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Abstract

We provide general adaptive upper bounds for estimating nonparametric functionals based
on second-order U-statistics arising from finite-dimensional approximation of the infinite-
dimensional models. We then provide examples of functionals for which the theory produces
rate optimally matching adaptive upper and lower bounds. Our results are automatically
adaptive in both parametric and nonparametric regimes of estimation and are automatically
adaptive and semiparametric efficient in the regime of parametric convergence rate.

Keywords: Adaptive minimax estimation, Functional estimation, Lepski’s method, U-
statistics, Wavelets

1. Introduction

Estimation of functionals of data generating distribution has always been of central inter-
est in statistics. In nonparametric statistics and machine learning problems, where data
generating distributions are parametrized by functions in infinite-dimensional spaces, there
exists a comprehensive literature addressing such questions. In particular, a large body of
research has been devoted to explore minimax estimation of linear, quadratic functionals,
and entropy type functionals in density and/or white noise models. We do not attempt
to survey this extensive literature in this area. However, the interested reader can find
a comprehensive snapshot of the literature in Hall and Marron (1987), Bickel and Ritov
(1988), Donoho et al. (1990), Donoho and Nussbaum (1990), Fan (1991), Kerkyacharian
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and Picard (1996), Laurent (1996), Johnstone (2001), Cai and Low (2003), Cai and Low
(2004), Cai and Low (2005b), Kandasamy et al. (2014), Berrett et al. (2019), Han et al.
(2020b,a) and other references therein. Although the question of more general nonparamet-
ric functionals has received relatively less attention, some fundamental insights regarding
estimation of non-linear integral functionals in density and white noise models can be found
in Ibragimov and Has’minskii (2013), Kerkyacharian and Picard (1996), Nemirovski (2000),
and references therein.

A general feature of the results obtained while estimating “smooth” nonparametric func-
tionals is an elbow effect in the rate of estimation based on the regularity of the underlying
function classes. For example while estimating quadratic functionals in a d dimensional
density model,

√
n-efficient estimation can be achieved as soon as Hölder exponent β of the

underlying density exceeds d
4 , whereas the optimal rate of estimation is n

− 4β
4β+d (in root mean

squared error sense) for β ≤ d
4 . A similar elbow in the rate of estimation exists for estima-

tion of non-linear integral functionals as well. For density model this was demonstrated by
Birgé and Massart (1995), Kerkyacharian and Picard (1996) and Tchetgen Tchetgen et al.
(2008). For signal or white noise model, the problem of general integrated non-linear func-
tionals was studied by Nemirovski (2000), but mostly in the

√
n-regime. However, for more

complex nonparametric models, the approach for constructing minimax optimal procedures
for general non-linear functionals in non-

√
n-regimes has been rather case specific. Moti-

vated by this, in recent years, Robins et al. (2008, 2017) and Mukherjee et al. (2017) have
developed a theory of inference for nonlinear functionals in parametric, semi-parametric,
and non-parametric models based on higher order influence functions.

Most minimax rate optimal estimators proposed in the literature, however, depend
explicitly on the knowledge of the smoothness indices. Thus, it becomes of interest to
understand the question of adaptive estimation i.e. the construction and analysis of estima-
tors without prior knowledge of the smoothness. The question of adaptation of linear and
quadratic functionals has been studied in detail in the context of density, white noise, and
nonparametric additive Gaussian noise regression models (Low (1992), Efromovich and Low
(1994), Efromovich and Low (1996), Tribouley (2000), Johnstone (2001), Efromovich and
Samarov (2000), Klemelä and Tsybakov (2001), Laurent and Massart (2000), Cai and Low
(2005a), Cai and Low (2006), Giné and Nickl (2008), Breunig and Chen (2021)). Although
our theoretical results are very much related to and motivated by the papers on optimal
adaptive estimation of quadratic functionals, including Fan (1991); Johnstone (2001); Efro-
movich and Samarov (2000); Laurent and Massart (2000); Cai and Low (2006); Giné and
Nickl (2008), nonetheless we consider a much wider and more complex class of functionals
whose first order influence function depends on multiple nuisance functions. Our paper is
the first to consider adaptive estimation in this wider class.

In particular, we observe i.i.d copies of a random vector O = (W; X) ∈ Rm+d with
unknown distribution P on each of n study subjects. The variable X represents a random
vector of baseline covariates such as age, height, weight, etc. Throughout X is assumed
to have compact support and a density with respect to (w.r.t.) Lebesgue measure in Rd.
The variable W ∈ Rm can be thought of as a combination of outcome and treatment
variables in some of our examples. In the above setup, we are interested in estimating
certain “smooth” functionals φ(P ) in the sense that under finite-dimensional parametric
submodels, they admit first-order derivatives which can be represented as inner products of
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first order influence functions with score functions (Bickel et al., 1993). For some classical
examples of these functionals, we provide matching upper and lower bounds on the rate of
adaptive minimax estimation over a varying class of smoothness of the underlying functions,
provided that the unknown marginal design density of X is sufficiently regular.

The contributions of this paper are as follows. Building on the theory of adaptive
estimation of linear and quadratic nonparametric functionals in density and Gaussian white
noise models, we explore adaptation theory for non-linear functionals in more complex
nonparametric models in both the

√
n (where our adaptive estimators are semi-parametric

efficient) and non-
√
n-regimes. The crux of our arguments relies on the observation that

when the non-adaptive minimax estimators can be written as a sum of empirical mean
type statistics and 2nd-order U-statistics, one can provide a unified theory of selecting the
“best” data driven estimator using Lepski type arguments (Lepski, 1991, 1992). Indeed,
under certain assumptions on the data generating mechanism P , the non-adaptive minimax
estimators have the desired structure for a large class of problems (Robins et al., 2008).
This enables us to produce a class of examples where a single method helps provide a
desired answer. Although the basic scheme of the approach is straightforward, the proof
is somewhat involved because of the dependence of the U-statistics kernels in question on
estimated functions from the sample. This prohibits performing a Hoeffding decomposition
w.r.t. the whole sample and we can only proceed by a conditional Hoeffding decomposition
restricted on carefully chosen good events. In order to prove a lower bound for the rate
of adaptation under the non-

√
n-regime for all the examples covered below (and show that

a sharp poly-logarithmic penalty is indeed necessary for adaptation), we adapt the results
in Birgé and Massart (1995); Robins et al. (2009b) for the Hellinger distance between two
mixtures of suitable product measures, by producing similar results in chi-square divergence
(see Appendix A). Our results apply to several common examples in nonparametric analyses
of observational studies. These include, but are not limited to, average treatment effect
estimation in causal inference, mean estimation in missing data studies, and error variance
estimation in general non-parametric problems. To the best of our knowledge, the optimal
adaptive results (both in sense of upper and lower bound) which simultaneously describe
both

√
n and non-

√
n regimes of estimation, are among the first results in this direction.

Moreover, all these examples involve estimating nonparametric nuisance functions (such as a
density or regression). Consequently, the proofs of our results shed light on what properties
of machine learning algorithms one needs to explore (see e.g. the results in Theorem 2.7
proved for wavelet based estimation) so that a principled use of them in semiparametric
theory is possible.

The rest of the paper is organized as follows. In Section 2 we provide the main results
of the paper in a general form. Section 3 is devoted for applications of the main results in
specific examples. Discussions on potential issues and future work are provided in Section
4. In Section 5 we provide a brief discussion on some basic wavelet and function space
theory and notations, which we use extensively. Finally Section 6, Appendices A, B, and C
are devoted for the proofs of the theorems and collecting useful technical lemmas.
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1.1 Notation

For data arising from underlying probability distribution P we denote by PP and EP the
probability of an event and expectation under P receptively. In the sequel, we often
split the whole sample D into M disjoint subsamples {D1,D2, . . . ,DM}. For some sub-
set Jm = {j1, j2, . . . , jm} ⊆ {1, 2, . . . ,M}, we denote by PP,{j1,j2,...,jm} and EP,{j1,j2,...,jm}
the probability and expectation under P over the sample space of ∪j∈JmDj , while treating
the subsamples ∪j 6∈JmDj as fixed. For example, when we divide the whole sample into three
disjoint subsamples {D1,D2,D3}, then PP,2,3 ≡ PP,{2,3} denotes the conditional probability
of an event, while treating the subsample D1 as fixed.

For a bivariate function h(O1, O2) let

S(h(O1, O2)) =
1

2
[h(O1, O2) + h(O2, O1)]

be the symmetrization of h. The results in this paper are mostly asymptotic (in n) in nature
and thus require some standard asymptotic notations. If an and bn are two sequences of real
numbers then an � bn (and an � bn) implies that an/bn →∞ (and an/bn → 0) as n→∞,
respectively. Similarly an & bn (and an . bn) implies that lim infn→∞ an/bn = C for some
C ∈ (0,∞] (and lim supn→∞ an/bn = C for some C ∈ [0,∞)). Alternatively, an = o(bn)
will also imply an � bn and an = O(bn) will imply that lim supn→∞ an/bn = C for some
C ∈ [0,∞)).

Finally we comment briefly on the various constants appearing throughout the text and
proofs. Given that our primary results concern convergence rates of various estimators,
we will not emphasize the role of constants throughout and rely on fairly generic nota-
tion for such constants. In particular, for any fixed tuple v of real numbers, C(v) will
denote a positive real number which depends on elements of v only. Finally for any linear
subspace L ⊆ L2([0, 1]d), let Π (h|L) denote the orthogonal projection of h onto L un-
der the Lebesgue measure. Also, for a function defined on [0, 1]d, for 1 ≤ q < ∞ we let
‖h‖q := (

∫
[0,1]d |h(x)|qdx)1/q denote the Lq semi-norm of h, ‖h‖∞ := supx∈[0,1]d |h(x)| the

L∞ semi-norm of h. We say h ∈ Lq([0, 1]d) for q ∈ [1,∞] if ‖h‖q < ∞. Typical functions
arising in this paper will be considered to have memberships in certain Hölder balls H(β,M)
(see Section 5 for details). This will imply that the functions are uniformly bounded by a
number depending on M . However, to make the dependence of our results on the uniform
upper bound of functions more clear, we will typically assume a bound BU over the function
classes, and for the sake of compactness will avoid the notational dependence of BU on M .
The necessary notation appeared in Lepski-type adaptation scheme will be introduced in
Section 2.1.1 when we first define the procedure.

2. Main Results

We divide the main results of the paper into three main parts. First we discuss a general
recipe for producing a data-adaptive “best” estimator from a sequence of estimators based
on second-order U-statistics – which in turn are constructed from compactly supported
wavelet based projection kernels (defined in Section 5). Next we show that the bound
on Hellinger distance obtained in Robins et al. (2009b) directly implies the desired bound
on chi-square divergence between mixtures of product measures under certain bounded
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density assumptions. In subsequent sections, this then serves as a basis of using a version
of constrained risk inequality (Cai and Low, 2011) for producing matching adaptive lower
bounds in the context of estimating non-linear functionals considered in this paper. Finally
we provide control over estimators of the design density as well as the regression functions
in L∞ norm which not only adapt over Hölder type smoothness classes (defined in Section
5) but also belong to desired regularity classes with probability converging to 1 sufficiently
fast.

2.1 Upper Bound

Consider a sample of i.i.d data D := {Oi = (Wi,Xi) ∼ P,Wi ∈ Rm,Xi ∈ [0, 1]d, i =
1, . . . , n} and a real valued functional of interest φ(P ). In the following, we also split D
into two disjoint subsamples D1 = {O1, . . . , On1} and D2 = {On1+1, . . . , On1+n2}, where
n1 + n2 = n. Given this sample of size n ≥ 2, consider further, a sequence of estimators
{φ̂n,k(L):n ∈ N, k = 2jd for some j ∈ N} of φ(P ) (indexed by function tuple L(O) =
(L1(O), L2l(O), L2r(O))) defined as follows:

φ̂n,k(L) =
1

n1

n1∑
i=1

L1(Oi)−
1

n1(n1 − 1)

∑
1≤i1 6=i2≤n1

S (L2l(Oi1)KVk (Xi1 ,Xi2)L2r(Oi2))

where KVk (Xi1 ,Xi2) ≡ KVj (Xi1 ,Xi2) is a resolution j = log2 k
d wavelet projection ker-

nel defined in Section 5. Depending on the context, we sometimes denote Vj by Vk to
avoid repeated translation between the resolution j and the number of wavelet bases k
being used in defining the projection kernels. In all our examples, the non-random func-
tions L1, L2l, L2r: Ω → R depend on the true underlying distribution P (e.g. L1(·) =
(Y − EP (Y |X))(A − EP (A|X)) in the example of average treatment effect estimation in
Section 3.1, but we silence the dependence on P in the notation for brevity) so we cannot
evaluate φ̂n,k(L) purely from data. The (random) functions L̃1, L̃2l and L̃2r serve as the
corresponding data-adaptive estimators of L1, L2l and L2r constructed from the (training)
subsample D2, without knowledge on the data generating mechanism. Then

φ̂n,k ≡ φ̂n,k(L̃) =
1

n1

n1∑
i=1

L̃1(Oi)−
1

n1(n1 − 1)

∑
1≤i1 6=i2≤n1

S
(
L̃2l(Oi1)KVk (Xi1 ,Xi2) L̃2r(Oi2)

)
,

which is now a measurable function w.r.t. the σ-field generated by the observed data sample
D. We further assume that

max{|L̃1(O)|, |L̃2l(O)|, |L̃2r(O)|} ≤ B, P -almost surely

for a known constant B. In addition, assume that |g(x)| ≤ BU ∀ x, g being the marginal
density of X w.r.t. Lebesgue measure. Then the sequence of estimators {φ̂n,k:n ∈ N, k =
2jd for some j ∈ N} of φ(P ) can be thought of as a bias corrected version of a usual first
order estimator arising from standard first order influence function theory for “smooth”
functionals φ(P ) (Bickel et al., 1993; van der Vaart, 2000). In particular, the linear empirical
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mean type term 1
n1

∑n1
i=1 L̃1(Oi) typically derives from the classical influence function of

φ(P ) and the U-statistics quadratic term

Ûn,k :=
1

n1(n1 − 1)

∑
1≤i1 6=i2≤n1

S
(
L̃2l(Oi1)KVk (Xi1 ,Xi2) L̃2r(Oi2)

)
(2.1)

corrects for higher order bias terms. While, specific examples in Section 3 will make the
structure of the sequence of estimators more clear, the interested reader will be able to find
more detailed theory in Robins et al. (2008, 2009a); Li et al. (2011); Robins et al. (2017).

The quality of such sequence of estimators will be judged against models for the data
generating mechanism P . To this end, assume P ∈ Pθ where Pθ is a class of data generating
distributions indexed by θ which in turn can vary over an index set Θ. The choices of such
a Θ will be clear from our specific examples in Section 3, and will typically correspond to
smoothness indices of various infinite-dimensional functions parametrizing the data gener-
ating mechanism. Further assume that there exist positive real-valued functions f1 and f2
defined on Θ such that the sequence of estimators {φ̂n,k}k≥1 satisfies the following bounds
for all θ ∈ Θ with known constants CA > 0, C ′A, and CB > 0.

Property (A): Conditional Bias Bound within “Good” Events of D2: there exists a “good”
event I2(n2), a measurable subset w.r.t. the σ-algebra generated by the
sample in D2, such that, for some absolute constants CA, C

′
A,

sup
P∈Pθ

∣∣∣EP,1 (φ̂n,k − φ(P )
)∣∣∣1 {I2(n2)} ≤ CA (k−2 f1(θ)d + n

−f2(θ)
2

)
P -a.s.

and for some η > 2,

sup
P∈Pθ

PP,2
(
I2(n2)

)
≤
C ′A log n2

nη2
P -a.s.

where I stands for the complement of I for any event I.

Property (B): Conditional Variance Bound: there exists an absolute constant CB > 0, such
that

sup
P∈Pθ

EP,1

(
φ̂n,k − EP,1

(
φ̂n,k

))2
≤ CB

(
k

n21
∨ 1

n1

)
P -a.s.

Remark 2.1. Property (A) makes assumptions on certain nuisance functions involved in the
problem. In the examples provided in Section 3 these will typically correspond to certain
regression and density functions, and we will invoke Theorem 2.7 to show that Property (A)
is met if one estimates the nuisance functions with (boundary-corrected) Cohen-Daubechies-
Vial type of wavelet kernel projections1.

1. Throughout this paper, we assume that we can evaluate wavelets without numerical error and we provide
the reason for making such a simplification in Remark 5.1.
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2.1.1 Lepski-type adaptation scheme

Given properties (A) and (B), we employ a standard Lepski-type adaptation scheme
(Lepski, 1991, 1992) to choose an “optimal” estimator from the collection of estimators
{φ̂n,k:n ∈ N, k = 2jd for some j ∈ N}. Following the notation in Giné and Nickl (2008),
for any given n1 ∈ N, n > 1, and sufficiently small δ ∈ (0, 1), we define the following
discretization set:

K :=

{
k ∈

[
n1−δ1 ,

n21
(log n1)4

]
: k0 = n1−δ1 , k1 =

n1
log n1

, k2 =
n1
`(n1)

, kj+1 = %kj , j = 2, 3, . . .

}
,

where % > 1, `(n1) is any function such that `(n1) → 0 and `(n1) log n1 → ∞ as n1 → ∞,
and `−1(n1) < log n1 for all n1. Let N be the cardinality of K. Then kN−1 = %N−3 n1

`(n1)
≤

n2
1

(logn1)4
implies that N = O(log n1). Next we define R(k) = k

n2
1

and d(k) for all k ∈
[n1−δ1 , n21/(log n41)

4] as

d(k) =


√
C2
Lepski log

(
k

k0

)
k > k2,

`(n1)
−1/2 k0 ≤ k ≤ k2.

where CLepski will be specified later in the proof of Theorem 2.2 and chosen only depending
on the known parameters of the data generating mechanism. For example, when k =
%ln1/`(n1) for some positive integer l,

d(k) =
√
C2
Lepski(δ log n1 + l log %− log (`(n1))) = O((log n1)

1/2).

Now following Lepski’s strategy, we define the data-adaptive estimator of k as

k̂ := min

{
k ∈ K:

(
φ̂n,k − φ̂n,k′

)2
≤ R(k′)d2(k′),∀k′ ≥ k, k′ ∈ K

}
. (2.2)

Then for each k ∈ K, we simply find the corresponding j as b log2 kd c to construct estimator

φ̂2,k with wavelets at resolution j.
With the notations and data-adaptive estimation scheme described above we now have

the following theorem which is the main result in the direction of adaptive upper bound in
this paper – the proof of which can be found in Section 6.

Theorem 2.2. Given a known interval (τmin, τmax) with 0 ≤ τmin < τmax, for any τ ∈
(τmin, τmax), under Properties (A) and (B) with n2 = n/ log n and n1 = n− n2, there exists
an absolute constant C depending on (τmax, d, CA, C

′
A, CB), such that

1. If 0 < τ < d/4, then

sup
P∈Pθ :

f1(θ)=τ,f2(θ)>min{ 4τ
4τ+d

, 12}

EP

(
φ̂n,k̂ − φ(P )

)2
≤ C

(
n√

log n

)− 8τ
4τ+d

.
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2. If τ = d/4, then

sup
P∈Pθ :

f1(θ)=τ,f2(θ)>min{ 4τ
4τ+d

, 12}

EP

(
φ̂n,k̂ − φ(P )

)2
≤ C

(
n`(n)2

)−1
.

3. If τ > d/4 and σ2 = EP

[
(L1(O)− EPL1(O))2

]
, then for every P ∈ {P ∈ Pθ: f1(θ) =

τ, f2(θ) > min{4τ/(4τ + d), 1/2}}

√
n
(
φ̂n,k̂ − φ(P )

)
→d Z ∼ N (0, σ2).

where N (µ, σ2) stands for normal distribution with mean µ and variance σ2.

A few remarks are in order regarding the implications of Theorem 2.2 as well as the
subtleties involved in its proof.

Remark 2.3. Provided one has knowledge of a data generating θ and therefore of f1(θ) and
f2(θ), one can use the bias and variance properties to achieve an optimal trade-off and
subsequently obtain optimal mean squared error in estimating φ(P ) over P ∈ Pθ which

scales as n−
8τ

4τ+d in the low regularity regime when 0 < τ < d/4 or is
√
n-consistent and

semiparametric efficient when τ > d/4. Theorem 2.2 demonstrates a logarithmic price paid
by the estimator φ̂n,k̂ in terms of estimating φ(P ) over a class of data generating mechanisms{
Pθ: f1(θ) = τ, f2(θ) >

4τ
4τ+d

}
– which will in all examples be non-empty and often infinite.

As will be demonstrated in Section 3, the term f1(θ) = τ usually drives the minimax rate
of estimation whereas f2(θ) >

4τ
4τ+d is a regularity condition which typically will relate to

the marginal density of covariates in observational studies. Moreover, in our examples, the
range of τ < d/4 will necessarily imply the non-existence of

√
n-consistent estimators of

φ(P ) over P ∈ Pθ in a minimax sense (Robins et al., 2009b).

Remark 2.4. The proof of Theorem 2.2 is somewhat involved because of the dependence
of the U-statistics kernel on estimated nuisance functions (e.g. the functions L̃1, L̃2l and
L̃2r are estimated from the data). This prohibits performing a Hoeffding decomposition
w.r.t. the whole sample and we can only proceed by a conditional Hoeffding decomposition
– allowed by our sample splitting mechanism. Subsequently, the conditioning event needs to
be sufficiently well behaved and corresponds to the high probability requirement of the good
event defined in Property (A). As we shall see in Section 3, that the good event corresponds
to certain estimates of nuisance functions to be well behaved – both in terms of sup-norm
concentration and membership to desired Hölder regularity classes. It is for this reason,
we need somewhat precise results on adaptive function estimation as well – as provided by
Theorem 2.7 in Section 2.3.

Remark 2.5. The sample splitting scheme employed in Theorem 2.2 is not the only option.
Many other reasonable options exist, e.g. n2 = n/polylog(n). One may also choose n1 =
n2 = n/2, which only affects the constants when 0 < τ ≤ d/4. However, complication arises
when τ > d/4: we need to rely on cross-fitting after sample splitting (Chernozhukov et al.,
2018) to achieve semiparametric efficiency.
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Finally, it therefore remains to be explored whether this logarithmic price payed in
Theorem 2.2 is indeed necessary for the regime τ < d/4. Using a chi-square divergence
inequality developed in the next section along with a suitable version of constrained risk
inequality (see Section C) we shall argue that the logarithmic price of Theorem 2.2 is indeed
necessary for a class of examples naturally arising in many observational studies.

2.2 Lower Bound

In terms of lower bounds, we shall use the constrained risk inequality of Cai and Low
(2011) (see Lemma C.1 in Section C) – which in turn requires the control over the chi-
square divergence between the mixture of suitable product measures. In this section we
provide such a bound which will be used in the examples in Section 3.

We closely follow the strategy in Birgé and Massart (1995); Robins et al. (2009b) who al-
ready provide useful control for the Hellinger distance between mixtures of suitable product
measures. It turns out that under certain boundedness assumptions on the Radon-Nykodym
derivatives of the measures involved in the problem, one can convert the available bounds
on the Hellinger distance quite easily to the chi-squared divergence related bounds. More
precisely, as in Robins et al. (2009b), let O1, . . . , On be a random sample from a density p
w.r.t. measure µ on a sample space (χ,A). For k ∈ N, let χ = ∪kj=1χj be a measurable
partition of the sample space. Given a vector λ = (λ1, . . . , λk) in some product measurable
space Λ = Λ1 × · · · × Λk let Pλ and Qλ be probability measures on χ such that

• Pλ(χj) = Qλ(χj) = pj for every λ and some (p1, . . . , pk) in the k-dimensional simplex.

• The restrictions Pλ and Qλ to χj depends on the jth coordinate λj of λ = (λ1, . . . , λk)
only.

For pλ and qλ densities of the measures Pλ and Qλ respectively that are jointly measurable
in the parameters λ and the observations, and π a probability measure on Λ, define p =∫
pλdπ(λ) and q =

∫
qλd(π(λ)), and set

a = max
j

sup
λ

∫
χj

(pλ − p)2

pλ

dµ

pj
,

b = max
j

sup
λ

∫
χj

(qλ − pλ)2

qλ

dµ

pj
,

c̃ = max
j

sup
λ

∫
χj

p2

pλ

dµ

pj
,

δ = max
j

sup
λ

∫
χj

(q − p)2

pλ

dµ

pj
.

With the notations and definitions as above we now have the following proposition which
is a direct application of Robins et al. (2009b)[Theorem 2.1].
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Proposition 2.6. Suppose that npj(1 ∨ a ∨ b ∨ c̃) ≤ A for all j and for all λ, B ≤ pλ ≤ B
for positive constants A,B,B. Then there exists a C > 0 that depends only on A,B,B,
such that, for any product probability measure π = π1 ⊗ · · · ⊗ πk, one has

χ2

(∫
Pλd(π(λ)),

∫
Qλd(π(λ))

)
≤ eCn2(maxj pj)(b

2+ab)+Cnδ − 1,

where χ2(ν1, ν2) =
∫ (

dν2
dν1
− 1
)2
dν1 is the chi-square divergence between two probability

measures ν1 and ν2 with ν2 � ν1.

Proof. Based on the above construction, Robins et al. (2009b)[Theorem 2.1] showed that,
there exists some absolute constant C ′ such that

H2

(∫
Pλd(π(λ)),

∫
Qλd(π(λ))

)
≤ C ′n2(max

j
pj)(b

2 + ab) + C ′nδ.

where H(ν1, ν2) denotes the Hellinger distance between two probability measures ν1 and
ν2. As pλ ≥ B, so is

∫
Pλd(π(λ)) ≥ B. By setting C = 4B−1C ′, we have

χ2

(∫
Pλd(π(λ)),

∫
Qλd(π(λ))

)
≤ exp

{
4B−1H2

(∫
Pλd(π(λ)),

∫
Qλd(π(λ))

)}
− 1 (2.3)

≤ exp

{
4B−1(C ′n2(max

j
pj)(b

2 + ab) + C ′nδ)

}
− 1

= eCn
2(maxj pj)(b

2+ab)+Cnδ − 1

where the first inequality (2.3) is proved in Appendix A for the sake of completeness.

2.3 Adaptive Estimation of Nuisance Functions

As will be evident from our examples in Section 3 that the applications of Theorem 2.2
require certain estimates of nuisance functions to be well behaved – both in terms of sup-
norm concentration and membership to desired Hölder regularity classes. In this section
we provide such estimators of regression and density functions using Lepski-type arguments
(Lepski, 1991, 1992). Although the construction and adaptation proof of such estimators
are quite standard, we will need a few additional results on sufficiently high probability
inclusion of the adaptive estimators in suitable Hölder regularity classes. We provide the
necessary ingredients below.

Consider i.i.d. data on Oi = (Wi,Xi) ∼ P for a scalar variable W such that |W | ≤ BU
and EP (W |X) = f(X) almost surely, and X ∈ [0, 1]d has density g such that 0 < BL ≤
g(x) ≤ BU < ∞ for all x ∈ [0, 1]d. Although to be precise, we should put subscripts P to
f, g, we omit this since the context of their use is clear. We assume Hölder type smoothness
(defined in Section 5) on f, g and let P(s, γ) = {P : (f, g) ∈ H(s,M) × H(γ,M), |f(x)| ≤
BU , BL ≤ g(x) ≤ BU ∀ x ∈ [0, 1]d} denote classes of data generating mechanisms indexed
by the smoothness indices. Then we have the following theorem (the proof of which can
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be found in Appendix B), which considers adaptive estimation of f, g in L∞ norm over
(s, γ) ∈ (smin, smax)× (γmin, γmax), for given positive real numbers smin, smax, γmin, γmax.

Theorem 2.7. If γmin > smax, then there exist f̂ and ĝ depending on M , BL, BU , smin,
smax, γmin, γmax, and choice of wavelet bases ψ0

0,0,ψ
1
0,0 (defined in Section 5) such that

the following hold for every (s, γ) ∈ (smin, smax) × (γmin, γmax) with a large enough C > 0
depending possibly on M,BL, BU , and γmax.

sup
P∈P(s,γ)

EP ‖ĝ − g‖∞ ≤ C
d

2γ+d

(
n

log n

)− γ
2γ+d

, (2.4)

sup
P∈P(s,γ)

PP

(
‖ĝ − g‖∞ ≥ C

d
d+2γ

(
n

log n

)− γ
2γ+d

)
≤ log n

n3
, (2.5)

sup
P∈P(s,γ)

PP (ĝ /∈ H(γ,C)) ≤ 1

n2
, (2.6)

sup
P∈P(s,γ)

EP ‖f̂ − f‖∞ ≤ C
d

2s+d

(
n

log n

)− s
2s+d

, (2.7)

sup
P∈P(s,γ)

PP

(
‖f̂ − f‖∞ ≥ C

d
d+2s

(
n

log n

)− s
2s+d

)
≤ log n

n3
, (2.8)

sup
P∈P(s,γ)

PP
(
f̂ /∈ H(s, C)

)
≤ 1

n2
, (2.9)

|f̂(x)| ≤ 2BU and BL/2 ≤ ĝ(x) ≤ 2BU ∀ x ∈ [0, 1]d. (2.10)

Remark 2.8. A close look at the proof of Theorem 2.7 shows that the proof continues to
hold for smin = 0. Moreover, although we did not keep track of our constants, the purpose
of keeping them in the form above is to show that the multiplicative constants are not
arbitrarily big when β is large.

Theorems of the flavor of Theorem 2.7 are not uncommon in literature (see (Giné and
Nickl, 2016, Chapter 8) for details) and the proof is somewhat standard for most parts of
the result. However, proving (2.6) and (2.9) for data driven adaptive estimators requires
somewhat more care than standard results in the literature. In particular, results of the
kind stating that ĝ ∈ H(γ,C) with high probability uniformly over P(β, γ) for a suitably
large constant C are often very easy to demonstrate. However, our proof shows that a
suitably bounded estimator ĝ, which adapts over smoothness and satisfies ĝ ∈ H(γ,C) with
probability larger than 1 − 1

nκ uniformly over P(β, γ), for any κ > 0 and correspondingly
large enough C. This result in turn turns out to be crucial for the purpose of controlling
suitable bias terms in our functional estimation problems – as specified by the good event
property in Property (A) in Theorem 2.2. Additionally, the results concerning f̂ are rel-
atively less common in an unknown design density setting. Indeed, adaptive estimation
of regression function with random design over Besov type smoothness classes has been
obtained by model selection type techniques by Baraud (2002) for the case of Gaussian
errors. Our results in contrast hold for any regression model with bounded outcomes and
compactly supported covariates having suitable marginal design density.
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Remark 2.9. Theorem 2.7 estimates the nuisance functions in our problem using standard
Cohen-Daubechies-Vial type of wavelet kernel projections. It is an open problem if esti-
mators based on other more general machine learning algorithms such as random forests
or deep neural networks (DNNs) still satisfy Property (A). Indeed, recent results in DNNs
using ReLU activation functions (Schmidt-Hieber, 2020; Farrell et al., 2021; Chen et al.,
2019a,b) are non-adaptive to the underlying regularity of the function classes and little is
known about the Fourier coefficients of their outputs – a property which we will crucially
require in the good events defined in Property (A) accompanying Theorem 2.2. Some recent
results (Rahaman et al., 2019; Xu et al., 2020; Luo et al., 2020) connecting the training
dynamics (Luo et al., 2021) to the behavior of Fourier coefficients in DNNs might be an
interesting direction to investigate for future work.

3. Examples

In this section we discuss applications of Theorem 2.2 and Proposition 2.6 in producing
rate optimal adaptive estimators of certain nonparametric functionals commonly arising in
statistical and causal inference literature. These include (i) treatment effect type functional,
(ii) mean functional in missing data studies, and (iii) quadratic and variance functional in
nonparametric regression. Before proceeding we note that the results of this paper can be
extended to include the whole class of doubly robust functionals considered in Robins et al.
(2008). However we only provide specific examples here to demonstrate the clear necessity
to pay a sharp poly-logarithmic penalty for adaptation in low regularity regimes. The proof
of the results in this section can be found in Appendix B.

3.1 Weighted Average Treatment Effect

In this subsection, we consider estimating the “treatment effect” of a treatment on an
outcome in presence of multi-dimensional confounding variables (Crump et al., 2009; Robins
et al., 1992). To be more specific, we consider a binary treatment A and response Y and
d-dimensional covariate vector X, and let τ be the variance weighted average treatment
effect defined as

τ := E

(
Var(A|X)c(X)

E(Var(A|X))

)
=

E(Cov(Y,A|X))

E(Var(A|X))
,

where

c(x) = E(Y |A = 1,X = x)− E(Y |A = 0,X = x). (3.1)

Under the assumption of no unmeasured confounding, c(x) is often referred to as the average
treatment effect among subjects with covariate value X = x. The reason of referring to τ as
the average treatment effect can be further understood by considering the semiparametric
regression model that assumes

c(x) = φ∗ for all x, (3.2)

or specifically the partial linear model

E(Y |A,X) = φ∗A+ b(X).

12
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It is clear that under (3.2) τ equals φ∗. Moreover, the inference on τ is closely related
to the estimation of E(Cov(Y,A|X)) (Robins et al., 2008). Specifically, point and interval
estimators for τ can be constructed from point and interval estimators of E(Cov(Y,A|X)).
To be more specific, for any fixed τ∗ ∈ R, one can define Y ∗(τ∗) = Y − τ∗A and consider

φ(τ∗) = E((Y ∗(τ∗)− E(Y ∗(τ∗)|X))(A− E(A|X))) = E(Cov(Y ∗(τ∗), A|X)).

It is easy to check that τ is the unique solution of φ(τ∗) = 0. Consequently, if we can
construct estimator φ̂(τ∗) of φ(τ∗), then τ̂ satisfying φ(τ̂) = 0 is an estimator of τ with
desired properties. Moreover, (1 − α) confidence set for τ can be constructed as the set
of values of τ∗ for which (1 − α) interval estimator of φ(τ∗) contains the value 0. Fi-
nally, since EP (CovP (Y,A|X)) = EP (EP (Y |X)EP (A|X)) − EP (AY ), and EP (AY ) is es-
timable at a parametric rate, the crucial part of the problem hinges on the estimation of
EP (EP (Y |X)EP (A|X)).

For the rest of this section, we assume that we observe n i.i.d. copies of O = (Y,A,X) ∼
P and we want to estimate φ(P ) = EP (CovP (Y,A|X)). We assume that the marginal
distribution of X has a density w.r.t. Lebesgue measure on Rd that has a compact support,
which we assume to be [0, 1]d and let g be the marginal density of X (i.e. EP (h(X)) =∫
[0,1]d h(x)g(x)dx for all P -integrable function h), a(X) := EP (A|X), b(X) := EP (Y |X),

and c(X) = EP (Y |A = 1,X) − EP (Y |A = 0,X). Although to be precise, we should put
subscripts P to a, b, g, c, we omit this since the context of their use is clear.

To connect this example with the notation employed in Theorem 2.2, we proceed as
follows. Let Θ := {θ = (α, β, γ): α+β2d > 0, γmax ≥ γ > γmin ≥ 2(1 + ε) max{α, β}} for some
fixed ε > 0, and let Pθ denote all data generating mechanisms P satisfying the following
conditions for known positive constants M,BL, BU .

(1) max{|Y |, |A|} ≤ BU a.s. P .

(2) a ∈ H(α,M), b ∈ H(β,M), and g ∈ H(γ,M).

(3) 0 < BL < g(x) < BU for all x ∈ [0, 1]d.

Note that we do not put any assumptions on the function c. Indeed for Y and A bi-
nary random variables, the functions a, b, g, c are variation independent. Following our
discussion above, we will discuss adaptive estimation of φ(P ) = EP (CovP (Y,A|X)) =
EP ((Y − b(X))(A − a(X))) over P ∈ P. In particular, we summarize our results on up-
per and lower bounds on the adaptive minimax estimation rate of φ(P ) in the following
theorem.

Theorem 3.1. Assume (1) − (3) and (α, β, γ) ∈ Θ. Then the following hold for positive
C,C ′ depending on M,BL, BU , γmax and any sequence `(n)→ 0 such that `(n) log n→∞.

(i) (Upper Bound) There exists an estimator φ̂, depending only on M , BL, BU , γmax such
that

sup
P∈P(α,β,γ)

EP

(
φ̂− φ(P )

)2
13
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≤

 C
(

n√
logn

)− 4α+4β
2α+2β+d

if 0 < (α+ β)/2 < d/4,

C
(
n`(n)2

)−1
if (α+ β)/2 = d/4,

and if (α+ β)/2 > d/4, with

σ2 = EP

[
{(Y − b(X))(A− a(X))− φ(P )}2

]
,

for every P ∈ {P ∈ P(α,β,γ)}, we have

√
n
(
φ̂n,k̂ − φ(P )

)
→d Z ∼ N (0, σ2).

(ii) (Lower Bound) Suppose {A, Y } ∈ {0, 1}2 and 0 < (α+ β)/2 < d/4. If one has

sup
P∈P(α,β,γ)

EP

(
φ̂− φ(P )

)2
≤ C

(
n√

log n

)− 4α+4β
2α+2β+d

,

for an estimator φ̂ of φ(P ). Then there exists a class of distributions P(α′ ,β′ ,γ′ ) such
that

sup
P ′∈P

(α
′
,β
′
,γ
′
)

EP ′
(
φ̂− φ(P

′
)
)2
≥ C ′

(
n√

log n

)− 4α′+4β′
2α′+2β′+d

.

Theorem 3.1 describes the adaptive minimax estimation rate of the treatment effect
functional in both low regularity regime (α+β2 ≤ d

4) i.e. when
√
n-rate estimation is not

possible and regular
√
n-regimes (α+β2 > d

4) where our result demonstrates adaptive semi-
parametric efficiency. Note that unlike the classical adaptation problem regarding quadratic
functional estimation in density and white noise models, the adaptation in this problem is
w.r.t. to hyperplanes {(α, β): (α + β)/2d = τ}. Finally, we note that the case of α+β

2 = d
4

also incurs an additional penalty (which can be made to grow arbitrarily slow) over usual√
n-rate of convergence resulted from adaptation. Although we do not state it explicitly,

the proof of the lower bound shows that if the rate of convergence α+β
2 = d

4 is O(n−1) then

one pays a polynomial penalty for α+β
2 < d

4 – which is indeed suboptimal.

It is worth noting that if the set of (α, β) only includes the case α+β
2 > d

4 , one can indeed
obtain adaptive and even semi-parametric efficient estimation of the functionals studied here
without effectively any assumption on g. When α+β

2 > d
4 , the dependence of the smoothness

γ of the density g(·) on α and β can also be relaxed by considering estimators using higher-
order U-statistics. But we do not further pursue such direction in this paper. The interested
reader can find the relevant details in Robins et al. (2017); Mukherjee et al. (2017).

Remark 3.2 (Further comments on the dependence of γmin on α∨ β). In Theorem 3.1 (and
also in Theorem 3.3 and 3.4 in the next two subsections), we provide a sufficient condition
on the dependence of the known smoothness lower bound γmin of the density of X on α∨ β
- the maximum between the smoothness of a(·) and b(·) - to obtain matching adaptive
minimax upper and lower bound. At a first sight, such dependence looks dimension free.
However, when α + β ≥ d/4, γmin implicitly grows with d. As a matter of fact, one can
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easily obtain sharper dependence of γmin on α, β, and d by looking at the proof of Theorem
3.1 in the appendix. We decide to keep the constraint on γmin in the current form for
ease of exposition. As mentioned above, such dependence can even further relaxed by
considering estimators based on even higher-order U-statistics. We refer to Section 4 for
more discussions on this.

3.2 Mean Response in Missing Data Models

Suppose we have n i.i.d observations on O = (Y A,A,X) ∼ P , for a response variable Y ∈ R
which is conditionally independent of the missingness indicator variable A ∈ {0, 1} given
covariate information X. In literature, this assumption is typically known as the missing at
random (MAR) assumption. Under this assumption, our quantity of interest φ(P ) = EP (Y )
is identifiable as EP [EP [(Y |A = 1, X)]] from the observed data. This model is a canonical
example of a study with missing response variable and to make this assumption reasonable,
the covariates must contain the information on possible dependence between response and
missingness. We refer the interested readers to Tsiatis (2007) for the history of statistical
analysis of MAR and related models.

To lay down the mathematical formalism for minimax adaptive estimation of φ(P ) in this
model, let f be the marginal density of X, a(X) := EP (A|X) = PP (A = 1|X) which is often
called “the propensity score” in the causal inference literature, and b(X) := EP (Y |A =
1,X) = EP (Y |X), and g(X) = f(X)/a(X) (with the convention of the value +∞ when
dividing by 0). Although to be precise, we should put subscripts P to a, b, g, we omit this
since the context of their use is clear.

To connect this example with the notation employed in Theorem 2.2, we proceed as
follows. Let Θ := {θ = (α, β, γ): α+β2d > 0, γmax ≥ γ > γmin ≥ 2(1 + ε) max{α, β}} for some
fixed ε > 0, and let Pθ denote all data generating mechanisms P satisfying the following
conditions for known positive constants M,BL, BU .

(1) |Y | ≤ BU .

(2) a ∈ H(α,M), b ∈ H(β,M), and g ∈ H(γ,M).

(3) BL < g(x), a(x) < BU for all x ∈ [0, 1]d.

We then have the following result.

Theorem 3.3. Assume (1) − (3) and (α, β, γ) ∈ Θ. Then the following hold for positive
C,C ′ depending on M,BL, BU , γmax and any sequence `(n)→ 0 such that `(n) log n→∞.

(i) (Upper Bound) There exists an estimator φ̂, depending only on M ,BL,BU , γmax such
that

sup
P∈P(α,β,γ)

EP

(
φ̂− φ(P )

)2
≤

 C
(

n√
logn

)− 4α+4β
2α+2β+d

if 0 < (α+ β)/2 < d/4,

C
(
n`(n)2

)−1
if (α+ β)/2 = d/4,
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and if (α+ β)/2 > d/4, with

σ2 = EP

[
{Aa(X)(Y − b(X)) + b(X)− φ(P )}2

]
,

for every P ∈ {P ∈ P(α,β,γ)}, we have

√
n
(
φ̂n,k̂ − φ(P )

)
→d Z ∼ N (0, σ2).

(ii) (Lower Bound) Suppose {A, Y } ∈ {0, 1}2 and 0 < (α+ β)/2 < d/4. If one has

sup
P∈P(α,β,γ)

EP

(
φ̂− φ(P )

)2
≤ C

(
n√

log n

)− 4α+4β
2α+2β+d

,

for an estimator φ̂ of φ(P ). Then there exists a class of distributions P(α′ ,β′ ,γ′ ) such
that

sup
P ′∈P

(α
′
,β
′
,γ
′
)

EP ′
(
φ̂− φ(P

′
)
)2
≥ C ′

(
n√

log n

)− 4α′+4β′
2α′+2β′+d

.

Once again, Theorem 3.3 describes the adaptive minimax estimation rate of the treat-
ment effect functional in both low regularity regime (α+β2 < d

4) i.e. when
√
n-rate estimation

is not possible and regular
√
n-regimes (α+β2 > d

4) where our result demonstrates adaptive

semi-parametric efficiency. The case of α+β
2 = d

4 also incurs an additional penalty (which
can be made to grow arbitrarily slow) over usual

√
n-rate of convergence resulted from

adaptation. As mentioned in the end of Section 3.1, the dependence on the smoothness γ
of the function g(·) can be relaxed using higher-order U-statistics.

3.3 Quadratic and Variance Functionals in Regression Models

Consider a sample of n i.i.d copies of O = (Y,X) ∼ P and the functional of interest is the
expected value of the square of the regression of Y on X. Specifically suppose we want to

estimate φ(P ) = EP

(
{EP (Y |X)}2

)
. Assume that distribution of X has a density w.r.t.

Lebesgue measure on Rd that has a compact support, which we assume to be [0, 1]d for sake
of simplicity. Let g be the marginal density of X, and b(X) := EP (Y |X).

To connect this example with the notation employed in Theorem 2.2, we proceed as
follows. Let Θ := {P(β, γ):β/d > 0, γmax ≥ γ > γmin ≥ 2(1+ ε)β} for some fixed ε > 0, and
by P(β, γ) we consider all data generating mechanisms P satisfying the following conditions
for known positive constants M,BL, BU .

(1) max{|Y |} ≤ BU .

(2) b ∈ H(β,M), and g ∈ H(γ,M).

(3) 0 < BL < g(x) < BU for all x ∈ [0, 1]d.

Theorem 3.4. Assume (1)− (3) and (β, γ) ∈ Θ. Then the following hold for positive C,C ′

depending on M,BL, BU , γmax and any sequence `(n)→ 0 such that `(n) log n→∞.
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(i) (Upper Bound) There exists an estimator φ̂, depending only on M ,BL,BU , γmax such
that

sup
P∈P(β,γ)

EP

(
φ̂− φ(P )

)2
≤

 C
(

n√
logn

)− 8β
4β+d

if 0 < β < d/4,

C
(
n`(n)2

)−1
if β = d/4,

and if β > d/4, with σ2 = EP

[
((2Y − b(X))b(X)− φ(P ))2

]
, for every P ∈ {P ∈

P(β,γ)}, we have
√
n
(
φ̂n,k̂ − φ(P )

)
→d Z ∼ N (0, σ2).

(ii) (Lower Bound) Suppose Y ∈ {0, 1}2 and 0 < β < d/4. If one has

sup
P∈P(β,γ)

EP

(
φ̂− φ(P )

)2
≤ C

(
n√

log n

)− 8β
4β+d

,

for an estimator φ̂ of φ(P ). Then there exists a class of distributions P(β
′
, γ
′
) such

that

sup
P ′∈P(β′ ,γ′ )

EP

(
φ̂− φ(P

′
)
)2
≥ C ′

(
n√

log n

)− 8β′
4β′+d

.

Remark 3.5. Although Theorem 3.4 and the discussion before that are made in the context
of estimating a particular quadratic functional in the context of a regression framework, it
is worth noting that the result also extends to estimating classical quadratic functionals in
density models (Efromovich and Low, 1996; Giné and Nickl, 2008).

One can also consider in the same setup, the estimation of functionals related to the condi-
tional variance of Y under such a regression model, which has been studied in detail by Hall
and Carroll (1989); Ruppert et al. (1997); Fan and Yao (1998); Brown and Levine (2007);
Cai and Wang (2008). Whereas, the minimax optimal and adaptive results in Brown and
Levine (2007); Cai and Wang (2008) are in a equi-spaced fixed design setting, one can use
an analogue of Theorem 3.4 to demonstrate a rate adaptive estimator and corresponding

matching lower bound, with a mean-squared error of the order of
(

n√
logn

)− 8β
4β+d

for es-

timating EP (VarP (Y |X)) adaptively over Hölder balls of regularity β < d
4 . As noted by

Robins et al. (2008), this rate is higher than the rate of estimating the conditional variance
in mean-squared error for the equi-spaced fixed design (Cai and Wang, 2008). In a simi-
lar vein, one can also obtain this type of results for the estimation of conditional variance
under the assumption of homoscedasticity i.e. σ2 := Var (Y |X = x) for all x ∈ [0, 1]d. In

particular, there exists an estimator for σ2 with mean-squared error of order
(

n√
logn

)− 8β
4β+d

when β < d
4 and of order n−1 when β > d

4 . As demonstrated recently by Shen et al. (2020),
the (non-adaptive) minimax lower bound for estimating homoscedastic variance σ2 in any

dimension is indeed n
− 8β

4β+d when β < d
4 and our proof results in an adaptive estimator of

the same rate in general dimensions (which also guarantees efficient estimation whenever
β > d

4) while assuming sufficient smoothness on the marginal density of X. For instance,
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a candidate sequence of φ̂n,k’s for this purpose can be constructed by taking A = Y in
the treatment effect example considered in Section 3.1. The requirement of not needing a
smoothness on the marginal density of X can be removed for d = 1 (see e.g. Robins et al.
(2008); Shen et al. (2020)) but doing so in higher dimensions remains a challenge. Although
we do not pursue it here, it is possible to follow the lines of argument in Shen et al. (2020)
to show the requirement of a logarithmic penalty while trying to adapt in the region β < d

4 .

4. Discussion

In this paper, we have extended the results for adaptive estimation of non-linear integral
functionals from density estimation and Gaussian white noise models, to move towards
adaptive estimation of non-linear functionals in more complex nonparametric models. Below
we make a few comments on some of the assumptions and future research directions.

(i) The adaptation considered in this paper is w.r.t. the smoothness of certain nuisance
functions that naturally arise in a class of nonparametric problems. For the three con-
crete examples considered above, the smoothness of the regression functions decides
the minimax rates of the problem and consequently our results naturally adapt to this
regularity. However, since our estimators are based on second-order U-statistics, we
can only perform a second-order bias correction (see e.g. Robins et al. (2008, 2017))
and this results in the requirement of sufficient large smoothness of the marginal
density of the covariates. Using higher order U-statistics this dependence can be sub-
stantially lowered while considering non-adaptive minimax rates (Robins et al., 2008,
2017; Mukherjee et al., 2017). However, such higher order U-statistics make the adap-
tation proof substantially more difficult and it is currently beyond the scope of this
paper. Moreover, it also remains open to decide the minimum smoothness required
from the marginal density of the covariates for even non-adaptive minimax risks to go
through in general (fixed) dimensions d > 1 (for d = 1 Shen et al. (2020) shows that
one can do without the requirement on density smoothness in one of the special cases
considered here).

(ii) The examples considered here involve bounded outcomes. This requirement is mostly
used while getting suitable tail bounds for the U-statistics under study. Although we
do not pursue it here, we believe that this condition can be weakened by assuming
sub-Gaussian or other related light tails (by carefully using results in Houdré and
Reynaud-Bouret (2003); Giné et al. (2000); Chakrabortty and Kuchibhotla (2018))
for the conditional error distribution of the outcome given the covariates.

(iii) The sequence of estimators constructed here depends both on the estimation of mul-
tivariate regressions and density functions. The requirement of estimating a multi-
variate density as well as the requirement of smoothness on the marginal density of
the covariates can be entirely removed when making the assumptions such that

√
n-

consistent estimation is possible. More precisely, in all of the three examples above,
there exists a sequence of estimators which does not require estimation or any smooth-
ness requirement on the marginal density of the covariates and automatically adapts to
the
√
n-consistent and semiparametric efficient estimators in the

√
n-estimable range.
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This sequence of estimators was recently constructed in Mukherjee et al. (2017) – but
they do not generalize to the non-

√
n-estimable part of the problems.

(iv) Adaptive estimation of the functionals is only a first step of inference and provides
no guidelines for statistical inference. It remains an extremely interesting question to
explore honest adaptive confidence set constructions for the class of nonparametric
functionals considered above.

(v) Finally, as mentioned in Remark 2.9, it is interesting to investigate if the adaptation
theory for nonparametric functional estimation developed in this paper can be gener-
alized when the nuisance functions (including the design densities) are estimated by
deep neural networks instead of classical nonparametric regression such as wavelets
regression.

5. Wavelets, Projections, and Hölder Spaces

We work with certain Besov-Hölder type spaces which we define in terms of moduli of
wavelet coefficients of continuous functions. For d > 1, consider expansions of functions
h ∈ L2

(
[0, 1]d

)
on an orthonormal basis of compactly supported bounded wavelets of the

form

h(x) =
∑
m∈Zd

〈h,ψ0
0,m〉ψ0

0,m(x) +
∞∑
l=0

∑
m∈Zd

∑
v∈{0,1}d\{0}d

〈h,ψvl,m〉ψvl,m(x),

where the base functions ψvl,m are orthogonal for different indices (l,m, v) and are scaled

and translated versions of the 2d S-regular base functions ψv0,0 with S > β, i.e., ψvl,m(x) =

2ld/2ψv0,0(2
lx−m) =

∏d
j=1 2

l
2ψ

vj
0,0

(
2lxj −mj

)
form = (m1, . . . ,md) ∈ Zd and v = (v1, . . . , vd) ∈

{0, 1}d with ψ0
0,0 = φ and ψ1

0,0 = ψ being the scaling function and mother wavelet of regu-
larity S respectively as defined in one dimensional case. As our choices of wavelets, we will
throughout use compactly supported scaling and wavelet functions of (boundary-corrected)
Cohen-Daubechies-Vial type with S first null moments (Cohen et al., 1993). In view of the
compact support of the wavelets, for each resolution level l and index v, only O(2ld) base
elements ψvl,m are non-zero on [0, 1]d; let us denote the corresponding set of indices m by Zl
and obtain the representation,

h(x) =
∑

m∈ZJ0

〈h,ψ0
J0,m〉ψ

0
J0,m(x) +

∞∑
l=J0

∑
m∈Zl

∑
v∈{0,1}d\{0}d

〈h,ψvl,m〉ψvl,m(x), (5.1)

where J0 = J0(S) ≥ 1 is such that 2J0 ≥ S (Cohen et al., 1993; Giné and Nickl, 2016).
Thereafter, let for any h ∈ L2([0, 1]d), ‖〈h,ψl′ ,·〉‖2 be the vector L2 norm of the vector(

〈h,ψv
l′ ,m′
〉:m′ ∈ Zl′ , v ∈ {0, 1}

d
)
.

We will be working with projections onto subspaces defined by truncating expansions
as above at certain resolution levels. For example letting

Vj := span
{
ψvl,k, J0 ≤ l ≤ j,m ∈ Zl, v ∈ {0, 1}d

}
, j ≥ J0, (5.2)
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one immediately has the following orthogonal projection kernel onto Vj as

KVj (x1,x2) =
∑

m∈ZJ0

ψ0
J0,m(x1)ψ

0
J0,m(x2) +

j∑
l=J0

∑
m∈Zl

∑
v∈{0,1}d\{0}d

ψvl,m(x1)ψ
v
l,m(x2).(5.3)

As mentioned in Section 2.1, we sometimes also denote Vj by Vk for k = 2jd . Owing
to the MRA property of the wavelet bases, it is easy to see that KVj has the equivalent
representation as

KVj (x1,x2) =
∑
m∈Zj

∑
v∈{0,1}d

ψvj,m (x1)ψ
v
j,m (x2) . (5.4)

Thereafter, using S-regular scaling and wavelet functions of Cohen-Daubechies-Vial type
with S > β let

H(β,M) :=

 h ∈ C
(
[0, 1]d

)
:

2J0(β+
d
2
)‖〈h,ψ0

J0·〉‖∞ + sup
l≥0,m∈Zd,v∈{0,1}d\{0}d

2l(β+
d
2
)|〈h,ψvl,m〉| ≤M

 ,(5.5)

with C
(
[0, 1]d

)
being the set of all continuous bounded functions on [0, 1]d. It is standard

result in the theory of wavelets that H(β,M) is related to classical Hölder-Zygmund spaces
with equivalent norms (see Giné and Nickl (2016, Chapter 4) for details). For 0 < β < 1,

H(β,M) consists of all functions in C
(
[0, 1]d

)
such that ‖f‖∞ + sup

x1,x2∈[0,1]d
|f(x1)−f(x2)|
‖x1−x2‖β

≤

C(M). For non-integer β > 1, H(β,M) consists of all functions in C
(
[0, 1]d

)
such that

f (bβc) ∈ C
(
[0, 1]d

)
for any partial f (bβc) of order bβc of f and ‖f‖∞+ sup

x1,x2∈[0,1]d
|f (bβc)(x1)−f (bβc)(x2)|
‖x1−x2‖β−bβc

≤

C(M). Therefore, the functions in H(β,M) are automatically uniformly bounded by a num-
ber depending on the radius M .

Remark 5.1. Since the Cohen-Daubechies-Vial type wavelets in general do not have closed-
form expressions, we briefly comment on the numerical issues when in practice we are only
able to evaluate wavelets to a certain accuracy. In our paper, it suffices to approximate
the scaling and wavelet functions φ and ψ by φ̃ and ψ̃ to the accuracy such that: for any
h ∈ L2([0, 1]d)

‖hjmax − h̃jmax‖∞ � n−1/2

because the finest resolution jmax is chosen so that 2jmaxd � n2. Here hjmax is the projection

of h onto Vjmax and h̃jmax is the projection of h onto Ṽjmax , where

Ṽj := span
{
ψ̃
v

lk, J0 ≤ l ≤ j,m ∈ Zl, v ∈ {0, 1}d
}
, j ≥ J0,

and ψ̃
v

lk is defined in the same way as ψvlk but with φ and ψ replaced by φ̃ and ψ̃. As a
result, it suffices to have the following:∥∥∥∥∥∥∥∥

∑
m∈ZJ0

〈h,ψ0
J0,m〉ψ

0
J0,m(x) +

∑jmax

l=J0

∑
m∈Zl

∑
v∈{0,1}d\{0}d

〈h,ψvl,m〉ψvl,m(x)

−
∑

m∈ZJ0
〈h, ψ̃

0

J0,m〉ψ̃
0

J0,m(x)−
∑jmax

l=J0

∑
m∈Zl

∑
v∈{0,1}d\{0}d

〈h, ψ̃
v

l,m〉ψ̃
v

l,m(x)

∥∥∥∥∥∥∥∥
∞

� n−1/2
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⇐ |ZJ0 | max
m∈ZJ0

‖〈h,ψ0
J0,m〉ψ

0
J0,m(x)− 〈h, ψ̃

0

J0,m〉ψ̃
0

J0,m(x)‖∞︸ ︷︷ ︸
(A)

� n−1/2

and jmax|Zjmax | max
l=J0,··· ,jmax

max
m∈Zl

max
v∈{0,1}d\{0}d

‖〈h,ψvl,m〉ψvl,m(x)− 〈h, ψ̃
v

l,m〉ψ̃
v

l,m(x)‖∞︸ ︷︷ ︸
(B)

� n−1/2.

Now our goal is to find the appropriate accuracy δ with ‖φ̃−φ‖∞+ ‖ψ̃−ψ‖∞ ≤ δ such
that (A)� n−1/2 and (B)� n−1/2 hold. ‖φ̃−φ‖∞+ ‖ψ̃−ψ‖∞ ≤ δ leads to the following:

‖ψvl,m − ψ̃
v

l,m‖∞ . 2ld/2dδ, (5.6)

where we use the trivial identity

d∏
i=1

ai −
d∏
i=1

ãi ≡
d∑
i=1

i∏
j=1

aj(ai − ãi)
d∏

j′=i+1

ãj′ (5.7)

for any a1, · · · , ad; ã1, · · · , ãd.
With such an error bound, for (A)� n−1/2 and (B)� n−1/2 to hold, it suffices to have

the following, where we again use the identity (5.7) together with (5.6):

jmax|Zjmax |2jmaxd/2dδ2jmaxd/2 � n−1/2

⇒ log(n2)2jmaxd2jmaxdδ � n−1/2

⇒ log(n2)n4δ � n−1/2

⇒ δ � n−9/2/ log(n)

where the second 2jmaxd/2 in the first line is due to the product of two ψjmax,m’s (and

the product of two ψ̃jmax,m’s) within the ‖ · ‖∞ in term (B), in the second line we use

|Zjmax | = O(2jmaxd) and in the third line we use 2jmaxd � n2. In conclusion, if we make sure
that the approximation error of the scaling and wavelet functions satisfies δ � n−9/2/ log(n),
the numerical error will not affect the statistical rate of convergence. Therefore, without
loss of generality, we simply assume that we can exactly evaluate the scaling and wavelet
functions in the rest of the paper.

In the above calculation we did not try to find the largest δ such that the statistical
rate is unaffected so the above requirement on δ may very well not be the weakest possible.
Finally, we remark that unlike wavelets, numerical accuracy will be an integral part of the
analysis if one wants to generalize the theory in this paper to the case in which nuisance
functions are estimated by deep neural networks trained with (stochastic) gradient descent
or its variants.

6. Proof of Theorem 2.2

Proof. In this proof we repeatedly use the fact that for any fixed m ∈ N and a1, . . . , am real
numbers, one has by Hölder’s inequality |a1 + . . .+ am|p ≤ C(m, p) (|a1|p + . . .+ |am|p) for
p > 1. Fix θ such that {P ∈ Pθ: f1(θ) = τ, f2(θ) > min{4τ/(4τ + d), 1/2}} and our result
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will hold over all τ such that f1(θ) = τ, f2(θ) > min{4τ/(4τ + d), 1/2}. Throughout the
proof, we use C,C ′, C ′′ (with subscripts 1, 2, etc.) to denote generic universal constants
only depending on the known parameters of the data generating mechanism (and CLepski,
which also only depends on the known parameters). When it is clear from the derivation,
the same constant notation may change its value from line to line. We will highlight which
known parameters a constant depends on when it is necessary for understanding.

The corresponding oracle choice of k is defined through balancing bias-variance tradeoff:

k∗ :=


min

{
k ∈ K: k−2τ/d ≤ 1

C
1/2
Lepski

R(k)1/2d(k), k > k2

}
τ/d < 1/4

k2 ≡
n1
`(n1)

τ/d = 1/4

k1 ≡
n1

log n1
τ/d > 1/4

(6.1)

where k∗ is of order
(
n1/
√

log n1
)2/(4τ/d+1)

when τ/d < 1/4 up to a constant depending on
CLepski. By construction, we have, for n1 large enough

k∗−2τ/d ≤ 1

C
1/2
Lepski

R(k∗)1/2d(k∗).

A key step in bounding the risk of an adaptive estimator through Lepski’s adaptation scheme
is to show that the probability of selecting a k greater than necessary (k∗) is small. To this

end, we first prove the following lemma in order to bound PP
(
k̂ > k∗

)
, when Properties

(A) and (B) are met:

Lemma 6.1. Under Properties (A) and (B), given a large enough universal constant CLepski

depending on known parameters (τmax, CA, C
′
A, CB, B,BU ) of the data generating mecha-

nism, for any k > k∗, we have

PP
(
k̂ = k

)
≤
{
C log n exp{−Cd(k)2} if k > k2,
C
(
exp{−Cd(k2)

2}+ log n exp{−Cd(k3)
2}
)

if k = k2.

for some constants C > 0 depending on CLepski.

Proof. For any k, let k− be the previous element of k in the discretization set K. Then

PP
(
k̂ = k

)
= PP

(
∃k′ ≥ k:

∣∣∣φ̂n,k′ − φ̂n,k−∣∣∣ > R(k′)1/2d(k′)
)

≤
∑

k≤k′≤kN−1

PP
(∣∣∣φ̂n,k′ − φ̂n,k−∣∣∣ > R(k′)1/2d(k′)

)
.

Recall the “good” event I2(n2) introduced in Property (A). Then we decompose each sum-
mand on the RHS of the above display as follows:

PP
(∣∣∣φ̂n,k′ − φ̂n,k−∣∣∣ > R(k′)1/2d(k′)

)
= PP

(∣∣∣φ̂n,k′ − φ̂n,k−∣∣∣ > R(k′)1/2d(k′), I2(n2)
)
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+ PP
(∣∣∣φ̂n,k′ − φ̂n,k−∣∣∣ > R(k′)1/2d(k′), I2(n2)

)
≤ PP

(∣∣∣φ̂n,k′ − φ̂n,k−∣∣∣ > R(k′)1/2d(k′), I2(n2)
)

︸ ︷︷ ︸
A

+PP
(
I2(n2)

)
︸ ︷︷ ︸

B

where B ≤ C′A logn2

n2
2

by Property (A). We are only left to bound the first term A:

A = EP,2

(
PP,1

(∣∣∣φ̂n,k′ − φ̂n,k−∣∣∣ > R(k′)1/2d(k′)
)
1 {I2(n2)}

)
.

We attempt to control PP,1
(∣∣∣φ̂n,k′ − φ̂n,k−∣∣∣ > R(k′)1/2d(k′)

)
through the following inequal-

ity decomposition:

PP,1
(∣∣∣φ̂n,k′ − φ̂n,k−∣∣∣ > R(k′)1/2d(k′)

)
= PP,1

(∣∣∣Ûn,k′ − Ûn,k−∣∣∣ > R(k′)1/2d(k′)
)

= PP,1
(∣∣∣Ûn,k− − EP,1Ûn,k−

∣∣∣ > 1

2
R(k′)1/2d(k′)

)
︸ ︷︷ ︸

A1

+ PP,1
(∣∣∣Ûn,k′ − EP,1Ûn,k′

∣∣∣ > 1

2
R(k′)1/2d(k′)−

∣∣∣EP,1Ûn,k′ − EP,1Ûn,k−

∣∣∣)︸ ︷︷ ︸
A2

,

where we recall the definition of Ûn,k in equation (2.1). Now we need to control terms
EP,2[A11{I2(n2)}] and EP,2[A21{I2(n2)}] respectively. First we apply the exponential con-
centration inequality in Lemma C.2 for U-statistics of order two to obtain the following
upper bound on EP,2[A11{I2(n2)}]:

EP,2[A11{I2(n2)}] ≤ C1 exp{−C ′1d(k′)2},

where C1 and C ′1 are chosen sufficiently large depending on CA defined in Property (A), CB
defined in Property (B), (B,BU ) defined in Section 2.1, J0 determined by τmax, a known
upper bound on the smoothness indices adapted over, and CLepski to be specified later.

Next we analyze EP,2[A21{I2(n2)}]. To do this, we need to first control
∣∣∣EP,1φ̂n,k′ − EP,1φ̂n,k−

∣∣∣
within the “good” event I2(n2).∣∣∣EP,1Ûn,k′ − EP,1Ûn,k−

∣∣∣1{I2(n2)}
=
∣∣∣EP,1φ̂n,k′ − EP,1φ̂n,k−

∣∣∣1{I2(n2)}
≤ 2CA

(
n
−f2(θ)
2 + k

− 2f1(θ)
d

−

)
where the last inequality is simply a consequence of Property (A). Since k > k∗, k− =
k − 1 ≥ k∗, and thus for some absolute constant C depending on CA,∣∣∣EP,1Ûn,k′ − EP,1Ûn,k−

∣∣∣1{I2(n2)} ≤ { Ck∗−
2f1(θ)
d if τ/d ≤ 1/4

Cn−f2(θ) if τ/d > 1/4
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≤ 1

4
R(k∗)1/2d(k∗) ≤ 1

4
R(k′)1/2d(k′)

where we use n2 = n/ log n, the definition of k∗ and f2(θ) > 1/2 if τ/d > 1/4 and we choose
CLepski large enough depending on CA.

Then again Lemma C.2 implies:

EP,2[A21{I2(n2)}] ≤ C2 exp{−C ′2d(k′)2}

where similarly C2 and C ′2 are chosen sufficiently large depending on CA defined in Property
(A) (which in turn determines CLepski), CB defined in Property (B), (B,BU ) defined in
Section 2.1, and J0 determined by τmax, a known upper bound of the smoothness index
adapted over.

Combining the bounds on EP,2[A11{I2(n2)}] and EP,2[A21{I2(n2)}], we have

PP
(∣∣∣φ̂n,k′ − φ̂n,k−∣∣∣ > R(k′)1/2d(k′)

)
≤ C exp{−C ′d(k′)2}+ C ′′

log n

n2

≤


C`(n1)

nδ1
≤ C`(n)

nδ
k′ > k2,

C exp{−`−1(n1)} ≤ C exp{−`−1(n)} k′ = k2

for some absolute constant C depending on (CA, C
′
A, CB, B,BU , τmax, CLepski).

Finally, recall that in the beginning of the proof we bound PP
(
k̂ = k

)
by

PP
(
k̂ = k

)
= PP

(
∃k′ ≥ k:

∣∣∣φ̂n,k′ − φ̂n,k−∣∣∣ > R(k′)1/2d(k′)
)

≤
∑

k≤k′≤kN−1

PP
(∣∣∣φ̂n,k′ − φ̂n,k−∣∣∣ > R(k′)1/2d(k′)

)
,

and there are at most O(log n1) = O(log n) summands in total, therefore when k > k2

PP
(
k̂ = k

)
≤ C log n max

k≤k′≤kN−1

`(n1)

nδ1
≤ C log (n)`(n)

nδ
,

whereas when k = k2,

PP
(
k̂ = k2

)
≤ PP

(∣∣∣φ̂n,k2 − φ̂n,k1∣∣∣ > R(k2)
1/2d(k2)

)
+

∑
k3≤k′≤kN−1

PP
(∣∣∣φ̂n,k′ − φ̂n,k1∣∣∣ > R(k′)1/2d(k′)

)
≤ C

(
exp{−`−1(n)}+

log (n)`(n)

nδ

)
.

We further introduce the notation for the mean zero random variable IF := L1(O)−φ(P ),
which encodes the first-order influence function (van der Vaart, 2000) of φ(P ) evaluated at
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the true nuisance functions. Returning to the proof of Theorem 2.2, our goal is to obtain
an upper bound on the following risk of our adaptive estimator φ̂n,k̂:

sup
P∈Pθ :

f1(θ)=τ,f2(θ)>min{ 4τ
4τ+d

, 12}

EP

(φ̂n,k̂ − φ(P )− 1

n1

n1∑
i=1

IFi

)2


= sup
P∈Pθ :

f1(θ)=τ,f2(θ)>min{ 4τ
4τ+d

, 12}

EP,2

EP,1

(φ̂n,k̂ − φ(P )− 1

n1

n1∑
i=1

IFi

)2
 .

We start with controlling the following conditional risk bound:

EP,1

(φ̂n,k̂ − φ(P )− 1

n1

n1∑
i=1

IFi

)2


≤ EP,1

(φ̂n,k̂ − φ(P )− 1

n1

n1∑
i=1

IFi

)2

1

{
k̂ ≤ k∗

}
︸ ︷︷ ︸

T1

+ EP,1

(φ̂n,k̂ − φ(P )− 1

n1

n1∑
i=1

IFi

)2

1

{
k̂ > k∗

}
︸ ︷︷ ︸

T2

.

Below we control the terms T1 and T2 separately.

Control of T1

We decompose T1 as follows.

T1 = EP,1

1{k̂ ≤ k∗}(φ̂n,k̂ − φ(P )− 1

n1

n1∑
i=1

IFi

)2


≤ 4EP,1

1{k̂ ≤ k∗}

(
φ̂n,k̂ − φ̂n,k∗

)2
︸ ︷︷ ︸

T11

+
(

EP,1φ̂n,k∗ − φ(P )
)2

︸ ︷︷ ︸
T12

+
(
φ̂n,k∗ − EP,1φ̂n,k∗ − 1

n1

∑n1
i=1 IFi

)2



≤ 4


EP,1

[
1

{
k̂ ≤ k∗

}
T11

]
+ T12 + EP,1

(φ̂n,k∗ − EP,1φ̂n,k∗ −
1

n1

n1∑
i=1

IFi

)2


︸ ︷︷ ︸
T13


.
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Now we control T11, T12 and T13 separately. First, by definition of k̂, for some absolute
constant C depending on CLepski,

T11 ≤ R(k∗)d(k∗)2 =
k∗

n21
d(k∗)2

≤


C

(
n1√

log n1

)− 8τ/d
4τ/d+1

� C
(

n√
log n

)− 8τ/d
4τ/d+1

τ/d < 1/4,

`−2(n1)

n1
� `−2(n)

n
τ/d = 1/4,

`−1(n1)

n1 log n1
� `−1(n)

n log n
� 1

n
τ/d > 1/4.

The above upper bound also applies to EP,1T11 and EPT11. In terms of T13, by Lemma C.2
(ii), we have

EP,2T13 ≤ 2EP,2EP,1

 (
Ûn,k∗ − EP,1Ûn,k∗

)2
+
(

1
n1

∑n1
i=1 L̃1(Oi)− EP,1L̃1(Oi)− IFi

)2


≤ C
(
k∗

n21
+ o

(
1

n1

))
for some absolute constant C depending on (CB, B,BU , τmax), the known parameters of the
problem. The fact that

EP,2EP,1

( 1

n1

n1∑
i=1

L̃1(Oi)− EP,1L̃1(Oi)− IFi

)2


scales as o(n−11 ) can be seen from the following argument. Within the “good” event

I2(n2), this term is n−11 EP,1[(L̃1(O) − L1(O) − EP,1(L̃1(O) − L1(O)))2] = o(n−11 ) because

EP,1[(L̃1(O)−L1(O))2] = o(1) in I2(n2). Outside the “good” event I2(n2), EP,1

[(
1
n1

∑n1
i=1 L̃1(Oi)− EP,1L̃1(Oi)− IFi

)2]
scales as

n−11 EP,1[(L̃1(O)− L1(O)− EP,1(L̃1(O)− L1(O)))2] = O(n−11 )

because now we only know EP,1[(L̃1(O)−L1(O)−EP,1(L̃1(O)−L1(O)))2] is bounded almost
surely. However, since the probability outside the “good” event is o(1) by Property (A),

EP,2EP,1

( 1

n1

n1∑
i=1

L̃1(Oi)− EP,1L̃1(Oi)− IFi

)2

1

{
I2(n2)

} = o(n−11 ).

Then combining the above two points, we see that EP,2EP,1[(
1
n1

∑n1
i=1 L̃1(Oi)−EP,1L̃1(Oi)−

IFi)
2] scales as o(n−11 ).
As a result, there exists some universal positive constant C depending only on known

parameters such that

sup
P∈Pθ :

f1(θ)=τ,f2(θ)>min{ 4τ
4τ+d

, 12}

EP,2T13 ≤ C
(
k∗

n21
+ o

(
1

n1

))
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≤


Ck∗

n21
� Ck∗

n2
τ/d ≤ 1/4,

o(n−11 ) = o(n−1) τ/d > 1/4.

In terms of T12, we again need to analyze its behavior under two different scenarios:

1. Within the “good” event I2(n2), for some absolute constant C depending on CA:

EP,2T121 {I2(n2)}

≤ CA
(
n
−2f2(θ)
2 + k∗−

4f1(θ)
d

)

≤


C

(
n1√

log n1

)− 8τ/d
4τ/d+1

� C
(

n√
log n

)− 8τ/d
4τ/d+1

τ/d < 1/4,

C

n
τ/d = 1/4,

o(n−1) τ/d > 1/4.

2. Outside the “good” event I2(n2): we still have T12 < BT for some constant BT > 0
depending on B and BU almost surely.

Summarizing the above arguments, we have

EP,2T12 = EP,2T121
{
I2(n2)

}
+ EP,2T121 {I2(n2)}

≤ BTPP,2
(
I2(n2)

)
+ CA

(
n
−2f2(θ)
2 + k∗−

4f1(θ)
d

)

≤


C

(
n√

log n

)− 8τ/d
4τ/d+1

τ/d < 1/4,

C

n
τ/d = 1/4,

o(n−1) τ/d > 1/4.

Combining the above bounds for EP,2

[
1

{
k̂ ≤ k∗

}
T11

]
,EP,2T12 and EP,2T13, we get, for

some universal positive constant C > 0,

T1 ≤


C

(
n√

log n

)− 8τ/d
4τ/d+1

τ/d < 1/4,

C`−2(n)

n
τ/d = 1/4,

o(n−1) τ/d > 1/4.

Control of T2

For some p, q > 1 such that 1
p + 1

q = 1, we have

T2 ≤
∑

k∗<k≤kN−1

EP,1

(φ̂n,k̂ − φ(P )− 1

n1

n1∑
i=1

IFi

)2

1

{
k̂ = k

}
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=
∑

k∗<k≤kN−1

EP,1

(φ̂n,k − φ(P )− 1

n1

n1∑
i=1

IFi

)2

1

{
k̂ = k

}
≤ 2

(
EP,1φ̂n,k∗ − φ(P )

)2
+ 2

∑
k∗<k≤kN−1

EP,1

(φ̂n,k − EP,1φ̂n,k −
1

n1

n1∑
i=1

IFi

)2

1

{
k̂ = k

}
≤ 2

(
EP,1φ̂n,k∗ − φ(P )

)2
︸ ︷︷ ︸

T21

+ 2
∑

k∗<k≤kN−1

E
1
q

P,1

(φ̂n,k − EP,1φ̂n,k −
1

n1

n1∑
i=1

IFi

)2q
P

1
p

P,1

(
k̂ = k

)
︸ ︷︷ ︸

T22

.

We next control T21 and T22 separately. First we observe that T21 is exactly T12. Thus
applying the same bound, we have

EP,2T21 ≤


C

(
n√

log n

)− 8τ/d
4τ/d+1

τ/d < 1/4,

C

n
τ/d = 1/4,

o(n−1) τ/d > 1/4.

In the control of T22, we utilize the result in Lemma 6.1.

T22 ≤ C(q)
∑

k∗<k≤kN−1

E
1
q

P,1

 (
Ûn,k − EP,1Ûn,k

)2q
+
(

1
n1

∑n1
i=1 L̃1(Oi)− EP,1L̃1(O)− IFi

)2q
P

1
p

P,1

(
k̂ = k

)
≤ C ′(q)

∑
k∗<k≤kN−1

k

n2
P

1
p

P,1

(
k̂ = k

)
where the first inequality is due to Hölder inequality, the second inequality follows from
Lemma C.2 (ii) with k > k∗ implying that k > n1 = n(1 − o(1)), and the third in-
equality is a consequence of Lemma 6.1. Here C ′(q) absorbs the constants (depending on
(B,BU , τmax, CB)) in front of the rate (which is k/n2) of

E
1
q

P,1

(Ûn,k − EP,1Ûn,k

)2q
+

(
1

n1

n1∑
i=1

L̃1(Oi)− EP,1L̃1(O)− IFi

)2q


into C(q).
Next we divide our analyses into three different scenarios:

1. τ/d < 1/4: k∗ > k2. Then following Lemma 6.1, we have

T22 ≤
C ′(q)

n2
log

1
p (n)

∑
k∗<k≤kN−1

k exp{−Cd(k)2/p}

28



Adaptive Estimation of Nonparametric Functionals

≤ C ′(q)n
CC2

Lepski(1−δ)
p

n2
log

1
p (n)

∑
k∗<k≤kN−1

k · k−CC
2
Lepski/p

=
C ′(q)n2(1−δ)

n2
log

1
p (n)

∑
k∗<k≤kN−1

k · k−2

≤ C ′(q)n−2δ log
1
p (n)C ′ log nk∗−1

≤ C ′(q)C ′n−2δ log
1+p
p (n)

(
n√

log n

)− 2
4τ/d+1

= o

( n√
log n

)− 8τ/d
4τ/d+1


where the second line follows by plugging in the definition of d(k) when k > k∗ > k2,
the third line holds by choosing the constant p such that CC2

Lepski/p = 2, the fourth
line utilizes the cardinality of K being bounded by log n up to some constant C ′ > 0
and k > k∗, the fifth line follows from the definition of k∗ when τ/d < 1/4 and in the
sixth line we simply use 8τ/d < 2. Here we want to emphasize that the choice of p
depends only on the constants C in Lemma 6.1 and CLepski, not on the sample size n
or k.

2. τ/d = 1/4: k∗ = k2 = n1/`(n1). Then similar to the calculations above by setting p
such that C ′1C

2
Lepski/p = 2 and choosing 0.5 < δ < 1, we have

T22 ≤
C ′(q)C ′n2(1−δ)

n2
log

1+p
p (n)k−12

≤ C ′(q)C ′n−2δ log
1+p
p (n)`(n)

= o(n−1).

3. τ/d > 1/4: k∗ = k1 = n1/ log n1. Then compared to T22 in τ/d ≤ 1/4, we need to
add one extra term

E
1
q

P,1

(φ̂n,k2 − EP,1φ̂n,k2 −
1

n1

n1∑
i=1

IFi

)2q
P

1
p

P,1

(
k̂ = k2

)
:

T22 ≤
C ′(q)

n2
log

1
p (n)

∑
k∗<k≤kN−1

k exp{−Cd(k)2/p}

+ E
1
q

P,1

(φ̂n,k2 − EP,1φ̂n,k2 −
1

n1

n1∑
i=1

IFi

)2q
P

1
p

P,1

(
k̂ = k2

)

≤ o(n−1) + E
1
q

P,1

(φ̂n,k2 − EP,1φ̂n,k2 −
1

n1

n1∑
i=1

IFi

)2q
P

1
p

P,1

(
k̂ = k2

)
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≤ o(n−1) + C(n`(n))−1
(
exp{−Cd(k2)

2}+ log n exp{−Cd(k3)
2}
) 1
p

= o(n−1)

where the last line follows from the calculation as in the case τ/d = 1/4.

Hence combining the above findings on the control of T22, we have

EP,2T22 =

 o
(

n√
logn

)− 8τ/d
4τ/d+1

τ/d < 1/4,

o(n−1) τ/d ≥ 1/4.

Finally, summarizing the above results on T1 and T2, we have

EP

(φ̂n,k̂ − φ(P )− 1

n1

n1∑
i=1

IFi

)2
 ≤ EP,2(T1 + T2)

≤



O

( n√
log n

)− 8τ/d
4τ/d+1

 τ/d < 1/4,

O

(
1

n`2(n)

)
τ/d = 1/4,

o

(
1

n

)
τ/d > 1/4.

In particular, when τ/d > 1/4, the above result implies that

EP

[∣∣∣∣∣φ̂n,k̂ − φ(P )− 1

n1

n1∑
i=1

IFi

∣∣∣∣∣
]

= o(n−1/2)

which further implies that

√
n
(
φ̂n,k̂ − φ(P )

)
=

1
√
n1

n1∑
i=1

IFi + oP (1)→d N (0, σ2).
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Lucien Birgé and Pascal Massart. Estimation of integral functionals of a density. The
Annals of Statistics, 23(1):11–29, 1995.

Christoph Breunig and Xiaohong Chen. Adaptive estimation of quadratic functionals in
nonparametric instrumental variable models. arXiv preprint arXiv:2101.12282, 2021.

Lawrence D Brown and Michael Levine. Variance estimation in nonparametric regression
via the difference sequence method. The Annals of Statistics, 35(5):2219–2232, 2007.

Lawrence D Brown and Mark G Low. A constrained risk inequality with applications to
nonparametric functional estimation. The Annals of Statistics, 24(6):2524–2535, 1996.

Adam D Bull and Richard Nickl. Adaptive confidence sets in L2. Probability Theory and
Related Fields, 156(3-4):889–919, 2013.

T Tony Cai and Mark G Low. A note on nonparametric estimation of linear functionals.
The Annals of Statistics, 31(4):1140–1153, 2003.

T Tony Cai and Mark G Low. Minimax estimation of linear functionals over nonconvex
parameter spaces. The Annals of Statistics, 32(2):552–576, 2004.

T Tony Cai and Mark G Low. On adaptive estimation of linear functionals. The Annals of
Statistics, 33(5):2311–2343, 2005a.

T Tony Cai and Mark G Low. Nonquadratic estimators of a quadratic functional. The
Annals of Statistics, 33(6):2930–2956, 2005b.

T Tony Cai and Mark G Low. Optimal adaptive estimation of a quadratic functional. The
Annals of Statistics, 34(5):2298–2325, 2006.

T Tony Cai and Mark G Low. Testing composite hypotheses, hermite polynomials and
optimal estimation of a nonsmooth functional. The Annals of Statistics, 39(2):1012–1041,
2011.

31



Liu, Mukherjee, Robins, Tchetgen Tchetgen

T Tony Cai and Lie Wang. Adaptive variance function estimation in heteroscedastic non-
parametric regression. The Annals of Statistics, 36(5):2025–2054, 2008.

Abhishek Chakrabortty and Arun Kumar Kuchibhotla. Tail bounds for canonical U -
statistics and U -processes with unbounded kernels. 2018.

Minshuo Chen, Haoming Jiang, Wenjing Liao, and Tuo Zhao. Nonparametric regression on
low-dimensional manifolds using deep ReLU networks. arXiv preprint arXiv:1908.01842,
2019a.

Minshuo Chen, Haoming Jiang, and Tuo Zhao. Efficient approximation of deep ReLU
networks for functions on low dimensional manifolds. Advances in Neural Information
Processing Systems, 2019b.

Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen,
Whitney Newey, and James Robins. Double/debiased machine learning for treatment
and structural parameters. The Econometrics Journal, 21(1):C1–C68, 2018.

Albert Cohen, Ingrid Daubechies, and Pierre Vial. Wavelets on the interval and fast wavelet
transforms. Applied and computational harmonic analysis, 1(1):54–81, 1993.

Richard K Crump, V Joseph Hotz, Guido W Imbens, and Oscar A Mitnik. Dealing with
limited overlap in estimation of average treatment effects. Biometrika, page asn055, 2009.

David L Donoho and Michael Nussbaum. Minimax quadratic estimation of a quadratic
functional. Journal of Complexity, 6(3):290–323, 1990.

David L Donoho, Richard C Liu, and Brenda MacGibbon. Minimax risk over hyperrectan-
gles, and implications. The Annals of Statistics, 18(3):1416–1437, 1990.

Sam Efromovich and Mark Low. On optimal adaptive estimation of a quadratic functional.
The Annals of Statistics, 24(3):1106–1125, 1996.

Sam Efromovich and Mark G Low. Adaptive estimates of linear functionals. Probability
Theory and Related Fields, 98(2):261–275, 1994.

Sam Efromovich and Alexander Samarov. Adaptive estimation of the integral of squared
regression derivatives. Scandinavian Journal of Statistics, 27(2):335–351, 2000.

Jianqing Fan. On the estimation of quadratic functionals. The Annals of Statistics, 19(3):
1273–1294, 1991.

Jianqing Fan and Qiwei Yao. Efficient estimation of conditional variance functions in
stochastic regression. Biometrika, 85(3):645–660, 1998.

Max H Farrell, Tengyuan Liang, and Sanjog Misra. Deep neural networks for estimation
and inference. Econometrica, 89(1):181–213, 2021.
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Appendix A. Proof of (2.3)

Proof. For any two probability measures ν1 and ν2, denote their total-variation distance and

Hellinger distance as TV (ν1, ν2) := 1
2

∫
|dν1 − dν2| and H(ν1, ν2) :=

(∫
(
√
dν1 −

√
dν2)

2
)1/2

respectively. Since we assume dν2 is strictly bounded from below by B, we have

χ2 (ν1, ν2) =

∫
(dν1 − dν2)2

dν1
≤ B−1

∫
(dν1 − dν2)2 ≤ 4B−1TV2 (ν1, ν2) ≤ 4B−1H2 (ν1, ν2)

where in the last inequality we apply the well-known Le Cam’s inequality that the Hellinger
distance upper bounds the total variation distance (Tsybakov, 2009, Lemma 2.3). Further-
more, using a simple Taylor expansion argument, we have

χ2(ν1, ν2) ≤ 4B−1H2 (ν1, ν2) ≤ exp{4B−1H2 (ν1, ν2)} − 1.
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Appendix B. Proof of Remaining Theorems

Proof of Theorem 2.7

Proof. Let

2jmind = b
(

n

log n

) 1
2smax/d+1

c, 2jmaxd = b
(

n

log n

) 1
2smin/d+1

c,

2lmind = b
(

n

log n

) 1
2γmax/d+1

c, 2lmaxd = b
(

n

log n

) 1
2γmin/d+1

c.

Without loss of generality assume that we have data {xi, yi}2ni=1. We split it into two disjoint
and equal-sized parts and use the second part to construct the estimator ĝ of the design
density g and use the resulting ĝ to construct the adaptive estimates of the regression
functions from the first half of the sample. Throughout we choose the regularity of our
wavelet bases to be larger than γmax for the desired approximation and moment properties
to hold. As a result our constants depend on γmax.

Define T1 = [jmin, jmax]∩N and T2 = [lmin, lmax]∩N. For l ∈ T2, let ĝl(x) = 1
n

∑2n
i=n+1KVl (Xi,x).

Now, let

l̂ = min

{
j ∈ T2: ‖ĝj − ĝl‖∞ ≤ C∗

√
2ldld

n
, ∀l ∈ T2 s.t. l ≥ j

}
.

where C∗ is a constant (depending on γmax, BU ) that can be determined from the proof
hereafter. Thereafter, consider the estimator g̃ := ĝl̂. In the following, we first prove
inequality (2.4).

Fix a P := (f, g) ∈ P(s, γ). To analyze the estimator g̃, we begin with standard bias
variance type analysis for the candidate estimators ĝl. First note that for any x ∈ [0, 1]d,
using standard facts about compactly supported wavelet basis having regularity larger than
γmax (Härdle et al., 1998), one has, for a constant C1 depending only on q and the wavelet
basis used, that

|EP (ĝl(x))− g(x)| = |Π (g|Vl) (x)− g(x)| ≤ C1M2−ld
γ
d . (B.1)

Above we have used the fact that

sup
h∈H(γ,M)

‖h−Π(h|Vl)‖∞ ≤ C1M2−lγ . (B.2)

Also, by standard arguments about compactly supported wavelet basis having regularity
larger than γmax (Giné and Nickl, 2016), one has, for a constant C2 := C(BU ,ψ

0
0,0,ψ

1
0,0, γmax),

that

EP (‖ĝl(x)− EP (ĝl(x)) ‖∞) ≤ C2

√
2ldld

n
. (B.3)

Therefore, by inequalities (B.1) and (B.3), and triangle inequality,

EP,2‖ĝl − g‖∞ ≤ C1M2−ld
γ
d + C2

√
2ldld

n
.
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Define,

l∗ := min

{
l ∈ T2:C1M2−ld

γ
d ≤ C2

√
2ldld

n

}
.

The definition of l∗ implies that for n sufficiently large,

2d
(
C1

C2
M

) 2d
2γ+d

(
n

log n

) d
2γ+d

≤ 2l
∗d ≤ 2d+1

(
C1

C2
M

) 2d
2γ+d

(
n

log n

) d
2γ+d

.

(B.4)

The error analysis of g̃ can now be carried out as follows:

EP,2‖g̃ − g‖∞ = EP,2‖g̃ − g‖∞1
(
l̂ ≤ l∗

)
+ EP,2‖g̃ − g‖∞1

(
l̂ > l∗

)
:= I + II. (B.5)

We first control term I as follows:

I = EP,2‖g̃ − g‖∞I
(
l̂ ≤ l∗

)
≤ EP,2‖ĝl̂ − ĝl∗‖∞1

(
l̂ ≤ l∗

)
+ EP,2‖ĝl∗ − g‖∞1

(
l̂ ≤ l∗

)
≤ C∗

√
2l∗dl∗d

n
+ C1M2−l

∗d γ
d + C2

√
2l∗dl∗d

n

≤ (C∗ + 2C2)

√
2l∗dl∗d

n
≤ 2d+1

(
C1

C2
M

) 2d
2γ+d

(
n

log n

)− γ
2γ+d

.

(B.6)

The control of term II is easier if one has suitable bounds on ‖ĝl − g‖∞. To this end note
that, for any fixed x ∈ [0, 1]d, there exists a constant C3 := C(ψ0

0,0,ψ
1
0,0, γmax) such that

|ĝl(x)| ≤ 1

n

n∑
i=1

∑
m∈Zl

∑
v∈{0,1}d

|ψvl,m(Xi)||ψvl,m(x)| ≤ C32
ld.

This along with the fact that ‖g‖∞ ≤ BU , implies that for n sufficiently large,

‖ĝl − g‖∞ ≤ C32
ld +BU ≤ 2C32

ld.

In the above display the last inequality follows since l ≥ lmin ≥
(

n
logn

) 1
2γmax/d+1

. Therefore,

II ≤ C3

lmax∑
l=l∗+1

2ldPP,2
(
l̂ = l

)
. (B.7)

We now complete the control over II by suitably bounding P
(
l̂ = l

)
. To this end, note that

for any l > l∗,

PP,2
(
l̂ = l

)
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≤
∑
l>l∗

PP,2

(
‖ĝl − ĝl∗‖∞ > C∗

√
2ldld

n

)

≤
∑
l>l∗


PP,2

(
‖ĝl∗ − E (ĝl∗) ‖∞ > C∗

2

√
2ldld
n − ‖EP,2 (ĝl∗)− EP,2 (ĝl) ‖∞

)
+PP,2

(
‖ĝl − EP,2 (ĝl) ‖∞ > C∗

2

√
2ldld
n

)


≤
∑
l>l∗


PP,2

(
‖ĝl∗ − E (ĝl∗) ‖∞ > C∗

2

√
2ldld
n − ‖Π (g|Vl∗)−Π (g|Vl) ‖∞

)
+P
(
‖ĝl − EP,2 (ĝl) ‖∞ > C∗

2

√
2ldld
n

)


≤
∑
l>l∗


PP,2

(
‖ĝl∗ − E (ĝl∗) ‖∞ > C∗

2

√
2ldld
n − 2C2

√
2l∗dl∗d
n

)
+P
(
‖ĝl − EP,2 (ĝl) ‖∞ > C∗

2

√
2ldld
n

)


≤
∑
l>l∗


PP,2

(
‖ĝl∗ − E (ĝl∗) ‖∞ > (C

∗

2 − 2C2)
√

2ldld
n

)
+P
(
‖ĝl − EP,2 (ĝl) ‖∞ > C∗

2

√
2ldld
n

)


≤
∑
l>l∗

2 exp (−Cld). (B.8)

In the fourth and fifth lines of the above series of inequalities, we have used inequality (B.2)
and the definition of l∗ respectively. The last inequality in the above display holds for an
absolute constant C > 0 depending only on BU ,ψ

0
0,0,ψ

1
0,0 and the inequality follows from

Lemma C.6 provided we choose C∗ large enough depending on M,BU ,ψ
0
0,0,ψ

1
0,0, γmax. In

particular, this implies that, choosing C∗ large enough will guarantee that there exists a
η > 3 such that for large enough n, one has for any l > l∗

P(l̂ = l) ≤ n−η. (B.9)

This along with inequality (B.7) and the choice of lmax implies that

II ≤ C3

∑
l>l∗

2ldn−η = C3

∑
l>l∗

2ld

n
n−η+1 ≤ lmax

nη−1
≤ log n

n
. (B.10)

Finally combining equations (B.6) and (B.10), we have the existence of an estimator g̃ de-
pending on M,BU , and γmax (once we have fixed our choice of the scaling and wavelet func-
tions; see Section 5 in the main text), such that for every (s, γ) ∈ [smin, smax]× [γmin, γmax],

sup
P∈P(s,γ)

EP ‖g̃ − g‖∞ ≤ (C)
d

2γ+d

(
n

log n

)− γ
2γ+d

,

with a large enough positive C depending on M,BU , and γmax.
We next show that uniformly over P ∈ P(s, γ), g̃ belongs to H(γ,C) with probability

at least 1− 1/n2, for a large enough constant C depending on M,BU , and γmax. Towards
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this end, note that, for any C > 0, l
′
> 0, and h ∈ L2([0, 1]d), let ‖〈h,ψl′ ,·〉‖2 be the vector

L2 norm of the vector
(
〈h,ψv

l′ ,m′
〉:m′ ∈ Zl′ , v ∈ {0, 1}

d \ {0}d
)

. We have,

PP,2
(

2l
′
(γ+ d

2
)‖〈g̃,ψl′ ,·〉‖∞ > C

)
=

lmax∑
l=lmin

PP,2
(

2l
′
(γ+ d

2
)‖〈ĝl,ψl′ ,·〉‖∞ > C, l̂ = l

)
1

(
l
′ ≤ l

)

=

l∗∑
l=lmin

PP,2
(

2l
′
(γ+ d

2
)‖〈ĝl,ψl′ ,·〉‖∞ > C, l̂ = l

)
1

(
l
′ ≤ l

)

+

lmax∑
l=l∗+1

PP,2
(

2l
′
(γ+ d

2
)‖〈ĝl,ψl′ ,·〉‖∞ > C, l̂ = l

)
1

(
l
′ ≤ l

)

≤
l∗∑

l=lmin

PP,2
(

2l
′
(γ+ d

2
)‖〈ĝl,ψl′ ,·〉‖∞ > C

)
1

(
l
′ ≤ l

)

+

lmax∑
l=l∗+1

PP,2
(
l̂ = l

)
1

(
l
′ ≤ l

)

≤
l∗∑

l=lmin

PP,2
(

2l
′
(γ+ d

2
)‖〈ĝl,ψl′ ,·〉‖∞ > C

)
1

(
l
′ ≤ l

)
+
∑
l>l∗

n−η, (B.11)

where the last inequality follows from (B.9) for some η > 3 provided C∗ is chosen large
enough as before. Now,

PP,2
(

2l
′
(γ+ d

2
)‖〈ĝl,ψl′ ,·〉‖∞ > C

)
≤ PP,2

(
2l
′
(γ+ d

2
)‖〈ĝl,ψl′ ,·〉 − EP,2

(
〈ĝl,ψl′ ,·〉

)
‖∞ > C/2

)
+ 1

(
2l
′
(γ+ d

2
)‖EP,2

(
〈ĝl,ψl′ ,·〉

)
‖∞ > C/2

)
= PP,2

(
2l
′
(γ+ d

2
)‖〈ĝl,ψl′ ,·〉 − EP,2

(
〈ĝl,ψl′ ,·〉

)
‖∞ > C/2

)
if C > 2M (by definition in equation (5.5)). Therefore, from (B.11), one has for any
C > 2M ,

PP,2
(

2l
′
(γ+ d

2
)‖〈ĝ,ψl′ ,·〉‖∞ > C

)
≤

l∗∑
l=lmin

PP,2
(

2l
′
(γ+ d

2
)‖〈ĝl,ψl′ ,·〉 − EP,2

(
〈ĝl,ψl′ ,·〉

)
‖∞ > C/2

)
1

(
l
′ ≤ l

)

+

lmax∑
l=l∗

n−31
(
l
′ ≤ l

)
. (B.12)
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Considering the first term of the last summand of the above display, we have

l∗∑
l=lmin

PP,2
(

2l
′
(γ+ d

2
)‖〈ĝl,ψl′ ,·〉 − EP,2

(
〈ĝl,ψl′ ,·〉

)
‖∞ > C/2

)
1

(
l
′ ≤ l

)

≤
l∗∑

l=lmin

∑
m∈Z

l
′

∑
v∈{0,1}d

PP,2

(∣∣∣∣∣ 1n
2n∑

i=n+1

(
ψv
l′ ,m

(Xi)− EP,2

(
ψv
l′ ,m

(Xi)
))∣∣∣∣∣ > C/2

2l
′ (γ+ d

2
)

)
1

(
l
′ ≤ l

)
.

By Bernstein’s inequality, for any λ > 0,

PP,2

(∣∣∣∣∣ 1n
2n∑

i=n+1

(
ψv
l′ ,m

(Xi)− EP,2

(
ψv
l′ ,m

(Xi)
))∣∣∣∣∣ > λ

)

≤ 2 exp

− nλ2

2
(
σ2 + ‖ψv

l
′
,m
‖∞λ/3

)
,

where σ2 = EP,2

(
ψv
l′ ,m

(Xi)− EP,2

(
ψv
l′ ,m

(Xi)
))2

. Indeed, there exists a constant C4 de-

pending on ψ0
0,0,ψ

1
0,0, γmax such that σ2 ≤ C4 and ‖ψv

l
′
,m
‖∞ ≤ C42

l
′
d
2 . Therefore,

l∗∑
l=lmin

∑
m∈Z

l
′

∑
v∈{0,1}d

PP,2

(∣∣∣∣∣ 1n
2n∑

i=n+1

(
ψv
l′ ,m

(Xi)− EP,2

(
ψv
l′ ,m

(Xi)
))∣∣∣∣∣ > C/2

2l
′ (γ+ d

2
)

)
1

(
l
′ ≤ l

)

≤ 2
l∗∑

l=lmin

∑
m∈Z

l
′

∑
v∈{0,1}d

exp

− C2

8C4

n2−2l
′
(γ+ d

2
)

1 + C
2 2

l
′
d
2 2−l

′ (γ+ d
2
)

1(l′ ≤ l)

= 2
l∗∑

l=lmin

∑
m∈Z

l
′

∑
v∈{0,1}d

exp

(
− C2

8C4

n2−2l
′
γ

2l
′d + C

2 2l
′ (d−γ)

)
1

(
l
′ ≤ l

)

≤ 2
l∗∑

l=lmin

∑
m∈Z

l
′

∑
v∈{0,1}d

exp

(
− C2

8(1 + C
2 )C4

n2−2l
′
γ

2l
′d

)
1

(
l
′ ≤ l

)

= 2
l∗∑

l=lmin

∑
m∈Z

l
′

∑
v∈{0,1}d

exp

(
− C2

8(1 + C
2 )C4

n2−2l
∗γ

2l∗dl∗d
2(l
∗−l′ )(d+2γ)l∗d

)
1

(
l
′ ≤ l

)

≤ 2
l∗∑

l=lmin

∑
m∈Z

l
′

∑
v∈{0,1}d

exp

(
− C2C2

2d+3C1(1 + C
2 )C4

2(l
∗−l′ )(d+2γ)l∗d

)
1

(
l
′ ≤ l

)
(B.13)

≤ 2
l∗∑

l=lmin

∑
m∈Z

l
′

∑
v∈{0,1}d

exp

(
− C2C2

2d+3C1(1 + C
2 )C4

ld

)
1

(
l
′ ≤ l

)

≤ 2
l∗∑

l=lmin

C(ψ0
0,0, ψ

1
0,0)2

l
′
d exp

(
− C2C2

2d+3C1(1 + C
2 )C4

ld

)
1

(
l
′ ≤ l

)
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≤ 2
l∗∑

l=lmin

C(ψ0
0,0, ψ

1
0,0) exp

(
−

(
C2C2

2d+3C1(1 + C
2 )C4

− 1

)
ld

)
1

(
l
′ ≤ l

)

≤ 2lmaxC(ψ0
0,0, ψ

1
0,0) exp

(
−

(
C2C2

2d+3C1(1 + C
2 )C4

− 1

)
lmind

)
1

(
l
′ ≤ lmax

)
,

if C2C2

2d+3C1(1+
C
2
)C4
≥ 1. The above inequality (B.13) uses the definition of l∗. Indeed choosing

C large enough, one can guarantee,

(
C2C2

2d+3C1(1+
C
2
)C4
− 1

)
lmind ≥ 4 log n. Such a choice of

C implies that,

l∗∑
l=lmin

∑
m∈Z

l
′

∑
v∈{0,1}d

PP,2

(∣∣∣∣∣ 1n
2n∑

i=n+1

(
ψv
l′ ,m

(Xi)− EP,2

(
ψv
l′ ,m

(Xi)
))∣∣∣∣∣ > C/2

2l
′
(γ+ d

2
)

)
1

(
l
′ ≤ l

)

≤
C(ψ0

0,0, ψ
1
0,0)

n3
1(l
′ ≤ lmax),

which in turn implies that, for C sufficiently large (depending on M,ψ0
0,0, ψ

1
0,0) one has

PP,2
(

2l
′
(γ+ d

2
)‖〈ĝ,ψl′ ,·〉‖2 > C

)
≤
C(ψ0

0,0, ψ
1
0,0) + 1

n3
1(l
′ ≤ lmax).

This along with the logarithmic in n size of lmax implies that for sufficiently large n, uni-
formly over P ∈ P(s, γ), g̃ belongs to H(γ,C) with probability at least 1−1/n2, for a large
enough constant C depending on M,BU , and γmax (the choice of ψ0

0,0, ψ
1
0,0 being fixed by

specifying a regularity S > γmax).
However this g̃ does not satisfy the desired point-wise bounds. To achieve this let φ

be a C∞ function such that ψ(x)|[BL,BU ] ≡ x while BL
2 ≤ ψ(x) ≤ 2BU for all x. Finally,

consider the estimator ĝ(x) = ψ(g̃(x)). We note that |g(x) − ĝ(x)| ≤ |g(x) − g̃(x)|— thus
ĝ is adaptive to the smoothness of the design density. The boundedness of the constructed
estimator follows from the construction. Finally, we wish to show that almost surely, the
constructed estimator belongs to the Hölder space with the same smoothness, possibly of a
different radius. This is captured by the next lemma, the proof of which can be completed
by following arguments similar to the proof of Lemma 3.1 in Mukherjee and Sen (2018). In
particular, recall the definition of H(s,M) in Section 5,

Lemma B.1. For all h ∈ H(s,M), ψ(h) ∈ H(s, C(M, s)), where C(M, s) is a universal
constant dependent only on M, s and independent of h ∈ H(s,M).

The probabilistic tail bound (2.5) follows from essentially the same argument as the
moment bound (2.4). For the sake of completeness, we present the proof below. We first
control the tail probability of ‖g̃ − g‖∞.

PP,2

(
‖g̃ − g‖∞ ≥ (C̃)

d
2γ+d

(
n

log n

)− γ
2γ+d

)

= PP,2

(
‖g̃ − g‖∞ ≥ (C̃)

d
2γ+d

(
n

log n

)− γ
2γ+d

, l̂ ≤ l∗
)

+ PP,2

(
‖g̃ − g‖∞ ≥ (C̃)

d
2γ+d

(
n

log n

)− γ
2γ+d

, l̂ > l∗

)
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≤ PP,2

(
‖g̃ − g‖∞ ≥ (C̃)

d
2γ+d

(
n

log n

)− γ
2γ+d

, l̂ ≤ l∗
)

+ PP,2
(
l̂ > l∗

)
.

Recall that we have shown that, for some η > 3,

PP,2
(
l̂ > l∗

)
=

lmax∑
l=l∗+1

PP,2
(
l̂ = l

)
≤

lmax∑
l=l∗+1

n−η ≤ lmax

nη
.

log n

n3
.

Thus we are left to control the following term:

PP,2

(
‖g̃ − g‖∞ ≥ (C̃)

d
2γ+d

(
n

log n

)− γ
2γ+d

, l̂ ≤ l∗
)

≤ PP,2

(
‖g̃ − ĝl∗‖∞ + ‖ĝl∗ − g‖∞ ≥ (C̃)

d
2γ+d

(
n

log n

)− γ
2γ+d

, l̂ ≤ l∗
)

≤ PP,2

(
‖ĝl∗ − g‖∞ ≥ (C̃)

d
2γ+d

(
n

log n

)− γ
2γ+d

− C∗
√

2l∗dl∗d

n

)

≤ PP,2

(
‖ĝl∗ −ΠP,2[g|Vl∗ ]‖∞ + ‖ΠP,2[g|Vl∗ ]− g‖∞ ≥ (C̃)

d
2γ+d

(
n

log n

)− γ
2γ+d

− C∗
√

2l∗dl∗d

n

)

≤ PP,2

(
‖ĝl∗ −ΠP,2[g|Vl∗ ]‖∞ ≥ (C̃)

d
2γ+d

(
n

log n

)− γ
2γ+d

− C∗
√

2l∗dl∗d

n
− C1M2−l

∗γ

)

≤ PP,2

(
‖ĝl∗ −ΠP,2[g|Vl∗ ]‖∞ ≥ (C̃)

d
2γ+d

(
n

log n

)− γ
2γ+d

− (C∗ + C2)

√
2l∗dl∗d

n

)

≤ PP,2

(
‖ĝl∗ −ΠP,2[g|Vl∗ ]‖∞ ≥

{
(C)

d
2γ+d − C∗ − C2

}√2l∗dl∗d

n

)
≤ exp{−C ′l∗d} ≤ n−η

for some η > 3, where the second and fifth inequalities follow from the definitions of l̂ and l∗

respectively, the fourth inequality follows from (B.1), the sixth inequality is a consequence
of (B.4) and the seventh inequality is implied by Lemma C.6.

For verification purposes, (B.4) implies

{
2−d

(
C1M

C2

)− 2d
2γ+d

(
n

log n

)− d
2γ+d

} γ
d

≥
(

2−l
∗d
) γ
d

⇒ C1M

(
C1M

C2

)− 2γ
2γ+d

(
n

log n

)− γ
2γ+d

≥ C1M2−(l
∗−1)γ ≥ C2

√
2(l∗−1)d(l∗ − 1)d

n

⇒ (C̃)
d

2γ+d

(
n

log n

)− γ
2γ+d

≥

(
C̃C2

C1M

) d
2γ+d

2−
d
2

√
l∗ − 1

l∗

√
2l∗dl∗d

n
≥ C

d
2γ+d

√
2l∗dl∗d

n
.
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Thus combining the above calculations, we have

PP,2

(
‖g̃ − g‖∞ ≥ (C̃)

d
2γ+d

(
n

log n

)− γ
2γ+d

)
.

log n

n3
+

1

n3
.

log n

n3
.

Since |g(x)− ĝ(x)| ≤ |g(x)− g̃(x)|, the above display immediately implies

PP,2

(
‖ĝ − g‖∞ ≥ (C̃)

d
2γ+d

(
n

log n

)− γ
2γ+d

)
.

log n

n3
.

Now, the construction of f̂ satisfying the desired properties of Theorem 2.7 can be done
following ideas from the proof of Theorem 1.1 of Mukherjee and Sen (2018). In particular,
construct the estimator ĝ of the design density g as above from the second part of the

sample and let for j ∈ T1, f̂j(x) = 1
n

n∑
i=1

Wi
ĝ(Xi)

KVj (Xi,x). Now, let

ĵ = min

{
j ∈ T1: ‖f̂j − f̂j′‖∞ ≤ C∗∗

√
2j′dj′d

n
, ∀j′ ∈ T1 s.t. j′ ≥ j

}
.

where C∗∗ depends only on the known parameters of the problem and can be determined
from the proof hereafter. Thereafter, consider the estimator f̃ := f̂ĵ . Now define

j∗ := min

{
j ∈ T1: 2−jd

s
d ≤

√
2jdjd

n

}
,

Therefore

EP ‖f̃ − f‖∞ ≤ EP ‖f̂ĵ − f‖∞1(ĵ ≤ j∗) + EP ‖f̂ĵ − f‖∞1(ĵ > j∗). (B.14)

Thereafter using Lemma C.6 and equation (B.2) we have

EP ‖f̂ĵ − f‖∞1(ĵ ≤ j∗)

≤ EP ‖f̂ĵ − f̂j∗‖∞1(ĵ ≤ j∗) + EP ‖f̂j∗ − f‖∞

≤ C∗∗
√

2j∗dj∗d

n
+ EP,2‖f̂j∗ − EP,1(f̂j∗)‖∞ + EP,2‖EP,1(f̂j∗)− f‖∞

≤ (C∗∗ + C(BU , BL,ψ
0
0,0,ψ

1
0,0))

√
2j∗dj∗d

n

+ EP,2‖Π(f(
g

ĝ
− 1)|Vj∗)‖∞ + ‖f −Π(f |Vj∗)‖∞

≤ (C∗∗ + C(BU , BL,ψ
0
0,0,ψ

1
0,0))

√
2j∗dj∗d

n

+ C(M,ψ0
0,0,ψ

1
0,0)2

−j∗s + EP,2‖Π(f(
g

ĝ
− 1)|Vj∗)‖∞.

(B.15)
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Now, by standard computations involving compactly supported wavelet bases and properties
of ĝ

EP,2‖Π(f(
g

ĝ
− 1)|Vj∗)‖∞ ≤ C(ψ0

0,0,ψ
1
0,0)EP,2‖f(

g

ĝ
− 1)‖∞

≤ C(BU , BL,ψ
0
0,0,ψ

1
0,0)EP,2‖ĝ − g‖∞

≤ C(BU , BL,M, γmax,ψ
0
0,0,ψ

1
0,0)

(
n

log n

)− γ
2γ+d

. (B.16)

Combining (B.15), (B.16), definition of j∗, and the fact that γ > s, we have

EP ‖f̂ĵ − f‖∞1(ĵ ≤ j∗) ≤ C(BU , BL,M, γmax,ψ
0
0,0,ψ

1
0,0)

(
n

log n

)− s
2s+d

, (B.17)

provided that C∗∗ is chosen depending only the known parameters of the problem. Now
using arguments similar to those leading to (B.7) we have

EP ‖f̂ĵ − f‖∞1(ĵ > j∗) ≤ C(BU , BL,ψ
0
0,0,ψ

1
0,0)

∑
j>j∗

2jdPP (ĵ = j). (B.18)

We now complete the control over II by suitably bounding PP (ĵ = j). To this end, note
that for any j > j∗,

PP (ĵ = j)

≤
∑
j>j∗

PP

(
‖f̂j − f̂j∗‖∞ > C∗∗

√
2jdjd

n

)

≤
∑
j>j∗

EP,2


PP,1

(
‖f̂j∗ − EP,1

(
f̂j∗
)
‖∞ > C∗∗

2

√
2jdjd
n − ‖EP,1

(
f̂j∗
)
− EP,1

(
f̂j

)
‖∞
)

+PP,1
(
‖f̂j − EP,1

(
f̂j

)
‖∞ > C∗∗

2

√
2jdjd
n

)


≤
∑
j>j∗

EP,2


PP,1

(
‖f̂j∗ − EP,1

(
f̂j∗
)
‖∞ > C∗∗

2

√
2jdjd
n − ‖Π

(
f gĝ |Vj∗

)
−Π

(
f gĝ |Vj

)
‖∞
)

+PP,1
(
‖f̂j − EP,1

(
f̂j

)
‖∞ > C∗∗

2

√
2jdjd
n

)
 .

Now, ∥∥∥∥Π

(
f
g

ĝ
|Vj∗

)
−Π

(
f
g

ĝ
|Vj
)∥∥∥∥
∞

≤ C(M,ψ0
0,0,ψ

1
0,0)2

−j∗s + C(BU , BL, ,ψ
0
0,0,ψ

1
0,0)‖ĝ − g‖∞.

Using the fact that

√
2jdjd
n >

√
2j∗dj∗d

n for j > j∗, we have, using the definition of j∗, that

there exist C,C ′ > 0 depending on M,BU , BL,ψ
0
0,0,ψ

1
0,0 such that

PP (ĵ = j)
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≤
∑
j>j∗

EP,2


PP,1

(
‖f̂j∗ − EP,1

(
f̂j∗
)
‖∞ > (C

∗∗

2 − C)

√
2jdjd
n

)
+PP,1

(
‖f̂j − EP,1

(
f̂j

)
‖∞ > C∗∗

2

√
2jdjd
n

)
+ PP,2

(
‖ĝ − g‖∞ > C ′

√
2j∗dj∗d

n

)
 .

(B.19)

Now, provided C∗∗ > 2C is chosen large enough (depending on BU , BL,ψ
0
0,0,ψ

1
0,0) we have

there exists large enough C ′′ (depending on BU , BL,ψ
0
0,0,ψ

1
0,0) such that

PP,1

(
‖f̂j∗ − EP,1

(
f̂j∗
)
‖∞ > (

C∗∗

2
− C)

√
2jdjd

n

)

+ PP,1

(
‖f̂j − EP,1

(
f̂j

)
‖∞ >

C∗∗

2

√
2jdjd

n

)
≤ 2e−C

′′jd. (B.20)

Henceforth, whenever required, C,C ′, C ′′ will be chosen to be large enough depending on
the known parameters of the problem, which in turn will imply that C∗∗ can be chosen large
enough depending on the known parameters of the problem as well. First note that, the
last term in the above display can be bounded rather crudely using the following lemma.

Lemma B.2. Assume γmin > smax. Then for C ′, C1, C2 > 0 (chosen large enough depending
on BU ,ψ

0
0,0,ψ

1
0,0) one has

sup
P∈P(s,γ)

PP,2
(
‖ĝ − g‖∞ > C ′

√
2j∗dj∗d

n

)
≤ C1(lmax − lmin)e−C2lmind.

The proof of Lemma B.2 can be argued as follows. Indeed, ĝ = ψ(g̃), where ψ(u) is
a C∞ function which is identically equal to u on [BL, BU ] and has universally bounded
first derivative. Therefore, it is enough to prove Lemma B.2 for g̃ instead of ĝ and thereby
invoking a simple first order Taylor series argument along with the fact that ψ(g) ≡ g owing
to the bounds on g. The crux of the argument for proving Lemma B.2 is that by Lemma

C.6, any ĝl for l ∈ T2 suitably concentrates around g in a radius of the order of
√

2ldld
n . The

proof of the lemma is therefore very similar to the proof of adaptivity of ĝ (by dividing into
cases where the chosen l̂ is larger and smaller than l∗ respectively and thereafter invoking
Lemma C.6) and therefore we omit the details.

Plugging in the result of Lemma B.2 into (B.19), and thereafter using the facts that
γmin > smax, lmax, jmax are both poly logarithmic in nature, along with equations (B.14),
(B.17), (B.18), and (B.20), we have the existence of an estimator f̃ depending onM,BU , BL, smin, smax, γmax,
such that for every (s, γ) ∈ [smin, smax]× [γmin, γmax],

sup
P∈P(s,γ)

EP ‖f̃ − f‖∞ ≤ C
(

n

log n

)− s
2s+d

,

with a large enough positive constant C depending on M,BU , BL, smin, γmax, ψ0
0,0,ψ

1
0,0.

The proof that f̃ ∈ H(s, C) with probability at least 1−1/n2 follows largely from the same
argument used to show g̃ ∈ H(γ,C), by the boundedness of Y and ĝ along with the fact
that ĝ ∈ H(γ,C) with high probability with γ > s.
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However this f̃ does not satisfy the desired point-wise bounds. To achieve this, as before,
let φ be a C∞ function such that ψ(x)|[BL,BU ] ≡ x while BL

2 ≤ ψ(x) ≤ 2BU for all x. Finally,

consider the estimator f̂(x) = ψ(f̃(x)). We note that |f(x)− f̂(x)| ≤ |f(x)− f̃(x)|— thus
f̂ is adaptive to the smoothness of the design density. The boundedness of the constructed
estimator follows from the construction. The proof of the fact that the constructed estimator
belongs to the Hölder space with the same smoothness, possibly of a different radius follows
once again from of Lemma B.1.

Finally, we obtain the tail bound (2.8) of ‖f̂−f‖∞. As in the proof of (2.5), we consider
the tail bound of ‖f̃−f‖∞ first, and then the desired tail bound of ‖f̂−f‖∞ follows directly
from the inequality |f(x)− f̂(x)| ≤ |f(x)− f̃(x)| almost surely.

PP

(
‖f̃ − f‖∞ ≥ (C̃†)

d
2s+d

(
n

log n

)− s
2s+d

)

= PP

(
‖f̃ − f‖∞ ≥ (C̃†)

d
2s+d

(
n

log n

)− s
2s+d

, ĵ ≤ j∗
)

+ PP

(
‖f̃ − f‖∞ ≥ (C̃†)

d
2s+d

(
n

log n

)− s
2s+d

, ĵ > j∗

)

≤ PP

(
‖f̃ − f‖∞ ≥ (C̃†)

d
2s+d

(
n

log n

)− s
2s+d

, ĵ ≤ j∗
)

+ PP
(
ĵ > j∗

)
.

As was shown before, for some η > 3, we have

PP
(
ĵ > j∗

)
=

jmax∑
j=j∗+1

PP
(
ĵ = j

)
≤

jmax∑
j=j∗+1

C ′ exp{−C ′′jd} . jmax

nη
.

log n

n3
.

Therefore we are left to bound the first term PP
(
‖f̃ − f‖∞ ≥ (C̃†)

d
2s+d

(
n

logn

)− s
2s+d

, ĵ ≤ j∗
)

,

proceeded as below. First, we write

PP

(
‖f̃ − f‖∞ ≥ (C̃†)

d
2s+d

(
n

log n

)− s
2s+d

, ĵ ≤ j∗
)

= EP,2

[
PP,1

(
‖f̃ − f‖∞ ≥ (C̃†)

d
2s+d

(
n

log n

)− s
2s+d

, ĵ ≤ j∗
)]

= EP,2

[
PP,1

(
‖f̃ − f‖∞ ≥ (C̃†)

d
2s+d

(
n

log n

)− s
2s+d

, ĵ ≤ j∗
)
1

{
‖ĝ − g‖∞ ≤ C ′

(
n

log n

)− s
2s+d

}]

+ EP,2

[
PP,1

(
‖f̃ − f‖∞ ≥ (C̃†)

d
2s+d

(
n

log n

)− s
2s+d

, ĵ ≤ j∗
)
1

{
‖ĝ − g‖∞ > C ′

(
n

log n

)− s
2s+d

}]

≤ EP,2

[
PP,1

(
‖f̃ − f‖∞ ≥ (C̃†)

d
2s+d

(
n

log n

)− s
2s+d

, ĵ ≤ j∗
)
1

{
‖ĝ − g‖∞ ≤ C ′

(
n

log n

)− s
2s+d

}]

+ PP,2

(
‖ĝ − g‖∞ > C ′

(
n

log n

)− s
2s+d

)

≤ EP,2

[
PP,1

(
‖f̃ − f‖∞ ≥ (C̃†)

d
2s+d

(
n

log n

)− s
2s+d

, ĵ ≤ j∗
)
1

{
‖ĝ − g‖∞ ≤ C ′

(
n

log n

)− s
2s+d

}]
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+
log n

n3

where the last inequality is implied by (2.5). Then within the event ‖ĝ−g‖∞ ≤ C ′
(

n
logn

)− s
2s+d

,

we have

PP,1

(
‖f̃ − f‖∞ ≥ (C̃†)

d
2s+d

(
n

log n

)− s
2s+d

, ĵ ≤ j∗
)

≤ PP,1

(
‖f̃ − f̂j∗‖∞ + ‖f̂j∗ − f‖∞ ≥ (C̃†)

d
2s+d

(
n

log n

)− s
2s+d

, ĵ ≤ j∗
)

≤ PP,1

(
‖f̂j∗ − f‖∞ ≥ (C̃†)

d
2s+d

(
n

log n

)− s
2s+d

− C∗∗
√

2j∗dj∗d

n

)

≤ PP,1

(
‖f̂j∗ − EP,1

(
f̂j∗
)
‖∞ + ‖EP,1

(
f̂j∗
)
− f‖∞ ≥ (C̃†)

d
2s+d

(
n

log n

)− s
2s+d

− C∗∗
√

2j∗dj∗d

n

)

≤ PP,1

 ‖f̂j∗ − EP,1

(
f̂j∗
)
‖∞ + ‖Π

(
f
(
g
ĝ − 1

)
|Vj∗

)
‖∞ ≥

(C̃†)
d

2s+d

(
n

logn

)− s
2s+d − C∗∗

√
2j∗dj∗d

n − C(M,ψ0
0,0,ψ

1
0,0)2

−j∗s


≤ PP,1

 ‖f̂j∗ − EP,1

(
f̂j∗
)
‖∞ + ‖Π

(
f
(
g
ĝ − 1

)
|Vj∗

)
‖∞ ≥

(C̃†)
d

2s+d

(
n

logn

)− s
2s+d − (C∗∗ + C(M,ψ0

0,0,ψ
1
0,0))

√
2j∗dj∗d

n


≤ PP,1

 ‖f̂j∗ − EP,1

(
f̂j∗
)
‖∞ + C(BU , BL,ψ

0
0,0,ψ

1
0,0)‖ĝ − g‖∞ ≥

(C̃†)
d

2s+d

(
n

logn

)− s
2s+d − (C∗∗ + C(M,ψ0

0,0,ψ
1
0,0))

√
2j∗dj∗d

n


≤ PP,1

 ‖f̂j∗ − EP,1

(
f̂j∗
)
‖∞ ≥(

(C̃†)
d

2s+d − C ′(BU , BL,ψ0
0,0,ψ

1
0,0)
)(

n
logn

)− s
2s+d − (C∗∗ + C(M,ψ0

0,0,ψ
1
0,0))

√
2j∗dj∗d

n


≤ PP,1

(
‖f̂j∗ − EP,1

(
f̂j∗
)
‖∞ ≥ C∗∗∗

√
2j∗dj∗d

n

)
≤ C1e

−C2j∗d .
1

nη

for some η > 3, where the second inequality is due to the definition of ĵ, the fourth inequality
follows from the property of wavelet basis of Cohen-Daubechies-Vial type, the fifth inequal-
ity is implied by the definition of j∗, the sixth inequality follows from the properties of ĝ, f, g,

the seventh inequality is a result of being restricted to the event ‖ĝ−g‖∞ ≤ C ′
(

n
logn

)− s
2s+d

,

the eighth inequality is again implied by the definition of j∗, and the ninth inequality follows
from the same argument as in (B.20).

Finally combining the above analysis, and j∗ < lmin, for sufficiently large C ′1, C
′
2 > 0,

we have

PP

(
‖f̃ − f‖∞ ≥ (C̃†)

d
2s+d

(
n

log n

)− s
2s+d

)
.

log n

n3
.
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Remark B.3. For the mean response functional in missing data models studied in Section
3.2, denote W = AY . There we need to estimate b(x) = EP [Y |A = 1,X = x] instead of
f(x) = EP [W |X = x]. Note that b(x) can be rewritten as:

b(x) =

∫
yf(y|a = 1,x)dy =

∫
w

g1(x)
f(y, a,x)dyda

where g1(x) = f(x|A = 1)P(A = 1), where f(x|A = 1) is the conditional density of X given
A = 1. We define an adaptive estimator b̂ of b in the same way as we define f̂ as follows.

Define Π(b|Vj)(x) := EP

[
W

g1(X)KVj (X,x)
]
, and b̂j(x) := 1

n

∑n
i=1

Wi
ĝ1(Xi)

KVj (Xi,x), where

ĝ1(x) is estimated in the same way as ĝ(x) except that ĝj(x) is replaced by ĝ1,j(X = x) =

1
n

2n∑
i=n+1

AiKVj (Xi, x). Then the above proof goes through if we replace all the corresponding

f by b.

Proof of Theorem 3.1

Proof.
(i) Proof of Upper Bound

The general scheme of the proof involves identifying a non-adaptive minimax esti-
mator of φ(P ) under the knowledge of P ∈ P(α,β,γ), demonstrating suitable conditional
bias and variance properties of this sequence of estimators, and thereafter invoking The-
orem 2.2 to conclude. This routine can be carried out as follows. Suppose that we ob-
serve n i.i.d. samples {Yi, Ai,Xi}ni=1. First divide the samples into two disjoint parts
D = D1

∐
D2 with sample sizes n1 = n(1 − 1/ log n) and n2 = n/ log n respectively. Fur-

ther divide the subsample D2 into two disjoint and equal-sized parts D2 = D21
∐
D22

with sample sizes n21 = n22 = n/(2 log n), where we estimate g by ĝ adaptively from
D22 (as in Theorem 2.7), and estimate a and b by â and b̂ respectively, adaptively from
D21 (as in Theorem 2.7). Let EP,S denote the expectation while samples with indices not
in S held fixed, for S ⊂ {1, 21, 22}. A first order influence function for φ(P ) at P is
given by (Y − b(X))(A − a(X)) − φ(P ) and a resulting first order estimator for φ(P ) is
1
n

∑n
i=1(Yi − b̂(Xi))(Ai − â(Xi)), computed from the subsample D1. This estimator has

a conditional bias
∫ (

(b(x)− b̂(x))(a(x)− â(x))
)
g(x)dx. Indeed for α+β

2 < d
2 , this bias

turns out to be suboptimal compared to the minimax rate of convergence of n
− 4α+4β

2α+2β+d

in mean squared loss. The most intuitive way to proceed is to estimate and correct
for the bias. If there exists a “Dirac-kernel” K(x1,x2) ∈ L2

(
[0, 1]d × [0, 1]d

)
such that∫

h(x1)K(x1,x2)dx2 = h(x1) almost surely x1 for all h ∈ L2([0, 1]d), then one can estimate

the bias term by 1
n(n−1)

∑
1≤i1 6=i2≤n

(Yi1−b̂(Xi1
))√

g(Xi1
)
K(Xi1 ,Xi2)

(Ai2−â(Xi2
))√

g(Xi2
)

, provided the marginal

density g was known. Indeed there are two concerns with the above suggestion. The first
one is the knowledge of g. This can be relatively easy to deal with by plugging in an suit-
able estimate ĝ–although there are some subtleties involved (refer to Section 4 for more on
this). The primary concern though is the non-existence of a “Dirac-kernel” of the above
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sort as an element of L2([0, 1]d) × L2([0, 1]d). This necessitates the following modification
where one works with projection kernels on suitable finite-dimensional linear subspace L of
L2([0, 1]d) which guarantees existence of such kernels when the domain space is restricted to
L. In particular, we work with the linear subspace Vk (defined in 5) where the choice of k is
guided by the balance between the bias and variance properties of the resulting estimator.
In particular, a choice of k is guided by the knowledge of the parameter space P(α,β,γ). For
any k ∈ K, this implies that our bias corrected second-order estimator of φ(P ) is given by

φ̂n,k =
1

n

n∑
i=1

(Yi − b̂(Xi))(Ai − â(Xi))

− 1

n(n− 1)

∑
1≤i1 6=i2≤n

S

(
(Yi1 − b̂(Xi1)))√

ĝ(Xi1)
KVk(Xi1 ,Xi2)

(Ai2 − â(Xi2))√
ĝ(Xi2)

)
.

Note that the division by ĝ is permitted by the properties guaranteed by Theorem 2.7.
Indeed this sequence of estimators is in the form of those considered by Theorem 2.2 with

L̃1(O) = (Y − b̂(X))(A− â(X)),

L̃2l(O) =
(Y − b̂(X)))√

ĝ(X)
, L̃2r(O) =

(A− â(X)))√
ĝ(X)

,

where by Theorem 2.7 max{|L̃1(O)|, |L̃2l(O)|, |L̃2r(O)|} ≤ C(BL, BU ). Therefore it remains
to show that the sequence φ̂n,k satisfies the bias and variance properties (A) and (B) nec-
essary for application of Theorem 2.2.

We first verify the conditional bias property. Utilizing the representation of the first
order bias as stated above, we have

|EP,1
(
φ̂n,k − φ(P )

)
|

=

∣∣∣∣∣∣∣
∫ (

(b(x)− b̂(x))(a(x)− â(x))
)
g(x)dx

−EP,1

[
S

(
(Y1−b̂(X1))√

ĝ(X1)
KVk(X1,X2)

(A2−â(X2))√
ĝ(X2)

)] ∣∣∣∣∣∣∣ . (B.21)

Now, using the notation δb(x) = b(x)− b̂(x) and δa(x) = a(x)− â(x), we have

EP,1

[
(Y1 − b̂(X1))√

ĝ(X1)
KVk(X1,X2)

(A2 − â(X2))√
ĝ(X2)

]

=

∫ ∫
δb(x1)g(x1)√

ĝ(x1)
KVk(x1,x2)

δa(x2)g(x2)√
ĝ(x2)

dx1dx2

=

∫
δb(x1)g(x1)√

ĝ(x1)
Π

(
δag√
ĝ
|Vk
)

(x1)dx1

=

∫
δb(x1)g(x1)√

ĝ(x1)

δa(x1)g(x1)√
ĝ(x1)

dx1
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−
∫
δb(x1)g(x1)√

ĝ(x1)
Π

(
δag√
ĝ
|V ⊥k

)
(x1)dx1

=

∫ (
(b(x)− b̂(x))(a(x)− â(x))

)
g(x)dx

+

∫
δa(x1)δb(x1)g

2(x1)

(
1

ĝ(x1)
− 1

g(x1)

)
dx1

−
∫
δb(x1)g(x1)√

ĝ(x1)
Π

(
δag√
ĝ
|V ⊥k

)
(x1)dx1. (B.22)

Plugging (B.22) into (B.21), we get,

|EP,1
(
φ̂n,k − φ(P )

)
|

=

∣∣∣∣∣∣
∫
δa(x1)δb(x1)g

2(x1)
(

1
ĝ(x1)

− 1
g(x1)

)
dx1

−
∫ δb(x1)g(x1)√

ĝ(x1)
Π
(
δag√
ĝ
|V ⊥k

)
(x1)dx1

∣∣∣∣∣∣ . (B.23)

Now, by repeatedly applying Cauchy-Schwarz inequality and invoking results in Theorem
2.7, we have

∣∣∣∣∫ δa(x1)δb(x1)g
2(x1)

(
1

ĝ(x1)
− 1

g(x1)

)
dx1

∣∣∣∣
≤
(∫

g4(x1)

g2(x1)ĝ2(x1)
(ĝ(x1)− g(x1))

2 dx1

) 1
2

×
(∫

(â(x1)− a(x1))
4 dx1

) 1
4
(∫ (

b̂(x1)− b(x1)
)4
dx1

) 1
4

≤
B2
U

B2
L

‖ĝ − g‖2 ‖â− a‖4
∥∥∥b̂− b∥∥∥

4

≤
B2
U

B2
L

C
d

2γ+d
+ d

2α+d
+ d

2β+d

(
n2/2

log (n2/2)

)− α
2α+d

− β
2β+d

− γ
2γ+d

. (B.24)

Moreover, when restricted to the “good” event

I2;b,a,g(n2) :=

O ∈ D2:
‖b̂− b‖∞ ≤ C

d
2β+d

b

(
n2/2

log(n2/2)

)− β
2β+d ∩ ‖â− a‖∞ ≤ C

d
2α+d
a

(
n2/2

log (n2/2)

)− α
2α+d ∩

‖ĝ − g‖∞ ≤ C̃
d

2α+d

(
n2/2

log (n2/2)

)− γ
2γ+d ∩ ĝ ∈ H(γ,C) ∩ b̂ ∈ H(β,C) ∩ â ∈ H(α,C)


with probability at least 1 − C logn2

nη2
for some absolute constant C and η > 2 by Theorem

2.7, ∣∣∣∣∣
∫
δb(x1)g(x1)√

ĝ(x1)
Π

(
δag√
ĝ
|V ⊥k

)
(x1)dx1

∣∣∣∣∣
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=

∣∣∣∣∫ Π

(
δbg√
ĝ
|V ⊥k

)
(x1)Π

(
δag√
ĝ
|V ⊥k

)
(x1)dx1

∣∣∣∣
≤
∥∥∥∥Π

(
δbg√
ĝ
|V ⊥k

)∥∥∥∥
2

∥∥∥∥Π

(
δag√
ĝ
|V ⊥k

)∥∥∥∥
2

≤ Ck−
β+α
d , (B.25)

where the last line follows for some constant C (depending on M,BU , BL, γmax) by Theorem
2.7, definition in equation (5.5), and noting that ‖Π (h|Vj) ‖∞ ≤ C(BU ) if ‖h‖∞ ≤ BU .
Therefore, one has combining (B.23), (B.24), and (B.25), that for a constant C (depending
on M,BU , BL, γmin, γmax) and γmin(ε) := γmin

1+ε .∣∣∣EP,1 (φ̂n,k − φ(P )
)∣∣∣

≤ C

[(
n2/2

log (n2/2)

)− α
2α+d

− β
2β+d

− γ
2γ+d

+ k−
β+α
d

]

≤ C
[
(n2/2)

− α
2α+d

− β
2β+d

− γmin(ε)

2γmin(ε)+d (n2/2)
γmin(ε)

2γmin(ε)+d
− γ

2γ+d log (n2/2)
α

2α+d
+ β

2β+d
+ γ

2γ+d + k−
β+α
d

]
≤ C

[
(n2/2)

− α
2α+d

− β
2β+d

− γmin(ε)

2γmin(ε)+d (n2/2)
− γ−γmin(ε)

2γ+d log3 (n2/2) + k−
β+α
d

]
≤ C

[
(n2/2)

− α
2α+d

− β
2β+d

− γmin(ε)

2γmin(ε)+d (n2/2)
− εγmin

(1+ε)(2γmax+d) log3 (n2/2) + k−
β+α
d

]
≤ C

[
n
− α

2α+d
− β

2β+d
− γmin(ε)

2γmin(ε)+d

2 n
− εγmin

(1+ε)(2γmax+d)

2 log3 n2 + k−
β+α
d

]

≤ C
[
(n/ log n)

− α
2α+d

− β
2β+d

− γmin(ε)

2γmin(ε)+d (n/ log n)
− εγmin

(1+ε)(2γmax+d) log3 (n/ log n) + k−
β+α
d

]
≤ C

[
n
− α

2α+d
− β

2β+d
− γmin(ε)

2γmin(ε)+d + k−
β+α
d

]
,

where the constant C changes its value from line to line. Now, letting θ = (α, β, γ),

f1(θ) = α+β
2 and f2(θ) = − α

2α+d −
β

2β+d −
γmin(ε)

2γmin(ε)+d
we have that the conditional bias

property (A) corresponding to Theorem 2.2 holds with the given choice of f1 and f2 and a
constant C depending on M,BU , BL, γmax for {P ∈ Pθ: f1(θ) = α+β

2 , f2(θ) >
2α+2β

2α+2β+d}.
The proof of the validity of the conditional variance property corresponding to Theorem

2.2 is easy to derive by standard Hoeffding decomposition of φ̂n,k followed by applications
of moment bounds in Lemmas C.2 and C.5. For calculations of similar flavor, refer to proof
of Theorem 1.3 in Mukherjee and Sen (2018). Note that this is the step where we have
used the fact that α+β

2 ≤ d
4 , since otherwise the linear term dominates resulting in O( 1

n)
the variance. Then invoking Theorem 2.2, we have

sup
P∈Pθ :

f1(θ)=
α+β
2 ,f2(θ)>

2α+2β
2α+2β+d

EP

(
φ̂n,k̂ − φ(P )

)2
≤ C

(√
log n

n

) 4α+4β
d+2α+2β

.
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Noting that for θ ∈ Θ, since γmin > 2(1 + ε) max{α, β}, one has automatically, f2(θ) >
2α+2β

2α+2β+d , which completes the proof of the upper bound.

(ii) Proof of Lower Bound
To prove a lower bound matching the upper bound above, note that φ(P ) = EP (covP (Y,A|X)) =
EP (AY ) − EP (a(X)b(X)). Indeed, EP (AY ) can be estimated at

√
n-rate by sample av-

erage of AiYi. Therefore, it suffices to prove a lower bound for adaptive estimation of
EP (a(X)b(X)) (our proof continues to hold for EP (covP (Y,A|X)) since the perturbations
created for the lower bound of EP (AY ) is trivial and we only present the lower bound for
estimation of the most important term of its estimation). Let c(X) = EP (Y |A = 1,X) −
EP (Y |A = 0,X), which implies owing to the binary nature of A that EP (Y |A,X) =
c(X) (A− a(X)) + b(X). For the purpose of lower bound it is convenient to parametrize
the data generating mechanism by (a, b, c, g), which implies that φ(P ) =

∫
a(x)b(x)g(x)dx.

With this parametrization, we show that the same lower bound holds in a smaller class of
problems where g ≡ 1 on [0, 1]d. Specifically consider

Θsub =


P = (a, b, c, g):

a ∈ H(α,M), b ∈ H(β,M), α+β
2 < d

4 ,
g ≡ 1, (a(x), b(x)) ∈ [BL, BU ]2 ∀ x ∈ [0, 1]d

 .

The likelihood of O ∼ P for P ∈ Θsub can then be written as

a(X)A(1− a(X))1−A

× (c(X)(1− a(X)) + b(X))Y A (1− c(X)(1− a(X))− b(X))(1−Y )A

× (−c(X)a(X) + b(X))Y (1−A) (1 + c(X)a(X)− b(X))(1−Y )(1−A) .

(B.26)

Let for some (α, β, γ) tuple in the original problem Θ, one has

sup
P∈P(α,β,γ)

EP

(
φ̂− φ(P )

)2
≤ C

(√
log n

n

) 4α+4β
d+2α+2β

.

Now, let H: [0, 1]d → R be a C∞ function supported on
[
0, 12
]d

such that
∫
H(x)dx = 0

and
∫
H2(x)dx = 1 and let for k ∈ N (to be decided later) Ω1, . . . ,Ωk be the translations

of the cube k−
1
d

[
0, 12
]d

that are disjoint and contained in [0, 1]d. Let x1, . . . ,xk denote the
bottom left corners of these cubes.

Assume first that α < β. We set for λ = (λ1, . . . , λk) ∈ {−1,+1}k and α ≤ β′ < β,

aλ(x) =
1

2
+
(1

k

)α
d

k∑
j=1

λjH
(

(x− xj)k
1
d

)
,

bλ(x) =
1

2
+
(1

k

)β′
d

k∑
j=1

λjH
(

(x− xj)k
1
d

)
,

cλ(x) =
1
2 − bλ(x)

1− aλ(x)
.
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A properly chosen H guarantees aλ ∈ H(α,M) and bλ ∈ H(β′,M) for all λ. Let

Θ0 =

{
Pn:P =

(
aλ,

1

2
, 0, 1

)
, λ ∈ {−1,+1}k

}
,

and

Θ1 =
{
Pn:P = (aλ, bλ, cλ, 1), λ ∈ {−1,+1}k

}
.

Finally let Θtest = Θ0 ∪ Θ1. Let π0 and π1 be uniform priors on Θ0 and Θ1 respectively.

It is easy to check that by our choice of H, φ(P ) = 1
4 on Θ0 and φ(P ) = 1

4 +
(
1
k

)α+β′
d

for P ∈ Θ1. Therefore, using notation from Lemma C.1, µ1 = 1
4 , µ2 = 1

4 +
(
1
k

)α+β′
d , and

σ1 = σ2 = 0. Since Θ0 ⊆ P (α, β, γ), we must have that worst case error of estimation

over Θ0 is bounded by C
(√

logn
n

) 4α+4β
d+2α+2β

. Therefore, the π0 average bias over Θ0 is also

bounded by C
(√

logn
n

) 2α+2β
d+2α+2β

. This implies by Lemma C.1, that the π1 average bias over

Θ1 (and hence the worst case bias over Θ1) is bounded below by

(
1

k

)α+β′
d

− C
(√

log n

n

) 2α+2β
d+2α+2β

− C
(√

log n

n

) 2α+2β
d+2α+2β

η, (B.27)

where η is the chi-square divergence between the probability measures
∫
Pndπ0(P

n) and∫
Pndπ1(P

n). We now bound η using Proposition 2.6.
To put ourselves in the notation of Proposition 2.6, let for λ ∈ {−1,+1}k, Pλ and Qλ

be the probability measures identified from Θ0 and Θ1 respectively.
Therefore, with χj = {0, 1} × {0, 1} × Ωj , we indeed have for all j = 1, . . . , k, Pλ(χj) =

Qλ(χj) = pj where there exists a constant c such that pj = c
k .

Letting π be the uniform prior over {−1,+1}k it is immediate that η = χ2
(∫
Pλd(π(λ)),

∫
Qλd(π(λ))

)
.

It now follows by calculations similar to the proof of Theorem 4.1 in Robins et al.
(2009b), that for a constant C ′ > 0

χ2

(∫
Pλd(π(λ)),

∫
Qλd(π(λ))

)
≤ exp

(
C ′
n2

k

(
k−

4β′
d + k−4

α+β′
2d

))
− 1.

Now choosing k =
(

n√
c∗ logn

) 2d
d+2α+2β′

, we have

χ2

(∫
Pλd(π(λ)),

∫
Qλd(π(λ))

)
≤ n2C′c∗ − 1.

Therefore choosing c∗ such that 2C ′c∗+ 2α+2β′

2α+2β′+d <
2α+2β

2α+2β+d , we have the desired result by
(B.27). The proof for α > β is similar after changing various quantities to:

aλ(x) =
1

2
+
(1

k

)α′
d

k∑
j=1

λjH
(

(x− xj)k
1
d

)
, β ≤ α′ < α,
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bλ(x) =
1

2
+
(1

k

)β
d

k∑
j=1

λjH
(

(x− xj)k
1
d

)
,

cλ(X) =
(12 − aλ(X))bλ(X)

aλ(X)(1− aλ(X))
,

Θ0 =

{
Pn:P =

(
1

2
, bλ, 0, 1

)
:λ ∈ {−1,+1}k

}
,

and

Θ1 =
{
Pn:P = (aλ, bλ, cλ, 1):λ ∈ {−1,+1}k

}
.

For the case of α = β, choose α′ < α and therefore, α′ < β and thereafter work with

aλ(x) =
1

2
+
(1

k

)α′
d

k∑
j=1

λjH
(

(x− xj)k
1
d

)
,

bλ(x) =
1

2
+
(1

k

)β
d

k∑
j=1

λjH
(

(x− xj)k
1
d

)
,

cλ(x) =
1
2 − bλ(x)

1− aλ(x)
.

Θ0 =

{
Pn:P =

(
aλ,

1

2
, 0, 1

)
:λ ∈ {−1,+1}k

}
,

and

Θ1 =
{
Pn:P = (aλ, bλ, cλ, 1):λ ∈ {−1,+1}k

}
.

This completes the proof of the lower bound.

Proof of Theorem 3.3

Proof. (i) Proof of Upper Bound
The general scheme of the proof is the same as that of Theorem 3.1 and involves iden-
tifying a non-adaptive minimax estimator of φ(P ) under the knowledge of P ∈ P(α,β,γ),
demonstrating suitable bias and variance properties of this sequence of estimators, and
thereafter invoking Theorem 2.2 to conclude. This routine can be carried out as follows.
We observe n i.i.d. samples {YiAi, Ai,Xi}ni=1. First divide the samples into two disjoint
parts D = D1

∐
D2 with sample sizes n1 = n(1 − 1/ log n) and n2 = n/ log n respectively.

Further divide the subsample D2 into two disjoint and equal-sized parts D2 = D21
∐
D22

with sample sizes n21 = n22 = n/(2 log n). We estimate E (A|x) and b by Ê (A|x) and
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b̂(x) := Ê (Y |A = 1,x) respectively, adaptively from D21 (as in Theorem 2.7). Note that
g(X) = f(X|A = 1)P (A = 1). Therefore, also estimate PP (A = 1) by π̂ := 1

n22

∑
i∈D22

Ai

i.e. the sample average of A’s from D22 and f̂1 is estimated as an estimator of f(X|A = 1)
also from D22 using density estimation technique among observations with A = 1. Finally,
our estimates of a and g are â(x) = 1

Ê(A|x)
and ĝ = f̂1π̂ respectively. In the following,

we will freely use Theorem 2.7, for desired properties of â, b̂, and ĝ. In particular, follow-
ing the proof of Theorem 2.7, we can actually assume that our choice of ĝ also satisfies
the necessary conditions of boundedness away from 0 and ∞, as well as membership in
H(γ,C) with high probability for a large enough C > 0. A first order influence function
for φ(P ) at P is given by Aa(X)(Y − b(X)) + b(X) − φ(P ) and a resulting first order
estimator for φ(P ) is 1

n1

∑
i∈D1

Aiâ(Xi)(Yi − b̂(Xi)) + b̂(Xi). This estimator has a bias

−EP,2
∫ (

(b(x)− b̂(x))(a(x)− â(x))
)
g(x)dx. Indeed for α+β

2 < d
2 , this bias turns out to

be suboptimal compared to the minimax rate of convergence of n
− 4α+4β

2α+2β+d in mean squared
loss. Similar to the proof of Theorem 3.1 we use a second-order bias corrected estimator as
follows.

Once again we work with the linear subspace Vk (defined in 5) where the choice of k is
guided by the balance between the conditional bias and variance properties of the resulting
estimator. In particular, a choice of k is guided by the knowledge of the parameter space
P(α,β,γ). For any k ∈ K, our bias corrected second-order estimator of φ(P ) is given by

φ̂n,k =
1

n1

n1∑
i=1

Aiâ(Xi)(Yi − b̂(Xi)) + b̂(Xi)

+
1

n1(n1 − 1)

∑
1≤i1 6=i2≤n1

S

(
Ai1(Yi1 − b̂(Xi1)))√

ĝ(Xi1)
KVk(Xi1 ,Xi2)

(Ai2 â(Xi2)− 1)√
ĝ(Xi2)

)

Note that division by ĝ is permitted by the properties guaranteed by Theorem 2.7. Indeed
this sequence of estimators is in the form of those considered by Theorem 2.2 with

L̃1(O) = Aâ(X)(Y − b̂(X)) + b̂(X),

L̃2l(O) = −A(Y − b̂(X)))√
ĝ(X)

, L̃2r(O) =
(Aâ(X)− 1)√

ĝ(X)
,

where by Theorem 2.7 max{|L̃1(O)|, |L̃2l(O)|, |L̃2r(O)|} ≤ C(BL, BU ). Therefore it remains
to show that the sequence φ̂n,k satisfies the conditional bias and variance properties (A) and
(B) necessary for application of Theorem 2.2. Using the conditional independence of Y and
A given X, one has the following calculations exactly parallel to that in proof of Theorem
3.1, that for a constant C (depending on M,BU , BL, γmin, γmax), within the “good” event

I2;b,a,g(n2) :=

O ∈ D2:
‖b̂− b‖∞ ≤ C

d
2βb+d

b

(
n2/2

log(n2/2)

)− βb
2βb+d ∩ ‖â− a‖∞ ≤ C

d
2α+d
a

(
n2/2

log (n2/2)

)− α
2α+d ∩

‖ĝ − g‖∞ ≤ C̃
d

2α+d

(
n2/2

log (n2/2)

)− γ
2γ+d ∩ ĝ ∈ H(γ,C) ∩ b̂ ∈ H(β,C) ∩ â ∈ H(α,C)


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with probability at least 1 − C logn2

nη2
for some absolute constant C and η > 2 by Theorem

2.7, ∣∣∣EP,1 (φ̂n,k − φ(P )
)∣∣∣ ≤ C [n− α

2α+d
− β

2β+d
− γmin(ε)

2γmin(ε)+d + k−
α+β
d

]
,

where γmin(ε) := γmin
1+ε . Now, letting θ = (α, β, γ), f1(θ) = α+β

2 and f2(θ) = − α
2α+d −

β
2β+d −

γmin(ε)
2γmin(ε)+d

we have the bias property corresponding to Theorem 2.2 holds with the given

choice of f1 and f2 and a constant C depending on M,BU , BL, γmax for {P ∈ Pθ: f1(θ) =
α+β
2 , f2(θ) >

2α+2β
2α+2β+d}. The proof of the validity of the conditional variance property corre-

sponding to Theorem 2.2 is once again easy to derive by standard Hoeffding decomposition
of φ̂n,k followed by applications of moment bounds in Lemmas C.2 and C.5.

sup
P∈Pθ :

f1(θ)=
α+β
2 ,f2(θ)>

2α+2β
2α+2β+d

EP

(
φ̂n,k̂ − φ(P )

)2
≤ 8C

(√
log n

n

) 4α+4β
d+2α+2β

.

Noting that for θ ∈ Θ, since γmin > 2(1 + ε) max{α, β}, one has automatically, f2(θ) >
2α+2β

2α+2β+d , completes the proof of the upper bound.

(ii) Proof of Lower Bound
First note that we can parametrize our distributions by the tuple of functions (a, b, g). We
show that the same lower bound holds in a smaller class of problems where g ≡ 1/2 on
[0, 1]d. Specifically consider

Θsub =


P = (a, b, g):

a ∈ H(α,M), b ∈ H(β,M), α+β
2 < d

4 ,
g ≡ 1/2, (a(x), b(x)) ∈ [BL, BU ]2 ∀ x ∈ [0, 1]d

 .

The observed data likelihood of O ∼ P for P ∈ Θsub can then be written as

(a(X)− 1)1−A
(
bY (X)(1− b(X))1−Y

)A
. (B.28)

Let for some (α, β, γ) tuple in the original problem Θ, one has

sup
P∈P(α,β,γ)

EP

(
φ̂− φ(P )

)2
≤ C

(√
log n

n

) 4α+4β
d+2α+2β

.

Now, let H: [0, 1]d → R be a C∞ function supported on
[
0, 12
]d

such that
∫
H(x)dx = 0

and
∫
H2(x)dx = 1 and let for k ∈ N (to be decided later) Ω1, . . . ,Ωk be the translations

of the cube k−
1
d

[
0, 12
]d

that are disjoint and contained in [0, 1]d. Let x1, . . . ,xk denote the
bottom left corners of these cubes.

Assume first that α < β. We set for λ = (λ1, . . . , λk) ∈ {−1,+1}k and α ≤ β′ < β,

aλ(x) = 2 +
(1

k

)α
d

k∑
j=1

λjH
(

(x− xj)k
1
d

)
,
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bλ(x) =
1

2
+
(1

k

)β′
d

k∑
j=1

λjH
(

(x− xj)k
1
d

)
.

A properly chosen H guarantees aλ ∈ H(α,M) and bλ ∈ H(β′,M) for all λ. Let

Θ0 =
{
Pn:P = (aλ, 1/2, 1/2) :λ ∈ {−1,+1}k

}
,

and

Θ1 =
{
Pn:P = (aλ, bλ, 1/2):λ ∈ {−1,+1}k

}
.

Finally let Θtest = Θ0 ∪ Θ1. Let π0 and π1 be uniform priors on Θ0 and Θ1 respectively.

It is easy to check that by our choice of H, φ(P ) = 1
2 on Θ0 and φ(P ) = 1

2 + 1
2

(
1
k

)α+β′
d

for P ∈ Θ1. Therefore, using notation from Lemma C.1, µ1 = 1
2 , µ2 = 1

2 + 1
2

(
1
k

)α+β′
d , and

σ1 = σ2 = 0. Since Θ0 ⊆ P (α, β, γ), we must have that worst case error of estimation

over Θ0 is bounded by C
(√

logn
n

) 4α+4β
d+2α+2β

. Therefore, the π0 average bias over Θ0 is also

bounded by C
(√

logn
n

) 2α+2β
d+2α+2β

. This implies by Lemma C.1, that the π1 average bias over

Θ1 (and hence the worst case bias over Θ1) is bounded below by a constant multiple of

(
1

k

)α+β′
d

−
(√

log n

n

) 2α+2β
d+2α+2β

−
(√

log n

n

) 2α+2β
d+2α+2β

η, (B.29)

where η is the chi-square divergence between the probability measures
∫
Pndπ0(P

n) and∫
Pndπ1(P

n). We now bound η using Proposition 2.6.

To put ourselves in the notation of Proposition 2.6, let for λ ∈ {−1,+1}k, Pλ and Qλ
be the probability measures identified from Θ0 and Θ1 respectively.

Therefore, with χj = {0, 1} × {0, 1} × Ωj , we indeed have for all j = 1, . . . , k, Pλ(χj) =
Qλ(χj) = pj where there exists a constant c such that pj = c

k .

Letting π be the uniform prior over {−1,+1}k it is immediate that η = χ2
(∫
Pλd(π(λ)),

∫
Qλd(π(λ))

)
.

It now follows by calculations similar to the proof of Theorem 4.1 in Robins et al.
(2009b), that for a constant C ′ > 0

χ2

(∫
Pλd(π(λ)),

∫
Qλd(π(λ))

)
≤ exp

(
C ′
n2

k

(
k−

4β′
d + k−4

α+β′
2d

))
− 1.

Now choosing k =
(

n√
c∗ logn

) 2d
d+2α+2β′

, we have

χ2

(∫
Pλd(π(λ)),

∫
Qλd(π(λ))

)
≤ n2C′c∗ − 1.
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Therefore choosing c∗ such that 2C ′c∗+ 2α+2β′

2α+2β′+d <
2α+2β

2α+2β+d , we have the desired result by
(B.27). The proof for α > β is similar after changing various quantities to:

aλ(x) = 2 +
(1

k

)α′
d

k∑
j=1

λjH
(

(x− xj)k
1
d

)
, β ≤ α′ < α,

bλ(x) =
1

2
+
(1

k

)β
d

k∑
j=1

λjH
(

(x− xj)k
1
d

)
.

Θ0 =
{
Pn:P = (2, bλ, 1/2) :λ ∈ {−1,+1}k

}
,

and

Θ1 =
{
Pn:P = (aλ, bλ, 1/2):λ ∈ {−1,+1}k

}
.

For the case of α = β, choose α′ < α and therefore, α′ < β and thereafter work with

aλ(x) = 2 +
(1

k

)α′
d

k∑
j=1

λjH
(

(x− xj)k
1
d

)
,

bλ(x) =
1

2
+
(1

k

)β
d

k∑
j=1

λjH
(

(x− xj)k
1
d

)

Θ0 =
{
Pn:P = (aλ, 1/2, 1/2) :λ ∈ {−1,+1}k

}
,

and

Θ1 =
{
Pn:P = (aλ, bλ, 1/2):λ ∈ {−1,+1}k

}
.

This completes the proof of the lower bound.

Proof of Theorem 3.4

Proof. (i) Proof of Upper Bound
We observe n i.i.d. samples {Yi,Xi}ni=1. First divide the samples into two disjoint parts
D = D1

∐
D2 with sample sizes n1 = n(1−1/ log n) and n2 = n/ log n respectively. Further

divide the subsample D2 into two disjoint and equal-sized parts D2 = D21
∐
D22 with sample

sizes n21 = n22 = n/(2 log n). We estimate g by ĝ adaptively from D22 (as in Theorem 2.7),
and estimate b by b̂, adaptively from D21 (as in Theorem 2.7). For any k ∈ K, consider

φ̂n,k =
1

n

n∑
i=1

(2Yi − b̂(Xi))b̂(Xi)
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+
1

n(n− 1)

∑
1≤i1 6=i2≤n

(Yi1 − b̂(Xi1)))√
ĝ(Xi1)

KVk(Xi1 ,Xi2)
(Yi2 − b̂(Xi2))√

ĝ(Xi2)

Indeed this sequence of estimators is in the form of those considered by Theorem 2.2
with

L̃1(O) = (2Y − b̂(X))b̂(X),

L̃2l(O) = −(Y − b̂(X)))√
ĝ(X)

, L̃2r(O) =
(Y − b̂(X)))√

ĝ(X)
,

where by Theorem 2.7 max{|L̃1(O)|, |L̃2l(O)|, |L̃2r(O)|} ≤ C(BL, BU ). Therefore it remains
to show that the sequence φ̂n,k satisfies the bias and variance properties (A) and (B) nec-
essary for application of Theorem 2.2. We first verify the bias property. Utilizing the
representation of the first order bias as stated above, we have

|EP,1
(
φ̂n,k − φ(P )

)
|

=

∣∣∣∣∣∣∣
∫ (

(b(x)− b̂(x)
)2
g(x)dx

−EP,1

[
S

(
(Y1−b̂(X1)))√

ĝ(X1)
KVj (X1,X2)

(Y2−b̂(X2))√
ĝ(X2)

)]
∣∣∣∣∣∣∣

(B.30)

Now, by calculations similar to the proof of Theorem 3.1, one can show that for a constant
C (depending on M,BU , BL, γmin, γmax), within the “good” event

I2;b,g(n2) :=

O ∈ D2:
‖b̂− b‖∞ ≤ C

d
2βb+d

b

(
n2/2

log(n2/2)

)− βb
2βb+d ∩ ‖ĝ − g‖∞ ≤ C̃

d
2γ+d

(
n2/2

log (n2/2)

)− γ
2γ+d

∩ ĝ ∈ H(γ,C) ∩ b̂ ∈ H(β,C)

 .

with probability at least 1 − C logn2

nη2
for some absolute constant C and η > 2 by Theorem

2.7, ∣∣∣EP,1 (φ̂n,k − φ(P )
)∣∣∣

≤ C
[
n
− 2β

2β+d
− γmin(ε)

2γmin(ε)+d + k−
α+β
d

]
, γmin(ε) :=

γmin

1 + ε

Now, letting θ = (β, γ), f1(θ) = β and f2(θ) = − 2β
2β+d −

γmin(ε)
2γmin(ε)+d

, the rest of the proof
follows along the lines of the proof of Theorem 3.1.
(ii) Proof of Lower Bound
The proof of the lower bound is very similar to that of the lower bound proof in Theorem
3.1, after identifying Y = A almost surely P, and hence is omitted.

Appendix C. Technical Lemmas

C.1 Constrained Risk Inequality

A main tool for producing adaptive lower bound arguments is a general version of con-
strained risk inequality due to Cai and Low (2011), obtained as an extension of Brown and
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Low (1996). For the sake of completeness, we begin with a summary of these results. Sup-
pose Z has distribution Pθ where θ belongs to some parameter space Θ. Let Q̂ = Q̂(Z) be
an estimator of a function Q(θ) based on Z with bias B(θ) := Eθ(Q̂)−Q(θ). Now suppose
that Θ0 and Θ1 form a disjoint partition of Θ with priors π0 and π1 supported on them
respectively. Also, let µi =

∫
Q(θ)dπi and σ2i =

∫
(Q(θ) − µi)2dπi, i = 0, 1 be the mean

and variance of Q(θ) under the two priors π0 and π1. Letting γi be the marginal density
w.r.t. some common dominating measure of Z under πi, i = 0, 1, let us denote by Eγ0(g(Z))
the expectation of g(Z) w.r.t. the marginal density of Z under prior π0 and distinguish it
from Eθ(g(Z)), which is the expectation under Pθ. Lastly, denote the chi-square divergence

between γ0 and γ1 by χ =

{
Eγ0

(
γ1
γ0
− 1
)2} 1

2

. Then we have the following result.

Lemma C.1 (Cai and Low (2011)). If
∫

Eθ

(
Q̂(Z)−Q(θ)

)2
dπ0(θ) ≤ ε2, then∣∣∣∣∫ B(θ)dπ1(θ)−

∫
B(θ)dπ0(θ)

∣∣∣∣ ≥ |µ1 − µ0| − (ε+ σ0)χ.

Since the maximum risk is always at least as large as the average risk, this immediately
yields a lower bound on the minimax risk.

C.2 Tail and Moment Bounds

The U-statistics appearing in this paper are mostly based on projection kernels sandwiched
between arbitrary bounded functions. This necessitates generalizing the U-statistics bounds
obtained in Bull and Nickl (2013) as in Mukherjee and Sen (2018) .

Lemma C.2. O1, . . . ,On ∼ P are i.i.d. random vectors of observations such that Xi ∈ [0, 1]d

is a sub-vector of Oi for each i. There exists a constant C := C(B,BU , J0) > 0 such that
the following hold

(i)

P
(∣∣∣ 1

n(n− 1)

∑
i1 6=i2

R (Oi1 ,Oi2)− E (R (O1,O2))
∣∣∣ ≥ t) (C.1)

≤ e−Cnt2 + e
−Ct

2

a21 + e
−Ct
a2 + e

−C
√
t√

a3 ,

(ii)

E

| 1

n(n− 1)

∑
i1 6=i2

R (Oi1 ,Oi2)− E (R (O1,O2)) |2q
 ≤ (C 2jd

n2

)q
,

where a1 = 1
n−12

jd
2 , a2 = 1

n−1

(√
2jd

n + 1

)
, a3 = 1

n−1

(√
2jd

n + 2jd

n

)
,

R(O1,O2) = S
(
L̃2l(O1)KVj (X1,X2) L̃2r(O2)

)
with max{|L̃2l(O)|, |L̃2r(O)|} ≤ B , almost

surely O, and Xi ∈ [0, 1]d are i.i.d. with density g such that g(x) ≤ BU for all x ∈ [0, 1]d.
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Proof. The proof of part (i) can be found in Mukherjee and Sen (2018). However, for the
sake of completeness we provide the proof here again. We do the proof for the special case
where L̃2l = L̃2r = L. However, the details of the argument show that the proof continues
to hold to symmetrized U-statistics as defined here.

The proof hinges on the following tail bound for second-order degenerate U-statistics
(Giné and Nickl, 2016) which is due to Giné et al. (2000) with constants by Houdré and
Reynaud-Bouret (2003) and is crucial for our calculations.

Lemma C.3. Let Un be a degenerate U-statistic of order 2 with kernel R based on an i.i.d.
sample W1, . . . ,Wn. Then there exists a constant C independent of n, such that

P [|
∑
i 6=j

R(W1,W2)| ≥ C(Λ1

√
u+ Λ2u+ Λ3u

3/2 + Λ4u
2)] ≤ 6 exp(−u),

where, we have,

Λ2
1 =

n(n− 1)

2
E[R2(W1,W2)],

Λ2 = n sup{E[R(W1,W2)ζ(W1)ξ(W2)]:E[ζ2(W1)] ≤ 1, E[ξ2(W1)] ≤ 1},

Λ3 = ‖nE[R2(W1, ·)‖
1
2∞,

Λ4 = ‖R‖∞.

We use this lemma to establish Lemma C.2. By Hoeffding’s decomposition one has

1

n(n− 1)

∑
i1 6=i2

R (Oi1 ,Oi2)− E (R (O1,O2))

=
2

n

n∑
i1=1

[
EOi1

R (Oi1 ,Oi2)− ER (Oi1 ,Oi2)
]

+
1

n(n− 1)

∑
i1 6=i2

[
R (Oi1 ,Oi2)− EOi1

R (Oi1 ,Oi2)

−EOi2
R (Oi1 ,Oi2) + ER (Oi1 ,Oi2)

]
:= T1 + T2

C.2.1 Analysis of T1

Noting that T1 = 2
n

∑n
i1=1H(Oi1) where H(Oi1) = E (R (Oi1 ,Oi2 |Oi1))−ER (Oi1 ,Oi2) we

control T1 by standard Hoeffding’s inequality. First note that,

|H(Oi1)|

= |
∑
k∈Zj

∑
v∈{0,1}d

[
L (Oi1)ψvjk (Xi1) E

(
ψvjk (Xi2)L (Oi2)

)
−
(
E
(
ψvjk (Xi2)L (Oi2)

))2] |
≤
∑
k∈Zj

∑
v∈{0,1}d

|L (Oi1)ψvjk (Xi1) E
(
ψvjk (Xi2)L (Oi2)

)
|

+
∑
k∈Zj

∑
v∈{0,1}d

(
E
(
ψvjk (Xi2)L (Oi2)

))2
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First, by standard compactness argument for the wavelet bases,

|E
(
ψvjk (X)L(O)

)
| ≤

∫
|E (L(O)|X = x)

(
2
jd
2

d∏
l=1

ψvl00(2
jxl − kl)

)
||g(x)|dx

≤ C(B,BU , J0)2
− jd

2 . (C.2)

Therefore, ∑
k∈Zj

∑
v∈{0,1}d

(
E
(
ψvjk (Xi2)L (Oi2)

))2 ≤ C(B,BU , J0). (C.3)

Also, using the fact that for each fixed x ∈ [0, 1]d, the number of indices k ∈ Zj such that
x belongs to support of at least one of ψvjk is bounded by a constant depending only on ψ0

00

and ψ1
00. Therefore combining (C.2) and (C.3),∑

k∈Zj

∑
v∈{0,1}d

|L (Oi1)ψvjk (Xi1) E
(
ψvjk (Xi2)L (Oi2)

)
|

≤ C(B,BU , J0)2
− jd

2 2
jd
2 = C(B,BU , J0).

(C.4)

Therefore, by (C.4) and Hoeffding’s inequality,

P (|T1| ≥ t) ≤ 2e−C(B,BU ,J0)nt
2
. (C.5)

C.2.2 Analysis of T2

Since T2 is a degenerate U-statistic, its analysis is based on Lemma C.3. In particular,

T2 =
1

n(n− 1)

∑
i1 6=i2

R∗ (Oi1 ,Oi2)

where

R∗ (Oi1 ,Oi2)

=
∑
k∈Zj

∑
v∈{0,1}d


(
L(Oi1)ψvjk (Xi1)− E

(
ψvjk (Xi1) E (L(Oi1)|Xi1)

))
×
(
L(Oi2)ψvjk (Xi2)− E

(
ψvjk (Xi2) E (L(Oi2)|Xi2)

))  .

Letting Λi, i = 1, . . . , 4 be the relevant quantities as in Lemma C.3, we have the following
lemma.

Lemma C.4. There exists a constant C = C(B,BU , J0) such that

Λ2
1 ≤ C

n(n− 1)

2
2jd, Λ2 ≤ Cn, Λ2

3 ≤ Cn2jd, Λ4 ≤ C2
jd
2 .
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Proof. First we control Λ1. To this end, note that by simple calculations, using bounds on
L, g, and orthonormality of ψvjk’s we have,

Λ2
1 =

n(n− 1)

2
E
(
{R∗ (O1,O2)}2

)
≤ 3n(n− 1)E

(
R2 (O1,O2)

)
= 3n(n− 1)E

(
L2 (O1)K

2
Vj (X1,X2)L

2 (O2)
)

≤ 3n(n− 1)B4

∫ ∫ [ ∑
k∈Zj

∑
v∈{0,1}d

ψvjk (x1)ψ
v
jk (x2)

]2
g(x1)g(x2)dx1dx2

≤ 3n(n− 1)B4B2
U

∫ ∫ [ ∑
k∈Zj

∑
v∈{0,1}d

ψvjk (x1)ψ
v
jk (x2)

]2
dx1dx2

= 3n(n− 1)B4B2
U

∑
k∈Zj

∑
v∈{0,1}d

∫ (
ψvjk (x1)

)2
dx1

∫ (
ψvjk (x2)

)2
dx2

≤ C(B,BU , J0)n(n− 1)2jd.

Next we control

Λ2 = n sup
{

E (R∗ (O1,O2) ζ (O1) ξ (O2)) : E
(
ζ2(O1)

)
≤ 1,E

(
ξ2(O2)

)
≤ 1
}
.

To this end, we first control

|E
(
L(O1)KVj (X1,X2)L(O2)ζ(O1)ξ(O2)

)
|

= |
∫ ∫

E(L(O1)ζ(O1)|X1 = x1)KVj (x1,x2) E(L(O2)ξ(O2)|X2 = x2)g(x1)g(x2)dx1dx2|

= |
∫

E(L(O)ζ(O)|X = x)Π (E(L(O)ξ(O)|X = x)g(x)|Vj) g(x)dx|

≤
(∫

E2(L(O)ζ(O)|X = x)g2(x)dx

) 1
2
(∫

Π2 (E(L(O)ξ(O)|X = x)g(x)|Vj) dx
) 1

2

≤
(∫

E(L2(O)ζ2(O)|X = x)g2(x)dx

) 1
2
(∫

E(L2(O)ξ2(O)|X = x)g2(x)dx

) 1
2

≤ B2BU
√

E(ζ2(O1))E(ξ2(O2)) ≤ B2BU .

Above we have used Cauchy-Schwarz inequality, Jensen’s inequality, and the fact that pro-
jections contract norms. Also,

|E
(
E
(
L(O1)KVj (X1,X2)L(O2)|O1

)
ζ(O1)ξ(O2)

)
|

= |E [L(O1)Π (E (L(O1)g(X1)|X1) |Vj) ζ(O1)ξ(O2)] |
= |E [L(O1)Π (E (L(O1)g(X1)|X1) |Vj) ζ(O1)] ||E(ξ(O2))|

≤ |
∫

Π(E(L(O)ζ(O)|X = x)g(x)|Vj)Π(E(L(O)|X = x)g(x)|Vj)dx| ≤ B2BU ,

where the last step once again uses contraction property of projection, Jensen’s inequality,
and bounds on L and g. Finally, by Cauchy-Schwarz inequality and (C.3),

E
[
E
(
L(O1)KVj (X1,X2)L(O2)

)
ζ(O1)ξ(O2)

]
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≤
∑
k∈Zj

∑
v∈{0,1}d

E2
(
L(O)ψvjk(X)

)
≤ C(B,BU , J0).

This completes the proof of Λ2 ≤ C(B,BU , J0)n. Turning to Λ3 = n‖E
[
(R∗(O1, ·))2

]
‖

1
2∞

we have that

(R∗(O1,o2))
2

≤ 2 [R(O1,o2)− E(R(O1,O2)|O1)]
2 + 2 [E(R(O1,O2)|O2 = o2)− E (R(O1,O2))]

2 .

Now,

E [R(O1,o2)− E(R(O1,O2)|O1)]
2

≤ 2E
(
L2(O1)K

2
Vj (X1,x2)L

2(o2)
)

+ 2E
( ∑
k∈Zj

∑
v∈{0,1}d

L(O1)ψ
v
jk(X1)E

(
ψvjk(X2)L(O2)

) )2
≤ 2B4B2

U

∑
k∈Zj

∑
v∈{0,1}d

(
ψvjk(x2)

)2
+ 2E(H2(O2)) ≤ C(B,BU , J0)2

jd

where the last inequality follows from arguments along the line of (C.4). Also, using in-
equalities (C.3) and (C.4)

[E(R(O1,O2)|O2 = o2)− E (R(O1,O2))]
2

=
[ ∑
k∈Zj

∑
v∈{0,1}d

E
(
L(O1)ψ

v
jk(X1)

) (
E
(
L(O1)ψ

v
jk(X1)

)
− ψvjk(x2)L(o2)

) ]2
≤ C(B,BU , J0).

This completes the proof of controlling Λ3. Finally, using compactness of the wavelet basis,

‖R(·, ·)‖∞ ≤ B2 sup
x1,x2

∑
k∈Zj

∑
v∈{0,1}d

|ψvjk(x1)||ψvjk(x2)| ≤ C(B,BU , J0)2
jd.

Combining this with arguments similar to those leading to (C.4), we have Λ4 ≤ C(B,BU , J0)2
jd.

Therefore, using Lemma C.3 and Lemma C.4 we have

P
(
|T2| ≥

C(B,BU , J0)

n− 1

(√
2jdt+ t+

√
2jd

n
t
3
2 +

2jd

n
t2
))
≤ 6e−t.

Finally using 2t
3
2 ≤ t+ t2 we have,

Pf
[
|T2| > a1

√
t+ a2t+ a3t

2
]
≤ 6e−t (C.6)
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where a1 = C(B,BU ,J0)
n−1 2

jd
2 , a2 = C(B,BU ,J0)

n−1

(√
2jd

n + 1

)
, and a3 = C(B,BU ,J0)

n−1

(√
2jd

n + 2jd

n

)
.

Now if h(t) is such that a1
√
h(t) + a2h(t) + a3h

2(t) ≤ t, then one has by (C.6),

P [|T2| ≥ t] ≤ P
[
|T2| ≥ a1

√
h(t) + a2h(t) + a3h

2(t)
]
≤ 6e−6h(t).

Indeed, there exists such an h(t) such that h(t) = b1t
2 ∧ b2t ∧ b3

√
t where b1 = C(B,BU ,J0)

a21
,

b2 = C(B,BU ,J0)
a2

, and b3 = C(B,BU ,J0)√
a3

. Therefore, there exists a C = C(B,BU , J0) such that

P [|T2| ≥ t] ≤ e
−Ct

2

a21 + e
−Ct
a2 + e

−C
√
t√

a3 . (C.7)

C.2.3 Combining Bounds on T1 and T2

Applying union bound along with C.5 and C.7 completes the proof of Lemma C.2 part (i).

For the proof of part (ii) note that with the notation of the proof of part (i) we have by
Hoeffding decomposition

E

| 1

n(n− 1)

∑
i1 6=i2

R (Oi1 ,Oi2)− E (R (O1,O2)) |2q
 ≤ 2(E|T1|2q + E|T2|2q).

The proof will be completed by individual control of the two moments above.

C.2.4 Analysis of E|T1|2q

Recall that T1 = 2
n

∑n
i1=1H(Oi1) where H(Oi1) = E (R (Oi1 ,Oi2 |Oi1))−ER (Oi1 ,Oi2) and

|H(O)| ≤ C(B,BU , J0) almost surely. Therefore by Rosenthal’s inequality (C.5) we have

E|T1|2q ≤
(

2

n

)2q
[

n∑
i=1

E|H(Oi)|2q +

{
n∑
i=1

E|H(Oi)|2
}q]

≤
(

2C(B,BU , J0)

n

)2q

(n+ nq) ≤ C(B,BU , J0)
qn−q.

C.2.5 Analysis of E|T2|2q

Recall that

P [|T2| ≥ t] ≤ P
[
|T2| ≥ a1

√
h(t) + a2h(t) + a3h

2(t)
]
≤ 6e−6h(t)

where h(t) = b1t
2 ∧ b2t ∧ b3

√
t with b1 = C(B,BU ,J0)

a21
, b2 = C(B,BU ,J0)

a2
, and b3 = C(B,BU ,J0)√

a3
.

Therefore

Ef (|T2|2q)

= 2q

∫ ∞
0

x2q−1Pf (|T2| ≥ x)dx
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≤ 2q

∫ ∞
0

x2q−1Pf (|T2| ≥ a1
√
h(x) + a2h(x) + a3h

2(x))dx

≤ 12q

∫ ∞
0

x2q−1e−h(x)dx

= 12q

∫ ∞
0

x2q−1e−{b1x2∧b2x∧b3
√
x}dx

≤ 12q

[∫ ∞
0

x2q−1e−b1x
2
dx+

∫ ∞
0

x2q−1e−b2xdx+

∫ ∞
0

x2q−1e−b3
√
xdx

]
= 12q

(
Γ(q)

2bq1
+

Γ(2q)

b2q2
+

2Γ(4q)

b4q3

)
≤
(
C

2jd

n2

)q
for a constant C = C(B,BU , J0), by our choices of b1, b2, b3.

Since the estimators arising in this paper also have a linear term, we will need the
following standard Bernstein and Rosenthal type tail and moment bounds (Petrov, 1995).

Lemma C.5. If O1, . . . ,On ∼ P are i.i.d. random vectors such that |L(O)| ≤ B almost
surely P, then for q ≥ 2 one has for large enough constants C(B) and C(B, q)

P(| 1
n

n∑
i=1

(L(Oi)− E(L(Oi))) | ≥ t) ≤ 2e−nt
2/C(B),

and

E(|
n∑
i=1

(L(Oi)− E(L(Oi))) |q)

≤

 n∑
i=1

E (|L(Oi)− E(L(Oi))|q) +

[
n∑
i=1

E
(
|L(Oi)− E(L(Oi))|2

)]q/2
≤ C(B, q)n

q
2 .

We will also need the following concentration inequality for linear estimators based on
wavelet projection kernels, the proof of which can be done along the lines of proofs of
Theorem 5.1.5 and Theorem 5.1.13 of Giné and Nickl (2016).

Lemma C.6. Consider i.i.d. observations Oi = (Y,X)i, i = 1, . . . , n where Xi ∈ [0, 1]d with
marginal density g. Let m̂(x) = 1

n

∑n
i=1 L(Oi)KVl (Xi,x), such that max{‖g‖∞, ‖L‖∞} ≤

BU . If 2ldld
n ≤ 1, there exist C,C1, C2 > 0, depending on BU and scaling functions ψ0

0,0, ψ
1
0,0

respectively, such that

E(‖m̂− E(m̂)‖∞) ≤ C
√

2ldld

n
,

and for any t > 0

P
(
n‖m̂− E(m̂)‖∞ >

3

2
nE(‖m̂− E(m̂)‖∞) +

√
C1n2ldt+ C22

ldt

)
≤ e−t.
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