 is small enough, which means that the distance rW behaves like the squared root
of the Euclidean norm in [0, 1]d. Following the line of the Random Hölder graph example,

we can see that N
(c)
Ω (ε) behaves like ε−2d for ε small enough. By definition of the Minkowski

dimension, it follows that dimΩ = 2d.

A.3 Test: Improvement of the Type II Error

The control of the type II error can be refined using the graphon regularity at a finer level.
Instead of considering the setW(η, β) of graphons with K+1 well separated balls (Theorem
18), here we consider the new set W(η, β,M,K ′) of graphons with M disjoint collections
of K + 1 +K ′ separated balls. That is, for a collection of K + 1 +K ′ balls, we assume the
same conditions of separation, size and measure as in a collection of K + 1 balls defined by
W(η, β) (in Theorem 18). In addition, we assume that the M formations of K + 1 + K ′

balls do not intersect each other (i.e. no ball from a collection overlaps a ball from another
collection). Thus, the new set W(η, β,M,K ′) of graphons is linked with the previous one
by the following equality W(η, β, 1, 0) =W(η, β).

Theorem 21 If the underlying graphon belongs to W(η, β,M,K ′) with β ≥ 1/n, then the
type II error is smaller than 2

n + p̃Mn , where p̃n admits the following upper bound(
K +K ′ + 1

K ′ + 1

)(
2βn exp[−β(n− 1)]

)(K′+1)
.

The proof of Theorem 18 is written in Appendix G.2.2.

Appendix B. Proofs for Illustrative Examples

B.1 Proof of Proposition 6: Approximation by SBM

Given a graphon (Ω, µ,W ) and a radius ε > 0, we consider a cover of (Ω, rW ) whose the

cardinality is N
(c)
Ω (ε) (written N for brevity), and the ball centers are x1, . . . , xN . The
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Voronoi cell Vj of xj is the set of all elements in Ω that are closer to xj than to any other
xk, k 6= j, according to the metric rW . In the case of equality, where a point ω is at equal
distance of several ball centers xi, it belongs to the Veronoi cell of smallest index i.

Vj :=
{
ω ∈ Ω : rW (ω, xj) < rW (ω, xk) if k < j, and rW (ω, xj) ≤ rW (ω, xk) otherwise

}
Define the SBM approximation of W as follows:

W (x, y) =
N∑

i,j=1

1x∈Vi1y∈Vj
1

µ(Vi)µ(Vj)

∫
Vi

∫
Vj

W (z1, z2)µ(dz1)µ(dz2)

By triangular inequality and Jensen inequality:∫
Ω2

(W (x, y)−W (x, y))2µ(dx)µ(dy) ≤ 2

∫
Ω2

N∑
j=1

1y∈Vj

[ 1

µ(Vj)

∫
Vj

[W (x, y)−W (x, z2)]2µ(dz2)
]
µ(dx)µ(dy)+

2

∫
Ω2

[ N∑
i,j=1

1x∈Vi1y∈Vj
1

µ(Vi)µ(Vj)

∫
Vi

∫
Vj

[W (x, z2)−W (z1, z2)]2µ(dz1)µ(dz2)
]
µ(dx)µ(dy)

Note that the first term is smaller than 8ε2 by integrating with respect to x and using the
fact that y and z2 belong to the same Voronoi cell. The second term simplifies

2

∫
Ω2

[ N∑
i,=1

1x∈Vi
1

µ(Vi)

∫
Vi

[W (x, y)−W (z1, y)]2µ(dz1)
]
µ(dx)µ(dy)

which is again smaller than 8ε2. The approximation error of W by W is therefore lower
than 4ε in l2-norm. The proposition is proved. �

B.2 The Neighborhood Distance for the Random Geometric Graph Example

Lemma 22 gives bounds on the neighborhood distance for the random geometric graph of
Section 3.2. For simplicity, we neglect the side effects associated with a point too close of
the side of Ω = [0, 1]d. That is, we assume the parameter δ is small compared to 1 (where
1 is the length of a side of [0, 1]d). Write Vd the volume of the unit ball in [0, 1]d endowed
with the Euclidean norm ||.||2, and write Ix(., .) the (regularized) incomplete beta function
(see DLMF, Eq.8.17.2 for a definition).

Lemma 22 If ||x−y||2 > 2δ, then r2
W (x, y) = 2Vdδ

d; otherwise r2
W (x, y) = 2Vdδ

dIx(1
2 ,

d+1
2 )

for x =
(
||x−y||2

2δ

)2
. As a consequence,

√
||x− y||2 . rW (x, y) .

√
||x− y||2 as soon as

||x− y||2 is small enough (compared to δ).

According to the above lemma, the neighborhood distance rW behaves like the squared
root of the Euclidean norm of [0, 1]d if ||x− y||2 is small enough. For lower dimensions, for
instance d = 3, we can also use the paper of Li (2011) to get the simpler formula:
if ||x− y||2 < 2δ, then

r2
W (x, y) = 2π

(
δ2 − ||x− y||

2
2

12

)
||x− y||2.
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Proof of Lemma 22. For the random geometric graph, observe that the computation of
the neighborhood distance is equivalent to the computation of the volumes of hypersherical
caps. Using the formula (3) in the paper of Li (2011) (and neglecting the side effects due
to the boundary of the latent space), we have:
if ||x− y||2 < 2δ, then

r2
W (x, y) = 2Vdδ

d

[
1− Ix(

d+ 1

2
,
1

2
)

]
where x = 1 −

(
||x−y||2

2δ

)2
. Basic properties of the (regularized) incomplete beta function

(see DLMF, Eq.8.17.4) allows to rewrite the last formula:
if ||x− y||2 < 2δ, then

r2
W (x, y) = 2Vdδ

dIx(
1

2
,
d+ 1

2
) (23)

where x =
(
||x−y||2

2δ

)2
. Let B(a, b) denote the beta function (DLMF, Eq.5.12.1), then

the above formula (23) can be developed using the recurrence formula Ix(a, b + 1) =

Ix(a, b) + xa(1−x)b

bB(a,b) (DLMF, Eq.8.17.21). It follows that rW satisfies the following bounds:√
||x− y||2 . rW (x, y) .

√
||x− y||2 as soon as ||x− y||2 is small enough. �

Appendix C. Identifiability and Pure Graphons

C.1 Proof of Lemma 4 : Invariance of the Neighborhood Distance

Given two equivalent pure graphons (Ω, µ,W ) and (Ω′, µ′,W ′), let us show that their re-
spective neighborhood distances rW and rW ′ are linked by the following µ′⊗µ′-almost surely
equality

rW (φ(x), φ(y)) = rW ′ (x, y)

for some measure-preserving bijection φ : Ω′ → Ω.

It follows from Lemma 23, which links any two equivalent pure graphons. Denote by
W φ the function (x, y) 7→W (φ(x), φ(y)).

Lemma 23 (Lovász, 2012, Section 13.3) If two pure graphons (Ω, µ,W ) and (Ω′, µ′,W ′)
are equivalent, then there exists a bijective measure-preserving map φ : Ω′ → Ω such that
W φ(x, y) = W ′(x, y) µ′ ⊗ µ′-almost surely.

Indeed, by definition of the neighborhood distance,

rW ′ (x, y) =

(∫
Ω′

∣∣W ′(x, z′)−W (y, z′)
∣∣2 µ′(dz′))1/2

which gives the following µ′ ⊗ µ′-almost surely equality by Lemma 23,

rW ′ (x, y) =

(∫
Ω′

∣∣W (φ(x), φ(z′))−W (φ(y), φ(z′))
∣∣2 µ′(dz′))1/2
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for some measure-preserving bijection φ : Ω′ → Ω. Then, using a pushforward measure (or
image measure),

rW ′ (x, y) =

(∫
Ω
|W (φ(x), z)−W (φ(y), z)|2 µ(dz)

)1/2

µ′ ⊗ µ′-almost surely, so that, by definition of the neighborhood distance,

rW ′ (x, y) = rW (φ(x), φ(y))

µ′ ⊗ µ′-almost surely. Lemma 4 is proved. �

C.2 Proof of Lemma 3 : Identifiability of the Covering Number

Given two equivalent pure graphons (Ω, µ,W ) and (Ω′, µ′,W ′), let us prove that their re-

spective covering numbers are equal: N
(c)
Ω (ε) = N

(c)
Ω′ (ε) for all ε > 0.

According to Lemma 4, there exists a measure-preserving bijection φ, such that the two
metric spaces (Ω, rW ) and (Ω′, rW ′) are linked by the equality rW ′ (x, y) = rW (φ(x), φ(y))
on a subset of measure 1, say Σ ⊆ Ω′ with µ′(Σ) = 1. This means that both subpaces
(φ(Σ), rW ) and (Σ, rW ′) are linked by a bijection that preserves the distances, which directly

implies equality between their covering numbers: N
(c)
φ(Σ)(ε) = N

(c)
Σ (ε) for all ε > 0.

Then, for proving Lemma 3, it is enough to show the two following inequalities

N
(c)
Ω (ε) ≥ N (c)

φ(Σ)(ε+ δ) (24)

N
(c)
Σ (ε+ δ) ≥ N (c)

Ω′ (ε+ δ) (25)

for any δ > 0. Indeed, combining these two inequalities with the covering number equality

from the above paragraph, one has N
(c)
Ω (ε) ≥ N (c)

Ω′ (ε+ δ). Taking the limit δ → 0 and using

the right-continuity of the covering number (Lemma 24), this givesN
(c)
Ω (ε) ≥ N (c)

Ω′ (ε). As the

reverse inequality holds by symmetry of the proof, one obtain the equality N
(c)
Ω (ε) = N

(c)
Ω′ (ε)

of Lemma 3.

Lemma 24 Given a pure graphon (Ω, µ,W ), the function ε 7→ N
(c)
Ω (ε) is piecewise constant

and right-continuous (note that we use closed balls in the definition).

Likewise, ε 7→ N
(p)
Ω (ε) is a right continuous piecewise function.

Assume Σ is dense in (Ω′, rW ′). Each cover of Σ is closed as a finite union of closed balls.
Hence it is also a cover of Ω′ by density of Σ in Ω′. This proves (25). Likewise, assume
φ(Σ) is dense in (Ω, rW ). An ε-cover of Ω can be transformed into an (ε+ δ)-cover of φ(Σ)
by moving the ball centers from Ω to Σ and increasing the ball radius of δ (for arbitrary
small δ). This proves (24) for any δ > 0.

Let us show the density of φ(Σ) in (Ω, rW ). One has µ(φ(Σ)) = µ′(Σ) = 1 by definition
of a (bijective) measure-preserving map, which implies that φ(Σ) intersects each ball of non-
zero measure in (Ω, rW ). As the measure of a pure graphon has full-support by definition,
then each ball of non-zero radius has a non-zero measure. Thus, φ(Σ) intersects each ball
of non-zero radius in (Ω, rW ), which means that φ(Σ) is dense in (Ω, rW ). Similarly, we can
show the density of Σ in (Ω′, rW ′).

Lemma 3 is proved for the covering number. The proof for the packing number is similar
and omitted. �
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C.2.1 Proof of Lemma 24.

The function ε 7→ N
(c)
Ω (ε) is non-increasing from [0,∞[ to the set of all non-negative integers,

it is therefore a piecewise constant function. Thus, for any radius ε0 > 0, there exists a

(strictly) larger radius ε1 such that the covering number N
(c)
Ω (ε) is equal to a constant, say

N , over the interval (ε0, ε1). To prove the right continuity in ε0, let us show the inequality

N
(c)
Ω (ε0) ≤ N (since we already know the reverse inequality by monotonicity of the covering

number function), or equivalently that there exists a cover of Ω that is composed of N balls
of radius ε0.

Given a radius ε and K points c = (c1, . . . , cK) ∈ ΩK , denote by CΩ(c, ε) the union of
K balls of centers c1, . . . , cK . In the following, we prove: (1) the existence of some c0 ∈ ΩN

such that CΩ(c0, ε) covers Ω for all ε ∈ (ε0, (ε1 + ε0)/2]; (2) for such a c0, CΩ(c0, ε0) covers
Ω. Thus, Lemma 24 will be proved.

(1) Define the set EΩ(ε) := {c ∈ ΩN : Ω ⊆ CΩ(c, ε)} for any given radius ε > 0. Then,
consider the following sequence of nested sets Ẽk := EΩ(ε0 + (ε1 − ε0)/k) where k ≥ 2 is
an integer. The Cantor’s intersection theorem (recalled in Lemma 25 below) ensures that
∩k≥2Ẽk 6= ∅, provided that the assumptions of the theorem hold. For clarity, this verification

is deferred to the end of the proof. As the set ∩ε0<ε<ε1EΩ(ε) is equal to ∩k≥2Ẽk, one has
∩ε0<ε<ε1EΩ(ε) 6= ∅, which means that there exists some c0 ∈ ΩN such that CΩ(c0, ε) covers
Ω for all ε ∈ (ε0, (ε1 + ε0)/2].

(2) By contradiction, let us prove that CΩ(c0, ε0) covers Ω. If CΩ(c0, ε0) does not cover
Ω, then there exists some y in the open set Ω \ CΩ(c0, ε0), which implies that there exists
an open ball B(y, η) in Ω \CΩ(c0, ε0) for some radius η > 0. Hence, rW (y, c0,j) ≥ η+ ε0 for
all j ∈ {1, . . . , N}, which means that CΩ(c0, ε) does not cover Ω for the radius ε = ε0 + η/2
for instance. This is a contradiction with point (1) above.

Lemma 25 (Cantor’s intersection theorem) Suppose that (X, d) is a complete metric
space, and Cn is a sequence of non-empty closed nested subsets of X whose diameters tend
to zero. Then the intersection of the Cn contains exactly one point, that is ∩∞k=1Ck = {x}
for some x in X.

Verification of the assumptions of Lemma 25. Since (Ω, rW ) is a complete metric space
by definition of a pure graphon, the product space (ΩN , rsupW ) is also complete for the sup-
distance rsupW (x, y) := sup1≤j≤N rW (xj , yj) with x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ ΩN .

By definition of Ẽk, the sequence (Ẽk)k is composed of nested sets, which are also non-

empty since N
(c)
Ω (ε) = N over (ε0, ε1). To prove that each Ẽk is a closed subset of ΩN , it

is enough to show that EΩ(ε) is closed for any ε ∈ (ε0, ε1). Let (xk)k≥0 be a sequence in
EΩ(ε) such that xk → x ∈ ΩN as k → ∞. Then, for any η > 0, there exists some k0 such
that the sup-distance between xk0 = (xk0

1 , . . . , x
k0
N ) and x = (x1, . . . , xN ) is at most η. As

xk0 ∈ EΩ(ε), one know that, for any y ∈ Ω, there exists some j0 such that rW (y, xk0
j0

) ≤ ε.
Thus, using the triangle inequality, one has for any η > 0,

rW (y, xj0) ≤ rW (y, xk0
j0

) + rW (xk0
j0
, xj0) ≤ ε+ η

which implies that rW (y, xj0) ≤ ε. Hence, y ∈ CΩ(x, ε) for any y ∈ Ω, which means that
x ∈ EΩ(ε). EΩ(ε) is therefore a closed subset of ΩN . All the conditions of Lemma 25 are
checked.
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The part of Lemma 24 on the covering number is proved. For the packing number, the
proof is similar and omitted.�

C.3 Proof of Lemma 5: Asymptotic Density of the Sample

Given ε > 0, consider a cover of (Ω, rW ) whose cardinality is the integer N
(c)
Ω (ε/4) (written

N for brevity) and whose balls are written B1, . . . , BN . Let us upper bound the probability
that (at least) one of these balls contains zero sampled point ωi. Using the union bound,
this probability is smaller than

N∑
j=1

P(Ω,µ,W ) {Bj contains zero sampled point among ω1, . . . , ωn}

which is upper bounded by N(1 − µ(Bj))
n ≤ N(1 − β)n where β := minj∈[N ] µ(Bj). One

has β > 0 since each ball of a pure graphon has non-zero measure. And as N is not equal to
infinity by assumption, this probability tends to zero with n. Thus, with high probability,
all balls Bj from the cover contains at least a sampled point. Finally, the asymptotic density
of the sample follows from the fact that each ball of radius ε of (Ω, rW ) contains a ball Bj
from the cover. Lemma 5 is proved. �

Appendix D. Estimation of the Neighborhood Distance

D.1 Proof of Theorem 7 : the Upper Bound

Theorem 7 is a direct consequence of the two following propositions. Proposition 26 shows
the consistency of the inner products between the rows of the adjacency matrix A. That
is, 〈Ai, Aj〉n is convergent in probability towards 〈W (ωi, .),W (ωj , .)〉 if i 6= j. Actually,
Proposition 26 gives a uniform convergence over all i, j ∈ [n], i 6= j.

Proposition 26 The following event on inner products

Ein :=

{
∀i, j ∈ [n] : |〈Ai, Aj〉n − 〈W (ωi, .),W (ωj , .)〉 | ≤ 3

√
log n

n

}
holds with probability P(Ω,µ,W )(Ein) ≥ 1− 2

n as soon as n ≥ 6.

We have seen that the neighborhood distance rW can be decomposed into one crossed
term and two quadratic terms as follows

r2
W (ωi, ωj) = 〈W (ωi, .),W (ωi, .)〉+ 〈W (ωj , .),W (ωj , .)〉 − 2〈W (ωi, .),W (ωj , .)〉. (26)

Proposition 26 ensures that the crossed term is consistently estimated. Proposition 27 deals
with the quadratic terms 〈W (ωi, .),W (ωi, .)〉.

Proposition 27 Conditionally to the event Ein (defined above), the following inequalities

∀i ∈ [n] :
∣∣〈Ai, Am̂(i)〉n − 〈W (ωi, .),W (ωi, .)〉

∣∣ ≤ 3 rW (ωi, ωm(i) ) + 15
√

log(n)/n

hold simultaneously as soon as n ≥ 6.
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The estimation error of (26) by our distance estimator

r̂2(i, j) = 〈Ai, Am̂(i)〉n + 〈Aj , Am̂(j)〉n − 2 〈Ai, Aj〉n

follows directly from Propositions 26 and 27. Theorem 7 is proved. �

D.1.1 Proof of Proposition 26.

By triangle inequality, the expression∣∣∣∑
k

AikAkj
n

−
∫

Ω
W (ωi, z)W (ωj , z)µ(dz)

∣∣∣
is smaller than

≤ 1

n

∣∣∣ ∑
k 6=i,j

AikAkj − (n− 2)

∫
Ω
W (ωi, z)W (ωj , z)µ(dz)

∣∣∣
+

1

n

[
(Aii +Ajj)Aij + 2

∫
Ω
W (ωi, z)W (ωj , z)µ(dz)

]
which is upper bounded by

≤ 1

n− 2

∣∣∣ ∑
k 6=i,j

AikAkj − (n− 2)

∫
Ω
W (ωi, z)W (ωj , z)µ(dz)

∣∣∣+
4

n
.

Conditionally to ωi, ωj (with i 6= j), the n− 2 random variables {AikAkj : k ∈ [n], k 6= i, j}
are independent with a mean E [AikAkj |ωi, ωj ] =

∫
ΩW (ωi, z)W (ωj , z)µ(dz) for all k 6= i, j

(where E is the expectation with respect to the distribution P(Ω,µ,W )). It follows from
Hoeffding’s inequality that

P(Ω,µ,W )

 1

n− 2

∣∣∣ ∑
k 6=i,j

AikAkj − (n− 2)

∫
Ω
W (ωi, z)W (ωj , z)µ(dz)

∣∣∣ ≥ ε ∣∣∣∣∣ωi, ωj


is lower than
≤ 2exp

(
−2(n− 2)ε2

)
≤ 2exp

(
−nε2

)
for ε > 0 and n ≥ 4. Since the above inequality is satisfied for almost every ωi, ωj ∈ Ω, one
has the same upper bound with probability 1 without conditioning. Hence, taking a union
bound over all i 6= j one obtain

P(Ω,µ,W )

 ⋃
i,j:i 6=j

 1

n− 2

∣∣∣ ∑
k 6=i,j

AikAkj − (n− 2)

∫
Ω
W (ωi, z)W (ωj , z)µ(dz)

∣∣∣ ≥ ε

 ≤ 2n2exp

(
−nε2

)
.

Then, setting ε =
√

3 log n
n one derive

P(Ω,µ,W )

 ⋃
i,j:i 6=j

 1

n− 2

∣∣∣ ∑
k 6=i,j

AikAkj − (n− 2)

∫
Ω
W (ωi, z)W (ωj , z)µ(dz)

∣∣∣ ≥√3 log n

n


 ≤ 2

n
.
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Combining the above expressions, we get the following inequality

max
i,j:i 6=j

∣∣∣∑
k

Aik.Akj
n

−
∫

Ω
W (ωi, z)W (ωj , z)µ(dz)

∣∣∣ ≤√3 log n

n
+

4

n
≤ 3

√
log n

n

with probability at least 1− 2
n as soon as n ≥ 6. The proof of Proposition 26 is complete.

�

D.1.2 Proof of Proposition 27.∣∣〈Ai, Am̂(i)〉n − 〈W (ωi, .),W (ωi, .)〉
∣∣ ≤ ∣∣〈Ai, Am̂(i) −Am(i)〉n

∣∣
+
∣∣〈Ai, Am(i)〉n − 〈W (ωi, .),W (ωi, .)〉

∣∣ (27)

For the second term of the upper bound (27),∣∣〈Ai, Am(i)〉n − 〈W (ωi, .),W (ωi, .)〉
∣∣ ≤ ∣∣〈Ai, Am(i)〉n − 〈W (ωi, .),W (ωm(i), .)〉

∣∣
+
∣∣〈W (ωi, .),W (ωm(i), .)−W (ωi, .)〉

∣∣
≤ 3
√

log(n)/n+ rW (ωi, ωm(i))

by Proposition 26 and Cauchy-Schwarz inequality. For the first term of the upper bound
(27), if m̂(i) 6= m(i),∣∣〈Ai, Am̂(i) −Am(i)〉n

∣∣ ≤ ∣∣〈Ai −Am(i), Am̂(i)〉n
∣∣+
∣∣〈Ai −Am̂(i), Am(i)〉n

∣∣
≤ f̂(i,m(i)) + f̂(i, m̂(i))

≤ 2f̂(i,m(i))

by definition of m̂(i) and f̂ in (9). We upper bound f̂(i,m(i)) as follows.

f̂(i,m(i)) := max
k 6=i,m(i)

∣∣〈Ak, Ai −Am(i)〉n
∣∣ ≤ max

k 6=i,m(i)

∣∣〈W (ωk, .),W (ωi, .)−W (ωm(i), .)〉
∣∣

+ 2 max
l,t: l 6=t

|〈Al, At〉n − 〈W (ωl, .),W (ωt, .)〉|

≤ rW (ωi, ωm(i)) + 6
√

log(n)/n

by Proposition 26 and Cauchy-Schwarz. Combining the upper bounds on (27), Proposition
27 is proved. �

D.2 Proof of Theorem 10 : the Lower Bound

Theorem 10 is a corollary of Theorem 28 (written below). Let rω denote the n×n symmetric
matrix with entries rW (ωi, ωj), 1 ≤ i ≤ j ≤ n. Given a real δ > 0, a graphon (Ω, µ,W ), a

permutation σ of {1, . . . , n} and an estimator d̂, we define

S(Ω,µ,W )( d̂ , σ, rω) =

{
(i, j) : 32

∣∣∣d̂2(σ(i), σ(j))− r2
W (ωi, ωj)

∣∣∣ ≥ 2 δ

and 2 δ ≥ rW (ωi, ωm(i)) + rW (ωj , ωm(j))

}
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and

Φ(Ω,µ,W )( d̂ , rω) = inf
σ

Card S(Ω,µ,W )( d̂ , σ, rω) (28)

where Φ(Ω,µ,W )( d̂ , rω) is the number of pairs (i, j) where the estimator d̂ is no better

than our estimator r̂, roughly speaking. That is, Φ(Ω,µ,W )( d̂ , rω) counts the pairs (i, j)

for which the error of d̂ is larger than the bias of our distance estimator r̂, which is
rW (ωi, ωm(i) ) + rW (ωj , ωm(j) ) up to some numerical constants. We put an infimum over all
permutations σ of the n indices because we consider the problem of recovery of the set of
distances rW (ωi, ωj), 1 ≤ i ≤ j ≤ n, regardless of their labeling. According to Theorem 28,

there exists a sequence of graphons (Ω, µ,Wn) such that for any estimator d̂, the quantity
Φ(Ω,µ,Wn)( d̂ , rω) grows linearly with n (on an event of positive probability).

Theorem 28 There exists a sequence (Ω, µ,Wn)n≥0 of SBM such that for all n ≥ 10, all

δ ∈ (
√

8
n−2 , 1/40) and some numerical constants c > 0 and p > 0, the following lower bound

holds

inf
d̂

P(Ω,µ,Wn)

[
Φ(Ω,µ,Wn)( d̂, rω) > cn

]
≥ p (29)

where inf
d̂

is the infimum over all estimators.

Theorem 10 follows from Theorem 28, choosing δ =

(√
logn
n

)1/(1+γ)

. �

Note that Theorem 9 follows from Theorem 28 for δ = 1/50.

Proof of Theorem 28. The proof follows the general scheme of reduction for testing two
hypotheses (see Yu, 1997; Tsybakov, 2009). We start with the definition of some SBM with
five communities where the latent space Ω is {C1, . . . , C5}. We then show that for these
SBM, any distance estimator suffers from a large loss.

Let n ≥ 10 and δ ∈ (
√

8/n− 2, 1/40). Consider the symmetric functionsWn : {C1, . . . , C5}2 →
{C1, . . . , C5} as described in Table 1 below. That is, for the two diagonal blocks {C1, C2}2
and {C3, C4, C5}2, it is a constant function:

Wn(x, y) =

{
1/2 if (x, y) ∈ {C1, C2}2,
1/2 if (x, y) ∈ {C3, C4, C5}2,

and for the upper right corner block {C1, C2} × {C3, C4, C5}:

Wn(x, y) =

 1/2 + ux
√
δ/2 if y ∈ C3,

1/2 + uxδ if y ∈ C4,
1/2 + ux/2 if y ∈ C5,

ux =

{
+1 if x ∈ C1,
−1 if x ∈ C2.

The latent space {C1, . . . , C5} is endowed with the probability measure µ defined as follows:

µ(C1) = µ(C2) =
1− 2η

2
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1

2
µ(C3) = µ(C4) = µ(C5) =

η

2

where η = 2/(n− 2).

C1 C2 C3 C4 C5

C1
1/2

1/2 +
√
δ/2 1/2 + δ 1

C2 1/2−
√
δ/2 1/2− δ 0

C3
1/2

C4

C5

Table 1: values of Wn(Ci, Cj)

C1 C2 C3 C4 C5

C1 ≤ 2η ≥ δ/4 ≤ 5 δ2 ≥ 1/4
C2

Table 2: bounds on r2
W (Ci, Cj)

We compute some bounds on the neighborhood distance associated with the above
SBM, see Table 2 for a summary. These bounds follow easily from the definition (4) of the
distance. For example,

r2
W (C1, C3) ≥

∫
{C1,C2}

|W (C1, z)−W (C3, z)|2 µ(dz) ≥
(
µ(C1) + µ(C2)

)
δ/2 ≥ (1− 2η)δ/2

which is larger than δ/4 since η = 2/(n− 2) and n ≥ 10.

We now introduce two eventsR1 andR2 on the sampled points ω1, . . . , ωn, which lead to
different sets of distances (for rW ), and yet are difficult to decipher for any estimator based
on the adjacency matrix A. In addition, we want these two events to happen with a positive
probability p that is independent of n. Observe that the union of the two communities C1, C2

have a total weight 1 − 2η = 1 − 4/(n − 2) and thus concentrate most of the probability
measure, whereas each of the remaining communities C3, C4, C5 has a weight of the order of
n−1. It follows that most of the sampled points ω1, . . . , ωn belong to the communities C1, C2

with large probability. In particular, the two following events

R1 =
{
C1 ∪ C2, C4, C5 respectively contain n-2, 1, 1 sampled points

}
R2 =

{
C1 ∪ C2, C3 respectively contain n-2, 2 sampled points

}
happen with a positive probability that is independent of n (Lemma 29).

Lemma 29 The probability of each event R1 and R2 is lower bounded by some numerical
constant p > 0 :

P(R2) ≥ P(R1) ≥ p

where P(Rk) := P(Ω,µ,Wn) (Rk) =
∫

(ω1,...,ωn)∈{C1,...,C5}n 1Rk(ω1, . . . , ωn) dµ(ω1) . . . µ(ωn).
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One of the interests of the two events R1,R2 is to lead to different sets of distances.
Specifically, if R1 (resp. R2) holds, the random matrix rω = [rW (ωi, ωj)]i,j∈[n] of distances
is denoted by r1 = [r1(i, j)]i,j∈[n] (resp. r2 = [r2(i, j)]i,j∈[n]). We measure the difference
between both matrices r1, r2 of distances as follows:

Φ̃(r1, r2) = inf
σ

Card

(i, j) :
16
∣∣∣r2

2(i, j)− r2
1(σ(i)σ(j))

∣∣∣ ≥ 2 δ

r2(i,m(i)) + r2(j,m(j)) ≤ 2 δ
r1(σ(i),m(σ(i)) + r1(σ(j),m(σ(j)) ≤ 2 δ

 (30)

where Φ̃ is the number of pairs (i, j) on which r1 and r2 are separated by at least the bias
of our distance estimator r̂ (up to some numerical constants). Note that this measure is
independent of the labeling i ∈ {1 . . . , n} since an infimum is taken over all permutations
σ of the n indices. Lemma 30 ensures that r1 and r2 are different enough for a number of
pairs (i, j) that is linear with n, regardless of their labeling.

Lemma 30 There exists a numerical constant c such that Φ̃( r1, r2) ≥ 2c n.

So far, we have two events of positive probability which lead to two different sets of
distances. It remains to see that they are difficult to decipher from the observed adjacency
matrix A (Lemma 31). For simplicity, write P for P(Ω,µ,W ) in the following, and ω the
n-tuple (ω1, . . . , ωn), and {0, 1}n×nsym the set of binary symmetric matrices of size n× n.

Lemma 31 For any M ∈ {0, 1}n×nsym , one has

P[A = M |ω ∈ R1] = P[A = M |ω ∈ R2].

We now have all the ingredients to lower bound P
[
Φ(Ω,µ,Wn)( d̂, rω) > cn

]
and prove

Theorem 28. For clarity, Φ(Ω,µ,Wn)( d̂ , rω) is denoted by Φ( d̂, rω) in the following. Then,
one has

P
[
Φ( d̂, rω) > cn

]
≥ P

[
Φ( d̂, rω) > cn|R1

]
P(R1)

+ P
[
Φ( d̂, rω) > cn|R2

]
P(R2)

By definition of the SBM, the matrix r1 remains the same for any ω ∈ R1, up to a permu-
tation of the labeling. Combining with the fact that Φ is independent of the labeling, one
obtain that Φ( d̂, r1) takes a same value for all ω ∈ R1. Similarly, Φ( d̂, r2) takes the same

value for all ω ∈ R2. Hence, the above display says that P
[
Φ( d̂, rω) > cn

]
is larger than(

P
[
Φ( d̂, r1) > cn|R1

]
+ P

[
Φ( d̂, r2) > cn|R2

])(
P(R1) ∧ P(R2)

)
and since P(R1) ∧ P(R2) ≥ p by Lemma 29, one has

P
[
Φ( d̂, rω) > cn

]
≥
(
P
[
Φ( d̂, r1) > cn|R1

]
+ P

[
Φ( d̂, r2) > cn|R2

])
p
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Now assume that
P
[
Φ( d̂, r2) > cn|R2

]
≥ P

[
cn > Φ( d̂, r1)|R1

]
. (31)

Then, combining the two last inequalities gives

P
[
Φ( d̂, rω) > cn

]
≥ p

which gives the lower bound of Theorem 28.

Let us show that (31) holds. Lemma 31 gives

P
[
Φ( d̂, r2) > cn|R2

]
= P

[
Φ( d̂, r2) > cn|R1

]
.

Then, we use the generalized triangle inequality of Lemma 32 with B = d̂.

Lemma 32 For any B ∈ {0, 1}n×nsym , we have Φ(B, r1) + Φ(B, r2) ≥ Φ̃(r1, r2).

That is,

Φ( d̂, r2) ≥ Φ̃( r1, r2)− Φ( d̂, r1)

which is larger than
2cn− Φ( d̂, r1)

by Lemma 30. Combing the above displays, one has

P
[
Φ( d̂, r2) > cn|R2

]
≥ P

[
cn > Φ( d̂, r1)|R1

]
.

The line (31) is therefore proved and Theorem 28 follows. �

We now show the technical lemmas, used in the proof of Theorem 28.

D.2.1 Proof of Lemma 29.

Let n ≥ 10. We show that each of the two events R1,R2 occurs with a positive probability
that is independent of n. By definition of the events, one has

P(R2) ≥ P(R1) =
n(n− 1)

2

(η
2

)2
(1− 2η)n−2

which is equal to the following expression for η = 2/(n− 2),

n(n− 2)

2

(
1

n− 2

)2

exp

[
(n− 2)log (1− 4

n− 2
)

]
Using log(1− x) ≥ −x/(1− x) for all x in ]0, 1[,

P(R1) ≥ exp

[
− 4

1− 4
n−2

]

which is larger than some positive numerical constant. Lemma 29 is proved. �
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D.2.2 Proof of Lemma 30.

The proof consists in finding a lower bound of Φ̃(r1, r2) that is linear with n. As Φ̃ is
independent of the labeling of the set of distances r1 and r2, one can assume the two
following labelings without the loss of generality. For the matrix r1 (defined on the event
R1), assume the (n−1)th and nth columns correspond to the two sampled points in {C4, C5}.
For r2 (defined on R2), assume the (n−1)th and nth columns correspond to the two sampled
points in C3. Accordingly, the n−2 first columns of r1 and r2 are associated with the sampled
points in {C1, C2}.

We focus on the (n− 1)th and nth columns of r2 corresponding to the points in C3. For
the measure Φ̃, at least one these two columns will be necessarily compared to one of the
n− 1 first columns of r1. In other words, the distances associated with a point in C3 will be
compared to the distances associated with a point in C1, C2 or C4. As we can see in Table 1
and 2, such comparisons will lead to the lower bound Φ̃(r1, r2) ≥ n− 3. The corresponding
computation are done below, focusing on the two vectors of distances [r2(k, n − 1)]k≤n−2

and [r2(k, n)]k≤n−2.

By definition, Φ̃(r1, r2) is based on the infimum over all permutations. Let σ be any
permutation of {1, . . . , n} and prove the lower bound for σ, distinguishing three cases.

Case 1: if σ(n) = n, then σ(j) ∈ {1, . . . , n− 1} for all j ≤ n− 1. For convenience, note
Ci,j for a point in Ci ∪ Cj . For all j ≤ n− 2, one has∣∣∣r2

2(j, n− 1)− r2
1(σ(j), σ(n− 1))

∣∣∣ =
∣∣∣r2
W (C1,2, C3)− r2

W (C1,2,4, C1,2,4)
∣∣∣

according to the chosen labelings (described above). It follows from Table 2 that:∣∣∣r2
W (C1,2, C3)− r2

W (C1,2,4, C1,2,4)
∣∣∣ ≥ δ/4−max(2η, 5δ2)

which is equal to δ(1/4− 5δ) since η = 2/(n− 2) and δ2 > 8/(n− 2) by assumption. Hence,
using the condition δ ≤ 1/40, it is larger than δ/8, so that,

16
∣∣∣r2

2(j, n− 1)− r2
1(σ(j), σ(n− 1))

∣∣∣ ≥ 2δ

for all j ≤ n− 2.
It remains to upper bound the bias terms by 2δ. The ones related to r2 are easily

obtained: for all j ≤ n,
r2(j,m(j)) ≤ rW (C1, C2) ≤ 2η ≤ δ

since on the event R2, a point ωj is either in C1 ∪ C2 and hence r2(j,m(j)) ≤ rW (C1, C2),
or in C3 and thus r2(j,m(j)) = 0 (because its nearest neighbor is in C3 too). This gives the
bounds on the bias terms

r2(i,m(i)) + r2(j,m(j)) ≤ 2 δ

for all i, j. The corresponding bounds for r1 are similarly obtained from Table 1, but with
more calculations. It is therefore encapsulated in the following lemma.

Lemma 33 If σ(n) = n, we have r1(σ(i),m(σ(i)) + r1(σ(j),m(σ(j)) ≤ 2δ for all j, i ≤
n− 1 such that i 6= j.
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Combining the above displays, we obtain the lower bound

Card

(i, j) :
16
∣∣∣r2

2(i, j)− r2
1(σ(i)σ(j))

∣∣∣ ≥ 2 δ

r2(i,m(i)) + r2(j,m(j)) ≤ 2 δ
r1(σ(i),m(σ(i)) + r1(σ(j),m(σ(j)) ≤ 2 δ

 ≥ n− 3 (32)

for all permutations fulfilling σ(n) = n.

Case 2: if σ(n − 1) = n, then σ(n), σ(j) ∈ {1, . . . , n − 1} for all j ≤ n − 2. Following

the same proof as above, we can show that
∣∣∣r2

2(n, j)− r2
1(σ(n), σ(j))

∣∣∣ ≥ 2δ for all j ≤ n− 2.

Likewise, the bounds on the bias terms are obtained as before. The inequality (32) is
therefore proved for all permutations fulfilling σ(n− 1) = n.

Case 3: if σ(n) 6= n and σ(n− 1) 6= n. Following the same proof as above, we can show

that
∣∣∣r2

2(n, j)− r2
1(σ(n), σ(j))

∣∣∣ ≥ 2δ for all j ≤ n− 2 such that j 6= σ−1(n). The inequality

(32) is therefore proved for all permutations σ(n) 6= n and σ(n− 1) 6= n.

Finally, the lower bound (32) is true for all permutations σ, in particular for the infimum
over all of them. Lemma 30 is proved. �

D.2.3 Proof of Lemma 33.

Let us upper bound the bias terms for r1, in the case of an arbitrary permutation σ fulfilling
σ(n) = n. On the event R1, one has

r1(σ(i),m(σ(i)) + r1(σ(j),m(σ(j)) ≤ rW (C1, C4) + rW (C1, C2).

for all j, i ≤ n− 1 such that j 6= i. In Table 1 and Table 2, one observes that

rW (C1, C2) ≤
√

2η

rW (C1, C4) ≤
√
δ2(1− 2η) + (δ/2)η + δ2(η/2) + (1/4)(η/2).

The second bound is smaller than
√
δ2(1− (3η/2)) + η/4 since (δ/2)η ≤ (1/4)(η/2) (using

the assumption δ ≤ 1/40). Hence,

r1(σ(i),m(σ(i)) + r1(σ(j),m(σ(j)) ≤
√
δ2 + η/4 +

√
2η

which is lower than δ + 2
√
η, and again, lower than 2δ (since

√
η =

√
2/(n− 2) is smaller

than δ/2 by assumption). Lemma 33 is proved. �

D.2.4 Proof of Lemma 32.

Given any matrix B ∈ {0, 1}n×nsym , let us show the following inequality Φ(B, r1) + Φ(B, r2) ≥
Φ̃(r1, r2) where Φ̃ and Φ are respectively defined by (30) and (28).

For all permutations σ of {1, . . . , n}, the triangle inequality gives

2
∣∣∣Bij−r2

2(i, j)
∣∣∣∨2
∣∣∣Bij−r2

1(σ(i)σ(j))
∣∣∣ ≥ ∣∣∣Bij−r2

2(i, j)
∣∣∣+∣∣∣Bij−r2

1(σ(i)σ(j))
∣∣∣ ≥ ∣∣∣r2

2(i, j)−r2
1(σ(i)σ(j))

∣∣∣
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so that Card

(i, j) :
16
∣∣∣r2

2(i, j)− r2
1(σ(i)σ(j))

∣∣∣ ≥ 2 δ

r2(i,m(i)) + r2(j,m(j)) ≤ 2 δ
r1(σ(i),m(σ(i))) + r1(σ(j),m(σ(j))) ≤ 2 δ

 lower bounds the sum

of the two cardinal numbers

Card

{
(i, j) : 32

∣∣Bij − r2
2(i, j)

∣∣ ≥ 2 δ ≥ r2(i,m(i)) + r2(j,m(j))

}
and

Card

{
(i, j) : 32

∣∣Bij − r2
1(σ(i)σ(j))

∣∣ ≥ 2 δ ≥ r1(σ(i),m(σ(i))) + r1(σ(j),m(σ(j)))

}
.

Taking a permutation that minimizes the latter cardinal, one has

Card

{
(i, j) : 32

∣∣Bij − r2
2(i, j)

∣∣ ≥ 2 δ ≥ r2(i,m(i)) + r2(j,m(j))

}
+ Φ(B, r1) ≥ Φ̃(r1, r2)

by definition of Φ and Φ̃. The above inequality holds for any matrix in {0, 1}n×nsym , in
particular for Bσ defined by Bσ

ij = Bσ(i),σ(j) (where B ∈ {0, 1}n×nsym and any permutation σ).
Using Φ(Bσ, r1) = Φ(B, r1), the above display becomes

Card

{
(i, j) : 32

∣∣Bσ
ij − r2

2(i, j)
∣∣ ≥ 2 δ ≥ r2(i,m(i)) + r2(j,m(j))

}
+ Φ(B, r1) ≥ Φ̃(r1, r2)

and thus, choosing the permutation that minimize the left term,

Φ(B, r1) + Φ(B, r2) ≥ Φ̃(r1, r2).

This generalized triangle inequality holds for all B ∈ {0, 1}n×nsym . Lemma 32 is proved. �

D.2.5 Proof of Lemma 31.

In the following, we write P for P(Ω,µ,W ), and µ⊗n for the product measure, and ω for the
n-tuple (ω1, . . . , ωn). Lemma 31 states that for all M ∈ {0, 1}n×nsym ,

P[A = M |ω ∈ R1] = P[A = M |ω ∈ R2]

which is equivalent to

pR1(M)/P(R1) = pR2(M)/P(R2) (33)

where pR1(M) denotes

pR1(M) := P ({A = M} ∩ R1) =

∫
ω∈Rk

P(A = M |ω) dµ⊗n(ω).

Hence, we want to prove that

2pR1(M) = pR2(M)

since 2P(R1) = P(R2) by definition of the events R1 and R2.
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Let R1(k, l) be the the event defined by R1 ∩ {(ωk, ωl) ∈ C4 × C5}. Thus, the event R1

is the union ∪1≤k 6=l≤nR1(k, l). For any matrix M = [Mij ]i,j≤n in {0, 1}n×nsym ,

pR1(M) =

∫
ω∈R1

P(A = M |ω) dµ⊗n(ω) =
∑

1≤k 6=l≤n

∫
ω∈R1(k,l)

P(A = M |ω) dµ⊗n(ω).

Given a permutation σ of {1, . . . , n}, denote by Mσ the matrix Mσ
ij = Mσ(i),σ(j) with

i, j ∈ {1, . . . , n}. Write σkl for a permutation fulfilling σ(n − 1) = k and σ(n) = l. Then,
the probability pR1(M) is equal to

∑
1≤k 6=l≤n

∫
ω∈R1(k,l)

P(Aσkl = Mσkl |ω)dµ⊗n(ω) =
∑

1≤k 6=l≤n

∫
ω∈R1(n−1,n)

P(A = Mσkl |ω)dµ⊗n(ω).

Conditionally to ω, the entries of A for i < j are independent Bernoulli variables, so that

pR1(M) =
∑

1≤k 6=l≤n

∫
ω∈R1(n−1,n)

∏
1≤i<j≤n

P(Aij = Mσkl
ij |ωi, ωj)dµ

⊗n(ω).

On the eventR1(n−1, n), the ω1, . . . , ωn−2 are in C1∪C1, and (ωn−1, ωn) are in C4×C5. As
the functionWn of the SBM is equal to 1/2 on the diagonal blocks {C1, C2}2 and {C3, C4, C5}2,
one has P(Aij = Mσkl

ij |ωi, ωj) = 1
2 for all (i, j) in the set {(i, j) : i < j ≤ n−2}∪{(n−1, n)}

of cardinality gn = n(n− 1)/2− 2(n− 2). Hence, the probability pR1(M) is equal to

∑
1≤k 6=l≤n

(
1

2

)gn ∫
ω∈R1(n−1,n)

∏
1≤i≤n−2

P(Ai,n−1 = Mσkl
i,n−1|ωi, ωn−1)P(Ai,n = Mσkl

i,n |ωi, ωn)dµ⊗n(ω)

or equivalently to

∑
1≤k 6=l≤n

(
1

2

)gn ∫
(ωn−1,ωn)∈C4×C5

XMσkl (ωn−1, ωn)dµ⊗2(ωn−1, ωn)

with

XMσkl (ωn−1, ωn) :=
∏

1≤i≤n−2

∫
ωi∈C1∪C2

P(Ai,n−1 = Mσkl
i,n−1|ωi, ωn−1)P(Ai,n = Mσkl

i,n |ωi, ωn) dµ(ωi).

Likewise,R2 is the union ∪1≤k<l≤nR2(k, l) where eachR2(k, l) is the eventR2∩{ωk, ωl ∈
C3}. Following the same proof as for R1, one can show that

pR2(M) =
∑

1≤k<l≤n

(
1

2

)gn ∫
(ωn−1,ωn)∈C3×C3

XMσkl (ωn−1, ωn)dµ⊗2(ωn−1, ωn).

Lemma 34 There exists a constant XMσkl such that XMσkl (ωn−1, ωn) = XMσkl whether
R1(n− 1, n) or R2(n− 1, n) holds.
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Using Lemma 34, one has

pR1(M) =

(
1

2

)gn ∑
1≤k 6=l≤n

XMσklµ(C4)µ(C5)

and

pR2(M) =

(
1

2

)gn ∑
1≤k<l≤n

XMσklµ(C3)2

so that pR1(M) = pR2(M)/2, since µ(C4) = µ(C5) = µ(C3)/2 (by construction of the SBM).
Lemma 31 is proved. �

D.2.6 Proof of Lemma 34.

For brevity, write P for P(Ω,µ,W ) in the following. By definition, XMσkl (ωn−1, ωn) is the
product of the n− 2 following terms∫

ωi∈C1∪C2
P(Ai,n−1 = Mσkl

i,n−1|ωi, ωn−1)P(Ai,n = Mσkl
i,n |ωi, ωn) dµ(ωi)

i = 1, . . . , n− 2. The above display is equal to∫
ωi∈C1

P(Ai,n−1 = Mσkl
i,n−1|ωi, ωn−1)P(Ai,n = Mσkl

i,n |ωi, ωn)dµ(ωi)

+

∫
ωi∈C2

P(Ai,n−1 = Mσkl
i,n−1|ωi, ωn−1)P(Ai,n = Mσkl

i,n |ωi, ωn)dµ(ωi).

If (ωn−1, ωn) ∈ C4 × C5, then

=

∫
ωi∈C1

[1/2 + (2Mσkl
i,n−1 − 1) δ] [1/2 + (2Mσkl

i,n − 1) (1/2)] dµ(ωi)

+

∫
ωi∈C2

[1/2− (2Mσkl
i,n−1 − 1) δ] [1/2− (2Mσkl

i,n − 1) (1/2)] dµ(ωi)

which is equal to
[
1/2 + (2Mσkl

i,n−1 − 1)(2Mσkl
i,n − 1)δ

]
µ(C1), since µ(C1) = µ(C2).

If (ωn−1, ωn) ∈ C3 × C3, then

=

∫
ωi∈C1

[1/2 + (2Mσkl
i,n−1 − 1)

√
δ/2][1/2 + (2Mσkl

i,n − 1)
√
δ/2] dµ(ωi)

+

∫
ωi∈C2

[1/2− (2Mσkl
i,n−1 − 1)

√
δ/2][1/2− (2Mσkl

i,n − 1)
√
δ/2] dµ(ωi)

which is equal to
[
1/2 + (2Mkl

i,n−1 − 1)(2Mσkl
i,n − 1)δ

]
µ(C1).

Hence XMσkl (ωn−1, ωn) is equal to the same constant whether (ωn−1, ωn) belongs to
C3 × C3 or C4 × C5. Lemma 34 is proved. �
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Appendix E. Estimation of the Minkowski Dimension

E.1 Proof of Theorem 12: the Upper Bound

Theorem 12 is a corollary of Theorem 35, which gives non-asymptotic high-probability

bounds for the risk of the data-function −log N̂
(c)
Ω (ε)

/
log ε.

Theorem 35 Assume the graphon (Ω, µ,W ) satisfies Hα,v
1 and Hm,M,v

2 and has a Minkowski
dimension d ∈ (0,∞). If n is large enough to satisfy the below inequality

2logn/n ≤ α (v/14)2d ∧ (v/14)4 ,

then the following holds with probability at least 1− (2 + 4αM)/n with respect to the distri-
bution P(Ω,µ,W ). The sum of the distance error bound (14) and the sampling error (13) is
upper bounded as follows

bsup + sω
6

≤ errn,d :=

(
logn

n

)1/4

+

(
2 logn

αn

)1/2d

. (34)

For all ε ∈ (2(bsup + sω), v/7], the covering number estimator N̂
(c)
Ω (ε) satisfies the following

upper bound∣∣∣∣∣ log N̂
(c)
Ω (ε)

−log ε
− d

∣∣∣∣∣ ≤ 1

−log ε

[
log

(
M ∨ 1

m

)
+ 6d

errn,d
ε

(
1 +

errn,d
ε

)]

Theorem 12 follows from Theorem 35 by choosing any radius radius that minimizes the
above upper bound, that is, any radius εD of the order of sup

{d: d≤D}
errn,d = errn,D. �

Comments on Theorem 35 : We first remark that the above theorem based on the cover-
ing number can also be adapted to the packing number (without difficulties). We now com-
ment on the two additive error terms in the upper bound. The term−log (M ∨ (1/m))

/
log ε

stands for the gap between the Minkowski dimension and the quantity that we actually es-

timate, i.e. −logN
(c)
Ω (ε)

/
log ε. This gap depends on the parameters of the assumption

Hm,M,v
2 . The second error term −d errn,d

/
(ε log ε) represents the gap between the latter

estimated quantity and the estimator −log N̂
(c)
Ω (ε)

/
log ε. To control this gap, we need to

estimate the covering number correctly, and thus to control the error sum bsup+sω involved
in Proposition 11. Actually, the theorem ensures that this error sum is smaller than errn,d.
This comes from the fact that the difference between the sample ω1, . . . , ωn and the latent
space Ω is not too large, thanks to the assumption Hα,v

1 . See the proof below for details.

Finally, the upper bound holds with probability at least 1 − 2/n − 4αM/n. The first
quantity 2/n corresponds to the event Ecdist defined in Theorem 7, i.e. that the the distance
estimator does not satisfy the distance error bound bsup. The second quantity 4αM/n
corresponds to the probability of the event where the sampled points do not cover well the
latent space, leading to a large sampling error sω and a large distance error bound bsup.
This event, denoted by Ebad, is rigorously defined in the following proof.
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Proof of Theorem 35. Assume the event Edist of Theorem 7 holds, that is the errors of
distance-estimator are uniformly bounded by bsup. On this event, Proposition 11 gives

N
(c)
Ω (ε+ bsup + sω) ≤ N̂ (c)

Ω (ε) ≤ N (c)
Ω (ε− bsup − sω)

for all ε ∈ (bsup + sω, 1), so that

logN
(c)
Ω (ε+ sω + bsup)

−logε
− d ≤

log N̂
(c)
Ω (ε)

−log ε
− d ≤

logN
(c)
Ω (ε− sω − bsup)
−logε

− d.

As the assumption Hm,M,v
2 is valid in the neighborhood (0, v], we need to check that ε +

sω + bsup ∈ (0, v] to use this assumption. For clarity, we do this verification at the end of

the proof. Hence, using Hm,M,v
2 , one has

logm

−log ε
− d

[
log(ε+ sω + bsup)

−logε
+ 1

]
≤

log N̂
(c)
Ω (ε)

−log ε
− d ≤ logM

−log ε
− d

[
log(ε− sω − bsup)

−logε
+ 1

]
(35)

In the right hand side of (35), the right term is upper bounded by

−d
[

log(ε− sω − bsup)
−log ε

+ 1

]
≤ −d

log
(
1− (sω + bsup)/ε

)
−log ε

which is again upper bounded by

d
(sω + bsup)/ε+ ((sω + bsup)/ε)

2

−log ε

if (sω + bsup) ≤ ε/2. Similarly in the left hand side of (35), the right term is lower bounded
by

−d
[

log(ε+ sω + bsup)

−logε
+ 1

]
≥ −d(sω + bsup)/ε

−log ε
.

Combining the above displays, one derive

logm

−log ε
− d(sω + bsup)/ε

−logε
≤

log N̂
(c)
Ω (ε)

−log ε
− d ≤ logM

−log ε
+ d

(sω + bsup)/ε+ ((sω + bsup)/ε)
2

−log ε
.

(36)
It remains to upper bound the error sum sω+bsup in (36). Given a cover of Ω, composed

of N
(c)
Ω (η) balls Bj of radius η, one define the following event

Ebad(η) :=
{
∃j : Bj contains exactly 0 or 1 sampled point among ω1, . . . , ωn

}
. (37)

Assume the complementary event Ecbad(η) holds. This means that each ball of the cover of
Ω contains at least two sampled points. Hence, one has

sω ≤ 2η,

supi∈{1,..,n} rW (ωi, ωm(i)) ≤ 2η.
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which directly implies the following upper bound

bsup + sω ≤ 6

(
logn

n

)1/4

+ 4
√
η + 2η

by definition of bsup in (14). Thus, for the particular radius ηn := [2 log(n)/(αn)]1/d,

bsup + sω ≤ 6

(
logn

n

)1/4

+ 6

(
2 logn

αn

)1/2d

.

It follows from the definition (34) of errn,d that

sω + bsup ≤ 6errn,d.

Combining the above upper bound with (36), one deduce the inequalities of the theorem.

The above displays hold conditionally to the event Ecbad(ηn)∩ Edist, which happens with
probability at least 1− (2 + 4αM) /n (Lemma 36).

Lemma 36 The probability P(Ω,µ,W )(Ebad(ηn) ∪ Ecdist) is smaller than (2 + 4αM)/n.

The condition ε + sω + bsup ∈ (0, v] (used at the beginning of the proof) is satisfied
(Lemma 37).

Lemma 37 On the event Ecbad(ηn) ∩ Edist, one has ε+ sω + bsup ∈ (0, v].

Theorem 35 is proved. �

E.1.1 Proof of Lemma 37.

We want to prove that ε+ sω + bsup ∈ (0, v] on the event Ecbad(ηn) ∩ Edist. We have already
seen that sω + bsup ≤ 6errn,d on this event, so it is enough to prove that ε + 6errn,d ≤ v.
By assumption in Theorem 35, one has

2
logn

n
≤ α

( v
14

)2d
∧
( v

14

)4
,

which implies (
2 logn

αn

)1/2d

≤ v/14 and

(
logn

n

)1/4

≤ v/14,

and thus

errn,d ≤ v/7.

Finally, one has ε+ 6errn,d ≤ v, since ε ≤ v/7 by assumption. Hence, ε+ sω + bsup ∈ (0, v]
on the event Ecbad(ηn) ∩ Edist. The lemma is proved. �
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E.1.2 Proof of Lemma 36.

Let us upper bound the probability P(Ω,µ,W )(Ebad(ηn) ∪ Ecdist). The union bound gives

P(Ω,µ,W )(Ebad(ηn) ∪ Ecdist) ≤ P(Ω,µ,W )(Ebad(ηn)) + P(Ω,µ,W )(Ecdist) ≤ P(Ω,µ,W )(Ebad(ηn)) +
2

n

where the last inequality comes from Theorem 7. If the cover defined by Ebad(ηn) satisfies
the condition (39), then Lemma 38 ensures that

P(Ω,µ,W )(Ebad(ηn)) ≤ 2N
(c)
Ω (ηn)nβexp[−β(n− 1)]. (38)

Lemma 38 Let B1, . . . , BN be N balls in (Ω, rW ) of measure (strictly) larger than 1/n,
that is,

min
j≤N

µ(Bj) ≥ β > 1/n (39)

for some real β. Then the probability that (at least) one ball contains exactly zero or one
sampled point is smaller than

2Nnβexp[−β(n− 1)].

Assume that ηn ∈ (0, v] to use the assumption Hα,v
1 . Then, one obtain the following

lower bound for the cover defined by Ebad(ηn),

µ(Bj) ≥ α ηdn = 2 log(n)/n

so that assumption (39) is satisfied. Applying Lemma 38 for β = α ηdn, one has

P(Ω,µ,W )(Ebad(ηn)) ≤ 2N
(c)
Ω (η)nα ηdexp

[
−α ηd(n− 1)

]
.

Combining with the inequality N
(c)
Ω (η) ≤Mη−d from assumption Hm,M,v

2 , one derive

P(Ω,µ,W )(Ebad(ηn)) ≤ 2Mnα exp
[
−α ηd(n− 1)

]
and since αηdn = 2 log(n)/n, one obtain the upper bound

2Mnα exp

[
−2 logn

n
(n− 1)

]
.

The above display is finally smaller than

4Mnαexp [−2 logn] ≤ (4Mα)/n.

To conclude the proof, it remains to check the condition ηn ∈ (0, v] that we assume
earlier. The following assumption of Theorem 35

2
logn

n
≤ α

( v
14

)2d
∧
( v

14

)4

ensures that the radius ηn = [2 log(n)/(αn)]1/d satisfies the condition ηn ∈ (0, v]. Lemma
36 is proved. �
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E.1.3 Proof of Lemma 38.

Given N balls B1, . . . , BN , let us upper bound the probability that (at least) one of the
balls contains exactly zero or one sampled point ωi. With the union bound, this probability
is lower than

N∑
j=1

P(Ω,µ,W ) {Bj contains exactly 0 or 1 sampled point among ω1, . . . , ωn}

which is again upper bounded with the union bound by

N∑
j=1

P(Ω,µ,W ) {Bj contains exactly 0 point}+

N∑
j=1

P(Ω,µ,W ) {Bj contains exactly 1 point} .

Since the probability of the event {Bj contains exactly 0 point} is equal to (1 − µ(Bj))
n,

and since the probability of {Bj contains exactly 1 point} is nµ(Bj)(1 − µ(Bj))
n−1, the

above sum is upper bounded by

N∑
j=1

(1− µ(Bj))
n +

N∑
j=1

nµ(Bj)(1− µ(Bj))
n−1.

Combining the assumption µ(Bj) ≥ β > 1/n with the monotonicity of the functions x 7→
(1− x)n and x 7→ nx(1− x)n−1 on (1/n, 1), one has the following upper bound

N
[
(1− β)n + nβ(1− β)n−1

]
which is lower than 2Nnβ(1− β)n−1 ≤ 2Nnβ exp[−β(n− 1)]. Lemma 38 is proved. �

E.2 Lower Bound and Minimal Conditions

E.2.1 Proof of Theorem 13.

From (Falconer, chap.2), we deduce directly the following lemma.

Lemma 39 Given L > 1 and n ≥ 2, there exists a set Ω0 ⊂ (0, 1/(Ln)) × (0, 1/(Ln))
with Minkowski dimension d2 = 1 + log−1(n) w.r.t the Euclidean distance of [0, 1]2, and a
probability measure µ0 on Ω0.

Based on (Ω0, µ0) described in Lemma 39, we construct two graphons that are difficult
to distinguish for any estimator.

• Ω1 = (0, 1)×{0} ⊂ [0, 1]2 endowed with the uniform measure λ on (0, 1). In particular,
λ((0, 1)× {0}) = 1.

• Ω2 = Ω1 ∪ Ω0 ⊂ [0, 1]2 endowed with the probability measure:

µ2 = (1− n−1)λ+ n−1µ0.
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Consider a symmetric function W : [0, 1]2 × [0, 1]2 → [0, 1] satisfying a double Hölder con-
dition (6) with Hölder exponent α = 1. Then, Appendix A.2 shows that the neighborhood
distance (associated with such a W ) behaves like the euclidean distance on [0, 1]2, i.e.:

rW (ω, ω′) � ||ω − ω||2

for all ω, ω′ ∈ [0, 1]2. Hence, (Ω1, λ,W ) and (Ω2, µ,W ) satisfy dimΩ2 = 1 + log−1(n) and
dimΩ1 = 1, respectively. For brevity, we denote these dimensions by d2 and d1 in the
following.

Let us check that all conditions of Wn(D,α,m,M, v) are satisfied by both graphons
(Ω1, λ,W ) and (Ω2, µ2,W ). It is clear that (Ω1, λ,W ) belongs to the set Wn(D,α,m,M, v)
for large enough M and small enough α,m. For the graphon (Ω2, µ2,W ), one has:

• Assumption Hα,v
1 : for any point ω ∈ Ω0, note ωproj ∈ Ω1 its closest point in Ω1. As

Ω0 ⊂ (0, 1/(Ln))2, we have rW (ω, ωproj) ≤ 1/(2n) for large enough L. Then, for all
ε > 1/n and all ω ∈ Ω0, one has

µ2 [B(ω, ε)] ≥ (1− n−1)λ [B(ω, ε)]

≥ (1− n−1)λ [B(ωproj , ε− 1/(2n))]

≥ 1

2
λ [B(ωproj , ε/2)] .

which is larger than ε (up to a numerical constant) since (Ω1, λ,W ) satisfies the
condition Hα,v

1 for all ε > 0.

• Assumption Hm,M,v
2 lower bound: N

(c)
Ω2

(ε) & N
(c)
Ω1

(ε) & ε−d1 which is larger than

ε−d2+log−1(n) & ε−d2 because εlog−1(n) � 1 for all ε ∈ (1/n, 1).

• Assumption Hm,M,v
2 upper bound:N

(c)
Ω2

(ε) . N (c)
Ω1

(ε)+N
(c)
Ω0

(ε) . N (c)
Ω1

(ε) sinceN
(c)
Ω0

(ε) .

N
(c)
Ω0

(1/n) = 1 for ε > 1/n and large enough L. Combining with the fact that

(Ω1, λ,W ) satisfies Hm,M,v
2 , one obtain N

(c)
Ω2

(ε) . ε−d1 .

Thus, both graphons (Ω1, λ,W ) and (Ω2, µ2,W ) fulfill all conditions of Wn(D,α,m,M, v)
for large enough constants L,M and small enough constants α,m.

We define the event EΩ1 where the i.i.d. sample ω1, . . . , ωn is such that all points
ω1, . . . , ωn belong to Ω1. In particular, for the graphon (Ω2, µ2,W ), the probability of this
event is larger than

µ2[EΩ1 ] ≥ (1− n−1)n ≥ 1

3
.

Then, for any estimator d̂ based on the adjacency matrix A, one has

P(Ω2,µ2,W )

[
|d̂− dimΩ2| ≥

1

2
log−1(n)

]
≥ P(Ω2,µ2,W )

[
|d̂− dimΩ2| ≥

1

2
log−1(n)

∣∣EΩ1

]
µ2(EΩ1)

50



Graphon Dimension

which is larger than
1

3
P(Ω1,λ,W )

[
|d̂− dimΩ1| ≤

1

2
log−1(n)

]
since |d̂− dimΩ1| ≤ 1

2 log−1(n) implies |d̂− dimΩ2| ≥ 1
2 log−1(n). Thus, by writting

p := P(Ω1,λ,W )

[
|d̂− dimΩ1| >

1

2
log−1(n)

]
,

the above displays entail

P(Ω2,µ2,W )

[
|d̂− dimΩ2| ≥

1

2
log−1(n)

]
≥ 1

3
(1− p)

which imply that

sup
Wn(D,α,m,M,v)

P(Ω,µ,W )

[
|d̂− dimΩ| ≥ 1

2
log−1(n)

]
≥ max

(Ω1,λ,W ),(Ω2,µ2,W )
P(Ω,µ,W )

[
|d̂− dimΩ| ≥ 1

2
log−1(n)

]
≥ p ∨ 1− p

3

which is larger than 1/4. Theorem 13 is proved. �

E.2.2 Proof of Theorem 14.

There are two cases.

For the class Wmin(1)
n (D,α,m,M, v), the condition Hα,v

1 is not imposed. Consider the
two following graphons.

• (Ω1, λ,W ) where Ω1 = [0, 1] × {0}D−1 is endowed with the uniform measure λ on
[0, 1], with λ(Ω1) = 1, and where W : [0, 1]D × [0, 1]D → [0, 1] is a symmetric function
that satisfies a double Hölder condition (6) with Hölder exponent α = 1.

• (Ω2, µ2,W ) where Ω2 = [0, 1]D and µ2 = (1 − n−1)λ + n−1ν, with ν the uniform
measure on [0, 1]D.

Following the proof of Theorem 13, we can show that these two graphons belong toWmin(1)
n (D,α,m,M, v),

and that

sup
Wmin(1)
n (D,α,m,M,v)

P(Ω,µ,W )

[
|d̂− dimΩ| ≥ D

2

]
≥ 1

4
(40)

which gives the error bound of Theorem 14.

For the class Wmin(2)
n (D,α,m,M, v), the assumption Hm,M,v

2 is not assumed. As in the

proof of Theorem 13, we can see that the two following graphons belong toWmin(2)
n (D,α,m,M, v).

• (Ω1, λ,W ) as defined in the above case.
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• (Ω2, µ2,W ) where Ω2 = [0, 1/(Ln)]D for some large enough (numerical) constant L,
and µ2 = (1− n−1)λ+ n−1ν, with ν the uniform measure on [0, 1/(Ln)]D.

As before, one can prove the error bound (40) over the class Wmin(2)
n (D,α,m,M, v).

Thus, (40) is proved forWmin(j)
n (D,α,m,M, v), with j ∈ {1, 2}, and Theorem 14 follows.

�

Appendix F. Estimation with Sparse Observations

F.1 Proof of Corollary 19 : Estimation of the Distances

Corollary 19 is a reformulation of Theorem 7 in the sparse setting and their proofs are almost
identical. In this appendix, denote by Wn the function ρnW . Accordingly, rWn denotes the
neighborhood distance (4) where W has been replaced with Wn. Hence, rWn = ρnrW .

Corollary 19 is a direct consequence of the two following Lemmas.

Lemma 40 For ρn ≥ 2
√

logn
n−2 and n ≥ 5, the following event

Espin :=

{
∀i, j ∈ [n] : |〈Ai, Aj〉n − 〈Wn(ωi, .),Wn(ωj , .)〉 | ≤ 5 ρn

√
log n

n

}

holds with probability at least 1− 2
n with respect to the distribution P(Ω,µ,W ),ρn.

Following the proof of Proposition 26, we show Lemma 40 below, by replacing Hoeffding
inequality with Bernstein inequality, in order to benefit from the small variance of Aij
(which is now of the order of ρn).

Lemma 41 Conditionally to the event Espin , the following inequalities

∀i ∈ [n] :
∣∣〈Ai, Am̂(i)〉n − 〈Wn(ωi, .),Wn(ωi, .)〉

∣∣ ≤ 3ρn rWn(ωi, ωm(i) ) + 25 ρn
√

log(n)/n

hold simultaneously.

The proof of lemma 41 is almost the same as for Proposition 27. It is omitted. �

F.1.1 Proof of Lemma 40

Conditionally to ωi, ωj , i 6= j, the n − 2 random variables {AikAkj : k ∈ [n], k 6= i, j}
are independent with expectation E [AikAkj ] =

∫
ΩWn(ωi, z)Wn(ωj , z)µ(dz) for all k 6= i, j

(where E is taken w.r.t. the distribution P(Ω,µ,W ),ρn). Using Bernstein inequality (see
Sridharan, 2002, for instance), one has

P(Ω,µ,W ),ρn

(
1

n− 2

∣∣∣ ∑
k 6=i,j

AikAkj − (n− 2)

∫
Ω
Wn(ωi, z)Wn(ωj , z)µ(dz)

∣∣∣ ≥ ε ∣∣∣∣∣ωi, ωj
)

smaller than

≤ 2exp

(
−(n− 2)ε2

2ρ2
n + 2ε/3

)
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for ε > 0. Since the above inequality is satisfied for almost every ωi, ωj ∈ Ω, we have the

same upper bound for the non-conditional probability. Then, setting ε = 3ρn

√
log n
n−2 gives

2exp

(
−(n− 2)ε2

2ρ2
n + 2ε/3

)
≤ 2exp

 −9 log n

2 + 2
ρn

√
log n
n−2

 ≤ 2

n3

since ρn ≥ 2
√

logn
n−2 by assumption. Thus, by using the union bound over all i 6= j, one

obtain

P(Ω,µ,W ),ρn

( ⋃
i,j:i 6=j

{
1

n− 2

∣∣∣∣∣∣
∑
k 6=i,j

AikAkj − (n− 2)

∫
Ω
Wn(ωi, z)Wn(ωj , z)µ(dz)

∣∣∣∣∣∣ ≥ ε
})
≤ 2

n
.

And finally, following the proof of Proposition 26 leads to

max
i,j:i 6=j

∣∣∣∣∣∑
k

AikAkj
n

−
∫

Ω
Wn(ωi, z)Wn(ωj , z)µ(dz)

∣∣∣∣∣ ≤ 3ρn

√
logn

n− 2
+

4

n

with probability at least 1 − 2
n . To conclude the proof of Lemma 40, observe that above

display is upper bounded by

≤ 5ρn

√
log n

n

as soon as n ≥ 5. �

F.2 Proof of of Corollary 20 : Estimation of the Dimension

In the proof of Theorem 35, one has seen

logm

−log ε
− d(sω + bsup)/ε

−logε
≤

log N̂
(c)
Ω (ε)

−log ε
− d ≤ logM

−log ε
+ d

(sω + bsup)/ε+ ((sω + bsup)/ε)
2

−log ε
.

The sampling error sω is not affected by the sparsification of the data through ρn, and thus
takes the same value as in Theorem 35. On the other hand, the distance error bound bsup
changes, and is now defined as

b2sup := 6 max
1≤i≤n

rW (ωi, ωm(i)) +
60

ρn

√
log(n)/n

according to Corollary 19. Following the proof of Theorem 35, one has

bsup + sω ≤ 6

(
2 logn

αn

)1/2d

+
8
√
ρn

(
logn

n

)1/4

.

Define

errn,d,ρn :=

(
2 logn

αn

)1/2d

+
1
√
ρn

(
logn

n

)1/4

(41)
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so that
bsup + sω ≤ 8 errn,d,ρn .

Following the proof of Theorem 35, one obtain the same error bound for the dimension
estimation, after replacing 6 errn,d with 8 errn,d,ρn . Indeed, one has∣∣∣∣∣ log N̂

(c)
Ω (ε)

−log ε
− d

∣∣∣∣∣ ≤ 1

−log ε

[
log

(
M ∨ 1

m

)
+ 8d

errn,d
ε

(
1 +

errn,d
ε

)]
(42)

for all ε ∈]0, v/9] and all n such that

2logn/n ≤ α (v/18)2d ∧ ρ2
n (v/18)4 .

As in the proof of Theorem 12, one minimizes the error bound (42) by choosing a
particular radius of the order of sup

{d: d≤D}
errn,d,ρn = errn,D,ρn . This gives a radius that

satisfies the following relation

εD,ρn �
(

logn

n

)1/(2D)

∨ 1
√
ρn

(
logn

n

)1/4

.

Corollary 20 follows from the plug-in of εD,ρn in (42). �

Appendix G. Testing the Complexity via Under-estimation of the
Packing Number

The current appendix is organized as follows. We first analyse the performance of the new
distance estimator (19) and then deduce a control on the type I and II errors of the test.

G.1 Performance of the New Distance Estimator

Lemma 42 shows that the new distance-estimator r̂new does not over-estimate rW in the
sense of (44), without underestimating too much (45). Let U be the function defined by

U(i) = argmax t∈{i,m̂(i)}〈W (ωt, .),W (ωt, .)〉 (43)

for all i ∈ [n]. This means that U(i) indicates which of the two functions W (ωi, .) or
W (ωm̂(i), .) has the largest l2-norm ||.||2,µ (see Section 4.1 for the definitions of the inner
product and the norm).

Lemma 42 Consider tn = 12
√

logn
n a fluctuation term and the function U introduced in

(43). One has the following bounds on the new distance estimator (19)

r̂2
new(i, j) ≤ r2

W (ωU(i), ωU(j)) + tn (44)

r̂2
new(i, j) ≥ r2

W (ωi, ωj)− 5 rW (ωi, ωm(i))− 5 rW (ωj , ωm(j))− 5tn (45)

holding simultaneously for all i, j ∈ [n] with probability at least 1 − 2
n with respect to the

distribution P(Ω,µ,W ).
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Let us prove Lemma 42. Recall the useful Proposition 26 on the convergence of the
inner products: the event Ein where the following inequalities hold simultaneously for all
i 6= j

|〈Ai, Aj〉n − 〈W (ωi, .),W (ωj , .)〉 | ≤ 3
√

log n/n (46)

happens with probability at least 1− 2/n.

Proof of (44). Assume the above event Ein holds. For all i, j ∈ [n] such that {i, m̂(i)}∩
{j, m̂(j)} = ∅, the line (46) gives

r̂2
new(i, j) ≤ 〈W (ωi, .),W (ωm̂(i), .)〉+〈W (ωj , .),W (ωm̂(j), .)〉−2 max

v∈{i,m̂(i)},w∈{j,m̂(j)}
〈W (ωv, .),W (ωw, .)〉+tn

with tn = 12
√

logn
n . Then, using the function U defined by (43), one has

r̂2
new(i, j) ≤ 〈W (ωU(i), .),W (ωU(i), .)〉+〈W (ωU(j), .),W (ωU(j), .)〉−2 〈W (ωU(i), .),W (ωU(j), .)〉+tn

which is upper bounded by
r2
W (ωU(i), ωU(j)) + tn

with Cauchy-Schwarz inequality. The line (44) is proved in the case {i, m̂(i)}∩{j, m̂(j)} = ∅.

If {i, m̂(i)} ∩ {j, m̂(j)} 6= ∅, we can see that r̂2
new(i, j) ≤ 0. Thus (44) trivially holds in

this case too. The inequalities (44) are proved. �

Proof of (45). Assume the event Ein of Proposition 26 holds.

If i, j ∈ [n] such that {i, m̂(i)} ∩ {j, m̂(j)} = ∅,∣∣r2
W (ωi, ωj)− r̂2

new(i, j)
∣∣ ≤ ∣∣r2

W (ωi, ωj)− r̂2(i, j)
∣∣+
∣∣r̂2(i, j)− r̂2

new(i, j)
∣∣

by triangle inequality. The left term is upper bounded by

3 rW (ωj , ωm(j) ) + 3 rW (ωi, ωm(i) ) + 36
√

log(n)/n

thanks to Theorem 7. The right term is equal to

2

∣∣∣∣〈Ai, Aj〉 − max
k∈{i,m̂(i)},l∈{j,m̂(j)}

〈Ak, Al〉
∣∣∣∣

which is upper bounded by

rW (ωj , ωm(j) ) + rW (ωi, ωm(i) ) + 12
√

log(n)/n

using the same technique as in the proof of Theorem 7. Combining the above displays, one
has ∣∣r2

W (ωi, ωj)− r̂2
new(i, j)

∣∣ ≤ 5 rW (ωj , ωm(j) ) + 5 rW (ωi, ωm(i) ) + 60
√

log(n)/n,

which implies

r̂2
new(i, j) ≥ r2

W (ωi, ωj)− 5 rW (ωj , ωm(j) )− 5 rW (ωi, ωm(i) )− 60
√

log(n)/n. (47)
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The line (45) is therefore proved in the case {i, m̂(i)} ∩ {j, m̂(j)} = ∅.

If i, j ∈ [n] such that {i, m̂(i)} ∩ {j, m̂(j)} 6= ∅,

r̂new(i, j) = 0.

Hence, it is enough to show that the right hand side of (47) is non-positive. Consider the
particular case where m̂(i) = j and i 6= m̂(j) for example. Then, one has

|r̂2(i, j)| =
∣∣〈Am̂(j), Aj〉 − 〈Ai, Aj〉

∣∣ ≤ |〈Ai, Aj −Am̂(j)〉|+ |〈Ai −Aj , Am̂(j)〉|

which is upper bounded by
f̂(j,m(j)) + f̂(i,m(i))

where f̂ has been introduced in (9). As in the proof of Theorem 7, one can show that the
above display is upper bounded by

rW (ωj , ωm(j) ) + rW (ωi, ωm(i) ) + 12
√

log(n)/n

on the event Ein. Combining this upper bound of r̂ with the following lower bound from
Theorem 7

r̂2(i, j) ≥ r2
W (ωi, ωj)− 3 rW (ωi, ωm(i))− 3 rW (ωj , ωm(j))− 36

√
log(n)/n, (48)

one derive

r2
W (ωi, ωj) ≤ 4 rW (ωi, ωm(i)) + 4 rW (ωj , ωm(j)) + 48

√
log(n)/n.

This implies that the right hand side of (47) is non positive. Hence (45) is proved in the
particular case m̂(i) = j and i 6= m̂(j). By symmetry, it remains only the case m̂(i) = m̂(j)
to do. Following the above proof, we can show taht (45) holds for this case too. The
inequality (45) is therefore proved in the case {i, m̂(i)} ∩ {j, m̂(j)} 6= ∅.

The line (45) is proved, and Lemma 42 follows. �

G.2 Control on the Type I and II Errors

In Theorem 16 on the new packing number estimator, the left hand side of (20) is similar
to Section 4.3 on the covering number estimator, and thus straightforward. The right hand
side of (20) and Corollary 17 are proved together below.

G.2.1 Proof for the Type I Error

Assume the null-hypothesis N
(p)
Ω (ε) ≤ K holds. We want to show that the same inequality

is satisfied by the statistic N̂
(p.new)
Ω (ε̂). Proof by contradiction: assume the inequality

N̂
(p.new)
Ω (ε̂) ≥ K + 1 holds. This means that there are K + 1 indices i1, . . . , iK+1 ∈ [n] such

that the following inequalities hold

∀s, t ∈ {1, . . . ,K + 1} : ε̂2 < r̂2
new(is, it).
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Combining the above inequalities with the under-estimation property (44), one has

∀s, t ∈ {1, . . . ,K + 1} : ε̂2 < r2
W (ωU(is), ωU(it)) + tn

with probability at least 1− 2/n. Replacing the radius ε̂2 by its value ε2 + tn, it comes

∀s, t ∈ {1, . . . ,K + 1} : ε2 < r2
W (ωU(is), ωU(it)).

Thus, K + 1 sampled points are separated by at least a distance ε, which implies N
(p)
Ω (ε) ≥

K + 1. This contradicts the null-hypothesis. �

Corollary 17 and Theorem 16 are therefore proved.

G.2.2 Proof for the Type II Error (Theorem 18).

Consider a graphon (Ω, µ,W ) in the set W(η, β). By definition of W(η, β), there are K + 1
balls in (Ω, rW ) whose centers are separated by at least a distance

√
ε2 + 10η + 6tn + η.

Label these balls by s ∈ {1, . . . ,K + 1}. As in the proof for the dimension estimation,
assume the complementary of the event Ebad, i.e. assume that each of the K + 1 balls
contains at least two sampled points. Accordingly, denote by i1, j1, . . . , iK+1, jK+1 the
indices of the corresponding sampled points such that ωis , ωjs belong to the sth ball with
s ∈ {1, . . . ,K + 1}. Since the radius of these ball is smaller than η/2, one has

rW (ωis , ωm(is)) ≤ rW (ωis , ωjs) ≤ η (49)

for all s ∈ {1, . . . ,K + 1}.
On the event Ein of Proposition 26, Lemma 42 gives

r̂2
new(is, it) ≥ r2

W (ωis , ωit)− 5 rW (ωis , ωm(is))− 5 rW (ωjs , ωm(js))− 5tn.

for all s 6= t ∈ {1, . . . ,K + 1}. Using (49), one derive

r̂2
new(is, it) ≥ r2

W (ωis , ωit)− 10η − 5tn. (50)

The ball centers are separated by at least a distance
√
ε2 + 10η + 6tn + η by assumption,

which implies that the points in these balls are separated by

rW (ωis , ωit) >
√
ε2 + 10η + 6tn

for all s 6= t ∈ {1, . . . ,K + 1}, since the ball radii are all smaller than η/2. Combining this
inequality with the line (50), one obtain

r̂2
new(is, it) > ε2 + tn

for all s 6= t ∈ {1, . . . ,K + 1}. Since ε̂ =
√
ε2 + tn, this gives N̂

(p.new)
Ω (ε̂) ≥ K + 1. Thus,

the alternative hypothesis is confirmed correctly.

The above displays hold on the event Ein ∩ Ecbad. Let us upper bound the probability of
the complementary event. The union bound gives

P(Ecin ∪ Ebad) ≤
2

n
+ (K + 1)2nβ exp[−β(n− 1)]

thanks to Proposition 26 and Lemma 38. Theorem 18 is then proved. �
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G.2.3 Proof for the Improvement of the Type II Error (Theorem 21).

We have seen that the type II error is upper bounded by the probability of the event
Ecin ∩ Ebad. Here the only difference is that Ebad refers to the new event where, for each of
the M collections of K + 1 + K ′ balls, at least K ′ + 1 balls contain strictly less than two
sampled points. For clarity, label these collections by {1, . . . ,M}, and denote by Cj the
event where at least K ′+ 1 balls of the jth collection contain strictly less than two sampled
points. Then, we have

P[Ebad] = P[C1 ∩ . . . ∩ CM ]

where P denote the probability distribution P(Ω,µ,W ) of the W-random graph. The above
display is equal to

P[ C1]× P[C2

∣∣C1]× . . .× P[CM
∣∣C1, . . . , CM−1]

which is upper bounded by
P[ C1]× P[C2]× . . .× P[CM ]

since the events C1, . . . CM are negatively associated (it is shown at the end of the proof).
Finally, we have

P[Ebad] ≤ P[C1]M . (51)

Given the first collection of K + 1 +K ′ balls, denote by Ej the event where the jth ball
of the collection contains strictly less than two sampled points. By definition of the event
C1, we have

P[ C1] = P[ ∃ i1, . . . , iK′+1 ∈ {1, . . . ,K + 1 +K ′} : Ei1 ∩ . . . ∩ EiK′+1
].

The union bound gives

P[ C1] ≤
∑

i1,...,iK′+1

P[ Ei1 ∩ . . . ∩ EiK′+1
]

where the sum is taken over all possible K ′ + 1 different indices. The above upper bound
is equal to ∑

i1,...,iK′+1

P[ Ei1 ]× P[Ei2
∣∣Ei1 ]× . . .× P[EiK′+1

∣∣Ei1 , . . . , EiK′ ].
which is smaller than ∑

i1,...,iK′+1

P[ Ei1 ]× . . .× P [EiK′+1
] (52)

by negative association of the events Ek (this fact is proved at the end). Finally, Lemma 38
ensures that

P[ Ek] ≤ 2βn exp[−β(n− 1)]

for all k, which allows to upper bound (52) and have

P[ C1] ≤
(
K +K ′ + 1

K ′ + 1

)(
2βn exp[−β(n− 1)]

)(K′+1)
. (53)
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Thus, setting p̃n = P[C1], we deduce from (51) that

P(Ecin ∪ Ebad) ≤ P(Ecin) + P(Ebad) ≤
2

n
+ p̃Mn ,

where p̃n is upper bounded by (53).

It remains to show the negative association that we use in the above proof. Given the first
collection of K+1+K ′ balls, let us show that the corresponding events E1, . . . , EK+1+K′ are
negatively associated. For the n sampled points ω1, . . . , ωn, define nj the number of points
in the jth ball of the collection. Theorem 13 of Dubhashi and Ranjan (1998) ensures that
the variables n1, . . . , nK+1+K′ are negatively associated. Define the non-increasing function
h(nj) = IEj where IEj is the indicator function of Ej . The second point of Proposition 7 of
Dubhashi and Ranjan (1998) shows that h(n1), . . . , h(nK+1+K′) are negatively associated.
This means that the events E1, . . . , EK+1+K′ are negatively associated.

Similarly, we show the negative association of the events C1, . . . , CM . Consider ntj the

number of sampled points in the jth ball of the tth collection. These variables are negatively
associated according to Theorem 13 of Dubhashi and Ranjan (1998). Define the non-
increasing functions ht(n

t
1, . . . , n

t
K+1+K′) = I Cj for all t ≤ M . Then, Proposition 7 of

Dubhashi and Ranjan (1998) shows that I C1 , . . . , I CM are negatively associated.

Theorem 21 is proved. �
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