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Abstract

We study statistical and algorithmic aspects of using hypergraphons, that are limits of
large hypergraphs, for modeling higher-order interactions. Although hypergraphons are
extremely powerful from a modeling perspective, we consider a restricted class of Simple
Lipschitz Hypergraphons (SLH), that are amenable to practically efficient estimation. We
also provide rates of convergence for our estimator that are optimal for the class of SLH.
Simulation results are provided to corroborate the theory.
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1. Introduction

Let V. ={1,...,n} be a set of n items that could represent, for example, people in a social
network, genes in a biological network or researchers in an academic network. Models of
interaction among the n items could be conveniently represented in the form of a graph or a
hypergraph, G(V, E), where the items form the nodes of the graph and the hyperedge set E
represents the interactions among the items. Network datasets that capture such complex
interactions between a set of objects are becoming increasingly prevalent in several scientific
fields. Developing realistic generative models for such networks is a challenging problem
that has been an active subject of research across diverse fields spanning from statistics,
physics, computer science; see Kolaczyk (2009); Goldenberg et al. (2010); Battiston et al.
(2020) for comprehensive overview.

A majority of the existing work has focussed on the case of modeling pairwise inter-
actions. In this situation, the edge set models interactions between two nodes at a time,
by means of presence or absence of a link. In several modern applications, such pairwise
interactions do not completely characterize the complex interactions existing among the
items. Often times it is more meaningful to consider higher-order interactions (Bonacich
et al., 2004; Benson et al., 2016). For example, Agarwal et al. (2005) provided convincing
empirical evidence showing that going beyond pairwise interactions helps in computer vision
applications; a hypergraph based approach for graph matching was provided in Duchenne
et al. (2011). Yet another application is the study of complex networks, where modeling
intricate interdependencies between multiple networks are typically represented via hyper-
graphs (Ghoshal et al., 2009; Zlati¢ et al., 2009; Michoel and Nachtergaele, 2012; Kivela
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et al., 2014) so as to capture the higher-order interactions among the different networks. We
refer the interested reader to Battiston et al. (2020), for a detailed survey of several existing
models of higher-order interactions and their applications to various scientific fields.

As a simple yet concrete example for the limitations of the just using pairwise inter-
actions, consider the following co-author citation toy network. Consider a simple set of
five authors {A, B,C, D, E} and assume that the set of co-author relationship among the
authors is as follows: (A4, B),(B,E), (A, E)(C,D,E). That is the five authors wrote five
papers in total with the above set of authors for each paper. If we represent this network
via a graph, with edges representing if two authors have collaborated or not, we get a graph
with edge set {(A, B), (B, E), (A, E),(C,E),(C,D),(D,E)}. We now see that the crucial
coauthor information is lost by such representation - one could wrongly interpret that au-
thors A, B, E have co-authored a paper together or one could fail to conclude that authors
C, D, E co-authored a paper together. This highlights the limitation of modeling such co-
author data set via simple graphs. Clearly if we were to model this data as a hypergraph, we
do not run into such issues. A more comprehensive co-author citation network was recently
considered in Ji and Jin (2016) based on papers published in the Statistics community. The
need for modeling higher-order interaction for that dataset was in particular also suggested
in the discussion by Karwa and Petrovia (2016), following the publication of Ji and Jin
(2016).

Motivated by such problem with pairwise interaction networks or graph-based networks,
recently Ghoshdastidar and Dukkipati (2017a) considered a model for generating hyper-
graphs. Specifically, they considered a generalization of a stochastic block models (we refer
the reader to Abbe (2017) for a detailed overview) developed for the case of graphs to the
hypergraph setting. Furthermore Florescu and Perkins (2016) considered a special case of
hypergraphs with a bipartite structure and suggested interesting algorithmic conjectures.
Algorithmic results were also provided in Ghoshdastidar and Dukkipati (2017b); Ahn et al.
(2018); Ke et al. (2019), for community detection in hypergraphs based on tensor methods.
While the above works invariably work in the realm of stochastic block modeling, there has
been other approaches to model hypergraph data as well. A S-model and a Latent Class
Analysis (LCA) based model (focussing on clustering) was proposed in Stasi et al. (2014)
and Ng and Murphy (2018) respectively. Furthermore, Turnbull et al. (2019) recently pro-
posed a latent space model for random hypergraphs based on concepts from computational
topology. We will revisit the above models in Section 2.3 for a brief discussion on their con-
nection to the approach that we propose in this work. Furthermore, a random geometric
model for random hypergraph was also proposed in Lunagémez et al. (2017) focussing on
graphical modeling. A significant drawback of the above approaches for modeling higher-
order interactions is that they are predominantly parametric models. It is well known that
nonparametric models offer increased modeling flexibility at the expense of requiring larger
sample sizes in standard regression and density estimation problems. Thus providing such
nonparametric models for networks is extremely appealing, particularly in the context of
modeling large graphs, as the nodes in the graphs corresponds to samples in the context of
traditional regression models.

In this work, we leverage the theory of large hypergraph limits and propose to use
hypergraphons (Gowers, 2007; Elek and Szegedy, 2012; Lovész, 2012; Zhao, 2015), as a
nonparametric model to capture m-uniform higher-order interactions in networks. Mod-
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eling such m-uniform interactions arises, for example, in the context of protein network
alignment problem used to represent interactions across different organisms. In this con-
text, we are given two graphs GG1 and G5 whose vertices are connected by a bipartite graph
B. Based on this, a 4-uniform alignment hypergraph is formed with an hyperedge connect-
ing the nodes 4, j, k and [ if and only if the notes ¢ and j are connected in the graph Gy
and nodes k and [ are connected in the graph Gs. We refer to the interested to reader
to Michoel and Nachtergaele (2012) for more details. As we will see in the rest of the paper,
in the limit of large nodes, the difference between the expressibility of parametric (for ex-
ample, block hypergraph models) and nonparametric models (the proposed hypergraphons)
for modeling m-uniform higher-order interactions is significant. This is different from the
case of modeling pairwise interactions via stochastic block models and graphons for graph-
valued networks. Roughly speaking while graphs are represented by adjacency matrices
(second-order tensors) and the corresponding graphons are two-dimensional functions, this
is not true for hypergraphs and hypergraphons. An m-uniform hypergraph could be repre-
sented by m-th order tensor, whereas the corresponding hypergraphon is represented by a
2™ — 2 dimensional function. This expressive power comes at an increased statistical and
computational price.

In order to facilitate efficient estimation and computation, we restrict ourself to a class of
Simple Lipschitz Hypergraphons (SLH). Furthermore, Lemma 10 and Theorem 2 in Kallen-
berg (1999) provide guarantees for approximating general hypergraphons with simple hyper-
graphons, which provides further motivation for understanding this class of hypergraphons
statistically and computationally. For this class of hypergraphons, we propose an estimator
along with its rates of convergence. The proposed estimator is based on approximating
this class of hypergraphons with a parametric stochastic hypergraph block models with
appropriately selected number of blocks. Indeed such an approach yields rate-optimal esti-
mators for the case of graphons (Gao et al., 2015; Klopp et al., 2017). Unfortunately, from
a computational perspective the estimator is non-convex and hence NP-hard to compute in
the worst case. We provide an algorithm which is based on a well-motivated heuristic, and
show thorough simulations that it works well in practice. We also mention here that the
approximation result provided in Kallenberg (1999) is existential, not entirely constructive
and provided in a weaker metric. It is an extremely interesting open problem to provide
a constructive proof of such a result in a stronger metric, so that one could find the op-
timal simple hypergraphon approximation for a given hypergraphon. Such a result would
constructively quantify the efficiency of approximation from a practical perspective.

Finally, the modern theory of large hypergraph limits has been established through
the analytic regularity approach, for example, in Gowers (2007); Zhao (2015). However, a
probabilistic approach based on node-exchangeability has also been examined, for example,
in Hoover (1979); Aldous (1981); Kallenberg (1999) to study limits of large hypergraphs.
Recently, a closely related concept of edge-exchangeability has been proposed and lever-
aged by Crane and Dempsey (2018); Campbell et al. (2018); Dempsey et al. (2019) to
propose models of higher-order interactions. The above works do not rigorously analyze
the statistical estimation procedure associated with the model. It is interesting to explore
further relationships and dissimilarities between the proposed hypergraphon model and
edge-exchangeable models as future work. Furthermore, it is extremely interesting to quan-
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tify the degree of expressibility offered by the two approaches, and compare the statistical
and computational complexity of estimation in the different models.

1.1 Notations

We denote by [n] = {1,...,n}, the set of integers from 1 to n and (}) to denote the
number of ways of selecting k£ objects out of n. Furthermore, we use &,, to be the set of all
permutations of the set [n]. We denote a vector v in d-dimensional Euclidean space by small
case letters a € R%. Similarly we denote matrices by upper case letters A € R™ ™. A bold
upper case letter A € R2X™*X" corresponds to an m'* order tensor. The (j1,...,jm) — th
entry of the tensor is denoted as Aj, j, . ;.. For a tensor A we use ||A||r and ||A| to
denote the standard Frobenius norm and the max-norm (maximum value of its entries)
respectively.

Furthermore, whenever there is no confusion, to avoid notation overload (mostly in
the proofs) we also use the following notation to index the entries of the tensor. Let
Jj = (J1,---,Jm) with each j; € [n] so that j € [n]™. Whenever it indexes a tensor A as
A, it denotes the (ji,...,Jm) — th entry of the tensor. Hence we have A; = Aj i .
Furthermore, we use o(j) to denote the set of all permutations of a given j € [n]™. Here

n n
o € G,,. We also denote multiple summations like Y  --- >° as > . For the sake of
Jji=1 Jm=1 ]E[n]m
brevity, in the rest of the paper z(j) represents (z(j1), 2(j2), - - -, 2(jm)), when j € [n]™, and
similarly for 27!(a) when a € [k]™. We also need the following definition of collapsing a
tensor to a matrix.

Definition 1 (Tensorcollapse) For a tensor A € R} ™" we define the operation of
collapsing a tensor to a matriz, M(-,-,-) : REX"<" x [m] x [m] — R as

d
MAL2) =45 5= D Ajijisjiim:

J3:J45--Jm=1

2. Hypergraph Block Models and Hypergraphons

In this section, we introduce the hypergraphon model that we use for modeling higher order
interactions. Before we do so, we introduce some basic definitions.

Definition 2 (Hypergraph) A hypergraph G = (V, E) consists of a set of vertices denoted
by a set and labeled as V = [n] and a set of hyperedges e € E where each hyperedge e consists
of a subsets of vertices from V. A hypergraph is said to be m-uniform if every edge consists
of exactly m vertices. Note that when m = 2 this corresponds to a graph.

In this paper, we restrict ourselves to hypergraphs for which hyperedges contain only unique
vertices. Furthermore, we consider the case of m-uniform hypergraphs, motivated by the
applications mentioned in Section 1. As mentioned previously, a model for pairwise or
higher-order interaction is represented by assuming particular structure on the adjacency
matrix or tensor, denoted by A € {0,1}™*™**" Each entry in this tensor represents the
presence or absence of an hyperedge.
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2.1 Stochastic Block Models

The stochastic block model in the graph setting was proposed by Holland et al. (1983) and
has been analyzed extensively in the statistics (Rohe et al., 2011; Lei and Rinaldo, 2015;
Choi et al., 2012; Chatterjee, 2015; Abbe et al., 2017; Le et al., 2017; Gao et al., 2018),
computer science (Abbe and Sandon, 2015), statistical physics (Fortunato, 2010; Krzakala
et al., 2013) communities, thereby establishing a wide variety of results illustration several
interesting phenomenon. Due to the large amount of literature developed on the topic
of stochastic block models in the recent years, we refer the reader to Abbe (2017) for an
in-depth survey. As mentioned before, all the above works consider the case of pairwise
interaction models. We now introduce the stochastic block model. Let z : [n] — [k] denote
a mapping of the set of n vertices to one of the k¥ communities which is unknown. Let Z,, ;.
denote the set of all possible mappings z : [n] — [k]. Note that the cardinality of the set
Zis k™. Let Q € [0,1]*** be a symmetric matrix (i.e., a 2"¢ order tensor), representing
the probabilities of connections between and within each of the & communities. The A, ;,-
th entry of the adjacency matrix is modeled as a Bernoulli random variable with mean
parameter ®;,;,. In the stochastic block model, the matrix ® has a block structure and
takes values from the matrix Q in a particular fashion that we describe now. Specifically,
the matrix © is assumed to come from the following set 7, of matrices:

T.={0:3Q [0, 1]"* & 2 € 2,1 S.T. ©, 5, = Qup = Qv.a for (j1,72) € 27 (a) x 271(b),

and @j, j, = 0 otherwise}.

Recently several authors have considered the straight-forward extension of the stochastic
block model from the graph setting to the hypergraph setting. See for example Ghoshdasti-
dar and Dukkipati (2017a); Ke et al. (2019); Ahn et al. (2018); Pal and Zhu (2019) for
statistical and computational results in this setting. Furthermore, fundamental limits, in
both estimation and hypothesis testing context was studied in Angelini et al.; Chien et al.
(2018); Kim et al. (2018); Ahn et al. (2019). Below, we describe the stochastic hyper-
graph block models, of which the standard stochastic block models are a special case. Let
Q € [0, 1]F*k-xk be an m!" order tensor that is assumed to by symmetric, i.e., Q; = Q. (j)
for o € &,,. This tensor has the probabilities of connections between and within each
of the £ communities. The Aj-th entry of the tensor is modeled as a Bernoulli random
variable with mean parameter ;. In the stochastic block model, the tensor ® has a block
structure and takes values from the tensor Q in a particular fashion that we describe now.
In this work we do not consider hyperedges which have at least one repeated vertex. Define
G C [n]™ to be the set of hyperedges with no repeated vertices. That is, j & G iff 3 u,v
8.t ju = Jj». Then the tensor © is assumed to come from the following set 7, of order m
tensors:

T.={©:3Qc (0,1 ** & 2€ 2,,ST. ©; = Q.(j) for j € G, and ©; = 0 otherwise}
(1)

Note that when m = 2, the above definition corresponds to the case of standard stochastic
block models defined for the case of graphs (Holland et al., 1983) and described above.
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2.2 Hypergraphons

The stochastic block model, as mentioned before serves as an intriguing model for under-
standing several fundamental principles behind statistical analysis of networks. Motivated
by the theory of large limits (Lovész, 2012), recently nonparametric models and estimators
for such models, was proposed and analyzed in Bickel and Chen (2009); Airoldi et al. (2013);
Wolfe and Olhede (2013); Yang et al. (2014); Chan and Airoldi (2014); Borgs et al. (2015a,b);
Gao et al. (2015); Klopp et al. (2017); Zhang et al. (2017); Pensky (2019), for modeling
pairwise interactions. The graphon models are in-homogenous random graph models that
contain several specific models proposed in the literature, including the stochastic block
model and latent space model (Hoff et al., 2002), as special cases.

Definition 3 (Graphon and Sampling) Graphons are symmetric measurable functions
f 0,12 = [0,1]. Given a graphon, the process of sampling a random graph proceeds as
follows:

1. A sequence of real numbers X1,...,X,, is generated independently and uniformly on
[0,1].

2. Let 0;; = (X, X;), where f is a graphon.
3. Let A; j be the entry of identity adjacency matriz. It is generated as A; j = BER(0; ;).

Note that topology of the network generated as above is invariant to the permuting the labels.
Hence, we have a graph generated as above with a graphon f(u,v) and another graphon
f(W(u),9(v)) for a measure preserving bijection 9 : [0,1] — [0,1] invoke the same random
graph model.

We refer the reader to Lovész (2012) for a complete and rigorous characterization of
graphons. From the statistical literature, a model of particular relevance to us is that
of sparse graphons as considered in Klopp et al. (2017). Under that model, step 2 in the
above sampling procedure is modified as 6; ; = p, f(X;, X;), where f is a graphon. Here
prn > 0 and it tends to zero as p, — 0 when n — oco. This provides a control on the number
of edges generated in the random graph model. Specifically, if p, = 1 and fixed, then the
expected number of edges is proportional to n? which corresponds to a dense graph. But
for a value of p, — 0, as n — oo, we have the expected number of edge to be of the
oder O(p,n?). Hence by controlling the rate of decay of p,, one can obtain sparse graphs
that mimic real-world networks. In particular, this modification is much needed when we
later work with the hypergraphon setting as the number of higher order interactions are
typically sparse as the order increases. We would also like to mention that there are other
approaches for sampling sparse exchangeable graph; we refer the intersted reader to Caron
and Fox (2017); Caron and Rousseau (2017); Veitch and Roy (2019); Borgs et al. (2019).

The study of the limit of hypergraphs and regularity and left-convergence results was
initiated in Gowers (2007). Several authors extended the results with most relevant ones
being Elek and Szegedy (2012) and Zhao (2015). Below we first provide the definition of the
hypergraphon. We introduce some new notations before we proceed. For a set [m], denote
by [m], the collection of all nonempty proper subsets of [m] or equivalently the collection
of nonempty subset of [m] of size at most m — 1.
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Definition 4 (m-uniform Hypergraphon and Sampling) A m-uniform symmetric hy-
pergraphon is a 2™ — 2 dimensional measurable function f : [0,1]l™ — [0,1] whose coor-
dinates are indexed by proper and non-empty proper subset of [m]. It is also assumed to
be symmetric in the following sense: it remains invariant under any permutation of the
coordinates induced by any permutation of [m]. Similar to the graphon model, we have the
hypergraph generated as:

1. A vector X € [0,1]I" is generated uniformly randomly.

2. For a j € [n]™, let ©®; = f(X;), where f is graphon satisfying the conditions above
and X; denotes co-ordinates of X indexed by nonempty proper subsets of the set j.

3. Let A; be the entry of identity adjacency tensor, where j contains only unique vertices.
It is generated as Aj = BER(©;). All other entries are set to zero.

Note that the definition of symmetry in the above model is slightly different from the
more standard notion of symmetry. It is best illustrated through an example. Consider
m = 3. In this case the hypergraphon is a 6-dimensional function indexed by the sets
{{1},{2},{3},{1,2},{2,3},{1,3}}. In this case, the function is invariant for any permuta-
tion o € &3 operating on [3]. That is, it is invariant for any permutation of the first three
coordinates and the last three co-ordinates. Finally, similar to the case of sparse graphons
we replace the step 2 in the above definition with ®; = p, f(X), where f is a hypergraphon.
Here p, > 0 and it tends to zero as p, — 0 when n — oo and hence provides a control
on the number of hyperedges generated. Specifically the expected number of hyperedges
generated under this model is of the order O(p,n™).

2.3 The Class of Smooth Lipschitz Hypergraphons

The difference between the graphons and hypergraphons is clear from the above Definition 3
and 4. While graphons, which corresponds to the order-2 adjacency tensors (or the standard
adjacency matrices) are two dimensional functions, hypergraphons which corresponds to
order-m adjacency tensors are 2™ —2 dimensional functions and not m-dimensional functions
as one might expect it to be. The need for these additional dimensions could be understood
by considering the two cases of generating 3-uniform hypergraph: in the first case each
hyperedge (triangle) is sampled independently with same probability (1/2), and in the
second case first a standard Erd&s-Renyi graphs on n vertices is generated and then the
3-uniform hypergraph is formed based on the triangles in the graph. The limit of the
former case is the constant (1/2) hypergraphon function. Where as, the limit of the later is
different from the constant hypergraphon function and requires the additional coordinates
to be represented. See Zhao (2015) or the example in Figure 5 for the form of the limit in
the later case.

The class of general hypergraphons suffers from the problem of efficient estimation as
the number of nodes requires must scale at a rate doubly exponentially in terms of the
parameter m for it to be consistent. Indeed, firstly the dimensionality of the graphon grows
exponentially in terms of the cardinality of the hyperedges and secondly, the number of
samples (in this case the nodes) required to achieve consistent estimation of an d dimen-
sional function already grows exponentially in d (note here d = 2™), as is well-known in
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nonparametric literature (Klopp et al., 2017; Giné and Nickl, 2015). Furthermore, without
smoothness assumptions, it might become more complicated to estimate such functions. In
this section, we define the class of Simple Lipschitz Hypergraphon (SLH) which we will be
main object we concentrate on in this paper.

Definition 5 A m-uniform Simple Lipschitz Hypergraphon, SLH(m, L), is a measurable
function f :[0,1]™ +— [0, 1] whose coordinates are indexed by size-1 subsets of [m]. It is as-
sumed to be symmetric in the following sense: it remains invariant under any permutation
of the coordinates induced by any permutation of [m]. Furthermore, it is assumed to be L-
Lipschitz. A consequence of the lipschitz assumption is that for any (z1,...,Zm), (Y1,-..Ym) €
[0,1]™, we have

s wm) = Fln, o ym)| < Dmax|zi = yil (2)

Note that the class of Lipschitz functions that we consider are a subset of a-holder
smooth functions ( with o = 1), which are standard function classes considered in the non-
parametric regression literature (see for e.g., (Klopp et al., 2017; Giné and Nickl, 2015).
Given the above class of functions, we follow the usual sampling procedure to generate a
random hypergraph. The class of simple hypergraphons was considered first in Kallenberg
(1999), from the view point of modeling exchangeable arrays. The problem of estima-
tion in graphons and hypergraphons was also considered Kallenberg (1999) that provided
asymptotic statements for the estimators. Furthermore, an interesting asymptotic result
was proved in the same work on approximating general hypergraphons with simple hyper-
graphons, that provided precise statements on the quality of approximation. Motivated by
this work, we restrict ourself to the case of simple hypergraphons as a tradeoff between
modeling flexibility and efficient estimability.

Once we restrict ourself to the class of SLH described above, one could use stochastic
hypergraph models, with an appropriately growing number of blocks, to estimate hyper-
graphons efficiently. Indeed, such an approach is motivated by the corresponding rate-
optimal estimators proposed for the class of smooth graphons (Gao et al., 2015; Klopp
et al., 2017). While such estimators are suitable for estimation in simple hypergraphons,
it is not suited for the case of general hypergraphons. This also highlights the limitations
of block models in the modeling higher order interactions — whereas general hypergraphons
have much higher modeling capacity, stochastic block models with growing number of classes
are suitable to capture only the case of SLH.

We end this section by comparing the hypergraphon approach to several other ap-
proaches existing in the literature for modeling hypergraphs. Recall that Stasi et al. (2014)
proposed a model for random hypergraphs with a given degree sequence, extending the work
of Chatterjee et al. (2011) who proposed a similar model for graphs. Such models are called
as f-models in the literature. In Chatterjee et al. (2011), it was shown that in the case
of graphs, the limit of such models could be characterized as a specific graphon function.
Following a similar argument in Chatterjee et al. (2011), it is possible to show that the
B-model for hypergraphs proposed in Stasi et al. (2014) also has a limiting hypergraphon
construction, and characterize it precisely. It is interesting to examine and characterize the
limiting hypergraphon corresponding to the approaches proposed by Ng and Murphy (2018)
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and Turnbull et al. (2019). This, however is beyond the scope of current work. A detailed
study of this problem will be done in a future work.

3. Estimator and Main Results

We now introduce our estimator and establish rates of convergence for estimating the prob-
ability tensor, under the hypergraphon model. Our proof involves first establishing the
result when the probability tensor is generated by a block model and then showing that as
we increase the number of blocks any function in the class SLH could be well approximated
by the block model. Our proof technique extends the results of Klopp et al. (2017) that
provided a similar result for the case of graphons. In order do so, we extend their results
with appropriate modifications to the case of simple hypergraphons. We also discuss the
consequences of our result — specifically the scaling with respect to the problem parameters
like smoothness and order of the hypergraphon.

As mentioned above, our estimator is based on a stochastic block model approximation
to the class of SLH. Let © denote the true probability tensor generated by a fixed hypergra-
hon fy from the class SLH(m, L). Our estimator (':), is defined as the following two-steps.
In the first step, we solve a least-squares optimization problem. In the next step, we use
the estimated assignment function and the probabilities to provide a final estimator of e.
They are summarized as follows:

Step 1: (37 Q) = argmin L(z,Q), o
2€Zn kyngs QG[O,I}’;LX-uXk’

PN

Step 2: @j = Qé(])

Here, the loss function, L(z, Q) is given by

= > Z (A; — Qo)

a€lk]™ jez—1(a)NH

where Z,, 1. , is a slight modification of the set Z,, ;. defined in Section 2.1 — it is defined as
the set of all mappings from [n] to [k] such that min,ep |27 (a)| > no. This modification is
made to consider stochastic hypergraph models with balanced blocks, while approximating
the hypergraphon. For the above estimator, we have the following theorem that quantifies
the rate of convergence of estimating the probability tensor @.

Theorem 1 (Maln Result) Let fo € SLH(m, L), where L > 0 and 0 < p, < 1. Let

k= [(pnn™ )m+2] and ng > n/k and suppose p, > (logn)*n~ @ . Then there is a constant
C depending only on « and L such that the least squares estimate © constructed with this
choice of ng satisfies

2m42 m 1
Eax |16 - Ol < ¢ {pi i 1 p, (2251

Proof [Proof of Theorem 1] As mentioned before, our strategy is to approximate the hy-
pergraphon from the class SLH (m, L) by a hypergraph stochastic block model with appro-
priately defined number of communities k. Given such a construction, we then capture the
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estimation error of parameter estimation in the hypergraph stochastic block model. Let
O, be the best k-class hypergraph stochastic block model approximation of ® in Frobenius
norm from the set,

Tomo ={©:3Q [0, 11 *F & 2 € 2,1,y ST. © = Q.(; for j € G, and ©; = 0 otherwise}.

Note that the set 7. ,, is a slight modification of the set 7. defined in Equation 1 to
enforce the balanced partition constraint via choosing ng. Based on this, we first have the
following lemma, that decomposes the overall error into an estimation error term and an
approximation error term.

Lemma 1 (Estimation Error) In the hypergraph stochastic block model setting, we can
find an estimator © such that there exists an absolute positive constant C1 > 0 and positive
constants Cy, Cs > 0 depending on m such that for ng > 2,

1A =y 4 — 9 — logk  k™\ Cslogn/ng [ logk
Ea,x [an@ - ®||F] < n?EX 116 — ©.]|F]+C2[O]« =T + o + - m—1
Note that our assumption p, > (log n)2n_mi+l, after some algebra gives us p, > %.

Under this scaling, note that third term in the expectation bound of Lemma 1 could be
absorbed in the second term and hence we get

1 . = C ~ logk k™
Eax | 510~ Ol ] < CEx 16 - 0.3 + Cp. (oo + 10

nm—l nm

Here the term n%E X [H@ - ®*||%], corresponds to the approximation error part. We now
have the following lemma that bounds the approximation error.

Lemma 2 (Approximation Error) Consider the hypergraphon model with fy € SLH(m, L)
where L > 0. Let ng > 2 and k = |n/ng]|. Then,

1 = 1
Ex | 18- 0.1 <cari ()

By Lemma 2, our bound on approximation error, we get the following bound for the

overall error:
| 02 logk k™
Ea x [an@ - @H%] <cC {kg + P <nm_1 + nm) } :

We now choose k = [(pnnm)ﬁ} with the goal of balancing the first and third terms
in the above expression. This choice of k gives us

2m+2

1, = _2m_ logn
Bax |l - Bl | < o {p T n g, (1851

which completes the proof of Theorem 1. The proofs of Lemma 1 and 2 are more involved
and are provided in the Appendix A. |
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Remark 3 Note that for our result, we require the sparsity parameter p, > n2/(m+1)

This corresponds to moderately sparse regime. Extending the result to the case of highly
sparse regime (i.e., pp > n*(mfl)) 1s an interesting problem. It appears that the current
proof technique is incapable of handling the highly sparse regime and a completely different
approximation of the hypergraphon (for example, a multi-level approrimation) with a para-
metric model might be required. This highlights another important distinction between the
graphons and hypergraphons. We leave this interesting problem as future work.

Remark 4 Our result above could be extended to the case of a-Holder simple hypergraphons
in a straight forward manner. In that case, there are two regimes in which our estimator
behaves differently. For simplicity, consider the case when p, = 1. In this case, we have

_2m_

2a’'m

1 - ~ n_ mi2a when 0 < a < 1

Ea x [m‘@ - @HZF] = N
n n~ m+2 when o > 1.

In particular, for no value of «, the second term (;?ffl) becomes the dominant term.

Furthermore, when m = 2, which corresponds to the case of graphons, for o« > 1, the first
term and the second term are equivalent up to log factors and we recover the results of Klopp
et al. (2017). We conjecture that our rates are essentially minimax optimal for the SLH
when p = 1. In order to see that note that the problem of estimating a hypergraphon from
the class SLH corresponds to the case of estimating a m-dimensional Lipschitz function.
The minimax rate of non-parametric regression in this case essentially coincides with the
rates we obtained (see for e.g., Giné and Nickl (2015) for a comprehensive overview of
nonparametric models in the context of regression and density estimation). It is interesting
to examine the minimax optimality of our result for the general case of p,. A proof of
minimax rates for general p has eluded us thus far.

4. Algorithm

Recall that our estimator (;), involves solving the following least-squares optimization prob-
lem )
2,Q = argmin L(2,Q), where L(z,Q)= Z (Aj - Qz(j)) .

= JEM™

An immediate algorithm to optimize the above objective function is to perform coordinate
descent on the above objective function. This approach has the following drawback. While
for a fixed z optimizing for Q is a standard least-squared problem, for a fixed Q optimizing
for z evaluating all possible assignment functions z € Z, j, which would take exponential
time and would thus be computationally infeasible even for moderate values of n, k. One
could further break optimizing for z into optimizing for the individual coordinates z(j).
But we found through preliminary experiments such an approach runs into several issues
like non-convergence of the iterates and worse performance (when it converges). In order
to obtain a computable estimator and demonstrate our results empirically, we propose to
use the procedure described in Algorithm 1.

Intuition: We now describe the main intuition behind the algorithm. Firstly note that
when a € [k], n, is the number of vertices which are assigned community a, and when

11
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Algorithm 1 Alternating Minimization for hypergraphon
Input: A, k.
repeat

Let F;, be the number of hyperedges containing both ¢ and a member of a according
to the current Z.

Bia= > A (4)

j2€2(=1(a) j3, ,jm€[n]

Update 2 as

2(1) = argmax —F;
a HAa

where 2, is defined in Equation 5.
until Convergence

Compute Q, = 77% Zjeé(_l)(a) Aj
Output: Qa and 2.

a € [k]™, 1y is the number of hyperedges whose community assignments match a node-
wise. In other words, j € [n]™ matches a € [k]™ if there exists a permutation o € &,
such that for all i € [n], a; = o(z(j;)). With this observation, for a fixed z, we have
Q.= -+ Zjez*l(a) A ;. Furthermore for any minimizer Q and % of L(Q, z) we have

Na

Q=— Y A,

Mo 5571 (a)

Hence we concentrate first on estimate Z and then use the above relation to obtain an
estimate for Q and subsequently ©.

The procedure in Algorithm 1 is motivated by the modified version of k-means type
algorithm analyzed in Lu and Zhou (2016) for community detection in standard stochastic
block model. Their algorithm repeatedly updates z(i) according to the fraction of nodes in
each community a that node ¢ connects to. This can be viewed as the fraction of possible
edges into a which i is a part of. But this intuition does not extend straight-forwardly to
the case of hypergraphs. In order to extend their approach to the case of hypergraphs, we
first propose to collapse the m-th order adjacency tensor A to the matrix M(A) (recall
the definition from section 1.1). Now we define E;,, the number of hyperedges containing
for ¢ and a member of a, according to the Equation 4. Note that is not exactly equal
to the number of hyperedges containing for ¢ and a member of a, as we are overcounting
hyperedges which contain more than one element assigned community a. Even with this
discrepancy, our algorithm performs well empirically as we demonstrate in section 5. This
matrix is then used to estimate z(7). Our update for z(i) is based on the fraction of possible
hyperedges that node 7 is a part of. The total number of possible hyperedges containing

12
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both ¢ and a member of community a is given by

Y = (”f) (Z;_";) +2! (772“> (Z;_”;) 4o (m— 1) <m”j 1) <n _077“>, (5)

where we count a hyperedge j times if it contains j elements from a, to match the over-
counting of Fj,.

Initialization: Like most alternating methods, our algorithm is susceptible to local min-
ima. To overcome this issue, we use two methods. First, we try many random initializations,
running the algorithm to convergence, and then selecting the best result according to our
empirical loss function L(z, Q). Our second method is to initialize z using a spectral classi-
fier, as given by Ghoshdastidar and Dukkipati (2017b). Their method is again based on the
performing spectral clustering on the M(A) matrix, as this operation preserves the factors
approximately. We report the results using both initialization methods in section 5 and
discuss the similarities and differences between them.

We also note that the tensor collapse operation also bears similarities with the Leur-
gan’s algorithm for decomposing tensors (Leurgans et al., 1993). The algorithm, proposed
specifically for the case of three-way tensors, involves taking weighted sums of the slices.
Note that in our case, there is no need for taking a weighted sum. Finally, the theoretical
analysis of this algorithm is more involved than the standard graph based stochastic block
model case. We plan to report the theoretical results in the context of community detection
in hypergraphs in the near future.

5. Simulation Results: Well-specified Case

We now provide simulation results depicting the performance of our algorithm for the case
when the random graphs are generated from the following two simple hypergraphons:

Case 1: f(u,v,w) = vvw
1
1 4 el—(cau?+cav?+esw?)}

Case 2: f(u,v,w) =

These experiments corresponds to well-specified modeling situation — we assumed the true
graphon is a simple hypergraphon and we use the proposed algorithm to estimate the
probability matrix. In Section 6, we also consider the misspecified case — here we test
how well the algorithm performs for the case when the true hypergraphon is not a simple
hypergraphon. Our error metric is the normalized Ly reconstruction error (i.e., H@ —
©|/%2/||®]|%). We use both the random and spectral initialization described in previous
section. Our results for the well-specified case are reported in Figures 1 and 2. For each
case, we performed the simulation for 50 independent trials and the average values are
reported. The bars in the figures represent the corresponding standard error. The value of
pn Was set to 1 and 0.7 in Figure 1 and 2 respectively, to correspond to the dense edges
setting and moderately sparse edges situation. The value of k was fixed at 0.6 - n® and
0.5 - n3 in Figure 1 and 2 respectively, based on the insight provided by the theorem. We
experimented with both random initialization and spectral initialization as described in the
previous section. Below are our observations from the experiments.

13
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e The main difference between the two hypergraphons is that the one in case 1 could
be thought of as a rank-1 function. Since our algorithm is based on the TENSORCOL-
LAPSE operation, the performance depends on how well such an operation captures
the spectrum of the true function. It is easy to see that in the case of rank-1 function,
the operation completely preserves the spectrum. Hence we expect our algorithm to
perform well in case 1 than in case 2. Indeed this is reflect in Figures 1 and 2 for both
the dense and sparse cases.

e The difference between the two initialization schemes is nearly negligible in the dense
setting but the spectral initialization performs comparatively better in the sparse set-
ting. We believe with a more sophisticated regularized spectral initialization one could
achieve better performance. Precisely characterizing this in a theoretical framework
is left a future work.

e As expected, as the number of nodes increases the expected reconstruction error
decreases confirming the theoretical result presented in Theorem 1. Note that the
value of k is set at a fixed value in the experiment.

5.1 Effect of number of blocks

Recall that our algorithm takes in as input k, the number of communities in the hypergraph
stochastic block model that is used to approximate the hypergraphon. In Figure 3 the results
of increasing the number of communities is depicted. The simulation setup is same as in
Section 5 for the case of dense graphs; that is, p, = 1. We considered n = 20 so that we
could clearly observe the bias-variance tradeoff. For each case, we performed the simulation
for 50 independent trials and the average values are reported. The bars in the figures
represent the corresponding standard error. We use hypergraphs samples from both case 1
and 2 hypergraphons and increase k from 0.1 -n3 to 0.9 - n3 in steps of 0.1. The graphs in
Figure 3 demonstrate a bias-variance tradeoff in terms of the effect of k on estimating the
probability matrix. For lower values of k, the corresponding block model does not provide
a good approximation for the underlying simple hypergraphons while for higher values of k,
the number of nodes in each community is too less to provide any information for estimating
the probabilities of edge formulation within that community. There is a sweet-spot in the
middle which achieves the optimal value of k that balance the above bias and variance.
This insight was used in the experiments presented in the previous section to fix the value
of k.

5.2 Runtime comparison

Modeling higher-order interactions certainly comes at a computational cost compared to
that of pairwise interactions. In this section, we compare the wall-clock times of random-
initialization method for the above experiments. We consider random-initialization method
as we observe that it performs as good as the one with spectral initialization. The run-
times of the spectral-initialization method would take into account the time for obtaining
the initialization, in addition.

All the simulation settings are as described in Section 5. Figure 4 (left) shows the wall-
clock time of our proposed algorithm as a function of number of nodes for a fixed value of
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Figure 1: The graphs correspond to normalized average estimation error, for estimating the
probability matrix, as a function of the number of nodes. The left hand side corresponds
to when the hypergraph was sampled from hypergraphon in case 1 and the right hand side
corresponds to the case 2. The value of p, was set to 1 and hence this corresponds to the
dense edges situation. Each point in the graphs above corresponds to a average over 50
independent trials and the bars represent the corresponding standard error. The value of k
was fixed at 0.6 - n® (based on the insight provided by the theorem).

k, corresponding to the hypergraphon in case 1 and case 2 in both the dense and sparse
settings. Similarly, Figure 4 (right) shows the wall-clock time of our proposed algorithm as a
function of k for a fixed value of n for the dense setting. We notice that for a fixed k, as n is
increased, the wall-clock time increases near-linearly first and then starts to increase rapidly.
For a fixed n, as k increases the wall-clock time increases near-linearly. It is intriguing to
come up with faster implementations of the algorithm, or even better, faster algorithms for
estimating SLH hypergraphons.

6. Simulation Results: Misspecified Case

In this section we motivate the use of simple hypergraphons by demonstrating that they
can be good approximations to general hypergraphons. We consider the most elementary
hypergraphons for this experiment — piecewise constant hypergraphons. First we specify
the model through a multistage construction, and then formalize the model by constructing
its associated hypergraphon. We keep m = 3 fixed for this experiment.

Let n be the number of vertices, and k& be the number of communities. We have four ad-
ditional parameters, (p1,q1,p2,q2). Intuitively speaking, depending on vertex communities,
we will construct edges between pairs of vertices, which can be viewed as latent variables,
and then construct hyperedges between triples of vertices depending on those latent edges,
but not directly on the communities of the constituent nodes. First we assign each vertex
to one of the k groups uniformly at random. Then between each pair of vertices, we put an
edge with probability p; if the vertices belong to the same community, and with probability
q1 otherwise. Next, between each triple of vertices, we put a hyperedge with probability po
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Figure 2: The graphs correspond to normalized average estimation error, for estimating the
probability matrix, as a function of the number of nodes. The left hand side corresponds
to when the hypergraph was sampled from hypergraphon in case 1 and the right hand side
corresponds to the case 2. The value of p,, was set to 0.7 and hence this corresponds to the
sparse edges situation. Each point in the graphs above corresponds to a average over 50
independent trials and the bars represent the corresponding standard error. The value of k
was fixed at 0.5 -n? (based on the insight provided by the theorem).

if all three latent edges are present, and with probability g, otherwise. See Zhao (2015) for
a hypergraphon construction of a similar flavor.

We now construct a (six-dimensional) hypergraphon which matches the distribution of
the above model. We break the function into ten cases which correspond to the more intu-
itive procedural construction we just considered. We begin by defining the sets A1, Ao, ..., A5
and Bq, Bs, ..., Bs. To aid in our exposition, let I, be the ¢ such that x € [%, %) I, =1,
will mean that the vertices corresponding to x and y are in the same community. The set
Aj corresponds to the event where all three vertices are in the same community. Ay will
correspond to the event where the first two vertices are in the same community, A3 to where
the first and third are in the same community, and A4 when the second and third are. As
corresponds to the event where all of the vertices are in the same community. For every
assignment of communities to vertices, we have different probabilities of all three edges
being present. When all of the edges are present, we have a probability ps of the hyperedge
being in the graph, a probability of ¢o otherwise. B; will correspond to the event where all
three edges are present in case A;. Finally, we define our hypergraphon f as displayed in
Figure 5.

6.1 Results

We considered two cases for mis-specified models: case of p; = 0.6 and ¢; = 0.4 and the
case of p; = 0.8 and ¢; = 0.4. The number of nodes n was set to be 100. We found that the
the choice of k = 0.5-n3 gave the best result. We emphasize here that this choice was found
through trial and error as there is no supporting theory in the mis-specified case. Our results
for estimation are plotted in Figures 5. We find that in certain regimes of parameters, our
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Figure 3: The graphs correspond to normalized average estimation error, for estimating
the probability matrix, as a function of increasing the number of blocks. The left hand
side corresponds to when the hypergraph was sampled from hypergraphon in case 1 and
the right hand side corresponds to the case 2. The value of p,, was set to 1 and hence this
corresponds to the dense edges situation. Each point in the graphs above corresponds to a
average over 50 independent trials and the bars represent the corresponding standard error.
The z-axis is to be interpreted after scaling it with n3.

T T
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Figure 4: Wall-clock times of the experiments described in Section 5. The simulation
settings are the same as before. Here, we only consider random-initialization based experi-
ments. Case 1 and 2 corresponds to the two different hypergraphons considered and dense
and sparse refers to the values of p, set in the experiments.

estimation algorithm performs well. Firstly, when ps is close to g2, the graphon resembles
a constant hypergraphon and our estimation algorithm performs perfectly. To see this,
notice that when ps = ¢o, the resulting hypergraphon is in fact the constant hypergraphon
with parameter ps = g2. This suggests that our estimation algorithm works when the more
complex hypergraphon is structurally close to a simple hypergraphon. We notice that as
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f($1,$2, X3, 212,13, $23)
(

p2 for (z1,x2,23) € A1, (212, 213, ¥23) € By

¢ for (z1,79,23) € Ay, (T12, 213, To3) € BY

po for (zy,x9,x3) € Ay, (219,213, T23) € Bo

¢ for (w1, 29, 13) € Ag, (219, 713, T93) € BY

) po for (xq,x9,x3) € As, (19,213, T23) € Bs

g for (z1, 79, 13) € A3, (712, 713, T23) € BY

po for (xq,x9,x3) € Ay, (212, 713, T23) € By

g for (w1, 29, 13) € Ay, (219, 713, T93) € BY

po for (x1,x9,x3) € As, (712, 13, To3) € Bs

| @ for (zy, w9, 73) € As, (712, 713, 793) € BY
Ay = {(z1,m9,23) €[0,1]* st [,, =1, = I,,}
Ay = {(x1, w9, 23) € [0,1 5.t [, = [, # L..,}
Az = {(w1, 29, 23) € [0,1 s.t. [, = I, # L.,,}
Ay = {(w1,m9,23) €[0,1)* s.t. I, = I, # I, }

As = {(w1,m9,23) € [0,1)* s.t. I, # Ly, Iy, # Loy, Loy, # 1y}

Bi = {(w12, 213, T23) € [0,p1) X [0,p1) X [0, p1) }
By = {(x12, 213, 723) € [0,p1) X [0,q1) x [0,q1)}
By = {(712, 713, 723) € [0,q1) X [0,p1) x [0,q1)}
By = {(712, 713, 23) € [0,q1) X [0,q1) % [0,p1)}
By = {(12, 113, 723) € [0,q1) x [0,q1) x [0, 1)}

Figure 5: The full hypergraphon used for testing model-misspecification error.
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Figure 6: Left figure corresponds to the case of p; = 0.6 and ¢; = 0.4 respectively. Right
figure corresponds to the case of p; = 0.8 and ¢ = 0.4. We note that the structure is
similar, but as suggested by other figure, when p; and ¢; are big, the error is large. Whiter
regions correspond to small normalize reconstruction error (around 0.2) and darker regions
correspond to large estimation errors (around 0.8).

p1,q1 get bigger, so does the estimation error. This is because when p; and ¢; are both
small, the resulting hypergraphon resembles the constant hypergraphon with parameter
q2, since edges are rare. For larger pi,qi, the resulting hypergraphon is too rich for our
estimation procedure to handle, and we observe larger estimation error.

Finally, we observed that estimation succeeds when community detection fails, a com-
mon phenomenon since estimation is generally an easier problem than community detection.
However, we also observe that community detection often succeeds when estimation fails,
when |py—qa| is large for example. This is telling because our estimation algorithm first does
community detection, and estimates ) from the estimated communities. We can conclude
that this is in fact model misspecification error, since estimation fails even when community
detection succeeds.

7. Applications to Hyperedge Prediction

In this section, we demonstrate the applicability of the proposed hypergraphon estimator in
Sections 3 and 4 to the problem of hyperedge prediction (also called hyperlink prdiction) in
m-~uniform hypergraphs. Here, we assume that we are not given the entire adjacency tensor
A. Instead, we only observe a fraction of entries; the set of observed entries is denoted as 2.
Based on the observed entries, the task is to predict the presence or absence of the missing
hyperedges. In order to do so, we modify the estimator in (3) as © = argming . {[|0]|% —
% > jeaA;O ;}, in order to account for missing entries in the adjacency tensor. A similar
method was also suggested by Gao et al. (2015) for the graph setting. Based on the estimated
@, we predict the missing hyperedge as present if the corresponding entry in the tensor )
is greater than 0.5 and absent otherwise.

For our experiments, we use the the GPS dataset (Zheng et al., 2010) and the MovieLens
dataset (Harper and Konstan, 2015). The GPS dataset consists of 146 users, at 70 locations,
performing 5 different types of activities. This dataset consists of 1436 hyperedges in total
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GPS MovieLens
70% 80% 90% 70% 80% 90%
CMM 0.64+£0.03 0.70£0.06 0.794+0.05| 0.76+0.06 0.82+0.05 0.88+0.06
C3MM 0.69+0.04 0.76+£0.03 0.83+0.05|0.814+0.06 0.87+0.06 0.90+0.04
Hypergraphon | 0.73 +£0.03 0.76 £0.05 0.824+0.02 | 0.85+0.06 0.89+0.04 0.90+ 0.06

Table 1: Area under ROC curve for hyperedge prediction on GPS and MovieLens datasets.

that were 1s. For the MovieLens data, we used a smaller version with 500 users, 500 movies
and 100 tags, for computational simplicity. This dataset consists of 8,349 hyperedges that
were 1s. For the sake of experiments, we randomly pick 70%, 80% and 90% and treat them
as observed data. The problem is to predict the missing hyperedges. The value of k for
the hypergaphon method was set as the one that obtains the best prediction performance,
by trial-and-error method. We remark that developing principled approaches (e.g., cross-
validation) for hyperparameter selection with network data is an interesting problem (which
has generated great interest in the community recently), which, however is beyond the scope
of this work. We compare the performance of our method against two factorization-based
methods termed as CMM (Zhang et al., 2018) and C3MM (Sharma et al., 2020). The above
methods were chosen as they are recent works for hyperedge prediction with superior or
comparable performance to several baselines. We performed the experiment for 50 trials
and calculated the average Area under ROC curve (AUC) as a measure of performance.
From the results in Table 1, we see that the hypergraphon based approach is comparable
to the CMM and C3MM method with demonstrating superiority when the percentage of
missing hyperedges in the given hypergraph is large.

8. Discussion

In this paper, we initiated the study of hypergraphon for nonparametric modeling of hyper-
graphs. We provided rates of convergence in expectation for estimating a class of Smooth
Lipschitz Hypergraphons (SLH) and provided practical algorithms for implementing the
estimators. There are several directions for future work, some of which we highlight below.

Estimating the graphon function: Note that in this paper, we consider estimating the
probability of formation of hyperedges in the Ls norm. A more challenging problem is to
estimate the hypergraphon function itself from the given adjacency tensor. In order to do
so, one needs to define appropriate norms on the space of hypergraphons. For the case of
graphons, the cut-norm, defined as

f(z,y)dxdy
SxT

|fllo=sup
5,7C[0,1]

)

where S and T are measurable subset of [0, 1] serves as a good metric; see Klopp and Verzelen
(2019). But in the case of hypergraphons the problem is more delicate. A straight forward
generalization of the above cut norms (defined below for simple 3-uniform hypergraphons)

Ifllo= sup / f(@,y,2) da dy dz
SxTxU

ST,UC[0,1]

i
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provides only a weaker metric on the space of simple hypergraphons. Care must be taken
first to define first a metric that is meaningful; see Zhao (2015). We leave this problem of
providing cut-norm convergence results for estimating hypergraphons as future work.

Computational Theory: The algorithm presented in section 4 works well as shown via
the experimental results, surprisingly also with random initialization in spite of being a
non-convex optimization problem. Recent advances in non-convex optimization, also high-
lights a similar phenomenon holds for other models; see, for example, Chen et al. (2019) for
the case of phase retrieval model. It is interesting to leverage such results in the context of
hypergraphon models. Furthermore, for the case of graphons, Zhang et al. (2017) proposed
a neighborhood smoothing approach in particular for estimating the probability matrix. It
is not clear if such an approach is immediately extendable for hypergraphons. But it is
interesting to explore if a similar approach could be leveraged for hypergraphons.

2-layer interaction model: A direct step-function (or SBM) based approximation of the
full hypergraphon is provided in Equation 13 in Zhao (2015). It would be interesting to
explore to use a layer wise approach based on the Q-step approximation to estimate the full
hypergraphon function in the future.

Hierarchical clustering: Based on the idea of graphons, recently a hierarchical clustering
framework based was proposed in Eldridge et al. (2016). Also model-free interpretations of
the standard clustering algorithm was provided in Diao et al. (2016). It would extremely
interesting to explore similar extension to the case of hypergraphons.

Appendix A. Proofs for Section 3

In this section, we provide the proofs for Lemma 1 and Lemma 2 from Section 3. Through-
out the proof we assume that C is a absolute constant that changes from step to step.
Furthermore, in this section, we denote Eao x and Ex, as just E for simplicity, as it will be
clear from the context. We also require some additional notations: Recall that G C [n]™
denotes the set of hyperedges with no repeated vertices. That is, j € G iff 3 u,v s.t
Ju = ju. We define H € [n]™ to be the set of increasing hyperedges. That is, j € H iff
j1 < j2 < ... < jm. Then, note that |[H| = (") and |G| = m!|H]|.

Proof [Proof of Lemma 1] First, we consider the loss function

Q=5 3 Y (A-Q)

a€lk]™ jez—1(a)NH

Let Q, # be minimizers of L(Q, z) and let © be such that @j = Qg(j). Note that this is
a least squares estimator. Let ©, be the best k-class block model approximation ofA(-) in
Frobenius norm. In the case where © is truly a k-class block model, ®, = ©. Since O is a
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least squares estimator, we have the following set of inequalities:

1© - Al% <|©.—Al}
&0 -6 +2(0-6,6-A)+ 6 - A}
s|0-0):<|0,.-06|%2+20-60,A-6
<|® -8} < ©.-6|%+2(0 - 6,E)+2

where E = A — @ is the noise tensor. Now we are interesting in bounding the expectation
of the left hand side. Since ®, and © are deterministic and E[E] = 0, the final summand
has zero mean, so it suffices to bound the expectation of (©@ —0O,E). For any z € Z,, let
®, be the best Frobenius norm approximation of ® in the collection of rank m tensors
T.={0©:3Q € Rfyxm *k such that ©; = = Q. for j € G, and ©; = 0 otherwise}
Note that we can interpret 7, as the collection of ©®’s which correspond to a k-class
block model with classes given by z. More concretely, ©, is constructed by taking blockwise

averages of ® according to z, the same way ©. is constructed by taking blockwise averages
of A with respect to z. With this interpretation, we have the decomposition

(@—O,E)=(0,-0,E)+ (60— 6._,E).

Here the first summand, <(':)Z — O, E) corresponds to the error incurred from misclustering,
and ((':) — ., E) corresponds to error from Bernoulli noise. We bound each of the two terms
separately next.

Control of (©, — © E) : We first express (©; — @, E) as a sum of independent random
variables. To do this we only sum over j which are in increasing order, and multiply by the
appropriate factor m!. Hence we have

(0:-0,E)= ) (0:-06),E;=) ml(6;-06),E;

JE[n]™ JjEH

Note |H| = (77;), and that the summands are only positive in G. We use the above decom-
position, and Bernstein’s inequality (see Theorem 2 below), for a fixed, deterministic z to
get following tail bounds:

~ 2 ' ~z_ B e}
P|(©,-6,E) \/2tZVar (m!(©, — ®),E,) + m”@3 Olle | < o
JEH

2ml©. ~ Ol | _
- <ot

P <(:)z—(:),E>2\/2t(m') > (6. - ©)2Var(E;) +

JjEH
Now note that the variance in the above expression is bound as
Var(E;) = (0);(1 - (©);) < (0); < [0«
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Hence substituting this expression, we have

e - ~ A - 2m)! ~z__ 00
pl©.-0.m) > [um)rY (6.6 + 2% = Ole ) <
JEH
- . S A > 2m! ~z__ 00
SP <@Z—@,E>z\/2t||@uoo(m1)22(@z—@)§+ m”®3 Oll | o ¢
JEH

L — o 2m!||©. — O]
@P((@Z—Q,E>2\/QtHG)HOOm!H@Z—@H%—i— udll 2 H )Se_t

- - — 2m!|©, — ©|xo
@P((@Z—@,mzH@Z—G\|F\/2m!||@Hoot+ mi] 3 H )Se_t.

Now we use a union bound to get a uniform in z version of the above expression tail bound.
To do so, let

5. — @ 5 _ @ = 2m!||©. — 0w
Az={<®z—e,E>z|@z—e||F 2m![|©|ct + m!| 3 [ }

and notice that A; C |J A.. We proceed with a union bound to get the following bound.
ZGZnyk

P(A:) <P | 4] < D P(A) < ket = e (tnloeh),
Zezn,k ZEZn’k

Substituting # = t — nlogk and then relabeling # by ¢ yields the following:

® A ~ = = 2m/! é‘)g—(:) )
P(<@2—@,E>Z”@2—®“F 2ml|| @]t + 2 a I )Se—a—mogk)

. = - - 2m!)|©: — Ol :
@P((@g—@,E)ZH@ZA—@HF\/Qm!|]®Hm(t+nlogk)+ m| 3 H >§e_t

" - - 2m!)|©: — Ol
@P(@z—@,mzHcaﬁ—®\|F¢2m!||@um<t+nlogk>+ 7B - B )g

Since ©; is an averaging of ® over blocks, we have ||©; — ©||. Furthermore, using the

inequality 2uv < u? + v2, we have

||(':)z — @H% +4m!(|O]|oo (t + nlogk).

| =

16: — O]y/2m!©]w(t + nlog k) <

Combining these two observations yields

~ — 1. =~ — — 2m!||€ o
P((0: - 0.8) > {16: - Bl + m!] ]t + niogh) + P ) < o

- _ 1, ~ _ _ 2m! |0 || oo
@P(@g ~6.E)— {[: ~ O} > 4m!| @t + nlogh) + 7””3”) <o
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2m!|0| o
3

Finally letting u = 4m!||®||o (t + nlogk) + , we obtain

v <<éé ~-©,E) - é”és - 0|7 > u) < MoBR YO S

Now we proceed to obtain the following expectation bound from the above probability
bound. Integrating both sides with respect to u gives us

*

B[(6: - 6.5) - ([0: -6l < [ ¢ <<@2 _6.|) -

*

e ___3u_
< u*+/ MBS T du
u*

oo N _ 1 - _
+/ P<<@2—97E>—8”@2—@‘%ZU> du

%enlogkﬂ/mm!ﬁ%

2

m!H@”ooenlogk-i—l/G—ﬁ
2

:u*—|—

= u* —|—
Choosing u* = Cm!||©||onlog k yields the following:
B _ 1 - _ _
E[(©: - ©,E) - £[©: - O|[3] < Cm![|®]lnlogk (6)

which completes the control of (@, — ®, E). We now proceed to control the second term.

Control of (6, — ©,,E) : Controlling this term is more involved than the first term.
We give a brief overview of the steps need to get the required bound. We first construct
a 1/4 net to ensure closeness in Frobenius norm, and then modify the net slightly to also
ensure closeness in infinity norm. After that we follow the standard Bernstein pipeline as
in the control of the first term. Then we handle a more involved bound on ||A; — ©;|s.
We elaborate on the steps below.

For any z € Z,,, define .1 = {©® € T : ||©| r < 1} to be the set of all tensors whose
block structure is determined by z, and whose Frobenius norm is bounded by 1. Denote
by A. the best Frobenius norm approximation of A in 77, i.e. the blockwise average of
A according to z. Then Ez = AZ — (':)Z is also the projection and blockwise average of E

onto/of T,. By properties of projections, ® = HEEZH maximizes (@, E) over 7, ;. Let C,
z||F

be a minimal 1/4 net of 7,1 in Frobenius norm. Now to each V € C, associate

V= argmin = ||O|oc.
©cT, 1NB(V,1/4)

Define C, = {V : V € C.}. A standard bound on covering numbers implies log |C.,| < Ck™.
Now using Bernstein inequality (see Theorem 2) and a union bound over z € Z,; and
® € C,, we have,

2m![|© ||

IP’((@,E)Z \/2m!H(:)Hoo(t+nlogk+k‘m)+ 3

(t+nlogk + km)> <e
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where we used the fact that ||@||r < 1 on C,. By definition of C,, there is a ® € C, such
that

B

1Ez(|p

1
TR <5 and  [|Ofle <
z|F

F

Furthermore, for this ®, we have 2 <HEE2H — @) belongs to 7.,1. Thus, we have
ZIF

IE: [ IEz |

< B ,E>§2<®,E>.
1E:z|F

or equivalently,

This gives us

- - - 4m) -
(B:, B) < 2B |1/ 2m18t + nlogh + k) + = [Bell (¢ + nlog h + &™)

with probability at least 1 — e~*. Now we need a bound on ||E;|s. Every entry of E; is
an average over some block of E, so we take a union bound over all blocks of all legal sizes.
First we write what an entry of E; looks like:

-1 Yiegai=:) Bi
|:EZ]J C{ieGiz6) =200}

Note that we then have the following to be true

E ‘ E.
||E?:’||OO <supX; and Xg= sup @’
€S vemmivi=s GOV

where S = {ng,...,n}™.
First we bound W > E; using Bernstein’s inequality (see Theorem 2), and the in-

equality 2ab < a?+b?. We need to be careful that we only consider independent summands.
We denote by |#j| the number of permutations of j which are contained in V', and use the
trivial bound |#j| < m!. Based on the above observations, we have the following set of
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inequalities:

2t
Pl Y Ejzft > Var(#51X) + 5 <et

jEGNV jEHNV

2
=P Z E; 2tm)! Z |#j|Var(X )—|——t <et

3
jeGnv JEHNV

S 2t _
=P DC Ej> fatml Y0 [#llOlle + 5 | <€

jeGnv JEHNV

— 2t
SP Z Ej 2 \/th'|GﬂV|H®||oo + § S e_t

jeGnv
1 2tm 2t
sSP | ——— E; > Ol < ot
meV\‘Z ]GHV\H el I
jeGNV
_ tm! 2t
=P E; Olls <et
|G 7 2 Bz 18l + ganyi tygav | <
JEGNV
=P E Ol <et
;V ;> 18] ‘Gm <e

s
By Stirling’s formula, we have [{V; : |V;| = s;}| < (") < (@> . Therefore, to bound Xj,

5;
we use a union bound over possible V;, a set which has cardinality at most []", (e”) ,

which gives us the following:

— t 4+ T’i SZ‘IO Q
P(Xs > [1©]|oo + m! 2iz1 % log ) <et

|GNV|

Now note that |G'NV| > (max; s;)(ng — 1)(ng —2) - - - (ng —m+1) > Cng*~*(max; ;). This
gives us

_ t+ > silog <t
P X;> 6] +m!C mz_i‘“ ) <ot
ng' " (max; s;)
_ t/ng+ > " log <2
=P st|y@||oo+m!c/ %_—11 S| < et

=P [ Xs > 0] +m!C

m—1
0

( ;
[

t/no+mlog7’:0> ot
<e .
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Further taking a union bound over s; € {ng,...,n} produces a nﬂologn term, which is
dominated by the m log 7’%’ and we get

= — t+ mlog >
P (HEzHoo <|19||oo + m!C"O) >1—et

m—1
L)

Recall that

- - — 4Am!  ~
(B2, B) < 2/Belliy/2m118] (¢ + nlog e+ k) + “20 [ oot + nlog b + ™)

with probability at least 1 — e".

AM-GM gives us

Combining this with our bound on ||E:|/s and using

n

~ E:|2 _ t+ mlog ™
(B, E) < ”16”F + (mh2C <H®||oo(t +nlogh + k™) + 28 m0 4 4 nlogk + km)>
N
with probability at least 1 — 3e™".
Now we proceed to obtain a bound in expectation from the above probability bound.
In order to do so, note that by Lemma 5, we have
- E:E

m—1
0

log ;& n nlogk+km>

m—1 m—1
0 L)

) _ mlog -
<(m!)=C (H@HOO(nlogk + k™) + ——=%(nlogk + km)>
n

+ch@®@+m

) _ mlog -
<(m!)°C (H@Hoo(nlogk +E") 4+ ———">(nlogk + km)>
n

poo
0
Recall that we have

L 6. o _
E|(®:-6,E) - ”8HF < Om!||®|onlogk

and by definition, |©: — ©||p < ||©: — O||p. Combining the above observation, we have
Izl = (1©: — Oz
<|©:-8r+(0: -6l
<2(|©; - O||r.

This gives us the required bound in expectation.

> 3 > o (12 12 Q) m mlog% m
E[(@—@,Eﬂ < ZEI® — Bl + (m!)*C ([18]|sc(nlogh + k™) + —=1(nlogh + k™)
0
)

(7

The statement of the proposition then follows immediately based on combing the above
Equations 6 and 7.
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Proof [Proof of Lemma 2| For the sake of clarity, in this proof we will write ® and f in
place of ® and fy respectively. Recall that in the hypergraphon setting, ® is define by
®; = p,f(X;), and conditional on ®, ©, is deterministic. Instead of working directly with
©,, we define © to be a blockwise average of © on a balanced partition z*, where the first
k — 1 blocks have ng elements, and the kth block contains n — (k — 1)ng. More precisely,
define z* by

2z Ya) ={i € [n] : Xi = Xy for some ¢ € [(a — 1)ng + 1, anq]}
when a € {1,2,...,k — 1}, and for a = k we have
2 (k) = {i € [n] : X; = Xy for some { € [(k — 1)ng + 1,n]}

where X ;) denotes the jth order statistic of the vector X. Let n = nok + r, where
r€{0,1,...,n9 — 1}. Note that by construction, the first £k — 1 classes contain exactly ng
elements, and the last one contains ng + r. For a € [k]™, we define 1} to be the number of
(unordered) hyperedges in the collection of classes a. Let ¢; be the number of times class i
appears in the vector a. Then

« _ [(no+T no
m—( Ck )H <Cz>
i€lk—1]

Now we define the following blockwise average
s 1 1
Q.= - >, 9= - S paW(Xy)
@ je(z*)"Y(a)NH @ je(z*)"Y(a)NH
Finally, we define ® to be given by (:)j = Qz(j) for j € G, and zero otherwise. Then we
have,

R R D SRR o,

aclkl™  je(z*)~1(a)NG

— LY E Y |- Y s

aclk]™  je(z*)~"1(a)NG
2
Pn 1
= om Z E Z - Z (f(X5) = f(Xu))
aclkl™  je(z*)~(a)NG @ ue(z*)"1(a)NH

Note that we can interpret the inner sum as an expectation and use Jensen’s inequality to
obtain

Mla u€(z*)~1(a)NH
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This then implies
1 .. 1
Elmlo-Ol[ <% > > LY B - A
ae[k]m]e Yy~Ha)NG "la ue(z*)~1(a)NH

By leveraging the Lipschitz smoothness assumption in Equation 2, the inequality (>, a;)? <
2 Zl 7, and Jensen’s inequality respectively, we then have the following:

E[(f(XJ) - f(XU))z] < M2 m?XE [(’le - Xul ‘7 SRR ‘ij - XUmDQ]
<2M?max (E[|X;, — X |*] .- E[| X — X [*])

< 2M° max (B [|X;, — Xu, ] + ... + E [1X5,, — Xu,, )

Let o, be such that X, = X, ). For example, o applied to the maximal element of X
would be 1. Since in the above expression, j; and u; belong to the same cluster for every
i, by construction, we have |0, — oy,| < 2ng for every i. By lemma 6 and that fact that

k=[n/no], 2 2
s 1)

2
EI705) - £C6)7 < 802 (1)

which implies

Putting it all together, we obtain

B | le - o1 <8 (1)

which completes the proof.

Appendix B. Auxiliary Results

In this section, we list auxiliary results that are used in the proofs of the main results.

Lemma 5 Let X be a random variable such that its tail-decay satisfy: P(X > u? + Bu +
C) <e™ for allu. Then E[X] < C+2+ B.
Proof By assumption P(X > u? + Bu + C) < e~%. We have
o0
E[X] <t* +/ P(X > t)dt

*

We choose t* = C' so that on [t*,00), t = u?> + Bu+ C has at least one nonnegative solution
and is necessarily increasing. Let t = u? + Bu + C.
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| A

/ P(X > t)d

P(X > u? + Bu + C)dt

““(2u+ B)du

IA
Q Q
w\\

We also need the following result from Klopp et al. (2017).

Lemma 6 Let Z1,...,Z, be i.i.d uniformly distributed random variables on [0,1]. Let Z;
be the i-th order statistic of the above set of random wvariables. Then for any ng < n and
0 < s < ng, we have

s(s+1) < (@>2‘

2
B(Z0=Zi) = oinmr = a

The proof of the above lemma is straightforward and could be found in Klopp et al. (2017).
Furthermore, since there are several different versions of Bernstein’s inequality in the liter-
ature, we also state the version that we used in our proofs, below.

Theorem 2 (Bernstein’s Inequality) Let X1, Xo,..., Xx be zero-mean independent ran-
dom wvariables such that | X;| < M almost surely. Then for allt >0
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