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Abstract

Recommender systems have been extensively used by the entertainment industry, busi-
ness marketing and the biomedical industry. In addition to its capacity of providing
preference-based recommendations as an unsupervised learning methodology, it has been
also proven useful in sales forecasting, product introduction and other production related
businesses. Since some consumers and companies need a recommendation or prediction
for future budget, labor and supply chain coordination, dynamic recommender systems
for precise forecasting have become extremely necessary. In this article, we propose a new
recommendation method, namely the dynamic tensor recommender system (DTRS), which
aims particularly at forecasting future recommendation. The proposed method utilizes a
tensor-valued function of time to integrate time and contextual information, and creates
a time-varying coefficient model for temporal tensor factorization through a polynomial
spline approximation. Major advantages of the proposed method include competitive fu-
ture recommendation predictions and effective prediction interval estimations. In theory,
we establish the convergence rate of the proposed tensor factorization and asymptotic nor-
mality of the spline coefficient estimator. The proposed method is applied to simulations,
IRI marketing data and Last.fm data. Numerical studies demonstrate that the proposed
method outperforms existing methods in terms of future time forecasting.
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1. Introduction

Recommender systems (RS) are widely used in our daily lives, such as for selecting movies,
restaurants, news articles, or online shopping. As one of the information filtering techniques,
RS can help users to find interesting items through combining several information sources,
e.g., users’ ratings and purchasing histories, item profiles and sales volumes, time, location,
and companion or promotion strategies. Particularly, incorporating time is useful in RS
since users’ purchase behaviors are dynamic and often highly dependent on seasonal and
time factors, and business sectors also rely on dynamic recommendations to track users’
changing purchase interests over time. Thus, it is essential to capture information related
to time and develop time-dependent RS, and we refer this as dynamic RS (DRS).

However, developing competitive DRS brings new challenges. First, since data are
streaming in over time and are time-dependent, general RS methods which are not capable of
capturing time-dependency features may have reduced recommendation accuracy. Second,
forecasting future recommendations accurately is also a great challenge for DRS due to the
complexity of changing users’ interests. For example, users might like to watch news on
weekdays, but watch movies on weekends. A shoe store sells more sandals in summer and
more snow boots in winter. It is important to borrow information from historical data in
developing trends. Many RS methods are not designed to capture trends and predict future
recommendations. In addition, as data are streaming in over time, future recommendations
could involve new users or new items, whose information is not available from historical data.
This is also a common problem encountered in RS, referred as the “cold start” problem.

General RS approaches include content-based filtering and collaborative filtering (CF).
Traditionally, content-based filtering methods recommend similar types of items by match-
ing a user’s preferred item profile with current item’s profile (e.g., Salter and Antonopoulos,
2006; Son and Kim, 2017). In contrast, CF methods recommend items by predicting item
ratings for the active user based on ratings from other similar users (e.g., Herlocker et al.,
2004; Luo et al., 2012). On the basis of CF methods, research work related to DRS have
been developed in recent years (e.g., Koren, 2009; Gultekin and Paisley, 2014; Yu et al.,
2016; Wu et al., 2017; Guo et al., 2018; Xiong et al., 2010; Rafailidis and Nanopoulos, 2014;
Bi et al., 2018; Wu et al., 2019). However, most of these methods can only make recommen-
dations for observed discrete time points, and are not designed for future recommendation
prediction on unobserved time points. Liao et al. (2018) constructed dynamic tensors by
means of combining tensors in tensor stream. Song et al. (2019) used temporal matrix
factorization to construct temporal recommender model assuming that users’ current in-
terests are transformed from the previous time step with a Markov property. Liu and Ye
(2020) proposed a dynamic three-way granularity recommendation based on matrix factor-
ization. However, neither of these methods can handle higher-orders tensors. Moreover,
these methods cannot make recommendations for future time points.

To make future recommendations, Yu et al. (2016) developed a CF method incorporating
a time series model, and Wu et al. (2017, 2019) proposed CF methods incorporating long
short-term memory modeling, but they cannot deal with new users, items or contextual
variables. Xiong et al. (2010) used a Bayesian estimation procedure with a time-dependent
constraint to estimate DRS for new users and items but cannot deal with new time points.
Bi et al. (2018) created an additional layer of nested latent factors for new time points,
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users and items. However, Xiong et al. (2010) and Bi et al. (2018) can only estimate the
components of a tensor at fixed time points instead of at any time point in a continuous
time interval. In addition, for forecasting at future time points, their methods may involve
an increasing number of parameters if time is treated as an additional tensor mode, which
could be computationally costly.

Currently, there are several dynamic recommender systems based on neural network
approaches. For example, Ko et al. (2016) used Gated Recurrent Units (GRUs) to build
collaborative sequence model. Devooght and Bersini (2017) utilized a long short-term mem-
ory (LSTM) method to address changes in the interests of a user. Wei et al. (2017) utilized
the stacked denoising autoencoder (SDAEs) to extract features of items. Livne et al. (2019)
applied a LSTM encoder-decoder network on sequences of contextual information. How-
ever, none of these methods are able to accommodate contextual information, and solve the
“cold-start” problem simultaneously. Some of these methods may have obvious hysteresis
in forecasting, which could influence the accuracy of recommendation.

In this article, we propose a tensor-valued function of time for estimating the DRS
and build a new time-varying coefficient model based on tensor canonical polyadic de-
composition (CPD) framework; namely, the dynamic tensor recommender system (DTRS).
Specifically, we introduce a tensor-valued function of time with each mode corresponding
to user, item or a contextual variable, where each component of the tensor is a function
of time and has intra-cluster correlation. In the CPD framework, we build a time-varying
coefficient model incorporating group information of time points, users, items and contexts.
We approximate each coefficient function by a polynomial spline and employ group factors
to explore homogeneous group effects. We adopt the weighted least square approach to
incorporate intra-cluster correlation for more efficient estimation. In addition, we construct
the prediction intervals of estimators of tensor components to forecast the confidence range
of predicted values. In theory, we establish the convergence rate of the proposed tensor
factorization and the asymptotic property of the spline parametric estimator.

The proposed method has two significant contributions. First, it can effectively provide
recommendations for an entire future interval as opposed to a series of limited time points.
This is because the proposed method integrates time dependency feature to the dynamic
recommender systems using the time-varying coefficient model in tensor factorization to
capture dynamic trends of recommender systems. In addition, the proposed method can
achieve accurate forecasts for long time period through the spline extrapolation technique.
Furthermore, the proposed subgroup factors extract homogeneous information from the
same group to provide recommendation forecasting for future time points, and consequently
solves the “cold start” problem.

Second, we establish the asymptotic distribution of the proposed estimators in that sta-
tistical inferences such as prediction interval can be formulated. In practice, it is desirable
to know the upper and lower bounds for predictions, e.g., the highest possible cost, or the
future sales volumes or revenues in the worst case scenario. However, existing methods on
prediction intervals are mostly univariate or multivariate time series, and the prediction in-
tervals for user-item-context interactions under a tensor framework have not been developed.
In contrast, our approach allows prediction intervals for each element of a tensor-valued
function, which provides a more complete picture of the dynamic recommender system over
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time. Our numerical studies also demonstrate that the proposed approach provides effective
prediction interval estimators.

The remainder of the paper is organized as follows. Section 2 introduces the notation
and background on tensor and tensor factorization. Section 3 presents the proposed method
and its implementation. Theoretical properties are derived in Section 4. Section 5 presents
simulation studies to assess the performance of the proposed approach. In Section 6, we
apply the proposed method to the IRI marketing data and Last.fm data. Concluding
remarks and discussion are provided in Section 7.

2. Notation and Background

In this section, we introduce some notation and the background of the tensor and classical
DRSs. Throughout this article, we use blackboard capital letters for sets, e.g., T, I, small
letters for scalars, e.g., x, y ∈ R, bold small letters for vectors, e.g., x,y ∈ Rn, bold capital
letters for matrices, e.g., X,Y ∈ Rn1×n2 , and Euler script fonts for tensors, e.g., X ,Y ∈
Rn1×n2×···×nd (d > 2).

A dth-order tensor is an array with d dimensions (d > 2), which is an extension of a
matrix to higher order. Here d represents the tensor’s order. We denote the component
(i1, i2, · · · , id) of a dth-order tensor Y by yi1i2···id , where ik = 1, 2, . . . , nk, and k is called a
mode of the tensor (k = 1, 2, . . . , d ). In particular, a tensor Y is called a rank-one tensor if
it can be written as Y = p1 ◦ p2 ◦ · · · ◦ pd, where the symbol ◦ represents the vector outer
product, and pk = (pk1, p

k
2, · · · , pknk

)> is a nk-dimensional latent factor corresponding to the
kth mode. That is, each component of the tensor is the product of the corresponding vector
components: yi1i2···id = p1

i1
p2
i2
· · · pdid .

Figure 1: Illustration of factorizations of a matrix and a third-order tensor. (a) factorization of a matrix
into r rank-1 matrices, (b) CPD of a third-order tensor into r rank-1 tensors.
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The canonical polyadic decomposition (CPD) is commonly adopted in tensor decompo-
sition, which decomposes a tensor as a sum of r rank-one tensors. That is:

Y ≈
r∑
j=1

p1
·j ◦ p2

·j ◦ · · · ◦ pd·j ,

where pk·j = (pk1j , · · · , pknkj
)> is a nk-dimensional latent factor corresponding to the kth mode

for k = 1, . . . , d; j = 1, . . . , r. Equivalently, each component of Y is

yi1i2···id ≈
r∑
j=1

p1
i1jp

2
i2j · · · p

d
idj
.

The CPD can be considered to be a higher-order generalization of matrix factorisation.
Figure 1 illustrates a matrix factorization of a matrix and a CPD of a third-order tensor.
An extensive review of tensors and other forms of tensor decomposition are discussed in
Kolda and Bader (2009).

Let Pk = (pk·1,p
k
·2, . . . ,p

k
·r)nk×r and θ = {P1,P2, · · · ,Pd}. We can estimate θ via mini-

mizing a loss function (e.g., L2 loss). However, the non-convexity of the loss function could
impose computational complexity due to numerical instability or even non-convergence
(de Silva and Lim, 2008; Frolov and Oseledets, 2017). A common approach to alleviate the
non-convexity problem is to introduce regularization. That is, an objective function with
regularization as the following:

L(θ|Y) = Q(Y,θ) + J(θ),

where Q is a loss function and J is a penalty function, such as L2, L1 or L0 penalties, or a
fused Lasso.

Specially, the optimization problem solves θ∗ = arg minL(θ|Y), where θ∗ defines an
optimal set of model parameters. In the case of squared loss function with an L2-penalty,
the objective function is

L(θ|Y) =
∑

(i1,i2,...,id)∈Ω

(yi1i2···id −
r∑
j=1

p1
i1jp

2
i2j · · · p

d
idj

)2 + λ
d∑

k=1

‖Pk‖2F ,

where ‖ · ‖F represents the Frobenius norm, and Ω = {(i1, i2, . . . , id) : yi1i2...id is observed}
is a set of indices corresponding to the observed components. Notice that, in the context
of RS, the set Ω may not contain all indices of the tensor components and could be a small
fraction of the entire tensor size, since the majority of the tensor components could be
missing. Major algorithms for implementing the optimization problem include the cyclic
coordinate descent algorithm, the stochastic gradient descent method and the maximum
block improvement algorithm (Chen et al., 2012).

Following the tensor techniques, the classical DRSs can incorporate time as an additional
mode of a tensor, that is, Y ∈ Rn1×n2×···×nd×T , where the last mode is a time mode at fixed
time points {t1, t2, · · · , tT }. The classical DRSs use CPD to obtain component estimators,
that is,

yi1i2···idt ≈
r∑
j=1

p1
i1jp

2
i2j · · · p

d
idj
qtj for t = t1, t2, · · · , tT ,
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Figure 2: Third-order tensor-valued process.

where q·j = (qt1j , · · · , qtT j)> is a T -dimensional latent factor corresponding to the time mode.
However, the classical DRSs can only estimate the values yi1i2···idt at fixed time points t.
If one needs to estimate the values yi1i2···idt for t ∈ (ti, ti+1), where i ∈ {1, 2, · · · , T}, the
classical DRSs are not applicable. Moreover, if one needs to forecast the values yi1i2···idt for
t > tT , the classical DRSs need to extend the time mode to future time points. However,
this involves an increasing number of parameters over time which could be computationally
infeasible. In addition, the classical methods only focus on the estimations of the tensor
components but do not provide statistical inference, e.g., the estimation of prediction in-
tervals. In practice, providing the upper and lower bounds of predictions are also crucial in
decision making. In the following, we pursue an alternative approach to solve this problem.

3. The Proposed Method

3.1 General Methodology

In this subsection, we develop the methodology for the proposed DTRS method. Specifically,
we adopt the ideas of time-varying coefficient model framework to generalize the CPD to
capture the trends of the DRS, and classify time points into subgroups to infer new time
point trends through existing time points of the same group.

We consider a dth-order tensor-valued function Y(t) ∈ Rn1×n1×...×nd , where the value
at time t is a d-dimensional array. The tensor set Y = {Y(t) : t ∈ T} is the corresponding
stochastic process defined on a compact interval T. Without loss of generality, let T be a
closed interval [0, 1]. Figure 2 illustrates an example of a tensor-valued process with d = 3.
In the DRS, the tensor-valued process could be the rating or sale volume of items or products
from users or stores given contexts. We assume that time points can be categorized into
different subgroups, where time points of the same group have common information. For
example, in our numerical studies, time points in the same month from the twelve months
of each year are categorized in the same group. In addition to time, we also categorize
subjects from other modes into subgroups if they share similar characteristics, for example,
stores of the same market and products of the same product category.

Given the subgroup labels, we assume that each component of Y(t) can be estimated:

yi1i2···id(t) ≈
r∑
j=1

hj(t)p
1
i1jp

2
i2j · · · p

d
idj

+ g(t)q1
i1q

2
i2 · · · q

d
id
, (1)

where pkikj and qkik are the jth latent factor and the subgroup factor for the ikth subject
from the kth mode, respectively. Here, hj(t) is a trend function of time for j, and g(t) =∑md+1

e=1 ge(t)I(t ∈ se), where I(t ∈ se) is an indicator function and assigns the interval se on
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the eth subgroup, ge(t) is a trend function corresponding to the eth subgroup, and md+1 is
the number of subgroups for time. We have qkik = qki′k

= qk(ek) if the ikth and i′kth subjects

are from the ekth subgroup (ek = 1, 2, . . . ,mk), where qk(ek) is the subgroup factor associated
with the ekth subgroup, and mk is the number of subgroups for the kth mode. We denote
the set of observed time points for the component yi1i2···id(t) by Ti1i2...id , and the number
of components of this set by |Ti1i2...id |. Let yi1i2...id = {yi1i2···id(t)}t∈Ti1i2...id

. We assume

that the covariance matrix is cov(yi1i2...id) = Σ0
i1i2...id

, typically not an identity matrix due
to the intra-cluster correlation arising from repeated observed data.

Equation (1) adopts the idea of varying-coefficient models to create a CPD for ten-
sor data. Varying-coefficient models are a useful tool to explore dynamic patterns, and
have been applied to modeling and predicting longitudinal, functional and time series data
(Huang and Shen, 2004; Fan and Zhang, 2008). Based on the varying-coefficient models,
through the equations (1), we can obtain estimators of the component of tensor-value func-
tion at any time points in a continuous time interval (e.g., t ∈ (a, b)) instead of at fixed
time points as in the DRS approaches (e.g., Xiong et al., 2010; Bi et al., 2018). The first
part of equation (1) is an individual-level factor model which takes into account the hetero-
geneity of subjects and trend of time, and the time-varying coefficients hj(t) (j = 1, . . . , r)
reflect the dynamic features. The second part of equation (1) is a subgroup-level factor
model to capture common features from the same subgroups, where the subgroup factors
can accommodate new subjects from any mode at future time points, and the g(t) allows
time variables to follow a subgroup function of time such that we can predict future time
points via borrowing information from existing time points of the same group.

To capture these trend functions, we adopt the polynomial splines to approximate hj(t)
and ge(t). Let {νji}aNi=1 be interior knots within T, and Υj be a partition of T with aN knots,
that is Υj = {0 = νj0 < νj1 < · · · < νjaN < νjaN+1 = 1} for j = 1, 2, . . . , d. The polynomial
splines of an order κ+1 are functions with κ-degree of polynomials on intervals [νji−1, νji) for
i = 1, 2, . . . , aN and [νjaN , νjaN+1], and have κ− 1 continuous derivatives globally. Denote
a spline bases vector of the space of such spline functions as Bj(t) = (Bj1(t), . . . , BjM (t))>,
where M = aN + κ + 1 as the number of spline bases. The function hj(t) (j = 1, 2, . . . , d)
can be approximated by

ĥj(t) =
∑M

i=1 αjiBji(t) = α>jBj(t),

where αj = (αj1, αj2, . . . , αjM )> is a coefficient vector. Spline functions can be B-spline
or truncated polynomial functions. For example, for the truncated polynomial function,
Bj(t) = (1, t, . . . , tκ, (t − νj1)κ+, . . . , (t − νjaN )κ+)>, and the (t − ν)+ is t − ν if t > ν and 0
otherwise.

Similarly, let {ωei}aNi=1 be interior knots within T, Γe = {0 = ωe0 < ωe1 < · · · <
ωeaN < ωeaN+1 = 1}, and Ae(t) = (Ae1(t), . . . , AeM (t))> be a vector of spline bases for
e = 1, 2, . . . ,md+1. The ge(t) can be approximated by

ĝe(t) =
M∑
i=1

βeiAei(t) = β>eAe(t),
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where βe = (βe1, βe2, . . . , βeM )>. Based on equation (1), the prediction can be obtain as
follows

ŷi1i2···id(t) =
r∑
j=1

ĥj(t)p
1
i1jp

2
i2j · · · p

d
idj

+ ĝ(t)q1
i1q

2
i2 · · · q

d
id
, (2)

where ĝ(t) =
∑md+1

e=1 ĝe(t)I(t ∈ se). The equation (2) can capture trends of the DRS suffi-
ciently through the polynomial spline approximations of time-varying coefficient functions.
In addition, since the spline approximation is computationally fast (Xue and Yang, 2006),
the equation (2) can achieve the spline estimates of the coefficients efficiently, and this is
especially advantageous in estimating high-dimensional parameters in RS. In contrast to
these approaches like Xiong et al. (2010) and Bi et al. (2018), equation (2) can achieve
forecasting at any future time points without requiring an increasing number of parameters
over time. Note that the proposed method does not require the same number of knots and
the same degree polynomial for either trend functions. In order to reduce the computational
cost, we fixed the same numbers of knots and the same degree polynomial. We can also
adopt different number of knots or different degree polynomial for different trend functions
g(t) and hj(t) respectively, or apply existing methods (Van Loock et al., 2011; Yuan et al.,
2013; Dung and Tjahjowidodo, 2017) to identify the number of knots.

Due to the intra-cluster correlation, it is important to incorporate intra-cluster correla-
tion into RS. However, in practice, the covariance matrix Σ0

i1i2...id
is often unknown. We

adopt an invertible working covariance matrix, denoted as Σi1i2...id , to take into account the
intra-cluster correlation. Let P = (P1>, · · · ,Pd>), q = (q(1)>, · · · ,q(d)>)>, α = (α>1, . . . ,α

>
r)
>,

β = (β>1, . . . ,β
>
md+1

)>, and γ = (α>,β>)>, where Pk = (pk·1, . . . ,p
k
·r), pk·j = (pk1j , · · · , pknkj

)>,

q(k) = (qk(1), . . . , q
k
(mk))

>, and k = 1, . . . , d. Define θ = {P,q,γ} as parameters of interest.
Considering the intra-cluster correlation and non-convexity problem, we define the following
weighted penalized objective function:

L(θ|Y) =
∑

(i1,i2,···,id)∈Ω

(yi1i2...id−ŷi1i2...id)>Σ−1
i1i2...id

(yi1i2...id−ŷi1i2...id)+λ(‖P‖2F+‖q‖22+‖γ‖22),

(3)
where λ is the penalized parameter, Ω = {(i1, i2, . . . , id) : yi1i2···id(t) is observed at some t},
‖ · ‖2 is the Euclidean norm, and ŷi1i2...id = {ŷi1i2···id(t)}t∈Ti1i2...id

is a |Ti1i2...id | × 1 vector.

The matrix Σi1i2...id is an approximation of the true covariance Σ0
i1i2...id

, and can be

modeled as Σi1i2...id = V
1/2
i1i2...id

Ri1i2...idV
1/2
i1i2...id

, where Vi1i2...id is a diagonal matrix of
the marginal variance of yi1i2...id , and Ri1i2...id is a working correlation matrix for yi1i2...id .
Some commonly used working correlation structures include independence, exchangeable,
and first-order autoregressive process (AR-1), among others. Given a working correlation
structure, the working correlation matrix depends on fewer nuisance parameters which
can be estimated by the residual-based moment method (Liang and Zeger, 1986). The
proposed method is robust to the misspecification of correlation structure as indicated by
our numerical examples.

3.2 Parameter Estimation

In this subsection, we discuss parameter estimation by minimizing (3). Let pkik = (pkik1, · · · ,
pkikr)

> and Ωk
ik

= {(i1, . . . , ik, . . . , id) : yi1···ik···id(t) is observed at some t given ik} be the
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set of indices with the fixed kth mode index ik, where the corresponding components are
observed at some time points. We assume that the number of observations for each time
subgroup se is larger or equal than 2 for e = 1, . . . ,md+1, and the number of observations for
each subgroup ek from the kth mode is larger or equal than 2 for ek = 1, . . . ,mk; k = 1, . . . , d.
The partial derivatives of the objective function (3) have explicit forms with respect to the
individual factors, the subgroup factors and the spline coefficients, which makes it feasible
to apply the blockwise coordinate descent approach (BCD). That is, for ik = 1, . . . , nk and
k = 1, . . . , d,

p̂kik = arg min
pk
ik

∑
Ωk

ik

(yi1···ik···id − ŷi1···ik···id)>Σ−1
i1···ik···id(yi1···ik···id − ŷi1···ik···id) + λ‖pkik‖

2
2, (4)

q̂(k) = arg min
q(k)

∑
Ω

(yi1i2···id − ŷi1i2···id)>Σ−1
i1i2···id(yi1i2···id − ŷi1i2···id) + λ‖q(k)‖22, (5)

α̂ = arg min
α

∑
Ω

(yi1i2···id − ŷi1i2···id)>Σ−1
i1i2···id(yi1i2···id − ŷi1i2···id) + λ‖α‖22, (6)

β̂ = arg min
β

∑
Ω

(yi1i2···id − ŷi1i2···id)>Σ−1
i1i2···id(yi1i2···id − ŷi1i2···id) + λ‖β‖22. (7)

In fact, the estimation procedure of p̂kik in (4) is a ridge regression, and does not require

knowing pki′k
for i′k 6= ik. Thus, parallel computation is applicable to calculate p̂k1, . . . , p̂

k
nk−1

and p̂knk
efficiently. The minimization of L(θ|Y) can be done cyclically through estimating

P, q, α and β. Notice that Ω = ∪nk
ik=1Ωk

ik
, and it is possible that Ωk

ik
is empty for certain ik’s,

that is, there is no observation on the subject ik. Under this circumstance, the individual
factor of the ik subject is assigned as pkik = 00, and the predicted values may degenerate
to the subgroup-level factor model by utilizing information from members of the same
subgroup.

3.3 Implementation

In the following, we discuss several implementation issues. To solve the objective function
(3), we incorporate the maximum block improvement (MBI) strategy (Chen et al., 2012)
into the BCD algorithm cyclically as in Bi et al. (2018). The MBI has two advantages
over traditional cyclic BCD algorithms. First, it has a good algorithmic property which
guarantees convergence to a stationary point, whereas traditional BCDs may end up with
certain points where the criterion function ceases to decrease (Chen et al., 2012). Second,
the MBI has the capability of choosing descending directions and hence has the possibility
to discover “shortcuts”, which may reduce the computational time significantly. Let θ̂l be
an estimator of θ at the lth iteration, θa be a subset of θ, θc be the complementary set of
θa, and θ̂

∗
a be the attempted update of θa. The improvement of the θ̂

∗
a is defined as

Jθ̂∗a
= 1−

L(θ̂
∗
a, θ̂

c

l−1|Y)

L(θ̂l−1|Y)
. (8)

We summarize the implementation of the specifical algorithm as follows.
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Algorithm Implementation Algorithm

1: (Initialization) Input all observed yi1i2···id(t)’s, the number of factors r, tuning parameter
λ, initial value θ0 and a stopping criterion ε = 10−4.

2: (Individual factors update) At the lth iteration, estimate {P1,P2, · · · ,Pd,α}.

(i) For each Pk, solve (4) through parallel computing and obtain P̂k∗. Then calculate
J
P̂k∗ through (8).

(ii) For α, solve (6) and obtain α̂∗. Then calculate Jα̂∗ through (8).

(iii) Assign
P̂k
l ← P̂k∗, if J

P̂k∗ = max{J
P̂1∗ , JP̂2∗ , · · · , JP̂d∗ , Jα̂∗}.

α̂(l) ← α̂∗, if Jα̂∗ = max{J
P̂1∗ , JP̂2∗ , · · · , JP̂d∗ , Jα̂∗}.

3: (Subgroup factors update) At the lth iteration, estimate {q(1),q(2), · · · ,q(d),β}.

(i) For every q(k), solve (5) and obtain q̂(k)∗. Then calculate Jq̂(k)∗ through (8).

(ii) For β, solve (7) and obtain β̂
∗
. Then calculate Jβ̂∗ through (8).

(iii) Assign

q̂
(k)
l ← q̂(k)∗, if Jq̂(k)∗ = max{Jq̂(1)∗ , Jq̂(2)∗ , · · · , Jq̂(d)∗ , Jβ̂∗}.
β̂(l) ← β̂

∗
, if Jβ̂∗ = max{Jq̂(1)∗ , Jq̂(2)∗ , · · · , Jq̂(d)∗ , Jβ̂∗}.

4: (Stopping Criterion) Stop if max{J
P̂1∗ , JP̂2∗ , · · · , JP̂d∗ , Jα̂∗ , Jq̂(1)∗ , · · · , Jq̂(d)∗ , Jβ̂∗} < ε.

Set the final estimator θ̂ = θ̂l. Otherwise set l← l + 1 and go to step 2.

To select tuning parameter λ, we search the one from grid points minimizing the root
mean square error on the validation set, defined as [

∑
(i1,...,id,t)∈Γ{yi1...id(t)−ŷi1...id(t)}2/|Γ|]1/2,

where Γ is the set of indices and times of observed data. We choose the number of individual
latent factors r such that it is sufficiently large and leads to stable estimation. In general,
the r is no smaller than the theoretical rank of the tensor in order to represent subjects’
latent features sufficiently well, but not so large as to over-burden the computational cost.

An appropriate selection of the knot sequence is important to efficiently implement
the proposed method. In practice, knot locations are usually chosen to be equally-spaced
over the range of data or placed at evenly-spaced quantiles of data. Since there are high-
dimensional factor parameters, for simplicity we set the number of knots to be the integer
part of N1/(2κ+3), where N = |Ω| and κ is the degree of polynomials. One can also choose
other methods to select the number of knots such as the AIC or BIC procedures (Xue
and Yang, 2006). The degree of polynomials κ is commonly chosen as 1, 2, or 3. In our
numerical study, we set κ = 2 and adopt truncated polynomial bases. One can also use
different degrees and spline bases for different time-varying coefficients.

Another important issue is in selection of contextual variables as tensor modes. In
practice, the chosen number of contexts is often pre-specified based on domain knowledge.
A contextual variable can be considered an additional tensor mode of a higher-order tensor if
users’ and items’ behaviors are distinctive under different values of the contextual variable.
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On the one hand, a higher-order tensor with more contextual variables allows higher-order
interactions and hence provides more accurate estimation. On the other hand, a higher-
order tensor entails more complex and intensive computation, and may lead to overfitting.
It is not suggested to assign too many contextual variables as additional tensor modes, which
remains open to discussion regarding the number of contextual variables. In our numerical
studies, promotion strategies are incorporated as a contextual variable, since users’ and
items’ behaviors are distinctive under different promotion strategies. In general practice,
however, we assume that the order of a tensor can be determined based on prior knowledge.

4. Theoretical Properties

In this section, we provide asymptotic properties for the proposed method and the estima-
tion of prediction intervals. Specifically, we establish the convergence rate of the proposed
tensor factorization and the asymptotic normality of the spline coefficient estimator. Fol-
lowing asymptotic normality, we can also construct the estimation of the prediction interval
of the component. Note that identifiability is critical for tensor representation. We first
present the sufficient conditions to ensure identifiability of the proposed tensor modeling as
follows.

Proposition 1 If
∑d

k=1Kk ≥ 2r + d+ 1 holds, minimizers of L(P,q,α,β|Y) in P, q, α
and β given fixed spline bases are unique up to permutation almost surely, where Kk is the
Kruskal rank of (Pk,qk), and qk = (qk1 , q

k
2 , · · · , qknk

)>.

Proposition 1 shows that the proposed tensor modeling is identifiable up to permutation
almost surely. To address permutation indeterminacy, we could align the factors according
to a descending order of the first row of mode-1 factor matrix P1, that is, p1

11 ≥ p1
12 ≥ · · · ≥

p1
1r, following the method in Zhang et al. (2014). The rearrangement can be implemented

during or after the proposed algorithm, since it does not affect the estimation procedure.
In the rest of Section 4, we assume that the parameters are identifiable.

Let ui1i2...id = {(p1
i11p

2
i21 · · · pdid1), (p1

i12p
2
i22, · · · pdid2), · · · , (p1

i1r
p2
i2r
· · · pdidr), (q

1
i1
q2
i2
· · · qdid)}>,

U ∈ Rn1×...×nd×(r+1) consist of ui1i2...id , f(t) = {h1(t), h2(t), . . . , hr(t), g(t)}>, Fi1i2...id ∈
R|Ti1i2...id

|×(r+1) be the matrix consisting of f(t) for all t ∈ Ti1i2···id . Considering random er-
rors based on the equation (1), we denote yi1i2···id(t) as yi1i2···id(t) = f(t)>ui1i2...id +εi1i2...id(t)
for t ∈ Ti1i2···id , where εi1i2...id(t) is a random error with mean zero and finite variance.
Let εi1i2...id = {εi1i2...id(t)}t∈Ti1i2...id

be a |Ti1i2...id | × 1 vector. We have cov(εi1i2...id) =

cov(yi1i2...id) = Σ0
i1i2...id

. Thus, the corresponding vector form is

yi1i2...id = Fi1i2...idui1i2...id + εi1i2...id ,

Let J(U) be a non-negative penalty function of U . The overall criterion given hj(·) and g(·)
is redefined as

L(U|Y) =
∑

(i1,i2,···,id)∈Ω

(yi1i2...id−Fi1i2...idui1i2...id)>Σ−1
i1i2...id

(yi1i2...id−Fi1i2...idui1i2...id)+λJ(U)

(9)
for U ∈ S, where S is the parameter space for U .
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Based on the proposed method, ŷi1i2...id can be rewritten as ŷi1i2...id = Wi1i2...idγ, where
Wi1i2...id = (Xi1i2...id1, · · · ,Xi1i2...idr,Zi1i2...id1, · · · ,Zi1i2...idmd+1

), Xi1i2...idj = ui1i2...idjBi1i2...idj ,

Zi1i2...ide = ui1i2...id(r+1)Ai1i2...ide, in which Bi1i2...idj = {Bj(t)
>}t∈Ti1i2...id

∈ R|Ti1i2...id
|×M ,

and Ai1i2...ide = {I(t ∈ se)Ae(t)
>}t∈Ti1i2...id

∈ R|Ti1i2...id
|×M for j = 1, 2, . . . , r, e = 1, 2, . . . ,

md+1. By the approximation theory (de Boor, 2001), there exists a constant C > 0, the
spline functions h̃j(t) = α>0jBj(t) and g̃e(t) = β>0eAe(t) such that supt∈T |hj(t) − h̃j(t)| ≤
Ca−ξN and supt∈T |ge(t) − g̃e(t)| ≤ Ca−ξN for any j = 1, . . . , r, e = 1, . . . ,md+1. Denote
γ0 = (α>0,β

>
0)>, and let N = |Ω| be the number of components of the set Ω, λmin{·} and

λmax{·} be the smallest and largest eigenvalues of any symmetric matrix, respectively. We
require the following regularity conditions to establish the asymptotic properties.

(C1) The functions hj(·) and ge(·) are ξth-order continuously differential for some ξ ≥ 2, all
j = 1, . . . , d, and e = 1, . . . ,md+1. The density function of design points t is absolutely
continuous and bounded away from zero and infinity on a compact support T.

(C2) The knots sequences Υj and Γe are quasi-uniform for j = 1, . . . , d and e = 1, . . . ,md+1;
that is, there exists a constant c > 0, such that

max
j=1,...,d

maxi=0,...,aN (νji+1 − νji)
mini=0,...,aN (νji+1 − νji)

≤ c, and max
e=1,...,md+1

maxi=0,...,aN (ωei+1 − ωei)
mini=0,...,aN (ωei+1 − ωei)

≤ c.

(C3) There exist positive constants σ2
1 and σ2

2 such that the covariance matrix Σ0
i1i2...id

of

random error εi1...id satisfies that σ2
1 ≤ λmin{Σ0

i1i2...id
} ≤ λmax{Σ0

i1i2...id
} ≤ σ2

2.

(C4) There exist some positive constants c1 and c2 such that c1 ≤ λmin{Σ−1
i1i2...id

Σ0
i1i2...id

} ≤
λmax{Σ−1

i1i2...id
Σ0
i1i2...id

} ≤ c2.

(C5) Tmax = max(i1,···,id)∈Ω{|Ti1···id |} = op(N
τ ), Tmin = min(i1,···,id)∈Ω{|Ti1···id |} = op(N

υ)
for 0 ≤ τ/2 < υ ≤ τ < 1, and λ = op(1).

Conditions (C1)-(C3) are standard in the polynomial spline framework. Similar con-
ditions are also presented in Huang (2003) and Claeskens et al. (2009). In particular,
condition (C1) imposes a smoothness condition of trend functions and a mild condition on
time density, and guarantees that the observation time points are randomly scattered. Con-
dition (C2) indicates that the adjacent distances among the knot sequence are comparable.
Condition (C3) implies that the eigenvalues of random errors are bounded. Condition (C4)
implies that the difference between the working covariance and true covariance matrices is
bounded. Condition (C5) implies that the number of the observed time points grows as the
number of the observed components of the tensor increases, to ensure the convergence of
the proposed tensor factorization. The following theorem establishes the convergence rate
for the proposed tensor factorization.

Theorem 2 Under conditions (C1)-(C5), if the penalty function J(U) has bounded first
and second derivatives at true parameter U0, as N → ∞, on a δ-ball centered at U0 for
some δ > 0, there exists a minimizer Û of (9) such that∑

(i1,i2,···,id)∈Ω

‖Fi1i2···id(ûi1i2···id − u0i1i2···id)‖22/N = Op(N
−1+2(τ−υ)).
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Theorem 2 provides the convergence rate of the proposed method given trend functions.
When τ = υ, that is, Tmax and Tmin have the same order, the convergence rate of the
estimator Û reaches the optimal rate N−1/2. Meanwhile, if the order of Tmax is

√
N faster

than that of Tmin, that is, τ − υ = 0.5, then Û will not converge to the true U0. This
implies that to guarantee consistency of the tensor factorization, one should collect sufficient
observations even for the least popular user-item-context combinations. In the following
theorem, we establish the asymptotic property of the spline coefficient estimator.

Theorem 3 Under conditions (C1)-(C5), if limN→∞ aN log aN/N = 0 and limN→∞ a
−ξ
N N τ

= 0, then for any vector c whose components are not all zero, the parametric estimator γ̂
by (6) and (7) satisfies

c>(γ̂ − γ0)var{c>(γ̂ − γ0)}−1/2 L→ N(0, 1),

where var{c>(γ̂−γ0)} = c>Ψ−1ΦΨ−1c = Op(aNN
−1+τ−2υ), Ψ =

∑
(i1,...,id)∈Ω W>

i1...id
Σ−1
i1...id
·

Wi1...id, and Φ =
∑

(i1,...,id)∈Ω W>
i1...id

Σ−1
i1...id

Σ0
i1...id

Σ−1
i1...id

Wi1...id.

Theorem 3 establishes the asymptotic normality of the spline coefficient estimator. The
convergence rate of the spline coefficient estimator is Op(aNN

−1+τ−2υ). If Tmax and Tmin

have the same order, var{c>(γ̂ − γ0)} = Op(aN/N
1+υ), and similar results can be found

in Huang et al. (2004). The asymptotic variance in Theorem 3 depends on the working
covariance matrix and the true covariance matrix. When the working covariance matrices
are equal to the true covariance matrices, the asymptotic variance of the proposed estimator
reaches the minimum in the sense of Lower order and the proposed estimator is asymptotic
efficient.

More importantly, the result of Theorem 3 is the key foundation for constructing predic-
tion intervals. First, we derive the standard error for the spline parametric estimates given a
fixed λ using the sandwich covariance formula Ĉov(γ̂) = (Ψ̂+λI)−1Φ̂(Ψ̂+λI)−1, where Ψ̂ =∑

(i1,i2,...,id)∈Ω Ŵ>
i1i2...id

Σ−1
i1i2...id

Ŵi1i2...id , Φ̂ =
∑

(i1,i2,...,id)∈Ω{Ŵ>
i1i2...id

Σ−1
i1i2...id

(yi1i2...id −
Ŵi1i2...id γ̂)}⊗2, ⊗ operation is the vector operation a⊗2 = aa>, and I is an identity ma-

trix. Since ŷi1i2...id(t) = ŵ>i1i2...idtγ̂, and ŵi1i2...idt is the tth column of estimator Ŵ>
i1i2...id

,
a 100(1− σ)% prediction interval (Chatfield, 1993) of ŷi1i2...id(t) is

ŷi1i2...id(t)± φσ/2
√

var{ei1i2...id(t)}, (10)

where φσ/2 is the 100(1 − σ)th percentile of the standard normal distribution, and the
var{ei1i2...id(t)} is the variance of the prediction error and can be estimated as:

v̂ar{ei1i2...id(t)} = ŵ>i1i2...idtĈov(γ̂)ŵi1i2...idt + v̂ar{εi1i2...id(t)}. (11)

The first term in equation (11) is due to estimation error, and the second term can be
estimated by the mean squared error on training data.
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5. Simulation Studies

In this section, we perform simulation studies to compare the proposed method (DTRS) with
competing methods, including Bayesian probabilistic tensor factorization (BPTF, Xiong
et al., 2010) and the recommendation engine of multilayers (REM, Bi et al., 2018). We
assess forecasting performance via examining the root mean square error (RMSE) and
the mean absolute error (MAE), where the RMSE is defined as [

∑
(i1,...,id,t)∈Γ{yi1...id(t) −

ŷi1...id(t)}2/|Γ|]1/2, the MAE is defined as
∑

(i1,...,id,t)∈Γ |yi1...id(t) − ŷi1...id(t)|/|Γ|, and Γ is
the set of indices and time of observed data. Moreover, we evaluate the coverage probability
of the prediction interval estimated by the proposed method with 95% nominal coverage
probability (PICP) .

5.1 Simple Tensor Function

In the simulation, we consider a third-order tensor function of time with user, context and
item modes. We set the numbers of users, contexts and items to n1 = 100, n2 = 9, and
n3 = 100, respectively. We assume that users, contexts, items and time points are from
m1 = 10, m2 = 3, m3 = 10 and m4 = 4 subgroups, respectively. Users, contexts, items
and time points are evenly assigned to each subgroup. The number of latent factors is
set as r = 3. We generate tensor functions at time points t ∼ U(0, 1) by generating its
components as yi1i2i3(t) =

∑r
j=1 hj(t)p

1
i1j
p2
i2j
p3
i3j

+g(t)q1
i1
q2
i2
q3
i3

+εi1i2i3(t) for ik = 1, . . . , nk,

k = 1, 2, 3, where the latent factors pkik ∼ N(0, Ir), trend functions h1(t) = sin(0.3πt),
h2(t) = 8t(1− t)− 1 and h3(t) = cos(0.2πt) + 1. To distinguish different subgroups, we set
the subgroup factors as a simple sequence, where q1

(e1) = −1+0.4e1, q2
(e2) = −1.2+0.6e2 and

q3
(e3) = −0.4+0.2e3 for ek = 1, . . . ,mk and k = 1, 2, 3. The function g(t) =

∑m4
e=1 ge(t)I(t ∈

se), where g1(t) = 2t − 1, g2(t) = 8(t − 0.5)3, g3(t) = sin(0.1πt) + cos(πt), and g4(t) =
−5 exp(t)+10. The error εi1i2i3 = (εi1i2i3(t1), . . . , εi1i2i3(tT ))> follows a multivariate normal
distribution with mean 0 and a common marginal variance 1, and the correlation structure
is either independence or AR-1 with correlation ρ = 0.85.

In each simulation, we consider the number of time points as T = T1 + T2, where the
tensor data in the first T1 = 12 time points are set as the training data, and the tensor
data in the last T2 time points are used as the testing data. For evaluating the forecasting
performance at future time points, we consider T2 = 8 or 12. Considering the missing
case, we generate n1n2n3T (1 − πm) components out of the tensor functions, where πm is
the missing percentage and set as 80%. Furthermore, we use πcs = 30% to represent the
proportion of new items in the testing data unavailable from the training set. To illustrate
the effect of incorporating intra-cluster correlation on estimation efficiency, we compare the
estimation efficiency of the proposed methods using different working correlation structures:
independent or AR-1, denoted as DTRSin and DTRSar, respectively.

According to Xiong et al. (2010) and Bi et al. (2018), BPTF and REM methods model
fourth-order tensor with user, context, item and time modes. For all methods, we assume
that the subgroup structure and the number of latent factors are known. For REM and the
proposed methods, the tuning parameter λ is pre-selected from grid points ranging from 0
to 20. The validation set is the data from the last four time points of the training set. For
BPTF, we keep the remaining parameters by their default choices and obtain a forecast
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Table 1: Average RMSE and MAE of all approaches. The PICP is the average coverage
probability of the 95% prediction interval. The RMSE, MAE and PICP are pro-
vided with standard error based on 100 simulations in each parenthesis.

True structure: Independent AR

Method T2 = 8 T2 = 12 T2 = 8 T2 = 12

DTRSin RMSE 1.570(0.196) 1.660(0.389) 1.597(0.192) 1.707(0.524)
MAE 1.092(0.091) 1.132(0.160) 1.115(0.091) 1.160(0.208)
PICP 0.949(0.015) 0.953(0.017) 0.946(0.017) 0.952(0.018)

DTRSar RMSE 1.625(0.244) 1.696(0.286) 1.576(0.190) 1.632(0.200)
MAE 1.133(0.118) 1.170(0.159) 1.099(0.085) 1.130(0.102)
PICP 0.943(0.019) 0.947(0.021) 0.947(0.015) 0.949(0.018)

REM RMSE 2.502(0.322) 2.494(0.307) 2.498(0.304) 2.494(0.305)
MAE 1.654(0.178) 1.640(0.170) 1.650(0.166) 1.643(0.172)
PICP – – – –

BPTFbayes RMSE 2.675(0.742) 2.930(0.965) 2.724(0.863) 3.181(1.148)
MAE 1.810(0.427) 1.958(0.547) 1.826(0.495) 2.104(0.654)
PICP – – – –

BPTFbasic RMSE 2.142(0.221) 2.145(0.211) 2.136(0.222) 2.144(0.206)
MAE 1.446(0.116) 1.454(0.115) 1.441(0.117) 1.453(0.111)
PICP – – – –

BPTFdouble RMSE 2.388(0.319) 2.665(0.356) 2.405(0.319) 2.642(0.380)
MAE 1.598(0.190) 1.774(0.217) 1.611(0.191) 1.755(0.232)
PICP – – – –

via sampling the factor matrix of time from the time posterior distribution, denoted as
BPTFbayes. Following the forecasting technique of Araujo et al. (2019), we also consider
BPTF incorporating basic exponential smoothing (Holt’s method, Holt, 2004) and double
exponential smoothing (Holt-Winters method, Holt, 2004; Winters, 1960). That is, we first
use BPTF to estimate the factor matrices of user, item, context and time in the training
data, and then forecast the factor matrix of time at given time points of the testing data
via basic exponential smoothing or double exponential smoothing, denoted as BPTFbasic

and BPTFdouble, respectively. All methods are replicated by 100 simulation runs.

Table 1 provides the estimation results of all methods. We observe that the proposed
method has better performance when the working correlation structure is the same as the
true correlation structure. When the true correlation structure is independence, the DTRSin
has smaller RMSE and MAE than the DTRSar, with more than 2.17% improvement. Sim-
ilarly, when the true correlation structure is AR-1, the DTRSar outperforms the DTRSin.
Moreover, the PICPs of the DTRS method are close to 0.95, which implies that the pro-
posed method provides accurate prediction intervals, whereas the competing methods are
not able to provide such prediction intervals. For the performance of forecasting, we observe
that the DTRSin and DTRSar outperform other methods across all settings. Specifically,
both DTRS methods improve the RMSE and MAE of the REM by more than 40%, and
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Figure 3: Box plots of the MAE for forecasting values with 8 and 12 time points and the true independent
correlation.

those of the BPTFbayes, BPTFbasic and BPTFdouble by more than 60%, 24%, and 41%,
respectively. In this setting, the BPTFbasic performs better than the BPTFdouble. This is
probably because the basic exponential smoothing method is more applicable in forecasting
time series with no clear trend or seasonal pattern, whereas the double exponential smooth-
ing method performs better when a trend is present (Holt, 2004). Although the BPTFbasic

and BPTFdouble perform better than the BPTFbayes, the proposed method is still able to
beat the best of the BPTF variations. This indicates that the proposed method provides
more accurate forecasting compared to other methods.

To illustrate the specific performance for forecasting at each time point, we calculate
the MAE at each time point and provide box plots for the MAE in Figures 3-4. We
observe that the performance of the proposed method is relatively robust against time in all
settings. The MAEs of both DTRS methods at any time point are the lowest. The proposed
method outperforms other methods, especially for long-term forecasting, indicating that it
can handle both short-term and long-term forecasting accurately.

5.2 Long Forecasting Time Period

In this simulation study, we evaluate the performance of the proposed method with a vast
set of users and items and time period. Moreover, we also report the average computational
time (ComTime) in seconds for each method based on 50 repetitions. All experiments are
implemented using Window 10 with 1.99 GHz Intel Core i7 Processor and 16 GB memory.

We consider a third-order tensor function of time with user, context and item modes. We
set the numbers of users, contexts and items to n1 = 1000, n2 = 30, n3 = 10000, respectively.
The number of time points is T = T1+T2 with the number of the training time points T1 = 80
and the number of the testing time points T2 = 8, 12, 24, 32. Other setting is similar to the
setting in Section 5.1. We consider that the error εi1i2i3 = (εi1i2i3(t1), . . . , εi1i2i3(tT ))>
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Figure 4: Box plots of the MAE for forecasting values with 8 and 12 time points and the true AR-1
correlation.

follows a multivariate normal distribution with mean 0 and the independent structure. We
perform the proposed method and the compering methods as in Section 5.1. The simulation
results are summarized in Table 2.

Table 2 shows that the proposed method outperforms other methods across all settings.
Specifically, both DTRS methods improve the RMSE and MAE of the REM by more than
17%, and those of the BPTFbayes, BPTFbasic and BPTFdouble by more than 39%, 31% and
39%, respectively. Moreover, the proposed method is robust against longer forecasting time
periods comparing with other methods. Specifically, we observe that the REM is more
efficient computationally than the proposed method but the accuracy of the REM is lower
than the proposed method. This is probably due to that the REM treats time as a mode of
tensor, with more parameters involved as the time increases, and leads to more errors of esti-
mation. Due to the demand of Gibbs sampling, the BPTFbayes, BPTFbasic and BPTFdouble
require longer computational time and larger menory storage. In additional, as the time
increases, the BPTFbayes needs to involve more parameters in time factors which leads to
low computational efficiency and low accuracy in forecasting. Although the BPTFbasic and
BPTFdouble do not have increasing number of parameters as the time increases due to the
exponential smoothing method, the Gibbs sampling is still time-consuming. Reducing the
number of Gibbs samples may lead to less computational time but with less accurate pre-
dictions. For our method, the DTRSar requires to estimate the covariance matrix, and the
DTRSar requires more computational time than the DTRSin. Nevertheless, the DTRSar
has higher accuracy than other competing methods in terms of RMSE and MAE. Over-
all, the proposed method performs well in term of computational efficiency and forecasting
accuracy.
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Table 2: Average RMSE and MAE of all approaches for different forecasting time horizons.
The PICP and ComTime are the average coverage probability of the 95% predic-
tion interval and average computational time in seconds, respectively. The RMSE,
MAE and PICP are provided with standard error based on 50 simulations in each
parenthesis.

Method T2 = 8 T2 = 12 T2 = 24 T2 = 32

DTRSin RMSE 1.549(0.244) 1.574(0.325) 1.633(0.407) 1.682(0.458)
MAE 1.088(0.148) 1.107(0.173) 1.147(0.218) 1.178(0.247)
PICP 0.930(0.024) 0.932(0.026) 0.935(0.029) 0.941(0.026)

ComTime 634.5s 634.7s 635.4s 635.9s
DTRSar RMSE 1.574(0.343) 1.597(0.377) 1.663(0.510) 1.727(0.675)

MAE 1.106(0.185) 1.121(0.208) 1.164(0.274) 1.202(0.343)
PICP 0.929(0.020) 0.931(0.023) 0.933(0.031) 0.938(0.028)

ComTime 766.5s 766.8s 767.6s 768.1s
REM RMSE 1.855(0.410) 2.127(0.560) 2.268(0.469) 2.041(0.640)

MAE 1.321(0.245) 1.459(0.303) 1.528(0.280) 1.432(0.355)
PICP – – – –

ComTime 159.1s 168.5s 184.5s 163.5s
BPTFbayes RMSE 2.331(0.772) 2.332(0.753) 2.323(0.680) 2.618(0.617)

MAE 1.634(0.453) 1.629(0.439) 1.618(0.387) 1.793(0.369)
PICP – – – –

ComTime 772.0s 777.2s 792.5s 802.4s
BPTFbasic RMSE 2.104(0.658) 2.106(0.671) 2.198(0.717) 2.641(0.791)

MAE 1.503(0.448) 1.503(0.454) 1.558(0.471) 1.789(0.495)
PICP – – – –

ComTime 756.1s 761.0s 775.5s 784.1s
BPTFdouble RMSE 2.203(0.704) 2.224(0.734) 2.367(0.834) 2.803(0.977)

MAE 1.562(0.470) 1.572(0.485) 1.651(0.530) 1.879(0.581)
PICP – – – –

ComTime 738.8s 743.8s 759.5s 769.3s
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Table 3: Average RMSE and MAE of the proposed method DTRSin under 0%, 10% and
30% cluster misspecification rate (Mis. rate). The PICP is the average cover-
age probability of the 95% prediction interval. The RMSE, MAE and PICP are
provided with standard error based on 50 simulations in each parenthesis.

Method Mis. rate T2 = 8 T2 = 12 T2 = 24 T2 = 32

DTRSin 0% RMSE 1.549(0.244) 1.574(0.325) 1.633(0.407) 1.682(0.458)
MAE 1.088(0.148) 1.107(0.173) 1.147(0.218) 1.178(0.247)
PICP 0.930(0.024) 0.932(0.026) 0.935(0.029) 0.941(0.026)

10% RMSE 1.594(0.350) 1.612(0.357) 1.658(0.395) 1.703(0.433)
MAE 1.109(0.184) 1.124(0.194) 1.159(0.222) 1.190(0.247)
PICP 0.935(0.019) 0.938(0.020) 0.942(0.024) 0.947(0.022)

30% RMSE 1.604(0.386) 1.617(0.387) 1.697(0.502) 1.771(0.609)
MAE 1.120(0.221) 1.129(0.221) 1.179(0.278) 1.226(0.330)
PICP 0.935(0.021) 0.939(0.021) 0.943(0.024) 0.947(0.023)

REM 0% RMSE 1.855(0.410) 2.127(0.560) 2.268(0.469) 2.041(0.640)
MAE 1.321(0.245) 1.459(0.303) 1.528(0.280) 1.432(0.355)

10% RMSE 2.443(0.405) 2.390(0.384) 2.401(0.574) 2.383(0.432)
MAE 1.661(0.243) 1.619(0.211) 1.612(0.344) 1.617(0.259)

30% RMSE 2.443(0.437) 2.337(0.314) 2.360(0.392) 2.268(0.382)
MAE 1.676(0.294) 1.597(0.193) 1.595(0.245) 1.536(0.219)

5.3 Robustness under Cluster Misspecification

In this simulation study, we study the robustness of the proposed method when the clusters
are misspecified.

We follow the same data-generating process as in Section 5.2, but allow the cluster as-
signment to be misspecified. Specifically, we misassign users, contexts and items to adjacent
clusters with 0%, 10% and 30% chance. The Adjacent clusters are defined as the clusters
with the closest group effects. This definition of adjacent clusters reflects the real-data
situation (e.g., a facial tissue might be misassigned as paper towels, but less likely to be
misassigned as yogurt). We also compare the proposed method with the REM method
which also consider the subgroup information.

The simulation results based on 50 replications are summarized in Table 3. Table 3 shows
that in general the proposed method is robust against the misspecification of cluster. In
comparison with the results when 0% of the cluster members are misclassified, the proposed
method is more robust than the REM method in all settings under 10% and 30% cluster
misspecification rate. For example, the proposed method under the 10% misspecification
rate is 2.9% worse than the proposed method without misspecification in terms of the RMSE
under T2 = 8; and is 3.6% worse than one without misspecification under T2 = 8. However,
the REM method under the 10% and 30% misspecification rates is 31.7% worse than the
REM method without misspecification in terms of the RMSE under T2 = 8.
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6. Empirical Examples

6.1 IRI Marketing Data

In this section, we focus on sales data at drug stores from the IRI Marketing Data (Bron-
nenberg et al., 2008) to illustrate the performance of the proposed method. The original
IRI data is an immense collection of consumer panel data and store sales at grocery stores,
drug stores and mass-market stores over the years 2001-2011. The store sales data contain
weekly product sales volumes, pricing, and promotion data for all items from 31 product
categories sold in 50 U.S. markets. These markets are geographic units defined typically as
an agglomeration of counties, usually covering a major metropolitan areas (e.g., Chicago,
IL) but sometimes covering just part of a region (e.g., New England). A detailed description
of an early version of the data is available in Bronnenberg et al. (2008).

To illustrate the proposed method, we choose sales data at drug stores collected from
2001 to 2011, where there are sales volume records, recorded times, promotion strate-
gies, 43,631 product IDs, and 471 drug store IDs. These drug stores are from 50 markets
across the United States. The products include items sold from these stores during the
11-year period, and are from 31 product categories, including hot dogs, household cleaners,
margarine/butter blends, mayonnaise, milk, coffee, cigarettes, photography supplies, pa-
per towels, frozen pizza, toilet tissue, yogurt, beer/ale/alcoholic cider, blades, cold cereal,
carbonated beverages, diapers, deodorant, facial tissue, frozen dinners/entrees, laundry de-
tergent, peanut butter, razors, mustard and ketchup, sugar substitutes, spaghetti/Italian
sauce, soup, shampoo, salty snacks, toothpaste, and toothbrush. Moreover, various adver-
tising and promotions strategies are imposed on these products to attract consumers. The
promotions strategies have 30 types which are combinations of 5 advertisement features, 3
types of merchandise display, and an indicator on whether the product has a price reduction
of more than 5%.

The goal of our study is to predict the future sales volumes of each product from each
store given each promotion strategy based on historical sales data. Through this prediction
procedure, we are able to estimate future purchases, evaluate the influence of promotion
strategy for product sales, and potentially recommend the most profitable products to
store managers, so the company can make wiser decisions on marketing strategies and
inventory planning. For the IRI marketing data, a personalized suggestion refers to the
recommendation of potentially profitable products to store managers. Statistically this
can be viewed as predicting future sales volumes of each product from each store based
on historical sales data. There are abundant literature on product recommender systems
including, but not limited to, Giering (2008), Xiong et al. (2010) and Yu et al. (2016). In
these works, similar to the proposed IRI data analysis, recommendations of products to
stores are also considered. For considering the trend of product sales, we aggregate the
weekly data into monthly data according to the record time information so that the data
contain more than 79.2 million sales records for 132 months from the beginning of 2001
to the end of 2011. For the proposed method, we classify stores, products, observed time
points and promotion strategies into subgroups based on their markets, product categories,
month of the year and whether a price reduction is applied, respectively.

Table 4 shows the summary statistics of the data. According to the proposed method,
the data can be reframed into monthly third-order tensors by store, product and promotion.
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Table 4: Summary statistics of the monthly IRI marketing data.

The number of types The number of subgroups

Store 471 50
Promotion 30 2
Product 43,631 31
Month 132 12

Sales record 79,243,289

Figure 5: An illustration for monthly sale tensors at the tth month.

Figure 5 provides an illustration of the reframed sale records to clarify the proposed method.
According to the given structure of monthly third-order tensors, the total number of sale
records could be up to 471× 30× 43631× 132 ≈ 8.1 billion. Although the observed records
are more than 79.2 million, there are still a large number of store-promotion-product-month
combinations which are associated with unknown sales volumes. The sales data have a 99.9%
missing rate and are highly sparse, which renders a particular challenge for recommender
systems and forecasting.

For comparison, we implement and report the performances of the proposed methods
with different working correlation matrices and the competing methods as in Section 5. For
all methods, we select the number of latent factors r ranging from 3 to 30. For the REM
method and the proposed methods, we select a tuning parameter λ from 1 to 29. For the
BPTF methods, we use the default values of the remaining parameters. For selecting the
above parameters, we set the data from the beginning of 2001 to the end of 2009 (i.e., the
first 108 months) as the training set and the data from the beginning of 2010 to the end
of 2010 as the validation set, and then tune these parameters through minimizing the root
mean square error on the validation set. We randomly sample 80% of the data from 2001
to 2010 as a training set and 20% of the data from the entire year of 2011 as the testing
set. The random sampling is replicated 50 times.

Table 5 shows the forecasting results produced by each method. The results of the
DTRSar are similar to ones of the DTRSin and are omitted. From Table 5, we observe
that the DTRSin method achieves coverage probabilities of the prediction interval close to
95%, implying that the proposed method can estimate the prediction interval accurately,
whereas the competing methods cannot provide such prediction intervals. In addition, the
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Table 5: The RMSE and MAE of the forecasting sale volumes in 2011 from five methods.
The PICP is the average coverage probability of the 95% prediction interval. The
RMSE, MAE and PICP are provided with standard error based on 50 experiments
in each parenthesis. The RRMSE and RMAE show the relative improvement ratios
of the DTRSin method over others in terms of the RMSE and MAE.

Method RMSE RRMSE MAE RMAE PICP

DTRSin 11.284(0.536) – 3.790(0.058) – 0.967(0.001)
REM 13.425(1.458) 18.97% 4.072(0.261) 7.44% –
BPTFbayes 15.792(1.746) 39.95% 4.276(0.171) 12.82% –
BPTFbasic 12.736(0.385) 12.87% 3.838(0.058) 1.27% –
BPTFdouble 12.732(0.388) 12.83% 3.835(0.057) 1.19% –

Figure 6: Box plots of the RMSE and MAE for forecasting values at 12 time points.

DTRSin method has the lowest RMSE and MAE. For example, DTRSin improves on the
RMSE and MAE of the BPTFbayes by 39.95% and 12.82%, and of the REM by 18.97% and
7.44%, respectively. The BPTFbasic and BPTFdouble perform better than the BPTFbayes,
while the BPTFdouble performs better than the BPTFbasic. However, the proposed method
still outperforms the BPTFbasic and BPTFdouble.

To illustrate the specific performance for forecasting at each time point, we calculate
the RMSE and MAE at each time point and provide box plots for the RMSE and MAE in
Figure 6. We observe that the performances of the DTRSin, BPTFbasic and BPTFdouble are
more robust than those of the REM and BPTFbayes. However, the RMSEs of the DTRSin
method at each time point are still lower than those of the BPTFbasic and BPTFdouble

methods. The proposed method outperforms other methods for forecasting at each time
point, and can deal with long-term forecasting accurately.
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6.2 Last.fm Data

In this section, we analyze the Lastfm-1K dataset collected by Last.fm API (Celma, 2010)
to evaluate the performance of the proposed method. The dataset is available at http:

//ocelma.net/MusicRecommendationDataset/lastfm-1K.html and has been widely used
in music recommendation experiments. The Lastfm data includes the listening history of
992 users and songs played daily, recorded by quadruples with user, timestamp, artist
and song information, where the users’ profiles contain gender, age, country and signup,
and artists contain 107,528 artists with ID and 69,420 without ID. A detailed description of
the Lastfm-1K dataset is available at http://ocelma.net/MusicRecommendationDataset/
lastfm-1K.html.

We extract the user-artist-song playcount tensor-valued function with each monthly
time point based on the quadruples records. The goal of our study is to predict the future
playcount of each song given each artist for each user. Through this prediction procedure,
we are able to estimate future listening habit for each user, so that to recommend interesting
songs to each user. To evaluate the performance of the proposed method, we consider a
sub-dataset with 100 users randomly, where there are 7,490 artists, 32,287 songs and 53
months from February of 2005 to June of 2009. We classify users, song, time stamp and
artists into subgroups based on users’ gender, a song’s artist, month of the year, and whether
the artist has ID, respectively. Although the observed records have been 356,786, there
are still a large number of user-artist-song-month combinations which are associated with
unknown playcount. The data have a high missing rate and are highly sparse.

Similar to Section 6.1, we implement and report the performances of the proposed
method and the competing methods. We randomly sample 80% of the data from February
of 2005 to May of 2008 (i.e., the first 40 months) as a training set and 20% of the data
from June of 2008 to June of 2009 (i.e., the last 13 months) as the testing set. The random
sampling is replicated 50 times. Table 6 shows the forecasting results produced by each
method and the computational time.

Table 6 indicates that the DTRSin method achieves coverage probabilities of the predic-
tion interval close to 95%, which supports that the proposed method can obtain accurate
prediction interval estimator, whereas the competing methods cannot provide such predic-
tion interval. Table 6 also shows that the proposed method achieves the best performance.
Specifically, the proposed method improves the compering methods by at least 8.02% with
respect to the RMSE, and by at least 10.05% with respect to the MAE, and still achieves
the smallest standard error with a reasonable computational time.

7. Discussion

In this article, we propose a new dynamic tensor recommender system which incorporates
time information through a tensor-valued function. A unique contribution of our method
is that it can estimate recommendation accurately given any time point in continuous
time intervals. Technically, the proposed method builds a time-value tensor decomposition
model and borrows group information from existing time points of the same group for higher
forecasting accuracy. Moreover, the proposed method utilizes the polynomial spline method
and the weighted least squared method to incorporate time-dependency and intra-cluster
correlation into the DRS. The spline extrapolation enables our method to achieve both
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Table 6: The RMSE and MAE of the forecasting the playcount of songs from five meth-
ods. The PICP and ComTime are the average coverage probability of the 95%
prediction interval and the average computational time in seconds. The RMSE,
MAE and PICP are provided with standard error based on 50 experiments in each
parenthesis. The RRMSE and RMAE show the relative improvement ratios of the
DTRSin method over others in terms of the RMSE and MAE.

Method RMSE RRMSE MAE RMAE PICP ComTime

DTRSin 12.113(1.836) – 1.940(0.058) – 0.931(0.012) 92.8s
REM 16.085(2.375) 32.79% 3.228(0.717) 66.39% – 197.0s
BPTFbayes 13.084(1.966) 8.02% 2.139(0.080) 10.26% – 84.3s
BPTFbasic 13.117(2.014) 8.29% 2.137(0.082) 10.15% – 86.2s
BPTFdouble 13.116(2.015) 8.28% 2.135(0.083) 10.05% – 82.5s

short-term and long-term forecasts accurately, as confirmed in the numerical studies. In
addition, the proposed method is able to provide pointwise prediction intervals based on the
established asymptotic property, while existing recommender systems are not equipped with
prediction intervals. In theory, we demonstrate that the proposed decomposition achieves
asymptotic consistency on prediction and the spline coefficient estimators have asymptotic
normality. In addition, we show the numerical advantages of our method compared to
existing methods, including the analysis of IRI marketing data.
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Appendix A.

In this appendix we prove the theorems from Section 4.

Lemma 4 Predicted values given by (2) with fixed spline bases are invariant with respect
to scaling and permutation indeterminacies.

Proof According to (2), the tensor function Y(t) is represented as:

Y(t) ≈
r∑
j=1

ĥj(t)p
1
·j ◦ p2

·j ◦ · · · ◦ pd·j + ĝ(t)q1 ◦ q2 ◦ · · · ◦ qd.

Given fixed spline bases {Bji(·)}Mi=1, hj(t) is uniquely confirmed by coefficients αj for
j = 1, . . . , r, and g(t) is similar. Thus, the determinacy of coefficients is equivalent to
the determinacy of functional factors, so we discuss the indeterminacy of functional fac-
tors. Scaling indeterminacy refers to non-uniqueness with respect to a scale change of
pk·j and qk, and of each function hj(t) and g(t) for k = 1, . . . , d; j = 1, . . . , r. That is,

for πkl and δl, k = 1, . . . , d, l = 1, . . . , r + 1, we have p̃k·j = πkjp
k
·j , h̃j(t) = δjhj(t),

j = 1, . . . , r, q̃k = πkr+1q
k, and g̃(t) = δr+1g(t) such that δl

∏d
k=1 πkl = 1 for l =

1, . . . , r + 1. Thus, we know that
∑r

j=1 hj(t)p
1
·j ◦ p2

·j ◦ · · · ◦ pd·j + g(t)q1 ◦ q2 ◦ · · · ◦ qd =∑r
j=1 h̃j(t)p̃

1
·j ◦ p̃2

·j ◦ · · · ◦ p̃d·j + g̃(t)q̃1 ◦ q̃2 ◦ · · · ◦ q̃d. Let h(t) = {h1(t), h2(t), . . . , hr(t)}>.
Permutation indeterminacy refers to an arbitrary r × r permutation matrix Π such that∑r

j=1 hj(t)p
1
·j ◦ p2

·j ◦ · · · ◦ pd·j + g(t)q1 ◦ q2 ◦ · · · ◦ qd
.
= [[h(t); P1,P2, · · · ,Pd]] + g(t)q1 ◦ q2 ◦

· · · ◦qd = [[Πh(t); P1Π,P2Π, · · · ,PdΠ]] + g(t)q1 ◦q2 ◦ · · · ◦qd. These imply the invariance
of equation (2) with respect to scaling and permutation indeterminacies. The proof of the
Lemma is completed.

Proof of Proposition 1.
Based on the definition of Kruskal rank, the Kruskal rank of the (r + 1) × 1 matrix

(h1(t), h2(t), . . . , hr(t), g(t))> is one. Based on Theorem 3 in Sidiropoulos and Bro (2000),
the sufficient condition of identifiability of (Pk,qk) up to permutation and scaling of columns
is
∑d

k=1Kk + 1 ≥ 2(r + 1) + (d + 1) − 1, that is,
∑d

k=1Kk ≥ 2r + d + 1. Under the

sufficient condition, if there exist two minimizers (P̃, q̃, α̃, β̃) and (P̂, q̂, α̂, β̂) of L(·|Y), then
(P̃, q̃, α̃, β̃) and (P̂, q̂, α̂, β̂) are identical with the exception of scaling and permutation.
By Lemma 4, the ŷi1i2···id ’s provided by (P̃, q̃, α̃, β̃) and (P̂, q̂, α̂, β̂) are identical. Thus,

L(P̃, q̃, α̃, β̃|Y) = L(P̂, q̂, α̂, β̂|Y) implies that∑d
k=1(

∑r
j=1 ‖p̃k·j‖22 + ‖q̃k‖22) +

∑r
j=1 ‖α̃j‖2 +

∑md+1

e=1 ‖β̃e‖2

=
∑d

k=1(
∑r

j=1 ‖p̂k·j‖22 + ‖q̂k‖22) +
∑r

j=1 ‖α̂j‖2 +
∑md+1

e=1 ‖β̂e‖2.
(12)

Suppose there exist some k1, k2 = 1, . . . , d, k1 6= k2, such that p̂k1·j = νjp̃
k1
·j , p̂k2·j = p̃k2·j /νj ,

q̂k1 = τ q̃k1 , q̂k2 = q̃k2/τ for positive constants τ, νj , j = 1, . . . , r. We have

r∑
j=1

(‖p̂k1·j ‖
2
2+‖p̂k2·j ‖

2
2)+‖q̂k1‖22+‖q̂k2‖22 =

r∑
j=1

(ν2
j ‖p̃

k1
·j ‖

2
2+‖p̃k2·j ‖

2
2/ν

2
j )+τ2‖q̃k1‖22+‖q̃k2‖22/τ2.

25



Zhang, Bi, Tang and Qu

Then (12) implies that τ = 1 and νj almost surely, j = 1, . . . , r. Similarly, suppose there

exist some k1 = 1, . . . , d, such that p̂k1·j = νjp̃
k1
·j , α̂j = α̃j/νj , q̂k1 = τ q̃k1 , β̂e = β̃e/τ for

positive constants τ, νj , j = 1, . . . , r; e = 1, . . . ,md+1. We have

∑r
j=1(‖p̂k1·j ‖22 + ‖α̂j‖2) + ‖q̂k1‖22 +

∑md+1

e=1 ‖β̂e‖2

=
∑r

j=1(ν2
j ‖p̃

k1
·j ‖22 + ‖α̃j‖2/ν2

j ) + τ2‖q̃k1‖22 +
∑md+1

e=1 ‖β̃e‖2/τ2.

Then (12) implies that τ = 1 and νj almost surely, j = 1, . . . , r. Thus, (P̃, q̃, α̃, β̃) and

(P̂, q̂, α̂, β̂) are identical almost surely with the exception of permutation.

Proof of Theorem 2.

The estimator ûi1···id is obtained by solving ∂(i1···id)L(U|Y) = 00, where ∂(i1···id) represents
the first derivatives with respect to the vector ui1···id . By Taylor expansion, we have

ûi1···id − u0i1···id

= {∂2
(i1···id)L(U|Y)|u∗i1···id}

−1∂(i1···id)L(U|Y)|u0i1···id

= {F>i1i2...idΣ
−1
i1i2...id

Fi1i2...id + λ∂2
(i1···id)J(U)|u∗i1···id}

−1

{F>i1i2...idΣ
−1
i1i2...id

εi1i2...id − λ∂(i1···id)J(U)|u0i1···id
}

= I−1
1 I2

where u∗i1···id is between ûi1···id and u0i1···id , and ∂2
(i1···id) represents the second derivatives

with respect to the vector ui1···id . Since λ = op(1) and J(U) have bounded first and second
derivatives at true parameter U0, λ∂2

(i1···id)J(U)|u∗i1···id = op(1) and λ∂(i1···id)J(U)|u0i1···id
=

op(1). Under conditions (C1), (C3) and (C4), we have

‖I1‖F = ‖F>i1i2...id(Σ−1
i1i2...id

Σ0
i1i2...id

)(Σ0
i1i2...id

)−1Fi1i2...id + λ∂2
(i1···id)J(U)|u∗i1···id‖F

≥ ‖c1σ
−2
2 F>i1i2...idFi1i2...id + λ∂2

(i1···id)J(U)|u∗i1···id‖F
≥ ‖c1σ

−2
2 mint∈Ti1...id

{|Ti1...id |}{ 1
|Ti1...id

|
∑

t∈Ti1...id
f(t)f(t)>}

+λ∂2
(i1···id)J(U)|u∗i1···id‖F

& Tmin,

‖I2‖F ≤ ‖c2σ
−2
1

∑
t∈Ti1...id

f(t)εi1...idt − λ∂(i1···id)J(U)|u0i1···id
‖F

≤ ‖Cc2σ−2
1 |Ti1...id |{ 1

|Ti1...id
|
∑

t∈Ti1...id
εi1...idt} − λ∂(i1···id)J(U)|u0i1···id

‖F

. |Ti1...id |1/2 . T
1/2
max,

where a . b and b & a mean a/b is bounded, Tmin = mint∈Ti1...id
{|Ti1...id |} and Tmax =

maxt∈Ti1...id
{|Ti1...id |}. Thus, under condition (C5), we have ‖ûi1···id−u0i1···id‖2 . T

1/2
max/Tmin
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. N τ/2−υ. Under condition (C1) and (C5), we have

1
N

∑
(i1,···,id)∈Ω ‖Fi1···id(ûi1···id − u0i1···id)‖22

= 1
N

∑
(i1,···,id)∈Ω(ûi1···id − u0i1···id)>

∑
t∈Ti1...id

f(t)f(t)>(ûi1···id − u0i1···id)

≤ C maxt∈Ti1...id
{|Ti1...id |} 1

N

∑
(i1,···,id)∈Ω(ûi1···id − u0i1···id)>(ûi1···id − u0i1···id)

. T 2
max

NT 2
min

. N−1+2(τ−υ).

The proof of Theorem 2 is completed.

We can currently use a convenient basis system in our technical arguments and the
results also hold true for other basis choices of the same function space. The B-spline and
truncated polynomial basis functions span the same set of spline functions (de Boor, 2001),
thus we use B-splines as the convenient basis system in our proofs. The B-splines have the
following properties (de Boor, 2001): Bk(t) ≥ 0,

∑M
k=1Bk(t) = 1, t ∈ T, C1

M

∑M
k=1 φ

2
kdt ≤∫

T(
∑M

k=1 φkBk(t))
2 ≤ C2

M

∑M
k=1 φ

2
k, C1 and C2 are constant and φk ∈ R.

Lemma 5 Under Conditions (C1)-(C5), we have

1
N

∑
(i1,...,id)∈Ω(Ŵi1...id −Wi1...id)>Σ−1

i1...id
(Ŵi1...id −Wi1...id) = Op(N

−1+2(τ−υ)),

1
N

∑
(i1,...,id)∈Ω(Ŵi1...id −Wi1...id)>Σ−1

i1...id
Wi1...id = Op(N

−1+3τ/2−υ),

1
N

∑
(i1,...,id)∈Ω(Ŵi1...id −Wi1...id)>Σ−1

i1...id
εi1...id = Op(N

−1+τ−υ).

Proof By Theorem 2 and the non-negative bounded properties of the B-spline basis func-
tions (de Boor, 2001), we have for j, l = 1, . . . , r; e, k = 1, . . . ,md+1,

1
N

∑
(i1,...,id)∈Ω(X̂i1...idj −Xi1...idj)

>Σ−1
i1...id

(X̂i1...idl −Xi1...idl)

= 1
N

∑
(i1,...,id)∈Ω(ûi1...idj − ui1...idj)(ûi1...idl − ui1...idl)B>i1...idjΣ

−1
i1...id

Bi1...idl

≤ c2σ
−2
1 Tmax

1
N

∑
(i1,...,id)∈Ω(ûi1...idj − ui1...idj)(ûi1...idl − ui1...idl)

·{ 1
|Ti1...id

|
∑

t∈Ti1...id
Bj(t)

>Bl(t)}

= Op(N
−1+2(τ−υ)),

1
N

∑
(i1,...,id)∈Ω(X̂i1...idj −Xi1...idj)

>Σ−1
i1...id

(Ẑi1...ide − Zi1...ide)

≤ c2σ
−2
1

1
N

∑
(i1,...,id)∈Ω(ûi1...idj − ui1...idj)(ûi1...id(r+1) − ui1...id(r+1))B

>
i1...idj

Ai1...ide

= Op(N
−1+2(τ−υ)),

and

1
N

∑
(i1,...,id)∈Ω(Ẑi1...idk − Zi1...idk)

>Σ−1
i1...id

(Ẑi1...ide − Zi1...ide)

≤ c2σ
−2
1

1
N

∑
(i1,...,id)∈Ω(ûi1...id(r+1) − ui1...id(r+1))

2A>i1...idkAi1...ide = Op(N
−1+2(τ−υ)).
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By definition, we have

1

N

∑
(i1,...,id)∈Ω

(Ŵi1...id −Wi1...id)>Σ−1
i1...id

(Ŵi1...id −Wi1...id) = Op(N
−1+2(τ−υ)).

Under conditions (C3)-(C5), we have j, l = 1, . . . , r; e, k = 1, . . . ,md+1,

1
N

∑
(i1,...,id)∈Ω(X̂i1...idj −Xi1...idj)

>Σ−1
i1...id

Xi1...idl

≤ c2σ
−2
1

1
N

∑
(i1,...,id)∈Ω(ûi1...idj − ui1...idj)ui1...idlB>i1...idjBi1...idl

≤ c2σ
−2
1 Tmax

1
N

∑
(i1,...,id)∈Ω(ûi1...idj − ui1...idj)ui1...idl{

1
|Ti1...id

|
∑

t∈Ti1...id
Bj(t)

>Bl(t)}

= Op(N
−1+3τ/2−υ),

1
N

∑
(i1,...,id)∈Ω(X̂i1...idj −Xi1...idj)

>Σ−1
i1...id

εi1...id

≤ c2σ
−2
1

1
N

∑
(i1,...,id)∈Ω(ûi1...idj − ui1...idj)B>i1...idjεi1...id

≤ CT
1/2
max

1
N

∑
(i1,...,id)∈Ω(ûi1...idj − ui1...idj){ 1

|Ti1...id
|1/2
∑

t∈Ti1...id
εi1...idt}

= Op(N
−1+τ−υ),

1
N

∑
(i1,...,id)∈Ω(X̂i1...idj −Xi1...idj)

>Σ−1
i1...id

Zi1...ide = Op(N
−1+3τ/2−υ),

1
N

∑
(i1,...,id)∈Ω(Ẑi1...ide − Zi1...ide)

>Σ−1
i1...id

Xi1...idj = Op(N
−1+3τ/2−υ),

1
N

∑
(i1,...,id)∈Ω(Ẑi1...ids − Zi1...ids)

>Σ−1
i1...id

Zi1...ide = Op(N
−1+3τ/2−υ),

1
N

∑
(i1,...,id)∈Ω(Ẑi1...ide − Zi1...ide)

>Σ−1
i1...id

εi1...id = Op(N
−1+τ−υ).

By definition, we can obtain

1

N

∑
(i1,...,id)∈Ω

(Ŵi1...id −Wi1...id)>Σ−1
i1...id

Wi1...id = Op(N
−1+3τ/2−υ),

and
1

N

∑
(i1,...,id)∈Ω

(Ŵi1...id −Wi1...id)>Σ−1
i1...id

εi1...id = Op(N
−1+τ−υ).

Proof of Theorem 3
Based on the criterion function (3), we can obtain the estimator of the coefficient as

follows:

γ̂ = (
∑

(i1,i2,...,id)∈Ω

Ŵ>
i1i2...id

Σ−1
i1i2...id

Ŵi1i2...id + λI)−1
∑

(i1,i2,...,id)∈Ω

Ŵ>
i1i2...id

Σ−1
i1i2...id

yi1i2...id .

Thus, we have

γ̂ − γ0 =
(∑

(i1,...,id)∈Ω Ŵ>
i1...id

Σ−1
i1i2...id

Ŵi1...id/N + λI/N
)−1{∑

(i1,...,id)∈Ω Ŵ>
i1...id

Σ−1
i1i2...id

(yi1...id − Ŵi1...idγ0)/N − λγ0/N
}
.
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By Lemma 5, we have

1
N

∑
(i1,...,id)∈Ω Ŵ>

i1...id
Σ−1
i1i2...id

Ŵi1...id

= 1
N

∑
(i1,...,id)∈Ω W>

i1...id
Σ−1
i1i2...id

Wi1...id

+ 1
N

∑
(i1,...,id)∈Ω(Ŵi1...id −Wi1...id)>Σ−1

i1i2...id
(Ŵi1...id −Wi1...id)

+ 1
N

∑
(i1,...,id)∈Ω(Ŵi1...id −Wi1...id)>Σ−1

i1i2...id
Wi1...id

+ 1
N

∑
(i1,...,id)∈Ω W>

i1...id
Σ−1
i1i2...id

(Ŵi1...id −Wi1...id)

= 1
N

∑
(i1,...,id)∈Ω W>

i1...id
Σ−1
i1i2...id

Wi1...id +Op(N
−1+3τ/2−υ)

and

1
N

∑
(i1,...,id)∈Ω Ŵ>

i1...id
Σ−1
i1i2...id

(yi1...id − Ŵi1...idγ0)

= 1
N

∑
(i1,...,id)∈Ω W>

i1...id
Σ−1
i1i2...id

(yi1...id −Wi1...idγ0)

− 1
N

∑
(i1,...,id)∈Ω(Ŵi1...id −Wi1...id)>Σ−1

i1i2...id
(Ŵi1...id −Wi1...id)γ0

+ 1
N

∑
(i1,...,id)∈Ω(Ŵi1...id −Wi1...id)>Σ−1

i1i2...id
(yi1...id −Wi1...idγ0)

− 1
N

∑
(i1,...,id)∈Ω W>

i1...id
Σ−1
i1i2...id

(Ŵi1...id −Wi1...id)γ0

= 1
N

∑
(i1,...,id)∈Ω W>

i1...id
Σ−1
i1i2...id

(yi1...id −Wi1...idγ0)

+ 1
N

∑
(i1,...,id)∈Ω(Ŵi1...id −Wi1...id)>Σ−1

i1i2...id
(yi1...id −Wi1...idγ0) +Op(N

−1+3τ/2−υ).

According to de Boor (2001), supt∈T |hj(t)− h̃j(t)| ≤ Ca
−ξ
N and supt∈T |ge(t)− g̃e(t)| ≤

Ca−ξN for each j = 1, . . . , r and each e = 1, . . . ,md+1, where h̃j(t) = α>0jBj(t) and

g̃e(t) = β>0eAe(t). Let ỹi1...id = Wi1...idγ0 =
∑r

j=1 ui1...idjh̃i1...idj + ui1...id(r+1)g̃i1...id ,

yi1...id =
∑r

j=1 ui1...idjhi1...idj + ui1...id(r+1)gi1...id , where h̃i1...idj = Bi1i2...idjα0j , g̃i1...id =∑md+1

e=1 Ai1i2...ideβ0e, and hi1...idj and gi1...id consist of hj(t) and g(t) for all t ∈ Ti1...id , re-
spectively. That is, yi1...id = yi1...id +εi1...id . Similar to the proof of lemma 5, we can obtain
that

1

N

∑
(i1,...,id)∈Ω

W>
i1...id

Σ−1
i1i2...id

{
r∑
j=1

ui1...idj(hi1...idj − h̃i1...idj)} = Op(a
−ξ
N N τ−1),

and

1

N

∑
(i1,...,id)∈Ω

W>
i1...id

Σ−1
i1i2...id

(gi1...id − g̃i1...id)ui1...id(r+1) = Op(a
−ξ
N N τ−1).
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Therefore, we have

1
N

∑
(i1,...,id)∈Ω W>

i1...id
Σ−1
i1i2...id

(yi1...id −Wi1...idγ0)

= 1
N

∑
(i1,...,id)∈Ω W>

i1...id
Σ−1
i1i2...id

(yi1...id − yi1...id)

+ 1
N

∑
(i1,...,id)∈Ω W>

i1...id
Σ−1
i1i2...id

(yi1...id − ỹi1...id)

= 1
N

∑
(i1,...,id)∈Ω W>

i1...id
Σ−1
i1i2...id

εi1...id

+ 1
N

∑
(i1,...,id)∈Ω W>

i1...id
Σ−1
i1i2...id

{
∑r

j=1 ui1...idj(hi1...idj − h̃i1...idj)}

+ 1
N

∑
(i1,...,id)∈Ω W>

i1...id
Σ−1
i1i2...id

(gi1...id − g̃i1...id)ui1...id(r+1)

= 1
N

∑
(i1,...,id)∈Ω W>

i1...id
Σ−1
i1i2...id

εi1...id + op(a
−ξ
N N τ−1).

Similarly, we can obtain

1
N

∑
(i1,...,id)∈Ω(Ŵi1...id −Wi1...id)>Σ−1

i1i2...id
(yi1...id −Wi1...idγ0)

= 1
N

∑
(i1,...,id)∈Ω(Ŵi1...id −Wi1...id)>Σ−1

i1i2...id
εi1...id

+ 1
N

∑
(i1,...,id)∈Ω(Ŵi1...id −Wi1...id)>Σ−1

i1i2...id
{
∑r

j=1 ui1...idj(hi1...idj − h̃i1...idj)}

+ 1
N

∑
(i1,...,id)∈Ω(Ŵi1...id −Wi1...id)>Σ−1

i1i2...id
(gi1...id − g̃i1...id)ui1...id(r+1)

= Op(N
−1+τ−υ) +Op(a

−ξ
N N−1+3τ/2−υ).

Thus, we have

1
N

∑
(i1,...,id)∈Ω Ŵ>

i1...id
Σ−1
i1i2...id

(yi1...id − Ŵi1...idγ0)

= 1
N

∑
(i1,...,id)∈Ω W>

i1...id
Σ−1
i1i2...id

εi1...id + op(N
−1+τ−υ) + op(a

−ξ
N N τ−1).

Since λ = op(1), we have N−1λI = op(N
−1) and N−1λγ0 = op(N

−1). Then, we have

1
N

∑
(i1,...,id)∈Ω Ŵ>

i1...id
Σ−1
i1i2...id

Ŵi1...id + 1
N λI

= 1
N

∑
(i1,...,id)∈Ω W>

i1...id
Σ−1
i1i2...id

Wi1...id + op(N
−1+3τ/2−υ),

and

1
N

∑
(i1,...,id)∈Ω Ŵ>

i1...id
Σ−1
i1i2...id

(yi1...id − Ŵi1...idγ0)− 1
N λγ0

= 1
N

∑
(i1,...,id)∈Ω W>

i1...id
Σ−1
i1i2...id

εi1...id + op(N
−1+τ−υ) + op(a

−ξ
N N τ−1).

For any vector c whose components are not all zero, we have

c>(γ̂ − γ0)

=
∑

(i1,...,id)∈Ω c>(
∑

(i1,...,id)∈Ω W>
i1...id

Σ−1
i1i2...id

Wi1...id)−1W>
i1...id

Σ−1
i1i2...id

εi1...id + op(1)

=
∑

(i1,...,id)∈Ω ai1...idζi1...id + op(1),

where ζi1...id are independent with mean zero and variance one given {Wi1...id , (i1, . . . , id) ∈
Ω}, and

a2
i1...id

= c>(
∑

(i1,...,id)∈Ω W>
i1...id

Σ−1
i1i2...id

Wi1...id)−1W>
i1...id

Σ−1
i1i2...id

Σ0
i1...id

Σ−1
i1i2...id

Wi1...id

(
∑

(i1,...,id)∈Ω W>
i1...id

Σ−1
i1i2...id

Wi1...id)−1c.
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It follows easily by checking the Lindeberg condition that if

max(i1,...,id)∈Ω a
2
i1...id∑

(i1,...,id)∈Ω a
2
i1...id

→p 0, (13)

then
∑

(i1,...,id)∈Ω ai1...idζi1...id/
√∑

(i1,...,id)∈Ω a
2
i1...id

is asymptotically N(0, 1). We only need

to show that (13) holds.

Based on the properties of the B-splines and conditions (C3)-(C4), we have, for any
φ = (φ>1, . . . ,φ

>
r+md+1

)> with φj ∈ RM ,

φ>W>
i1...id

Σ−1
i1i2...id

Σ0
i1...id

Σ−1
i1i2...id

Wi1...idφ

≤ c2
2σ
−2
1

∑
t∈Ti1...id

(φ>wi1...idt)
2

= c2
2σ
−2
1

∑
t∈Ti1...id

{
∑r

j=1 ui1i2...idjφ
>
jBj(t) + ui1i2...id(r+1)

∑md+1

e=1 φ>r+eAe(t)I(t ∈ se)}2

≤ cc2
2σ
−2
1

∑
t∈Ti1...id

[(
∑r

j=1 u
2
i1i2...idj

)
∑r

j=1{φ
>
jBj(t)}2 + u2

i1i2...id(r+1)

∑md+1

e=1 {φ
>
r+eAe(t)}2]

. (
∑r

j=1 u
2
i1i2...idj

)
∑r

j=1

∑
t∈Ti1...id

{φ>jBj(t)}2 + u2
i1i2...id(r+1)

∑md+1

e=1

∑
t∈Ti1...id

{φ>r+eAe(t)}2

. (
∑r

j=1 u
2
i1i2...idj

)
∑r

j=1
C2
M |φj |

2 + u2
i1i2...id(r+1)

∑md+1

e=1
C2
M |φr+e|

2

. (
∑r+1

j=1 u
2
i1i2...idj

)C2
M |φ|

2

. 1
M |φ|

2.

By Lemmas A.1 and A.2 in Huang et al. (2004), we have

φ>(
∑

(i1,...,id)∈Ω W>
i1...id

Σ−1
i1i2...id

Σ0
i1...id

Σ−1
i1i2...id

Wi1...id)φ

≥ c2
1σ
−2
2

∑
(i1,...,id)∈Ωφ

>W>
i1...id

Wi1...idφ

≥ c2
1σ
−2
2 NTmin[ 1

N

∑
(i1,...,id)∈Ω

1
|Ti1...id

|
∑

t∈Ti1...id
{
∑r

j=1 ui1i2...idjφ
>
jBj(t)

+ui1i2...id(r+1)

∑md+1

e=1 φ>r+eAe(t)I(t ∈ se)}2]

≥ c2
1σ
−2
2 NTmin[ 1

N

∑
(i1,...,id)∈Ω

1
|Ti1...id

|
∑

t∈Ti1...id
{
∑r

j=1 ui1i2...idjφ
>
jBj(t)

+ mine{ui1i2...id(r+1)φ
>
r+eAe(t)}}2]

& NTmin
1
M |φ|

2.

Thus, we obtain that

max(i1,...,id)∈Ωφ
>W>

i1...id
Σ−1
i1i2...id

Σ0
i1...id

Σ−1
i1i2...id

Wi1...idφ

φ>(
∑

(i1,...,id)∈Ω W>
i1...id

Σ−1
i1i2...id

Σ0
i1...id

Σ−1
i1i2...id

Wi1...id)φ
.

1

NTmin
.

Hence, (13) holds. Then we have c>(γ̂−γ0)var{c>(γ̂−γ0)}−1/2 L→ N(0, 1), where var{c>(γ̂−
γ0)} = c>Ψ−1ΦΨ−1c, in which Φ =

∑
(i1,...,id)∈Ω W>

i1...id
Σ−1
i1i2...id

Σ0
i1...id

Σ−1
i1i2...id

Wi1...id , and

Ψ =
∑

(i1,...,id)∈Ω W>
i1...id

Σ−1
i1i2...id

Wi1...id .
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For any φ = (φ>1, . . . ,φ
>
r+md+1

)> with φj ∈ RM , under conditions (C3)-(C4), we have

φ>(
∑

(i1,...,id)∈Ω W>
i1...id

Σ−1
i1i2...id

Σ0
i1...id

Σ−1
i1i2...id

Wi1...id)φ

≤ c2
2σ
−2
1

∑
(i1,...,id)∈Ωφ

>W>
i1...id

Wi1...idφ

≤ c2
2σ
−2
1 NTmax[ 1

N

∑
(i1,...,id)∈Ω

1
|Ti1...id

|
∑

t∈Ti1...id
{
∑r

j=1 ui1i2...idjφ
>
jBj(t)

+ui1i2...id(r+1)

∑md+1

e=1 φ>r+eAe(t)I(t ∈ se)}2]

. NTmax
1
M |φ|

2,

and
φ>(
∑

(i1,...,id)∈Ω W>
i1...id

Σ−1
i1i2...id

Wi1...id)φ

≥ c1σ
−2
2 NTmin[ 1

N

∑
(i1,...,id)∈Ω

1
|Ti1...id

|
∑

t∈Ti1...id
(φ>wi1...idt)

2]

& NTmin
1
M |φ|

2.

Since M = aN + κ+ 1, we have

var{c>(γ̂ − γ0)} = c>(
∑

(i1,...,id)∈Ω W>
i1...id

Σ−1
i1i2...id

Wi1...id)−1

(
∑

(i1,...,id)∈Ω W>
i1...id

Σ−1
i1i2...id

Σ0
i1...id

Σ−1
i1i2...id

Wi1...id)

(
∑

(i1,...,id)∈Ω W>
i1...id

Σ−1
i1i2...id

Wi1...id)−1c

= c>Ψ−1ΦΨ−1c

. MTmax

NT 2
min

. aNTmax

NT 2
min

. aNN
−1+τ−2υ,

where
Ψ =

∑
(i1,i2,...,id)∈Ω

W>
i1i2...id

Σ−1
i1i2...id

Wi1i2...id ,

and
Φ =

∑
(i1,i2,...,id)∈Ω

W>
i1i2...id

Σ−1
i1i2...id

Σ0
i1i2...id

Σ−1
i1i2...id

Wi1i2...id .

The proof of the theorem is complete.
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