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Abstract

We derive bounds on the path length ζ of gradient descent (GD) and gradient flow (GF)
curves for various classes of smooth convex and nonconvex functions. Among other results,
we prove that: (a) if the iterates are linearly convergent with factor (1 − c), then ζ is at
most O(1/c); (b) under the Polyak-Kurdyka- Lojasiewicz (PKL) condition, ζ is at most

O(
√
κ), where κ is the condition number, and at least Ω̃(

√
d∧κ1/4); (c) for quadratics, ζ is

Θ(min{
√
d,
√

log κ}) and in some cases can be independent of κ; (d) assuming just convex-
ity, ζ can be at most 24d log d; (e) for separable quasiconvex functions, ζ is Θ(

√
d). Thus,

we advance current understanding of the properties of GD and GF curves beyond rates of
convergence. We expect our techniques to facilitate future studies for other algorithms.

Keywords: optimization, trajectory analysis, condition number, self-contracted curves,
Polyak-Kurdyka- Lojasiewicz functions

1. Introduction

Recent work in machine learning has sought to understand the empirical success of gradient
descent (GD) through trajectory analysis (Ge et al., 2015; Lee et al., 2019; Li et al., 2018;
Oymak and Soltanolkotabi, 2019). Trajectory analysis techniques aim to discover desirable
geometric properties satisfied by the GD curve that lead to good convergence behavior.
One such property is an upper bound on the path length of the GD curve. Path length
bounds have been used in recent convergence analyses for deep neural networks (Du et al.,
2018, 2019; Allen-Zhu et al., 2019). These papers argue that fast convergence can be
achieved even if desirable curvature properties are not satisfied globally, provided they hold
within a local region around initialization. A path length bound is used to ensure that the
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iterates stay within this fast convergence region. In this work, we study the path length
of GD and gradient flow (GF) curves as an independent object of interest. This problem
has been considered from slightly different perspectives in machine learning (Oymak and
Soltanolkotabi, 2019) and convex analysis (Bolte et al., 2010; Manselli and Pucci, 1991;
Daniilidis et al., 2015). We draw from both these areas and further the study by establishing
novel upper and lower path length bounds in a variety of settings.

Formally, consider the problem of minimizing an objective function f : Rd → R using
an iterative update rule. An optimization curve refers to the sequence of iterates of the
update rule and is denoted by a mapping g : S → Rd, where S is either R+

0 or N0. S = R+
0

corresponds to the continuous time setting, where the iterative update rule is specified
using an ordinary differential equation. Here, we typically denote an element of S as t, to
be thought of as ‘time’. On the other hand, S = N0 corresponds to discrete update rules,
where we denote an element of S as k, to be thought of as an iterate count. In both cases,
we use xs to denote g(s). Iterative optimization techniques construct this mapping g using
local update rules based on the gradient of f at xs, starting at some initial point x0. If f
is differentiable, one such update rule takes the following form:

Gradient flow (GF): ẋt = −∇f(xt).

A forward Euler discretization of the above ordinary differential equation with a fixed step-
size η yields

Gradient descent (GD): xk+1 = xk − η∇f(xk).

In this paper, we bound the path lengths of the aforementioned update rules:

(continuous) ζ(f,x0) :=

∫ ∞
0
‖ẋt‖2 dt =

∫ ∞
0
‖∇f(xt)‖2 dt.

(discrete) ζη(f,x0) :=
∞∑
k=0

‖xk − xk+1‖2 =
∞∑
k=0

‖η∇f(xk)‖2 .

Under the assumptions specified in the next section, the above integrals and sums are well
defined—our results implicitly show that they converge to a finite value.

We use the terms path and curve to refer to the same mathematical object, but we make
the following stylistic choices for their usage. The mathematical object itself is typically
referred to as the ‘GD curve’ or ‘GF curve’, while when discussing its length we always use
the term ‘path length’ instead of ‘curve length’.

1.1 Notation and Assumptions

Throughout this paper, we assume that the objective function f is continuously differen-
tiable on Rd , and that the minimum of the function f is achieved by at least one point x∗

with ‖x∗‖2 <∞. Denote the minimum value of the objective as

f∗ := min
x∈Rd

f(x) = f(x∗),

and the set of all minimizers as X∗ := {x ∈ Rd : f(x) = f∗}. By first order optimality,
∇f(x∗) = 0 is a necessary (but not sufficient) condition for x∗ to be an element of X∗.
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Theorem Assumption Upper bound Lower bound

Theorem 6, 8, 17
LG, (1, c)-linear

convergence
O(1/c) Ω̃(

√
1/c)

Theorem 9∗, 17 PKL, LG O(
√
κ) Ω̃(min{κ1/4,

√
d})

Theorem 10, 18 Quadratic objective O(min{
√

log κ,
√
d}) Ω(min{

√
log κ,

√
d})

Theorem 15∗, 18 Convexity, LG eO(d log d) Ω(
√
d)

Theorem 16, 18
Quasiconvexity, LG,

separability
O(
√
d) Ω(

√
d)

Table 1: Summary of path length bounds for GF and GD. LG refers to Lipschitz Gradi-
ents (Definition 1) and PKL is the Polyak-Kurdyka- Lojasiewicz condition (Defini-
tion 3). Other terms are also defined in Section 1.1. ∗The GF version of Theorem 9
is due to Bolte et al. (2010). The GF version of Theorem 15 is due to Manselli
and Pucci (1991). Further relationships to prior work are discussed in Section 1.2.

Under the standard curvature assumptions that we consider later in this paper X∗ will be a
convex set. Note that X∗ is closed since f is continuous. Hence the projection of the initial
point x0 on the optimal set X∗ is uniquely defined. We denote this projection as ΠX∗(x0).
We then denote the minimum distance between the initialization point x0 and the optimal
set X∗ as

dist(x0,X
∗) := min

x∗∈X∗
‖x0 − x∗‖2 = ‖x0 − ΠX∗(x0)‖2 ,

which is finite since dist(x0,X
∗) ≤ dist(x0,x

∗) < ∞. Many of our path length guarantees
are a product of dist(x0,X

∗) and a factor (> 1) that depends on curvature or smoothness
properties of the function (defined shortly) or the dimension d. When we write path length
bounds using O(·) or Ω(·) notation, we absorb the factor dist(x0,X

∗) as a constant.
Most of our results are under the following standard smoothness assumption on f (for

instance, see Nesterov (2013, Section 1.2.2)).

Definition 1 (Lipschitz Gradients (LG)) For all x,y ∈ Rd and some L > 0,

‖∇f(x)−∇f(y)‖2 ≤ L ‖x− y‖2 .

The above condition implies f(y)− f(x) ≤ 〈∇f(x),y − x〉+ L
2 ‖y − x‖22.

We next introduce the curvature conditions under which path length bounds are studied
in this paper.

Definition 2 (Convexity and quasiconvexity (QC)) f is convex if f(y) ≥ f(x) +
〈∇f(x),y − x〉 for all x,y ∈ Rd. f is quasiconvex if f(y) ≤ f(x) =⇒ 〈∇f(x),y − x〉 ≤ 0
for all x,y ∈ Rd.

Since f is differentiable, this condition for quasiconvexity is equivalent to saying that all
sub-level sets of f are convex (Avriel et al., 2010, Chapter 3). It is also equivalent to the
condition f(tx + (1 − t)y) ≤ max{f(x), f(y)} for all t ∈ [0, 1] (Fenchel, 1953). It is clear
from the definition that convex functions are quasiconvex.
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Definition 3 (Polyak-Kurdyka- Lojasiewicz condition (PKL)) For all x ∈ Rd, and
some µ > 0,

‖∇f(x)‖22 ≥ 2µ (f(x)− f∗) .

The PKL condition implies quadratic growth: f(x) − f∗ ≥ µ
2 dist2(x,X∗) (Karimi et al.,

2016), and hence also linear growth for the gradient: ‖∇f(x)‖ ≥ µ · dist(x,X∗).

This inequality was introduced by Polyak (1963) to show linear convergence for gradient
descent. Independently,  Lojasiewicz (1963) showed that a generalized version of this in-
equality is true locally around a critical point for any real-analytic function. This result
was further extended by Kurdyka (1998). The generalized inequality is now referred to as
the Kurdyka- Lojasiewicz (KL) inequality—we refer the reader to Bolte et al. (2007, 2010)
for more background.

The PKL inequality is weaker than strong convexity:

for all x,y ∈ Rd, f(y) ≥ f(x) + 〈∇f(x),y − x〉+
µ

2
‖y − x‖22 ,

in the sense that µ-strongly convex functions are also µ-PKL. Linear convergence can be
shown for GD if f satisfies µ-PKL (instead of the stronger µ-strong convexity) and has
Lipschitz gradients (Polyak, 1963). Yet the PKL condition incorporates a significantly
larger class of functions; in particular PKL functions can even be nonconvex. Nonconvex
PKL function arise naturally in some machine learning optimization problems (for instance,
see Lemma 26 (Soltanolkotabi et al., 2019), Section 3 (Fazel et al., 2018), Equation (3.4)
(Balakrishnan et al., 2017) for nonconvex examples and Section 2.3 (Karimi et al., 2016)
for convex but non-strongly convex examples).

Convergence of GD is often studied with respect to its dependence on the ratio of L and
µ, called as the condition number (for instance, see Nesterov (2013, Section 2.1.3)).

Definition 4 (Condition number) For a µ-PKL function f with L-Lipschitz gradients,
we define the condition number κ as L/µ.

Convex quadratic objective functions satisfy PKL and LG, and the κ here turns out to
be the ratio of the largest and smallest non-zero singular values of the Hessian. We also
consider path length bounds under a general linear convergence assumption, formalized
next. The following definition is for any discrete-time iterative updates {xk}k∈N0 or any
continuous-time dynamics {xt}t≥0 (not restricted to GD or GF).

Definition 5 ((A, c)-Linear convergence) We say that a procedure is linearly convergent
with constants c ∈ (0, 1) and A ≥ 1 if for every initial point x0 ∈ Rd and any s ≥ 0,

dist (xs,X
∗) ≤ A(1− c)sdist (x0,X

∗) . (2)

In the discrete case, we have s ∈ N0 and in the continuous case we have s ∈ R0. In the
discrete case c, should really be thought of as cη since the linear convergence rate depends
on the step-size η. However, we use c in both cases to simplify exposition.

Table 1 summarizes our results in these various settings. Figure 1 shows the contain-
ment relationships between various conditions introduced here (these are standard known
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Figure 1: Venn diagram showing different curvature conditions (defined in Section 1.1) and
their relationships. “Linear convergence” refers to functions for which GD or GF
is linearly convergent. The quadratic losses we consider may have Hessians with
zero singular values, in which case the loss is not strongly convex.

facts). Finally, we note that the smoothness and curvature assumptions we make are global.
However, since path length bounds imply that the iterates always stay within a ball, these
assumptions can always be restricted to that ball (as is done formally by Oymak and
Soltanolkotabi (2019)).

1.2 Prior Work

The problem of bounding the length of GF curves of quasiconvex functions was first consid-
ered by Manselli and Pucci (1991). Their analysis is via a reduction to Lipschitz continuous
curves (meaning that the curve map g : R → Rd is Lipschitz continuous) that exhibit the
self-contracted property (see Definition 13). Under an a priori assumption that the GF
curve has finite length, they prove that the length can be at most 2O(d log d). Daniilidis et al.
(2015, Corollary 2.4) show that the finiteness assumption can be dispensed. Further while
Manselli and Pucci require the GF curve to be smooth, Daniilidis et al. provide a new
analysis that includes non-smooth self-contracted curves (with a weaker 210d2 bound). This
fact enables us to extend the analysis from GF curves to GD curves in the convex+LG
case (Theorem 15), leading to the first bound in this setting. Path length bounds for self-
contracted curves have been studied more generally in non-Euclidean settings (Stepanov and
Teplitskaya, 2017; Daniilidis et al., 2018). It has also been shown that self-contracted curves
that satisfy certain smoothness properties must be GF curves of convex functions (Durand-
Cartagena and Lemenant, 2019). The papers in this line of work use geometric properties
of self-contracted curves without referencing the specifics of the GF dynamics.
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While these papers are concerned about fundamental questions about GF curves under
the mild assumption of quasiconvexity, we know that quasiconvexity, or even convexity,
is not enough to obtain the fast convergence rates that optimization algorithms exhibit
empirically in many machine learning settings. Indeed, we may hope for path length bounds
that are potentially independent of d when assumptions such as strong convexity or PKL
hold. Bolte et al. (2010) showed a dimension independent path length bound for GF curves
whenever f satisfies a Kurdyka- Lojasiewicz (KL) condition, a larger class that subsumes the
PKL condition. Their result provides the best known upper bound of O(

√
κ) for GF curves

of PKL functions (reproduced in Theorem 9). However, for quadratic objective functions,
we show an exponentially improved O(

√
log κ) bound (Theorem 10). The best known bound

for strongly convex functions is the O(
√
κ) bound for PKL functions, but our findings for

quadratics suggests that this bound may be loose. We also show two novel lower bounds
in these settings: Ω̃(κ1/4) for PKL functions (Theorem 17) and Ω(

√
log κ) for quadratics

(Theorem 18). Thus, although the KL condition holds very generally, an all purpose bound
depending on the KL constant may not be tight. Oymak and Soltanolkotabi (2019) analyzed
GD and SGD path lengths for nonlinear least square objectives, under spectral assumptions
on the Jacobian of the non-linear mapping. Apart from least squares objectives, they also
showed an O(κ) bound for PKL functions. We improve their result by showing an O(

√
κ)

bound for GD (Theorem 9).

1.3 Organization

The rest of the paper is organized as follows:

1. In Section 2.1, we prove a general purpose path length bound for GD and GF curves
that is applicable under any set of curvature conditions for which linear convergence
can be established. Using the technique of Section 2.1, in Appendix A we show path
length bounds for Polyak’s heavy ball method and projected gradient descent.

2. In Section 2.2 we show path length bounds for GD and GF curves of PKL functions.
In Section 4.1, we present a worst case lower bound in the same setting.

3. In Section 2.3, we provide the tightest known path length bound for GD and GF
curves of convex quadratic objective functions (potentially overparameterized). In
Section 4.2, we provide a a matching lower bound construction.

4. In Section 3 we derive explicit dimension dependent path length bounds for quasicon-
vex functions (GF) and convex functions (GD and GF). This leads to the first known
bounds for GD curves in this setting.

Table 1 summarizes the results in this paper. We remark that proofs in the GF case are
often more straightforward, but lead to conclusions that continue to hold in the GD case
with appropriate step-size restrictions.

2. Dimension Independent Path Length Bounds

In this section, we provide dimension independent bounds on the length GD and GF curves.
All the bounds in this section hold for functions for which GD and GF exhibit linear
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convergence towards the optimal set. In particular we discuss PKL objectives, strongly
convex objectives, and convex quadratic objectives. More generally if the function does not
belong to one of the aforementioned function classes, but linear convergence is known to
hold, we can prove path length bounds that depend on the constant of convergence. We first
prove this meta-theorem and then discuss specific function classes (where the meta-theorem
bound can be improved).

2.1 General Bounds Under Linear Convergence

Linear convergence (Definition 5) is known for GD (with appropriate step-size) if the func-
tion has Lipschitz gradients and is strongly convex with A = 1 and c = 1/κ. For PKL
functions we have such a linear convergence result in function values instead of distance to
the optimal set with A = 1 and c = 1/κ (Karimi et al., 2016, Theorem 1). Using the LG
condition and a quadratic growth result due to Karimi et al. (2016, Theorem 2), this con-
vergence in function value can be converted to parametric linear convergence in the sense of
Definition 5 with A = κ and c = 1/κ. All of these convergence results are also known for GF
with c = 1− e−µ in each case. GD is also known to be linearly convergent when performing
maximum likelihood estimation in logistic regression with unseparable data (Freund et al.,
2018, Theorem 3.3). In the theorem to follow, we guarantee a path length bound in each
of these settings.

Theorem 6 Suppose f has L-Lipschitz gradients. If the GF dynamics for f exhibits linear
convergence with constants (A, c), then its path length is bounded as:

ζ ≤ (AL/ log (1/(1− c))) dist (x0,X
∗) , (3)

and if the GD iterates with step-size η exhibit linear convergence with constants (A, c), then
their path length is bounded as:

ζη ≤ (ηAL/c) dist (x0,X
∗) . (4)

Proof sketch The detailed proof of a more general result can be found in Theorem 20,
Appendix A. As a consequence of linear convergence, as the distance to the optimal set
decreases geometrically, so does the contribution of consecutive iterates to the path. As
illustrated in Figure 2, we then have the bound

ζη ≤ dist (x0,X
∗)
(
ηAL+ (1− c)ηAL+ (1− c)2ηAL+ . . .

)
= (ηAL/c) dist (x0,X

∗) , (5)

which proves claim (4).

Remark 7 Variants of this theorem can be derived in more general settings:

(a) Theorem 20 in Appendix A extends the result from linear convergence towards the
globally optimal set X∗ to linear convergence towards any convex set of points that
satisfy first order optimality conditions.

(b) Theorem 23 in Appendix A extends the result to projected gradient descent, with a
larger multiplicative constant.
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(Linear Convergence)

(Lipschitz Gradient)

(Linear Convergence)

Figure 2: Path length bound under linear convergence. The GD curve is shown with solid
blue lines. The inequalities in bold upper bound individual terms in the path
length sum, as noted in Equation (5).

(c) Theorem 8 extends the result to any iterative update rule not limited to GD, if descent
can be established with respect to all minimizers in X∗.

For GD with a µ-strongly convex function that has L-Lipschitz gradients, it is a standard
result that linear convergence holds for η ≤ 1/L, with A = 1 and c = ηµ. This leads to
the bound ζη ≤ κ ‖x0 − x∗‖2. For GF in the same setting, linear convergence holds with
A = 1 and c = 1 − e−µ. Since log(1/(1 − c)) = log(eµ) = µ, the bound also resolves to
ζ ≤ κ ‖x0 − x∗‖2. However, the O(κ) dependence can be improved. In Section 2.2, following
the work of Bolte et al. (2010), we show that in fact the κ bound for µ-strongly convex
functions can be improved to O(

√
κ) with a weaker µ-PKL assumption. In Section 2.3 we

study a specific strongly convex problem, namely convex quadratic objective functions. In
this case we show that the above bound can be improved to O(

√
log κ).

Theorem 6 can be generalized to include any iterative update rule (not limited to GD),
and any function class for which linear convergence holds, as long as descent holds with
respect to all minimizers in X∗. In the following, we denote the update for a point x as x+.

Theorem 8 If the iterates for a discrete update rule satisfy the following conditions:

(a) linear convergence with constants (A, c), and

(b) descent towards all minimizers: for all x∗ ∈ X∗, x ∈ Rd, ‖x+ − x∗‖2 ≤ ‖x− x∗‖2,

then their path length is bounded as:

ζη ≤
(

2A

c

)
dist (x0,X

∗) . (6)
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The proof of a more general result can be found in Appendix A (see Theorem 21). Note
that if X∗ is singleton and A = 1, condition (b) is implied by condition (a). Using this
observation, in Corollary 22 (Appendix A) we show a path length bound of

√
κ ‖x0 − x∗‖2

for Polyak’s heavy ball method (Polyak, 1964) with a twice continuously differentiable and
strongly convex function with Lipschitz gradients.

For GD, condition (b) of Theorem 8 is known if f is convex, has L-Lipschitz gradients
and η ≤ 1/L—in fact Lemma 14 argues that the stronger property of self-contractedness
(Definition 13) holds. However, there exist scenarios where condition (a) is known but not
condition (b), such as nonconvex PKL functions. In such cases, Theorem 6 can still be
applied, as long as f has L-Lipschitz gradients.

2.2 Path Length Under the PKL Condition is O(
√
κ)

The bound in the PKL case can be improved by analyzing a particular potential/Lyapunov
function:

εt =
√
f(xt)− f∗.

It can be shown by differentiating εt and applying the PKL condition that,

−ε̇t ≥
√
µ

2
‖∇f(xt)‖2 .

Integrating the above with respect to t and using LG leads to the following theorem path
length bound for GF curves (the GD bound also follows a similar approach).

Theorem 9 For any µ-PKL function f with L-Lipschitz gradients, the GF dynamics have
a path length bounded as:

ζ ≤
√
κ dist (x0,X

∗) ,

while the GD iterates with η ≤ 1/L have a path length bounded as: ζη ≤ 2
√
κ dist (x0,X

∗) .

The proof can be found in Appendix B. The GF version of this bound is a special
case of a general statement shown by Bolte et al. (2010, Theorem 27) for a larger class of
functions, namely those that satisfy the Kurdyka- Lojasiewicz inequality. The GD version
is new. Oymak and Soltanolkotabi (2019, Corollary 5.3) obtained an O(κ) bound while
we show an O(

√
κ) bound. Our result relies on Theorem 5.2 of their paper, where they

show a path length bound in terms of (f(x0) − f∗). However their final result in terms of
dist (x0,X

∗) is weaker than ours.

2.3 Path Length for Convex Quadratic Objectives is O(
√

log κ)

For convex quadratic objective functions we can explicitly write down the GD or GF iterates.
This allows us to significantly improve the general linear convergence result. To make use
of some standard notation, we write a general convex quadratic objective function as a
linear regression problem specified by a matrix A of dimensions n×d, and an output vector
y ∈ Rn. The objective is

f(x) =
1

2n
‖y −Ax‖22 . (7)

9
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The columns of A may be linearly dependent (which is necessarily true for the over-
parameterized setting, when d > n). In this case the solution set X∗ has more than one
element. However, it is possible to show that both GF and GD converge to ΠX∗(x0), given
by

ΠX∗(x0) := (In×n −AT (AT )†)x0 + (ATA)†ATy,

where B† denotes the Moore-Penrose inverse of a matrix B. If the columns of A are linearly
independent, this reduces to the standard least squares solution ΠX∗(x0) = (ATA)−1ATy.

Define Σ := (ATA)/n. The GF curve can be computed in closed form as:

xt = ΠX∗(x0)− Σ† exp(−tΣ)Σ(ΠX∗(x0)− x0), (8)

so that x∞ = ΠX∗(x0). By definition, Σ is positive semidefinite. If A has linearly dependent
columns, Σ would have zero singular values. In general, suppose the number of non-zeros
singular values of Σ is d+ ≤ d. We denote them as σ1 ≥ σ2 · · · ≥ σd+ > 0. Then for any
step-length η ≤ 1/σ1, the GD iterates converge to ΠX∗(x0) via the following updates for
k ≥ 1:

xk = xk−1 −
ηAT (Axk−1 − y)

n
. (9)

For i ∈ [d+ − 1], define κi := σi/σi+1. The overall condition number is κ := σ1/σd+ . The
following theorem shows a path length bound for quadratic objectives in terms of each of
the quantities: d+, the κi’s and κ.

Theorem 10 For convex quadratic objective functions (7), the GF dynamics (8) have a
path length bounded as:

ζ ≤ min

√d+, 1 +
d+−1∑
j=1

κ
−1/(κj−1)
j (1− 1/κj), 1 + 2.5

√
log κ

 dist (x0,X
∗), (10)

while the GD iterates (9) with η ≤ 1/σ1 have a path length bounded as:

ζη ≤ dist (x0,X
∗) + ζ. (11)

To clarify, when κj = 1, κ
−1/(κj−1)
j (1−1/κj) is defined as limκj→1+ κ

−1/(κj−1)
j (1−1/κj) = 0.

The proof of Theorem 10 can be found in Appendix C.

Remark 11 We show in the proof that
∑d+−1

j=1 κ
−1/(κj−1)
j (1−1/κj) ≤ log κ

e . This cannot be

improved to o(log κ) as shown next. Suppose κj = 6 for every j ∈ [d+−1]. It can be verified

that 6−1/(6−1)(1− 1/6) ≥ 0.5, and thus
∑d+−1

j=1 κ
−1/(κj−1)
j (1− 1/κj) ≥ 0.5(d+ − 1) ≥ log κ

2 log 6 ,

since κ = 6d
+−1. This is true for any d+ and consequently for all large κ. Thus the bound

cannot be improved to o(log κ) in general, making the O(
√

log κ) bound the best asymptotic
result with respect to κ. However for special cases, such as if there is only one large singular
value, this bound may even be independent of κ and d+. For instance, suppose κj = 1 for
j ∈ [d+ − 2], and κ = κd+−1 ∈ [1,∞). Then, no matter the value of d+, κ, we obtain the
bound ζ ≤ 2 dist (x0,X

∗).
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There exists a family of quadratic functions that also satisfy a matching Ω(
√

log κ)
lower bound on their path length, as shown in Theorem 18. However in Appendix G.2 we
present experimental evidence to suggest that the constant 2.5 may not be sharp. This
bound fundamentally improves the

√
κ dependence we expect via the best known bound

for strongly convex functions (Section 2.2). Although we show a poly(κ) lower bound for
PKL functions (Section 4.1), we are not aware of poly(κ) lower bounds for strongly convex
functions. In the absence of such lower bounds, the upper bound of this section suggests a
potential improvement on the path length bound for strongly convex functions as well. To
this end, we make preliminary progress on a special subclass of separable strongly convex
functions. First, define a class of univariate functions

Gµ,L := {g : g is µ-strongly convex, has L-Lipschitz gradients, and g′′′(x) ≥ 0 for all x}.

Equivalently, the second derivative g′′ satisfies µ ≤ g′′(x) ≤ L for all x and g′′ is non-
decreasing. Using the above as building blocks, define

Fsep,Gµ,L := {f : f(x) =

d∑
i=1

g(i)(x(i)) where g(i) ∈ Gµ,L}.

To motivate the above definition, consider the quadratic function f1 given by f1(x) =∑d
i=1 ix

2
(i) and the nearly quadratic function f2 given by f2(x) =

∑d
i=1(ix2

(i) + 0.1x4
(i)). f1

has µ = 2 and L = 2d. Note that f2 also has µ = 2, and if we restrict it to a bounded
domain [−B,B]d, it has L = (2 + 1.2B2)d. We expect that the path length of f2 behaves
like f1; however the only applicable path length bound we know is the O(

√
κ) bound of

Section 2.2. Note however that f2 ∈ Fsep and so Theorem 12 below shows an O(log κ)
bound on its path length.

Theorem 12 For any f ∈ Fsep,Gµ,L, the GF path length is bounded as:

ζ ≤ (2 + log κ) dist (x0,X
∗) .

The proof of this theorem can be found in Appendix C.

3. Dimension Dependent Path Length Bounds Under Convexity

If our function class does not exhibit linear convergence, path length bounds can still be
provided that depend on the dimension d. In this section, we analyze path lengths of
GD and GF under convexity. In fact, the results of this section hold for GF under the
weaker assumption of quasiconvexity (Definition 2). Under quasiconvexity or convexity,
even finiteness of path length is a surprising result since there exist planar convex functions
whose GF curves spiral around infinitely many times while going arbitrarily close to the
minimum (Daniilidis et al., 2010). In other words, GF exhibits convergence but not the
stronger notion of tangential convergence (Bolte and Pauwels, 2020, Section 5.5). Since
there is no natural notion of a condition number here, we look for bounds that depend on
the dimension d. The analysis of path lengths of GF and GD in the convex case goes via a
reduction to the notion of self-contracted curves.

11
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Figure 3: Self-contracted curves. In the continuous case (left), S = R+
0 ; in the discrete case

(right), S = N0.

Definition 13 (Self-contracted curve (Daniilidis et al., 2010)) A curve g : S → Rd
is self-contracted if for all s1, s2, s3 ∈ S such that s1 ≤ s2 ≤ s3,

‖g(s3)− g(s2)‖2 ≤ ‖g(s3)− g(s1)‖2 . (12)

Setting s3 such that g(s3) = x∗, we can see that self-contracted curves are descent curves, in
the sense that consecutive iterates cannot go farther away from x∗. However self-contracted
curves require the descent condition (12) to hold more generally for any s1 ≤ s2 ≤ s3.
Figure 3 illustrates a self-contracted curve in two dimensions.

It is well known that the GF curve is a self-contracted curve (Manselli and Pucci, 1991;
Daniilidis et al., 2015, 2010) for quasiconvex functions. To see this, first note that for any t,
df(xt)
dt = −‖∇f(xt)‖22 ≤ 0, and thus for any s ≥ t, f(xs) ≤ f(xt). Now, fix s and define the

potential function ε(t) = ‖xs − xt‖22 for t ≤ s. Then,

ε̇(t) = 2 〈xt − xs, ẋt〉 = 2 〈xt − xs,−∇f(xt)〉 = 2 〈∇f(xt),xs − xt〉 ≤ 0,

where the inequality follows by quasiconvexity since f(xs) ≤ f(xt). Thus, ‖xs − xt‖22 is a
decreasing function of t which is the same as self-contractedness for s3 = s.

For GD, we prove self-contractedness under the additional assumptions of convexity and
Lipschitz gradients:

Lemma 14 For any convex function f with L-Lipschitz gradients, the GD curve with η ≤
1/L is self-contracted.

The proof of Lemma 14 is in Appendix D.1. We do not know if one can relax convexity to
quasiconvexity. Also note the step-size restriction: for convex functions with L-Lipschitz
gradients, GD with η ∈ (0, 2/L] is a descent method; however for GD to be self-contracted,
further restriction on step-size (such as η ∈ (0, 1/L]) is needed. This is discussed in Ap-
pendix D.1 after the proof of the lemma. Thus while self-contracted curves are descent
curves (in terms of the iterates), there exist descent curves that are not self-contracted.

The GD curve in Lemma 14 refers to the iterates g(0), g(1), . . ., and not the affine
extension of the iterates (obtained by connecting consecutive iterates by a line). It is unclear
whether the affine extension itself is self-contracted. This precludes a direct application

12
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of path length bounds known for GF curves (Manselli and Pucci, 1991; Daniilidis et al.,
2015) since these bounds require all points to be part of a self-contracted curve. Despite
this limitation, we show that the self-contractedness guarantee provided by Lemma 14 is
enough to show a path length bound for GD.

Theorem 15 For any quasiconvex function f , the GF path length is bounded as:

ζ ≤ 22d log d ‖x0 − x∞‖2 .

If f is convex with L-Lipschitz gradients, then the GD iterates with a step-size η ≤ 1/L
admit a path length bound:

ζη ≤ 210d2 ‖x0 − x∞‖2 ,

while the GD iterates with a step-size η ≤ 1/2L
√
d admit a path length bound:

ζη ≤ 24d log d ‖x0 − x∞‖2 .

The proof of Theorem 15 can be found in Appendix D. The GF bound is due to Manselli
and Pucci (1991), while our contribution is the analysis for GD curves (nevertheless, we
include the GF proof for completeness). To the best of our knowledge, ours is the only path
length bound known for GD curves of convex LG functions (without further assumptions).
However the step-size restriction of η ≤ 1/2L

√
d for the 2O(d log d) result is much smaller

than the usual step-sizes required for convergence to hold. It would be interesting to study
if the 2O(d log d) can be obtained with η = O(1/L).

Observe that this bound is with respect to ‖x0 − x∞‖2 instead of dist (x0,X
∗). For

convex functions f with L-Lipschitz gradients, it is known that GD or GF both converge to
a point in the optimal set, that is, x∞ ∈ X∗. Thus if X∗ is singleton, x∞ = x∗. However in
general, x∞ may be distinct from ΠX∗(x0) and ‖x0 − x∞‖2 may be larger than dist (x0,X

∗).

The exponential bound of Theorem 15 can be significantly improved if the quasiconvex
function is separable, that is it exhibits the decomposition

f(x) =
d∑
i=1

g(i)(x(i)), (13)

for some functions g(i) : R→ R. Note that if f is quasiconvex, each g(i) is quasiconvex.

Theorem 16 Suppose f is quasiconvex and exhibits the decomposition (13). Then the path
length of GF is bounded as ζ ≤

√
d dist (x0,X

∗). If f has L-Lipschitz gradients then the
path length of GD with η ≤ 1/L also satisfies ζη ≤

√
d dist (x0,X

∗).

The proof of this theorem can be found in Appendix D. The decomposition (13) ensures
that GD/GF always follows a descend direction in each of the components. The theorem
generalizes easily to a larger class of functions that exhibit component-wise descent for any
orthogonal basis (and not necessarily the canonical basis). It would be interesting to study
if this can be shown for some standard class of functions larger than separable quasiconvex
functions. Theorem 18 shows a matching Ω(

√
d) lower bound for separable quasiconvex

functions.
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4. Lower Bounds

In this section we provide lower bounds on the path length for quadratic functions, PKL
functions, and separable quasiconvex functions. In each case, given problem parameters (d,
κ), we construct a worst-case lower bound—that is we exhibit a function f that satisfies
the problem parameters and specify an initial point x0 for which the path length is lower
bounded by some function of d and κ, times the length of the shortest path dist (x0,X

∗).

4.1 An Ω̃(
√
d ∧ κ1/4) Lower Bound for PKL Functions

In Section 2.3 we obtained an O(
√

log κ) dependence for the path length of quadratics ob-
jectives. Thus, a natural question is whether the O(

√
κ) bound for the path length of PKL

objectives can be improved to O(polylog(κ)). In this section, we show that such a depen-
dence is precluded for PKL functions without further assumptions. Previously, Oymak and
Soltanolkotabi (2019, Theorem 5.4) have presented a lower bound in terms of f(x0) − f∗.
However, this bound when translated in terms of dist (x0,X

∗) leads to a trivial result. The-
orem 17 is the first non-trivial lower bound for functions that satisfy PKL. The constructed
function also satisfies linear convergence, leading to a lower bound for linearly convergent
functions as well. Let Fκ be the class of real-valued functions on Rd such that every f ∈ Fκ
satisfies:

• f is continuously differentiable.

• There exist constants µ,L > 0 such that κ ≥ L/µ and a) f has L-Lipschitz gradients,
b) f satisfies the PKL inequality with constant µ.

Theorem 17 For every d ≥ 6 and κ ≥ 216, there exists a function f ∈ Fκ and an initial
point x0 such that the GF dynamics on f with the initial point x0 satisfies

ζ ≥ min

{ √
d

6 log d
,
κ1/4

6 log κ

}
dist (x0,X

∗) .

Similarly, there exists a function f ∈ Fκ, an initial point x0, and some step-size η ∈
[1/2L, 1/L] such that the GD iterates on f with the initial point x0 satisfy

ζη ≥ min

{ √
d

16 log d
,
κ1/4

16 log κ

}
dist (x0,X

∗) .

The same construction guarantees the following: for any c ∈ (0, 5.8 · 10−3), there exists a
function f ∈ Fκ and a point x0, such that f satisfies (1, c)-linear convergence (for GF and
GD) and the path length with the initial point x0 can be bounded as

ζ ≥

( √
1/c

12 log1.5(1/c)

)
dist (x0,X

∗) ; ζη ≥

( √
1/c

64 log1.5(1/c)

)
dist (x0,X

∗) ,

for GF and GD respectively.
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Figure 4: Component function g for PKL lower bound.

Proof sketch The function f that we construct decomposes as f(x) =
∑d

i=1 g(x(i)), where
the function g (Figure 4) is L-Lipschitz and µ-PKL (and thus so is f) with κ ≥ L/µ. g
is designed so that it is equal to x2 in the interval [0, 0.5], so that it is strongly convex
in that region. In [0.5, 1], g is not strongly convex (or convex) and in some sense tapers
off. However, g continues to maintain the PKL curvature condition with some constant µ
globally. Next we stagger the components of the initial point x0 so that at every consecutive
time interval, a single component starts has value 0.5 at the beginning of the time interval
and decreases to almost 0.0 at the end of the time interval (Figure 5). In this way, at
every time interval, a single additional component is captured. Loosely speaking, GD while
optimizing approximately follows the edges of a cube instead of the diagonal. This ensures
that the path length is a factor ≈ 0.5

√
d larger than the shortest path. Then, we compute

κ and relate it to d to obtain the final bound. Similarly, we show that the function satisfies
(1, c)-linear convergence and we relate the linear convergence constant c to the dimension
d to obtain the linear convergence result. See Appendix E for details.

These lower bounds do not match the O(
√
κ) upper bound for PKL functions and the

O(1/c) upper bound for linearly convergent functions. We do not know which of these
bounds are tight. In Appendix G.1 we simulate the lower bound constructed in the proof of
Theorem 18 with GD. This simulation allows us to verify that the dependence of the path
length of the lower bound construction is indeed Ω(κ1/4/ log κ) (and not something larger
like Ω(

√
κ)). We observed that the dependence is ≈ 3κ1/4/ log κ. Thus the dependence on

κ is correct, but the constants are loose. Observe that the function constructed above
is not strongly convex. Thus proving a poly(κ) lower bound for strongly convex functions
remains an open problem.

4.2 An Ω(
√
d ∧

√
log κ) Lower Bound for Quadratics

In this section, we show that the upper bound for quadratic objectives proved in Section 2.3
is tight by constructing an instance of GD and GF where the path length is Ω(

√
log κ), if the

dimension can be set arbitrarily (this is the ‘large-scale’ optimization assumption made in
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(b) k = 1
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(c) k = 2

Figure 5: Illustration of lower bound path length construction of Theorem 17 for GD. Every
colored circle denotes the value of xk in a different component. In iterate k = 1,
the green component goes from 0.5 to almost 0.0. Then in iterate k = 2 the red
components decrease in the same manner and so on.

many lower bounds; for instance, see Guzmán and Nemirovski (2015) and Nesterov (2013,
Theorem 2.1.7). Let Qκ be the class of quadratic functions on Rd such that the Hessian
has non-negative singular values and the ratio of the largest and smallest non-zero singular
values is at most κ.

Theorem 18 For every κ ≥ 5, there exists a quadratic function f ∈ Qκ and an initial
point x0 such that the GF dynamics on f with the initial point x0 satisfies

ζ ≥ min
{

0.7
√
d, 0.45

√
log κ

}
dist (x0,X

∗) . (14)

Similarly, there exists a function f ∈ Qκ and an initial point x0, such that for step-size
η = 1/2L the GD iterates on f with the initial point x0 satisfy

ζη ≥ min
{

0.5
√
d, 0.3

√
log κ

}
dist (x0,X

∗) . (15)

The quadratic functions constructed are separable (see (13)) and convex. Thus the Ω(
√
d)

bound holds for separable quasiconvex functions and convex functions as well.

Proof sketch The quadratic function we consider has geometrically increasing spectra—
the eigenvalues are 1, ω, ω2, . . . ωd−1. Similar to the proof of Theorem 17 for the PKL case,
in each time interval (or iterate), a single component is captured. This leads to a lower
bound of Ω(

√
d). We then relate

√
d = Θ(

√
log κ) to write the final bound. Details can be

found in Appendix F.

In Appendix G.2 we simulate the quadratic lower bound constructed in the proof of Theo-
rem 18 and compare the lower bound and upper bound (Theorem 10) with the empirically
observed path length.

5. Discussion

Bounds on the path length of GD (and related algorithms like SGD) have implicitly been
studied in some recent papers seeking to understand optimization for deep neural networks.
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In this paper, we provide unified results for GD and GF under common smoothness and
curvature assumptions, obtaining the tightest known bounds for quadratics and convex
objectives. We also presented a meta-theorem that gives us a path length bound for any
linearly convergent iterative algorithm. To complement these results, for PKL objectives,
we also show a lower bound, which to our knowledge is the first such lower bound for path
lengths. For quadratics, we give a matching lower bound thus completely characterizing
path lengths in this setting. For separable quasiconvex objectives, we give matching (up to
constants) upper and lower bounds on the path length.

Our meta-theorem suggests that path lengths are intricately tied with convergence prop-
erties. While we focused on GD and GF, it would be interesting to consider the path length
bounds exhibited by other optimization algorithms that have good convergence properties,
such as SGD, projected gradient descent, accelerated methods, heavy ball methods, second
order methods, proximal methods, and so on. In Appendix A, we show some preliminary
results to this end. Attouch and Peypouquet (2016, Fact 4) showed a path length bound
style result for Nesterov’s acceleration method.

A broader open direction concerns understanding better the statistical implications of
our path length bounds. As an example, it is known that stable optimization algorithms
can exhibit better generalization guarantees (Bousquet and Elisseeff, 2002; Chen et al.,
2018; Hardt et al., 2016) and it is natural to expect similar qualitative behaviour from
optimization algorithms that have short path lengths. Some recent works (Balakrishnan
et al., 2017; Mei et al., 2018), have provided statistical guarantees for optimization-based
estimators via uniform (statistical) convergence over the possible algorithm iterates, and
we believe these might also be strengthened by a deeper understanding of the path followed
by these algorithms.

While the focus of this paper is on path length bounds for GD and GF, we also note
other problems for which path length bounds have been considered. Bounds on the `1 path
length of lasso and forward stagewise regression have been studied by Hastie et al. (2007).
Adaptive regret bounds for bandits have been shown that depend on the total path length
of the losses at each step (Wei and Luo, 2018; Bubeck et al., 2019). Argue et al. (2019)
showed a result for nested convex body chasing using a bound on the path length of self-
contracted curves (Manselli and Pucci, 1991), which was originally developed for proving
the convergence of GF for any quasiconvex function.
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Appendix A. Proofs and Additional Results from Section 2.1

In this section, we state and prove more general versions of Theorem 6 and Theorem 8.
These provide a path length bound if linear convergence can be established with respect to
a local minimum rather than the global minimum. We also show path length bounds for
Polyak’s heavy ball method and projected gradient descent.
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A.1 Generalized Version of Theorem 6

Theorem 6 can be generalized for linear convergence to any set X̂ as long as it is stationary,
defined next.

Definition 19 (Stationary convex set) A stationary convex set is a convex set X̂ such
that for every x̂ ∈ X̂, ∇f(x̂) = 0.

Given any convex set X̂, we can generalize Definition 5 to allow linear convergence
to this set instead of the globally optimal set X∗. Consider the following modification of
condition (2) replacing X∗ with X̂:

dist
(
xs, X̂

)
≤ A(1− c)s dist

(
x, X̂

)
.

Here s may belong to N0 (discrete-time) or R0 (continuous-time).

Theorem 20 Suppose f has L-Lipschitz gradients. If the GF dynamics for f exhibits linear
convergence towards a stationary convex set X̂ with constants (A, c), then its path length is
bounded as:

ζ ≤ (AL/ log (1/(1− c))) dist
(
x0, X̂

)
, (16)

and if the GD iterates with step-size η exhibit linear convergence towards X̂ with constants
(A, c), then their path length is bounded as:

ζη ≤ (ηAL/c) dist
(
x0, X̂

)
. (17)

Proof We first prove the GF bound (16). Using LG and the fact that for every x̂ ∈ X̂,
∇f(x̂) = 0, we bound the path length increment at every instance t:

‖ẋt‖2 dt = ‖∇f(xt)‖2 dt =
∥∥∇f(xt)−∇f(Π

X̂
(xt))

∥∥
2
dt ≤ L dist

(
xt, X̂

)
dt.

Thus, ∫ ∞
0
‖ẋt‖2 dt ≤

∫ ∞
0

AL(1− c)t dist
(
x0, X̂

)
dt

=

∫ ∞
0

ALet log(1−c) dist
(
x0, X̂

)
dt

=

(
AL

log (1/(1− c))

)
dist

(
x0, X̂

)
.

This concludes the proof of claim (16).
For claim (17), using LG we have the following regularity condition on the distance

travelled at every step: ∥∥x− x+
∥∥

2
= ‖x− (x− η∇f(x))‖2
= ‖η∇f(x)‖2
= η

∥∥∇f(x)−∇f(Π
X̂

(x))
∥∥

2
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LG
≤ ηL dist

(
x, X̂

)
.

The equality on the second last line follows by the stationarity assumption on X̂. Thus we
have the following bound on the overall path length:

ζη =

∞∑
k=0

‖xk − xk+1‖2

≤
∞∑
k=0

ηL dist
(
x, X̂

)
≤
∞∑
k=0

ηAL (1− c)kdist
(
x0, X̂

)
=

(
ηAL

c

)
dist

(
x0, X̂

)
,

completing the proof.

Next, we show a similar generalization of Theorem 8 for linear convergence to a local
minimum X̂, but without requiring a stationarity assumption.

A.2 Generalized Version of Theorem 8

The following result applies for any iterative algorithm (not just GD) and any function class
(not necessarily convex) for which linear convergence to a set X̂ holds (i.e., Definition 5 with
X∗ replaced with X̂). We additionally assume that descent holds with respect to all points
in X̂. We do not require X̂ to consist of stationary points or be a convex set, as long as the
conditions specified above hold.

Theorem 21 If the iterates for a discrete update rule satisfy the following conditions:

(a) linear convergence with constants (A, c) to a set X̂, and

(b) descent towards all points in X̂: for all x̂ ∈ X̂, x ∈ Rd, ‖x+ − x̂‖2 ≤ ‖x− x̂‖2,

then their path length is bounded as:

ζη ≤
(

2A

c

)
dist

(
x0, X̂

)
. (18)

Proof Using triangle inequality for any two consecutive iterates x→ x+,∥∥x− x+
∥∥

2
≤
∥∥x−Π

X̂
(x)
∥∥

2
+
∥∥x+ −Π

X̂
(x)
∥∥

2

(i)

≤
∥∥x−Π

X̂
(x)
∥∥

2
+
∥∥x−Π

X̂
(x)
∥∥

2

= 2
∥∥x−Π

X̂
(x)
∥∥

2
.
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Figure 6: The iterates xk converge linearly to the optimal set X∗ but the path length is
high. This situation is forbidden by condition (b) in Theorem 21.

Above, inequality (i) holds by condition (b) since Π
X̂

(x) ∈ X̂. We use this inequality for
each iterate xk in order to bound each term in the path length summation:

ζη =
∞∑
k=0

‖xk − xk+1‖2

=
∞∑
k=0

∥∥xk − (xk)
+
∥∥

2

≤ 2
∞∑
k=0

∥∥xk −Π
X̂

(xk)
∥∥

2

≤ 2
∞∑
k=0

A(1− c)k
∥∥x0 −Π

X̂
(x0)

∥∥
2

(by condition (a))

=

(
2A

c

)
dist

(
x0, X̂

)
,

as was to be shown.

If the convergence set X̂ or X∗ is singleton and A = 1, condition (b) of Theorem 21 is
implied by condition (a). However, condition (a) is not sufficient if the convergence set is
not singleton, without additional assumptions on f or the specific algorithm used. Figure 6
illustrates that there may exist algorithms that satisfy condition (a), but not condition (b),
and do not exhibit short path lengths.

As a corollary to Theorem 21, we prove a path length bounds for Polyak’s heavy ball
method (Polyak, 1964).
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A.3 Path Length Bound for Polyak’s Heavy Ball Method

Given suitable α, β the Polyak’s Heavy Ball (HB) method takes the following update. Below,
let x be the current iterate (initialized at some x0), x− be the previous iterate (initialized
as x0), and x+ be the update or the next iterate.

Polyak’s heavy ball (HB): x+ = x− α∇f(x) + β(x− x−). (19)

Polyak (1964, Theorem 9) showed that the HB method has linear convergence for a twice
continuously differentiable and µ-strongly convex function f with L-Lipschitz gradients, for
the following choice of α, β:

α =
4(√

L+
√
µ
)2 , β =

(√
L−√µ
√
L+
√
µ

)2

. (20)

The linear convergence parameters are given by A = 1 and

c = 1−
√
κ− 1√
κ+ 1

=
2√
κ+ 1

.

Note that a strongly convex function has a unique minimum and thus X∗ is singleton. In
this case, condition (a) of Theorem 21 with A = 1 implies condition (b). Thus, we have the
following corollary to Theorem 21.

Corollary 22 For any twice continuously differentiable and µ-strongly convex function f
with L-Lipschitz gradients, the heavy ball method with α, β chosen according to (20), has a
path length bounded as:

ζη ≤
√
κ ‖x0 − x∗‖2 .

Proof Given the linear convergence parameters of HB: A = 1 and c = 2/(
√
κ + 1), we

compute
A+A2(1− c)

c
=

2− c
c

=
√
κ.

Applying Theorem 21 we obtain the claimed result.

Ghadimi et al. (2015) showed that the HB method also admits a linear convergence bound
assuming just continuous differentiability (not twice continuous differentiability), but for
conservative values of α, β and at a slower rate: c = O(1/κ). This would lead to a path
length bound of O(κ ‖x0 − x∗‖2).

A.4 Path Length Bound for Projected Gradient Descent

Consider a convex constraint set Ω ⊆ Rd and let ΠΩ(x) denote the unique projection of a
point x ∈ Rd on Ω. Projected gradient descent (PGD) is an iterative optimization technique
that ensures that the iterates stay within the constraint set. PGD corresponds to taking a
GD step and projecting it onto Ω as follows:

Projected gradient descent (PGD): xk+1 = ΠΩ(xk − η∇f(xk)). (21)
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Clearly, GD is a special case of PGD with Ω = Rd. In this section, we provide a path length
bound for PGD if f has L-Lipschitz gradients, and the iterates satisfy linear convergence.
This result is closely related to the GD bound of Theorem 6. Technically, the significant
difference is that in this case the stationarity assumption ∇f(x∗) = 0 may not be satisfied
by the constrained optimal set X∗. More work is needed to prove the result without the
stationarity condition, and it leads to a larger constant (factor (1 +

√
2) below while Theo-

rem 6 essentially obtains the factor 1 after translation to the same setting). If stationarity
does indeed hold (which is true if X∗ is in the interior of Ω), then it can be shown that
Theorem 6 applies directly and we get constant 1.

Theorem 23 Suppose f has L-Lipschitz gradients. If the PGD iterates with step-size η
exhibit linear convergence towards the optimal set X∗ with constants (A, c), then their path
length is bounded as:

ζη ≤

ηL+ 1

2
+

√
ηL+

(
ηL+ 1

2

)2
 (A/c) dist (x0,X

∗) .

If η ≤ 1/L, the above simplifies to ζη ≤ (1 +
√

2)(A/c) dist (x0,X
∗).

Proof For any x ∈ Ω, denote x̃ = x− η∇f(x), and x+ = ΠΩ(x̃) which corresponds to the
PGD update for x. Also let x∗ = ΠX∗(x) be the closest optimum point to x. The next two
inequalities use the following standard fact about projections to a convex set (for instance,
see Bubeck (2015, Lemma 3.1)):

for all x ∈ Rd and z ∈ Ω, the projection y = ΠΩ(x) satisfies 〈y − x, z− y〉 ≥ 0.

Since x+ is the projection of x̃, and x∗ ∈ Ω:〈
x+ − x̃,x∗ − x+

〉
≥ 0. (22)

Further, by the optimality of x∗, ΠΩ(x∗ − η∇f(x∗)) = x∗, thus since x+ ∈ Ω,〈
x∗ − (x∗ − η∇f(x∗)),x+ − x∗

〉
≥ 0. (23)

Adding (22) and (23), 〈
x+ − x̃− η∇f(x∗),x∗ − x+

〉
≥ 0.

Substituting x̃ = x− η∇f(x) and rearranging we get,

η
〈
∇f(x)−∇f(x∗),x∗ − x+

〉
+
〈
x+ − x,x∗ − x

〉
≥
∥∥x+ − x

∥∥2

2
.

Using Cauchy-Schwarz and triangle inequality, this implies

η ‖∇f(x)−∇f(x∗)‖2 (‖x∗ − x‖2 +
∥∥x− x+

∥∥
2
) +

∥∥x+ − x
∥∥

2
‖x∗ − x‖2 ≥

∥∥x+ − x
∥∥2

2
.
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Denote a = ‖x− x+‖2 and b = ‖x− x∗‖2. Using LG, ‖∇f(x)−∇f(x∗)‖2 ≤ L ‖x− x∗‖2 =
Lb; thus the above can be re-written as

ηLb(a+ b) + ab ≥ a2.

Completing squares, (
a−

(
ηL+ 1

2

)
b

)2

≤ ηLb2 +

(
ηL+ 1

2

)2

b2,

which gives

a ≤

ηL+ 1

2
+

√
ηL+

(
ηL+ 1

2

)2
 b. (24)

Denote the factor multiplied to b as u so that a ≤ ub. We now compute the path length
bound by instantiating the above result for x given by the iterates of PGD so that for
x = xk, a = ‖xk − xk+1‖2 and b = dist (xk,X

∗):

ζη =
∞∑
k=0

‖xk − xk+1‖2

≤
∞∑
k=0

u dist (xk,X
∗) (using (24))

≤
∞∑
k=0

uA (1− c)kdist (x0,X
∗) (using linear convergence)

= (uA/c) dist (x0,X
∗) .

This completes the proof.

Notice that the only property of X∗ used in the proof is stationarity with respect to
the PGD updates, required in equation (23). Thus, like Theorem 20, Theorem 23 can be
extended to include convergence to any locally optimal set X̂ that is stationary with respect
to the PGD updates.

Appendix B. Proof of Theorem 9

We first prove the statement for GF. Consider some t such that xt /∈ X∗, so that f(xt) 6=
f(x∗). Note that once xt ∈ X∗, ∇f(xτ ) = 0 for all τ ≥ t, and hence the path length is 0
henceforth. Consider the following Lyapunov function:

εt =
√
f(xt)− f∗.

Suppose xt /∈ X∗. Taking the derivative of εt with respect to time, and using chain rule,

ε̇t =
df(xt)
dt

2
√
f(xt)− f∗
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=

〈
df(xt)
dxt

, dxtdt

〉
2
√
f(xt)− f∗

= −
‖∇f(xt)‖22

2
√
f(xt)− f∗

PKL
≤ −

√
µ

2
‖∇f(xt)‖2 .

Although the above proof assumes xt /∈ X∗, the conclusion is true even for xt ∈ X∗, since
both sides are equal to 0. Using the fundamental theorem of calculus,

∫ ∞
0
‖∇f(xt)‖2 dt ≤ −

√
2

µ
[εt]
∞
0 = −

√
2

µ

[√
f(xt)− f∗

]∞
0

=

√
2(f(x0)− f∗)

µ
.

We can then use LG to bound the right side in terms of the distance of the point x0 from
the optimal set:

f(x0)− f∗ ≤ L

2
‖x0 −ΠX∗(x0)‖22 =

L

2
dist (x0,X

∗)2 .

Substituting this back in, we obtain our result:

ζ =

∫ ∞
0
‖∇f(xt)‖2 dt ≤

√
L

µ
dist (x0,X

∗) ,

as was to be shown.

The GD proof technique is directly inspired by the proof of Oymak and Soltanolkotabi
(2019): Equation (5.3) of Theorem 5.2 in the paper. (However, their path length bound in
terms of dist (x0,X

∗) is weaker than ours. Equation (5.5) in their paper corresponds to the

bound 2L
µ dist (x0,X

∗) instead of 2
√

L
µdist (x0,X

∗) as we show.) Like the GF case, consider

some k such that xk /∈ X∗. Then by LG,√
f(xk+1)− f∗ =

√
f(xk − η∇f(xk))− f∗

≤
√
f(xk)− 〈∇f(xk), η∇f(xk)〉+

L

2
‖η∇f(xk)‖22 − f∗

=

√
f(xk)− f∗ − (η − η2L/2) ‖∇f(xk)‖22

≤
√
f(xk)− f∗ −

(η − η2L/2) ‖∇f(xk)‖22
2
√
f(xk)− f∗

.

The final inequality holds since
√
a− b ≤

√
a− b

2
√
a
. To simplify the second term, note that

η ≤ 1/L, implies η − η2L/2 ≥ η/2. Using this and the PKL inequality, we get

(η − η2L/2) ‖∇f(xk)‖22
2
√
f(xk)− f∗

≥ (η/2) ·
‖∇f(xk)‖2

2
√
f(xk)− f∗

· ‖∇f(xk)‖2 ≥ η
√
µ/8 ‖∇f(xk)‖2 .
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Rearranging, we get√
f(xk+1)− f∗ ≤

√
f(xk)− f∗ − η

√
µ/8 ‖∇f(xk)‖2 .

The above is trivially also true if xk ∈ X∗, since both sides are 0. Note that xk+1 − xk =
−η∇f(xk); thus for all k ≥ 0,

‖xk − xk+1‖2 ≤
√

8/µ
(√

f(xk)− f∗ −
√
f(xk+1)− f∗

)
.

Telescoping this from k = 0, . . .∞,

ζη =
∞∑
k=0

‖xk − xk+1‖2 ≤
√

8/µ
(√

f(x0)− f∗ −
√
f(x∞)− f∗

)
≤
√

8/µ
(√

f(x0)− f∗
)
.

As an immediate consequence of LG, we have
√
f(x0)− f∗ ≤

√
L
2 dist (x0,X

∗) , and plug-

ging this into the above bound yields

ζη ≤ 2

√
L

µ
dist (x0,X

∗) ,

as claimed.

Appendix C. Proofs of Results in Section 2.3

The proofs of Theorem 10 and Theorem 12 are organized as subsections.

C.1 Proof of Theorem 10

We first write the proof in the GF case. Let αi be the component of (x0 − ΠX∗(x0)) in
the direction of the eigenvector of Σ that corresponds to the eigenvalue σi. Observe that

ζ =

∫ ∞
0
‖ẋt‖2 dt

=

∫ ∞
0
‖ exp(−tΣ)Σ(x0 − ΠX∗(x0))‖2 dt

=

∫ ∞
0

√√√√ d+∑
i=1

exp (−2tσi)σ2
i α

2
i dt.

The
√
d+ bound is straightforward. Since

√
a+ b ≤

√
a +
√
b for nonnegative a and b, we

have ∫ ∞
0

√√√√ d+∑
i=1

exp (−2tσi)σ2
i α

2
i dt ≤

∫ ∞
0

d+∑
i=1

√
exp (−2tσi)σ2

i α
2
i dt

=

∫ ∞
0

d+∑
i=1

exp (−tσi)σi |αi| dt
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Figure 7: gt(x) for some values of t. Suggestive values of σi = 0.7, 0.9, 1.2, 1.8 are also shown.
Observe that for every t, there is a different σi that maximizes gt (indicated with
large black points).

=

d+∑
i=1

∫ ∞
0

exp (−tσi)σi |αi| dt

=

d+∑
i=1

|αi|

≤
√
d+‖α‖2 =

√
d+ dist (x0,X

∗) .

We now prove the bound in (10) that depends on the κi’s. For every t ∈ R+, consider
a function gt : R+ → R, gt(x) = exp(−2tx)x2. For every value of t, a term in the path
length integral is a linear combination of evaluations of gt at the points σ1, σ2, . . . , σd+ . We
will bound each gt(σi) in the linear combination with maxj gt(σj). Notice that for different
values of t, arg maxj gt(σj) is different. The maximum of gt occurs at xm = 1/t, and gt is an
increasing function in x before xm and decreasing in x after xm. To bound the path length
we use this observation to identify arg maxj gt(σj) for each t (see Figure 7 for reference).

ζ =

∫ ∞
0

√√√√ d+∑
i=1

exp (−2tσi)σ2
i α

2
i dt =

∫ 1/σ1

0

√√√√ d+∑
i=1

exp (−2tσi)σ2
i α

2
i dt︸ ︷︷ ︸

=:E1
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+

d+−1∑
j=1

∫ 1/σj+1

1/σj

√√√√ d+∑
i=1

exp (−2tσi)σ2
i α

2
i dt︸ ︷︷ ︸

=:Tj

+

∫ ∞
1/σd+

√√√√ d+∑
i=1

exp (−2tσi)σ2
i α

2
i dt︸ ︷︷ ︸

=:E2

.

For the first integral, when t ≤ 1/σ1, we have that σi ≤ σ1 < 1/t, and at this stage gt is
an increasing function of x, so every term is upper bounded by exp(−2tσ1)σ2

1. This leads
to a bound for the first term above:

E1 ≤
∫ 1/σ1

0
exp(−tσ1)σ1‖α‖2dt = (1− 1/e)‖x0 − ΠX∗(x0)‖2. (25)

Similarly, for the last integral, when t ≥ 1/σd+ , we have all σi ≥ σd+ > 1/t, and here gt is
a decreasing function of x, so every term is upper bounded by exp(−2tσd+)σ2

d+ , so the last
term is upper bounded as:

E2 ≤
∫ ∞

1/σd+

exp(−tσd+)σd+‖α‖2dt = (1/e)‖x0 − ΠX∗(x0)‖2. (26)

Last, for the middle integral, consider a particular term Tj . If σj = σj+1, Tj = 0 =

κ
−1/(κj−1)
j (1 − 1/κj). Else, define tj := log(κj)/(σj − σj+1) and observe that that tj ∈

(1/σj , 1/σj+1). We can split Tj into two parts:

Tj =

∫ tj

1/σj

√√√√ d∑
i=1

exp (−2tσi)σ2
i α

2
i dt+

∫ 1/σj+1

tj

√√√√ d∑
i=1

exp (−2tσi)σ2
i α

2
i dt.

Whenever 1/σj < t < 1/σj+1, σj+1 < 1/t < σj . Thus, for every t, the value of max{gt(σj), gt(σj+1)}
dominates every gt(σi). Which one of these two is larger depends on which side of tj we
consider. In the first term, gt(σj) dominates, and in the second gt(σj+1) dominates. This
yields an upper bound of:

Tj ≤
∫ tj

1/σj

exp (−tσj)σj‖α‖2 dt+

∫ 1/σj+1

tj

exp (−tσj+1)σj+1‖α‖2 dt

= (exp(−tjσj+1)− exp(−tj+1σj))‖α‖2
= κ

−1/(κj−1)
j (1− 1/κj) ‖x0 − ΠX∗(x0)‖2 . (27)

Summing up the bounds in Equations (25), (26), (27), we get

ζ ≤

1 +
1∑

j=d−1

κ
−1/(κj−1)
j (1− 1/κj)

 ‖x0 − ΠX∗(x0)‖2.

Next, we simplify the above expression in terms of κ. Note the following fact for all
x ≥ 1 (this can be seen graphically as shown in Figure 8):

x−1/(x−1)(1− 1/x) ≤ log x

e
.
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Figure 8: Graphical proof for x−1/(x−1)(1 − 1/x) ≤ log x
e . f1(x) = x−1/(x−1)(1 − 1/x) and

f2(x) = log x
e . Clearly f1(x) ≤ 1 so for x ∈ [20,∞) the inequality is trivial.

Thus
d+−1∑
j=1

κ
−1/(κj−1)
j (1− 1/κj) ≤

d+−1∑
j=1

log κj
e

=
log κ

e
,

which gives an O(log κ) bound. For the O(
√

log κ) bound, we first split ζ as before:

ζ = E1 +

∫ 1/σd+

1/σ1

√√√√ d+∑
i=1

exp (−2tσi)σ2
i α

2
i dt

+ E2

≤ 1 +

∫ 1/σd+

1/σ1

√√√√ d+∑
i=1

exp (−2tσi)σ2
i α

2
i dt.

Now we bound the second summation. Fix a constant b > 1, to be specified later. Let
r = dlogb κe = dlogb(σ1/σd+)e and consider the r intervals given by Ik = [bk−1σd+ , b

kσd+)
for k ∈ [r − 1] and Ir = [br−1σd+ , b

rσd+ ]. If σi ∈ Ik, that is if bkσd+ ≥ σi ≥ bk−1σd+ then
we have for any t

exp (−2tσi)σ
2
i ≤ exp

(
−2t(bk−1σd+)

)
b2kσ2

d+ .

Define θk :=
√∑

i:σi∈Ik α
2
i and note that

√∑r
k=1 θ

2
k = ‖x0 − ΠX∗(x0)‖2. Then

∫ 1/σd+

1/σ1

√√√√ d+∑
i=1

exp (−2tσi)σ2
i α

2
i dt =

∫ 1/σd+

1/σ1

√√√√ r∑
k=1

∑
i:σi∈Ik

exp (−2tσi)σ2
i α

2
i dt

≤
∫ 1/σd+

1/σ1

√√√√ r∑
k=1

∑
i:σi∈Ik

exp (−2t(bk−1σd+)) b2kσ2
d+
α2
i dt

≤
∫ 1/σd+

1/σ1

 r∑
k=1

√ ∑
i:σi∈Ik

exp (−2t(bk−1σd+)) b2kσ2
d+
α2
i

 dt

=

∫ 1/σd+

1/σ1

(
r∑

k=1

θk exp
(
−t(bk−1σd+)

)
bkσd+

)
dt
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=

r∑
k=1

θk

∫ 1/σd+

1/σ1

exp
(
−t(bk−1σd+)

)
bkσd+ dt

= b

r∑
k=1

θk

(
exp

(
−(bk−1σd+)/σ1

)
− exp

(
−(bk−1σd+)/σd+)

))
≤ b

r∑
k=1

θk

≤ b
√
r

√√√√ r∑
k=1

θ2
k

= b
√

logb κ ‖x0 − ΠX∗(x0)‖2
= b
√

logb e
√

log κ ‖x0 − ΠX∗(x0)‖2 .

Setting b = 2, which is close to the minima of b
√

logb e, and bounding 2
√

log2 e ≤ 2.5
gives the result. This concludes the proof in the GF case.

For GD, since AT y = (ATA)ΠX∗(x0), Equation (9) leads to the following recurrence
for k ≥ 1:

xk−ΠX∗(x0) = xk−1−ΠX∗(x0)−η
(

ATA

n

)
(xk−1−ΠX∗(x0)) = (I − ηΣ) (xk−1−ΠX∗(x0)).

Thus for k ∈ N0,

(xk −ΠX∗(x0)) = (I − ηΣ)k (x0 −ΠX∗(x0))

Then we can compute the path length as follows:

For k ≥ 1, ‖xk − xk−1‖2 = ‖(xk −ΠX∗(x0))− (xk−1 −ΠX∗(x0))‖2
=
∥∥∥(I − ηΣ)k−1 (ηΣ) (x0 −ΠX∗(x0))

∥∥∥
2
.

Taking a sum over all iterates from k = 0 to ∞, we obtain the bound

ζη =
∞∑
k=0

∥∥∥(I − ηΣ)k (ηΣ) (x0 −ΠX∗(x0))
∥∥∥

2
.

Note that η is such that the singular values of ηΣ are 1 ≥ σ′1 ≥ σ′2 · · · ≥ σ′p > 0. For every
j ∈ [d+−1], we have κj = σ′j/σ

′
j+1. Also observe that αi is the component of (x0 − ΠX∗(x0))

in the direction of the eigenvector of ηΣ that corresponds to the eigenvalue σ′i. Thus,

ζη =
∞∑
k=0

√√√√ d+∑
i=1

(1− σ′i)2kσ
′2
i α

2
i

≤
∞∑
k=0

√√√√ d+∑
i=1

exp (−2kσ′i)σ
′2
i α

2
i
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≤ ‖x0 − ΠX∗(x0)‖2 +

∞∑
k=1

√√√√ d+∑
i=1

exp (−2kσ′i)σ
′2
i α

2
i

≤ ‖x0 − ΠX∗(x0)‖2 +

∫ ∞
0

√√√√ d+∑
i=1

exp (−2tσ′i)σ
′2
i α

2
i dt

= ‖x0 − ΠX∗(x0)‖2 +

∫ ∞
0

√√√√ d+∑
i=1

exp (−2tσi)σ2
i α

2
i dt (reparameterizing t→ ηt)

= ‖x0 − ΠX∗(x0)‖2 + ζ,

as was to be shown.

C.2 Proof of Theorem 12

In each component i, let x∗(i) denote the unique minimum. We will consider GF on f with
some initial point x0. For every index i consider the following potential function for any
time t such that (xt)(i) 6= x∗(i):

φ(t) =
g′(i)((xt)(i))

(xt)(i) − x∗(i)
.

First note that by convexity, φ(t) ≥ 0. We will show that φ(t) is decreasing in t.

φ′(t) =
dφ(t)

dx(i)
·
dx(i)

dt

=

(
g′′(i)((xt)(i))

(xt)(i) − x∗(i)
−

g′(i)((xt)(i))

((xt)(i) − x∗(i))
2

)(
−g′(i)(x(i))

)
.

Suppose ((xt)(i) − x∗(i)) ≥ 0. Then by convexity, g′(i)(x(i)) ≥ 0. Now observe that

g′(i)((xt)(i)) =

∫ (xt)(i)

x∗
(i)

g′′(i)(x)dx

≤
∫ (xt)(i)

x∗
(i)

g′′(i)((xt)(i))dx (since g′′ is assumed to be non-decreasing)

= g′′(i)((xt)(i))((xt)(i) − x∗(i)).

Thus φ′(t) ≤ 0. Alternately, suppose ((xt)(i) − x∗(i)) ≤ 0. Then by convexity, g′(i)(x(i)) ≤ 0.
Now observe that

g′(i)((xt)(i)) =

∫ (xt)(i)

x∗
(i)

g′′(i)(x)dx

≥
∫ (xt)(i)

x∗
(i)

g′′(i)((xt)(i))dx (since g′′ is assumed to be non-decreasing)
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= g′′(i)((xt)(i))((xt)(i) − x∗(i)).

In this case too we observe that φ′(t) ≤ 0. Thus, for every t such that (xt)(i) 6= x∗(i),

φ′(t) ≤ 0. Also, since gi is µ-strongly convex and has L-Lipschitz gradients φ(t) ∈ [µ,L].
Suppose φ(t) = c ≥ µ. Then for every s ≤ t, φ(t) ≥ c. Consider the Lyapunov function
εs = e2cs((xs)(i) − x∗(i))

2. For s ≤ t

ε̇s = e2cs
(

2c((xs)(i) − x∗(i))
2 − 2((xs)(i) − x∗(i))(

˙(xs)(i))
)

= e2cs
(

2c(xs)(i) − x∗(i))
2 − 2(xs)(i) − x∗(i))

2φ(s)
)

≤ 0.

Thus

e2ct((xt)(i) − x∗(i))
2εt ≤ ε0 = ((x0)(i) − x∗(i))

2.

Since φ(t) = c, we can compute the following bound on
∣∣∣g′(i)((xt)(i))

∣∣∣:∣∣∣g′(i)((xt)(i))
∣∣∣ = c

∣∣∣(xt)(i) − x∗(i)

∣∣∣
≤ ce−ct

∣∣∣(x0)(i) − x∗(i)

∣∣∣ .
Thus if (xs)(i) 6= x∗(i), then

∣∣∣g′(i)((xt)(i))
∣∣∣ ≤ ce−ct

∣∣∣(x0)(i) − x∗(i)

∣∣∣ for some c ∈ [µ,L]. How-

ever, if (xs)(i) = x∗(i), then
∣∣∣g′(i)((xt)(i))

∣∣∣ = 0 ≤ ce−ct
∣∣∣(x0)(i) − x∗(i)

∣∣∣. Thus for every t,∣∣∣g′(i)((xt)(i))
∣∣∣ ≤ ce−ct ∣∣∣(x0)(i) − x∗(i)

∣∣∣ for some c ∈ [µ,L].

Now split the integral as follows:

ζ =

∫ ∞
0

√√√√ d∑
i=1

(
g′(i)((xt)(i))

)2
dt

=

∫ 1/L

0

√√√√ d∑
i=1

(
g′(i)((xt)(i))

)2
dt︸ ︷︷ ︸

E1

+

∫ 1/µ

1/L

√√√√ d∑
i=1

(
g′(i)((xt)(i))

)2
dt︸ ︷︷ ︸

E2

+

∫ ∞
1/µ

√√√√ d∑
i=1

(
g′(i)((xt)(i))

)2
dt︸ ︷︷ ︸

E3

.

To bound E1 observe that for t ∈ [0, 1/L] and c ∈ [µ,L], ce−ct ≤ Le−Lt. Thus

E1 ≤
∫ 1/L

0
Le−Lt

√√√√ d∑
i=1

(
(x0)(i) − x∗(i)

)2
dt

=

(
1− 1

e

)
‖x0 − ΠX∗(x0)‖2 .
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Similarly for E3 observe that for t ∈ [1/µ,∞) and c ∈ [µ,L], ce−ct ≤ µe−µt. Thus

E3 ≤
∫ ∞

1/µ
µe−µt

√√√√ d∑
i=1

(
(x0)(i) − x∗(i)

)2
dt

=

(
1

e

)
‖x0 − ΠX∗(x0)‖2 .

To bound E2, we will further split the integral. Define αi = (x0)(i) − x∗(i). Observe that

for some fixed t > 0 and maxc≥0 ce
−ct = (1/te). Thus for t ∈ [2k−1/L, 2k/L] and c ≥ 0,

ce−ct ≤ L
2k−1e

. Then

E2 ≤
r∑

k=1

∫ 2k/L

2k−1/L

√√√√ d∑
i=1

(
g′(i)((xt)(i))

)2
dt

≤
r∑

k=1

∫ 2k/L

2k−1/L

(
L

2k−1e

)
‖x0 − ΠX∗(x0)‖2

=
r∑

k=1

(
2k

L
− 2k−1

L

)(
L

2k−1e

)
‖x0 − ΠX∗(x0)‖2

= r ‖x0 − ΠX∗(x0)‖2 /e
≤ (log2(2κ)/e) ‖x0 − ΠX∗(x0)‖2
≤ (1 + log κ) ‖x0 − ΠX∗(x0)‖2 .

Resubstituting the bounds for E1, E2, E3, we get

ζ ≤ (2 + log κ) ‖x0 − ΠX∗(x0)‖2 .

This completes the proof.

Appendix D. Proofs of Results in Section 3

Each proof in this section is organized in a separate subsection.

D.1 Proof of Lemma 14

First, we show that f(xt) is non-increasing with respect to t. For any s ≥ 0 observe that
by LG,

f(xs+1) = f(xs − η∇f(xs))

≤ f(xs) + 〈∇f(xs),−η∇f(xs)〉+
L

2
‖η∇f(xs)‖22

= f(xs)− η(1− ηL/2) ‖∇f(xs)‖22

≤ f(xs)−
η ‖∇f(xs)‖22

2
,
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for η ≤ 1/L. Thus for any s, f(xs+1) ≤ f(xs), as was to be shown. Next, fix any iterate
t. We will show that ‖xs − xt‖22 is non-increasing in s for s ≤ t. This would show self-
contractedness for s3 = t, for any t, concluding the proof. Consider any s < t, then

‖xs+1 − xt‖22 = ‖xs − η∇f(xs)− xt‖22
= ‖xs − xt‖22 + 2 〈η∇f(xs),xt − xs〉+ η2 ‖∇f(xs)‖22
(i)

≤ ‖xs − xt‖22 + 2η(f(xt)− f(xs)) + η2 ‖∇f(xs)‖22
(ii)

≤ ‖xs − xt‖22 + 2η(f(xs+1)− f(xs)) + η2 ‖∇f(xs)‖22
LG
≤ ‖xs − xt‖22 + 2η

(
〈∇f(xs),−η∇f(xs)〉+

η2L

2
‖∇f(xs)‖22

)
+ η2 ‖∇f(xs)‖22

= ‖xs − xt‖22 + η2(ηL− 1) ‖∇f(xs)‖22
≤ ‖xs − xt‖22 ,

for η ≤ 1/L. Above, inequality (i) holds because of convexity and inequality (ii) holds
as we have shown that f(xt) is non-increasing in t, and s + 1 ≤ t. Thus, ‖xs − xt‖22 is
non-increasing in the iterates s, as was to be shown.

As indicated after the statement of Lemma 14, if f is convex and has L-Lipschitz
gradients, then GD with η ∈ (0, 2/L] is a descent method (we show it below); however for
GD to be self-contracted, one needs further restriction on the step-size. To see the latter,
consider f : R → R given by f(x) = x2. Here we have L = 2. Let us set η = 7/4L = 7/8.
Let x0 = 8, so that x1 = 8 − (7/8) · (2 · 8) = −6 and x2 = −6 − (7/8) · (2 · −6) = 4.5.
However,

|x2 − x1| > |x2 − x0| ,

and so (x0, x1, x2) cannot be part of a self-contracted curve.

The fact that GD is a descent method if η ∈ (0, 1/L] is a well-known fact, but perhaps
a bit less known is that this can be shown for η ∈ (0, 2/L] (using standard techniques). We
show it here for completeness. For any x∗ ∈ X∗,

‖xs+1 − x∗‖22 = ‖xs − η∇f(xs)− x∗‖22
= ‖xs − x∗‖22 − 2 〈η∇f(xs),xs − x∗〉+ η2 ‖∇f(xs)‖22
(i)
= ‖xs − x∗‖22 − 2 〈η∇f(xs)− η∇f(x∗),xs − x∗〉+ η2 ‖∇f(xs)‖22 .
(ii)

≤ ‖xs − x∗‖22 − 2η ‖∇f(xs)‖22 /L+ η2 ‖∇f(xs)‖22 .
≤ ‖xs − x∗‖22 ,

since η ≤ 2/L (with strict inequality in the last step if η < 2/L and ∇f(xs) 6= 0). Equal-
ity (i) holds because ∇f(x∗) = 0 and inequality (ii) holds since LG+convexity implies
〈∇f(x)−∇f(y),x− y〉 ≥ ‖∇f(x)−∇f(y)‖22 /L. This is shown formally by Zhou (2018,
Lemma 4).
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D.2 Proof of Theorem 15

The GF result is due to Manselli and Pucci (1991). We analyze GD curves by using
Lemma 14 to extend the techniques introduced by Daniilidis et al. (2015, Theorem 3.1)
and Manselli and Pucci (1991) for analyzing GF curves.

We will assume d ≥ 2 since in the case d = 1 the self-contracted curve is the shortest
path. Some definitions are in order:

• The projection of any set K to a line u will be denoted as Πu(K).

• Length of a one dimensional object (for example the projection of a set K to a line
u) will be denoted as `(·) (for example `(Πu(K)).

• Mean width of a convex set K:

W (K) := (σd)
−1

∫
u∈Sd−1

`(Πu(K)) du,

where σd is the volume of Sd−1, with respect to the Lebesgue measure.

• For k ∈ N0, Γ(k) is the set of iterates after iteration k (inclusive): Γ(k) := {xk,xk+1, . . .}.

• The convex closure of the set Γ(k) will be denoted as Ω(k).

Note that since the GD curve is self-contracted and converges to x∞, we have for all t ∈ N0,

‖xt − x∞‖2 ≤ ‖x0 − x∞‖2 .

Thus, all iterates x0,x1, . . . stay within a ball of radius ‖x0 − x∞‖2 centered at x∞. The
mean width of this path can be at most the diameter of the ball, that is, W (Ω(0)) ≤
2 ‖x0 − x∞‖2. We will be showing that if η ≤ 1/L

ζη ≤ 282d2 ·W (Ω(0)), (28)

and if η ≤ 1/2L
√
d

ζη ≤ 2(4d log d)−1 ·W (Ω(0)), (29)

which will lead to the bound in the theorem since W (Ω(0)) ≤ 2 ‖x0 − x∞‖2 and d ≥ 2.
Both these bounds will be shown by setting up a recurrence of the form.

W (Ω(k + 1)) + ε ‖xk+1 − xk‖2 ≤W (Ω(k)). (30)

for two different values of ε.
By telescoping to T iterations, this would lead to

T∑
k=0

‖xk+1 − xk‖2 ≤
1

ε
(W (Ω(0))−W (Ω(T + 1))) ≤ W (Ω(0))

ε
.

Since the right hand side is the same for every T , indeed we would obtain

ζη =

∞∑
k=0

‖xk+1 − xk‖2 ≤
W (Ω(0))

ε
,

which would complete the proof. It remains to prove Equation (30) with the appropriate
values of ε that would lead to Equations (28) and (29).
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Radius 

Figure 9: Illustration of some entities appearing in the proof of Theorem 15.

D.2.1 Proof of Equation (28)

We will show that if η ≤ 1/L, Equation (30) is true with ε = (1/28)2d2 . Define the following
entities (see Figure 9):

x′ :=
xk+1

3
+

2xk
3
,

v :=
xk − xk+1

‖xk − xk+1‖2
,

ξ′(y) :=
y − x′

‖y − x′‖2
, for y 6= x′,

ξ(y) :=
y − xk+1

‖y − xk+1‖2
, for y 6= xk+1.

Also denote v⊥ as the orthogonal hyperplane to v. Define δ = (1/27)d. We will prove
that for some unit vector u ∈ v⊥, the unit vector

v̄ =
v − δu
‖v − δu‖2

, (31)
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has at most a fixed negative inner product with any unit vector ξ′(xt), namely:〈
v̄, ξ′(xt)

〉
≤ −δ2. (32)

As we see later, this will allow us to bound the mean width integral for Ω(k + 1), in terms
of the mean width integral for Ω(k) in order to prove Equation (30). Note that since δ is a
small constant, v̄ is very close to v. To motivate the truth of (32), note the following fact
about v itself. For all y ∈ Γ(k + 2),

〈
v,y − x′

〉
≤ −
‖xk − xk+1‖2

6
< 0.

(
≡
〈
v, ξ′(y)

〉
≤ −
‖xk − xk+1‖2
6 ‖y − x′‖2

< 0.

)
(33)

This is true by the self-contractedness property. To see this, think of x′ as the origin , and
xk as the ‘positive’ direction. Since ‖y − xk+1‖2 ≤ ‖y − xk‖2, the projection of y onto the
segment [xk,xk+1] lies towards the negative side and farther than the mid-point. However,
x′ lies towards xk, and hence the positive side. Thus, the projection of y − x′ points in
the opposite direction as v and has a magnitude at least the distance between x′ and the
mid-point: ‖xk − xk+1‖2 /6. Thus,〈

v,y − x′
〉
≤ −‖xk − xk+1‖2 /6.

The algebra above suggests that if the projection of y onto the segment [xk,xk+1] is only
slightly negative, then ‖y − x′‖2 is large and most of the component is in the v⊥ direction.
In this case, we need to only find a small vector (namely δu) in the perpendicular direction
that has negative inner product with y−x′. This motivates the definition of v̄ in (31). Note
however that this vector δu needs to uniformly have a negative inner product with respect
to every ξ′(y). To show that this is possible, we will use the self-contractedness property
to argue that all the ξ′(y) lie nearly in a hemisphere. In what follows, we formalize these
ideas.

First let us divide the unit vectors ξ′(xt) into two sets: points that have a small com-
ponent in the direction opposite to v and points that lie mostly in v⊥. Define,

Γ′ := {y ∈ Γ(k + 1) :
〈
v, ξ′(y)

〉
≤ −2δ}.

Note that for y ∈ Γ′,

〈
v̄, ξ′(y)

〉
=

〈
v − δu
‖v − δu‖2

, ξ′(y)

〉
≤ −2δ√

1 + δ2
+ δ (by Cauchy-Schwarz since ‖u‖2 = ‖v‖2 = 1)

≤ −δ2,

since 0 ≤ δ ≤ 1/27. Thus Equation (32) is satisfied for y ∈ Γ′. For y ∈ Γ\Γ′, we note three
properties that will be used later. First, from (33), and the definition of Γ′

−2δ <
〈
v, ξ′(y)

〉
≤ − xk − xk+1

6 ‖y − x′‖2
.
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On cross multiplying

∥∥y − x′
∥∥

2
>
‖xk − xk+1‖2

12δ
, (34)

which says that ‖y − x′‖2 is large as motivated earlier. Thus,

‖y − x‖2 ≥
∥∥y − x′

∥∥
2
−
∥∥x′ − x

∥∥
2
≥
(

1

12δ
− 2

3

)∥∥x− x′
∥∥

2
=

1− 8δ ‖x− x′‖2
12δ

(35)

Also, −2δ < 〈v, ξ′(y)〉 < 0, so that, ∣∣〈v, ξ′(y)
〉∣∣ < 2δ. (36)

Let the component of ξ′(y) in v⊥ be ξ′⊥(y). Thus,∥∥ξ′⊥(y)
∥∥2

2
= 1− (

〈
v, ξ′(y)

〉
)2 ≥ 1− 4δ2. (37)

Using these facts, the goal now will be to show that for all y ∈ Γ \ Γ′, ξ′(y)’s are
almost in a hemisphere so that there we can find a common vector u as desired which has
a high negative inner product for (32). The idea is that because of (37), ξ′⊥(y) is almost
perpendicular to v and so ξ′(y) looks almost like ξ(y). Observe that for ξ(y) the hemisphere
property is easy to see: for all y, z ∈ Γ(k + 1) \ Γ′ such that z comes after y in the path,
using self-contractedness (Lemma 14), we know that ‖y − z‖2 ≤ ‖xk+1 − z‖2, and thus in
the triangle formed by xk+1,y, z, the segment between y and z is not the longest side. This
means that the angle at xk+1 is acute so that

〈ξ(y), ξ(z)〉 ≥ 0. (38)

Hence all vectors {ξ(y) : y ∈ Γ(k + 1) \ Γ′} belong in the same hemisphere. To show a
similar result for ξ′(y), we first bound ‖ξ(y)− ξ′(y)‖2:

∥∥ξ(y)− ξ′(y)
∥∥

2
=

∥∥∥∥ y − xk+1

‖y − xk+1‖2
− y − x′

‖y − x′‖2

∥∥∥∥
2

≤
∥∥∥∥ y − xk+1

‖y − xk+1‖2
− y − x′

‖y − xk+1‖2

∥∥∥∥
2

+

∥∥∥∥ y − x′

‖y − xk+1‖2
− y − x′

‖y − x′‖2

∥∥∥∥
2

=
‖xk+1 − x′‖2
‖y − xk+1‖2

+
‖y − x′‖2 − ‖y − xk+1‖2

‖y − xk+1‖2

≤
‖xk+1 − x′‖2
‖y − xk+1‖2

+
‖x′ − xk+1‖2
‖y − xk+1‖2

=
2 ‖xk+1 − x′‖2
‖y − xk+1‖2

=
4 ‖xk+1 − x′‖2

3 ‖y − x‖2
(35)

≤ 16δ

1− 8δ

≤ 32δ,
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since δ ≤ 1/27. Now we consider any y, z ∈ Γ(k + 1) \ Γ′. Define δy := ξ(y) − ξ′(y) and
δz := ξ(z)− ξ′(z), then,

0 ≤ 〈ξ(y), ξ(z)〉 =
〈
ξ′(y) + δy, ξ(z)

〉
≤
〈
ξ′(y), ξ(z)

〉
+ ‖δy‖2 (Cauchy-Schwarz)

≤
〈
ξ′(y), ξ′(z) + δz

〉
+ 32δ

≤
〈
ξ′(y), ξ′(z)

〉
+ 64δ.

Thus 〈ξ′(y), ξ′(z)〉 ≥ −64δ. Further, from (36)〈
ξ′⊥(y), ξ′⊥(z)

〉
=
〈
ξ′(y), ξ′(z)

〉
− (
〈
v, ξ′(y)

〉
)(
〈
v, ξ′(z)

〉
)

≥ −64δ − 4δ2

≥ −65δ,

since δ ≤ 1/27. From (37), ‖ξ′⊥(y)‖2 · ‖ξ
′
⊥(y)‖2 ≥ 1 − 4δ2, so that the set of vectors

S = {ξ̂′⊥(y) : y ∈ Γ(k + 1) \ Γ′} (â denotes the unit vector in the direction of a) satisfies:
for all y, z ∈ S,

〈y, z〉 ≥ −65δ

1− 4δ2
≥ −66δ = −66

(
1

27

)d
≥ −

(
1

3

)d
, (39)

for d ≥ 2. As motivated earlier, this is a set of vectors that is almost in a hemisphere. At
this point, we invoke the following lemma proved by Daniilidis et al. (2015).

Lemma 24 (Lemma 3.2, (Daniilidis et al., 2015)) Let Σ ⊂ Sd−1 be a set satisfying

〈x,y〉 ≥ −
(

1

3

)d+1

for all x,y ∈ Σ.

Then there exists a u ∈ Sd−1 such that

〈u,y〉 ≥
(

1

3

)2d+1

for all y ∈ Σ.

The proof of the above lemma uses a packing argument. We use the lemma for the set S
identified above (Equation (39)). Note that all vectors in S lie in Sd−1 ∩ v⊥, which can be
identified as a shell in d− 1 dimensions, homomorphic to Sd−2. Thus there exists a vector
u ∈ Sd−1 ∩ v such that for all y ∈ Γ(k + 1) \ Γ′,

〈
u, ξ̂′⊥(y)

〉
≥
(

1

3

)2(d−1)+1

=

(
1

3

)2d−1

. (40)

We pick this u to define v̄ in Equation (31). Thus, for y ∈ Γ(k + 1) \ Γ′,

〈
v − δu, ξ′(y)

〉 (33)

≤ −δ
〈
u, ξ′(y)

〉
= −δ

〈
u, ξ′⊥(y)

〉
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= −δ
∥∥ξ′⊥(y)

∥∥
2

〈
u, ξ̂′⊥(y)

〉
(37)

≤ −δ
√

1− 4δ2
〈
u, ξ̂′⊥(y)

〉
(40)

≤ −δ
√

1− 4δ2

(
1

3

)2d−1

≤ −δ
(

1

3

)2d

,

since δ ≤ 1/27. Finally, ‖v − δu‖2 =
√

1 + δ2 ≤ 3 so that

〈
v̄, ξ′(y)

〉
=
〈v − δu, ξ′(y)〉
‖v − δu‖2

≤
−δ
(

1
3

)2d
3

≤ −δ
(

1

3

)3d

= −δ2,

which gives us (32) as needed.
Finally, we use this identified v̄ to prove the recurrence (30). Consider the part of the

shell Sd−1 δ2-close to v̄:

S′ := {v′ ∈ Sd−1 :
∥∥v′ − v̄

∥∥
2
≤ δ2},

then

σdW (Ω(k + 1)) =

∫
u∈Sd−1

`(Πu(Ω(k + 1))) du

=

∫
u∈S′

`(Πu(Ω(k + 1)))du +

∫
u/∈S′

`(Πu(Ω(k + 1))) du

≤
∫
u∈S′

`(Πu(Ω(k + 1)))du +

∫
u/∈S′

`(Πu(Ω(k))) du, (41)

since Ω(k + 1) ⊂ Ω(k). For the first integral above, note that for u ∈ S′:

1. Inner product with the vector xk − x′ is high:〈
xk − x′,u

〉
=
∥∥xk − x′

∥∥
2
〈v,u〉

=

(
‖xk − xk+1‖2

3

)
〈v,u〉

≥
(
‖xk − xk+1‖2

3

)
(1− δ − δ2)

≥
‖xk − xk+1‖2

4
.

since 1− δ − δ2 ≥ 3/4 for δ ≤ 1/27.

2. Inner product with the vector y − x′ for every y ∈ Γ(k + 1) is non-positive:〈
y − x′,u

〉
=
∥∥y − x′

∥∥
2

〈
ξ′(y),u

〉
=
∥∥y − x′

∥∥
2

〈
ξ′(y),v

〉
+
∥∥y − x′

∥∥
2

〈
ξ′(y),v − u

〉
40



Path Length Bounds for Gradient Descent and Flow

AA

BB

Figure 10: Two dimensional illustration of the intersection of a shell of radius 1 (unshaded
circle above) with a shell of radius δ2 (shaded circle above).

(32)

≤
∥∥y − x′

∥∥
2

(−δ2) +
∥∥y − x′

∥∥
2

〈
ξ′(y),v − u

〉
≤ −

∥∥y − x′
∥∥

2
δ2 +

∥∥y − x′
∥∥

2
‖v − u‖2

≤ −
∥∥y − x′

∥∥
2
δ2 +

∥∥y − x′
∥∥

2
(δ2)

≤ 0.

Indeed, this means that for any point in the convex hull of Γ(k + 1) the same is
true—that is for y ∈ Ω(k + 1), 〈y − x′,u〉 ≤ 0.

Using these two facts, we have the following lower bound on the length of Πu(Ω(k)) for any
u ∈ S′,

`(Πu(Ω(k))) ≥
〈
xk − x′,u

〉
+ `(Πu(Ω(k + 1)))

≥
‖xk − xk+1‖2

4
+ `(Πu(Ω(k + 1))).

Thus,∫
u∈S′

`(Πu(Ω(k + 1))) du ≤
∫
u∈S′

`(Πu(Ω(k))) du−
∫
u∈S′

(
‖xk − xk+1‖2

4

)
du

Continuing from (41), and substituting the above inequality,

σdW (Ω(k + 1)) ≤ −
∫
u∈S′

(
‖xk − xk+1‖2

4

)
du +

∫
u∈Sd−1

`(Πu(Ω(k))) du

41



Gupta, Balakrishnan and Ramdas

= −
‖xk − xk+1‖2 ·Volume(S′)

4
+

∫
u∈Sd−1

`(Πu(Ω(k))) du.

On simplifying, this leads to the bound

W (Ω(k + 1)) ≤ −
(

Volume(S′)
4σd

)
︸ ︷︷ ︸

=: ε, as needed for (30)

‖xk − xk+1‖2 +W (Ω(k)),

where Volume(·) is defined with respect to the Lebesgue measure in d − 1 dimensions. To
compute ε, we find this volume. Note that S′ is a sector whose boundary is the intersection
between Sd−1 and a shell of radius δ2 with center on the surface of Sd−1. This boundary
defines a shell in (d − 1) dimensions. See Figure 10. In two dimensions the intersection
is just two points, but for general d-dimensions, it is a shell in (d − 1)-dimensions. The
radius of this shell γ is the length of the segment AB which can be calculated with simple
trigonometric calculations.

γ = length(AB) = δ2 sinα = δ2
√

1− cos2 α = δ2

(
1− δ4

4

)
≥
(

1

28

)2d

.

The volume of the sphere defined by this (d−1)-dimensional shell lower bounds the volume
of S′. To illustrate in two dimensions (see Figure 10), think of this volume as the length of
the orange arc that lies in the shaded circle. This length is lower bounded by the length
of the diameter 2γ. In general, for d-dimensions, this would be the volume of the (d − 1)-
dimensional sphere of radius γ. Using the formula of the volume of a (d − 1)-dimensional
sphere (Γ below denotes the gamma function),

Volume(S′) ≥ ((πγ2)d−1/2

Γ
(
d−1

2 + 1
) .

Also σd is the volume of a d-dimensional shell, given by

σd =
dπd/2

Γ
(
d
2 + 1

) .
Thus,

ε =
Volume(S′)

4σd
≥

γd−1 · Γ
(
d
2 + 1

)
4
√
π · Γ

(
d−1

2 + 1
) ≥ γd =

(
1

28

)2d2

,

as was needed to be shown to prove the recurrence (30).

D.2.2 Proof of Equation (29)

We will show that for η ≤ 1/2L
√
d, Equation (30) is true with ε = 1/2(4d log d)−1. We use

some of the notation introduced in Section D.2.1.
The step-size constraint ensures that gradients at two consecutive iterates have a high

inner product (or small angle). For some k ≥ 0, we have by LG

‖∇f(xk)−∇f(xk+1)‖2 ≤ L ‖xk − xk+1‖2 = ηL ‖∇f(xk)‖2
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Squaring both sides and rearranging leads to

‖∇f(xk+1)‖22 + (1− η2L2) ‖∇f(xk)‖22 ≤ 2 〈∇f(xk+1),∇f(xk)〉 = 2 ‖∇f(xk)‖2 ‖∇f(xk+1)‖2 cos θ,

where θ is the angle between ∇f(xk) and ∇f(xk+1). Further observe that

‖∇f(xk+1)‖22 + (1− η2L2) ‖∇f(xk)‖22 ≥ 2
√

(1− η2L2) ‖∇f(xk+1)‖2 ‖∇f(xk)‖2 .

Putting it together, we obtain √
1− η2L2 ≤ cos θ,

which leads to the following dimension dependent lower bound√
1− (1/4d) ≤ cos θ. (42)

As shown in Equation (38), 〈ξ(y), ξ(z)〉 ≥ 0 for y, z ∈ Γ(k+ 2). Using this fact, we want to
show that there exists a single unit vector w such that 〈w, ξ(y)〉 is large for all y ∈ Γ(k+2).
To obtain this, we use a result due to (Santaló, 1946, Theorem 1). To apply Santaló’s
theorem, consider the set K = {ξ(y) : y ∈ Γ(k + 2)} ⊂ Sd−1 (thus n = d − 1). By
Equation (38), the spherical diameter D of K has cosine at least 0. We wish to lower bound
the cosine of the spherical radius R. The result of Santaló has three case-wise conclusions,
but each of them assert that if cosD ≥ 0, then

d cos2R− 1

(positive quantity)
≥ cosD ≥ 0.

A fortiori this implies that d cos2R − 1 ≥ 0 or cosR ≥
√

1/d. Using the definition of
spherical radius, we conclude that there exists a w ∈ Sd−1 such that for all y ∈ Γ(k + 2)

〈w, ξ(y)〉 ≥
√

1/d. (43)

For y = xk+2 = xk+1 − η∇f(xk+1), we have 〈w,∇f(xk+1〉 ≥
√

1/d. We use this fact to
show that 〈w, ξ(xk)〉 is negative, as follows. Let ∠(u,v) denote arccos(〈û, v̂〉), where û and
v̂ are unit vectors in the direction of u and v respectively (so that arccos of their inner
product gives us the angle). Then

〈w, ξ(xk)〉 = cos(∠(w,xk − xk+1)) (44)

= − cos(∠(w,∇f(xk)))

≤ − cos(∠(w,∇f(xk+1)) + ∠(∇f(xk),∇f(xk+1)))

≤ − cos(∠(w,∇f(xk+1))) cos(∠(∇f(xk),∇f(xk+1)))

+ sin(∠(w,∇f(xk+1))) sin(∠(∇f(xk),∇f(xk+1)))

≤ −
√

1/d
√

1− (1/4d) +
√

1− (1/d)
√

1/4d

≤ −
√

1/4d, (45)

for any d ≥ 2. Define S⊥ to be a shell in d− 1 dimensions of unit vectors orthogonal to w,
ie S⊥ = {u : ‖u‖2 = 1, 〈u,w〉 = 0}. Now consider a set of unit vectors close to w given by

S′ = {u = λw +
√

1− λ2 w⊥ : |λ| ∈ [
√

1− (1/4d), 1],w⊥ ∈ S⊥]}.
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We will relate the mean width integral of Ω(k) and Ω(k + 1) by splitting across S′ and its
complement.

σdW (Ω(k + 1)) =

∫
u∈Sd−1

`(Πu(Ω(k + 1))) du

=

∫
u∈S′

`(Πu(Ω(k + 1))) du +

∫
u/∈S′

`(Πu(Ω(k + 1))) du

≤
∫
u∈S′

`(Πu(Ω(k + 1))) du +

∫
u/∈S′

`(Πu(Ω(k))) du, (46)

since Ω(k + 1) ⊂ Ω(k). Thus we reduce the second integral to the corresponding integral
in the mean width calculation of Ω(k). The first part of the integral leads to a negative
term which we upper bound to obtain Equation (30). Pick any u = λw +

√
1− λ2 w⊥ ∈ S′

and y ∈ Γk+2. Suppose λ ∈ [
√

1− (1/4d), 1], 〈w, ξ(y)〉 ≥
√

1− λ2. Thus 〈u, ξ(y)〉 ≥ 0.
Similarly, 〈w, ξ(xk)〉 ≤ −

√
1− λ2, and so 〈u, ξ(xk)〉 ≤ 0. Thus in such directions u,

`(Πu(Ω(k)))− `(Πu(Ω(k + 1))) ≥ |〈xk − xk+1,u〉| .

This is also true for the corresponding −λ ∈ [
√

1− (1/4d), 1] (since `(Πu(·)) = `(Π−u(·))).
Thus ∫

u∈S′
`(Πu(Ω(k))) du ≥

∫
u∈S′

`(Πu(Ω(k + 1))) du +

∫
u∈S′
|〈xk − xk+1,u〉| du︸ ︷︷ ︸

Z

.

We now lower bound the second term. To do so, we perform the integration over all values
of λ and v that determine u. Note that if u = λw +

√
1− λ2v, du = (

√
1− λ2)d−2dvdλ.

Then

Z = 2

∫
λ∈[
√

1−(1/4d),1]

∫
v∈S⊥

(
√

1− λ2)d−2 〈xk − xk+1,u〉 dvdλ

= 2

∫
λ∈[
√

1−(1/4d),1]

∫
v∈S⊥

(
√

1− λ2)d−2(λ 〈xk − xk+1,w〉+
√

1− λ2 〈xk − xk+1,v〉) dvdλ

= 2

∫
λ∈[
√

1−(1/4d),1]

∫
v∈S⊥

(
√

1− λ2)d−2(λ 〈xk − xk+1,w〉) dvdλ
(
∵
∫
v∈S⊥

vdv = 0

)
≥
(

2σd−1 ‖xk − xk+1‖2√
4d

)∫
λ∈[
√

1−(1/4d),1]
λ(
√

1− λ2)d−2dλ

=
2σd−1 ‖xk − xk+1‖2

(
√

4d)d
.

Using this value of Z with Equation (46), we obtain

W (Ω(k + 1)) ≤W (Ω(k))− ε′ ‖xk − xk+1‖2 ,

where

ε′ =
Z

d
=

2σd−1

σd(
√

4d)d
≥ 1

d(
√

4d)d
≥ 1

2(4d log d)−1
.

This implies that Equation (30) holds for ε = 1/2(4d log d)−1, completing the proof.
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D.3 Proof of Theorem 16

The separability ensures that we are solving d different optimization problems. For every
index i, let X∗i be the optimal set with respect to gi. For such a one dimensional quasiconvex
function, we showed in Lemma 14 that x follows a self-contracted curve. Thus, it cannot go
in the opposite direction of the minima. By continuity in one dimension it clearly cannot
overshoot. The length of this direct path is dist

(
(x0)(i),X

∗
i

)
. Now observe that,

∫ ∞
0
‖ẋt‖2 dt =

∫ ∞
0

√√√√ d∑
j=1

(ẋt)
2
j dt

≤
∫ ∞

0

d∑
j=1

| (ẋt)j | dt

=
d∑
j=1

∣∣(x0)j −X∗j
∣∣

≤
√
d dist (x0,X

∗) .

For GD, we have a similar proof. First, notice that the direction of the update is to-
wards (x∗j − (xk)j). By quasiconvexity and since gj((xk)j) ≥ gj((x0)j), (−∇gj((xk)j)(x∗j −
(xk)j)) ≥ 0. The only thing we need to show that the GD curve does not overshoot. For
an index j let x∗j be the closest minimum in X∗j to (x0)j . Then by LG, |∇gj((xk)j | ≤
L((xk)j − x∗j ). Thus |η∇gj((xk)j | ≤

∣∣∣(xk)j − x∗j

∣∣∣, and the update cannot cross x∗j . Conse-

quently for every j:
∑∞

k=0((xk)j − (xk+1)j) = ((x0)j − x∗j ). Then

∞∑
k=0

‖xk − xk+1‖2 ≤
∞∑
k=0

‖xk − xk+1‖1

=
∞∑
k=0

d∑
j=1

|(xk)j − (xk+1)j |

=
d∑
j=1

∞∑
k=0

|(xk)j − (xk+1)j |

=
d∑
j=1

∣∣(x0)j − x∗j
∣∣

≤
√
d ‖x0 − x∗‖2 ,

where in the last inequality we observed that for any vector u ∈ Rd, ‖u‖1 ≤
√
d ‖u‖2.

Appendix E. Proof of Theorem 17

We first provide a broad structure of the proof, and then prove the individual claims in
separate subsections. The PKL bound is proved first (Section E.1—E.4), and then it is
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shown that the same function used in the PKL lower bound also leads to a lower in the
linear convergence case (Section E.5).

For any dimension d ≥ 6, we will construct a function f : Rd → R that will be separable
over its parameter x = (x(1),x(2), . . .x(d)) ∈ Rd, as per Equation (13):

f(x) =

d∑
i=1

g(x(i)).

f will be constructed so that its condition number ν will be bounded as ν ≤ 3d2. For
this f we will exhibit an x0 such that GF or GD have a path length lower bounded as

ζ (or ζη) ≥ c
√
d

log d dist (x0,X
∗) for c = 1/6 in the GF case (see Equation (51) and c = 1/16

in the GD case (see Equation (53)).

To motivate this construction, we first prove that such a construction will lead to the
statement of the theorem. Suppose the prescribed condition number bound κ is such that
κ > 3d2. Then the condition number ν of the function we constructed is bounded by ν ≤ κ
and hence the function is in Fκ. Then

ζ (or ζη) ≥
c
√
d

log d
dist (x0,X

∗) ≥ min

{
c
√
d

log d
,
cκ1/4

log κ

}
dist (x0,X

∗) ,

completing the proof for κ > 3d2.

On the other hand suppose κ ≤ 3d2. Since κ ≥ 216,
√
κ −

√
κ/2 >

√
3, and so

there exists a κ/2 ≤ ν ≤ κ such that
√
ν/3 is an integer, say d′. Note that d ≥ d′ ≥ 6

because d′ =
√
ν/3 ≥

√
κ/6 ≥ 6 (this is the only part of the proof that uses κ ≥ 216).

Since f is separable, we can simply ignore d − d′ components of Rd and instead write
f(x) =

∑d′

i=1 g(x(i)). Via the same construction, the path length and condition number of
f will depend on d′ as follows:

the condition number is at most ν ≤ κ, so that f ∈ Fκ,

and the path length is at least

ζ (or ζη) ≥
c
√
d′

log d′
dist (x0,X

∗) .

Since 216 ≤ κ ≤ 2ν ≤ 6d′2, e ≤ 6 ≤
√
κ/6 = d′. Again, since the function

√
x/(log x) is

increasing in x for x ≥ e2, we conclude

√
d′

log d′
≥ (κ/6)1/4

log(
√
κ/6)

≥ 2(κ/6)1/4

log κ

≥ κ1/4

log κ
.
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This leads to the path length bound

ζ (or ζη) ≥
c
√
d′

log d′
dist (x0,X

∗) ≥ min

{
c
√
d

log d
,
cκ1/4

log κ

}
dist (x0,X

∗) ,

completing the proof for κ ≤ 3d2.

We now exhibit the pathological function g that defines f and prove some properties
about it.

E.1 Construction of g

For any dimension d ≥ 6 we will exhibit the g such that for f(x) =
∑d

i=1 g(x(i)), (a) the
condition number ν of f is bounded as ν ≤ 3d2 and (b) the path length for some initial
point x0 (different for GF and GD) is lower bounded by

ζ ≥
√
d

6 log d
dist (x0,X

∗) that is c = 1/6,

for GF and

ζη ≥
√
d

16 log d
dist (x0,X

∗) that is c = 1/16,

for GD with some η ∈ [1/2L, 1/L]. As argued before this will prove the theorem statement.

Define δ = 1/d and note that since d ≥ 6, δ ≤ 0.2. Define the component function
g : R→ R as follows:

g(x) =


0 if x ≤ 0
x2 if x ∈ [0, 0.5]
0.5− (1− x)2 if x ∈ [0.5, 1− δ]
(0.5− δ2) + 2δ(x− (1− δ)) if x ∈ [1− δ, γ]
α+ βx2 if x ≥ γ,

(47)

where

γ = 1− δ + 6 log(1/2δ),

β =
δ

γ
,

α = (0.5− δ2) + 2δ(γ − (1− δ))− βγ2.

(These precise values of α, β, γ are required for the function to satisfy differentiability at
x = γ and PKL at all points. For a reader interested in the broad idea and not the fine
details we summarize the rationale behind setting these values: γ is set so that GF or GD
with the initial point (to be defined shortly) does not ever access the region x ≥ γ. Yet, to
ensure that the function is PKL everywhere, we have quadratic growth away from γ. α, β
are set such that the function remains differentiable at x = γ.)
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Figure 11: g(·) as defined in Equation (47).

g is plotted in Figure 11. g is everywhere continuously differentiable with the following
gradient:

∇g(x) =


0 if x ≤ 0
2x if x ∈ [0, 0.5]
2(1− x) if x ∈ [0.5, 1− δ]
2δ if x ∈ [1− δ, γ]
2βx if x ≥ γ.

Thus f is also continuously differentiable. We consider gradient flow and gradient descent
on f . We can write the update equations for each component separately:

GF : (ẋ)(i) = −∇g(x(i)), (48)

GD : (x+)(i) = −η∇g(x(i)). (49)

We prove a path length lower bound starting from specific initialization points x0 which
are introduced next.

E.2 Identification of x0

We will need slightly different initialization points for GF and GD to ease computation (the
main principle is the same). For GF we will set the following initialization point x0:

(x0)(i) =

{
0.5 if i = 1
(1− δ) + δ(i− 2) log (1/2δ) if i > 1.

For GD, for ease of computation set η ∈ [1/4, 1/2] (≡ [1/2L, 1/L]) such that

k1 := log1+2η(1/2δ) =
log(1/2δ)

log(1 + 2η)

is a natural number. This is possible for d ≥ 6 since

log(1/2δ) ≥ 1.7 and

(
1

log(2)
,

1

log(1.5)

)
⊃ (1.5, 2.4) so that log(1/2δ)(2.4− 1.5) ≥ 1.
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Observe that k1 ≤ 3 log(1/2δ). Given this η and k1, define the following initialization point
x0 for GD:

(x0)(i) =

{
0.5 if i = 1
(1− δ) + 2ηk1δ(i− 2) if i > 1.

The GD and GF bounds follow the same technique but the precise computations are slightly
different. Thus we write the GD and GF bounds separately in the following subsections.
The main idea behind the staggering us discussed in the main paper and illustrated in
Figure 5. Because of the staggering, in every consecutive iterate, a single component goes
from value 0.5 to 0.0 leading a large path length.

E.3 GF Analysis

We make the following observations about the function f and the initial point x0.

(1.1) The distance between the initial and the optimal set is bounded as,

dist (x0,X
∗) = ‖x0 − 0‖2 ≤

√√√√ d∑
i=1

(1 + (iδ log(1/2δ)))2

≤

√√√√ d∑
i=1

(1 + (i log(d)/d))2

≤

√√√√2

d∑
i=1

(1 + (i log(d)/d)2)

=

√√√√2d+ 2
d∑
i=1

(i log(d)/d)2

=

√
2d+ 2

(
d(d+ 1)(2d+ 1) log2 d

6d2

)
≤
√

2d+
(
d log2 d

)
(since d ≥ 6)

≤
√
d log2 d+ d log2 d (since d ≥ 6)

=
√

2d log d. (50)

(1.2) f∗ = 0.

(1.3) The gradients of f are L-Lipschitz with L = 2. To see this, first notice that the
gradients of g are 2-Lipschitz since they are 2-Lipschitz in each of the pieces in the
definition (47), and the derivatives are continuous. Then

〈∇f(x)−∇f(y),x− y〉 =
d∑
i=1

(∇g(x(i))−∇g(y(i)))(x(i) − y(i))
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≤
d∑
i=1

2(x(i) − y(i))
2 (∇g is 2-Lipschitz)

= 2 ‖x− y‖22 .

(1.4) f is µ-PKL for µ = 2/3d2. To see this, first observe that

‖∇f(x)‖22
2(f(x)− f∗)

=
‖∇f(x)‖22

2f(x)
≥ min

i

(
min

x(i)∈(0,maxi(x0)(i)]

(∇g(x(i)))
2

2g(x(i))

)
= min

x∈(0,maxi(x0)(i)]

(∇g(x))2

2g(x)
.

We bound the final quantity for each piece in the definition (47) where g(x) 6= 0:

• x ∈ (0, 0.5]. g(x) = x2, (∇g(x))2 = 4x2. Thus (∇g(x))2/2g(x) = 2 ≥ µ.

• x ∈ [0.5, 1 − δ]. g(x) ≤ 1, (∇g(x))2 ≥ (2δ)2 = 4δ2. Thus (∇g(x))2/2g(x) ≥
2δ2 ≥ µ.

• x ∈ [1− δ, γ]. Here, (∇g(x))2 = 4δ2, and

max
x∈[1−δ,γ]

g(x) = g(γ) = = (0.5− δ2) + 12δ log(1/2δ)

≤ 0.5 + 12 log(d/2)/d

≤ 3 (for all x, 12 log(x/2)/x ≤ 2.5).

Thus, (∇g(x))2/2g(x) ≥ 2δ2/3 = µ

• x ∈ [γ,∞). (∇g(x))2 = 4β2x2, and g(x) = (α+ βx)2. The ratio is minimized at
x = γ, where g(x) = (0.5− δ2) + 12δ log(1/2δ):

4β2γ2

g(γ)
=

2δ2

0.5 + 12 log(d/2)/d

≥ 2δ2

3
(for all x, 12 log(x/2)/x ≤ 2.5)

= µ.

(1.5) The condition number of f , ν = L/µ ≤ 3d2.

Consider the time interval [0, t1] where t1 is given by,

t1 =
log (1/2δ)

2
.

We make the following computations to determine the value of xt1 :

(2.1) (xt1)(1): The flow for (xt)(1) in the interval [0, 0.5] is given as (xt)(1) = 0.5e−2t. Thus

(xt1)(1) = 0.5e− log(1/2δ) = δ.
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(2.2) (xt1)(2): The flow for (xt)(2) in the interval [0.5, 1 − δ] is given as (xt)(2) = 1 − δe2t.
As computed below, (xt)(2) decreases from (1 − δ) to 0.5 for t ∈ [0, t1], and achieves
the value 0.5 at t1:

(xt1)(2) = 1− δ

2δ
= 0.5.

(2.3) (xt1)(i), for i ≥ 3: The flow for (xt)(i) in the interval [1 − δ,∞) is given as (xt)(i) =
(1− δ) + δ(i− 2) log

(
1 + 2δ2

)
− 2δt. Thus,

(xt1)(i) = (1− δ) + δ(i− 2) log (1/2δ)− 2δt1

= (1− δ) + δ(i− 3) log (1/2δ) .

Given this, first we lower bound the path length for the interval [0, t1], the path length is
at least:

‖x0 − xt1‖2 ≥ (x0)(2) − (xt1)(2) = 0.5− δ ≥ 0.3.

Next we perform the same computations for the interval [t1, 2t1]. In observations (2.1),
(2.2), (2.3) we obtained

(xt1)(i) =


δ if i = 1
0.5 if i = 2
(1− δ) + δ(i− 3) log (1/2δ) if i > 2.

Compare this to x0. Observe that (xt1)(1) ≤ δ, and that for i > 1, (xt1)(i) = (x0)(i−1). Thus,
for the time interval [t1, 2t1], ((xt)(2), (xt)(3), . . . (xt)(d)) follow the exact same dynamics as
did ((xt)(1), (xt)(2), . . . (xt)(d−1)) for the time interval [0, t1]. Continuing in this fashion, more
generally for every s ∈ {0, 1, . . . d−2}, the same computations for the interval [st1, (s+1)t1]
lead to a path length which is at least:∥∥xst1 − x(s+1)t1

∥∥
2
≥ (xst1)(s+2) − (x(s+1)t1)(s+2) = 0.5− δ ≥ 0.3.

Adding up all path length lower bounds for s ∈ {0, 1, . . . , d − 2} we obtain a lower bound
on the overall path length:

ζ ≥ 0.3(d− 1)

≥

( √
d

6 log d

)(√
2d log d

)
(since d ≥ 6)

≥

( √
d

6 log d

)
dist (x0,X

∗) , (51)

where the last inequality uses Equation (50). This concludes the proof for the PKL lower
bound in the GF case.

51



Gupta, Balakrishnan and Ramdas

E.4 GD Analysis

Consider the iterates k ∈ {1, 2, . . . k1}. As noted previously, k1 is given by

k1 = log1+2η (1/2δ) .

First, we make the following observations analogous to the ones made in the GF case
(observations 1.1–1.5). The details can be found in the GF analysis.

(3.1) The distance between the initial and the optimal set is bounded as,

dist (x0,X
∗) = ‖x0 − 0‖2 ≤

√√√√ d∑
i=1

(1 + (2iδk1))2

=

√√√√2d+ 36
d∑
i=1

(i log(d)/d)2 (since k1 ≤ 3 log(1/2δ))

=

√
2d+ 36

(
d(d+ 1)(2d+ 1) log2 d

6d2

)
≤
√

2d+
(
13d log2 d

)
(since d ≥ 6)

≤ 4
√
d log d. (52)

(3.2) f∗ = 0.

(3.3) The gradients of f are L-Lipschitz with L = 2. This is the same observation as (1.3).

(3.4) f is µ-PKL for µ = 2/3d2. This is the same observation as (1.4).

(3.5) The condition number of f , ν = L/µ ≤ 3d2.

We make the following computations to determine the value of xk1 :

(4.1) (xk1)(1):
(xk1)(1) ≤ (x1)(1) = 0.5− η ≤ 0.25.

(4.2) (xk1)(2): The iterates for (xk)(2) for k ∈ {1, 2, . . . k1} are (xk)(2) = 1 − (1 + 2η)kδ.
As computed below, (xk)(2) decreases from (1 − δ) to 0.5 for k ∈ {1, 2, . . . k1} and
achieves the value 0.5 at k1:

(xk1)(2) = 1− δ

2δ
= 0.5.

(4.3) (xk1)(i), for i ≥ 3: The updates for (xk)(i) in the interval [1 − δ,∞) are given as
(xk)(i) = (1− δ) + 2ηδ(i− 2)k1 − 2ηδk. Thus,

(xk1)(i) = (1− δ) + 2ηδ(i− 2)k1 − 2ηδk1

= (1− δ) + 2ηδ(i− 3)k1.
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Given this, first we lower bound the path length for the iterates {1, 2, . . . k1}. The path
length is at least:

‖x0 − xk1‖2 ≥ (x0)(2) − (xk1)(2) = 0.5− δ ≥ 0.3.

Next we perform the same computations for the interval [t1, 2t1]. Through observations
(4.1), (4.2), (4.3) we obtained (xk1)(1) ∈ [0, 0.5− η] and

(xk1)(i) =

{
0.5 if i = 2
(1− δ) + 2ηδ(i− 3)k1 if i > 2.

Compare this to x0. Observe that for i > 1, (xk1)(i) = (x0)(i−1). Thus, for the iter-
ates {k1 + 1, . . . 2k1}, ((xk)(2), (xk)(3), . . . (xk)(d)) follow the exact same dynamics as did
((xk)(1), (xk)(2), . . . (xk)(d−1)) for the time interval {1, 2, . . . k1}. Continuing in this fash-
ion, more generally for every s ∈ {0, 1, . . . d − 2}, the same computations for the interval
{sk1 + 1, sk1 + 2, . . . (s+ 1)k1} lead to a path length bound at least as large as:∥∥xsk1 − x(s+1)k1

∥∥
2
≥ (xsk1)(s+2) − (x(s+1)k1)(s+2) = 0.5− δ ≥ 0.3.

Adding up all path length lower bounds for s ∈ {0, 1, . . . , d − 2} we obtain a lower bound
on the overall path length:

ζη ≥ 0.3(d− 1)

≥

( √
d

16 log d

)(
4
√
d log d

)
≥

( √
d

16 log d

)
dist (x0,X

∗) , (53)

where the last inequality uses the bound (52). This concludes the proof for the PKL lower
bound in the GD case.

E.5 Lower Bound Under Linear Convergence

We compute the linear convergence constant c for the function f and relate it to the path
length lower bounds shown in Section E.3 (GF) and Section E.4 (GD).

GF analysis. Suppose {xt}t∈R+
0

follows the dynamics ẋ = −∇g(x) with some initial

point. Note that the optimal set is X∗ = [−∞, 0]. Then for any x > 0,

ẋ

dist (x,X∗)
=
ẋ

x
= −∇g(x)

x
≥ −min(2, 2δ, 2δ/γ, 2β).

This corresponds to the definition ∇g(x) in different regions. The minimum above is given
by 2δ/γ since δ ≤ 1 and γ > 1 for d = 6. We compute 2δ/γ = 2d−1(1 + 6 log(d/2))−1 ≥
(4d log d)−1. Thus linear convergence holds for every component of f with A = 1 and
c = (4d log d)−1; consequently linear convergence also holds for f with constants (1, c). For
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the x0 chosen in Section E.2, we showed a lower bound on the path length in terms of d
(Section E.3) that can be translated into a lower bound in terms of c as follows:

ζ ≥

( √
d

6 log d

)
dist (x0,X

∗) ≥

( √
1/c

12 log1.5(1/c)

)
dist (x0,X

∗) .

This concludes the analysis in terms of the linear convergence constant c for GF. Since
d ≥ 6, this construction admits c ∈ (0, (4 · 6 log 6)−1) ⊇ (0, 0.023).

GD analysis. As identified in Section E.2, η ≥ 1/4. Consider any x > 0 (corresponding
to one component of the iterates) and note that the optimal set is X∗ = [−∞, 0]. Then for
an update x+ ← x− η∇g(x) we have

x+ − x
dist (x,X∗)

=
−η∇g(x)

x
≥ −η(4d log d)−1 ≥ (16d log d)−1.

(The lower bound for ∇g(x)
x is shown in the GF computation above and the final in-

equality uses η ≥ 1/4.) Thus linear convergence holds for every component of f with
c = (16d log d)−1; consequently linear convergence also holds for f with this value of c. For
the x0 chosen in Section E.2, we showed a lower bound on the path length in terms of d
(Section E.4) that can be translated into a lower bound in terms of c as follows:

ζ ≥

( √
d

16 log d

)
dist (x0,X

∗) ≥

( √
1/c

64 log1.5(1/c)

)
dist (x0,X

∗) .

This concludes the analysis in terms of the linear convergence constant c for GD. Since
d ≥ 6, this construction admits c ∈ (0, (4 · 6 log 6)−1) ⊇ (0, 0.0058).

Appendix F. Proof of Theorem 18

For any dimension d, we will construct a separable quadratic function in d dimensions:

f(x) =
1

2

d∑
i=1

aix
2
(i),

where ai = ωd−i for ω = 11. Since f is a separable quadratic function, it is also a separable
quasiconvex function. The condition number of f is ν = ωd−1, so that log ν = (d−1)(logω)
and in particular

√
log ν ≤

√
d(logω). Also X∗ = {0}. In what follows we will identify an

x0 such that the path length for GF satisfies ζ ≥ 0.7
√
d dist (x0,X

∗) and the path length
for GD for η = 1/2a1 = 1/2L satisfies ζη ≥ 0.5

√
d dist (x0,X

∗). Before we illustrate this
construction, we prove that such a construction would lead to the results in Equations (14)
and (15).

For the given value of κ and d, we consider two cases. Suppose log κ ≥ (d − 1)(logω).
Then, the above function with condition number ν satisfies ν ≥ κ so that f ∈ Qκ. The
construction ensures that

ζ (or ζη) ≥ c
√
d dist (x0,X

∗) ,
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for appropriate values of c which implies Equations (14) and (15).
On the other hand, suppose log κ ≤ (d − 1)(logω). Then we identify the largest 2 ≤

d′ ≤ d such that log κ ≥ (d′− 1)(logω) (since κ ≥ 5, this is possible). Note that this means
log κ ≤ d′(logω). Next we instantiate the construction for dimension d′ instead of d, that is

f(x) =
1

2

d′∑
i=1

aix
2
(i),

with ai = ωd
′−i. For this f , the condition number ωd

′−1 is smaller than κ so that f ∈ Qκ.
The path length is at least

ζ (or ζη) ≥ c
√
d′ dist (x0,X

∗)

≥ c
√

log κ/ logω dist (x0,X
∗)

= (c/
√

logω)
√

log κ dist (x0,X
∗) .

As we will prove, in the GF case, c = 0.7 so that c/
√

log 11 ≥ 0.45, and in the GD case,
c = 0.5 so that c/

√
log 11 ≥ 0.3. This leads to the bounds in Equations (14) and (15).

Now we analyze the path length for f in d dimensions and show the bound ζ (or ζη) ≥
c
√
d dist (x0,X

∗) for a specific x0.

F.1 GF Analysis

Define x0 = 1d so that dist (x0,X
∗) =

√
d. Set δ = 0.07. Observe that the GF dynamics

lead to (xt)(i) = e−ait. Consider the time steps {ti}di=0 where t0 = 0 and ti = log(1/δ)/ai.
Observe the following:

1. For every i ∈ [d], (xti)(i) = δ.

2. For every i ∈ [d− 1],

(xti)(i+1) = e−ai+1ti

= e− log(1/δ)/ω

= δ1/ω.

Thus splitting the path length integral in these time steps,

ζ =

∫ ∞
0
‖ẋt‖2 dt

≥
d∑
i=1

∫ ti

ti−1

‖ẋt‖2 dt

≥
d∑
i=1

∥∥xti − xti−1

∥∥
2

≥
d∑
i=1

(xti−1 − xti)(i)
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≥
d∑
i=1

(δ1/ω − δ)

= d(δ1/ω − δ)

=
√
d (δ1/ω − δ) dist (x0,X

∗)

≥ 0.7
√
d dist (x0,X

∗) (plugging in values of δ and ω).

F.2 GD Analysis

Define x0 = 1d so that dist (x0,X
∗) =

√
d. Set δ = e−3. Let η = 1/2a1 = 1/2L. Observe

that the GD iterates are (xk)(i) = (1 − ηai)k. Consider the iterates {ki}di=0 where k0 = 0
and ki = a1 log(1/δ)/ai which are integers. Observe the following:

1. For every i ∈ [d],

(xti)(i) = (1− ηai)ki

≤ e−kiηai

≤
√
δ.

2. For every i ∈ [d− 1],

(xti)(i+1) = (1− ηai+1)ki

≥ e−2ai+1ki (1− x ≥ e−2x for x ≤ 0.5)

= e− log(1/δ)/ω

= δ1/ω.

Thus splitting the path length sum in these iterates,

ζη =

∞∑
k=0

‖xk − xk+1‖2

≥
d−1∑
i=0

ki+1−1∑
k=ki

‖xk − xk+1‖2

≥
d−1∑
i=0

∥∥xki − xki+1

∥∥
2

≥
d−1∑
i=0

(xki − xki+1
)(i+1)

≥
d−1∑
i=0

(δ1/ω −
√
δ)

= d(δ1/ω −
√
δ)

=
√
d (δ1/ω −

√
δ) dist (x0,X

∗)
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≥ 0.5
√
d dist (x0,X

∗) ,

plugging in values of δ and ω.

Appendix G. Lower Bound Simulations

In this section, we empirically simulate the lower bound constructions shown in Section 4
and draw some insights into the tightness of these bounds.

G.1 PKL

In this simulation, we assess the PKL lower bound construction of Theorem 17. For the
constructed lower bound function f in the proof, it is not entirely evident if the computations
are tight and that the final path length bound is Ω(κ1/4/ log κ) (perhaps it has a larger
dependence like Ω(

√
κ)). To assess this, we simulate GD with the f described in Section

E.1 and numerically compute the path length. By varying the dimension d ∈ [e2, e9], we
obtain a range of values for the condition number of f : κ ∈ [28.6, 3.29 · 107]. For each of
these functions with different κ values, the step-size for GD and the initialization point are
set as described in Section E.2. The path length is computed by adding the lengths of all
the updates, until ‖xk‖2 ≤ 10−6. At this point the remaining distance to the origin ‖xk‖2
is added to the path length computation. Finally, µ is computed as the ‘effective’ PKL
constant from the iterates actually seen while running the simulation:

µ = max
t∈{0,1,...k}

‖∇f(xt)‖22
2f(xt)

.

Consequently, since L = 2, we obtain κ = 2/µ. The observed path length ratio ζη/dist (x0,X
∗)

is plotted against the effective κ in Figure 12.
The X-axis in the figure corresponds to κ ∈ [28.6, 3.29 · 107]. From the figure, we

observe that the path length ratio is ≈ 3κ1/4/ log κ across various values of the effective
κ. Note that for the given range of κ, log log κ ∈ [1.21, 2.85]. Thus if we were to modify
the X-axis with a log log κ factor, the dependence would no longer be linear. We infer
visually that Ω(κ1/4/ log κ) is the right dependence on κ including log log κ factors. However,
the constants in the lower bound can be improved since Theorem 17 only shows κ ≥
κ1/4/16 log κ.

G.2 Quadratics

For quadratics, we showed a Θ(log(
√
κ)) upper bound (Theorem 10) and lower bound

(Theorem 18). We simulate the lower bound example described in the proof of Theorem 18
to assess the constants in these bounds. Consider gradient descent and gradient flow with

f(x) =
1

2

d∑
i=1

aix
2
(i),

where d = 150 and ai is set similar to the construction in the proof of Theorem 18: for every
i ∈ [d], ai = ωd−i. To vary the condition number κ = ωd−1, we vary ω ∈ [1.00008, 2] (instead
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Figure 12: Dependence of the path length ratio ζη/dist (x0,X
∗) on the condition number

for the PKL lower bound construction in the proof of Theorem 17. We infer
that the dependence is Ω(κ1/4/ log κ), including log log κ factors.

of varying d as we did in the proof of Theorem 18). This leads to κ ∈ [9.553·104, 6.2807·1011].
For the initialization point, we set (x0)i = 1 for every i ∈ [d].

The GF path length is computed by performing the path length integral numerically
(since we know xt at each point in the case of quadratics). We use MATLAB’s numerical
integration function integral, with the AbsTol parameter set to 10−50. The GD path
length is computed by simulating GD with step size η = 1/2a1 and adding the lengths
of all the updates, until every component except the last one is smaller than 10−2, ie
maxi 6=d(xk)(i) < 10−2. At this point the remaining distance to the origin ‖xk‖2 is added
to the path length computation. We use this heuristic since GD convergence is quite slow
when κ is very large (the asymptotic convergence rate with respect to κ is O(κ)). Further,
we limit the largest κ in the GD plot to around 2 ·107. The results are plotted in Figure 13.

Further, to verify that our lower bound construction is non-trivial, we compare the
path length of the construction in Theorem 18 with a randomized construction that has
the ai values sampled as follows: a1 = 1, ad = 1/κ, ai ∼ Unif(1/κ, 1), where κ = ωd−1 for
ω ∈ [1.00008, 2] as in the previous construction. For the initialization point, every (x0)i
is sampled independently from Unif(0, 1) and then normalized so that ‖x0‖2 =

√
d. The

results are plotted in Figure 14.

We do not show the results with averaging across multiple runs for the randomized con-
struction, but we observed behavior similar to Figure 14 across runs. Thus the randomized
quadratic construction does not have a

√
log κ dependence for its path length. This indi-

cates that the lower bound construction in Theorem 18 is non-trivial. At the same time,
Figure 13 shows that the upper bound overestimates the path length of this lower bound
construction. Given these results, we conjecture that the constants in the upper bound can
be improved.
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Figure 13: Path length of GF (top) and GD (bottom) for quadratic objectives. The lower
limit on the X-axis is the same for all plots. The plots on the right are ‘zoomed
in’ versions of the plots on the left; they focus on a smaller range for the Y-axis.
The lower bound refers to the specific construction in Theorem 18, described
in Section G.2. The shortest path has length

√
d =

√
150 ≈ 12.25, and the

κ-independent upper bound on the path length is d.
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Figure 14: The lower bound construction of Theorem 18 has larger path length than the
randomized construction defined in Appendix G.2.
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