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Abstract

Graph embeddings, a class of dimensionality reduction techniques designed for relational
data, have proven useful in exploring and modeling network structure. Most dimensionality
reduction methods allow out-of-sample extensions, by which an embedding can be applied
to observations not present in the training set. Applied to graphs, the out-of-sample ex-
tension problem concerns how to compute the embedding of a vertex that is added to the
graph after an embedding has already been computed. In this paper, we consider the out-
of-sample extension problem for two graph embedding procedures: the adjacency spectral
embedding and the Laplacian spectral embedding. In both cases, we prove that when the
underlying graph is generated according to a latent space model called the random dot
product graph, which includes the popular stochastic block model as a special case, an
out-of-sample extension based on a least-squares objective obeys a central limit theorem.
In addition, we prove a concentration inequality for the out-of-sample extension of the
adjacency spectral embedding based on a maximum-likelihood objective. Our results also
yield a convenient framework in which to analyze trade-offs between estimation accuracy
and computational expenses, which we explore briefly. Finally, we explore the performance
of these out-of-sample extensions as applied to both simulated and real-world data. We
observe significant computational savings with minimal losses to the quality of the learned
embeddings, in keeping with our theoretical results.
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1. Introduction

Graph embeddings are a class of dimensionality reduction techniques designed for net-
work data, which have emerged as a popular tool for exploring and modeling network
structure. Given a graph G = (V,E) on vertex set V = {1, 2, . . . , n} with adjacency
matrix A ∈ {0, 1}n×n, the graph embedding problem concerns how best to map V to a
d-dimensional vector space so that geometry in that vector space captures the topology of
G. For example, we may ask that vertices that play similar structural roles in G be mapped
to nearby points. Two common approaches to graph embedding are the graph Laplacian
embedding (Belkin and Niyogi, 2003; Coifman and Lafon, 2006) and the adjacency spectral
embedding (ASE, Sussman et al., 2012), both of which are based on spectral decompositions
of the adjacency matrix or a transformation thereof. In many settings, data collection or
computational constraints may dictate that having computed an embedding of the graph
G, a practitioner may wish to add vertices to G, and compute the corresponding embed-
dings of these new vertices. We call these new vertices out-of-sample vertices, in contrast
to the in-sample vertices in V . Since constructing the in-sample embedding typically re-
quires a comparatively expensive eigenvalue computation, it is preferable to compute this
out-of-sample embedding without computing a new graph embedding from scratch. This
problem is well-studied in the dimensionality reduction literature, where it is known as the
out-of-sample extension problem. The focus of the present paper is to derive out-of-sample
extensions for the ASE and a slight variant of Laplacian eigenmaps, and to establish their
statistical properties under a particular natural choice of network model.

Latent space network models are a class of statistical models for graphs in which unob-
served geometry drives network formation. Each vertex is assigned a latent position, and
pairs of vertices form edges according to how near their latent positions are to one another.
Under certain latent space models, graph embeddings may be thought of as estimating
these latent positions. The focus of the present work is the random dot product graph, a
latent position model that subsumes the popular stochastic block model (see Section 1.1
below). Under this model, both the ASE and a slight variant of Laplacian eigenmaps called
the Laplacian spectral embedding (LSE; Tang and Priebe, 2018), recover all the latent po-
sitions of the in-sample vertices uniformly (Lyzinski et al., 2014; Tang and Priebe, 2018).
Specifically, one obtains a bound on the estimation error of order n−1/2 (ignoring logarith-
mic factors) that holds uniformly over all n vertices in the graph. Further, any constant
number of vertices jointly obey a CLT, in that their embeddings are jointly asymptotically
normally distributed about the true latent positions (Athreya et al., 2016; Levin et al.,
2017; Tang and Priebe, 2018). In this paper, we show that analogous results hold for the
out-of-sample extensions of both the ASE and LSE. That is, the out-of-sample extensions
of these two methods recover the latent positions of the out-of-sample vertices at the same
rate as would be obtained by the computationally more expensive in-sample embedding.

1.1 Background and Notation

Most dimensionality reduction and embedding techniques begin with a collection of training
data observations D = {z1, z2, . . . , zn} ⊆ X , where X is the set of all possible observations
(e.g., the set of all possible images, audio signals, etc.). X is endowed with a similarity
measure K : X × X → R≥0, and most embedding procedures leverage the eigenstructure
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of the symmetric similarity matrix M = [K(zi, zj)] ∈ Rn×n. An embedding of the data
D assigns to each zi ∈ D a vector xi ∈ Rd, where d is the embedding dimension, with
the embeddings {x1, x2, . . . , xn} chosen so as to preserve the structure of the sample D as
captured by the matrix M . This typically manifests as attempting to ensure that elements
zi, zj ∈ D for which K(zi, zj) is large are mapped so that ‖xi − xj‖ is small. Suppose that,
having computed x1, x2, . . . , xn, we obtain a new out-of-sample observation z ∈ X (which
may or may not appear in the training sample D), which we would like to embed along
with the in-sample observations D. Letting D̃ = D ∪ {z}, a näıve approach would simply
construct a new embedding {x̃1, x̃2, . . . , x̃n, x̃n+1} based on the sample D̃. This would in-
volve computational complexity of the same order as that required to compute the initial
embedding {x1, x2, . . . , xn}. Since computing the embedding {x1, x2, . . . , xn} tends to in-
volve expensive computations, most commonly eigendecompositions, it would be preferable
to avoid paying this computational cost repeatedly, particularly if there exists a scheme
whereby the embedding x̃n+1 of out-of-sample observation z can be well approximated
by a less costly computation. This is the motivation for the out-of-sample (OOS) exten-
sion problem, which concerns how to embed z into the same embedding space Rd based
only on the existing in-sample embedding {x1, x2, . . . , xn} and the similarity measurements
{K(z, xi) : i = 1, 2, . . . , n}. That is, we wish to compute an embedding of z without making
recourse to the full similarity matrix M ∈ Rn×n.

As an illustrative example, consider the Laplacian eigenmaps embedding (Belkin and
Niyogi, 2003; Belkin et al., 2006). Recall that the normalized Laplacian of graph G = (V,E)
with adjacency matrix A ∈ Rn×n is given by the matrix L = D−1/2AD−1/2, whereD ∈ Rn×n
is the diagonal matrix of degrees, with Dii =

∑n
j=1Aij , and 0−1/2 = 0 by convention

(Chung, 1997; Luxburg, 2007; Vishnoi, 2013). The d-dimensional normalized Laplacian
eigenmaps embedding of G is then given by the rows of the matrix Ũ ∈ Rn×d, where the
columns of Ũ are the orthonormal eigenvectors corresponding to the top d eigenvalues of
L, excluding the trivial eigenvalue 1. Suppose now that we wish to add a vertex v to the
graph, to form graph G̃ with adjacency matrix

Ã =

[
A ~a
~aT 0

]
, (1)

where ~a ∈ {0, 1}n and has ai = 1 if and only if v forms and edge with in-sample vertex
i ∈ [n]. Näıvely, one could simply apply the Laplacian eigenmaps embedding again to Ã,
at the cost of another eigendecomposition. Cheaper, however, would be an OOS extension,
such as that given by Bengio et al. (2004) or Belkin et al. (2006), that only makes use of
the embedding Ũ and the vector of edges ~a.

Out-of-sample extensions for multidimensional scaling (MDS, Torgerson, 1952; Borg
and Groenen, 2005), spectral clustering (Weiss, 1999; Ng et al., 2002), Laplacian eigenmaps
(Belkin and Niyogi, 2003) and ISOMAP (Tenenbaum et al., 2000) appear in Bengio et al.
(2004). These extensions were obtained by formulating each of the dimensionality reduction
techniques as a least-squares problem, which is possible owing to the fact that the in-sample
embeddings are functions of the eigenvalues and eigenvectors of a similarity or distance
matrix. Let matrixM = [K(xi, xj)]

n
i,j=1 be the similarity matrix for some similarity function

K, and let {(λi, ui)}ni=1 be the eigenvalue-eigenvector pairs of M . Bengio et al. (2004) derive
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the OOS extensions for a number of embeddings as solutions to the least-squares problem

min
f(x)∈Rd

n∑
i=1

K(x, xi)−
1

n

d∑
j=1

λjfj(xi)fj(x)

2

,

where D = {x1, x2, . . . , xn} are the in-sample observations and fj(xi) is the i-th component
of uj . A different OOS extension for MDS was considered in Trosset and Priebe (2008).
Instead of the least-squares framework of Bengio et al. (2004), Trosset and Priebe (2008)
frame the MDS OOS extension problem as a modification of the optimization problem
solved by the in-sample MDS embedding.

An approach to the Laplacian eigenmaps OOS extension, different from the one pre-
sented here, was pursued in Belkin et al. (2006), incorporating regularization in both the
geometry of the training data and the geometry of the similarity function K. Their ap-
proach can also be extended to regularized least squares, SVMs, and a variant of SVM in
which a Laplacian penalty term is added to the SVM objective. The authors showed that
all of these OOS extensions are the solutions to generalized eigenvalue problems. Levin
et al. (2015) provides an illustrative example of the practical application of these OOS ex-
tensions, using the OOS extension of Belkin et al. (2006) to build an audio search system.
More recent OOS extension techniques have attempted to avoid altogether the need to solve
least squares or eigenvalue problems, instead training a neural net to learn the embedding,
so that at out-of-sample embedding time one need only feed the out-of-sample observation
as input to the neural net (see, for example, Quispe et al., 2016; Jansen et al., 2017).

As far as we are aware, the only work to date on the OOS extension for ASE appears in
Tang et al. (2013a), in which the authors considered the OOS extension problem for latent
space models of graphs (see, for example Hoff et al., 2002). These are models in which
each vertex has an associated latent vector with edge probabilities given by inner products
of the latent vectors. The authors presented an OOS extension based on a least-squares
objective and proved a result, analogous to our Theorem 7, given the rate of growth of
the error between this out-of-sample embedding and the true out-of-sample latent position.
Theorem 7 yields a simplification of the proof of the result originally appearing in Tang
et al. (2013a), specialized to the random dot product graph model (see Definition 3 below).
We note, however, that our results can be extended to more general latent space network
models under suitable conditions on the inner product.

Largely missing from the literature, but of particular importance to the assessment of
OOS extensions, is the comparison of the OOS estimate’s accuracy compared to its in-
sample counter-part. That is, for training sample D and out-of-sample observation z ∈ X
(both drawn, perhaps, from a probability distribution on X ), how closely does the out-of-
sample embedding approximate its in-sample counterpart computed based on D̃ = D∪{z}?
In this work, we address this question as it pertains to the adjacency spectral embedding
(ASE) and the Laplacian spectral embedding (LSE; an embedding closely related to the
Laplacian eigenmaps embedding but more amenable to analysis; see Section 2). In partic-
ular, we show the following:

• Two different approaches to the ASE OOS extension problem yield OOS extensions
that recover the true out-of-sample latent position at a rate that matches the in-sample
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estimation error rate. The first (Theorem 7), based on a linear least squares objective,
holds under essentially no conditions on the model. The second (Theorem 8), based
on a maximum-likelihood objective, requires mild regularity conditions.

• An LSE OOS extension based on a linear least-squares objective that, similarly to the
ASE OOS extensions, recovers the true out-of-sample latent position at the same rate
as the in-sample embedding (Theorem 9).

• Both of the LLS-based OOS extensions obey central limit theorems (Theorems 11
and 13), with each OOS extension asymptotically normally distributed about the
true latent position (in the case of ASE) or a transformation thereof (in the case of
LSE).

We believe that analogous central limit theorems can be obtained for other OOS exten-
sions such as those presented in Bengio et al. (2004) and for the maximum-likelihood ASE
OOS extension, but do not pursue this generalization here. We note that the ASE out-of-
sample extensions analyzed here were first presented and analyzed in Levin et al. (2018).
This work extends that conference paper by giving complete proofs, extending the analysis
to the Laplacian spectral embedding (requiring substantially more involved proofs), and
adding more thorough experimental results.

1.2 Notation

Before continuing, we pause to establish notation. For a matrix M ∈ Rn1×n2 , we denote
by σi(M) the i-th singular value of M , so that σ1(M) ≥ σ2(M) ≥ · · · ≥ σk(M) ≥ 0, where
k = min{n1, n2}. For integer k > 0, we let [k] = {1, 2, . . . , n}. Throughout the paper, n
will denote the number of vertices in the observed graph G. For a vector x, the unadorned
norm ‖x‖ will denote the Euclidean norm of x, while for all p > 0, ‖x‖p will denote the
p-norm of x, where ‖x‖∞ = maxi |xi|. For a matrix M , ‖M‖F will denote the Frobenius
norm, ‖M‖ will denote the spectral norm

‖M‖ = sup
x:‖x‖=1

‖Mx‖,

and ‖M‖2,∞ will denote the 2-to-∞ norm,

‖M‖2,∞ = sup
x:‖x‖=1

‖Mx‖∞.

Most of our results will concern the behavior of certain quantities as the number of
vertices n increases to ∞. We will often, for ease of notation, suppress this dependence
on n, but it should be assumed throughout that all quantities are dependent on n, with
the exception of the latent position distribution F and the latent space dimension d (see
Definition 3). Thus, for example, we will in several places refer to a “sequence of matrices”
Q ∈ Rd×d, where we suppress what ought to be, say, a subscript n. Throughout, C > 0
denotes a positive constant, not depending on n, whose value may change from line to
line or even, occasionally, within the same line. Given an event E, we let Ec denote its
complement, and let Pr[E] denote the probability of event E (the probability measure in
question will always be clear from context). Given a collection of events {En} indexed by
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n, suppose that with probability 1 there exists n0 such that En occurs whenever n ≥ n0. If
this is the case, we say that En occurs eventually or, by a slight abuse of terminology, say
simply that En occurs.

We make standard use of the big-O, big-Ω and big-Θ notation. Thus, for example,
we write f(n) = O(g(n)) to denote the existence of a constant C > 0 such that for all
suitably large n, f(n) ≤ Cg(n). We write f(n) = Õ(g(n)) to mean that f(n) = O(g(n))
ignoring logarithmic factors. That is, if there exists a c > 0 such that f(n) = O(g(n) logc n)
(throughout the paper, c is never larger than 2 or 3 and is typically 1/2). Our one slight
abuse of this notation is in the case where, letting {Zn} be a sequence of random variables,
we write Zn = O(g(n)) to mean that there exists a constant C > 0 such that almost surely
there exists n0 such that |Zn| ≤ Cg(n) for all n ≥ n0, replacing the modulus with an
appropriate norm when Zn is a vector or matrix. The concentration inequalities in the
sequel are all of this form. We note that throughout, we prove these results by showing first
that Pr[|Zn| ≥ Cg(n)] ≤ Cn−(1+ε) is summable for all suitably small ε > 0. We then use the
independence of {Zn : n = 1, 2, . . . } to invoke the Borel-Cantelli lemma (Billingsley, 1995)
to conclude that Zn = O(g(n)). Thus, though these concentration inequalities are stated
as holding asymptotically, they all have finite-sample analogues obtained in the course of
their proofs.

1.3 Roadmap

The remainder of this paper is structured as follows. In Section 2, we formalize the graph
out-of-sample extension problem, and introduce a few methods for constructing such ex-
tensions. In Section 3, we present our main theoretical results, proving concentration and
asymptotic distributions for these extensions. Section 4 gives an experimental investigation
of the properties of these embeddings. We conclude in Section 5 with a brief discussion of
directions for future work.

2. Out-of-sample Extension for ASE and LSE

Given a graph G = ([n], E) with adjacency matrix A ∈ {0, 1}n×n, the adjacency spectral
embedding (ASE; Sussman et al., 2012) and the Laplacian spectral embedding (LSE; Tang
and Priebe, 2018) each provide a mapping of the n vertices of G into Rd. The ASE maps
the vertices of G to d-dimensional representations X̂1, X̂2, . . . , X̂n ∈ Rd given by the rows
of the matrix

X̂ = ASE(A, d) = Û Ŝ1/2 ∈ Rn×d, (2)

where Ŝ ∈ Rd×d is the diagonal matrix with entries given by the top d eigenvalues of A and
the columns of Û ∈ Rn×d are the corresponding orthonormal eigenvectors. The Laplacian
spectral embedding (LSE; Tang and Priebe, 2018) proceeds according to a similar eigenvalue
truncation, applied to the normalized graph Laplacian,

L = L(A) := D−1/2AD−1/2,

where D ∈ Rn×n is the diagonal degree matrix, with Di,i =
∑n

j=1Ai,j , with 0−1/2 = 0 by

convention. The LSE embeds the vertices of G as X̌1, X̌2, . . . X̌n ∈ Rd given by the rows of
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the matrix

X̌ = LSE(A, d) = Ǔ Š1/2 ∈ Rn×d, (3)

where Š ∈ Rd×d is the diagonal matrix formed of the d largest-magnitude eigenvalues
of the graph Laplacian L and Ǔ ∈ Rn×d is the matrix formed of the d corresponding
orthonormal eigenvectors. The well-known Laplacian eigenmaps embedding (Belkin and
Niyogi, 2003) is based on the eigenvectors corresponding to the smallest eigenvalues of the
matrix I − D−1/2AD−1/2 = I − L. Since this matrix has the same eigenspace as L, with
the eigenvalue ordering reversed, the Laplacian eigenmaps embedding is given by the rows
of Û ∈ Rn×d. Thus, results similar to those presented here for the LSE can be obtained for
the Laplacian eigenmaps embedding, as well.

We note that in both of the embeddings just described, there may be a concern that the
d largest-magnitude eigenvalues need not all be positive, and hence square roots Ŝ1/2 and
Š1/2 will be ill-defined. As a result, it may be preferable, in general, to consider instead
the top-d singular values of A and L. We will not consider this issue in the present work,
since under the model considered in this paper, with probability 1, the d largest-magnitude
eigenvalues will be positive for all suitably large n (see Definition 3 below and Lemma 14
in Appendix A).

Remark 1 (Comparing ASE and LSE) Both the ASE and LSE yield low-dimensional
representations of the vertices of G, and it is natural to ask which embedding is preferable.
The answer, in general, is dependent on the precise model under consideration and the
intended downstream task. For example, one can show that neither the ASE nor the Lapla-
cian embedding strictly dominates in a vertex clustering task. Section 4 of Tang and Priebe
(2018) demonstrates that ASE performs better than the Laplacian embedding when applied
to graphs with a core-periphery structure. Such structures are ubiquitous in real networks;
see, for example, Leskovec et al. (2009) and Jeub et al. (2015). We refer the interested
reader to Cape et al. (2019) for a more thorough theoretical treatment of this point. The
differing behaviors of the ASE and LSE can be related to the emerging distinction in the
literature between node embeddings, in which one seeks to preserve closeness in the topology
of the graph, and structural graph representations, in which one seeks to embed vertices near
one another according to the similarity of their structural roles in the graph (Srinivasan and
Ribero, 2020). These two views correspond roughly to the LSE and ASE, respectively.

The two embeddings just discussed are especially well-suited to the random dot product
graph (RDPG; Young and Scheinerman, 2007; Athreya et al., 2018), a model in which graph
structure is driven by the geometry of latent positions associated to the vertices.

Definition 2 (Inner product distribution) A distribution F on Rd is a d-dimensional inner
product distribution if 0 ≤ xT y ≤ 1 whenever x, y ∈ suppF .

Definition 3 (Random Dot Product Graph) Let F be a d-dimensional inner product dis-

tribution, and let X1, X2, . . . , Xn
i.i.d.∼ F be collected in the rows of X ∈ Rn×d. Let G be

a random graph with adjacency matrix A ∈ {0, 1}n×n. We say that G is a random dot
product graph (RDPG) with latent positions X1, X2, . . . , Xn ∈ Rd, if the edges of G are
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independent conditioned on {X1, X2, . . . , Xn}, with

Pr[A|X] =
∏

1≤i<j≤n
(XT

i Xj)
Ai,j (1−XT

i Xj)
1−Ai,j . (4)

We say that Xi is the latent position associated to the i-th vertex in G, and write (A,X) ∼
RDPG(F, n) to mean that the rows of X ∈ Rn×d are drawn i.i.d. from F and that A ∈
{0, 1}n×n is generated according to Equation (4) conditional on X.

Note that the RDPG has an inherent nonidentifiability, owing to the fact that the dis-
tribution of A is unchanged by an orthogonal rotation of the latent positions: for la-
tent position matrix X ∈ Rn×d and orthogonal matrix W ∈ Rd×d, both X ∈ Rn×d
and XW ∈ Rn×d give rise to the same distribution over adjacency matrices, in that
E[A | X] = XXT = XW (XW )T . Thus, we can only ever hope to recover the latent
positions of the RDPG up to some orthogonal transformation. Throughout this work, we
denote by ∆ = EX1X

T
1 ∈ Rd×d the second moment matrix of the latent position distribu-

tion F . Our results require that ∆ be of full rank, an assumption that we make without loss
of generality owing to the fact that if ∆ is of, say, rank d′ < d, then we may equivalently
think of F as a d′-dimensional inner product distribution by restricting our attention to an
appropriate d′-dimensional subspace of Rd.

Remark 4 (Extension to other graph models) As alluded to above, the RDPG as defined
here only captures graphs with positive semi-definite expected adjacency matrices. This
limitation can be avoided by considering the generalized RDPG (Rubin-Delanchy et al.,
2017). The results stated in the present work can for the most part be extended to this model,
at the expense of additional notational complexity, which we prefer to avoid here. Similarly,
using standard concentration inequalities, most of the results presented here can be extended
beyond binary edges to consider independent edges that are unbiased (EAi,j = XT

i Xj) with
sub-Gaussian or sub-gamma tails (Boucheron et al., 2013; Tropp, 2015).

Remark 5 (Incorporating Sparsity) As defined above, the RDPG produces only dense
graphs. That is, the number of edges grow quadratically in the number of vertices:

∑
i<j Aij =

Ω(n2). This behavior is in contrast with many real-world networks, which are sparse, in the
sense that the number of edges that are present in the network is much smaller than the
O(n2) possible edges. A simple way to introduce this sparse behavior is to shrink the la-
tent positions toward the origin as n increases, replacing the latent position matrix X with√
ρnX, where ρn ∈ [0, 1] is a sparsity parameter. Then n−2

∑
i<j Aij = Θ(ρn). Taking

ρn → 0 as n→∞ imposes sparsity, in the sense that the number of edges now grows more
slowly than the O(n2) rate predicted by the (unscaled) RDPG.

For ease of notation and exposition, we ignore sparsity in the material below, assuming
throughout that F is fixed in n. Nonetheless, the results presented below continue to hold
with minor modification in the presence of a sparsity parameter ρn. Roughly speaking, so
long as nρn = ω(logc n) for a suitably large constant c > 0, then the results presented in this
paper continue to hold once we replace each factor of n with ρnn. We refer the interested
reader to Tang and Priebe (2018); Rubin-Delanchy et al. (2017); Levin et al. (2019) for
examples of similarly-motivated concentration inequalities and central limit theorems that
incorporate sparsity.
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Throughout this paper, we will assume that (A,X) ∼ RDPG(F, n) for some d-dimensional
inner product distribution F , and write P = E[A | X] = XXT . Then X̂ = ASE(A, d) is
a natural alternate estimate of the matrix of true latent positions X. Similarly, X̌ =
LSE(A, d) is a natural estimate of X̃ = T−1/2X, where T ∈ Rn×n is a diagonal matrix
with entries Ti,i =

∑
j X

T
j Xi. The rows of X̃ can be thought of as the Laplacian spectral

embeddings of the matrix P = XXT , in the sense that X̃X̃T = L(P ). It has been shown
previously that the ASE consistently estimates the latent positions in the RDPG (Sussman
et al., 2012; Tang et al., 2013b), and successfully recovers community structure in the (pos-
itive semi-definite) stochastic block model (Lyzinski et al., 2014), which can be recovered as
a special case of the RDPG by taking the distribution F to be a mixture of point masses.
Similar results can be shown for the LSE (Tang and Priebe, 2018).

Lemma 6 Let (A,X) ∼ RDPG(F, n) for some d-dimensional inner product distribution F
and let X̂, X̌, X̃ ∈ Rn×d be as above. Then there exists a sequence of orthogonal matrices
Q ∈ Rd×d such that

‖X̂ −XQ‖2,∞ = O

(
log n√
n

)
. (5)

Further, if there exists a constant η > 0 such that η ≤ xT y ≤ 1− η whenever x, y ∈ suppF ,
then there exists a sequence of orthogonal matrices Q̃ ∈ Rd×d such that

‖X̌ − X̃Q̃‖2,∞ = O

(
log1/2 n

n

)
. (6)

Proof The bound in Equation (5) is Lemma 5 in Lyzinski et al. (2014). Equation (6)
follows by a broadly similar argument, once one accounts for the additional randomness
from the vertex degrees in the Laplacian. The Laplacian result requires the additional as-
sumption surrounding η > 0 to account for the fact that we are normalizing by the degrees
(i.e., dividing by XT

i µ). Details can be found in Appendix A.

The reader may note that the rates obtained in Lemma 6 for estimating X and X̃ differ
by a factor of

√
n. This difference is due to the fact that X̃ = T−1/2X is obtained by

rescaling the rows of X by the square roots of the (expected) vertex degrees, which shrinks
them toward the origin. As a result, X̂ and X̌ will require different rescalings to ensure
nondegeneracy in our large-n asymptotic results below.

As an aside, one might ask that we estimate X or T−1/2X according to maximum-
likelihood, instead of least-squares. Unfortunately, maximum-likelihood estimation of X
(or a transformation thereof) is impractical, if not altogether intractable. However, one
can show that in the special case of the stochastic blockmodel, the ASE is asymptotically
efficient, in that it recovers the true model parameters at a rate that matches the maximum-
likelihood estimate (Tang et al., 2017). We are not aware of an analogous result for the
more general RDPG, but recent minimax results indicate that the ASE recovers X at a rate
that is optimal up to log factors (Xie and Xu, 2020), and is thus (nearly) asymptotically
efficient.

9
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Suppose that a graph G = ([n], E) with adjacency matrix A ∈ Rn×n is a random dot
product graph, so that (A,X) ∼ RDPG(F, n), and we compute

X̂ = ASE(A, d) = [X̂1X̂2 · · · X̂n]T ∈ Rn×d and X̌ = LSE(A, d) = [X̌1X̌2 · · · X̌n]T ∈ Rn×d,

where X̂i, X̌i ∈ Rd are embeddings of the i-th vertex under ASE and LSE, respectively.
Suppose now that a vertex v having latent position w̄ ∈ suppF is added to the graph G
to form G̃ = ([n] ∪ {v}, E ∪ Ev), where Ev ⊆ {{i, v} : i = 1, 2, . . . , n}. The edges between
the out-of-sample vertex v and the in-sample vertices {1, 2, . . . , n} are specified by a vector
~a ∈ {0, 1}n such that ai = 1 if {i, v} ∈ Ev and ai = 0 otherwise. Thus, G̃ has adjacency
matrix Ã as in Equation (1) above. Having computed an embedding X̂ or X̌, we would
like to embed the vertex v to obtain an estimate of the true latent position w̄ (in the case
of ASE) or, in the case of LSE, its Laplacian spectral embedding w̃ = w̄/

√
nµT w̄ ∈ Rd,

where µ = EX1 is the mean of F . In the case of ASE, the out-of-sample extension problem
concerns how to compute an estimate of w̄ based only on X̂ and ~a. Similarly, in the case
of LSE, the out-of-sample extension problem requires computing an estimate of w̃ based
only on the information in X̂, ~a and, for reasons that will become clear below, the vector
of in-sample vertex degrees, ~d ∈ Rn.

2.1 Out-of-sample extension for ASE

Two natural approaches to the out-of-sample extension of ASE suggest themselves. The
first, following Bengio et al. (2004), involves embedding the out-of-sample vertex v as

ŵLS = arg min
w∈Rd

n∑
i=1

(
ai − X̂T

i w
)2
, (7)

where ai is the i-th component of the vector ~a ∈ Rn of edges between the out-of-sample
vertex and the in-sample vertices. We refer to ŵLS as the linear least squares out-of-sample
(LLS OOS) extension of adjacency spectral embedding.

Like the ASE, ŵLS is the solution to a least-squares problem. As mentioned above,
the motivation for defining the ASE as in Equation (2) is that maximum-likelihood esti-
mation of the nd-dimensional X is computationally intractable, in practice. In the case
of the out-of-sample extension problem, on the other hand, our goal is to estimate the
d-dimensional w̄ based on O(n) edges and the in-sample latent position estimates X̂, and
a maximum-likelihood version of the problem is feasible. Conditional on the true latent
positions X1, X2, . . . , Xn ∈ Rd of the in-sample vertices and the true latent position w̄ ∈ Rd
of the out-of-sample vertex, the entries of ~a are independent Bernoulli random variables,
with ai ∼ Bernoulli(XT

i w̄). Thus, the log likelihood (conditional on the in-sample latent
positions) is

`(w) =
n∑
i=1

ai logXT
i w + (1− ai) log(1−XT

i w).

Of course, in practice we observe the latent positions only through their ASE estimates
{X̂i}ni=1 ⊆ Rd. Thus, we define the maximum-likelihood out-of-sample extension for ASE

10
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as the maximizer of the plug-in likelihood, i.e., as the solution to

max
w∈Rd

n∑
i=1

ai log X̂T
i w + (1− ai) log

(
1− X̂T

i w
)
. (8)

Unfortunately, this objective need not achieve its optimum inside the support of F . Indeed,
the objective need not even be bounded. Thus, we will settle for a slight reformulation of
this objective, and define the maximum-likelihood out-of-sample (ML OOS) extension for
ASE to be the solution to a constrained maximum-likelihood problem,

ŵML = arg max
w∈T̂ε

n∑
i=1

ai log X̂T
i w + (1− ai) log

(
1− X̂T

i w
)
, (9)

where T̂ε = {w ∈ Rd : ε ≤ X̂T
i w ≤ 1− ε, i ∈ [n]}, and ε > 0 is some small constant. We note

that we call this the maximum-likelihood OOS extension, though it is, strictly speaking,
based on a plug-in approximation to the true likelihood given in Equation (8).

Note that, as required by the out-of-sample problem, both ŵLS and ŵML are functions
only of the in-sample embedding X̂ ∈ Rn×d and the edges between the out-of-sample vertex
v and the in-sample vertices [n], as encoded in the vector ~a ∈ Rn.

2.2 Out-of-sample extension for LSE

Recall that given the adjacency matrix A of graph G = ([n], E), we form the sample graph
Laplacian L = L(A) = D−1/2AD−1/2 and embed in-sample vertex i ∈ [n] as X̌i ∈ Rd, the
i-th row of

X̌ = Ǔ Š1/2 ∈ Rn×d,

where we remind the reader that Ǔ ∈ Rn×d denotes the matrix formed by the top d
orthonormal eigenvectors of L with their corresponding eigenvalues collected in the di-

agonal matrix Š ∈ Rd×d. Conditional on the latent positions X1, X2, . . . , Xn
i.i.d.∼ F ,

we have E[A|X] = XXT = P ∈ Rn×n, and we view L = L(A) as an estimate of
L(P ) = T−1/2PT−1/2, where T ∈ Rn×n is the matrix of (conditional) expected degrees,
Ti,i =

∑n
j=1 Pi,j =

∑n
j=1X

T
i Xj . Applying the LSE to L(P ), we may think of the rows of

X̃ = Ũ S̃1/2 ∈ Rn×d

as the “true” Laplacian spectral embedding, and view X̌ as an estimate of this quantity.

Given out-of-sample vertex v with latent position w̄ ∈ Rd, the natural Laplacian embed-
ding of v, in light of the definition of X̃, is given by w̃ = w̄/

√
nµT w̄, where µ = EX1 ∈ Rd

is the mean of F . Of course, in practice we must compute the out-of-sample embedding of v
based on X̌ ∈ Rn×d and the vector of edges ~a ∈ Rn to obtain an estimate of w̃. In applying
the least-squares approach suggested by Equation (7) and used in Bengio et al. (2004), it
is most natural to consider the minimizer

w̌LS = arg min
w∈Rd

n∑
i=1

(
ai√
dvdi

− X̌T
i w

)2

, (10)

11
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where di =
∑n

j=1Ai,j is the degree of the i-th in-sample vertex, and dv =
∑

i ai is the
degree of the out-of-sample vertex v. We refer to w̌LS as the LLS OOS extension of the
Laplacian spectral embedding. We note that Equation (10) requires that we keep in-sample
vertex degree information for use in the out-of-sample extension, which violates the typical
requirement that we compute the out-of-sample extension using only X̌ and ~a. Nonetheless,
it is reasonable to allow the use of the vector ~d, since typically the embedding dimension
d is of a smaller order than n and thus the space required to store node degrees is of the
same or smaller order as that required to store X̌ ∈ Rn×d. We note that one could avoid
this additional storage by replacing di with

∑n
j=1 X̌

T
j X̌i and all our results below would go

through (see Lemma 18), but this would come at the expense of notational inconvenience
and longer proofs below. The motivation for the least-squares objective in Equation (10)

becomes clear if we think of d
−1/2
v d

−1/2
i ai as an estimate of the normalized kernel

K̄(i, v) =
XT
i w̄

n
√
XT
i µw̄

Tµ
,

where µ ∈ Rd is again the mean of F .

3. Theoretical Results

The main results of this paper concern concentration inequalities and central limit theo-
rems for the OOS extensions introduced in Section 2. We first present the concentration
inequalities, which allow us to control the rate of convergence of the OOS extension to the
parameter of interest, given by the true OOS latent position w̄ in the case of ASE, and by
the transformed latent position w̃ = w̄/

√
nµT w̄ in the case of LSE.

3.1 Rates of convergence for OOS extensions

A first question surrounding the OOS extensions presented in the preceding section concerns
their quality as estimators of their respective true parameters. Interestingly, all of the OOS
extensions presented above recover their respective target parameters at asymptotic rates
that match that of the full-graph embedding.

We begin by considering the ASE OOS extensions defined in Equations (7) and (9). Both
of these estimates recover the true out-of-sample latent position w̄ at the same asymptotic
rate (see Theorems 7 and 8 below), and this rate matches the one we would obtain if we
were to compute the ASE of the augmented graph G̃ with adjacency matrix Ã, given in
Lemma 6. We find that the estimation error between the least squares OOS extension for
ASE ŵLS and the true latent position w̄ follows the same rate.

Theorem 7 Let F be a d-dimensional inner-product distribution and suppose (A,X) ∼
RDPG(F, n). Let v denote the out-of-sample vertex, with latent position w̄ ∈ Rd satisfying
0 ≤ w̄Tx ≤ 1 for all x ∈ suppF . Let ŵLS denote the LS-based OOS extension for ASE based
on X̂ = ASE(A, d) and the vector of edges ~a ∈ Rn between v and the in-sample vertices, as
defined in Equation (7). There exists a sequence of orthogonal matrices Q ∈ Rd×d such that

‖QŵLS − w̄‖ = O(n−1/2 log n),

12
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and this matrix Q is the same one guaranteed by Lemma 6.

Proof By definition in Equation (7), ŵLS is the solution to a least squares problem that
minimizes ‖X̂w − ~a‖ over all w ∈ Rd. By Lemma 6, X̂ is close to the matrix of true latent
positions X. Letting wLS ∈ Rd denote the least squares solution if one uses the true latent
positions X in place of X̂, Lemma 26 in Appendix B uses a standard result for solutions of
perturbed linear systems to show that with high probability, ‖QŵLS−wLS‖ ≤ Cn−1/2 log n,
where Q ∈ Rd×d is the orthogonal matrix guaranteed by Lemma 6.

Using basic linear algebra, we can bound ‖wLS−w̄‖ ≤ C‖XT (~a−Xw̄)‖/σd(X). Lemma 27
in Appendix B uses the fact that the singular values of X grow linearly under the RDPG
to lower-bound the denominator and controls the numerator using Hoeffding’s inequality to
obtain ‖wLS− w̄‖ = O(n−1/2 log n). The result then follows by a triangle inequality applied
to ‖QŵLS − w̄‖. A detailed proof can be found in Appendix B.

In a similar vein, the ML-based OOS extension also recovers the true out-of-sample latent
position at a rate that matches that of the in-sample embedding, given by Equation (5) in
Lemma 6.

Theorem 8 Let F be a d-dimensional inner-product distribution for which there exists a
constant η > 0 such that η < xT y < 1 − η for all x, y ∈ suppF . Suppose that (A,X) ∼
RDPG(F, n) and let v be an out-of-sample vertex with latent position w̄ ∈ Rd and satisfying
η < w̄Tx < 1 − η for all x ∈ suppF . Let ŵML be the out-of-sample embedding defined in
Equation (9), with ε > 0 chosen so that ε < η. Then there exists a sequence of orthogonal
matrices Q ∈ Rd×d such that

‖QŵML − w̄‖ = O(n−1/2 log n),

and this matrix Q is the same one guaranteed by Lemma 6.

Proof Using the definition of T̂ε and a standard argument from convex optimization,
Lemma 28 shows that with probability 1, it holds for all suitably large n that

‖QŵML − w̄‖ ≤
C‖∇ˆ̀(QT w̄)‖

n
.

Lemma 29 uses the triangle inequality and standard concentration inequalities to bound

‖∇ˆ̀(QT w̄)‖ = O(
√
n log n),

and the result follows by combining the above two displays. A detailed proof can be found
in Appendix C.

In keeping with the above two results, the least-squares LSE OOS extension given in
Equation (10) recovers the true out-of-sample Laplacian embedding w̃ at a rate that matches
that of the Laplacian spectral embedding w̃ of the augmented graph G̃, given by Equa-
tion (6) in Lemma 6.

13
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Theorem 9 Let F be a d-dimensional inner-product distribution with mean µ = EX1,
and suppose that there exists a constant η > 0 such that η < xT y < 1 − η for all x, y ∈
suppF . Let (A,X) ∼ RDPG(F, n), let v be an out-of-sample vertex with latent position
w̄ ∈ Rd and satisfying η < w̄Tx < 1 − η for all x ∈ suppF , and let w̃ = w̄/

√
nµT w̄ be

the Laplacian spectral embedding of this latent position. Then there exists a sequence of
orthogonal matrices Q̃ ∈ Rd×d such that

‖Q̃w̌LS − w̃‖ ≤ Cn−1 log1/2 n,

and this matrix Q̃ is the same one guaranteed by Lemma 6.

Proof Letting w̃LS denote the LLS OOS solution if we had access to the true latent
positions, the triangle inequality and unitary invariance of Euclidean norm imply

‖Q̃w̌LS − w̃‖ ≤ ‖Q̃w̌LS − w̃LS‖+ ‖w̃LS − w̃‖. (11)

Lemma 31 in Appendix D bounds the first right-hand term as O(n−1 log1/2 n). The proof
relies on a perturbed least squares argument broadly similar to that used in the proof of The-
orem 7, though now requiring a more careful argument to account for the renormalization
by the degrees in the graph Laplacian.

Lemma 30 in Appendix D bounds

‖w̃LS − w̃‖ ≤
2‖X̃T (d

−1/2
v D−1/2~a− X̃w̃)‖

σ2
d(X̃)

, (12)

where D is the matrix of in-sample degrees and dv is the degree of the out-of-sample vertex.
Lemma 19 in Appendix A implies that σ2

d(X̃) = Θ(1), and basic concentration inequalities

bound the numerator of Equation (12) as O(n−1 log1/2 n). Thus, the second of the two
right-hand terms in Equation (11) also grows at the rate O(n−1 log1/2 n). A detailed proof
is given in Appendix D.

Remark 10 (Adversarial selection of the OOS vertex) It is natural to ask how the
concentration results just described might be adapted to the setting in which an adversary
selects the out-of-sample vertex. Such a setup would presumably consist of an adversary
selecting the OOS vertex after observing the network. Investigating the OOS extension
problem under this setting would require analysis conditional on the network Ã, which would
render several of our technical lemmas inapplicable. We note, however, that arguments
similar to those in the proofs of Theorems 7, 8 and 9, show that a network Ã generated
according to to RDPG(F, n + 1) is impervious to adversarial selection, in a certain sense.
Specifically, one can show that with high probability, there exists no vertex in Ã whose OOS
extension differs from its true latent position (up to rotational nonidentifiability) by more
than a factor of Õ(n−1/2) in the case of the ASE, and Õ(n−1) in the case of the LSE. An
alternative adversarial model would be one in which the adversary is permitted to choose
the latent position w̄ of the out-of-sample vertex before the generation of the edges. Since
our concentration results require only that w̄ be consistent with the RDPG (in that its inner
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products with suppF lie in [0, 1]), a slight adaptation of our results above show that the
OOS extensions presented in Section 2 are robust to this adversarial model. We leave a
more thorough exploration of adversarial variants of the out-of-sample extension problem
for future work.

3.2 Central limit theorems for the OOS extensions

We now turn our attention to the question of the asymptotic distribution of the OOS
extensions introduced in Section 2. Once again, we state the results for the case of Bernoulli
edges, but similar results can be shown for a broader class of edge noise models, provided
that noise model and the latent position distribution F obey suitable moment conditions.

Theorem 11 Let F be a d-dimensional inner-product distribution and suppose that (A,X) ∼
RDPG(F, n) and let v be the out-of-sample vertex with latent position w̄ ∈ Rd satisfying
0 ≤ w̄Tx ≤ 1 for all x ∈ suppF . Let ŵLS be the least-squares OOS extension as defined in
Equation (7). Then there exists a sequence of orthogonal d-by-d matrices Q such that

√
n(QŵLS − w̄)

L−→ N (0,ΣF,w̄),

where for any w satisfying 0 ≤ wTx ≤ 1 for all x ∈ suppF , we define

ΣF,w = ∆−1E
[
XT

1 w(1−XT
1 w)X1X

T
1

]
∆−1, (13)

and ∆ = EX1X
T
1 is the second moment matrix of F .

Proof This theorem follows by writing, after adding and subtracting appropriate quantities,

√
n(QŵLS − w̄) =

√
nS−1/2UT (~a−Xw̄) +

√
n~hn,

where ~hn ∈ Rd. Lemma 32 shows that the former of these terms converges in law to a
normal. Using arguments similar to those in Theorem 7, we can show that

√
n~hn converges

to zero in probability, and applying Slutsky’s lemma completes the proof. Details can be
found in Appendix E.

If the latent position w̄ of the OOS vertex v is itself distributed according to F , inte-
grating w̄ above with respect to F yields the following corollary.

Corollary 12 Assume the same setup as Theorem 11, but suppose that the true latent
position of the out-of-sample vertex v is given by w̄ ∼ F , independent of (A,X). Then
there exists a sequence of orthogonal matrices Q ∈ Rd×d such that

√
n(QŵLS − w̄)

L−→
∫
N (0,ΣF,w)dF (w),

where ΣF,w is as defined in Equation (13). That is,
√
n(QŵLS−w̄) converges in distribution

to a mixture of normals with mixing distribution F .
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Turning our attention to the LSE, we can obtain a similar CLT result for the LSE OOS
extension, once we adjust for the fact that the LSE does not estimate the latent position w̄
but instead estimates the vector w̃ = w̄/

√
nµT w̄, where µ ∈ Rd is the mean of the inner-

product distribution F . We note that the scaling of w̃ by the square root of the expected
degree means that we must scale by n instead of the

√
n scaling in the ASE CLTs above.

Theorem 13 Let F be a d-dimensional inner-product distribution for which there exists
a constant η > 0 such that η ≤ xT y ≤ 1 − η whenever x, y ∈ suppF . Let (A,X) ∼
RDPG(F, n) and let v be the out-of-sample vertex with latent position w̄ ∈ Rd satisfying
η < w̄Tx < 1− η for all x ∈ suppF . Let w̌LS ∈ Rd denote the least-squares OOS extension
of LSE as defined in Equation (10). Then there exists a sequence of orthogonal matrices
Q̃ ∈ Rd×d such that

n(Q̃w̌LS − w̃)
L−→ N (0, Σ̃F,w̄),

where for any w ∈ Rd satisfying η < w̄Tx < 1− η for all x ∈ suppF , we define

Σ̃F,w̄ = E

XT
j w̄(1−XT

j w̄)

µT w̄

(
∆̃−1Xj

XT
j µ

− w̄

2µT w̄

)(
∆̃−1Xj

XT
j µ

− w̄

2µT w̄

)T , (14)

with ∆̃ = EX1X
T
1 /µ

TX1.

Proof The proof follows by a similar argument to the proof of Theorem 11, though it
requires a more careful analysis to control convergence of the vertex degrees. By adding
and subtracting appropriate quantities, we write

n(Q̃w̌LS − w̃) =
1√
n

n∑
j=1

(aj −XT
j w̄)√

µT w̄

(
Xj

XT
j µ
− ∆̃w̄

2µT w̄

)
+ n~hn,

where ~hn ∈ Rd. The former of these two right-hand quantities is a sum of n independent
mean-zero random variables, and hence converges to a normal with covariance Σ̃F,w̄. The

remainder term ~hn is controlled by concentration inequalities similar to those used in the
proof of Theorem 7. Details are given in Appendix F.

4. Experiments

In this section, we briefly explore our results through simulations, and then turn our atten-
tion to investigating the performance of the out-of-sample extension on real-world data.

4.1 Simulation: speed of convergence

We first give a brief exploration of how quickly the asymptotic distribution in Theorem 11
becomes a good approximation. Toward this end, let us consider a simple mixture of point
masses, F = Fλ,x1,x2 = λδx1 +(1−λ)δx2 , where x1, x2 ∈ R2 and λ ∈ (0, 1). This corresponds
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to a two-block stochastic block model (Holland et al., 1983), in which the block probability
matrix is given by [

xT1 x1 xT1 x2

xT1 x2 xT2 x2

]
.

Corollary 12 implies that if all latent positions (including the OOS vertex) are drawn ac-
cording to F , then the OOS estimate should be distributed as a mixture of normals centered
at x1 and x2, with respective mixing coefficients λ and 1− λ.
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Distribution of LLS OOS estimates as function of graph size

Figure 1: Observed distribution of the LLS OOS estimate for 100 independent trials for
number of vertices n = 50 (left), n = 100 (middle) and n = 500 (right). Each plot
shows the positions of 100 independent OOS embeddings, indicated by crosses,
and colored according to cluster membership. Contours indicate two generalized
standard deviations of the multivariate normal (i.e., 68% and 95% of the proba-
bility mass) about the true latent positions, which are indicated by solid circles.
We note that even with merely 100 vertices, the normal approximation is already
quite reasonable.

To assess how well the asymptotic distribution predicted by Theorem 11 and Corollary 12
holds, we generate RDPGs with latent positions drawn i.i.d. from distribution F = Fλ,x1,x2
defined above, with

λ = 0.4, x1 = (0.2, 0.7)T , and x2 = (0.65, 0.3)T .

For each trial, we draw n + 1 independent latent positions from F , and generate a binary
adjacency matrix from these latent positions. We let the (n+1)-th vertex be the OOS vertex.
Retaining the subgraph induced by the first n vertices, we obtain an estimate X̂ ∈ Rn×2

via ASE, from which we obtain an estimate for the OOS vertex via the LS OOS extension
as defined in (7). We remind the reader that for each RDPG draw, we initially recover
the latent positions only up to a rotation. Thus, for each trial, we compute a Procrustes
alignment (Gower and Dijksterhuis, 2004) of the in-sample estimates X̂ to their true latent
positions. This yields a rotation matrix R, which we apply to the OOS estimate. Thus,
the OOS estimates are sensibly comparable across trials. Figure 1 shows the empirical
distribution of the OOS embeddings of 100 independent RDPG draws, for n = 50 (left),
n = 100 (center) and n = 500 (right) in-sample vertices. Each cross is the location of the
OOS estimate for a single draw from the RDPG with latent position distribution F , colored
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according to true latent position. OOS estimates with true latent position x1 are plotted
as blue crosses, while OOS estimates with true latent position x2 are plotted as red crosses.
The true latent positions x1 and x2 are plotted as solid circles, colored accordingly. The
plot includes contours for the two normals centered at x1 and x2 predicted by Theorem 11
and Corollary 12, with the ellipses indicating the isoclines corresponding to one and two
(generalized) standard deviations.

Examining Figure 1, we see that even with only 100 vertices, the mixture of normal
distributions predicted by Theorem 11 holds quite well, with the exception of a few gross
outliers from the blue cluster. With n = 500 vertices, the approximation is particularly
good. Indeed, the n = 500 case appears to be slightly under-dispersed, possibly due to the
Procrustes alignment. It is natural to wonder whether a similarly good fit is exhibited by
the ML-based OOS extension. We conjectured at the end of Section 3 that a CLT similar
to that in Theorem 11 would also hold for the ML-based OOS extension as defined in
Equation (9). Figure 2 shows the empirical distribution of 100 independent OOS estimates,
under the same experimental setup as Figure 1, but using the ML OOS extension rather
than the linear least-squares extension. The plot supports our conjecture that the ML-based
OOS estimates are also approximately normally distributed about the true latent positions.
Broadly similar patterns hold for the same experiment applied to the least-squares LSE
OOS extension, as predicted by Theorem 13.
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Distribution of ML OOS estimates as function of graph size

Figure 2: Observed distribution of the ML OOS estimate for 100 independent trials for
number of vertices n = 50 (left), n = 100 (middle) and n = 500 (right). Each plot
shows the positions of 100 independent OOS embeddings, indicated by crosses,
and colored according to cluster membership. Contours indicate two generalized
standard deviations of the multivariate normal about the true latent positions,
which are indicated by solid circles. Once again, even with merely 100 vertices,
the normal approximation is already quite reasonable, supporting our conjecture
that the ML OOS estimates also distributed as a mixture of normals according
to the latent position distribution F .

Figure 3 plots the same experiment as that performed in Figures 1 and 2, this time for
the linear least squares OOS extension of the Laplacian spectral embedding. Recall that
Theorem 13 predicts that the out-of-sample extension should be asymptotically normally
distributed about the true (rescaled) latent position w̃ = w̄/

√
nw̃Tµ. Compared to the

previous two experiments, it is evident that the asymptotics are slightly slower to kick in,
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but modulo the same Procrustes-induced underdispersion observed previously, the theorem
appears to hold quite well with n = 500 vertices.
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Figure 3: Observed distribution of the LSE OOS estimate for 100 independent trials for
number of vertices n = 50 (left), n = 100 (middle) and n = 500 (right). Each plot
shows the positions of 100 independent OOS embeddings, indicated by crosses,
and colored according to cluster membership. Contours indicate two generalized
standard deviations of the multivariate normal about the true latent positions,
which are indicated by solid circles.

4.2 Tradeoff: computational cost versus classification accuracy

Figure 1 suggests that we may be confident in applying the large-sample approximation
suggested by Theorem 11 and Corollary 12. Applying this approximation allows us to
investigate the trade-offs between computational cost and classification accuracy, to which
we now turn our attention. The mixture distribution Fλ,x1,x2 above suggests a task in
which, given an adjacency matrix A, we wish to classify the vertices according to which of
two clusters or communities they belong. That is, we will view two vertices as belonging
to the same community if their latent positions are the same (Holland et al., 1983, i.e., the
latent positions specify an SBM,). More generally, one may view the task of recovering
vertex block memberships in a stochastic block model as a clustering problem. Lyzinski
et al. (2014) showed that applying ASE to such a graph, followed by k-means clustering of
the estimated latent positions, correctly recovers community memberships of all the vertices
(i.e., correctly assigns all vertices to their true latent positions) with high probability.

For concreteness, let us consider a still simpler mixture model, F = Fλ,p,q = λδp + (1−
λ)δq, where 0 < p < q < 1, and draw an RDPG (Ã,X) ∼ RDPG(F, n+m), taking the first
n vertices to be in-sample, with induced adjacency matrix A ∈ Rn×n. That is, we draw the
full matrix

Ã =

[
A B
BT C

]
,

where C ∈ Rm×m is the adjacency matrix of the subgraph induced by the m OOS vertices
and B ∈ Rn×m encodes the edges between the in-sample vertices and the OOS vertices.
The latent positions p and q encode a community structure in the graph Ã, and, as alluded
to above, a common task in network statistics is to recover this community structure.
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Let w̄(1), w̄(2), . . . , w̄(m) ∈ {p, q} denote the true latent positions of the m OOS vertices,

with respective least-squares OOS estimates ŵ
(1)
LS , ŵ

(2)
LS , . . . , ŵ

(m)
LS , each obtained from the

in-sample ASE X̂ ∈ Rn of A. Corollary 12 implies that each ŵ
(t)
LS for t ∈ [m] is marginally

(approximately) distributed as

ŵ
(t)
LS ∼ λN (p, (n+ 1)−1σ2

p) + (1− λ)N (q, (n+ 1)−1σ2
q ),

where
σ2
p = ∆−2

(
λp2(1− p2)p2 + (1− λ)pq(1− pq)q2

)
,

σ2
q = ∆−2

(
λpq(1− pq)p2 + (1− λ)q2(1− q2)q2

)
,

and ∆ = λp2 + (1− λ)q2.

Classifying the t-th OOS vertex based on ŵ
(t)
LS according to the likelihood ratio thus has

(approximate) probability of error

ηn,p,q = λ

[
1− Φ

(√
n+ 1(xn+1,p,q − p)

σp

)]
+ (1− λ)Φ

(√
n+ 1(xn+1,p,q − q)

σq

)
,

where Φ denotes the cdf of the standard normal and xn,p,q is the value of x solving

λσ−1
p exp{n(x− p)2/(2σ2

p)} = (1− λ)σ−1
q exp{n(x− q)2/(2σ2

q )},

and hence our overall error rate when classifying the m OOS vertices will grow as mηn+1,p,q.
As discussed previously, the OOS extension allows us to avoid the expense of computing

the ASE of the full matrix

Ã =

[
A B
BT C

]
.

The LLS OOS extension is computationally inexpensive, requiring only the computation of
the matrix-vector product Ŝ−1/2ÛT~a, with a time complexity O(d2n), assuming one does
not precompute the product Ŝ−1/2ÛT . The eigenvalue computation required for embedding
Ã is thus far more expensive than the LLS OOS extension. Nonetheless, if one were intent on
reducing the OOS classification error ηn+1,p,q, one might consider paying the computational
expense of embedding Ã to obtain estimates w̃(1), w̃(2), . . . , w̃(m) of the m OOS vertices.
That is, we obtain estimates for the m OOS vertices by making them in-sample vertices,
at the expense of solving an eigenproblem on the (m + n)-by-(m + n) adjacency matrix.
Of course, the entire motivation of our approach is that the in-sample matrix A may not
be available. Nonetheless, a comparison against this baseline, in which all data is used to
compute our embeddings, is instructive.

Theorem 1 in Athreya et al. (2016) implies that the w̃(t) estimates, based on embedding
the full matrix Ã, are (approximately) marginally distributed as

w̃(t) ∼ λN (p, (n+m)−1σ2
p) + (1− λ)N (q, (n+m)−1σ2

q ),

with classification error

ηn+m,p,q = λΦ

(
p− xn+m,p,q

σp

)
+ (1− λ)Φ

(
xn+m,p,q − q

σq

)
,
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Figure 4: Ratio of the OOS classification error to the in-sample classification error as a
function of the number of OOS vertices m, for n = 100 vertices, n = 1, 000
vertices and n = 10, 000 vertices. We see that for m ≤ 100, the expensive
in-sample embedding does not improve appreciably on the OOS classification
error. However, when many hundreds or thousands of OOS vertices are available
simultaneously (i.e., m ≥ 100), we see that the in-sample embedding may improve
upon the OOS estimate by a significant multiplicative factor.

where xn+m,p,q is the value of x solving

λσ−1
p exp{(m+ n)(x− p)2/(2σ2

p)} = (1− λ)σ−1
q exp{(m+ n)(x− q)2/(2σ2

q )},

and it can be checked that ηn+m,q,p < ηn,q,p when m > 1. Thus, at the cost of computing the
ASE of Ã, we may obtain a better estimate. How much does this additional computation
improve classification the OOS vertices? Figure 4 explores this question.

Figure 4 compares the error rates of the in-sample and OOS estimates as a function of
m and n in the model just described, with λ = 0.4, p = 0.6 and q = 0.61. The plot depicts
the ratio of the (approximate) in-sample classification error η(n+m),p,q to the (approximate)
OOS classification error η(n+1),p,q, as a function of the number of OOS vertices m, for
differently-sized in-sample graphs, n = 100; 1, 000; and 10, 000. We see that over several
magnitudes of graph size, the in-sample embedding does not improve appreciably over
the OOS embedding except when multiple hundreds of OOS vertices are available. When
hundreds or thousands of OOS vertices are available simultaneously, we see in the right-hand
side of Figure 4 that the in-sample embedding classification error may improve upon the
OOS classification error by a large multiplicative factor. Whether or not this improvement
is worth the additional computational expense will depend upon the available resources
and desired accuracy. For example, a researcher with access to specialized hardware (Zheng
et al., 2015) or a researcher requiring a high degree of classification accuracy may be more
willing to pay the computational expense. Nonetheless, Figure 4 suggests that the additional
expense associated with performing a second ASE computation is only worthwhile in the
event that hundreds or thousands of OOS vertices are available simultaneously. This surfeit
of OOS vertices is rather different from the typical setting of OOS extension problems,
where one typically wishes to embed at most a few previously unseen observations.
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4.3 MNIST Digit Classification

We now consider, briefly, an application of our out-of-sample embedding to the MNIST data
set (Lecun et al., 1998). This data set consists of 70,000 28-by-28 (i.e., 784-pixel) grey-scale
images of hand-drawn digits, along with their digit labels (integers 0, 1, 2, . . . , 9), split into
a training set of 55,000 images, a validation set of 5,000 images, and a test set of 10,000
images. Our goal is to predict the digit label given a grey-scale image.

To compare the out-of-sample extension to its in-sample counterpart, we consider the
following set-up. We first choose a similarity measure κ given by

κ(i, j) = exp

{
−‖Zi − Zj‖2

σ

}
, (15)

where Zi, Zj ∈ R784 are vectorized versions of images i and j, and σ > 0 is a bandwidth
parameter. We construct a similarity matrix K ∈ R65,000×65,000 on all 65, 000 observations
from the train and test set using the similarity measure κ as our kernel. Using a random
sample of 1000 points from the validation data, we apply the elbow-finding technique of
Zhu and Ghodsi (2006) to select an embedding dimension d̂. The table on the right-hand
side of Figure 5 summarizes the resulting embedding dimensions for different values of the
bandwidth σ. Having chosen an embedding dimension, we embed the training and test
data based on the similarity matrix K to obtain a gold standard in-sample embedding of

the full 65,000-observation data set. Letting X̂1, X̂2, . . . , X̂55,000 ∈ Rd̂ denote the resulting

embeddings, we train a classifier based on the pairs (X̂i, Yi)
55,000
i=1 , where Y1, Y2, . . . , Y55,000 ∈

{0, 1, 2, . . . , 9} are the labels of the training set images, and use it to predict the labels of the
10,000 test points. We refer to this as the full classifier. In what follows, we use a k-nearest
neighbor classifier, with k = 5 in the experiments reported below, but performance was
very similar for all choices of k ∈ {1, 3, 5, 7, 9, 11}.

For a given in-sample size n < 55, 000 (in the experiments that follow, we in-sample
sizes n = 1, 000, 2, 000, 5, 000, 10, 000, 20, 000, 50, 000), we select n observations from the

training set uniformly at random without replacement and embed them into Rd̂ based on
their induced submatrix of K (we use the ASE in the experiments reported below; LSE

showed broadly similar behavior). Denote these points by X̊1, X̊2, . . . , X̊n ∈ Rd̂. We embed
the remaining m = 55, 000 − n training examples according to the least squares ASE out-

of-sample extension, and denote these points by X̌1, X̌2, . . . , X̌m ∈ Rd̂. We then train a
classifier based on the embeddings {X̊i}ni=1 ∪ {X̌i}mi=1 and their corresponding digit labels.
Embedding the 10, 000 observations in the test set via out-of-sample extension, we use the
OOS classifier to predict their labels. We call this the OOS classifier.

If the full classifier and the OOS classifier obtain similar classification accuracy, we may
conclude that the OOS extension has successfully captured the information present in the
in-sample observations at a fraction of the computational cost. We note that our goal in this
experiment is not necessarily to attain higher classification accuracy than existing state-of-
the-art methods on the MNIST data set. Rather, we are using this well-studied data set to
investigate the extent to which the out-of-sample extension introduced in this paper obtains
performance comparable to the more expensive full embedding when applied to a real-world
data set. That is, we are interested not in the absolute classification accuracy, but rather
in the gap between the OOS classifier and the computationally costly full classifier.
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The plot on the left-hand side of Figure 5 compares the performance of the full and
OOS classifiers for different values of the bandwidth σ. Each color corresponds to a choice
of σ, with the solid lines indicating the classification accuracy of the OOS classifier as a
function of the in-sample size. The horizontal dashed lines indicate the performance of the
corresponding full classifier for each choice of bandwidth σ. Note that the dashed lines
are all flat as a function of the in-sample size because the full classifier is trained on an
embedding of all 65,000 observations (55,000 train and 10,000 test). Most importantly
for our purposes, we see that for all choices of σ, there exists a choice of in-sample size
for which the OOS classifier matches the performance of the full classifier, indicating that
the computational savings of the OOS embedding do not necessarily come at the cost of
downstream performance. Interestingly, it is not necessarily the case that a larger in-sample
size yields better OOS classification accuracy.
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Figure 5: Left: classification accuracy as a function of the in-sample size for different choices
of bandwidth parameter σ. Performance of the OOS classifier is indicated by solid
lines. Dashed lines indicate the performance of the full classifier. Right: embed-
ding dimension d̂ selected by the elbow-finding algorithm of Zhu and Ghodsi
(2006) applied to 1,000 observations from the validation set, for different choices
of bandwidth σ.

Broadly speaking, we see that smaller bandwidths generally yield poorer performance,
likely due to the fact that when σ is small, the resulting similarity graph K is comparatively
sparse, and more samples are required to adequately capture the geometry of the data. The
fact that OOS classification accuracy decreases slightly for larger in-sample sizes points to
a trade-off between the size of the in-sample and out-of-sample portions of the training
set. A larger collection of in-sample training examples will tend to more accurately reflect
the overall network topology. On the other hand, we have observed that the out-of-sample
embeddings tend to be distributed slightly differently from the in-sample embeddings. We
conjecture that this distributional difference is driven by the fact that the in-sample embed-
dings depend on the diagonal entries of K (recall that the contribution of these on-diagonal
entries is asymptotically negligible), which we have taken here to be identically 1, to agree
with Equation (15). In contrast, the OOS embeddings have no analogous parameter. The
question of how best to choose the on-diagonal entries of the adjacency matrix in the ad-
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Figure 6: Computation time, in seconds, as a function of the in-sample size for different
choice sof bandwidth σ, on a log-log scale. Each data point is the mean of ten
independent experiment runs. (a) Time to compute the in-sample embedding.
(b) Time to compute the out-of-sample extension.

jacency spectral embedding has been investigated extensively (see Section III.B in Tang
et al., 2019, and citations therein), and it is not necessarily the case that 0 or 1 is the
most appropriate choice for these entries. We leave for future work the question of how
best to choose the on-diagonal entries of the in-sample adjacency matrix for subsequent
out-of-sample embedding.

Figure 5 demonstrates that up to an in-sample size of approximately 10,000, the avail-
ability of more in-sample observations yields better classification accuracy across a range of
bandwidth choices. However, larger in-sample sizes require greater computational resources
due both to constructing the pairwise similarities among the in-sample set and to comput-
ing the leading eigenvectors of that matrix to construct the adjacency spectral embedding.
These computational costs are demonstrated in Figure 6, which shows the computational
time requirements for different in-sample set sizes. The left-hand plot shows the time re-
quired to construct the in-sample embeddings as a function of the in-sample size, while the
right-hand plot shows the time required to construct the out-of-sample embeddings, also
as a function of the in-sample size. Comparing the two plots, we see that constructing the
in-sample embedding accounts for the vast majority of the computational time required by
our experiment. This is as expected, in light of the fact that the out-of-sample extension
avoids a costly eigenvalue problem. Most importantly, examining the left-hand plot in the
context of Figure 5, we see that larger in-sample sizes require orders of magnitude more
computation time with no discernible gain in classification accuracy, in keeping with our
initial motivations for using the out-of-sample extension.

5. Discussion and Conclusion

We have presented theoretical results for out-of-sample extensions of graph embeddings,
the adjacency spectral embedding and the Laplacian spectral embedding. In both cases,
we have shown that under the random dot product graph, a least squares-based OOS
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extension recovers the true latent position at the same rate as the more expensive in-
sample embedding. Further, this linear least squares OOS extension obeys a CLT, whereby
the OOS embedding is normally distributed about the true latent position. We have also
presented results for an ASE OOS extension based on a maximum-likelihood objective
function showing that this embedding recovers the true out-of-sample latent position at
the same rate as the in-sample embedding. Experiments suggest that convergence to the
predicted normal distribution is fairly fast, being a good approximation with only a few
hundred vertices. Finally, we have briefly investigated how the approximation introduced by
these OOS extensions might be traded off against the computational expense associated with
computing the more expensive full graph embedding by investigating how the approximate
classification error predicted by our CLT depends on the size of the in-sample graph and
the number of out-of-sample vertices.

The results in this work suggest a number of interesting directions for future work, a
few of which we briefly enumerate here. Firstly, though all of the OOS extensions presented
in this paper match the asymptotic estimation error rates of their respective in-sample
embeddings, our results say little about the constants associated with those rates or about
finite-sample behavior of those OOS extensions (aside from their obvious restatements as
finite-sample results alluded to briefly in Section 1.2). A more thorough investigation of
how these different OOS extensions behave for different sizes of the in-sample graph and
for different latent position distributions F would be of particular interest to practitioners
faced with choosing between these different embeddings and OOS extensions as they apply
to real data. Our discussion surrounding Figure 4 makes an initial step in this direction,
but only suggests rules of thumb for when the speed/accuracy trade-off associated with
out-of-sample extension is likely to be favorable.

A related line of questioning concerns how one should, when possible, select the in-
sample vertices so as to yield optimal (as measured by, e.g., vertex classification or estima-
tion of the latent positions) out-of-sample embeddings. Consider the setting where one has
a graph G̃ of size ñ = n + m that is far too large to be embedded via ASE or LSE. If n
is the largest number of vertices that can be feasibly embedded as a full in-sample graph,
it is natural to choose n vertices from G̃ to serve as the in-sample vertices, and embed the
remaining m vertices via one of the out-of-sample extensions discussed in this paper. In this
setting, how should one choose these n vertices from G̃? Problems of a similar nature have
been considered elsewhere in the literature under the heading of anchor graphs or choosing
anchor points (see, e.g., Liu et al., 2010), but we are not aware of any work in this area as
it pertains to the ASE and LSE. This also suggests the problem of how best to embed m
out-of-sample vertices jointly, rather than applying an OOS extension to each of them in
isolation, particularly in the setting where we have access to the subgraph induced by these
m out-of-sample vertices. Of most import here is the question, also explored by Figure 4,
of how large the out-of-sample size m must be before one should prefer the expense of the
full-graph embedding, and whether an embedding that makes use of this out-of-sample in-
duced graph might bridge the gap between these two extremes by providing an embedding
which, while more expensive than performing m OOS extensions in isolation, is still far
less computationally intensive than embedding a graph of size m + n. A more thorough
exploration of this trade-off from both a theoretical and empirical standpoint is the subject
of on-going work.
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Yet another line of inquiry concerns model misspecification. No network observed in na-
ture is truly generated according to an RDPG, and it is natural to ask how the OOS exten-
sions presented in this work fare in the presence of gross model misspecification. The RDPG
(or its generalization, Rubin-Delanchy et al., 2017) can approximate any graphon, but it
is less well-suited to capture, for example, scale-free properties exhibited by preferential
attachment models (Barabási and Albert, 1999; Dorogovtsev et al., 2000). In preliminary
experiments, we have found that even under severe model misspecification (e.g., applying
an RDPG to data generated from a preferential attachment model), the in-sample and out-
of-sample embeddings are quite similar. That is, we have weak evidence that results similar
to our concentration results presented in Section 3.1 hold even when the RDPG assumption
is violated. Unfortunately, to the best of our knowledge, there do not exist any scale-free
network models in which there is also a natural notion of latent geometry or cluster mem-
bership (a possible exception is the hyperbolic geometric random graph, Krioukov et al.,
2010, but the non-Euclidean geometry of the latent positions makes estimation accuracy
difficult to assess). As a result, it is hard to say how large or small an error between the
in-sample and out-of-sample embeddings is operationally significant, rendering these exper-
iments rather uninformative. Further, the similarity of the in-sample and out-of-sample
embeddings need not depend in any way on how well the network itself is captured by the
RDPG’s low-rank assumption. We leave for future work a more thorough exploration of
the consequences of model misspecification for the OOS problem, and for inference under
the RDPG more generally.

Finally, we note the connections between the present work and other large-scale dimen-
sionality reduction problems, particularly distributed algorithms for matrix factorization
(Ahmed et al., 2013; Fan et al., 2019). The data access model we have considered is rather
different from that assumed in most work on distributed computing, but future work will
explore distributed versions of the OOS extensions developed here, starting by applying
known methods for distributed least squares estimation (Xiao et al., 2005).

Acknowledgments

KL was supported by NSF grants DMS-1646108 and DMS-2052632, as well as by the Uni-
versity of Wisconsin-Madison OVCRGE with funding from the Wisconsin Alumni Research
Foundation. FR is grateful for the support by the Australian Centre of Excellence for Math-
ematical and Statistical Frontiers (ACEMS) as well as Discovery Early Career Researcher
Award (DE180100923). MT and CEP were supported by DARPA grant FA8750-17-2-0112.
MWM acknowledges ARO, DARPA, NSF, and ONR for providing partial support of this
work.

Appendix A. Technical Results for the Random Dot Product Graph

Here we collect a number of basic results that will be useful in our subsequent proofs of
the main theorems. Most of the results in this section are adapted from existing results
in Levin et al. (2017), Lyzinski et al. (2014) and Tang and Priebe (2018). We refer the

26



Limit theorems for out-of-sample graph embeddings

interested reader to Athreya et al. (2018) for a more thorough overview of the RDPG and
the statistical problems that arise in relation to it.

Lemma 14 (Levin et al. (2017), Observation 2) Let (A,X) ∼ RDPG(F, n) for some
d-dimensional inner product distribution F . There exists constants 0 < C1 < C2, depending
only on F , such that with probability 1 it holds for all suitably large n that

C1n ≤ λd(P ) ≤ λ1(P ) ≤ C2n and

C1

√
n ≤ λd(X) ≤ λ1(X) ≤ C2

√
n.

Lemma 15 (Levin et al. (2017), Lemma 3) With notation as above, let V1ΛV T
2 be the

SVD of UT Û ∈ Rd×d, and define Q = V1V
T

2 . Then

‖UT Û −Q‖F = O(n−1 log n).

Lemma 16 (Tang and Priebe (2018), Proposition B.2) With notation as above, let
Ṽ1Λ̃Ṽ T

2 be the SVD of ŨT Ǔ ∈ Rd×d and define Q̃ = Ṽ1Ṽ
T

2 . Then

‖ŨT Ǔ − Q̃‖F = O(n−1).

Lemma 17 (Lyzinski et al. (2017) Lemma 15; Tang and Priebe (2018) Lemma B.3)
With notation as above,∥∥∥ǓT Ũ S̃1/2 − Š1/2ǓT Ũ

∥∥∥ = O(n−1),∥∥∥ÛTUS−1/2 − Ŝ−1/2ÛTU
∥∥∥
F

= O(n−3/2 log n) and∥∥∥ÛTUS1/2 − Ŝ1/2ÛTU
∥∥∥
F

= O(n−1/2 log n).

Lemma 18 Let F be a d-dimensional inner-product distribution and let (A,X) ∼ RDPG(F, n),
and let v be the out-of-sample vertex with latent position w̄ ∈ Rd such that 0 ≤ w̄Tx ≤ 1
for all x ∈ suppF . For i ∈ [n], let di =

∑
j Ai,j denote the degree of vertex i and

ti =
∑

j X
T
j Xi = E[di|X] denote its expectation conditional on the latent positions. Anal-

ogously, let dv =
∑

j aj denote the degree of the out-of-sample vertex and tv =
∑

j X
T
j w̄

denote its expectation. Then

max {|di − ti| : i ∈ [n] ∪ {v}} = O(
√
n log1/2 n). (16)

Similarly, letting µ = EX1 ∈ Rd denote the mean of latent position distribution F and
taking Xv = w̄,

max
{
|ti − nµTXi| : i ∈ [n] ∪ {v}

}
= O(

√
n log1/2 n). (17)

Further, uniformly over all i ∈ [n],

|d−1/2
i − t−1/2

i | = O(n−1 log1/2 n), (18)

|d−1
i − t

−1
i | = O(n−3/2 log1/2 n), (19)

ti = Θ(n) (20)
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Proof Fix some i ∈ [n] ∪ {v}. By definition, we have

di − ti =

{∑
j 6=i(Ai,j − Pi,j) if i ∈ [n]∑n
j=1 aj −XT

j w̄ if i = v,

a sum of independent random variables, each contained in [−1, 1] and thus Hoeffding’s
inequality immediately yields

Pr[|di − ti| ≥ s] ≤ 2 exp

{
−2s2

n

}
for any s ≥ 0. Taking s = C

√
n log1/2 n for suitably large constant C > 0, we have

Pr
[
|di − ti| ≥ C

√
n log1/2 n

]
≤ C ′n−3.

Taking a union bound over all i ∈ [n] ∪ {v}, we conclude that

Pr
[
∃i : |di − ti| ≥ C

√
n log1/2 n

]
≤ Cn−2,

and an application of the Borel-Cantelli Lemma (Billingsley, 1995) yields Equation (16).

Again by definition, we have for any i ∈ [n] ∪ {v},

ti − nXT
i µ = XT

i (Xi − µ) +
∑
j 6=i

XT
i (Xj − µ).

The first term on the right-hand side is O(1), since Xi ∼ F and µ is constant. The sum over
j 6= i is, conditioned on Xi, a sum of independent unbiased random variables, which are
bounded by the assumption that 0 ≤ xT y ≤ 1 whenever x, y ∈ suppF . Thus, an application
of Hoeffding’s inequality similar to that above yields that, conditioned on Xi = xi ∈ suppF ,∑

j 6=i
xTi (Xj − µ) ≤ C

√
n log1/2 n,

where the constant C can be chosen independent of xi again because suppF is bounded.
Unconditioning establishes Equation (17), since XT

i (Xi − µ) = O(1). (20) follows, since
ti = nXT

i µ+O(
√
n log1/2 n). Writing∣∣∣∣ 1√

di
− 1√

ti

∣∣∣∣ =
|di − ti|√

di
√
ti(
√
di +

√
ti)

and applying Equations (17) and (20) implies (18). A similar argument establishes (19).

Lemma 19 Let P = XXT ∈ Rn×n with rows of X drawn i.i.d. from F as above. Then

λd(L(P )) = Θ(1), λ1(L(P )) = Θ(1) and λd(X̃) = Θ(1). (21)
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Proof By definition, L(P ) = T−1/2USUTT−1/2, so that

λd(L(P )) ≤ λ1(L(P )) ≤ ‖L(P )‖ ≤ ‖T−1/2‖‖S‖‖T−1/2‖ ≤ ‖S‖
mini ti

≤ C,

where the last inequality follows from Lemmas 14 and 18.
To show the corresponding lower-bound, we adapt an argument from the proof of The-

orem 8.1.17 in Golub and Van Loan (2012) to write

λ2
1(T 1/2)λd(L(P )) ≥ λd(P ) ≥ Cn,

where the second lower-bound follows from Lemma 14. We conclude that

λ1(L(P )) ≥ λd(L(P )) ≥ Cn

λ1(T )
≥ C,

since λ2
1(T 1/2) = λ1(T ) ≤ n.

By definition of X̃, λk(X̃) =
√
λk(L(P )) for all k ∈ [d], whence λd(X̃) = Θ(1)

Lemma 20 Let F be a d-dimensional inner-product distribution with mean µ and suppose
that there exists a constant η > 0 such that η ≤ xT y ≤ 1 − η for all x, y ∈ suppF . Define
∆̃ = EX1X

T
1 /X

T
1 µ where X1 ∼ F and let Š = X̌T X̌ and S̃ = X̃T X̃. Then

‖Q̃ŠQ̃T − S̃‖ = O

(
1

n

)
and ‖S̃ − ∆̃‖ = O

(
log1/2 n√

n

)
.

Proof Adding and subtracting appropriate quantities and applying a triangle inequality
followed by submultiplicativity, we have

‖Q̃ŠQ̃T − S̃‖ =
∥∥∥Q̃Š1/2

(
Š1/2Q̃T − Q̃T S̃1/2

)
+
(
Q̃Š1/2 − S̃1/2Q̃

)
Q̃T S̃1/2

∥∥∥
≤
(
‖Q̃Š1/2‖+ ‖Q̃T S̃1/2‖

)
‖Q̃Š1/2 − S̃1/2Q̃‖,

where we have used the unitary invariance of the spectral norm to write

‖Q̃Š1/2 − S̃1/2Q̃‖ = ‖Š1/2Q̃T − Q̃T S̃1/2‖.

An additional application of the unitary invariance of the spectral norm yields

‖Q̃ŠQ̃T − S̃‖ ≤
(
‖Š1/2‖+ ‖S̃1/2‖

)
‖Q̃Š1/2 − S̃1/2Q̃‖. (22)

By definition of Š and S̃ as the top d eigenvalues of L(A) and L(P ), respectively, we have

‖Š − S̃‖ ≤ ‖L(A)− L(P )‖.

Theorem 3.1 in Oliveira (2010) implies that

‖L(A)− L(P )‖ ≤ C
(

min
i
ti

)−1/2

log1/2 n,
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and Lemma 18 implies that mini ti = Ω(n), so that

‖L(A)− L(P )‖ = O(n−1/2 log1/2 n),

and it follows that
‖Š1/2‖ ≤= ‖S̃1/2‖ (1 + o(1)) .

Lemma 19 bounds the growth of ‖S̃‖ as O(1), whence ‖Š1/2‖ = O(1) and we conclude that

‖Š1/2‖+ ‖S̃1/2‖ = O(1). (23)

Once again adding and subtracting appropriate quantities, applying the triangle inequality
folowed by submultiplicativity,

‖Q̃Š1/2 − S̃1/2Q̃‖ ≤ ‖(Q̃− ŨT Ǔ)Š1/2‖+ ‖ŨT Ǔ Š1/2 − S̃1/2ŨT Ǔ‖+ ‖S̃1/2(ŨT Ǔ − Q̃)‖

≤
(
‖Š1/2‖+ ‖S̃1/2‖

)
‖Q̃− ŨT Ǔ‖+ ‖ŨT Ǔ Š1/2 − S̃1/2ŨT Ǔ‖.

Equation (23) and Lemma 16 imply that(
‖Š1/2‖+ ‖S̃1/2‖

)
‖Q̃− ŨT Ǔ‖ = O(n−1),

and Lemma 17 implies that

‖ŨT Ǔ Š1/2 − S̃1/2ŨT Ǔ‖ = O(n−1).

Combining the above two displays, we conclude that

‖Q̃Š1/2 − S̃1/2Q̃‖ = O(n−1).

Applying this and Equation (23) to Equation (22), we conclude that ‖Q̃ŠQ̃T−S̃‖ = O(n−1).
To bound ‖S̃ − ∆̃‖, note that

S̃ =
n∑
i=1

X̃iX̃
T
i =

n∑
i=1

XiX
T
i

ti
.

Applying Lemma 18, maxi |t−1
i − (nXT

i µ)−1| = O(n−3/2 log1/2 n), and thus

S̃ =
1

n

n∑
i=1

XiX
T
i

XT
i µ

+O(n−1/2 log1/2 n).

Hoeffding’s inequality applied to the sum, using our assumption that η ≤ XiX
T
i /X

T
i µ ≤

1− η with probability 1, implies that S̃ = ∆̃ +O(n−1/2 log1/2 n), completing the proof.

Lemma 21 Suppose that F is a d-dimensional inner-product distribution with X1 ∼ F for

which ∆ = EFX1X
T
1 ∈ Rd×d is full rank. If X1, X2, . . . , Xn

i.i.d.∼ F , then with probability 1
there exists an n0 such that X ∈ Rn×d has full column rank for all n ≥ n0.
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Proof Since the top d eigenvalues of P = XXT are precisely the d eigenvalues of XTX,
Lemma 14 implies that λd(X

TX) = Ω(n). It follows that XTX ∈ Rd×d is invertible for all
suitably large n.

We now give a proof of the bound in Equation 6 in Lemma 6.
Proof [Proof of Lemma 6 ] Let ζi ∈ Rd denote the (transposed) i-th row of X̌− X̃Q̃, where
Q̃ = Ṽ1Ṽ

T
2 as in Lemma 16 above. Define the event

En =

{
∀i ∈ [n] : ‖ζi‖ ≤

C log1/2 n

n

}

where C > 0 is a constant that we will specify below, depending on the latent position
distribution F but not on n. It will suffice for us to show that En holds eventually.

Fix some i ∈ [n] and define µ = EX1 ∈ Rd to be the mean of F . Following the argument
in Appendix B.1 of Tang and Priebe (2018), we have

ζi =
(X̃T X̃)−1

n

√
n√
ti

∑
j 6=i

Ai,j − Pi,j√
n

(
Xj

XT
j µ
− ∆̃Xi

2XT
i µ

)
+ o(n−1). (24)

For all j ∈ [n] \ {i}, define

Z
(i)
j =

Ai,j − Pi,j√
n

(
Xj

XT
j µ
− ∆̃Xi

2XT
i µ

)
.

Condition on Xi = xi ∈ suppF and fix k ∈ [d]. Thanks to the assumption that 0 < η ≤
xT y ≤ 1−η whenever x, y ∈ suppF , we have that

∑
j 6=i Z

(i)
j,k is a sum of independent mean-0

bounded random variables. Hoeffding’s inequality implies that

Pr

∣∣∣∣∣∣
∑
j 6=i

Z
(i)
j,k

∣∣∣∣∣∣ ≥ s
∣∣∣Xi = xi

 ≤ 2 exp

{
−s2

2n−1
∑

j 6=i V
2
j,k

}
, (25)

where

Vj,k =
Xj,k

XT
j µ
− (∆̃xi)k

2xTi µ
.

Using the fact that Xj , xi ∈ suppF and that Xj is independent of Xi for j 6= i, we have

E
[
V 2
j,k

∣∣∣Xi = xi

]
≤ C

(
‖∆̃xi‖2

4(xTi µ)2
+ E

[
|Xj,k|2

(XT
j µ)2

])2

≤ CF , (26)

where CF depends on F but can be chosen independent of k and xi. By the law of large
numbers (conditional on Xi = xi),

n−1
∑
j 6=i

V 2
j,k → E[V 2

j,k | Xi = xi] almost surely.
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Thus, applying Equation (26) and integrating out by Xi,

n−1
∑
j 6=i

V 2
j,k ≤ 2CF eventually.

Integrating (25) with respect to F and using the above fact, we conclude that

Pr

∣∣∣∣∣∣
∑
j 6=i

Z
(i)
j,k

∣∣∣∣∣∣ ≥ C log1/2 n

 ≤ 2n−3,

for suitably large constant C > 0. A union bound over all k ∈ [d] yields

Pr

∥∥∥∥∥∥
∑
j 6=i

Z
(i)
j

∥∥∥∥∥∥ ≥ C log1/2 n

 ≤ 2dn−3,

and a further union bound over i ∈ [n] implies

max
i∈[n]
‖
∑
j 6=i

Z
(i)
j ‖ = O(log1/2 n). (27)

Applying this result to Equation (24) and using the fact that X̃T X̃ → ∆̃ almost surely and
√
nt
−1/2
i = O(1) by Lemmas 18 and 20 respectively, we have

max
i∈[n]
‖ζi‖ ≤

1

n‖X̃T X̃‖

√
n

mini∈[n]

√
ti

max
i∈[n]

∥∥∥∥∥∥
∑
j 6=i

Z
(i)
j

∥∥∥∥∥∥ = O

(
log1/2 n

n

)
, (28)

which completes the proof.

The following spectral norm bound will be useful at several points in our proofs.

Theorem 22 (Matrix Bernstein inequality, Tropp, 2015) Let {Zk} be a finite collection of
random matrices in Rd1×d2 with EZk = 0 and ‖Zk‖ ≤ R for all k, then

Pr

[∥∥∥∥∥∑
k

Zk

∥∥∥∥∥ ≥ t
]
≤ (d1 + d2) exp

{
−t2

ν2 +Rt/3

}
,

where

ν2 = max

{∥∥∥∥∥∑
k

EZkZTk

∥∥∥∥∥ ,
∥∥∥∥∥∑

k

EZTk Zk

∥∥∥∥∥
}
.

Appendix B. Proof of ASE LS-OOS Concentration Inequality

To prove Theorem 7, we must relate the least squares solution ŵLS of (7) to the true latent
position w̄. We will proceed in two steps. First, we will show that ŵLS is close to a least
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squares solution based on the true latent positions {Xi}ni=1 rather than on the estimates
{X̂i}ni=1. That is, letting wLS be the solution

wLS = arg min
w∈Rd

‖Xw − ~a‖F , (29)

we will bound the error introduced by the ASE, ‖QŵLS − wLS‖, taking Q ∈ Rd×d to be
as defined in Lemma 6. This is the content of Lemma 26. Second, we will show that wLS

is close to the true latent position w̄. That is, we will control the error introduced by the
n random in-sample latent positions and the network A. This is done in Lemma 27. The
triangle inequality will then yield Theorem 7.

We first establish a bound on ‖QŵLS−wLS‖, where ŵLS is the solution to Equation (7),
wLS is as defined by Equation (29), and Q ∈ Rd×d is the orthogonal matrix guaranteed to
exist by Lemma 6. Our bound will depend upon a basic result for solutions of perturbed
linear systems, which we adapt from Golub and Van Loan (2012). In essence, we wish to
compare

ŵLS = arg min
w∈Rd

‖X̂w − ~a‖F

against

wLS = arg min
w∈Rd

‖Xw − ~a‖F .

Recall that for a matrix B ∈ Rn×d of full column rank, we define the condition number

κ2(B) =
σ1(B)

σd(B)
.

Theorem 23 (Golub and Van Loan (2012), Theorem 5.3.1) Suppose that the quan-
tities wLS, ŵLS ∈ Rd and rLS, r̂LS ∈ Rn satisfy

‖XwLS − ~a‖ = min
w
‖Xw − ~a‖, rLS = ~a−XwLS,

‖X̂ŵLS − ~a‖ = min
w
‖X̂w − ~a‖, r̂LS = ~a− X̂ŵLS,

and that

‖X̂ −XQ‖ < λd(X). (30)

Assume ~a, rLS and wLS are all non-zero and define θLS ∈ (0, π/2) by sin θLS = ‖rLS‖/‖~a‖.
Letting

νLS =
‖XwLS‖

σd(XQ)‖QTwLS‖
,

we have

‖ŵLS −QTwLS‖
‖QTwLS‖

≤ ‖X̂ −XQ‖
‖XQ‖

(
νLS

cos θLS
+ (1 + νLS tan θLS)κ2(XQ)

)
+O

(
‖X̂ −XQ‖2

‖XQ‖2

)
.

(31)
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To apply Theorem 23, we will first need to show that the condition in Equation (30)
and the non-zero conditions on ~a, rLS and wLS all hold with high probability. This is done
in Lemma 24. We will then show, using Lemma 24 and Lemma 25, that the right-hand side
of Equation (31) is O(n−1/2 log n).

Lemma 24 With notation as above, ~a, rLS and wLS are all nonzero eventually, and (30)
holds eventually. That is, with probability 1, there exists a sequence of orthogonal matrices
Q ∈ Rd×d such that

‖X̂ −XQ‖ < λd(X) eventually. (32)

Further,
‖X̂ −XQ‖
‖XQ‖

= O

(
log n√
n

)
. (33)

Proof That ~a is non-zero eventually is an immediate consequence of the model, and
it follows that wLS is non-zero eventually, from which it follows that the residual rLS =
~a −XwLS is also nonzero eventually. Let Q ∈ Rd×d be the orthogonal matrix guaranteed
by Lemma 6. We begin by observing that

‖X̂ −XQ‖2 ≤ ‖X̂ −XQ‖2F =
n∑
i=1

‖X̂i −QXi‖2 = O(log2 n)

where the last equality follows from Lemma 6. By the definition of the RDPG, we can

write XQ = US1/2Q, from which σd(XQ) = σ
1/2
d (P ) = Ω(

√
n) by Lemma 14. This estab-

lishes (32) immediately, and (33) follows from the above display.

Lemma 25 With notation as in Theorem 23, there exists a constant 0 ≤ γ < 1, not
depending on n, such that with probability 1, cos θLS ≥ γ for all suitably large n. That is,
there exists a constant 0 < γ′ such that

‖XQwLS − ~a‖
‖~a‖

≤ γ′ eventually.

Proof By definition of wLS, we have ‖XQwLS −~a‖ ≤ ‖Xw̄−~a‖. For ease of notation, set
~r = ~a−Xw̄. It will suffice for us to show that for some constant ρ > 0, we have

(1− ρ)‖~a‖2 − ‖~r‖2 ≥ 0 eventually, (34)

since then, after rearranging terms, sin2 θLS ≤ 1− ρ. To show (34), note that

(1− ρ)‖~a‖2 − ‖~r‖2 = 2
n∑
i=1

aiX
T
i w̄ −

n∑
i=1

(XT
i w̄)2 − ρ

n∑
i=1

a2
i

≥ E
[
(1− ρ)‖~a‖2 − ‖~r‖2

]
+ C
√
n log1/2 n eventually,

where the inequality follows from an application of Hoeffding’s inequality to show that the
sum concentrates about its expectation. We will have established (34) if we can show that
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E
[
(1− ρ)‖~a‖2 − ‖~r‖2

]
grows faster than C

√
n log1/2 n. To establish this, let i ∈ [n] be

arbitrary and write

E
[
(1− ρ)a2

i − r2
i

]
= E

[
(1− ρ)a2

i − (ai −XT
i w̄)2

]
= −ρEa2

i + 2EaiXT
i w̄ − E(XT

i w̄)2

= −ρEa2
i − E(ai −XT

i w̄)XT
i w̄ + EaiXT

i w̄ = EaiXT
i w̄ − ρEa2

i .

By our boundedness assumption on w̄ and suppF , EaiXT
i w̄ = E(XT

i w̄)2 is bounded away
from zero uniformly in i ∈ [n]. Thus, choosing ρ > 0 suitably small ensures that there exists
a small constant η′ > 0 such that E

[
(1− ρ)a2

i − r2
i

]
≥ η′ > 0. Summing over n,

E
[
(1− ρ)‖~a‖2 − ‖~r‖2

]
=

n∑
i=1

E
[
(1− ρ)a2

i r
2
i

]
≥ nη′ = Ω(n),

which proves the bound in (34), completing the proof.

Lemma 26 With notation as in Theorem 23, there exists a sequence of orthogonal matrices
Q ∈ Rd×d such that

‖QŵLS − wLS‖ = O(n−1/2 log n).

Proof This is a direct result of Theorem 23 and the preceding Lemmas, once we establish
bounds on κ2(XQ) and

νLS =
‖XQwLS‖

λd(XQ)‖wLS‖
.

By Lemma 14, we have C1
√
n ≥ λ1(XQ) ≥ λd(XQ) ≥ C2

√
n, and it follows immediately

that κ2(XQ) ≤ C eventually. Since ‖XQwLS‖/‖wLS‖ ≤ ‖XQ‖ ≤
√
n, we also have νLS ≤ C

eventually.

By Lemma 24, we are assured that Theorem 23 applies eventually. Lemmas 24 and
25 ensure that the each of (cos θLS)−1 and tan θLS are bounded by constants eventually.
Thus, using Lemma 24 to bound ‖X̂ −XQ‖/‖XQ‖, it follows that the right-hand side of
Equation 31 is O(n−1/2 log n) and the result follows.

We now turn to showing that wLS is close to the true latent position w̄. A combination
of this result with Lemma 26 will then yield Theorem 7.

Lemma 27 Let notation be as above and let w̄ ∈ Rd (fixed) latent position of the out-of-
sample vertex, satisfying 0 ≤ w̄Tx ≤ 1 for all x ∈ suppF . Then for all but finitely many
n,

‖wLS − w̄‖ ≤
C log n√

n
.

Proof Define ~r = ~a−Xw̄. As noted previously, by definition of wLS, we have

‖XwLS − ~a‖2 ≤ ‖Xw̄ − ~a‖2 = ‖~r‖2,
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whence plugging in ~a = Xw̄ + ~r yields ‖XwLS −Xw̄ − ~r‖2 ≤ ‖~r‖2. Thus,

‖XwLS −Xw̄‖2 ≤ 2~rTX(wLS − w̄). (35)

By Lemma 21, X has full column rank eventually, and thus ‖X(wLS−w̄)‖ ≥ σd(X)‖wLS−w̄‖
eventually, as well. Combining this fact with Equation (35) and making use of the fact that
σ2
d(X) = σd(P ), we have

‖wLS − w̄‖2 ≤
‖X(wLS − w̄)‖2

σ2
d(X)

≤ 2~rTX(wLS − w̄)

σd(P )
.

Applying the Cauchy-Schwartz inequality and dividing by ‖wLS−w̄‖ (noting that our result
holds trivially when wLS = w̄, so we may safely assume that ‖wLS − w̄‖ is nonzero)

‖wLS − w̄‖ ≤
2‖XT~r‖
σd(P )

.

Thus, it remains for us to show that ‖XT~r‖ grows at a rate at most O(
√
n log2 n), from

which Lemma 14 will yield our desired growth rate. Expanding, we have

‖XT~r‖22 =
d∑

k=1

(
n∑
i=1

(ai −XT
i w̄)Xi,k

)2

. (36)

Fixing some k ∈ [d], Hoeffding’s inequality implies that with probability at least 1−O(n−2),
|
∑n

i=1(ai−XT
i w̄)Xi,k| ≤ 2

√
n log n. Since d is assumed to be constant in n, a union bound

over all k ∈ [d] implies ‖XT~r‖22 ≤ 4dn log2 n with probability at least 1−O(n−2). Applying
the Borel-Cantelli Theorem and taking square roots completes the proof.

Appendix C. Proof of ASE ML-OOS Concentration Inequality

To prove Theorem 8, we will apply a standard argument from convex optimization and use
the properties of the set T̂ε to show that

‖QŵML − w̄‖ ≤
‖∇ˆ̀(QT w̄)‖

Cn
,

where Q ∈ Rd×d is the orthogonal matrix guaranteed by Lemma 6. This is proven in
Lemma 28. We then show in Lemma 29 that

‖∇ˆ̀(QT w̄)‖ = O(
√
n log n),

which establishes Theorem 8 by the triangle inequality.
Recall the log-likelihood functions

`(w) =

n∑
i=1

ai logXT
i w + (1− ai) log(1−XT

i w)

ˆ̀(w) =

n∑
i=1

ai log X̂T
i w + (1− ai) log(1− X̂T

i w)

(37)

and observe that both are convex in their arguments.
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Lemma 28 With notation as above, under the assumptions of Theorem 8, it holds almost
surely that for all suitably large n, there exists an orthogonal matrix Q ∈ Rd×d satisfying

‖QŵML − w̄‖ ≤
‖∇ˆ̀(QT w̄)‖

Cn
.

Proof By a standard argument, we have(
∇ˆ̀(QT w̄)

)T
(QT w̄ − ŵML)

=
(
∇ˆ̀(ŵML)

)T
(QT w̄ − ŵML)

+

∫ 1

0
(QT w̄ − ŵML)T∇2 ˆ̀

(
QT w̄ + t(QT w̄ − ŵML)

)
(QT w̄ − ŵML)dt

≥ ‖w̄ −QŵML‖2 min
w∈T̂ε

λmin

(
∇2 ˆ̀(w)

)
.

Rearranging and applying the Cauchy-Schwarz inequality implies

‖w̄ −QŵML‖ ≤
‖∇ˆ̀(QT w̄)‖

|λmin

(
∇2 ˆ̀(w)

)
|
.

The constraint that w ∈ T̂ε implies that for suitably large n,

min
w∈T̂ε

λmin

(
∇2 ˆ̀(w)

)
≥ Cn,

with C > 0 depending on ε and F but not on n, where we have used our assumption on
the existence of η > 0 to apply Lemma 6, which ensures that {X̂i}ni=1 are uniformly close
to suppF . We conclude that eventually,

‖w̄ −QŵML‖ ≤
‖∇ˆ̀(QT w̄)‖

Cn
,

completing the proof.

Lemma 29 With notation as above, under the assumptions of Theorem 8,

‖∇ˆ̀(QT w̄)‖ = O(
√
n log n).

Proof By the triangle inequality,

‖∇ˆ̀(QT w̄)‖ ≤ ‖∇`(w̄)‖+ ‖∇ˆ̀(QT w̄)−∇`(w̄)‖. (38)

We will show that both terms on the right hand side of (38) are O(
√
n log1/2 n).

Fix k ∈ [d]. By our boundedness assumption on w̄ and suppF , as well as the fact that
w̄,X1, X2, . . . , Xn ∈ suppF ,

(∇`(w̄))k =
n∑
i=1

(
ai

XT
i w̄
− 1− ai

1−XT
i w̄

)
Xi,k =

n∑
i=1

(ai −XT
i w̄)Xi,k

XT
i w̄(1−XT

i w̄)
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is a sum of bounded mean-zero random variables. Applying Hoeffding’s inequality,

Pr
[
|(∇`(w̄))k| ≥ t

]
≤ 2 exp

{
−2t2

Cn

}
for some constant C > 0 depending on F and w̄ but not n. Choosing t =

√
Cn log1/2 n, we

have (∇`(w̄))k ≥
√
Cn log1/2 n with probability at most O(n−2). A union bound over all

k ∈ [d], implies that with probability at least 1− Cdn−2,

d∑
k=1

(∇`(w̄))2
k ≤ dCn log n,

and the Borel-Cantelli Lemma implies ‖∇`(w̄)‖ = O(
√
n log1/2 n) after taking square roots.

Turning to the second term on the right hand side of (38), fixing k ∈ [d], we have(
∇ˆ̀(QT w̄)−∇`(w̄)

)
k

=
n∑
i=1

(ai − X̂T
i Q

T w̄)X̂i,k

X̂T
i Q

T w̄(1− X̂T
i Q

T w̄)
−

n∑
i=1

(ai −XT
i w̄)Xi,k

XT
i w̄(1−XT

i w̄)
.

Taking expectation conditional on A and X, the second sum has expectation 0, and

E
[(
∇ˆ̀(QT w̄)−∇`(w̄)

)
k

∣∣∣A,X] =

n∑
i=1

(
(QX̂i)−Xi

)T
w̄

(QX̂i)T w̄(1− (QX̂i)T w̄)
X̂i,k.

By Lemma 6 and our boundedness assumptions on w̄ and suppF , the denominators in this
sum are uniformly bounded away from zero over almost all sequences of (A,X). Lemma 6
also bounds the numerators in this sum uniformly by O(n−1/2 log n), and it follows that

E
[(
∇ˆ̀(QT w̄)−∇`(w̄)

)
k

∣∣∣A,X] = O(
√
n log n). (39)

Our proof will be complete if we can show that(
∇ˆ̀(QT w̄)−∇`(w̄)

)
k
− E

[(
∇ˆ̀(QT w̄)−∇`(w̄)

)
k

∣∣∣A,X]
concentrates at the same rate. Toward this end, for ease of notation, for each i ∈ [n] define
pi = XT

i w̄ and p̂i = X̂T
i w̄. Then(

∇ˆ̀(QT w̄)−∇`(w̄)
)
k
− E

[(
∇ˆ̀(QT w̄)−∇`(w̄)

)
k

∣∣∣A,X]
=

n∑
i=1

[
(ai − p̂i)X̂i,k

p̂i(1− p̂i)
−

(ai − pi)Xi,k

pi(1− pi)
−

(pi − p̂i)X̂i,k

p̂i(1− p̂i)

]

=
n∑
i=1

(ai − pi)

(
X̂i,k

p̂i(1− p̂i)
−

Xi,k

pi(1− pi)

)
.

Conditional on (A,X), this is a sum of n independent zero-mean random vectors, with the
i-th summand bounded by∣∣∣∣∣(ai − pi)

(
X̂i,k

p̂i(1− p̂i)
−

Xi,k

pi(1− pi)

)∣∣∣∣∣ ≤
∣∣∣∣∣ X̂i,k

p̂i(1− p̂i)
−

Xi,k

pi(1− pi)

∣∣∣∣∣
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since |ai − pi| ≤ 1. Let Mi denote this bound for each i ∈ [n]. Let s > 0 be a value which
we will specify below, and let Bn denote the event that∣∣∣(∇ˆ̀(QT w̄)−∇`(w̄)

)
k
− E

[(
∇ˆ̀(QT w̄)−∇`(w̄)

)
k

∣∣∣A,X]∣∣∣ > s.

Hoeffding’s inequality conditional on A,X implies that

Pr [Bn | A,X] ≤ 2 exp

{
−s2

2
∑n

i=1M
2
i

}
.

By definition of Mi, we have

Mi =

∣∣∣∣∣ X̂i,k

p̂i(1− p̂i)
−

Xi,k

pi(1− pi)

∣∣∣∣∣
≤
|X̂i,k −Xi,k|
pi(1− pi)

+

∣∣∣∣ 1

pi(1− pi)
− 1

p̂i(1− p̂i)

∣∣∣∣ |Xi,k|

≤ O(n−1/2 log n)

pi(1− pi)
+
|pi − p̂i|(1− pi) + pi|pi − p̂i|

pi(1− pi)p̂i(1− p̂i)
,

where the first inequality follows from the triangle inequality, and the second inequality
follows from Lemma 6 and the fact that ‖Xi‖ ≤ 1 by definition of F being an inner product
distribution. Lemma 6 implies that |p̂i − pi| = O(n−1/2 log n), since ‖w̄‖ is bounded by
assumption. Our boundedness assumptions on w̄ and the support of F , along with yet
another application of Lemma 6, imply that both denominators are bounded away from
0 eventually. Thus, uniformly over all i ∈ [n], Mi = O(n−1/2 log n), so that

∑n
i=1M

2
i =

O(log2 n), and integrating with respect to (A,X) implies that

Pr [Bn | A,X] ≤ 2 exp

{
−Cs2

log2 n

}
.

Taking s = C log3/2 n for suitably large constant C and applying the Borel-Cantelli Lemma
ensures that Bn occurs eventually, and we have that(

∇ˆ̀(QT w̄)−∇`(w̄)
)
k
− E

[(
∇ˆ̀(QT w̄)−∇`(w̄)

)
k

∣∣∣A,X] = O(log3/2 n).

Combining this with Equation (39), we conclude that(
∇ˆ̀(QT w̄)−∇`(w̄)

)
k

= O(
√
n log n).

Since d is assumed constant, this rate holds uniformly over all k ∈ [d], and we conclude that

‖∇ˆ̀(QT w̄)−∇`(w̄)‖ = O(
√
n log n),

completing the proof.
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Appendix D. Proof of LSE LS-OOS Concentration Inequality

Here we provide a proof of Theorem 9. The argument proceeds similarly to the proof of
Theorem 7 in Appendix B above. Recall that w̌LS ∈ Rd denotes the least-squares OOS
extension, given by the solution to

min
w∈Rd

n∑
i=1

(
ai

d
1/2
v d

1/2
i

− X̌T
i w

)2

,

where X̌i ∈ Rd is the LSE estimate of the Laplacian spectral embedding of the true latent
position of the i-th vertex and di denotes the degree of vertex i for i ∈ [n] ∪ {v}. We
define w̃LS ∈ Rd to be the least-squares OOS extension if we had access to the true latent
positions. That is, w̃LS is the solution to the least-squares problem

min
w∈Rd

n∑
i=1

(
ai

d
1/2
v d

1/2
i

− X̃T
i w

)2

.

Letting Q̃ ∈ Rd×d denote the orthogonal matrix guaranteed by Lemma 6, our proof of Theo-
rem 9 will proceed by showing that both ‖w̃LS−w̃‖ and ‖w̌LS−Q̃T w̃LS‖ are O(n−1 log1/2 n),
after which the triangle inequality will yield our desired result.

Lemma 30 With notation as above,

‖w̃LS − w̃‖ = O(n−1 log1/2 n).

Proof Recall that D ∈ Rn×n is the diagonal matrix of in-sample vertex degrees and

dv =
∑n

i=1 ai denotes the degree of the out-of-sample vertex v. Define ~b = d
−1/2
v D−1/2~a,

and let ~z = ~b− X̃w̃. By definition of w̃LS as a least squares solution, we have

‖X̃w̃LS −~b‖ ≤ ‖~z‖.

Substituting ~b = ~z + X̃w̃, expanding the squares of both sizes, rearranging, and applying
the Cauchy-Schwarz inequality,

‖X̃(w̃LS − w̃)‖2 ≤ 2~zT X̃(w̃LS − w̃) ≤ 2‖XT~z‖‖w̃LS − w̃‖ (40)

By Lemma 21, X̃ is full rank eventually, and therefore

‖X̃(w̃LS − w̃)‖ ≥ σd(X̃)‖w̃LS − w̃‖ eventually.

Combining this with (40),

‖w̃LS − w̃‖2 ≤
2‖X̃T~z‖‖w̃LS − w̃‖

σ2
d(X̃)

eventually.

In the event that w̃LS = w̃, our desired bound holds trivially, so we may safely divide
through by ‖w̃LS − w̃‖ to write

‖w̃LS − w̃‖ ≤
2‖X̃T~z‖
σ2
d(X̃)

eventually.
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Lemma 19 implies that σ2
d(X̃) = Θ(1), so our proof will be complete if we can bound the

growth of ‖X̃T~z‖. We have

‖X̃T~z‖2 =
d∑

k=1

(
n∑
i=1

ziX̃i,k

)2

=
d∑

k=1

Y 2
k ,

where Yk =
∑n

i=1 ziX̃i,k. Fixing some k ∈ [d],

Yk =

n∑
i=1

(
XT
i w̄√

ti
√
nµT w̄

− ai√
di
√
dv

)
Xi,k√
ti
.

Adding and subtracting appropriate quantities,

Yk =

n∑
i=1

(XT
i w̄ − ai)

ti
√
nµT w̄

Xi,k +

n∑
i=1

aiXi,k√
ti

(
1

√
ti
√
nµT w̄

− 1√
di
√
dv

)
. (41)

Conditional on X, the first term is a sum of independent mean-zero random variables, with

(XT
i w̄ − ai)Xi,k

ti
√
nµT w̄

∈

[
−1

ti
√
nµT w̄

,
1

ti
√
nµT w̄

]
almost surely

for each i ∈ [n]. Let Gn denote the event that∣∣∣∣∣
n∑
i=1

(XT
i w̄ − ai)

ti
√
nµT w̄

Xi,k

∣∣∣∣∣ > s,

where s = sn > 0 will be specified below. Conditional Hoeffding’s inequality yields

Pr [Bn | X] ≤ 2 exp

{
−nµT w̄s2∑n

i=1 t
−2
i

}
Let Bn denote the event that mini ti ≥ Cn for some suitably-chosen constant C > 0.
Lemma 18 ensures that Pr[Bc

n] = O(n−2), and integrating with respect to X ∈ Rn×d yields

Pr[Gn] ≤ Pr[Gn | Bn] + Pr[Bc
n] ≤ 2 exp

{
−Cn2µT w̄s2

}
+O(n−2).

Taking s = Cn−1 log1/2 n for C > 0 suitably large ensures that both terms on the right-hand
side are O(n−2), and we have∣∣∣∣∣

n∑
i=1

(XT
i w̄ − ai)Xi,k√
ti
√
tv
√
nµT w̄

∣∣∣∣∣ = O(n−1 log1/2 n). (42)

Lemma 18 similarly bounds the second sum in (41):

n∑
i=1

aiXi,k√
ti

(
1

√
ti
√
nµT w̄

− 1√
di
√
dv

)
≤ C√

n

n∑
i=1

(
1

√
ti
√
nµT w̄

− 1√
di
√
dv

)
aiXi,k. (43)
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Adding and subtracting appropriate quantities, the sum becomes

n∑
i=1

(
1

√
ti
√
nµT w̄

− 1√
di
√
dv

)
aiXi,k

=
n∑
i=1

aiXi,k√
ti

(
1√
nµT w̄

− 1√
dv

)
+

n∑
i=1

aiXi,k√
dv

(
1√
ti
− 1√

di

)
,

and several applications of Lemma 18 yields that

n∑
i=1

(
1

√
ti
√
nµT w̄

− 1√
di
√
dv

)
aiXi,k = O(n−1/2 log1/2 n),

whence, applying this to Equation (43), we have

n∑
i=1

aiXi,k√
ti

(
1

√
ti
√
nµT w̄

− 1√
di
√
dv

)
= O(n−1 log1/2 n).

Applying this and (42) to the right-hand side of (41), |Yk| = O(n−1 log1/2 n) and a union
bound over k ∈ [d] completes the proof.

Lemma 31 With notation as above, there exists a sequence of orthogonal matrices Q̃ ∈
Rd×d such that

‖Q̃w̌LS − w̃LS‖ = O(n−1 log1/2 n).

Proof Recall from above our definition ~b = d
−1/2
v D−1/2~a, where dv is the degree of the

out-of-sample vertex and D ∈ Rn×n is the diagonal matrix of in-sample vertex degrees, and
note that w̌LS = (X̌T X̌)−1X̌T~b. Our main tool, as in Section B, is Theorem 5.3.1 from
Golub and Van Loan (2012), quoted above as Theorem 23. Applying that theorem, we
have that so long as ~b,~b− X̃w̃LS and w̃LS are all non-zero,

‖w̌LS − Q̃T w̃LS‖
‖Q̃T w̃LS‖

≤ ‖X̌ − X̃Q̃‖
‖X̃Q̃‖

(
νLS

cos θLS
+ (1 + νLS tan θLS)κ2(X̃Q̃)

)
+ C
‖X̌ − X̃Q̃‖2

‖X̃Q̃‖2
,

where θLS ∈ (0, π/2) with

sin θLS =
‖r̃LS‖
‖~b‖

, and νLS =
‖X̃w̃LS‖

σd(X̃Q̃)‖Q̃T w̃LS‖
.

In order to apply Theorem 23, we must first show that eventually

1. ‖X̌ − X̃Q̃‖ < σd(X̃) and

2. the quantities ~b,~b− X̃w̃LS, and w̃LS are all non-zero.
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The first condition holds eventually by Lemma 19 and the fact that, using the relations
between the spectral, Frobenius and (2,∞)-norms,

‖X̌ − X̃Q̃‖2 ≤ ‖X̌ − X̃Q̃‖2F ≤ n‖X̌i − Q̃X̃i‖22,∞ ≤
C log n

n
, (44)

where the last inequality holds eventually by Lemma 6. Note that application of the Lapla-
cian case of Lemma 6 requires our boundedness assumption on suppF . As in the proof of
Lemma 24, it is immediate from the model that condition 2 holds eventually.

Equation (44), along with another application of Lemma 19 to control λd(L(P )) implies
that

‖X̌ − X̃Q̃‖
‖X̃Q̃‖

≤ C log1/2 n√
nσd(L(P ))

≤ C log1/2 n√
n

eventually (45)

Thus, applying Theorem 23, we have

‖w̌LS−Q̃T w̃LS‖ ≤
C‖w̃LS‖ log1/2 n√

n

(
νLS

cos θLS
+ (1 + νLS tan θLS)κ2(X̃Q̃)

)
+
C log2 n

n2
. (46)

Lemma 19 bounds the condition number κ2(X̃Q̃) = κ2(X̃) ≤ C, whence

νLS =
‖X̃w̃LS‖

σd(X̃)‖Q̃T w̃LS‖
=

‖X̃w̃LS‖
σd(X̃)‖w̃LS‖

≤ ‖X̃‖
σd(X̃)

= κ2(X̃) ≤ C eventually.

By the triangle inequality, the definition of w̃ and using Lemma 30 to bound ‖w̃LS − w̃‖,

‖w̃LS‖ =

∥∥∥∥∥ w̄√
nµT w̄

∥∥∥∥∥+O(n−1 log1/2 n) = O(n−1/2) +O(n−1 log1/2 n),

whence Equation (46) becomes

‖Q̃w̌LS − w̃LS‖ ≤
C log1/2 n

n

(
1 +

1 + sin θLS

cos θLS

)
+
C log2 n

n2
eventually.

Thus, to complete the proof, it will suffice to bound cos θLS away from 0. To do this, we will
show by an argument similar to that in Lemma 25 that there exists a constant ρ ∈ (0, 1)
such that sin θLS ≤ 1− ρ eventually.

Toward this end, define b̃ = t
−1/2
v T−1/2~a, where we remind the reader that tv =∑n

i=1X
T
i w̄ is the expected degree of the out-of-sample vertex conditioned on the latent

positions, and T ∈ Rn×n is the diagonal matrix of in-sample vertex expected degrees, i.e.,
Ti,i =

∑n
j=1X

T
j Xi. Letting X̃† = (XTT−1X)−1XTT−1/2 denote the pseudoinverse of X̃,

(with the inverse existing eventually by Lemma 21), we have

sin θLS =
‖~b− X̃w̃LS‖
‖~b‖

=
‖(I − X̃X̃†)~b‖

‖~b‖
=
‖b̃‖
‖~b‖
‖(I − X̃X̃†)~b‖

‖b̃‖

≤ ‖b̃‖
‖~b‖

(
‖I − X̃X̃†‖‖~b− b̃‖

‖b̃‖
+
‖(I − X̃X̃†)b̃‖

‖b̃‖

)
,

(47)
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where the inequality follows from the triangle inequality and submultiplicativity. By defi-
nition of ~b and b̃, we have

‖~b− b̃‖
‖b̃‖

=

∥∥∥(d
−1/2
v D−1/2 − t−1/2

v T−1/2)~a
∥∥∥

‖t−1/2
v T−1/2~a‖

≤ ‖d
−1/2
v D−1/2 − t−1/2

v T−1/2‖
t
−1/2
v /maxi

√
ti

,

where we have used submultiplicativity to upper bound the numerator, ‖T−1/2~a‖ ≥ ‖~a‖/maxi
√
ti

to lower-bound the denominator, and cancelled the resulting factor of ‖~a‖. Cancelling fac-

tors of t
−1/2
v , we have

‖~b− b̃‖
‖b̃‖

≤ ‖t1/2v d−1/2
v D−1/2 − T−1/2‖max

i

√
ti.

Lemma 18 implies maxi
√
ti = O(

√
n), and a second application of Lemma 18 implies that

‖t1/2v d
−1/2
v D−1/2 − T−1/2‖ = O(n−1 log1/2 n), from which

‖~b− b̃‖
‖b̃‖

= O(n−1/2 log1/2 n), (48)

and it follows from the triangle inequality that

‖b̃‖
‖~b‖
≤ ‖

~b‖+ ‖b̃−~b‖
‖~b‖

= 1 +O(n−1/2 log1/2 n) = O(1). (49)

Applying Equations (48) and (49) to Equation (47) and using the bound ‖I − X̃X̃†‖ ≤ 1,

sin θLS ≤ O

(
log1/2 n√

n

)
+
C‖(I − X̃X̃†)b̃‖

‖b̃‖
. (50)

Letting P⊥
X̃

= (I − X̃X̃†) denote the orthogonal projection onto the orthogonal com-

plement of the column space of X̃ = T−1/2X, we have, canceling factors of t
−1/2
v in the

numerator and denominator,

‖(I − X̃X̃†)b̃‖
‖b̃‖

=
‖(I − X̃X̃†)T−1/2~a‖

‖T−1/2~a‖
=
‖P⊥

X̃
T−1/2~a‖

‖T−1/2~a‖
=
‖P⊥

X̃
T−1/2(~a−Xw̄)‖
‖T−1/2~a‖

,

where we have used the fact that P⊥
X̃
T−1/2Xw̄ = 0, since T−1/2Xw̄ = X̃w̄ is in the column

space of X̃. Thus, defining ~r = ~a−Xw̄, we have

‖(I − X̃X̃†)b̃‖
‖b̃‖

=
‖P⊥

X̃
T−1/2~r‖

‖T−1/2~a‖
≤ ‖T−1/2‖‖~r‖
‖~a‖/maxi

√
ti
≤ C ‖~r‖
‖~a‖

,

where the last inequality follows from the fact that the expected degrees {ti}ni=1 are all of
the same order by Lemma 18. The same argument as that given in the proof of Lemma 25
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lets us bound ‖~r‖/‖~a‖ by a constant ρ > 0 smaller than 1/(2C). Applying this to (50), we
obtain

sin θLS ≤ 1− ρ+O(n−1/2 log1/2 n)

It follows that

sin θLS ≤ 1− ρ

2
eventually,

i.e., sin θLS is bounded away from 1, completing the proof.

Appendix E. Proof of ASE linear least squares out-of-sample CLT

In this section, we prove Theorem 11, which shows that taking {Qn}∞n=1 to be the sequence
of orthogonal d-by-d matrices guaranteed to exist by Lemma 6, the quantity

√
n(ŵLS−QT w̄)

is asymptotically multivariate normal. We begin by recalling that

ŵLS = (X̂T X̂)−1X̂T~a = Ŝ−1/2ÛT~a.

Our proof will consist of writing
√
n(ŵLS −QT w̄) as a sum of two random vectors,

√
n(ŵLS −QT w̄) =

√
n~g +

√
n~h,

and showing that
√
n~g converges in law to a normal, while

√
n~h converges in probability

to 0. The multivariate version of Slutsky’s Theorem will then yield the desired result. We
begin by showing that ~g =

√
nS−1/2UT (~a − Xw̄) will suffice. We remind the reader that

∆ = EX1X
T
1 ∈ Rd×d is the second moment matrix of the latent position distribution F .

Lemma 32 Let F be a d-dimensional inner product distribution, with (A,X) ∼ RDPG(F, n)
and let w̄ ∈ Rd be such that 0 ≤ w̄Tx ≤ 1 for all x ∈ suppF be the fixed latent position of
the out-of-sample vertex. Then

√
nS−1/2UT (~a−Xw̄)

L−→ N (0,ΣF,w̄),

where ΣF,w̄ = ∆−1E
[
XT

1 w̄(1−XT
1 w̄)X1X

T
1

]
∆−1.

Proof We begin by observing that since w̄ ∈ Rd is fixed,

n−1/2XT (~a−Xw̄) = n−1/2
n∑
i=1

(~ai −XT
i w̄)Xi

is a scaled sum of of n independent 0-mean d-dimensional random vectors, each with co-
variance matrix

Vw̄ = EXT
1 w̄(1−XT

1 w̄)X1X
T
1 ∈ Rd×d.

The multivariate central limit theorem implies that

n−1/2XT (~a−Xw̄)Xi
L−→ N (0, Vw̄).
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We have
√
nS−1/2UT (~a−Xw̄) = nS−1n−1/2XT (~a−Xw̄). By the WLLN, S/n

P−→ ∆, and

hence by the continuous mapping theorem, nS−1 P−→ ∆−1. Thus, the multivariate version
of Slutsky’s Theorem implies that

√
nS−1/2UT (~a−Xw̄)

L−→ N (0,∆−1Vw̄∆−1),

as we set out to show.

The following technical lemma will be crucial for proving one of the convergence results
required by our main theorem. Its comparative complexity merits stating it here rather
than including it in the proof of Theorem 11 below. We remind the reader that Ŝ, S ∈ Rd×d
are the diagonal matrices formed by the top d eigenvalues of A and P , repsectively, and
Û , U ∈ Rn×d are the matrices whose columns are the corresponding unit eigenvectors.

Lemma 33 With notation as above,

√
nŜ−1/2(ÛT − ÛTUUT )(~a−Xw̄)

P−→ 0.

Proof For ease of notation, define the vector

~z = (ÛT − ÛTUUT )(~a−Xw̄).

Let ε > 0 be a constant, and note that for suitably large n,

Pr
[√

n‖Ŝ−1/2~z‖ > ε
]
≤ Pr

[√
n‖Ŝ−1/2~z‖ > C0n

−1/4
]
,

where C0 > 0 is a constant that we are free to choose. Define the events

E1,n = {‖Ŝ−1/2‖ ≤ C1n
−1/2},

and

E2,n = {
√
n‖~z‖ ≤ C2n

1/4},

and note that Pr
[√

n‖Ŝ−1/2~z‖ > C0n
−1/4

]
≤ Pr [(E1,n ∩ E2,n)c] so long as C1C2 ≤ C0.

Thus, it will suffice for us to show that limn→∞ Pr [(E1,n ∩ E2,n)c] → 0. The proof of
Lemma 14 implies that limn→∞ Pr[Ec1,n] = 0, so our proof will be complete once we show
that limn→∞ Pr[Ec2,n] = 0.

Toward this end, define the matrix

W = eTn ⊗ w̄ =
[
w̄ w̄ . . . w̄

]
∈ Rd×n

and let B ∈ Rn×n be a random matrix with independent binary entries with EBi,j =
(XW )i,j = XT

i w̄. Define the event

E3,n = {‖(ÛT − ÛTUUT )(B −XW )‖2F ≤ C log2 n}.

Since Pr[Ec2,n] ≤ Pr[Ec2,n | E3,n] + Pr[Ec3,n], it will suffice to show that
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1. limn→∞ Pr
[
Ec3,n

]
= 0, and

2. limn→∞ Pr
[
Ec2,n | E3,n

]
= 0.

By submultiplicativity, we have

‖(ÛT − ÛTUUT )(B −XW )‖2F ≤ ‖ÛT − ÛTUUT ‖2F ‖B −XW‖2. (51)

Theorem 22 applied to B −XW implies that with probability 1−O(n−2),

‖B −XW‖ ≤ Cn1/2 log1/2 n. (52)

Theorem 2 in Yu et al. (2015) guarantees an orthogonal R∗ ∈ Rd×d such that

‖Û − UR∗‖F ≤
C‖A− P‖
λd(P )

= O

(
log1/2 n√

n

)
, (53)

where we have used Lemma 14 to lower-bound λd(P ) and bounded ‖A−P‖ = O(n1/2 log1/2 n)
by a result in Oliveira (2010). Since R = ÛTU solves the minimization

min
R∈Rd×d

‖ÛTR− ÛTUUT ‖F ,

Equation (53) implies

‖ÛT − ÛTUUT ‖F ≤ ‖ÛT −R∗UT ‖F = O(n−1/2 log1/2 n).

Plugging this and (52) back into (51), we have that with probability 1−O(n−2),

‖(ÛT − ÛTUUT )(B −XW )‖2F ≤ C log2 n (54)

which is to say, Pr[Ec3,n] = O(n−2).
It remains to show that Pr[Ec2,n | E3,n]→ 0. By construction, the columns of the matrix

(ÛT −ÛTUUT )(B−XW ) are n independent copies of ~z. Using this fact and the conditional
Markov inequality, we have

Pr[Ec2,n | E3,n] = Pr[
√
n‖~z‖ > C2n

1/4 | E3,n] ≤ nE[‖~z‖2 | E3,n]

C2
2n

1/2

=
E[‖(ÛT − ÛTUUT )(B −XW )‖2F | E3,n]

C2
2n

1/2
≤ C log2 n

n1/2
,

where the last inequality follows from the definition of event E3,n. This quantity goes to
zero in n, thus completing the proof.

The following technical lemma will prove useful in our proof of Theorem 11 below. We
state it here rather than proving it in-line for the sake of clarity.

Lemma 34 With notation as above,

‖UT (~a−Xw̄)‖ = O(n1/2 log1/2 n).
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Proof For k ∈ [d] and i ∈ [n], observe that

(
UT (~a−Xw̄)

)
k,i

=

n∑
j=1

(U)j,k(aj −XT
j w̄)

is a sum of independent 0-mean random variables, and Hoeffding’s inequality yields

Pr
[
|UT (~a−Xw̄)|k,i ≥ t

]
≤ 2 exp

{
−t2

2
∑n

j=1(U)2
k,j

}
= 2 exp

{
−t2

2

}
.

Taking t = C log1/2 n for suitably large constant C > 0, a union bound over all k ∈ [d] and
i ∈ [n] followed by the Borel-Cantelli Lemma yields the result.

We are now ready to present the proof of Theorem 11.

Proof [Proof of Theorem 11] Let Q = Qn ∈ Rd×d denote the orthogonal matrix guaranteed
to exist by Lemma 6. Adding and subtracting appropriate quantities,

√
n(QŵLS − w̄) =

√
nQ
(
Ŝ−1/2ÛT~a−QT w̄

)
=
√
nS−1/2UT (~a−Xw̄)

+
√
nQŜ−1/2(ÛT −QTUT )(~a−Xw̄)

+
√
nQ(Ŝ−1/2ÛTX −QT )w̄

+
√
nQ(Ŝ−1/2QT −QTS−1/2)UT (~a−Xw̄).

(55)

By Lemma 32, the first of these terms converges in law:

√
nS−1/2UT (~a−Xw̄)

L−→ N (0,ΣF,w̄), (56)

where ΣF,w̄ is as defined in Lemma 32. Thus, by Slutsky’s Theorem, our proof will be
complete once we show that the remaining terms in Equation (55) go to zero in probability.

Since Q is orthogonal, it suffices to prove that

√
nŜ−1/2(ÛT −QTUT )(~a−Xw̄)

P−→ 0, (57)

√
n(Ŝ−1/2ÛTX −QT )w̄

P−→ 0, (58)

and √
n(Ŝ−1/2QT −QTS−1/2)UT (~a−Xw̄)

P−→ 0. (59)

We will address each of these three convergences in order.

To see the convergence in (57), adding and subtracting appropriate quantities gives

√
nŜ−1/2(ÛT −QTUT )(~a−Xw̄) =

√
nŜ−1/2(ÛTUUT −QTUT )(~a−Xw̄)

+
√
nŜ−1/2(ÛT − ÛTUUT )(~a−Xw̄).

(60)
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To bound the first of these two summands, Lemmas 14, 34 and 15 imply

‖
√
nŜ−1/2(ÛTUUT −QTUT )(~a−Xw̄)‖ ≤

√
n‖Ŝ−1/2‖‖ÛTU −QT ‖‖UT (~a−Xw̄)‖F

= O(n−1/2 log3/2 n).

Lemma 33 shows that the second term in (60) also goes to zero in probability, and Equa-
tion (57) follows.

To see (58), note that

√
n(Ŝ−1/2ÛTX −QT )w̄ =

√
n
(
Ŝ−1/2ÛTUS1/2 −QT

)
w̄

=
√
nŜ−1/2

(
ÛTU −QT

)
S1/2w̄ +

√
nŜ−1/2

(
QTS1/2 − Ŝ1/2QT

)
w̄. (61)

Submultiplicativity of matrix norms combined with Lemmas 14 and 15 and the fact that
‖w̄‖ is bounded imply

‖
√
nŜ−1/2

(
ÛTU −QT

)
S1/2w̄‖ ≤ C

√
n‖Ŝ−1/2‖‖ÛTU −QT ‖F ‖S1/2‖‖w̄‖

= O(n−1/2 log n).
(62)

Applying Lemma 14 again and taking the Frobenius norm as a trivial upper bound on the
spectral norm, Lemma 16 implies

‖
√
nŜ−1/2

(
QTS1/2 − Ŝ1/2QT

)
w̄‖ ≤ C

√
n‖Ŝ−1/2‖‖QTS1/2 − Ŝ1/2QT ‖‖w̄‖

≤ C‖QS1/2 − Ŝ1/2Q‖,
(63)

where we have used the fact that the spectral norm is preserved by matrix transposition.
Adding and subtracting appropriate quantities,

QS1/2 − Ŝ1/2Q = (Q− ÛTU)S1/2 + Ŝ1/2(ÛTU −Q) + ÛTUS1/2 − Ŝ1/2ÛTU.

By the triangle inequality and submultiplicativity,

‖QS1/2 − Ŝ1/2Q‖ ≤
(
‖S1/2‖+ ‖Ŝ1/2‖

)
‖ÛTU −Q‖+ ‖ÛTUS1/2 − Ŝ1/2ÛTU‖. (64)

Lemmas 14 and 15 bound the first term as O(n−1/2 log n), and the second term is bounded
by Lemma 17, and thus Equation (63) is bounded as

‖
√
nŜ−1/2

(
QTS1/2 − Ŝ1/2QT

)
w̄‖ = O(n−1/2 log n).

Applying this and Equation (62) to Equation (61) proves (58) by the triangle inequality.
Finally, to prove (59), note that

‖
√
n(Ŝ−1/2QT −QTS−1/2)UT (~a−Xw̄)‖ ≤

√
n‖Ŝ−1/2QT −QTS−1/2‖‖UT (~a−Xw̄‖F .

Lemmas 17 and 34 and an argument similar to the bound in Equation (64) imply that

‖
√
n(Ŝ−1/2QT −QTS−1/2)UT (~a−Xw̄)‖ = O(n−1/2 log3/2 n),

which completes the proof.
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Appendix F. Proof of LSE linear least squares out-of-sample CLT

In this section, we prove Theorem 13, which shows that the least-squares out-of-sample
extension for the Laplacian spectral embedding is, in the large-n limit, normally distributed
about the true embedding w̃ = w̄/

√
nµT w̄, after appropriate rescaling. We remind the

reader that ~a ∈ Rn denotes the vector of edges between the out-of-sample vertex v and the
in-sample vertices V = [n] and D ∈ Rn is the diagonal matrix of in-sample node degrees,
so that Di,i = di =

∑n
j=1Ai,j . Below, we will also need to define the matrix

T = diag(t1, t2, . . . , tn) ∈ Rn×n, ti =
n∑
j=1

XT
j Xi,

the matrix of in-sample expected degrees conditioned on the latent positions. Analo-
gously, we denote the out-of-sample vertex degree dv =

∑n
j=1 aj , and its expectation

tv =
∑n

j=1X
T
j w̄. Recall that the LSE least-squares out-of-sample extension is given by

w̌LS = (X̌T X̌)−1X̌TD−1/2 ~a√
dv
.

Our aim is to prove that for a suitably-chosen sequence of orthogonal matrices Q̃ ∈ Rd×d,

n(Q̃w̌LS − w̃)
L−→ N (0, Σ̃F,w̄),

where Σ̃F,w̄ depends only on the latent position distribution F and the true out-of-sample
latent position w̄ ∈ suppF , and is given by

Σ̃F,w̄ = E

XT
j w̄(1−XT

j w̄)

µT w̄

(
∆̃Xj

XT
j µ
− w̄

2µT w̄

)(
∆̃Xj

XT
j µ
− w̄

2µT w̄

)T ∈ Rd×d,

where ∆̃ = EX1X
T
1 /(X

T
1 µ) with µ = EX1 is the mean of F .

Proof [Proof of Theorem 13] Take Q̃ ∈ Rd×d to be the matrix guaranteed by Lemma 6.
Similarly to the proof of Theorem 11, our proof will proceed by writing n(w̌LS − Q̃w̃) as

n(Q̃w̌LS − w̃) = n~gn + n~hn,

where n~hn
P−→ 0 and n~gn converges in law to our desired normal distribution, whence

Slutsky’s Theorem will yield the result. We begin by writing

n(w̌LS − Q̃T w̃) = n(X̌T X̌)−1 X̌
TD−1/2~a√

dv
− nǓT Ũ w̃ − n(Q̃T − ǓT Ũ)w̃. (65)

By submultiplicativity of the spectral norm, Lemma 16 and the definition of w̃ = w̄/
√
nµT w̄,

‖(Q̃T − ǓT Ũ)w̃‖ ≤ ‖Q̃T − ǓT Ũ‖‖w̃‖ ≤ C‖w̄‖
n3/2

.

Applying this to Equation (65) and using the fact that ‖w̄‖ is bounded, we have

n(w̌LS − Q̃T w̃) = n(X̌T X̌)−1 X̌
TD−1/2~a√

dv
− nǓT Ũ w̃ +O(n−1/2). (66)
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Adding and subtracting quantities,

ǓT Ũ w̃ = Š−1/2ǓT Ũ S̃1/2w̃ − (Š−1/2ǓT Ũ S̃1/2 − ǓT Ũ)w̃. (67)

By Lemma 17, ∥∥∥ǓT Ũ S̃1/2 − Š1/2ǓT Ũ
∥∥∥ = O(n−1),

so that, applying submultiplicativity followed by Lemmas 19 and 17,∥∥∥(Š−1/2ǓT Ũ S̃1/2 − ǓT Ũ)w̃
∥∥∥ ≤ ‖Š−1/2‖‖ǓT Ũ S̃1/2 − Š1/2ǓT Ũ‖‖w̃‖ = O(n−3/2).

Plugging this into Equation (67), we have shown that

nǓT Ũ w̃ = nŠ−1/2ǓT Ũ S̃1/2w̃ +O(n−1/2),

and plugging this, in turn, into Equation (66), we have

n(w̌LS − Q̃T w̃) = n(X̌T X̌)−1 X̌
TD−1/2~a√

dv
− nŠ−1/2ǓT Ũ S̃1/2w̃ +O(n−1/2)

= n(X̌T X̌)−1X̌T

(
D−1/2~a√

dv
− X̃w̃

)
+O(n−1/2),

where the second equality follows from the definitions of X̌ and X̃ and X̌T X̌ = Š. Again
adding and subtracting quantities, we have

n(w̌LS − Q̃T w̃) = n(X̌T X̌)−1Q̃T X̃T

(
D−1/2~a√

dv
− X̃w̃

)

+ n(X̌T X̌)−1(X̌ − X̃Q̃)T

(
D−1/2~a√

dv
− X̃w̃

)
+O(n−1/2).

(68)

Expanding the second term on the right-hand side,

(X̌ − X̃Q̃)T

(
D−1/2~a√

dv
− X̃w̃

)
=

n∑
j=1

(
aj√
djdv

−
XT
j w̄√

tjnµT w̄

)
(X̌j − Q̃T X̃j)

=
n∑
j=1

aj −XT
j w̄√

djdv
(X̌j − Q̃T X̃j) +

n∑
j=1

(
1√

tjnµT w̄
− 1√

djdv

)
XT
j w̄(X̌j − Q̃T X̃j).

Recalling that ~a is independent of A conditioned on X and that E[aj | Xj ] = XT
j w̄, the

first of these two summations is a sum of independent mean-zero random variables, and an
application of Hoeffding’s inequality along with Lemmas 6 and 18 yields

n∑
j=1

aj −XT
j w̄√

djdv
(X̌j − Q̃T X̃j) = O(n−3/2 log n).
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Again applying Lemmas 6 and 18 (and using our boundedness assumption required by the
Laplacian case of Lemma 6),

n∑
j=1

(
1√

tjnµT w̄
− 1√

djdv

)
XT
j w̄(X̌j − Q̃T X̃j)

=
n∑
j=1

(
1√
nµT w̄

− 1√
dv

)
XT
j w̄√
tj

(
X̌j − Q̃T X̃j

)
+

n∑
j=1

(
1
√
tj
− 1√

dj

)
XT
j w̄√
dv

(
X̌j − Q̃T X̃j

)
= O(n−3/2 log n)

Thus, the above two displays imply that

(X̌ − X̃Q̃)T

(
D−1/2~a√

dv
− X̃w̃

)
= O(n−3/2 log n).

Recalling that Š = X̌T X̌, Lemmas 20 and 21 imply that Š is invertible eventually, and
‖(X̌T X̌)−1‖ = Θ(1). Equation (68) thus becomes

n(w̌LS − Q̃T w̃) = nŠ−1Q̃T X̃T

(
D−1/2~a√

dv
− X̃w̃

)
+ Õ(n−1/2),

and multiplying through by Q̃ yields

n(Q̃w̌LS − w̃) = nQ̃Š−1Q̃T X̃T

(
D−1/2~a√

dv
− X̃w̃

)
+ Õ(n−1/2).

Lemma 20 and the continuity of the inverse imply that

Q̃Š−1Q̃T
P−→ ∆̃−1.

An application of Slutsky’s Theorem will thus yield our result, provided we can show that

nX̃T

(
D−1/2~a√

dv
− X̃w̃

)
L−→ N (0,ΣF,w̄), (69)

where

ΣF,w̄ = E

XT
j w̄(1−XT

j w̄)

µT w̄

(
Xj

XT
j µ
− ∆̃w̄

2µT w̄

)(
Xj

XT
j µ
− ∆̃w̄

2µT w̄

)T .
To establish (69), we recall tv =

∑n
j=1X

T
j w̄ = Edv and note that

nX̃T

(
D−1/2~a√

dv
− X̃w̃

)
=
nX̃TT−1/2(~a−Xw)√

tv
+ nX̃T

(
D−1/2

√
dv
− T−1/2

√
tv

)
Xw̄

+ nX̃T

(
D−1/2

√
dv
− T−1/2

√
tv

)
(~a−Xw).

52



Limit theorems for out-of-sample graph embeddings

The last of these terms is O(n−1/2 log n) by a Hoeffding inequality followed by an application
of Lemma 18, so that

nX̃T

(
D−1/2~a√

dv
− X̃w̃

)
= nX̃TT−1/2 (~a−Xw)√

tv

+ nX̃T

(
D−1/2

√
dv
− T−1/2

√
tv

)
Xw̄ +O(n−1/2 log n).

(70)

Multiplying numerator and denominator and applying Lemma 18, it holds for all i ∈ [n]

1√
di
− 1√

ti
=

ti − di
(
√
di +

√
ti)
√
diti

=
ti − di
2t

3/2
i

+ (ti − di)
ti(
√
ti −
√
di) + (ti − di)

√
ti

2t
3/2
i (di

√
ti + ti

√
di)

=
ti − di
2t

3/2
i

+O(n−3/2 log n),

and a similar result holds for the out-of-sample vertex, in that

1√
dv
− 1√

tv
=
tv − dv
2t

3/2
v

+O(n−3/2 log n).

Thus,

X̃T

(
D−1/2

√
dv
− T−1/2

√
tv

)
Xw̄

= X̃TT−1/2

(
1√
dv
− 1√

tv

)
Xw̄ + X̃T (D−1/2 − T−1/2)Xw̄√

dv

= X̃TT−1/2 tv − dv
2t

3/2
v

Xw̄ +
X̃TT−3/2(T −D)Xw̄

2
√
dv

+
n∑
j=1

ξjX
T
j w̄

(
1
√
tj

+
1√
dj

)
Xj√
tj

where ξj ∈ R, j = 1, 2, . . . , n satisfy ξj = O(n−3/2 log n). Using Lemma 18, this last sum is
itself O(n−3/2 log n), so that

nX̃T

(
D−1/2

√
dv
− T−1/2

√
tv

)
Xw̄ = nX̃TT−1/2 tv − dv

2t
3/2
v

Xw̄

+ nX̃T T
−3/2(T −D)Xw̄

2
√
dv

+O(n−1/2 log n).

Plugging this into Equation (70),

nX̃T

(
D−1/2~a√

dv
− X̃w̃

)
= nX̃TT−1/2 (~a−Xw)√

tv
+ nX̃TT−1/2 tv − dv

2t
3/2
v

Xw̄

+ nX̃T T
−3/2(T −D)Xw̄

2
√
dv

+O(n−1/2 log n).
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To complete our proof, it will suffice to show the following two facts:

nX̃TT−1/2

(
(~a−Xw̄)√

tv
+
tv − dv
2t

3/2
v

Xw̄

)
L−→ N (0,ΣF,w̄) (71)

nX̃T T
−3/2(T −D)Xw̄

2
√
dv

P−→ 0 (72)

To see the latter of these two points, observe that by our definitions of di =
∑n

j=1Ai,j and

ti =
∑n

j=1X
T
j Xi,

nX̃T T
−3/2(T −D)Xw̄

2
√
dv

=
n

2
√
dv

n∑
i=1

(ti − di)
t2i

XT
i w̄Xi

=
n

2
√
dv

n∑
i=1

XT
i Xi

t2i
XT
i w̄Xi +

n

2
√
dv

∑
1≤i<j≤n

(XT
j Xi −Ai,j)

(
XT
i w̄

t2i
Xi +

XT
j w̄

t2j
Xj

)
.

The former of these two sums is O(n−1/2) by an application of Lemma 18 and using the
fact that Xi ∈ suppF are bounded. The latter of these two sums is, conditioned on
{Xi}ni=1, a sum of independent 0-mean random variables, with ‖t−2

j (XT
j Xi−Ai,j)XT

j w̄Xj‖ ∈
[−Ct−2

j , Ct−2
j ] for all j ∈ [n]. Thus,

Pr

∣∣∣∣∣∣
∑

1≤i<j≤n
t−2
j (XT

j Xi −Ai,j)XT
j w̄Xj

∣∣∣∣∣∣ ≥ s
 ≤ 2 exp

{
−Cs2∑
i<j t

−4
j

}
.

Let En = {tj ≥ Cn : j = 1, 2, . . . , n} denote the high-probability event of Lemma 18, for

which we have Pr[Ecn] ≤ Cn−2 for all suitably large n. Taking s = Cn−1 log1/2 n for suitably
large C > 0, letting PEn denote conditional probability Pr[· | En],

PEn

∣∣∣∣∣∣
∑

1≤i<j≤n
t−2
j (XT

j Xi −Ai,j)XT
j w̄Xj

∣∣∣∣∣∣ ≥ Cn−1 log1/2 n

 ≤ Cn−2.

Thus,

Pr

∣∣∣∣∣∣
∑

1≤i<j≤n
t−2
j (XT

j Xi −Ai,j)XT
j w̄Xj

∣∣∣∣∣∣ ≥ Cn−1 log1/2 n


≤ PEn

∣∣∣∣∣∣
∑

1≤i<j≤n
t−2
j (XT

j Xi −Ai,j)XT
j w̄Xj

∣∣∣∣∣∣ ≥ Cn−1 log1/2 n

+ Pr[Ecn]

≤ Cn−2,

and we conclude that, bounding d
−1/2
v = O(n−1/2 log1/2 n) by Lemma 18,

nX̃T T
−3/2(T −D)Xw̄

2
√
dv

= O(n−1/2 log1/2 n),
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which establishes (72).
It remains only to prove Equation (71). Let mi = nXT

i µ for i ∈ [n] and define the
diagonal matrix

M = diag(m1,m2, . . . ,mn) ∈ Rn×n.

The argument in Lemma 18 allows us to bound |t−1/2
v −(nµT w̄)−1/2|, so an argument similar

to that above, wherein we apply Hoeffding’s inequality followed by Lemma 18, implies

n

(
1√
tv
− 1√

nµT w̄

)
X̃TT−1/2(~a−Xw̄) = O(n−1/2 log n).

Lemma 18 also bounds maxi |t−1/2
i −m−1/2

i |, whence

nX̃T (T−1/2 −M−1/2)(~a−Xw̄)√
nµT w̄

= O(n−1/2 log n).

The same Hoeffding-style argument once again yields, recalling that X̃ = T−1/2X,

nXT (T−1/2 −M−1/2)M−1/2(~a−Xw̄)√
nµT w̄

= O(n−1/2 log n).

Combining the above three displays, the first term in the quantity of interest in Equa-
tion (71) is

nX̃TT−1/2(~a−Xw̄)√
tv

=
nXTM−1(~a−Xw̄)√

nµT w̄
+ Õ(n−1/2). (73)

Turning to the second term on the left-hand side of Equation (71), rearranging terms and
recalling the definition of ∆̃ = EX1X

T
1 /(X

T
1 µ),

nX̃TT−1/2(tv − dv)Xw̄
2t

3/2
v

=
n(tv − dv)X̃T X̃w̄

2(nµT w̄)3/2
+ Õ(n−1/2) =

n(tv − dv)∆̃w̄
2(nµT w̄)3/2

+ Õ(n−1/2),

where the first equality follows from Lemma 18 and the second equality follows from using
(multivariate) Hoeffding’s inequality to bound

‖X̃T X̃ − ∆̃‖ =

∥∥∥∥∥
n∑
i=1

XiX
T
i

XT
i µ
− ∆̃

∥∥∥∥∥ = O(n−1/2 log1/2 n).

Thus, combining with Equation (73), the quantity on the left-hand side of Equation (71) is

nX̃TT−1/2

(
(~a−Xw̄)√

tv
+
tv − dv
2t

3/2
v

Xw̄

)
=
nXTM−1(~a−Xw̄)√

nµT w̄
+
n(tv − dv)∆̃w̄
2(nµT w̄)3/2

+O(n−1/2 log1/2 n).

Rearranging, and recalling mi = nXT
i µ, tv =

∑n
j=1X

T
j w̄ and dv =

∑n
j=1 aj ,

nX̃TT−1/2

(
(~a−Xw̄)√

tv
+
tv − dv
2t

3/2
v

Xw̄

)
= n

n∑
j=1

aj −XT
j w̄√

nµT w̄

(
Xj

nXT
j µ
− ∆̃w̄

2nµT w̄

)
+O(n−1/2 log1/2 n)

=
1√
n

n∑
j=1

(aj −XT
j w̄)√

µT w̄

(
Xj

XT
j µ
− ∆̃w̄

2µT w̄

)
+O(n−1/2 log1/2 n).
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Observe that this is a sum of n independent mean-zero random variables, so that by the
multivariate CLT and Slutsky’s Theorem,

nX̃TT−1/2

(
(~a−Xw̄)√

tv
+
tv − dv
2t

3/2
v

Xw̄

)
L−→ N (0,ΣF,w̄),

where

ΣF,w̄ = E

XT
j w̄(1−XT

j w̄)

µT w̄

(
Xj

XT
j µ
− ∆̃w̄

2µT w̄

)(
Xj

XT
j µ
− ∆̃w̄

2µT w̄

)T ,
completing the proof.

References

A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J. Smola. Distributed
large-scale natural graph factorization. In Proceedings of the 22nd International World
Wide Web Conference, pages 37–48, 2013.

A. Athreya, V. Lyzinski, D. J. Marchette, C. E. Priebe, D. L. Sussman, and M. Tang. A
limit theorem for scaled eigenvectors of random dot product graphs. Sankhya A, 78:1–18,
2016.

A. Athreya, D. E. Fishkind, K. Levin, V. Lyzinski, Y. Park, Y. Qin, D. L. Sussman, M. Tang,
J. T. Vogelstein, and C. E. Priebe. Statistical inference on random dot product graphs:
a survey. Journal of Machine Learning Research, 18(226):1–92, 2018.

A. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286(5439):
509–512, 1999.

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data rep-
resentation. Neural Computation, 15(6):1373–1396, 2003.

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold Regularization: A Geometric Framework
for Learning from Examples. Journal of Machine Learning Research, 7:2399–2434, 2006.

Y. Bengio, J. Paiement, P. Vincent, O. Delalleau, N. Le Roux, and M. Ouimet. Out-
of-sample extensions for LLE, ISOMAP, MDS, eigenmaps, and spectral clustering. In
Advances in Neural Information Processing Systems 16, 2004.

P. Billingsley. Probability and Measure. Wiley, 1995.

I. Borg and P. J. F. Groenen. Modern multidimensional scaling: Theory and applications.
Springer Science & Business Media, 2005.

S. Boucheron, G. Lugosi, and P. Massart. Concentration Inequalities: A nonasymptotic
theory of independence. Oxford University Press, 2013.

56



Limit theorems for out-of-sample graph embeddings

J. Cape, M. Tang, and C. E. Priebe. On spectral embedding performance and elucidating
network structure in stochastic block model graphs. Network Science, 7(3):269–291, 2019.

F. Chung. Spectral Graph Theory. Number 92 in Conference Board of the Mathematical
Sciences Regional Conference Series in Mathematics. American Mathematical Society,
1997.

R. R. Coifman and S. Lafon. Diffusion maps. Applied and Computational Harmonic Anal-
ysis, 21:5–30, 2006.

S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin. Structure of growing networks
with preferential linking. Physical Review Letters, 85(4633), 2000.

J. Fan, D. Wang, K. Wang, and Z. Zhu. Distributed estimation of principal eigenspaces.
The Annals of Statistics, 47:3009–3031, 2019.

G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press,
4th edition, 2012.

J. C. Gower and G. B. Dijksterhuis. Procrustes Problems. Number 30 in Oxford Statistical
Science Series. Oxford University Press, 2004.

P. D. Hoff, A. E. Raftery, and M. S. Handcock. Latent space approaches to social network
analysis. Journal of the American Statistical Association, 97(460):1090–1098, 2002.

P. W. Holland, K. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps. Social
Networks, 5(2):109–137, 1983.

A. Jansen, G. Sell, and V. Lyzinski. Scalable out-of-sample extension of graph embeddings
using deep neural networks. Pattern Recognition Letters, 94(15):1–6, 2017.

L. G. S. Jeub, P. Balachandran, M. A. Porter, P. J. Mucha, and M. W. Mahoney. Think
locally, act locally: The detection of small, medium-sized, and large communities in large
networks. Physical Review E, 91(012821), 2015.

D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M¿ Bogu ná. Hyperbolic geom-
etry of complex networks. Physical Review E, 82(3):036106, 2010.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Community structure in large
networks: Natural cluster sizes and the absence of large well-defined clusters. Internet
Mathematics, 6(1):29–123, 2009.

K. Levin, A. Jansen, and B. Van Durme. Segmental acoustic indexing for zero resource
keyword search. In Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2015.

K. Levin, A. Athreya, M. Tang, V. Lyzinski, and C. E. Priebe. A central limit theorem for
an omnibus embedding of random dot product graphs. arXiv:1705.09355, 2017.

57



Levin, Roosta, Tang, Mahoney and Priebe

K. Levin, F. Roosta-Khorasani, M. W. Mahoney, and C. E. Priebe. Out-of-sample extension
of graph adjacency spectral embedding. In Proceedings of ICML, 2018.

K. Levin, A. Lodhia, and E. Levina. Recovering low-rank structure from multiple networks
with unknown edge distributions. arXiv:1906.07265, 2019.

W. Liu, J. He, and S.-F. Chang. Large graph construction for scalable semi-supervised
learning. In Proceedings of the 27th International Conference on Machine Learning, 2010.

U. Von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416,
2007.

V. Lyzinski, D. L. Sussman, M. Tang, A. Athreya, and C. E. Priebe. Perfect clustering for
stochastic blockmodel graphs via adjacency spectral embedding. Electronic Journal of
Statistics, 8(2):2905–2922, 2014.

V. Lyzinski, M. Tang, A. Athreya, Y. Park, and C. E. Priebe. Community detection
and classification in hierarchical stochastic blockmodels. IEEE Transactions in Network
Science and Engineering, 4(1):13–26, 2017.

A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In
T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information
Processing Systems 14, pages 849–856. MIT Press, 2002.

R. I. Oliveira. Concentration of the adjacency matrix and of the Laplacian in random graphs
with independent edges. arXiv:0911.0600, 2010.

A. M. Quispe, C. Petitjean, and L. Heutte. Extreme learning machine for out-of-sample
extension in laplacian eigenmaps. Pattern Recognition Letters, 74:68–73, 2016.

P. Rubin-Delanchy, C. E. Priebe, M. Tang, and J. Cape. A statistical interpretation of
spectral embedding: the generalised random dot product graph. arXiv 1709.05506, 2017.

B. Srinivasan and B. Ribero. On the equivalence between positional node embeddings and
structural graph representations. In Proceedings of the 8th International Conference on
Learning Representations, 2020.

D. L. Sussman, M. Tang, D. E. Fishkind, and C. E. Priebe. A consistent adjacency spec-
tral embedding for stochastic blockmodel graphs. Journal of the American Statistical
Association, 107(499):1119–1128, 2012.

M. Tang and C. E. Priebe. Limit theorems for eigenvectors of the normalized Laplacian for
random graphs. The Annals of Statistics, 46(5):2360–2415, 2018.

M. Tang, Y. Park, and C. E. Priebe. Out-of-sample extension of latent position graphs.
arXiv:1305.4893, 2013a.

M. Tang, D. L. Sussman, and C. E. Priebe. Universally consistent vertex classification for
latent position graphs. The Annals of Statistics, 31:1406–1430, 2013b.

58



Limit theorems for out-of-sample graph embeddings

M. Tang, J. Cape, and C. E. Priebe. Asymptotically efficient estimators for stochastic block-
models: the naive MLE, the rank-constrained MLE, and the spectral. arXiv:1710.10936,
2017.

R. Tang, M. Ketcha, A. Badea, E. D. Calabrese, D. S. Margulies, J. T. Vogelstein, C. E.
Priebe, and D. L. Sussman. Connectome smoothing via low-rank approximations. IEEE
Transactions on Medical Imaging, 38(6):1446–1456, 2019.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

W. S. Torgerson. Multidimensional scaling: I. theory and method. Psychometrika, 17(4):
401–419, 1952.

J. A. Tropp. An introduction to matrix concentration inequalities. Foundations and Trends
in Machine Learning, 8(1-2):1–230, 2015.

M. W. Trosset and C. E. Priebe. The out-of-sample problem for classical multidimensional
scaling. Computational Statistics and Data Analysis, 52(10):4635–4642, 2008.

N. K. Vishnoi. Lx = b. Foundations and Trends in Theoretical Computer Science, 8(1–2):
1–141, 2013.

Y. Weiss. Segmentation using eigenvectors: a unifying view. In Proc. IEEE International
Conference on Computer Vision, pages 975–982, 1999.

L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor fusion based on
average consensus. In Fourth International Symposium on Information Processing in
Sensor Networks, 2005.

F. Xie and Y. Xu. Optimal Bayesian estimation for random dot product graphs. Biometrika,
107(4):875–889, 2020.

S. Young and E. Scheinerman. Random dot product graph models for social networks.
In Proceedings of the 5th International Conference on Algorithms and Models for the
Web-graph, pages 138–149, 2007.

Y. Yu, T. Wang, and R. J. Samworth. A useful variant of the Davis-Kahan theorem for
statisticians. Biometrika, 102:315–323, 2015.

D. Zheng, D. Mhembere, R. Burns, J. Vogelstein C. E. Priebe, and A. S. Szalay. Flash-
Graph: Processing billion-node graphs on an array of commodity SSDs. In 13th USENIX
Conference on File and Storage Technologies (FAST 15), pages 45–58, 2015.

M. Zhu and A. Ghodsi. Automatic dimensionality selection from the scree plot via the use
of profile likelihood. Computational Statistics and Data Analysis, 51:918–930, 2006.

59


	Introduction
	Background and Notation
	Notation
	Roadmap

	Out-of-sample Extension for ASE and LSE
	Out-of-sample extension for ASE
	Out-of-sample extension for LSE

	Theoretical Results
	Rates of convergence for OOS extensions
	Central limit theorems for the OOS extensions

	Experiments
	Simulation: speed of convergence
	Tradeoff: computational cost versus classification accuracy
	MNIST Digit Classification

	Discussion and Conclusion
	Technical Results for the Random Dot Product Graph
	Proof of ASE LS-OOS Concentration Inequality
	Proof of ASE ML-OOS Concentration Inequality
	Proof of LSE LS-OOS Concentration Inequality
	Proof of ASE linear least squares out-of-sample CLT
	Proof of LSE linear least squares out-of-sample CLT

