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Abstract

This paper proposes a formal approach to online learning and planning for agents operat-
ing in a priori unknown, time-varying environments. The proposed method computes the
maximally likely model of the environment, given the observations about the environment
made by an agent earlier in the system run and assuming knowledge of a bound on the
maximal rate of change of system dynamics. Such an approach generalizes the estimation
method commonly used in learning algorithms for unknown Markov decision processes with
time-invariant transition probabilities, but is also able to quickly and correctly identify the
system dynamics following a change. Based on the proposed method, we generalize the
exploration bonuses used in learning for time-invariant Markov decision processes by in-
troducing a notion of uncertainty in a learned time-varying model, and develop a control
policy for time-varying Markov decision processes based on the exploitation and exploration
trade-off. We demonstrate the proposed methods on four numerical examples: a patrolling
task with a change in system dynamics, a two-state MDP with periodically changing out-
comes of actions, a wind flow estimation task, and a multi-armed bandit problem with
periodically changing probabilities of different rewards.

Keywords: Markov decision processes, changing environment, maximum likelihood esti-
mation, online learning, uncertainty quantification

1. Introduction

A variety of intelligent agents—notably, autonomous systems—are commonly required to
operate in unknown environments (Elfes, 1990; Gao et al., 2014; Herndndez et al., 2015),
necessitating the use of learning in order to complete their tasks. While methods for learning
and planning for agents in unknown environments exist in a variety of frameworks (Forbes
et al., 1995; Santamaria et al., 1997; Kearns and Singh, 2002; Al-Tamimi et al., 2007;
Sutton and Barto, 2018), most of them assume that the environment in which the agent
operates is unchanged over the course of the agent’s operation. Such an assumption allows
for construction of an estimate of the dynamics by performing repeated experiments and
observing the outcomes (Sutton and Barto, 2018; Sutton et al., 1999; Kearns and Singh,
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2002; Kolter and Ng, 2009; Strehl and Littman, 2008; Fu and Topcu, 2014; Hausknecht and
Stone, 2015; Ornik et al., 2018). However, it is often not realistic for systems operating
on long-term missions outside a strictly controlled environment. Taking an example of an
extraterrestrial rover mission, changes in the environment may be a consequence of regular,
predictable events such as intra-day or seasonal temperature variations (Vasavada et al.,
2017) or may result from more complex phenomena that are difficult to predict, e.g., terrain
changes due to wind—see the work of Zimbelman (2014) for a detailed study.

In contrast to assuming time-invariance, accounting for time-varying changes in the
environment presents a major challenge to learning and planning. A naive approach—
restarting the learning process whenever the environment changes—does not make sense:
the environment is possibly continually changing. Restarting the learning process whenever
the environment sufficiently changes, or sufficient length of time passes, would both neglect
the environmental changes between the process restarts and rely on heuristics in deciding
when to restart learning. Restarting too often will lead to the agent spending too much
time on learning, and lacking time to perform its task. On the other hand, restarting the
learning process too rarely can lead to unreliable learning outcomes. A sliding window
approach (Huang et al., 2010; Gajane et al., 2018), where only information gathered within
a fixed period of time prior to the time of learning is used, suffers from a similar issue—a
short window provides few samples to learn from, while a long window provides samples
corresponding to significantly different environments.

This paper develops a method that neither assumes that the environment is time-
invariant, nor uses intervals of fixed length to artificially adapt the agent to a changing
environment while discarding all older learned information. The framework of this pa-
per is one of time-varying Markov decision processes (TVMDPs) as described by Liu and
Sukhatme (2018), Li et al. (2019), and Ortner et al. (2020): discrete-time, finite-state
stochastic control processes with finitely many actions, where transitions from one state
to another are governed by a time-varying transition probability function. Building on
the maximum-likelihood approach to learning and planning in unknown time-invariant en-
vironments (Vergassola et al., 2007; Strehl et al., 2009; Filippi et al., 2010), we propose
a change-conscious maximum likelihood estimate (CCMLE) that computes a time-varying
transition probability function that is mazimally likely, given (i) the previously observed
outcomes of the agent’s actions and (ii) a priori fixed bounds on the rate of change of
the transition probabilities. In our motivational narrative of an agent on a long-term mis-
sion, such bounds may come from prior study of the causes behind possible environmental
changes—for example, wind or temperature change (Fenton et al., 2005). An attractive
feature of the CCMLE approach is its interpretation as a generalization of a standard esti-
mation method on time-invariant MDPs, described by Strehl and Littman (2008). Namely,
if the environment is time-invariant the CCMLE matches the estimates provided by the
classical method used for time-invariant MDPs.

Using the proposed estimation method, we additionally develop an active online learning
policy: we define a measure of uncertainty of a« CCMLE, and by performing actions that
seek to minimize the uncertainty, ensure that the agent estimates the system dynamics as
quickly as possible during a single system run. We incorporate such a policy into a joint
learning and planning mechanism, enabling the agent to perform its task while learning
about its unknown and changing environment.
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While the framework of TVMDPs has been described by Liu and Sukhatme (2018), the
work contained therein solely discusses optimal control policies for a priori known TVMDPs.
Similarly, Li et al. (2019) discuss online design of control policies for TVMDPs based on full
knowledge of past transition probabilities. The work of Ortner et al. (2020) does consider
planning for TVMDPs with unknown transition probabilities and comes closest to our work;
however, its underlying estimation method relies on assuming time-invariance. Instead
of directly aiming to produce a correct estimate of the TVMDP, it approaches planning
by producing a control policy aware of the possible incorrectness in its estimate. While
the quantification of incorrectness in the estimate has a similar motivation as our notion
of uncertainty in the CCMLEs, it relies on additional assumptions about the TVMDP.
Additionally, in contrast with our method of active learning, the approach of Ortner et al.
(2020) does not seek to actively reduce this uncertainty during the mission, but instead
produces a policy robust to the uncertainty.

In addition to relatively new work on TVMDPs, previous similar frameworks where
learning has been discussed include the following:

e Time-dependent MDPs (Boyan and Littman, 2001), where the dependence of tran-
sition probabilities on time is encoded by appending a continuous time stamp as a
coordinate in the state space, thus yielding a continuous-state MDP as defined by
Boyan and Littman (2001) and van Hasselt (2012).

e Time-varying Markov-switching models (Filardo, 1994), which do not include a notion
of a control action.

e Semi-Markov decision processes and related frameworks (Ross, 1970; Sutton et al.,
1999; Younes and Simmons, 2004), where the transition probabilities themselves are
time-invariant, but the time needed to perform a transition may vary.

e c-stationary MDPs (Kalmar et al., 1998; Szita et al., 2002; Csdji and Monostori,
2008), which allow for time-varying transition probabilities only inasmuch as they
remain close to constant over time.

Learning and planning for agents operating in the last two frameworks have been discussed
at length (Sutton et al., 1999; Szita et al., 2002). However, the nature of these frameworks—
with transition probabilities that, potentially disregarding bounded disturbances, do not
change over time—yields learning methods that are not useful in the setting where transi-
tion probabilities may significantly vary over long periods of time. Learning of time-varying
Markov-switching models (Diebold et al., 1994) is more similar to the problem of learn-
ing for TVMDPs. However, as that framework does not include explicit decision-making,
learning simply relies on passively collecting data from multiple system runs. While similar
in the estimation part—although with technical differences due to different assumptions
on previous knowledge—our proposed method seeks to make the agent actively learn by
performing those actions that are expected to reduce the uncertainty in the learned model.
Finally, time-dependent MDPs fall into the category of continuous-state MDPs as defined
by van Hasselt (2012). However, learning methods for continuous-state MDPs are often
computationally intractable (van Hasselt, 2012).

The organization, main contributions, and key theoretical results of this paper are as
follows:
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e Section 2 recalls the definition of a TVMDP and poses problems of optimal learning—
during a single system run—and optimal control for an agent operating in a TVMDP
with a priori unknown transition probabilities.

e Section 3 introduces the key element of the proposed learning method: a change-
conscious maximum likelihood estimate (CCMLE) of the TVMDP’s transition prob-
abilities, given prior observations and knowledge about the rate of change of proba-
bilities.

— Proposition 3 shows that CCMLE equals the estimates produced by standard
estimation in the case of time-invariant MDPs.

— Theorem 4 and Theorem 5 describe the CCMLE in two particular cases of time-
varying MDPs.

e Section 4 proposes a measure of uncertainty of a CCMLE.

— Theorem 4 geometrically describes the set of all equally likely CCMLESs, given
the observations, if such an estimate is not unique.

— Theorem 10 relates the proposed measure to measures of uncertainty used in
learning and planning techniques for time-invariant MDPs.

e Section 5 uses the proposed notion of uncertainty to propose optimal learning and
control policies for an agent operating in an unknown, time-varying environment. In
particular, Section 5.1 considers a policy that minimizes the agent’s uncertainty, while
Section 5.2 uses the measure of uncertainty as an “exploration bonus” in proposing a
control policy based on the exploration-exploitation framework, seeking to minimize
the uncertainty while directing the agent to progress towards its objective.

e Section 6 illustrates the developed theory by considering learning and planning for
an agent in four scenarios: Section 6.1 discusses a scenario of a one-off change in
transition probabilities during a patrolling mission. Section 6.2 considers a setting
of regular, periodic changes in transition probabilities on a two-state TVMDP, while
Section 6.3 considers a more involved multi-armed bandit setting. Section 6.4 de-
scribes estimation of wind flow using a pilot balloon with CCMLE. In these sections,
we compare results attained by the proposed method to the methods introduced in
previous work, and show that the proposed method indeed leads to smaller estimation
errors and expedited completion of control objectives.

e Proofs of theoretical results are provided in Appendix A.

Notation. Symbol Ny denotes all nonnegative integers; N denotes all positive integers.
Function d : R™ x R™ — [0, +00) denotes the Euclidean distance on R™. For a set P C R",
diam(P) denotes the diameter of the set: diam(P) = sup{d(zx,y) | z,y € P}. For a set X,
| X | denotes its cardinality.
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2. Problem Statement

Consider a time-varying Markov decision process (TVMDP) M as described by Liu and
Sukhatme (2018): M = (S, A, P), where S = {s!,... s"} is the state space, A is the set
of actions, and P : S x A x S x Ny — [0,1] is a transition probability function. Namely,
P(s,a, s’ t) denotes the probability that an agent positioned at state s € S at time ¢ € Ny
will, after performing action a € A, transition to a state s’ € S at time ¢ + 1. Naturally,
Yoves P(s,a,8't) = 1forall s € S, a € A, t € No. If 59 is the agent’s initial state,
the agent’s path until time T € Ny is denoted by o = (so,...,sr), while the agent’s

corresponding actions are given by a = (ag,...,ar—1). A time-varying policy on a TVMDP
M is a sequence m = (w1, m2,...), where m; € A may depend on time ¢, the agent’s state
s¢, as well as the agent’s previous states sg,...,s;—1. If the transition probability function

P is a priori unknown, m; may also depend on the agent’s estimate of P at time ¢t. A
time-invariant policy on a TVMDP M is a policy that depends solely on the agent’s state
s¢, i.e., with a slight abuse of notation, 7 : S — A.

TVMDPs seek to model an environment in which the agent dynamics may change
over time. This framework is a generalization of classical time-invariant Markov decision
processes (MDPs); in standard MDPs, transition probability function P is not dependent
on time. In the remainder of the paper, if a transition probability is time-invariant, we will
denote it by P(s,a, s, *).

We assume that the transition probability function P is unknown to an agent at the
beginning of the system run, i.e., prior to ¢ = 0. As in the previous work on time-invariant
MDPs (Brafman and Tennenholtz, 2002; Kearns and Singh, 2002; Kolter and Ng, 2009; Fu
and Topcu, 2014; Ornik et al., 2018), we study two objectives:

(i) learning the transition probabilities as efficiently and correctly as possible during a
single system run, and

(ii) for a known reward function R : S x A — R, maximizing the agent’s expected collected
reward over a period of time.

In time-invariant MDPs, because the transition probabilities do not change over time,
it is possible to learn the transition probabilities at every state-action pair (s,a) with an
arbitrarily small error, by repeatedly visiting the state s, performing the action a, and
observing the outcome. By the law of large numbers,

'

= P(s,a,s, x 1
#(s,a)ro0  F(s, a) ( ) M

with probability 1, where #(s, a) denotes the number of times that action a was performed
at state s, and #(s,a, s’) denotes the number of times that performing action a at state s
led to the agent immediately moving to state s’. Hence, under some ergodicity assumptions,
it is possible to learn the transition probabilities P(-,-, -, *) within a single system run and
with an arbitrarily small error. After learning these probabilities, it is then straightforward
(Puterman, 2005) to determine a policy that comes arbitrarily close to maximizing the
agent’s expected collected reward, thus solving objective (ii).

In the case of TVMDPs, it is impossible to learn the transition probabilities during a
single system run with an arbitrarily small error, as these probabilities may continually
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change. In fact, if the transition probabilities at different times were entirely independent,
the agent would only have one time step (i.e., one action) to learn the transition probabilities
at |S||A| state-action pairs. In such a case, any attempt at learning is meaningless. Even if
the transition probabilities are not independent, i.e., it is known that there exists e; € [0,1)
such that

|P(s,a,s,t+1)— P(s,a,s',t)| <& (2)

for all s,s € S, a € A and t € Ny, perfect knowledge of all transition probabilities
P(s,a,s',7) for T < T only implies that P(s,a,s',T) € [P(s,a,s',T—1)—ep_1, P(s,a,s,T—
1) + er—1] and just one sample collected from (s,a) at time 7" is not sufficient to correctly
determine the value of P(s,a,s’,T).

The above discussion behooves us to interpret objective (i) in the following way.

Problem 1 (Optimal learning in TVMDPs) Determine a policy ™ such that, at ev-
ery time t > 0, after taking action ©f € A, the uncertainty in the estimated transition
probabilities P(-,-,-,t) is minimized.

We purposefully leave the notion of uncertainty vague at this point. Sections 3, 4,
and 5.1 of this paper will be dedicated to designing a meaningful estimate of transition
probabilities, defining the notion of uncertainty of such an estimate, and determining a
policy 7 that solves the optimal learning problem.

Largely for notational purposes, we express objective (ii) in terms of expected average
rewards on an infinite system run. We emphasize that the reward function itself is assumed
to be known.

Problem 2 (Optimal control in TVMDPSs) Determine a policy ©* that mazimizes

T *
E |l inf 2ot=0 B0 70

T—o0 T ’
where s; is the agent’s state at time t.

In both the optimal learning and optimal control problems, we allow 7} to depend only
on the agent’s path until time ¢ and its estimates of transition probabilities. In other words,
in line with the assumption of a time-varying nature of the environment, we do not allow
for learning from repeated runs.

By appending the state space S by the time coordinate and interpreting the transition
probabilities and rewards as being defined on the state space S x Ny, the optimal control
problem on TVMDP M is equivalent to a standard optimal control problem on a countably
infinite MDP M, with a finite set of actions A and an averaged reward objective. A
detailed discussion of such a problem in the context of infinite MDPs is given by Puterman
(2005). With a slight change to a discounted reward objective, Puterman (2005) shows that
such a problem admits a stationary optimal policy, which naturally translates to a time-
varying optimal policy on M. However, such a policy can only be found if the transition
probabilities are a priori known. Finding an optimal control policy under the stipulation
that P is unknown at the beginning of the system run—thus exactly solving the optimal
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control problem—is impossible. In Section 5.2 we will propose a method motivated by
the exploration-exploitation framework of previous work (Brafman and Tennenholtz, 2002;
Kearns and Singh, 2002; Kolter and Ng, 2009; Fu and Topcu, 2014; Ornik et al., 2018),
seeking to actively learn about the transition probabilities in order to be able to collect
higher rewards.

We now proceed to discuss the initial building block of our method for learning and
planning in TVMDPs: estimating the transition probabilities.

3. Change-Conscious Maximum Likelihood Estimate

The objective of this section is to develop a method for estimating the transition probabilities
P(s,a,s',t), t <T, given the observations of the agent’s motion until time 7'. To this end,
we develop a change-conscious mazimum likelihood estimate (CCMLE) which produces a
set of probability distributions P(s,a,-,t) for all s € S, a € A, and t < T, for which the

probability of the agent’s observed path o = (sg, $1, ..., s7) until time 7 is maximal, given
the agent’s actions o = (ag,...,a7r—1) and a known a priori bound on the rate of change of
transition probabilities over time.

Let us consider the path ¢ = (sg,s1,...,s7). For ease of notation, we assume that

A = {a}, i.e., that the TVMDP M is a time-varying Markov chain; if |A] > 1, we can
separate the agent’s paths into |A| possibly disconnected paths, one for each action. Given
the transition probability function P, the probability of the agent following the path o is

T-1

= H P(sy,a, Sp41,t).
t=0

As the true transition probability function is unknown, given the agent’s path o, we want
to determine the values ]5(3, a,s’,t) with s,s" € S and t < T (in future to be denoted by
PKT) which are most likely to have produced such a path (Balakrishnan and Nevzorov,
2004). In other words, we want to find the values of P,.7 that maximize P(c). Naturally,
we identify P,o7 with an element in [0, 1]'5 *T " Without any restrictions on the choice of
Pyop, such values are naturally given by P(st, a,si41,t) = 1 for all t < T: the transition
probability function that will generate the observed outcomes with the highest probability
is the one that ensures that all the observed outcomes happen with probability 1. However,
in such a framework, all observations at times ¢ < T make no impact on the estimate of
transition probabilities for time ¢ = T, rendering any learning meaningless. Thus, we assume
the knowledge of the maximal rate of change of transition probabilities, i.e., &, € [0,1]
with ¢ € Ny, which satisfy (2). Such a change-conscious maximum likelihood estimation
(CCMLE) problem is thus given by

T—1

max H P(St,(l, $t+1,t)

Picr =0

s.t. P(s,a,s',t) >0 for all 5,5’ € S, t < T, (3)
Zpsast—l forallse S, t <T.
s'eS

|P(s,a,s',t+ 1) — P(s,a,5,t)| <& for all 5,5’ € S, t < T,
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where the decision variables are P(s,a,s,t) for all s,5' € S, t < T.
Noting that the product in the objective function of (3) is nonnegative, and the logarithm
function is monotonic, (3) can be replaced by the constrained log-likelihood problem

T-1
min — Zlogﬁ(st,a,st+1,t)
Picr =0
s.t. P(s,a,s',t) >0 for all s,s' € S, t < T, (4)
ZPsast—l forallse S, t < T,
s'eS

|P(s,a,s',t+ 1) — P(s,a,s,t)] < & for all 5,5’ € S, t < T,

with the understanding that log0 = —

The optimization problem in (4) is a convex optimization problem with a linear set of
constraints and T'|S|? decision variables P(s,a,s’,t); for |A| > 1, there would be T)|S|?|A]
decision variables. Alternatively, as discrete distributions .:f’(s, a, -, t) for different s are not
coupled by any of the constraints, we can instead treat (4) as |S| problems with 7'|.S| decision
variables. We will use this method—presented at the beginning of Appendix A—to simplify
computations and theoretical proofs.

The maximal value of the objective function in (4) is not +oo because Pyor defined
by P(s,a,s',t) = 1/|S| for all s,s' € S and t < T is in the feasible set, and produces a
real value for the objective function. Thus, by continuity, the objective function attains a
minimum in the feasible set. Such a minimum may not be unique. In the remainder of the
paper, we use P71 S x A x S x{0,1,...,T — 1} — [0,1] or PL} to denote any CCMLE
obtained from the observations until time 7, i.e., immediately before taking action arp.

The following result, with the proof in Appendix A, shows that the CCMLE directly
generalizes the classical estimate from (1) for the case of time-invariant transition probabil-
ities.

Proposition 3 Let ¢, = 0 for allt € Ng. Then, PT(s,a, s' %) = #(s,a,s")/#(s,a) for all
s,s €8S, ae A, T e Ny, where #(s,a,s') =|{t € {0,..., T —1} | st = s,ar = a, 5441 = 5'}|
and #(s,a) = |{t € {0,..., T — 1} | st = s, a1 = a}|.

As discussed in Section 2, due to the time-varying nature of transition probabilities,
it is generally not possible to ensure that the solution to (4), or any other estimation
method, indeed correctly estimates the transition probabilities of the TVMDP. Nonetheless,
Proposition 3 shows that, if the transition probabilities are known to be time-invariant, the
produced estimates will be asymptotically correct with probability 1. We now generalize
this claim to the case in which the transition probabilities are known to be eventually time-
invariant (ETI). ETI systems appear naturally in settings where changes occur on short
time scales between long periods of unchanged behavior, e.g., weather fronts (Gregorius
and Blewitt, 1998). ETI TVMDPs are also a stochastic discretization of classical ETI
control systems (Feintuch, 1989).

Theorem 4 Assume that there exists N € Ny such that e, = 0 for allt > N. Then,
lim PT(S, a,s’,T—1)= P(s,a,, T —1)

#(s,a)—00

for all s,s' € S, a € A with probability 1.
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The proof of Theorem 4 is in Appendix A. Theorem 4 states that, asymptotically,
the CCMLE will disregard the possible changes in the transition probabilities that oc-
cur at the beginning of the system run, as long as the transition probabilities are known
to be time-invariant after a finite time. Such a property is shared with the estimate
#(s,a,s")/#(s,a) ~ P(s,a,s’,t) which implicitly assumes that the transition probabilities
are time-invariant from the start of the system run.

The following theorem shows that, under the condition that P(s,a,s’,t) = 1 after some
t = N, the CCMLE actually learns P(s,a,s’,t) correctly in finite time, as opposed to
asymptotically, and without requiring knowledge that P(s,a, s',t) is eventually constant in
t. We again invite the reader to see Appendix A for the proof.

Theorem 5 Let N € Ny, s,5' € S, and a € A. Assume that &, = ¢ € (0,1] for all t € No.
Let P(s,a,s',t) =1 for allt > N. Then, PT™Y(s,a,s',T) = 1 for all T > N + 1/¢ such
that (sT,ar) = (s,a).

The slightly convoluted statement of Theorem 5 stems from the nature of the optimiza-
tion problem (4). Namely, if (s,a) is not visited at time T, any probability distribution
PT+1(s,a,-,T) which satisfies the constraints in (4) can be chosen without any impact on
the objective function in (4). Such a possibility reflects the agent’s lack of knowledge about
the drift of transition probabilities at (s,a) since the last time that the agent obtained any
information about them.

Theorem 5 proves that the CCMLE holds a significant advantage over the estimate given
by #(s,a,s’)/#(s,a) ~ P(s,a,s',t) in the case where a transition probability changes
over time and ultimately becomes 1. Although #(s,a,s’)/#(s,a) will converge to 1 as
#(s,a) — oo, such convergence will be slow: if (s,a) has been visited v times prior to
P(s,a,s',t) becoming constantly 1, it is simple to see that it can take up to v(1 —n)/n
additional visits to (s,a) for the estimate of P(s,a,s’,T) to have an error no larger than 7,
and the error may never become 0. On the other hand, after a single visit to (s,a) at time
no earlier than 1/e after P(s,a,s’,t) becomes constantly 1, the estimating procedure (4) is
guaranteed to produce the correct transition probability.

It is possible to modify the classical estimate #(s,a,s’)/#(s,a) =~ P(s,a,s',t), also
used by Ortner et al. (2020), in order to satisfy Theorem 5: we can simply make the
agent “forgetful” and calculate the estimate in a sliding window fashion, i.e., based on the
outcomes of actions performed in the last 1/ time steps (Huang et al., 2010; Gajane et al.,
2018). In that case, assuming that the transition probabilities satisfy the very specific
condition of Theorem 5, the estimate produced in such a way would satisfy the claim of
Theorem 5. However, the choice of 1/ would be arbitrary; an analogous claim to that of
Theorem 5 would hold for an estimate with any finite memory length, and it is possible
that an estimate with a longer or shorter memory would provide better results in general.

The same notion of forgetfulness gives rise to an attractive heuristic to reduce the
complexity of computing the CCMLE. Instead of solving an optimization problem with
up to T'|S| variables at every time step—thus, a problem that grows without bound in
size as the system run progresses—we can choose to “forget” the variables, i.e., transition
probabilities, that are far enough before the current time. Under very particular conditions,
Theorem 5 guarantees that, if we choose to exclude all variables that correspond to time
steps that occurred more than 1/e steps ago, such a forgetful CCMLE of PT(s,a,s',T —1)



ORNIK AND TOPCU

will not differ from the original CCMLE. In general, forgetfulness is not without effect
and we have no reason to believe that the error of the estimates produced by a forgetful
CCMLE will be smaller than the one produced by a CCMLE without forgetting. However,
the simulations in Section 6 will show that the difference between a CCMLE and a forgetful
CCMLE may be small, while the CCMLE requires significantly more computational power.
In particular, for each action the number of decision variables in the forgetful CCMLE is
|S|/e—a value independent of T—while in the CCMLE it is T'|S].

Having described the CCMLE method for estimating the time-varying transition proba-
bilities, we now continue to the second step in our solution of the optimal learning problem:
quantifying how unsure we are about transition probabilities given the agent path.

4. Uncertainty in Estimation

The definition of uncertainty proposed in this paper arises out of two previously identified
intuitive causes for uncertainty of an optimal estimate (Andries, 2004). Namely, (i) if a
single additional observation makes a large difference in an estimate and (ii) if there exist
multiple estimates that produce the observed data with the same likelihood. In case (i),
while an estimate might be unique, its instability indicates that it is not credible (Andries,
2004), while in case (ii) it is uncertain which of the produced estimates, if any, is the correct
one. In order to define uncertainty, we first provide a simple description of the set of all
solutions to (4).

Lemma 6 Let the state-action pair (s,a) be visited at times 0 < Ty < T} < ... <Tp <T.
Then, PT(s,a,st,+1,T;) are uniquely defined.

As with nearly all theoretical proofs, the proof of Lemma 6 is in Appendix A. We do
provide the proof of the following result within this section, as it provides a method for
computation of all CCMLEs.

Theorem 7 The set of solutions to (4) is a polytope.

Proof By Lemma 6, the estimates of the transition probabilities IE’T(st, Aty St41, f) obtained
from (4) are uniquely defined for all ¢ € {0,...,T—1}. Since the other values in P, do not
feature at all in the objective function, the set of solutions to (4) is given by any PE;T where
F’T(st, ag, St+1,t) are the uniquely defined optimal solutions, and all other PT(S, a,s’ t) sat-
isfy the constraints in (4). All of those constraints are affine, i.e., the set of solutions to (4)

is a bounded intersection of finitely many halfspaces. Hence, it is a polytope. |

By Lemma 6 and the proof of Theorem 7, in order to compute the set of all CCMLEs
PT, we first determine a single solution PtT<*T by solving a convex optimization problem.

10
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S| A|T

Then, the set PT of all other solutions PtT<T is a polytope in R given by constraints

PT(St,CLt, 8t+1,t) = PT*(St, ag, St+1,t) forallt < T,
PT(s,a,s',t)>0 foralls s eSS, acA t<T,

ZpT(s,a,s’,t):l forall se S,ac A, t< T, ()
s'eS
]PT(S,CL, s’ t)— P(s,a,s',t+1)|<e foralls,seS acA t<T.

We are now ready to define the uncertainty in the estimate PT(-, o).

Definition 8 For all s € S, a € A, t < T, let P,;F,a(s,a,t) C RIS! be the polytope where
each point is a probability distribution PT(s,a, -, t) obtained from the set of all CCMLFEs
based on the agent’s previous trajectory o = (so,...,st) and actions o = (ag,...,ar—1).
The uncertainty of estimates PT (s, a,-,t) under (o,a), denoted by U};,a(s,a), is defined by

Ul (s,a) =max | max  max  d(z,y),diam (PL,(s,a,t)) |, (6)
’ s'eS acEPg:a(s,a,t) ’
yeP; t w(sat)

o [7
S/7

where Gg and @ denote a trajectory and set of actions equal to o and «, with an additional
transition (s,a,s’) observed at time T and an action a performed at the same time.

When ¢t = T, in Definition 8 we make use of estimates PT(-, -+, 7). While (4) only
considered Pt:QT, we can introduce additional variables F’T(-, -, +, T') which still need to sat-
isfy the constraints of (4). A CCMLE produced by (4) is then certainly not unique, as
I5T(-, -+, T) can be freely chosen, as long as they respect these constraints. This lack of
uniqueness is intuitive: it represents the agent’s lack of certainty about the current transi-
tion probabilities, even if it has all the possible knowledge about transition probabilities at
the previous times. We also note that & is not necessarily a legitimate path for an agent,
as the agent’s state sy at time T in ¢ does not necessarily equal the starting state for the
transition (s,a,s’) observed at time 7. Nonetheless, a CCMLE can be equally produced
using (4), with the objective function

T-1
- Z IOg PT+1(St7 Aty St+1, t) - 10g ]5T+1(57 a, 8/7 T)
t=0

An intuitive explanation of formula (6), corresponding to the description of uncertainty
at the beginning of this section, is as follows. The first term in the max represents the
sensitivity of the CCMLE to a new observation: we are more certain in our knowledge of
the transition probabilities if a single “outlier” observation cannot significantly change the
estimate. The second term represents the distance between two equally likely transition
probabilities. If there are two very distant probability transition functions in the polytope
PL.(s,a,t), this term will be large. We note that UL ,(s,a) < V2, as all probability

distributions PT(S, a, -, t) necessarily belong to the probability simplex, which has a diameter

of V2.
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Remark 9 As all sets Pga(s,a,t) are polytopes, the latter term in (6) is the maximal
distance between the vertices of nga(s,a,t). The first term is the maximum of distances
between any point of nga(s,a,t) and any point in Uslespgjla(s,a,t). The mazimum dis-
tance between points in any two polytopes is, by convexity, achieved when both of those
points are vertices of their corresponding polytopes. Thus, computing the first term also re-
duces to comparing all distances between vertices ongja(s, a,t) and vertices of |\S| polytopes
PET:}&(S, a,t). Hence, U;a(s, a) can be computed by determining vertices of 1+ |S| polytopes
and their pairwise distances.

The notion of uncertainty emulates the role of functions 1/(1+#(s,a)) and 1/+/#(s, a)
in the setting of time-invariant MDPs, where #(s,a) denotes the number of times a pair
(s,a) has been visited until the current time. In the works of Kolter and Ng (2009) and
Strehl and Littman (2008), respectively, those functions—multiplied by a tuning parameter
B—are used to determine which transition probabilities P(s,a, -, *) are not yet known and
should be visited. The intuition behind these functions relies on the law of large num-
bers: as previously discussed, as #(s,a) — oo, the estimate #(s,a, s’)/#(s,a) converges
to P(s,a,s’,*) with probability 1, while both of the above functions converge to 0. Theo-
rem 10, proved in Appendix A, shows that U defined in (6) satisfies the same property, and
in particular relates U to the function 8/(1 + #(s, a)) used by Kolter and Ng (2009).

Theorem 10 Assume that ¢, = 0 for all t € Ng. Let T € N. Additionally, let o be the
agent’s path until time T, and let o be the actions that the agent takes until time T — 1.
Then, for allt <T,s€ S, anda € A,

7V1_1/|S|§Ut (sa)< \/E

1+ #(s,a) ~ 14 #(s,a)’

where #(s,a) denotes the number of times that (s,a) has been visited until time T — 1.

Remark 11 From the proof of Theorem 4, it also directly follows that Ugja(s,a) — 0 as
#(s,a) — oo for the case of transition probabilities that are known to be ETI. Namely,
the proof of Theorem J shows that, as #(s,a) — oo and thus T — oo, the set of possible
values of PT(S, a,s',*%;>n) obtained from (4) at time T is contained in an interval around
P(s,a,s,*>n) with length converging to 0. Hence, both terms in (6) converge to 0. Nat-
urally, the theoretical bounds would be harder to obtain than in Theorem 10 because of the
initial steps where the transition probabilities are time-varying.

We now proceed to the final step of developing an optimal learning and control policy
for an agent in a TVMDP: using the uncertainties of state-action pairs to determine which
action to perform.

5. Control Policy Design

In designing the optimal control policy, we follow the “exploration and exploitation” frame-
work used by previous work (Kolter and Ng, 2009; Brafman and Tennenholtz, 2002; Ornik
et al., 2018; Strehl and Littman, 2008). In other words, instead of always pursuing actions
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estimated to be the most useful to satisfying its control objectives (“exploitation”), the
agent may take into account the value of a particular action to the learning process, with
the goal of minimizing the error in the estimated transition probabilities (“exploration”),
hence again helping to achieve the control objectives. We begin by considering an optimal
exploration strategy, and then continue to mixing exploration and exploitation.

5.1 Optimal Learning Policy

We begin by considering solely the learning objective. We interpret the agent’s goal as
minimization of the total uncertainty U(t) = >_ ,) Ut .(s,a) about the environment, where
o and « are the sequences of agent’s states and actions, respectively, until the beginning
of time step ¢. That is, we wish to determine a policy m to minimize ), U(¢). Such a sum
may be finite, discounted-infinite, or, alternatively, we may only be interested in retaining
U(t) to be as low as possible as t — oc.

Analogously to the requirement that arises when attempting to construct an optimal
policy in an unknown time-invariant MDP, determining an optimal policy in a TVMDP
requires knowledge of the time-varying evolution of U. This evolution depends on the
transition probabilities in the underlying TVMDP, which we do not know a priori and are
changing over time.

Faced with the lack of knowledge about the future uncertainties, we propose the fol-
lowing time-varying policy. At time T, given a CCMLE of current and future transition
probabilities, construct a time-invariant policy

Pi(s) = argminE | > Uy (T +1)| , (7)
t>0

where Uy, denotes the uncertainty if the agent follows a time-invariant policy ¢ starting
at s, and the expectation is taken with the assumption that the current CCMLE of P is
correct. Then, define 77 = ¥%.(s7).

Naturally, there are no guarantees that the proposed policy 7, consisting of 7p’s gen-
erated at each step, will indeed minimize the total uncertainty about the system. Policy
7w represents a heuristic attempt to always follow whichever action seems to be optimal
at reducing the future uncertainty. We note that at every time T it depends on the cur-
rent CCMLE of transition probabilities, including probabilities P(-,-,-,T + t) for ¢t > 0.
As discussed before, such a CCMLE may not be unique. We also note that we are being
non-committal about the horizon length (or possible discounts) for the sum in (7). Its
choice depends on the horizon of our learning objective; we reserve further discussion for
the subsequent section.

5.2 Optimal Control Policy

We now amend the above discussion about optimal active learning by considering an agent
that desires to maximize the collected state-action-based rewards. This framework is the
setting of Brafman and Tennenholtz (2002), Kearns and Singh (2002), and Kolter and Ng
(2009), which deal with the combined exploration and exploitation objectives—learning
to improve the accuracy of the estimated transition probabilities (and thus lead to better
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planning in the future) and attempting to collect rewards using the current estimates—by
adding a learning bonus to the agent’s collected reward. In other words, instead of using
the policy

W;ﬂ = argmaXE Z R(ST+t, 7TT+t) y
i t>0

the agent uses the policy

77} = argmaX]E Z R(5T+t7 7TT+t) + f(ST+ta T4t T+ t) )
4 >0

where f(t) relates to the “amount of information” that the agent will collect by visiting
(s¢, ) at time t. As mentioned, Kolter and Ng (2009) define f(s,a,t) = 8/(#(s,a) + 1),
where #(s, a) denotes the number of times (s, a) has been visited before time t. The results
of Kolter and Ng (2009) show that, for time-invariant MDPs, such a bonus will, with high
probability, lead to eventual learning of an almost-optimal policy in the Bayesian sense, as
defined by Kolter and Ng (2009). Our framework does not allow for such a result, as there
is a constant need for learning due to the change in transition probabilities. Nonetheless,
we adapt the approach of Brafman and Tennenholtz (2002), Kearns and Singh (2002), and
Kolter and Ng (2009) and define an optimal control policy to be a policy

T = argmax E Z R(s744, mr44) + BUT (874, T141) | (8)
& t>0

where 8 > 0 and U; denotes the uncertainty of the agent about the estimates of current
transition probabilities associated with the particular state-action pair, given the agent’s
motion and actions until time t. As shown in Theorem 10, in the case of time-invariant
MDPs, the bonus defined in (8) is indeed similar to the form of the bonus of Kolter and
Ng (2009). We again note that the expectation in (8) is computed using the CCMLE at
time T'. Thus, as in the previous section, the agent needs to recompute and reapply the
proposed policy during the system run in order to make use of its learning.

Naturally, policy proposed in (8) depends on the length of the horizon that is considered;
Kolter and Ng (2009) provide a theoretical discussion of an optimal horizon length for
the policy used in that work. As computing predictions of the future uncertainties is
computationally difficult, solving (8) comes with a heavy computational burden for long
horizons. Predictions of future uncertainties also become increasingly unreliable with the
horizon length, so E[Uy(s¢, )] may not be meaningful for large ¢. For this reason, in the
work of Section 6 we concentrate on computing policy (8) with (i) horizon 1 or (ii) 8 = 0,
the latter of which does not promote active learning, but nonetheless enables the agent to
improve its estimates of transition probabilities by observing new transitions.

6. Simulations

In this section, we illustrate the proposed CCMLE method on several numerical examples.
The first example is within the classical gridworld-based patrolling (or pickup-delivery) do-
main (Santana et al., 2004; Chen et al., 2012; Toro Icarte et al., 2018), where probabilities of
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Section | Change in transition | Task Bound Method
probabilities correctness
1 6.1.1 Constant, then Learning | Correct CCMLE
time-invariant
[ 6.1.1 Constant, then Learning | Incorrect CCMLE
time-invariant
[ 6.1.1 Extreme change in one | Learning | Incorrect CCMLE

time step, then
time-invariant

6.1.2 Constant, then Planning | Correct CCMLE, no active
time-invariant learning in planning
[ 6.2.1 Periodic Learning | Correct CCMLE
1 6.2.1 Periodic Learning | Correct Forgetful CCMLE
[ 6.2.2 Periodic Planning | Correct CCMLE, no active
learning in planning
[ 6.2.2 Periodic Planning | Correct CCMLE
+ active learning
6.3 Periodic Planning | Correct, Forgetful CCMLE
but loose + active learning
| 6.4 Random Learning | Correct CCMLE
| 6.4 Random Learning | Incorrect CCMLE

Table 1: Overview of numerical examples of Section 6.

the agent moving in a particular direction when using a given action change over time. The
second example is that of a two-state MDP with periodically changing transition probabil-
ities. In addition to learning transition probabilities, we consider a reward maximization
objective. The third example is a multi-armed bandit problem, where the rewards on the
arms periodically vary over time. Finally, the fourth example considers a wind flow estima-
tion scenario, and illustrates the use of CCMLE when the environment changes in a partly
random fashion, and bound ¢ is poorly chosen. Table 1 lists all the performed experiments.

6.1 Patrol with ETI Dynamics

The scenario we are simulating is as follows: an agent is moving on an n X n grid, starting in
one of the grid corners. A 5 x 5 illustration is shown in Figure 1. At every time step, if the
agent is at a non-edge tile in the grid, it is known that it will move north, east, south, west,
or stay in place. Upon hitting a grid edge (“wall”), the agent is known to automatically
“bounce back”, i.e., move to the nearest non-edge tile in the subsequent step.

The agent can use one of 5 actions at every point in time: A = {1,2,3,4,5}. To reduce
the computational complexity of the calculations and fit in line with previous work on
planning for similar tasks (Toro Icarte et al., 2018), the transition probabilities at every
non-edge tile in the grid are known to the agent to be the same; however, the probabilities
themselves are not known to the agent. At the beginning of the system run, if the agent
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Figure 1: An illustration of the grid world in the simulated scenario. The walls are denoted
in gray. The possible motions of an agent during one time step are denoted in
red; the agent can also remain in place. If the agent’s action results in the agent
moving into a wall, the agent automatically returns to its last non-wall position
in the subsequent time step (denoted in black).

is at a non-edge tile, action 1 results in the agent moving north, 2 in moving east, 3 in
moving south, 4 in moving west, and 5 in remaining in place. However, during the system
run, actions 1 and 3 are slowly switching their outcomes, and so are actions 2 and 4. More
precisely, at time ¢, action 1 (2, 3, 4, respectively) will result in the agent moving north
(east, south, west, respectively) with probability 1 — ¢/100 for ¢ < 100 and 0 for ¢ > 100
and in the agent moving south (west, north, east, respectively) with probability ¢/100 for
t <100 and 1 for ¢ > 100.

We consider two settings: in the first one, the agent solely seeks to learn the transition
probabilities, while in the second one, it seeks to satisfy a patrolling objective.

6.1.1 LEARNING

In this task, the agent’s sole goal is to learn the transition probabilities. Its control action
is always the action that has been least used so far in the system run. In this example,
we compare two basic ways of agent’s learning: (i) by performing classical estimation—
assuming that the transition probabilities are time-invariant, counting outcomes, and di-
viding by the number of times that an action was taken—and (ii) by using the knowledge
that the change in transition probabilities between consecutive time steps is no larger than
0.01 and obtaining the CCMLE. While method (i), also used by Ortner et al. (2020),
will lead the agent to converge to the correct transition probabilities (as they are time-
invariant after ¢ = 100), such convergence is only asymptotic. On the other hand, the
CCMLE method in (ii) takes into account the possible change in transition probabilities,
and implicitly quickly rejects those samples that were collected much earlier during the
system run. The average error o |P(s,a,s',t — 1) — P(s,a,s',t — 1)|/(|S|?|4]) in es-
timated transition probabilities at time ¢ is given in Figure 2(a), and the maximal error
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Figure 2: (a) Average error in the transition probability estimates. (b) Maximal error in the
transition probabilities estimates. (c¢) Average error in the transition probability
estimates, in the scenario where the rate of change is twice higher than expected.
(d) Average error in the transition probability estimates, in the scenario with a
single-step immediate switch in transition probabilities.

max, 4 o |P(s,a,8',t — 1) — P(s,a,s',t — 1)| is given in Figure 2(b). We note that all the
results in this section correspond to the 5 x 5 grid. However, since the probabilities of
moving in a particular direction in the grid do not depend on the state, the results for grids
of all sizes are qualitatively the same.

The CCMLE method produces significantly better results than classical estimation.
Near the start of the system run, the importance of changes over time is small, and the two
methods perform similarly. As the transition probabilities continue changing, classical esti-
mation is unable to adapt, and the error in the estimated transition probabilities continues
growing. While the CCMLE method is also unable to provide entirely correct estimates,
its estimates are on average better than the classical one, and, at around ¢ = 90, i.e., even
before the transition probabilities stop changing, both the average and the maximal errors
begin to quickly decrease. While Theorem 5 only guarantees that the CCMLE method will
produce correct estimates of transition probabilities at time ¢ = 200, this result already
occurs around ¢ = 120, i.e., only 20 time steps after the transition probabilities cease chang-
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ing. On the other hand, classical estimation continues having a comparatively large (albeit
diminishing) average and maximal error.

To display the power of CCMLE, we end the task by considering a scenario not covered
by the theoretical work of previous sections: the transition probabilities changing more
rapidly than the bound &;. In particular, we retain the above scenario, and the agent
still counts on the transition probabilities changing by no more than 0.01 between two
consecutive steps. However, the transition probabilities proceed to change more quickly.
In the first case, the probabilities shift by 0.02 instead of 0.01, thus completing the shift
by time ¢ = 50. In the second case the transition probabilities shift by 1 in a single step:
instead of shifting in slow increments as before, the switch in outcomes between actions 1
and 3, as well as actions 2 and 4, happens instantaneously at time ¢t = 20. Figures 2(c) and
Figure 2(d) illustrate the average error in the estimated transition probabilities at time ¢ for
these two cases, respectively, again comparing classical estimation unconscious of possible
changes in transition probabilities and the CCMLE. In both cases the CCMLE outperforms
the classical estimation. In particular, in the latter, more extreme scenario, the CCMLE
method obtains an entirely correct model around 40 time steps after the sudden change.
The estimated transition probabilities remain correct at all times afterwards. On the other
hand, while classical estimation converges towards the correct transition probabilities, it
does so slowly. For instance, 50 time steps after the switch, the error is still greater than
the error of the CCMLE at 25 time steps after the switch, and the error of the classical
estimation never reaches 0. Table 2 compares the mean errors over time of the CCMLE
with those of classical estimates.

6.1.2 PLANNING

In this task, the agent seeks to satisfy the following control objective: reach the eastern wall
of the grid, then reach the southern wall, then the western wall, then the northern wall, in
this order, and repeat the process indefinitely. Such an objective is a patrolling task in the
sense of Toro Icarte et al. (2018), and is a version of the pickup-delivery objective as defined
by Chen et al. (2012), where there are multiple pickup and delivery points. We consider the
setting of experiments (a) and (b) described in Figure 2, i.e., transition probabilities slowly
changing over 100 time steps, with e = 1/100.

Mean error
Experiment | CCMLE | Classical estimation
(a) 0.03 0.11
(b) 0.18 0.41
(c) 0.06 0.12
(d) 0.1 0.16

Table 2: Mean errors for experiments described in Figure 2. The mean error in (d) only
considers time steps from ¢t = 21 to t = 70, as there are no errors before the change
at t = 20.
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Figure 3: Satisfaction of control objectives. The red curve and blue curve indicate, respec-
tively, the number of times the agent reached a correct wall until time ¢ when using
the plan that assumes time-invariant transition probabilities and when using the
CCMLE-based plan conscious of changes in dynamics.

If we encode the described control objective into a reward function, the rewards that
the agent obtains are time-varying, i.e., depend on the agent’s previous path. While such
a framework technically differs from the setting of the previous sections, the agent is still
able to compute the optimal policy (8) at every time, given the rewards at that time, and
then recompute it once the rewards change. In our framework, the agent uses the policy
(8) with 8 = 0—thus, without any conscious exploration effort—and with a horizon long
enough to ensure that it has the incentive to visit the desired wall as soon as possible.
Figure 3 illustrates how often the agent is able to reach its objective wall. The two methods
enjoy a comparable success rate at the beginning. However, the agent that learned using
the CCMLE is able to adapt to the changes in transition probabilities much more quickly
than the agent that uses a classical estimation method. By time ¢ = 200, the agent using
CCMLE visits 38 walls, while the agent that uses classical estimation visits 18 walls.

While the above simulation, along with other simulations in this section, does not present
the effect of different initial states on the CCMLE and subsequent learning and control
policies, we remark that such an effect is not difficult to deduce—at least on an informal
level—given the time-varying nature of dynamics. Namely, for a state space where an
agent may not visit a particular state-action pair for a substantial number of steps (“sparse
state space”), the estimate of probabilities at states that have not been recently visited will
necessarily be incorrect using any estimation method, as the dynamics will have changed
since the last visit. Indeed, the proof of Theorem 7 indicates that the CCMLE method has
no knowledge about the transition probabilities P;(s,a,-) of a state-action pair (s,a) after
the last time ¢ it has been visited, and can equally choose any probabilities consistent with
its bounds on the rate of change of probabilities and its estimate of P;(s,a,-). Thus, for a
“sparse state space”, the agents with different initial states are more likely to have—at least

19



ORNIK AND TOPCU

1+sin(t/100)
2

1—sin(¢/100) e‘e 1—sin(/100)
2 2

1-+sin(t/100)
2

Figure 4: The scenario of periodically changing transition probabilities. The time-varying
transition probabilities, a priori unknown to the agent, are indicated next to the
arrows indicating transitions.

at the beginning of their run—uvisited different parts of the state space, and thus will have
meaningful estimates of transition probabilities only at different parts of the state space.
Their control policies may thus substantially differ. On the other hand, for a “dense state
space” where an agent frequently visits each state-action pair regardless of its starting state,
the estimates will be similar for all initial states. Two agents situated at the same state
at the same time will thus possibly take the same action, even if their initial states were
different. Following this discussion, we omit in-depth discussions of different initial states
from the remainder of the section.

6.2 Periodically Changing Transition Probabilities

The scenario we simulate in this section is that of a 2-state TVMDP illustrated in Figure 4.
As in Section 6.1, we first consider solely estimation, i.e., learning, and then joint learning
and planning. Since the TVMDP given in Figure 4 only contains a single action, for the
discussion of planning we will append an additional action.

6.2.1 LEARNING

As in the previous section, we compare classical estimates, produced by assuming that the
transition probabilities are time-invariant, to the CCMLE. In particular, we assume that it
is a priori known that the transition probabilities change by no more than

1 1 .1
£—2<1—cosloo+sm100>. 9)

However, the agent does not know the exact change in the transition probabilities, nor is it
aware that the transition probabilities are periodic.

Figure 5(a) shows the estimate of the probability of a switch: a transition that moves
the agent from s' to s? or vice versa. Classical estimation that assumes time-invariant
transition probabilities obviously produces estimates that converge towards the mean of
the time-varying transition probability. Thus, the obtained estimates are increasingly less
accurate as time progresses. On the other hand, the CCMLE tracks the true transition
probability with remarkable accuracy.
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Figure 5: (a) Estimates of the transition probability which results in a switch. (b) Estimates
of the transition probability which results in a switch, with forgetful estimation.
The black curves indicate the true probability.

As mentioned in Section 3, classical learning can be heuristically made aware of the
changes in the transition probabilities by using a sliding window, i.e., counting only the
samples obtained within finitely many previous steps. On the other hand, making the
CCMLE method—which is already explicitly aware of the bound on the changes of transition
probabilities—forgetful can be useful to reduce the complexity of the relevant optimization
problems. The results of Section 3 indicate that 1/ may be an appropriate amount of
memory. Figure 5(b) gives the comparison between the two forgetful learning methods. The
classical estimation method, now made forgetful, identifies the transition probabilities with
a delay—by the time it collects enough samples about a particular transition probability,
the probability has changed. On the other hand, introduction of forgetfulness into the
CCMLE does not result in a significant impact on its quality; in fact, as shown in Table 3,
it results in a slight reduction of its error.

The CCMLE, with or without forgetfulness, still outperforms the classical estimation,
even when the classical method is improved by introducing forgetfulness. Table 3 compares
the mean errors over time of the CCMLE, forgetful CCMLE, classical, and forgetful classical
estimates.

6.2.2 PLANNING

In order to discuss the optimal control policy, we now slightly modify the working TVMDP,
as shown in Figure 6. Our new setting introduces a single deterministic action (black)
available at state s2. We define the reward for such an action by R(s?,black) = 3. State
st admits two available actions: action blue is deterministic and we define R(s',blue) = 1,

CCMLE | Forgetful CCMLE | Classical | Forgetful classical
0.06 0.05 0.28 0.14

Table 3: Mean errors for experiments described in Figure 5.
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Figure 6: The scenario of periodically changing transition probabilities, with control ac-
tions. The transition probabilities when using the black and blue actions are 1;
those actions are deterministic. The transition probabilities when using the red
action are as indicated.

while action red may end up in two outcomes, as shown in Figure 6, and its reward is given
by R(s',red) = 0. The agent’s starting state is s'.

We note that the described setting corresponds to the two-armed semi-Markov bandit
problem in the sense of Tsitsiklis (1994) and Duff and Barto (1997); we omit a more
detailed description of the bandit, but consider a related multi-armed bandit problem in
the subsequent example.

Throughout this example, for simplicity we assume that the agent is a priori aware that
the actions blue and black are deterministic. Hence, its uncertainty is only about action red;
again, the agent knows that the rate of change does not exceed ¢ given in (9). The problem
of computing the agent’s uncertainty, as given in Definition 8, can be made computationally
more simple owing to the fact that action red only has two possible outcomes: agent’s total
uncertainty and the uncertainty in the estimated probability of a switch are scalar multiples,
the former being larger by a factor of v/2.

In order to maximize its average collected reward, the agent applies the optimal policy
given in (8), with the horizon length equal to 1, and recomputes and reapplies it at every
time step. In other words, at every time the agent cares only about the results of its current
and next step. We compare the agent’s average reward between three cases: (a) when the
agent bases its decision on the estimates obtained by classical estimation, (b) when the
agent uses CCMLE, but does not use active learning, and (c) when the agent uses CCMLE
with active learning, i.e., 8 > 0.

An agent that uses learning based on classical estimation, with or without a learning
bonus as used by Kolter and Ng (2009) and Strehl and Littman (2008), would choose
action red when its estimate of transitioning to state s* with the red action is greater than
2/3, or it receives a sufficient bonus, and choose action blue otherwise. Such an agent
will always eventually choose action blue: learning bonuses will eventually converge to 0,
and the estimate of the probability of a switch for an agent that uses classical learning
eventually converges to 1/2 < 2/3. Thus, the average reward of an agent that assumes that
probabilities are not changing will converge to 1 = R(s', blue).
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Figure 7: Rewards obtained by an agent in a two-state MDP. The blue line indicates the
average reward obtained by an agent who uses the CCMLE with an uncertainty-
based learning bonus. The red line indicates both the asymptotic average reward
obtained by using classical estimation unconscious of the change in the transition
probabilities and that of the CCMLE without active learning. The dotted black
line indicates the asymptotic average reward obtained by an agent who has perfect
knowledge of the transition probabilities.

An agent that uses the CCMLE without active learning, i.e., applies (8) with 8 = 0,
would essentially fall into the same trap. Once its estimate of the probability of a switch falls
under 2/3 once—which is likely to happen, due to the oscillating nature of the transition
probabilities and the good quality of estimation exhibited by a CCMLE-based learner in
previous examples—the agent will again cease to vary its actions, and will use solely action
blue. Thus, its average reward will converge to 1.

If B > 0, the agent may choose action red in order to reduce its uncertainty. Thus, even
after its estimate of the probability of a switch falls under 2/3, it may still occasionally
perform action red, thus allowing itself to observe the changed transition probabilities and
restart collecting higher rewards in the periods when the transition probability is higher
than 2/3. An example of such behavior is exhibited in Figure 7, for § = 3/v/2.

As Figure 7 shows, the average reward obtained by an agent who uses policy (8) con-
verges to around 1.15. This is a significant improvement over the average reward of 1: an
agent with perfect knowledge who chooses to use action red whenever the transition prob-
ability of a switch is greater than 2/3 and action blue otherwise will obtain an asymptotic
average reward of around 1.2. Even so, slightly higher gains may be obtained by a different
choice of 5. We note, however, that increasing 5 does not simply result in a higher reward.
For high enough § the agent will always choose action red in order to reduce uncertainty.
Numerical results show that such an agent will obtain an asymptotic average reward of 0.88;
worse than rewards obtained for both = 0 and 8 = 3/v/2.
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6.3 Multi-Armed Bandit

Motivated by the two-armed bandit of the previous section, in this example, we consider
a standard n-armed bandit setting (Tsitsiklis, 1994). At each time step, the agent pulls
one arm of a bandit. Each arm pull lasts a single time step, and produces a different
reward depending on the arm. Arm 1 always produces a reward of 1. For each i, i €
{2,...,n}, arm ¢ produces one of the two rewards at time t: a reward of i with probability
0.95(sin(v;t + 0;) + 1)/i, and a reward of 0 with probability 1 — 0.95(sin(v;t + ;) + 1)/i.
While the possible rewards are known to the agent, their probabilities are not.

The considered setting does not immediately follow the framework of the remainder
of this paper; namely, there are no transitions between states, and the agent’s collected
reward is unknown in advance. Nonetheless, we are able to convert such a framework into
a TVMDP by introducing states sg,...,sp+1. The actions available at state sy are the
bandit arms. Pulling arm 1 results in the agent moving to state s;. Pulling arm i > 2
results in the agent moving to either the state s; or s,41, the former with probability
0.95(sin(y;t + ;) + 1)/i and latter with probability 1 — 0.95(sin(y;t + ;) + 1)/i. States
S1,--.,Snp+1 admit only one action, which moves the agent immediately back to sg. The
rewards at states s;, i € {1,...,n}, equal i, while the rewards at states sg, regardless of
the action, and state s,11 equal 0. For simplicity of the narrative, we assume that both
transitions from sy to some s; and from s; to sg occur together in one time step instead of
two.

It is clear that, as t — oo, the average reward produced by each arm i, ¢ € {2,...,n},
converges to 0.95. Thus, an agent that uses classical estimation for learning and planning
and pulls the arm that is estimated to bring the highest reward will always eventually begin
solely using arm 1. The average collected reward will thus converge to 1.

On the other hand, if sets {v; | i« > 2} or {d; | ¢ > 2} are “sufficiently different”, at
every time there will exist an arm producing a reward greater than 1. Thus, by choos-
ing the bandit arms wisely, an agent may collect an average reward greater than 1: the
primary challenge is in deciding when to choose which arm to pull. In combination with
the CCMLE, the notion of uncertainty introduced in Section 4 and the subsequent control
policy introduced in Section 5.2 provide a possible solution. By performing exploratory
pulls when the uncertainty of probabilities in a particular arm becomes high, the agent is
able to detect when an arm yields a high probability of rewards.

We simulated a 5-arm bandit during 10000 time steps, with all v; chosen uniformly at
random in [0,1/5] and §; chosen uniformly at random in [0,27). We use the same horizon
length as in Section 6.2. Bound ¢ is 0.25. To illustrate the power of CCMLE, such a bound
is extremely loose—namely, it can be analytically shown that it will be at least 2.5 times
larger than the amount of maximal change on any arm, and at least 6.5 times larger than
the amount of maximal change on the fifth arm. Uncertainty weight 3 is set to 3/(2v/2)—a
number chosen almost accidentally from previous versions of this experiment, thus without
any particular tuning to this scenario. We remark that the computational complexity of
the CCMLE method and subsequent planning depends only linearly on the number of
bandits, as the optimization problems for computation of a CCMLE and uncertainties are
performed separately on each bandit. While the number of variables in the optimization
problems grows linearly with elapsed time, this dependence can be removed by adopting a
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Figure 8: Rewards obtained by an agent in a multi-armed bandit scenario. The blue line
indicates the average reward obtained by an agent who uses the forgetful CCMLE
with an uncertainty-based learning bonus to choose the best among the 5 bandit
arms. The dotted red line indicates the asymptotic average reward obtained by
an agent that uses classical estimation unconscious of the change in the transition
probabilities. The black line indicates the average reward obtained by an agent
who has perfect knowledge of the transition probabilities.

notion of forgetfulness explored in Section 6.2. We adopt such a notion in the simulation,
and limit the memorized history of outcomes for each bandit to 1 + 1/e, in line with the
discussion at the end of Section 3.

Figure 8 shows the average collected reward attained by an agent that follows the
CCMLE method of estimation and decides which arms to pull based on the sum of ex-
pected reward and uncertainty bonus. The planner achieves a reward that is 25% higher
than the average reward of an agent that does not use CCMLE or an uncertainty bonus.
We emphasize that these results were obtained without any tuning of the weight g or bound
g, the latter of which was intentionally poorly chosen.

6.4 Wind Flow Estimation

Further building up the complexity of our simulated scenarios, we now provide a more
realistic estimation example, simultaneously featuring (i) changes of multiple transition
probabilities by different amounts, (ii) complex, time-varying, and partly random rates
of change, and (iii) a poorly chosen a priori bound € on the rate of change of transition
probabilities, i.e., a bound that is sometimes overly conservative—allowing for changes
larger than actual ones—and sometimes incorrect, expecting only changes smaller than the
actual ones.

The setting of this simulation is that of an unpowered aerial vehicle without extensive
instrumentation, i.e., a pilot balloon. The movement of such a vehicle—tracked from the
ground or using a GPS receiver as its sole instrument—is commonly used to estimate the
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dynamics in the balloon’s area of operation (Hickman, 2015). As the balloon is not equipped
with any instruments apart from possibly a GPS receiver, the estimation is based solely
on the observed trajectory. In this section, we will develop a CCMLE-based method for
estimating the balloon’s dynamics in changing wind flow.

We develop our model of the system dynamics based on the work of Al-Sabban et al.
(2013), which devises and discusses a scheme to convert wind direction into transition
probabilities on an MDP. Given that the balloon is unpowered, an MDP reduces to a
Markov chain, i.e., to an MDP with a single action. Additionally, as the balloon cannot
intentionally keep revisiting the same state, in order to enable meaningful estimation, we
make the assumption that the dynamics in the area of operation are uniform, i.e., do not
vary across the state space. While never entirely correct, such an assumption is generally
reasonable in the absence of turbulent phenomena (Liu et al., 2012). We allow for the wind
flow and the subsequent dynamics to be time-varying.

We discretize the state space as a grid similar to the one used in Section 6.1, although
we allow such a grid to be infinite or arbitrarily large. At every time step, the balloon
moves by one tile in one of four possible directions, denoted by their angle with the positive
ray of the z-axis: north (7/2), east (0), south (37/2), or west (7). Combined with the
assumptions of uniformity and time-varying nature of the wind flow, the presented setting
yields a probability transition function P : {0,7/2,7,37/2} x Ny — [0,1], where P(o,t)
signifies the probability at time ¢ that the balloon will move in the direction denoted by o.

For simplicity, we consider wind speed to be constant, and only consider changes in
its direction d(t) € [0,27). Adapting the work of Al-Sabban et al. (2013), we develop
the following model for transition probabilities. Given the wind direction d, the balloon
movement o € {0,7/2,7,37/2} is a discrete random variable obtained by rounding O to
the nearest 7/2 (modulo 27), where O is a normal random variable with mean E[O] = d
and variance 02 = 1/2. In other words,

2nm+o+n/4—d 2

P(o|d) = Z / —e_w dw.
ne—oo VY 2nm+o—m/4—d 7T
The transition probability P(o,t) is then naturally given by P(o,t) = P(o|d(t)). We em-
phasize that the estimator is neither aware of the wind direction at any time, not aware of
the relationship between d and o. The estimator is not attempting to establish the wind
direction d(t), but solely estimate the transition probabilities P(-,t).
We simulate the wind flow given by

d(t+1) = d(t) — 37/180 + X (1),
d(0) = Dy,

where X () is a random variable whose value is drawn from a uniform distribution on
[—7/180,7/180], and Dy is a random variable whose value is drawn from a uniform distri-
bution on [0, 27]. In other words, the wind changes direction by 2 to 4 degrees at every
time step, resulting in continually changing transition probabilities.

To demonstrate the robustness of the CCMLE approach, we chose € = 0.03 as the bound
on rate of change in P. Such a bound is intentionally incorrect; the actual change in P can
be computed from the equations above to be between 0.01 and 0.04. Figure 9 compares the
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Figure 9: Maximal error in the transition probability estimates for the wind flow estimation
problem. The red curve indicates the error with classical estimation that assumes
time-invariant wind flow. The blue curve indicates the error with the CCMLE
method with ¢ = 0.03. The green dotted curve indicates the error with the
CCMLE method with € = 0.05.

maximal error in the transition probabilities of a CCMLE approach with ¢ = 0.03 and a
classical approach. It also provides the error in transition probabilities for the CCMLE with
a correct bound of € = 0.05, which produces similar results to that of ¢ = 0.03. The figure
illustrates the estimation errors for 240 time steps, allowing the wind direction vectors to
make around two full circles.

The simulated setting with € = 0.03 is not covered by the developed theory of CCMLE.
Nonetheless, the CCMLE approach results in significantly better estimation than the classi-
cal estimation method. While “spikes” in errors are provably unavoidable—when the tran-
sitions are non-deterministic, any arbitrarily large sequence of low-probability outcomes
will eventually occur—the error from the CCMLE exceeds the error of classical estimation
only on a handful of occasions. The average of the maximal CCMLE error over time (both
with a slightly incorrect bound of € = 0.03 and a correct bound of € = 0.05) equals 0.21,
while the average of the maximal error in the classical estimation method is nearly double,
equaling 0.4.

7. Conclusions

The work in this paper concentrated on presenting an integrative method for estimation,
learning, and planning of an agent operating in an unknown TVMDP. The proposed method
is founded on introducing three notions:

e change-conscious mazimal likelihood estimation (CCMLE), which exploits the knowl-

edge on the maximal possible rate of change of transition probabilities to produce
time-varying estimates based on the observed outcomes of agent’s actions;
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o uncertainty of an estimate, which quantifies the lack of knowledge about transition
probabilities at a particular time during the system run; and

e optimal control policy with an uncertainty-based learning bonus, which aims to enable
the agent to actively learn about transition probabilities in order to increase its long-
term attained reward.

As shown in Proposition 3, when used in a time-invariant MDP, the CCMLE produces
the same estimates as the classical method based on the frequency of all previously ob-
served outcomes. On the other hand, as indicated by the theoretical results of Section 3
and validated on the numerical examples in Section 6, in a time-varying setting the CCMLE
produces significantly better estimates of transition probabilities than the method based on
the frequency of all previously observed outcomes, which implicitly assumes that the tran-
sition probabilities are time-invariant. Similarly, the notion of uncertainty introduced in
Section 4 reduces to previous methods for describing the lack of knowledge about transition
probabilities in time-invariant MDPs, while providing a novel measure of the lack of knowl-
edge about transition probabilities in the time-varying setting. As proposed in Section 5,
such a measure can then be used to design a learning bonus for a learning and control policy
of an agent operating in a TVMDP, once again generalizing the active learning and control
policies previously introduced for time-invariant MDPs. Numerical examples of Section 6
show that the proposed policies enable an agent to successfully learn the transition prob-
abilities and achieve its control objective, surpassing the outcomes of classical estimation
methods.

The work presented in this paper presents an initial discussion of optimal estimation
and learning methods for time-varying stochastic control processes. While theoretical results
and numerical examples encourage future exploration of the CCMLE and CCMLE-based
learning and planning, these results are by no means exhaustive. Namely, the behavior of
the CCMLE in the case of changing transition probabilities has been theoretically explored
only for transition probabilities which eventually equal 1. A natural next step is to obtain
theoretical bounds for estimation error and convergence to correct transition probabilities
in the case when all transition probabilities are in [0,1). On the side of active learning,
Theorem 10 relates the measure of uncertainty introduced in this paper to exploration
bonuses used in time-invariant MDPs. However, there are currently no formal guarantees—
parallel to the work that uses classical exploration bonuses—on the convergence to optimal
control policy when using an uncertainty-based learning bonus, either in a time-varying or
time-invariant setting. The role of bonus multiplier 5 remains to be discussed—while for
B = 0 the agent does not actively learn, and for 8 — oo the agent solely learns and does not
have any incentive to maximize its collective reward, it is currently unknown how g should
be chosen to obtain an optimal policy. Additionally, while the example of Section 6.3 shows
that one could extend the presented theory of CCMLE to tackle learning and planning with
time-varying unknown rewards, we leave the issue of general unknown rewards for future
work. Along the same line of thinking, it would be fascinating to combine the recent work of
Ortner et al. (2020) with the one proposed in this paper: the planning policy for TVMDPs
used by Ortner et al. (2020) results in strong theoretical guarantees on collected rewards,
even if the rewards are a priori unknown. However, the estimation method of Ortner et al.
(2020) is simple and based on classical estimation. Replacing it with the CCMLE may lead
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to an increase in the overall collected rewards, possibly adapting the guarantees of Ortner
et al. (2020) to a new joint learning and planning method.

Finally, we note that the current paper presents the CCMLE solely in the framework
of TVMDPs. The same method, however, may be easily adapted to the framework of
general online learning and planning, where the problem is to estimate a time-varying
signal from a time series of observations, where the signal is known to change with a rate
no greater than some a priori known bound, and use the estimate to plan future actions. A
preliminary approach to learning in such a framework has been introduced by El-Kebir and
Ornik (2020), drawing from the current manuscript, but it largely focuses on an application
to hypersonic flight vehicles. A similar problem has also been considered by Yuan and
Lamperski (2020); however, instead of the CCMLE approach of attempting to find the most
likely time-varying parameter satisfying the constraint on the maximal rate of change, Yuan
and Lamperski (2020) attempt to find the time-varying signal that offers the least regret
against a comparison sequence that satisfies a similar constraint. The CCMLE problem
for general online learning and planning, with all the questions opened in this paper, thus
remains largely open.
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Appendix A. Proofs of Theoretical Results

Proof of Proposition 3 To simplify notation, assume that [A| =1, ie., A = {a}. As
alluded to in Section 3, discrete distributions P(s,a,-,t) for different s € S never appear
together in the constraints of (4). Hence, (4) can be separated into |S| problems

#(s,a)
min — log PT(s,a, sy, 41, Vi
P (o) Zz; g ( Viss+ 278)
s.t. ]E’T(s,a,s',t) >0 for all s’ € S,t < T, (10)
Z PT(s,a,s',t) =1, forall t < T,
s'eS

|]5(s,a,s’,t+ 1) — P(s,a,s’,t)] < e foralls € S,t<T,

where ;.5 denotes the time at which state s has been visited i-th time.
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When ¢, = 0, (10) devolves into

#(s,a)
_ min - Z log PT (s, a, Suietly *)
PT(s,a,,%)) i—0
s.t. PT(s,a,s',%) >0 for all s’ € S, (11)
PT(s,a,¢ %) =

Problem (10) is a standard maximum likelihood estimation problem for a multinomial dis-
tribution, and it can be easily shown (Zelterman, 2006) that the solution is achieved for

PT(s,a,8 %) =|{t € {0,...,T =1} | st = 85,5041 = 5} /#(s,0) = #(5,a,5)/#(s,a). N

Proof of Theorem 4 Since we only care about the case #(s,a) — 0o, we can assume
that T > N. We will also assume without loss of generality that N is the least integer
such that &, = 0 for all ¢ > N. As in the proof of Proposition 3, we assume that A = {a},
and will decouple the relevant optimization problem for different states s. To emphasize
that transition probabilities P(s,a, -,t) are known to be time-invariant for t > N, we denote
them, including the probability P(s,a,-, T —1), by P(s,a, -, *>n), and analogously for their
estimates.

Fork >1>0,let #F(s,a) = [{t € {I,...,k—1} | st = s}|, #F(s,a,8') = |{t € {l,... . k—
1} | s¢ = s, 5041 = 5}, and let vy be the i-th time at which s has been visited on or after
time step [. Using our previous notation, #(s,a) = #3 (s,a) and #(s,a, s') = #& (s, a, s').

The objective function in (10) equals

#é\’(s,a) #N(S a)
— Z log PT(s,a s Suisss0+15 Viss0) Z log PT (s, a, Svissin+1s ¥t>N)
=0 1=0
12
#3' (s,a) (12)
- Z log PT(S7a75Vi;s;o+1>Vi;S;0) - Z #n(s,a,5)log PT(s,a,5  #>n).
1=0 s'eS

From our derivation, if #%(s,a,s’) = 0, then we take #%:(s,a,5') log PT(s,a,s, *>N) =0
regardless of the finite or infinite value of log PT (s, a, s', %> ).

We note that #{(s,a) is independent of T. Hence, if #(s,a) — oo, then #%(s,a) =
#(s,a) — #év(s,a) — oo. If we divide the objective function (12) by #%(s,a), we will
obviously not change the solutions of the relevant optimization problem. The solutions of
(10) are thus the solutions of

#(])\T(S»a) HT
. IOgP (87 aasu'- .0+17V’i'50 #N S a 8 ~7 /
mp = min — e : 1 gP (s,a S *t>N)7
ML T A X A e

(13)
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with constraints

PT(s,a,5,t) >0 for all s’ € S,t < N,
PT(s,a,8, %>n) >0 for all ' € S,
ZPT(S,CL,SI,t)Zl, for all t < N,
s’E§ 14
Z PT(S’a7 Sla*tZN) = 17 ( )

s'eS
|P(s,a,s',t +1) — P(s,a,5,t)

| foralls € S, t< N —1,
|P(s,a,s, *>n) — P(s,a,s', N —1)|

<e
§ for all s € S.
Let, for each T'> N, PT(S, a,-,-) be any solution of (13).

Let us take any s’ € S. We first claim the following: unless P(s,a,s’,*>n) = 0, there
exists, with probability 1, a § > 0 and a large enough T’ such that P7(s,a, s *>N) > 0 for
all T > T'. Assume otherwise. Then J5T'(s a,s',x>n) — 0 for some sequence T; — +00.
However, as #N (s,a,s )/#N(s a) = P(s,a,s *t>N) # 0 by the law of large numbers, the
function value of PT: (s,a,-,-) in the objective function of (13) goes to +oo as T; — +oo.
On the other hand, the objective function value of P(s,a,-,-) converges to the finite number
— > ses P(s,a,8 ,x>n)1log P(s,a, s, +>n). Hence, for large enough T;, PTi(s,a,-,-) could
not be an optimal solution of (13). Having proved the claim, we observe that, since there
are only finitely many s’ € S, we can take 6 > 0 such that the above claim holds for all &’
with the same §.

Let us now compare (13) with

mo = HED— E P(S,CL, Sl)*tZN) logP(s,a, Sla*tZN)’ (15)
P
s'es

where P satisfies the constraints from (14). We assume the convention 0log0 = 0. By an
analogous discussion to that under (4), problem (15) admits a solution. Let P(s,a,-,-) be
a solution of (15).

We observe the following facts:

(i) Value of ms is less than or equal to the objective function value of P7 (s, a,-,-) in (15)
for all T', by definition of ma,

(ii) For every € > 0, there exists 7" such that for all 7" > T”, the objective function
value of PT/(S, a,-,-) in (15) is less than or equal to the objective function value of
PTI(S, a,-,-) in (13) plus ¢, i.e., of m; +¢e. The proof for this claim is as follows. The
difference between the value in (15) and in (13) equals

N ~
#p (s.a) log PT(S, a, Sw;s;0+1’ Vi;S;O)
T
2 #(s,0)
+ Z (#N o) — P(s,a, s',*tzN)) 10g15T(5,a, s', 1> N).

T
s'es # 8 a)

(16)
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The first sum is nonpositive. If P(s,a,s,%;>n) = 0, then #%(s,a,s') = 0 with
probability 1. Then, as discussed below (13), we take

#1(s,a,8")
#1(s,a
If P(s,a,s,%>n) # 0, we showed previously that there exists 6 > 0 such that

log PT(S, a,s',x>n) > logd for all large enough T'. Naturally, log I5T(5, a,s, x>n) <
0. Expression (16) thus cannot exceed

3 <#%(s,a, s')

s'es #%(87 a)

- P(Sv a, 8/7 *t>N)) lOg PT(Sa a, S/) *tzN) =0.

— P(s,a,s, *tZN>) ’ | log d].

By the law of large numbers, with probability 1 each of the summands above converge
to 0. Hence, for a large enough 7', the value of (16) will not exceed e.

(iii) The value of mq is less than or equal to the objective function value of P(s,a,-,-) in
(13) for all 7', by definition of m;.

(iv) For every e > 0, there exists T” such that for all T' > T”, the objective function value
of P(s,a,-,-) in (13) is less than or equal to the objective function value of P(s,a, -, ")
in (15) plus ¢, i.e., of ma + €. The proof for this claim is as follows. First, note that,
since probabilities at time steps prior to N do not come into the objective function
of (15), we can without loss of generality “overwrite” all the values of P(s,a,s’,t)
with P(s,a,s’,%;>n) and thus assume that either P(s,a,s',t) # 0 for all T < N or
P(s,a,s',%) =0.

We again subtract the objective function of (13) from (15) and obtain (16), just with
P instead of PT. Now, P(s,a,s’,*;>n) does not depend on T, so the second sum in
(16) this time trivially converges to 0 by the law of large numbers.

Since the values of P(s,a,s’,t) do not come into the objective function of (15) for
t < N, the following claim holds: for any solution P(s,a,-,-), the solution in which
we just set P(s,a,s',t) = P(s,a,s’,*<n) and take any values for those probabilities
will also be minimal, as long as they stay within the constraints. Since N is assumed
to be the least integer such that ¢, = 0 for all ¢ > 0, we can perturb each value of
P(s,a,s’,x>n) by some amount smaller than ey_; > 0 so that no value equals 0.
Thus, we can consider P such that P(s,a,s’,t) = P(s,a,s,%<n) # 0 for all s’ € S
and t < N.

Since we took that P(s,a, Suis0+1, Viss;0) does not equal 0, and it does not depend on
T, the first sum in (16) also converges to 0 by the law of large numbers.

By combining (i)-(iv), we now showed that for every € > 0, there exists 7" such that for
all T > T’, the objective function value of PT,(S, a,-,-) in (15) is between mg and mg + 2¢.
It can easily be shown that, if P(s,a,s’,*>n) = 0, P(s,a,s’,x>y) = 0 is optimal
for (15)—decreasing P(s,a,s’,*;>n) = 0 and increasing any other P(s,a,s”, *;>y) will
only decrease the function value. Hence, we know that the solution to (15) is given by
P(s,a,s,x>n) = 0 whenever P(s,a,s’,+>n) = 0. Values of P(s,a,-,t) for t < N can,
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as discussed, be anything that satisfies the problem constraints. Finally, we note that the
solution that maximizes > P(s,a, s, x>n)log P(s,a, s, %;>y) where all P(s,a, s, %;>n) >
0 is the same as the solution that maximizes [ P(s,a, s’,*tzN)P(Sva’sl’*tZN). By simple
KKT analysis, we obtain that the solution to this problem is unique and rather obvious:
P(s,a,8,*>n) = P(s,a,8,%>n). Because of the uniqueness of the solution, and given
that we know that the objective function value of PT/(s,a, -,+) in (15) converges to the
minimum, we obtain P (s, a, -, xi>N) — P(s,a,8, x>N). [ |

Proof of Theorem 5 Suppose first that (s,a) has not been visited before ¢ = N. Let
N < Ty <T) < ...denote the times at which (s, a) is been visited. After decoupling (4) into
|A||S| optimization problems by fixing s € S and a € A, the choice PTit1(s,a,s',-) = 1 and
PTitl(s a,s",-) =0 for all s” # &, for all i > 0, clearly minimizes the objective function

i
— Z log PTtY(s,a, s, T)
r=0

for all 4 > 0, while satisfying the constraints of (4).

We now consider the case when (s,a) has been visited before t = N. Let Ty be the last
time at which (s,a) is visited before t = N, and let Top < T1 < ... < Tj—1 < N+ 1/e <
T < Tky1 < ..., k> 1, denote all times at which (s, a) is visited starting at Tp. We claim
that

PTitl(s 4,5, T)) € {min (1,]3Ti—1+1(s, a,s',T_1) + (T; — Ti_1)5> ,1} (17)

for all 4 > 1. .
Assume that (17) does not hold. Since PTit1(s, a,s’,T;) < 1, we have

Pt (s,a,s', T;) < min (1, Pl (s a8 Tiy) + (T; — TH)e) : (18)

Now, define an alternative choice of transition probabilities as follows:

_— PTicit1(s a,s*,T) for all s* € S, T < T;_q,
B ot (S,G,S*,T) = . 5T 1 / . /
min (1,P 1t (s a, 8, Ti—1) + (T; — Ti_l)e) if s* =5 and T'=T;.
) (19)
Let db = Phitl(s a,8,T;) — PTi-1t1(s,a,s' T;_1) > 0. We define PTit1(s,a,s*,T;) for
s* # s' in the following way: if S = {s!,...,s"}, where s’ = s!, then recursively define
Plitl(s,a,s", T;) = max <0, Pli-itl(s a,s" T;_1) — d};_1> , (20)
d" = Pl (s, a,s", Ty1) — PT*(s,a,5",T)), (21)
n=dy = (22)

for r > 2. We also define d! = d};.
We will show that PTiT1(s,a, -, T;) > 0 as defined in (19)-(22) is a legitimate discrete
probability distribution:

1) By (19) and (20), PTit1(s,a,s",T;) > 0 for all 7.
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2) By (19) and (21),

n

ZETH&(S,G’ ST,TZ‘) — ipTFlJA(S,a,ST,'E‘_l) 4 dl — Zn:dT

r=1 r=1 r=2

n
:1+d1—2d’“:1+d§521.

r=2
We claim that dp = 0. If PTiitl(s a,s"  Tj_1) > d};l for any r > 2, then d, = 0
by (20). Subsequently d"t! = 0 by (20)-(21) and thus d?jl = 0 by (22). Con-
tinuing onwards, we get dp = d%ﬁl = .-+ =dp = 0. Thus, if dp > 0, then
PTFlH(s,a, s"Ti—q) < d;;l for all 7 > 2. Hence, by (20), PTitl(s,a,s",T;) = 0
for all » > 2. Then,

L+dp =Y Plitl(s,a,8",T;) = Pt (s 0,8, T}) < 1,
r=1
where the inequality holds by (19). Thus, d% < 0, contradicting the assumption
dp > 0.
Additionally, by combining (21) and (22), and using (20), d" > 0 and d" < d}}_l < dTP_2 <
-« < db < (T; — Ty—1)e for all r. Thus,

BTi+1(s7a7 ST’E) - PTi_l—i_l(SaaaST?T‘ifl) S (T:L - T‘ifl)c€
for all 7. Hence, for all s* € S, we define PTit1(s,a,s*,T) for T € {T;_1+1,...,T; —1} by

T —T T-T,_
i PTitl(s a, 8% Ty_y) + ———L pTitl(s q,s*,T}), (23)

PTitl(s a,s*,T) = ————
L ) T, =T 1 T, =T 1

thus ensuring that |[PTiT1(s, a,s*, T+ 1) — PTit1(s,a, s*, T)| < € remains satisfied for all 7.
It can also be easily verified that PTi+! (s,a,s*,T) > 0 for all s*, and that these values sum
up to 1.

We verified that P71 as defined in (19)—(23), satisfies all the constraints in (4). The

—t<T;+1’
value of the objective function for BtTZ%} 41 is strictly lower than for Pt:ZJTrilJrl: the values
for Bﬁ%ﬁl 41 have been chosen to be optimal, and the only other element present in the

objective function, PTi*1(s a, s, T;), satisfies P11 (s, a,s', T;) > PTitl(s,a,s',T;) by (18)
and (19). Thus, we reached a contradiction with PQJTF;H being a CCMLE.

Claim (17) is thus proved. Now, for each ¢ > 1 we either have pTH‘l(s,a, s\T;) >
PTitl(s a,8' Ti_1) + (T; — Ti_1)e or PTit1(s,a,s',T;) = 1. Assume PTitl(s,a,5,T;) < 1
for some i > k, i.e., for T; > N + 1/e. Then, PTi-1t(s,a,s, Tj_1) < 1 — (Tj — Tj_1)e.
Continuing onwards, we obtain that PTOH(S, a,s',To) < 1—(T;—Tp)e. Since T; — Ty > 1/¢,
we obtain PT0*1(s a,s', Ty) < 1, i.e., a contradiction. [ |

Proof of Lemma 6 After decoupling (4), the objective function for (s, a) equals

k

- Zlog PT(s,a,s7,41,T;).
=0
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Assume that there exist two solutions ]51T (s,a,sr,+1,T;) and ]52T (s,a,st+1,T;) yielding the
same minimal value of the objective function. Then, by a simple convexity argument (Beck,
2004), AP (s, a, 57,11, T;) + (1 = N P{(s,a, 5741, T;) all need to yield the same value, for
all A € [0, 1]. Thus,

k

_ Zlog (Apf(s,a, st.41,T3) 4+ (1 — NP (s,a, STZ.+1,E)) (24)
1=0

is a constant function of A € [0,1]. Taking the derivative of (24) with respect to A, we
obtain

k ~ ~
Z Pl(s,a,s7,41,T;) — Py (s,a,s7,41,T;)
AP,

~1T(87 a, 8T¢+17E) + (1 - )\)Pg(su a, 8T¢+17E)

for all A € (0,1). Taking the second derivative, we obtain

k: ~
Z Pl (s,a,51,41,T;) — P (s,a, 51,11, T;))* _ 0
= (APT(s,a,s7,41,T;) + (1 = N PL (s, a, 57,11, T;))2
In other words, ]51T(s, a,st41,1;) = ]-:’QT(s,a, st41, ;) for all 4. [ |

Proof of Theorem 10 Since &, = 0 for all ¢ € Ny, any CCMLE will be time-invariant.
Thus, U} ,(s,a) is the same for all ¢ < T. We denote the set of all CCMLEs P’ (s, a,-,*)

computed at time 7', with the agent’s previous path ¢ and actions «, by 7337 o8, a,%).

If #(s,a) = 0, the claim is obvious, as nga(s,a,*) is the entire probability sim-
plex, so U(;a(s,a) = /2. Assume now that #(s,a) > 1. By the proof of Proposition
3, P:;F,a(s,a,*) C RI®l contains a single element given by components PT(s,a,s', %) =
#(s,a,s")/#(s,a), where #(s,a,s’) denotes the number of times that transition (s,a,s’)
has occurred among the first T'— 1 transitions. Thus, the diameter of PT o(8,a,%) is 0.
pT+L

Ty a(svaa*) also con-

For each s” € S, again by the proof of Proposition 3, set
tains a single element given by PTH1(s,a,s",%) = (#(s,a,s") + 1)/(#(s,a) + 1) and
PTHl(s a,s' ) = #(s,a,5") /(#(s,a) + 1) for all 5" # 5",

Thus, the maximum distance between points in polytopes 77 o(8,a, %) and PUTJ;la(S a, )
equals

#(s,a,8")+1  #(s,a,5") 2 #(s,a,8")  #(s,a,5) 2 B
< #(s,a) +1 #(S,a) ) +5§;,, <#(57a) +1 #(S,CL) ) B (25)

1
Z # S, @, S (#(S?a) - #(S,CL, S//))Q‘
s, ) s =
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On one hand, by the power mean inequality (Bullen, 2003), the value of (25) is greater than
or equal to

2
| (Sopr #(s.0.9)
(5, 0) (#(s,0) + 1) S[—1
1 \/ (#(s, a) — (5,0, 5))2
(5, 0) (#(s,a) + 1) S[—1
(#(8, a) - #(Sv a, 3//)) \/E )
#(s,0)(#(s,0) + D/ 1

We are interested in determining the maximal value of (25) over different s” € S. There
exists s” such that #(s,a,s”) < #(s,a)/|S|. By plugging in this s” into (26), we obtain
that the value of (25) is greater than or equal to /1 — 1/|S|/(1 + #(s,a)).

On the other hand, the value of (25) is trivially less than or equal to

+ (#(37 a) - #(57a7 3”))2

(26)

+ (#(37 a’) - #(37 a, SH))2

2
: (Z #(s,a, 5’)) + #(s,a)? = V2

FeafEa D\ |\ .0 +1
for any s”. By (6), we obtain the desired claim. [ |
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