
Journal of Machine Learning Research 22 (2021) 1-46 Submitted 1/20; Published 4/21

On the Riemannian Search for Eigenvector Computation

Zhiqiang Xu xuzhiqiang04@baidu.com

Ping Li liping11@baidu.com

Cognitive Computing Lab

Baidu Research

10900 NE 8th St. Bellevue, WA 98004, USA

Editor: Genevera Allen

Abstract

Eigenvector computation is central to numerical algebra and often critical to many data
analysis tasks nowadays. Most research on this problem has been focusing on projection
methods like power iterations, such that this category of algorithms can achieve both opti-
mal convergence rates and cheap per-iteration costs. In contrast, search methods belonging
to another main category are less understood in this respect. In this work, we consider the
leading eigenvector computation as a non-convex optimization problem on the (general-
ized) Stiefel manifold and covers the cases for both standard and generalized eigenvectors.
It is shown that the inexact Riemannian gradient method induced by the shift-and-invert
preconditioning is guaranteed to converge to one of the ground-truth eigenvectors at an

optimal rate, e.g., O(
√
κB

λ1

λ1−λp+1
log 1

ε) for a pair of real symmetric matrices (A,B) with

B being positive definite, where λi represents the i-th largest generalized eigenvalue of the
matrix pair, p is the multiplicity of λ1, and κB stands for the condition number of B. The
standard eigenvector computation is recovered by setting B to an identity matrix. Our
analysis reduces the dependence on the eigengap, making it the first Riemannian eigen-
solver that achieves the optimal rate. Experiments demonstrate that the proposed search
method is able to deliver significantly better performance than projection methods by tak-
ing advantages of step-size schemes.

Keywords: Eigenvector Computation, Generalized Eigenvalue Problem, Riemannian
Optimization, Shift-and-invert Preconditioning, Optimal Convergence Rate

1. Introduction

Eigenvector computation is a fundamental problem in numerical algebra and often of cen-
tral importance to a variety of scientific and engineering computing tasks such as structural
analysis (Torbjorn Ringertz, 1997), dynamical control systems (Helmke and Moore, 2012),
combinatorial optimization (Mohar and Poljak, 1993), data mining and machine learn-
ing (Fan et al., 2018; Ng et al., 2001; Hastie et al., 2015; Hotelling, 1936). There are two
main categories of methods for this problem: projection and search. Most of recent research
has been focusing on projection methods, such as power iterations (Golub and Van Loan,
2013), for both faster convergence rates and cheaper iteration costs. Although Lanczos

algorithms possess the optimal convergence rate O(
√

λ1
λ1−λ2

log 1
ε) (Parlett, 1998), it is not

amenable to stochastic optimization (Xu et al., 2018a). People thus tend to develop fast

c©2021 Zhiqiang Xu and Ping Li.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/20-033.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/20-033.html

Zhiqiang Xu and Ping Li

stochastic algorithms on top of power methods (Arora et al., 2013; Hardt and Price, 2014;
Shamir, 2015; Garber and Hazan, 2015; Garber et al., 2016; Lei et al., 2016; Wang et al.,
2018). Along this line of research, in particular, the shift-and-invert preconditioning as a
classic acceleration technique has been revived recently (Garber and Hazan, 2015; Garber
et al., 2016; Allen-Zhu and Li, 2016; Wang et al., 2016; Allen-Zhu and Li, 2017; Wang et al.,
2018). This is because power iterations with the preconditioning have a provable reduction
to approximately solving a sequence of linear systems of equations that can leverage fast
and/or stochastic least-squares solvers, such as accelerated gradient descent (AGD) (Nes-
terov, 2004), (accelerated) randomized coordinate descent (Nesterov, 2012; Nesterov and
Stich, 2017), and (accelerated) stochastic variance reduced gradient (SVRG) (Johnson and
Zhang, 2013; Lin et al., 2015). This way has power methods accelerated to reach an opti-
mal rate with a cheap iteration cost (Wang et al., 2018). In contrast, there have been no
search methods that achieve optimal rates. The current rates of search methods exhibit
a quadratic (Shamir, 2015; Xu et al., 2018b) or linear (Xu and Li, 2021b) dependence on
the eigengap, e.g., 1

(λ1−λ2)2 or 1
λ1−λ2

, thus far. In this work, we try to reduce such depen-

dence by taking a novel Riemannian optimization view with the preconditioning, covering
both standard and generalized eigenvector computations. Taking the standard eigenvector
computation as an example, the Riemannian optimization problem can be written as:

max
x∈Rn×1:‖x‖2=1

1

2
x>Ax, (1)

where A ∈ Rn×n is the given real symmetric matrix and the constraint constitutes a sphere
or Stiefel manifold. Considering the shift-and-invert preconditioning for scaling up the
relative eigengap of the matrix to be processed, A is replaced by C−1 = (σI−A)−1 above,
arriving at the following problem:

max
x∈Rn×1:‖x‖2=1

1

2
x>C−1x, (2)

where σ is the shift parameter satisfying σ > λ1 and λi represents the i-th largest eigenvalue
of A. Accordingly, the preconditioning gives rise to inverse-matrix-vector multiplications
C−1x that are exact solutions to least-squares sub-problems in Riemannian gradients. In-
stead of solving sub-problems accurately for computing the multiplications, approximate
solutions suffice and result in inexact Riemannian gradients. We take the form of Prob-
lem (2) for implementation, while the following equivalent form is considered for analysis:

max
y∈Rn×1:y>Cy=1

1

2
‖y‖22, (3)

where the constraint constitutes a generalized Stiefel manifold. Due to the preconditioning,
the main problem are guaranteed to take O(log 1

ε) iterations to converge. If the accelerated
gradient descent is chosen as a subproblem solver, the per-iteration cost of the main problem,

i.e., the number of iterations that is sufficient for solving subproblems, will be O(
√

λ1
λ1−λp+1

),

where p is the multiplicity of λ1. The overall rate is O(
√

λ1
λ1−λp+1

log 1
ε) (see Theorem 2 and

its proof). The success of the algorithm depends on an appropriate shift parameter σ which
needs to be an upper bound on λ1 and as close as possible to λ1. Theoretically, this can

2

On the Riemannian Search for Eigenvector Computation

be guaranteed by the procedure introduced in Garber and Hazan (2015). The cost of this
procedure is independent of the final accuracy, making the total cost dominated by the
subsequent stage. Despite the theoretical guarantee on σ, the procedure is not easy to
implement due to many parameters to be tuned. To this end, we follow Zhou et al. (2006)
that uses a small number of steps of the Lanczos1 algorithm to yield a proper upper bound
on λ1.

We further extend the analysis to the problem of generalized eigenvector computation
for a pair of real symmetric matrices (A,B) with B being positive definite:

max
x∈Rn×1:x>Bx=1

1

2
x>Ax. (4)

Applying the preconditioning, we have the following problem for implementation:

max
x∈Rn×1:x>Bx=1

1

2
x>B(σB−A)−1Bx. (5)

The equivalent form for analysis is as follows:

max
y∈Rn×1:y>(σB−A)y=1

1

2
y>By. (6)

The overall rate is O(
√
κB

λ1
λ1−λp+1

log 1
ε), where λi now is the i-th largest generalized eigen-

value of the matrix pair (A,B) and κB represents the condition number of B.
Despite the same optimal rate of the proposed search methods as recently proposed

projection methods, search methods have additional privileges of getting the most of its
step-size schemes. Particularly, we equip our methods with the popular Barzilai-Borwein
(BB) step-size (Barzilai and Borwein, 1988; Iannazzo and Porcelli, 2017). Experiments show
that the resulting search methods have significantly better performance compared to the
projection methods.

The rest of the paper is organized as follows. Section 2 discusses recent literature works.
Section 3 gives a brief introduction to Riemannian geometry and optimization. Section 4
presents the proposed Riemannian algorithm for the standard eigenvector computation and
the analysis. It is then followed by the extension to the generalized eigenvector computation
in Section 5. Experimental studies are reported in Section 6. The paper is concluded in
Section 7.

2. Related Work

There is a vast literature on eigenvector computation (Wilkinson, 1988; Parlett, 1998; Saad,
2011). We focus on recent research.

Shift-and-invert preconditioning has attracted resurgent interests due to its ability to
gain faster convergence rates in combination with state-of-the-art first-order optimization
methods. Garber and Hazan (2015); Garber et al. (2016) initiated this line of research. They
presented a robust analysis of the shift-and-invert preconditioned power method for princi-
pal component analysis (PCA) and achieved convergence rates of optimal type. However,

1. A small number of Lanczos steps do not hurt the overall performance.

3

Zhiqiang Xu and Ping Li

the logarithmic dependence on parameters including the accuracy parameter is not good
enough. Allen-Zhu and Li (2016) extended their work to the block setting by deflation via
a careful analysis and considered the general case, i.e., standard eigenvector computation,
while Wang et al. (2018) improved their analysis by removing an extra log 1

ε factor and
advocated coordinate descent as the solver for subproblems to handle the general matrix
without covariance structure. Wang et al. (2016) extended the work of Garber and Hazan
(2015); Garber et al. (2016) to canonical correlation analysis (CCA). However, the analysis
inherits the poly-logarithmic dependence on accuracy. Allen-Zhu and Li (2017) similarly
extended the work of Garber and Hazan (2015); Garber et al. (2016) to the generalized
eigenvector computation and CCA as well as their block setting. All these works follow the
original framework of Garber and Hazan (2015); Garber et al. (2016). Our work deviates
from this and takes a novel view of the Riemannian optimization, albeit with the same
preconditioning. As we will see, it gives rise to a novel analysis accordingly.

SGD based methods Arora et al. (2013) considered the stochastic power method for
PCA with convex relaxation and obtained the rate O(1

ε2
). Balsubramani et al. (2013)

achieved the rate O(1
(λ1−λ2)2ε

) for PCA via the martingale analysis. Shamir (2015, 2016a)

proposed the VR-PCA algorithm which extended the projected stochastic variance re-
duced gradient (SVRG) to the non-convex PCA problem. It has global convergence rate
O(1

(λ1−λ2)2 log 1
ε). Shamir (2016b) studied SGD for PCA and established its sub-linear con-

vergence rates, O(1
(λ1−λ2)ε) and O(1

ε2
), for gap-dependent and gap-free cases, respectively.

Riemannian algorithms The constrained optimization for our problems becomes un-
constrained in the Riemannian setting. Thus, many Riemannian optimization methods
apply to our problems. Absil et al. (2008) provided analysis for general line-search based
Riemannian first-order methods that converge globally and linearly to critical points or lo-
cally and linearly to minimizers. Wen and Yin (2013) proposed a practical curvilinear search
method for the first-order optimization on Stiefel manifolds. It is characterized by a new
retraction based on the Cayley-transform. Bonnabel (2013) established global convergence
of Riemannian SGD to critical points. Zhang et al. (2016) proposed Riemannian SVRG and
proved its global and sub-linear convergence rate O(1

ε) to critical points. Specifically, Xu
et al. (2017) proposed Riemannian SVRG eigensolver that converges at a local and linear
rate O(1

(λ1−λ2)2 log 1
ε). In a distinct fashion, i.e., by showing an explicit Lojasiewicz ex-

ponent at 1
2 , Liu et al. (2016) established a local and linear convergence of Riemannian

line-search methods for quadratic problems defined on Stiefel manifolds, including Problem
(2) as a special case. However, the explicit rate is unclear. All the rates here are not accel-
erated. Accelerated Riemannian gradient proposed recently (Zhang and Sra, 2018; Ahn and
Sra, 2020) only supports geodesically convex problems in theory currently. Since our prob-
lems are geodesically non-convex, we opt for the preconditioning to accelerate Riemannian
eigensolvers in this work.

Other algorithms Halko et al. (2011) surveyed and extended randomized algorithms for
truncated singular value decomposition (SVD). Randomized singular value decomposition
(RSVD) makes use of random sampling to compress the input matrix and then does the
job in the reduced space. Let A be an n× d rectangular matrix. Musco and Musco (2015)

proved the global rates, O(
√

λ1
λ1−λ2

log 1
ε) and Õ(nnz(A)√

ε
+ n

ε + 1
ε3/2

), of the randomized

4

On the Riemannian Search for Eigenvector Computation

block Krylov methods (RBK) for an approximate SVD in the gap-dependent and gap-free
cases, respectively. When 1

ε > nnz(A), the rate is O(1
ε3/2

). Moreover, when λ1 = λ2, the
true convergence is not necessarily sub-linear as is indicated by the gap-free rate. Hardt
and Price (2014) provided a new robust convergence analysis for the power method under
the noise setting (NPM). It was shown to have the convergence rate O(λ1

λ1−λ2
log 1

ε) with
high probability. Balcan et al. (2016) extended this method to achieve an improved gap
dependency by using subspace iterates of larger dimensions. Xu et al. (2018a) proposed
an accelerated (stochastic) power method which uses the scaled Chebyshev polynomial to
directly accelerate and achieve convergence rates of optimal type, i.e., O(1√

λ1−λ2
log 1

ε) in

the deterministic setting (PM+M) and O(1√
λ1−λ2

log 1
ε log2 1

δ) with probability 1 − δ log 1
ε

in the PCA setting (VR-PM+M), provided that the momentum parameter β is optimal,

i.e., β =
λ2

2
4 . In addition, Ge et al. (2016) presented the first provable efficient algorithm

(GenELin) for generalized eigenvector computation via the inexact power method, and
achieved a global and linear rate Õ(λ1

λ1−λ2

√
κB log 1

ε). The algorithm, applied to CCA
(CCALin), is equivalent to alternating least-squares (CCA-ALS) proposed in Wang et al.
(2016) for the top-1 case where the convergence analysis for CCA achieves a global and sub-
linear rate Õ((λ1

λ1−λ2
)2√κB log2 1

ε). Alternating least-squares for CCA was further studied
in Xu and Li (2019, 2021a). Although the convergence rate was improved to be linear, it
has an additional logarithmic factor on the spectral gap.

3. Riemannian Geometry and Optimization

Let M be a Riemmanian manifold (Lee, 2012) of dimension d and TxM be its tangent
space at x ∈ M which is a d-dimensional Euclidean space Rd tangential to M at x. M
is often associated with certain Riemannian metric which is a family of smoothly varying
inner products on tangent spaces, i.e., 〈ξ, η〉x, where tangent vectors ξ, η ∈ TxM for any
x ∈ M. Riemannian gradient of a function f(x) on M is the unique tangent vector, i.e.,
∇̃f(x) ∈ TxM, that satisfies

〈∇̃f(x), ξ〉x = Df(x)[ξ] (7)

for any ξ ∈ TxM, where Df(x)[ξ] represents the directional derivative of f(x) in ξ. Rie-
mannian gradient ascent update on M can be written as (Absil et al., 2008):

xt+1 = R
(
xt, αt∇̃f(xt)

)
,

where αt > 0 is the step-size at the current step, and R(xt, ·) represents the retraction at
xt that maps a tangent vector ξ ∈ TxtM to a point on M. Instead of using computation-
ally costly exponential map, cheap retractions are used, e.g., first-order approximation of
exponential map. In addition, tangent vectors at different points need to be parallel trans-
ported to the same tangent space before arithmetic operations between them. However, in
certain circumstances for efficiency, this operation is often omitted without sacrificing ac-
curacy much.

For the generalized Stiefel manifold

StB(n, 1) = {x ∈ Rn×1 : x>Bx = 1},

5

Zhiqiang Xu and Ping Li

we use the Riemannian metric
〈ξ, η〉B = ξ>Bη,

for ξ, η ∈ TxStB(n, 1). By the definition (7), f(x) = 1
2x>Ax on StB(n, 1) has the following

Riemannian gradient
∇̃f(x) = (B−1 − xx>)Ax.

In addition, we use the retraction defined by the generalized polar decomposition

R(x, ξ) =
x + ξ

‖x + ξ‖B

for tangent vector ξ ∈ TxStB(n, 1), where ‖x‖B =
√

x>Bx. For the standard case, it suffices
to set B = I.

4. Standard Eigenvector Computation

In this section, we present our shift-and-invert preconditioned Riemannian eigensolver for
the standard eigenvector computation, i.e., Problem (1).

4.1 Algorithm

Given a real symmetric matrix A, i.e., A> = A ∈ Rn×n, assume that its eigenvalues lie in
[0, 1] and are indexed in descending order, i.e.,

1 ≥ λ1 = · · · = λp > λp+1 ≥ · · · ≥ λn ≥ 0,

where p is the multiplicity of λ1. Let the i-th eigengap of A be

∆i , λi − λi+1.

Most of existing works handle only the case that ∆1 = λ1 − λ2 > 0, ignoring the cases
that ∆1 = 0. All the cases are unified here via ∆p > 0 which holds always without loss
of generality2, i.e., p < n. Suppose that corresponding eigenvectors are v1, · · · ,vn, where
v1, · · · ,vp are the leading eigenvectors of A. Let Vj = (v1, · · · ,vj). Our goal then is to
find one of the leading eigenvectors, i.e.,

v ∈ Vp,1 , {v ∈ span(Vp) : ‖v‖2 = 1}. (8)

Denote C−1 = (σI−A)−1 as the shift-and-inverted matrix, where σ > λ1. C−1’s eigenvalues
then are µi = 1

σ−λi satisfying

µ1 = · · · = µp > µp+1 ≥ · · · ≥ µn > 0,

while eigenvectors remain unchanged. Accordingly, define the i-th eigengap of C−1 as

τi = µi − µi+1.

2. If p = n, the objective functions 1
2
x>Ax and 1

2
x>C−1x are almost constant and Problem (1)-(2) are

trivial.

6

On the Riemannian Search for Eigenvector Computation

In particular, the relative eigengap of C−1 is

τp
µ1

=
µp − µp+1

µ1
=

1
σ−λp −

1
σ−λp+1

1
σ−λ1

=
∆p

σ − λp+1
.

If C−1’s relative eigengap is larger than A’s, i.e.,
τp
µ1
>

∆p

λ1
, then a faster rate can be achieved

when shifting from Problem (1) to Problem (2), which is exactly the idea behind the shift-
and-invert preconditioning. To this end, we follow Garber and Hazan (2015) and Wang
et al. (2018)’s procedure (see Algorithm 7 in Appendix) to find a proper upper bound σ
that is slightly larger than λ1. Note that the procedure works regardless of how the eigengap
is defined. Thus, Algorithm 7 is guaranteed to output

σ = λ1 + c∆p

where c ∈ [1
4 ,

3
2], as stated by the following theorem.

Theorem 1 (Garber and Hazan, 2015; Wang et al., 2018) Let ε(x) be the function er-

ror with the least-squares subproblem. If the initial to final error ratio ε(xinit)
ε(xfinal)

for the

least-squares subproblems can be maintained as 32·102m+1
η2m for the subproblem at Line 7, Al-

gorithm 7 and 1024
η2 for the subproblem at Line 11, Algorithm 7, where m = d8 log 16

‖V>p ã0‖22
e,

then we have the output σ = λ1 + c∆p for certain c ∈ [1
4 ,

3
2] after O(log 1

η) iterations in the
outer repeat-until loop.

After Algorithm 7, we have σ satisfying

τp
µ1

=
1

c+ 1
≥ 2

5
, (9)

and then can run the Riemannian gradient ascent to solve Problem (2). Let h(x) =
1
2x>C−1x. From Section 3, the Riemannian gradient ascent update can be written as

xt+1 = R(xt, αt∇̃h(xt))

= R(xt, αt(I− xtx
>
t)C−1xt). (10)

As (µ1

τp
)2 = O(1), the Riemannian gradient ascent takes only a logarithmic number of

iterations O(log 1
ε) to converge now, which does not have the quadratic dependence on

λ1
λ1−λ2

any more (Shamir, 2015, 2016a; Xu et al., 2017). In each iteration, however, we need

to calculate the inverse-matrix-vector multiplication C−1xt. Instead of consuming a high
cost to start from inverting C, the multiplication can be directly approximated by solving
the equivalent least-squares subproblem

min
x
lt(x) =

1

2
x>Cx− x>t x (11)

to certain sub-optimality. The algorithmic steps are described in Algorithm 1, where only
a few iterations are required for the warm-started least-squares solver to get the output

Ĉ−1xt ≈ C−1xt = arg minx lt(x). It is easy to see that the Riemannian gradient method

recovers the shift-and-inverted power method, i.e., xt+1 = C−1xt
‖C−1xt‖2 using αt = 1

x>t C−1xt
and

xt+1 = Ĉ−1xt

‖Ĉ−1xt‖2
using αt = 1

x>t Ĉ−1xt
, in exact and inexact circumstances, respectively.

7

Zhiqiang Xu and Ping Li

Algorithm 1 Shift-and-Invert Preconditioned Riemannian Gradient Eigensolver (SI-
rgEIGS)

1: Input: matrix A, shift σ, and initial x0, least-squares solver ls(Ã, b̃, x̃0) for solving

min
x̃

1

2
x̃>Ãx̃− b̃>x̃ with initial x̃0.

2: for t = 0, 1, 2, · · · do

3: Ĉ−1xt ≈ ls(C,xt,
xt

x>t Cxt
)

4: ˜̂∇h(xt) = (I− xtx
>
t)Ĉ−1xt

5: choose a step size αt > 0

6: set xt+1 = xt+αt ˜̂∇h(xt)

‖xt+αt ˜̂∇h(xt)‖2
7: terminate if stopping criterion is met
8: end for
9: Output: xt

4.2 Analysis

We would like to analyze the convergence of Riemannian gradient ascent for Problem (2).
However, it turns out that directly analyzing Algorithm 1 would lead to a sub-optimal3

convergence rate in terms of gap dependence. To overcome this issue, we make a change of
variable, y = C−1/2x, in Problem (2), and then arrive at an equivalent form, i.e., Problem
(3). Let h(y) = 1

2‖y‖
2
2. From Section 3, the Riemannian gradient ascent update for Problem

(3) can be written as

yt+1 = R(yt, αt∇̃h(yt))

= R(yt, αt(I− yty
>
t C)C−1yt),

corresponding to Algorithm 2.

Algorithm 2 SI-rgEIGS for analysis

1: Input: matrix A, shift σ, and initial y0, least-squares solver ls(Ã, b̃, x̃0) for solving

min
x̃

1

2
x̃>Ãx̃− b̃>x̃ with initial x̃0.

2: for t = 0, 1, 2, · · · do

3: Ĉ−1yt ≈ ls(C,yt, ‖yt‖22yt)
4: ˜̂∇h(yt) = (I− yty

>
t C)Ĉ−1yt

5: choose a step size αt > 0

6: set yt+1 = yt+αt ˜̂∇h(yt)

‖yt+αt ˜̂∇h(yt)‖C
7: terminate if stopping criterion is met
8: end for
9: Output: yt

‖yt‖2

3. There will be an additional factor log λ1
∆p

with the rate.

8

On the Riemannian Search for Eigenvector Computation

To uncover the true rate of the method, we analyze Algorithm 2 instead. For any
v ∈ Vp,1 in (8), C−1/2v is an optimal solution to Problem (3). Noting that C−1/2v =

√
µ

1
v,

it suffices to normalize the final yT to get the solution instead of computing C1/2yT . Despite
the convenience to analysis, Algorithm 2 is often not as efficient as Algorithm 1, due to the
two more multiplications with C in Lines 4 and 6. We will experiment with both Algorithms
for empirical studies in Section 6.

4.2.1 Potential Functions

To measure the progress of C1/2yt to Vp, we use a novel potential function defined by

ϕ(C1/2yt,Vp) = −2 log ‖V>p C1/2yt‖2

for analysis. As

‖V>p C1/2yt‖2 ≤ ‖Vp‖2‖yt‖C = 1,

we have

ϕ(C1/2yt,Vp) ≥ 0.

In fact,

‖V>p C1/2yt‖2 = cos θ(C1/2yt,Vp),

where θ(C1/2yt,Vp) ∈ [0, π2] represents the principal angle (Golub and Van Loan, 2013)

between C1/2yt and the space of the leading eigenvectors span(Vp). Particularly, it is
worth noting that

θ(C1/2yt,Vp) = min
v∈span(Vp)

θ(C1/2yt,v),

where θ(C1/2yt,v) ∈ [0, π2]. That is, the angle between a vector z and a p-dimensional
subspace span(Vp) is equal to the minimum angle between z and any v ∈ span(Vp). Thus,
we can write that

ϕ(C1/2yt,Vp) = min
v∈Vp,1

ϕ(C1/2yt,v),

where

ϕ(C1/2yt,v) = −2 log |v>C1/2yt| = −2 log cos θ(C1/2yt,v)

for any v ∈ Vp,1. This property will help address the degeneracy in analysis. It is easy to
see that if ϕ(C1/2yt,Vp) goes to 0, C1/2yt must converge to certain vector v ∈ Vp,1. We
also use the common potential function (Shamir, 2015)

sin2 θ(C1/2yt,Vp) = 1− ‖V>p C1/2yt‖22

to assist in our analysis. Two potential functions have the following connection:

ϕ(C1/2yt,Vp) = − log(1− sin2 θ(C1/2yt,Vp)) ≥ sin2 θ(C1/2yt,Vp).

It is easier to handle the normalization in Step 6 of Algorithm 2 by ϕ(C1/2yt,Vp), see, e.g.,
Eq. (19), than by sin2 θ(C1/2yt,Vp) which would lead to complicated fractional expres-
sions (Shamir, 2015).

9

Zhiqiang Xu and Ping Li

4.2.2 Main Results

Our main results then can be stated as follows.

Theorem 2 Given a shift parameter σ = λ1 + c∆p for c ∈ [1
4 ,

3
2], Algorithm 2 with fixed

step-sizes and using accelerated gradient descent as the least-squares solver is able to find
one of the leading eigenvectors of A, i.e., ϕ(C1/2yT ,Vp) < ε, after T = O(log 1

ε) gradient

steps, and the overall complexity is O(
√

λ1
∆p

log 1
ε).

Remark The shift parameter can be guaranteed by Theorem 1. In practice, however, it is
not necessary for us to use Algorithm 7 to get such a shift parameter. Instead, we introduce
a user-friendly procedure for this purpose in Section 4.3. More importantly, in practice,
we can leverage step-size schemes, which we view as an advantage of search methods over
projection methods. For example, in experiments, we will use the popular Barzilai-Borwein
(BB) step-size scheme which exploits the second-order information in a very cheap manner.
It is simple and automatic without the need of line-search like backtracking or hand-tuning.

To prove the theorem, we need the following auxiliary lemmas whose proofs are deferred
to Appendix.

Lemma 3 For any x ∈ StI(n, 1), it holds for any q that

λ1 − x>Ax ≥ (λ1 − λq+1) sin2 θ(x,Vq).

This lemma reveals the connection between two measures of errors: objective function error
and Chordal distance of subspaces (i.e., one of our two potential functions). In particular,
applying the lemma to C−1 for q = p, one gets for x ∈ StI(n, 1) that

µ1 − x>C−1x ≥ (τ1 − τp+1) sin2 θ(x,Vp) = τp sin2 θ(x,Vp),

which now relates to a positive eigengap. This lemma can be used to handle the vanishing
gap issue, e.g., λ1 = λ2.

Lemma 4 For any y ∈ StC(n, 1), it holds that

‖∇̃h(y)‖2C ≤ 4µ2
1 sin2 θ(C1/2y,Vp). (12)

This lemma bounds the gradient norm using one of the potential functions.

Lemma 5 Let
εt(y) = lt(y)− lt(C−1yt) and ξt = Ĉ−1yt −C−1yt.

• We have that

2εt(y) = ‖y −C−1yt‖2C, 2εt(Ĉ−1yt) = ‖ξt‖2C,

2εt(‖yt‖22yt) ≤ µ2
1 sin2 θ(C1/2yt,Vp).

• If Nesterov’s accelerated gradient descent is adopted for solving Problem (11) with

warm-starter ‖yt‖22yt, it can take O(
√

λ1
∆p

log
εt(‖yt‖22yt)
εt(Ĉ−1yt)

) complexity to reach sub-

optimality εt(Ĉ−1yt).

10

On the Riemannian Search for Eigenvector Computation

Since the least-squares solver for Problem (11) is warm-started, the initial error εt(‖yt‖22yt)
is much smaller than those from random initials. Other least-squares solvers are applica-
ble as well, such as (accelerated) SVRG (Johnson and Zhang, 2013; Lin et al., 2015) for
matrices with covariance structure and coordinate descent for matrices without covariance
structure (Wang et al., 2018).

Proof of Theorem 2
The roadmap of the proof is that we first show the iteration complexity is T = O(log 1

ε)
by preconditioning (such that

τp
µ1

= O(1), see Eq. (9)) and appropriate size of the error in
Riemannian gradients, and then prove with Lemma 5 the complexity of the subproblem in

each iteration can be uniformly bounded by O(
√

λ1
∆p

). The total complexity then naturally

is O(
√

λ1
∆p

log 1
ε).

In order to obtain the iteration complexity, we need to derive a recurrence relation
in our potential function ϕ(C1/2yt,Vp), see Eq. (20). To this end, we can analyze the
potential function with the Riemannian gradient ascent update, i.e., Eq. (13), under the
approximation error, i.e., Eq. (21). For brevity, denote

θt , θ(C1/2yt,Vp) and ϕt , ϕ(C1/2yt,Vp)

throughout the proof. First, for any v ∈ Vp,1, by the update in Step 6 of Algorithm 2, we
have that

ϕ(C1/2yt+1,v) = −2 log |v>C1/2yt+1|

= −2 log |v>C1/2(yt + αt ˜̂∇h(yt))|+ 2 log ‖yt + αt ˜̂∇h(yt)‖C, (13)

where ˜̂∇h(yt) is inexact Riemannian gradient, i.e.,

˜̂∇h(yt) = (I− yty
>
t C)Ĉ−1yt.

From Lemma 5, we can write

˜̂∇h(yt) = ∇̃h(yt) + (I− yty
>
t C)ξt,

where ξt is the error in approximating the inverse-matrix-vector multiplication in Line 3
of Algorithm 2 by a least-squares solver. We then can expand the first term in the above
equation as follows

|v>C1/2(yt + αt ˜̂∇h(yt))|2

= |v>C1/2(yt + αt∇̃h(yt)) + αtv
>C1/2(I− yty

>
t C)ξt|2

≥ (|v>C1/2(yt + αt∇̃h(yt)| − αt|v>C1/2(I− yty
>
t C)ξt|)2

≥ |v>C1/2(yt + αt∇̃h(yt))|2 − 2αt|v>C1/2(yt + αt∇̃h(yt))||v>C1/2(I− yty
>
t C)ξt|

≥ |v>C1/2(yt + αt∇̃h(yt))|2(1− 2αt
|v>C1/2(I− yty

>
t C)ξt|

|v>C1/2(yt + αt∇̃h(yt))|
). (14)

11

Zhiqiang Xu and Ping Li

To proceed, we analyze both |v>C1/2(yt + αt∇̃h(yt))| and |v>C1/2(I− yty
>
t C)ξt| individ-

ually. For the former,

|v>C1/2(yt + αt∇̃h(yt))| = |v>C1/2yt + αtv
>C1/2∇̃h(yt)|,

where

v>C1/2∇̃h(yt) = v>C1/2C−1yt − v>C1/2yty
>
t CC−1yt

= v>C−1C1/2yt − v>C1/2yty
>
t yt

= µ1v
>C1/2yt − ‖yt‖22v>C1/2yt

= (µ1 − ‖yt‖22)v>C1/2yt.

Since yt ∈ StC(n, 1), it holds that

xt , C1/2yt ∈ StI(n, 1). (15)

By Lemma 3, we then have

µ1 − ‖yt‖22 = µ1 − xtC
−1xt ≥ τp sin2 θ(xt,Vp).

Thus, it holds that

|v>C1/2(yt + αt∇̃h(yt))| = (1 + αt(µ1 − ‖yt‖22))|v>C1/2yt|

≥ (1 + αtτp sin2 θ(xt,Vp)) cos θ(xt,v). (16)

For the latter, by the Cauchy-Schwartz inequality,

|v>C1/2(I− yty
>
t C)ξt| = |v>C1/2(I− yty

>
t C)C−1/2C1/2ξt|

≤ ‖v>C1/2(I− yty
>
t C)C−1/2‖2‖ξt‖C.

Letting x⊥t represents the orthogonal complement of xt, it holds that

‖v>C1/2(I− yty
>
t C)C−1/2‖2

= ‖v>(I−C1/2yty
>
t C1/2)‖2

= ‖v>(I− xtx
>
t)‖2 = ‖v>x⊥t (x⊥t)>‖2

= ‖v>x⊥t ‖2 = (v>x⊥t (x⊥t)>v)1/2

= (v>(I− xtx
>
t)v)1/2 = (1− (v>xt)

2)1/2

= sin θ(xt,v),

where the fourth equality is due to the orthogonal invariance of the 2-norm. Thus, we have
that

|v>C1/2(I− yty
>
t C)ξt| ≤ ‖ξt‖C sin θ(xt,v), (17)

12

On the Riemannian Search for Eigenvector Computation

By Equations (16)-(17), the first term in Equation (13) can be bounded as follows:

−2 log |v>C1/2yt+1| ≤ −2 log |v>C1/2yt| − 2 log(1 + αtτp sin2 θ(xt,Vp))

− log(1− 2αt‖ξt‖C tan θ(xt,v)

1 + αtτp sin2 θ(xt,Vp)
). (18)

For the second term in Equation (13),

‖yt + αt ˜̂∇h(yt)‖2C = (yt + αt ˜̂∇h(yt))
>C(yt + αt ˜̂∇h(yt))

= 1 + 2αty
>
t C ˜̂∇h(yt) + α2

t (˜̂∇h(yt))
>C(˜̂∇h(yt))

= 1 + α2
t ‖ ˜̂∇h(yt)‖2C,

where we have used that yt ∈ StC(n, 1) and thus

y>t C ˜̂∇h(yt) = y>t C(I− yty
>
t C)Ĉ−1yt

= 0.

Moreover,

‖ ˜̂∇h(yt)‖2C = ‖∇̃h(yt) + (I− yty
>
t C)ξt‖2C

≤ 2(‖∇̃h(yt)‖2C + ‖C1/2(I− yty
>
t C)ξt‖22)

= 2(‖∇̃h(yt)‖2C + ‖C1/2(I− yty
>
t C)C−1/2C1/2ξt‖22)

≤ 2(‖∇̃h(yt)‖2C + ‖C1/2(I− yty
>
t C)C−1/2‖22‖ξt‖2C)

= 2(‖∇̃h(yt)‖2C + ‖ξt‖2C)

≤ 2(4µ2
1 sin2 θ(xt,Vp) + ‖ξt‖2C),

where the last inequality is by Lemma 4. Thus, it holds that

2 log ‖yt + αt ˜̂∇h(yt)‖C ≤ log(1 + 2α2
t (4µ

2
1 sin2 θ(xt,Vp) + ‖ξt‖2C))

≤ 2α2
t (4µ

2
1 sin2 θ(xt,Vp) + ‖ξt‖2C). (19)

By Equations (13),(18)-(19), it holds that

ϕ(C1/2yt+1,v) ≤ ϕ(C1/2yt,v)− 2 log(1 + αtτp sin2 θ(xt,Vp))

− log(1− 2αt‖ξt‖C tan θ(xt,v)

1 + αtτp sin2 θ(xt,Vp)
)

+2α2
t (4µ

2
1 sin2 θ(xt,Vp) + ‖ξt‖2C),

13

Zhiqiang Xu and Ping Li

for any v ∈ Vp,1. Taking the minimum with respect to v on both sides of the above
inequality and noting the properties of the potential functions in Section 4.2.1, we arrive at

ϕ(C1/2yt+1,Vp) ≤ ϕ(C1/2yt,Vp)− 2 log(1 + αtτp sin2 θ(xt,Vp))

− log(1− 2αt‖ξt‖C tan θ(xt,Vp)

1 + αtτp sin2 θ(xt,Vp)
)

+2α2
t (4µ

2
1 sin2 θ(xt,Vp) + ‖ξt‖2C).

Noting that ‖ξt‖2C = 2εt(Ĉ−1yt) by Lemma 5, one gets that

ϕt+1 ≤ ϕt − 2 log(1 + αtτp sin2 θt)− log(1−
2αt

√
2εt(Ĉ−1yt) tan θt

1 + αtτp sin2 θt
)

+2α2
t (4µ

2
1 sin2 θt + 2εt(Ĉ−1yt)). (20)

We now consider the constant step-size setting, i.e., αt ≡ α > 0. Let

εt(Ĉ−1yt) =
τ2
p

32
sin2(2θt). (21)

Plugging this expression into Equation (20), we have that

ϕt+1 ≤ ϕt − 2 log(1 + ατp sin2 θt)− log(1−
2α
√

1
16τ

2
p sin2(2θt) tan θt

1 + ατp sin2 θt
)

+2α2(4µ2
1 sin2 θt +

1

16
τ2
p sin2(2θt))

= ϕt − 2 log(1 + ατp sin2 θt)− log(1− ατp sin2 θt

1 + ατp sin2 θt
)

+2α2(4µ2
1 sin2 θt +

1

4
τ2
p sin θt cos2 θt)

≤ ϕt − log(1 + ατp sin2 θt) + 9α2µ2
1 sin2 θt

≤ ϕt −
ατp sin2 θt

1 + ατp sin2 θt
+ 9α2µ2

1 sin2 θt

≤ ϕt − α(
τp

1 + ατp
− 9αµ2

1) sin2 θt, (22)

where the third inequality is due to inequality log(1 + x) ≥ x
1+x . Assume that

ατp <
1

125(1 + ατp)
.

By Equation (9), it holds that

ατp <
1

125(1 + ατp)
≤ (

τp
µ1

)2 1

20(1 + ατp)
, (23)

14

On the Riemannian Search for Eigenvector Computation

and thus
9αµ2

1 <
τp

2(1 + ατp)
.

Equation (22) thus implies that

ϕt+1 ≤ ϕt −
ατp

2(1 + ατp)
sin2 θt < ϕt. (24)

Noting the inequality x
− log(1−x) ≥

1
1−log(1−x) , it holds that

sin2 θt =
sin2 θt

− log(1− sin2 θt)
· ϕt ≥

1

1− log(1− sin2 θt)
· ϕt

=
ϕt

1 + ϕt
≥ ϕt

1 + ϕ0
.

Combining the two inequalities above, we get that

ϕt+1 ≤ (1− ατp
2(1 + ατp)

· 1

1 + ϕ0
)ϕt,

and thus

ϕT ≤ (1− ατp
2(1 + ατp)

· 1

1 + ϕ0
)Tϕ0

≤ exp{1− T · ατp
2(1 + ατp)

· 1

1 + ϕ0
}ϕ0 ≡ Ξ.

Solving Ξ = ε for T yields that

T =
2(1 + ατp)(1 + ϕ0)

ατp
log

ϕ0

ε

= O(
1

ατp
log

ϕ0

ε
) = O((

µ1

τp
)2 log

ϕ0

ε
) = O(log

1

ε
),

where the last two equalities are due to Equations (23) and (9), respectively.
On the other hand, in each iteration, by Lemma 5 and Equation (21) the complexity

for computing Ĉ−1yt is

O(

√
λ1

∆p
log

εt(‖yt‖22yt)
εt(Ĉ−1yt)

) = O(

√
λ1

∆p
log

µ2
1

2 sin2 θt
1
32τ

2
p sin2(2θt)

)

= O(

√
λ1

∆p
log

µ2
1 sin2 θt

τ2
p sin2 θt cos2 θt

) = O(

√
λ1

∆p
(log

µ1

τp
+ ϕt))

= O(

√
λ1

∆p
(log

µ1

τp
+ ϕ0)) = O(

√
λ1

∆p
),

where the last two equalities are due to Equations (24) and (9), respectively. Therefore, the

total complexity is O(
√

λ1
∆p

log 1
ε).

Before closing this section, we introduce one method from Zhou et al. (2006) to get an
upper bound on the maximum eigenvalue of a matrix, i.e., the shift parameter σ.

15

Zhiqiang Xu and Ping Li

4.3 Shift by Lanczos

It was noted in Zhou et al. (2006) that an effective upper bound on λ1 can be obtained
from a small number of steps of the standard Lanczos procedure (Saad, 2011), because
Lanczos iterations often approximate extreme eigenvalues fast. An m-step Lanczos yields
the following Lanczos decomposition:

AQ = QT + re>,

where Q ∈ StI(n,m) is a basis of the m-dimensional Krylov subspace, i.e., an m Lanczos
basis, T ∈ Rk×k is a symmetric tridiagonal matrix, r ∈ Rn×1 represents the residual vector,
and e ∈ Rm×1 represents a standard unit vector with e11 = 1 and ei1 = 0 for i > 1. Thus,
we have that

‖AQ‖2 ≤ ‖QT‖2 + ‖re>‖2 = ‖T‖2 + ‖r‖2,

where ‖T‖2 + ‖r‖2 will be an upper bound on λ1(A). The pseudo code of the procedure
is given in Algorithm 3, i.e., Algorithm 4.3 in Zhou et al. (2006). Small values of m won’t
cause ζ = 0 to occur and won’t make the algorithm dominate the total time cost for solving
the problem. However, the advantage for implementation is clear compared to Algorithm 7,
as it is almost parameter-free.

Algorithm 3 Shift by Lanczos

1: Input: matrix A, random initial q, iteration number m
2: q← q

‖q‖2 , r = Aq

3: η = r>q, r← r− ηq
4: T11 = η
5: for j = 2, · · · ,min{m, 20} do
6: ζ = ‖r‖2, q0 = q
7: q = 1

ζ r, r = Aq

8: η = r>q, r← r− ηq
9: r← r− ζq0

10: Tj,j−1 = ζ, Tj−1,j = ζ, Tj,j = η
11: end for
12: Output: σ = ‖T‖2 + ‖r‖2

5. Generalized Eigenvector Computation

We now consider Problem (4) for the generalized eigenvector computation. The same set-
ting as for the standard eigenvalues is adopted for the generalized eigenvalues, except that
(λi,vi), i = 1, 2, · · · , n, are the generalized eigenpairs of (A,B), i.e.,

Avi = λiBvi.

Our goal is to find one of the leading generalized eigenvectors, i.e.,

v ∈ Vp,1 = {v ∈ Vp : ‖v‖B = 1}. (25)

16

On the Riemannian Search for Eigenvector Computation

For ease of extension, we first convert Problem (4) to the form of Problem (1) by setting
x← B1/2x and get that

max
x∈Rn×1:‖x‖2=1

1

2
x>B−1/2AB−1/2x.

Applying the preconditioning, we have the shift-and-inverted matrix

C−1 = (σI−B−1/2AB−1/2)−1 = B1/2(σB−A)−1B1/2

for σ > λ1, using the same notations on its eigenvalues as before. Setting x ← B−1/2x in
Problem (2) with above C−1 leads to Problem (5).

To locate a proper shift parameter, there is a similar procedure (See Algorithm 8 in
Appendix) (Wang et al., 2016), which has the following guarantee.

Theorem 6 (Wang et al., 2016) If the final error for the least-squares subproblems can
be maintained as ε̃ ≤ 1

3084(η18)m−1 in Algorithm 8, where m = d8 log 16
‖V>p Bã0‖22

e, then we

have the output σ = λ1 + c∆p for certain c ∈ [1
4 ,

3
2] after O(log 1

η) iterations in the outer
repeat-until loop.

It then holds that
τp
µ1

=
1

c+ 1
≥ 2

5
.

Let h(x) = 1
2x>B(σB − A)−1Bx. The Riemannian gradient ascent update on StB(n, 1)

will be

xt+1 = R(xt, αt∇̃h(xt))

= R(xt, αt(B
−1 − xtx

>
t)B(σB−A)−1Bxt)

= R(xt, αt(I− xtx
>
t B)(σB−A)−1Bxt),

where the inverse-matrix-vector multiplication (σB − A)−1Bxt can be approximated by
solving the following least-squares subproblem:

min
x
lt(x) =

1

2
x>(σB−A)x− x>t Bx (26)

to certain sub-optimality. The algorithmic steps are described in Algorithm 4, where ĝt ≈
(σB−A)−1Bxt = arg minx lt(x).

5.1 Analysis

In order to analyze the convergence of the Riemannian gradient ascent for Problem (5),
we similarly turn to its equivalent form by making a change of variable y = B−1/2C−1/2B1/2x,
i.e., Problem (6). Let h(y) = 1

2‖y‖
2
B. The Riemannian gradient ascent update can be writ-

ten as

yt+1 = R(yt, αt∇̃h(yt))

= R(yt, αt(I− yty
>
t (σB−A))(σB−A)−1Byt),

17

Zhiqiang Xu and Ping Li

Algorithm 4 Shift-and-Invert Preconditioned Riemannian Gradient Generalized-
Eigensolver (SI-rgGenEIGS)

1: Input: matrix pair (A,B), shift σ, and initial x0, least-squares solver ls(Ã, b̃, x̃0) for

solving min
x̃

1

2
x̃>Ãx̃− b̃>x̃ with initial x̃0.

2: for t = 0, 1, 2, · · · do

3: ĝt ≈ ls(σB−A,Bxt,
x>t Bxt

x>t (σB−A)xt
xt)

4: ˜̂∇h(xt) = (I− xtx
>
t B)ĝt

5: choose a step size αt > 0

6: set xt+1 = xt+αt ˜̂∇h(xt)

‖xt+αt ˜̂∇h(xt)‖B
7: terminate if stopping criterion is met
8: end for
9: Output: xt

Algorithm 5 SI-rgGenEIGS for analysis

1: Input: matrix pair (A,B), shift σ, and initial y0, least-squares solver ls(Ã, b̃, x̃0) for

solving min
x̃

1

2
x̃>Ãx̃− b̃>x̃ with initial x̃0.

2: for t = 0, 1, 2, · · · do
3: ĝt ≈ ls(σB−A,Byt, ‖yt‖2Byt)

4: ˜̂∇h(yt) = (I− yty
>
t (σB−A))ĝt

5: choose a step size αt > 0

6: set yt+1 = yt+αt ˜̂∇h(yt)

‖yt+αt ˜̂∇h(yt)‖σB−A

7: terminate if stopping criterion is met
8: end for
9: Output: yt

‖yt‖B

corresponding to Algorithm 5. Note that for any v ∈ Vp,1 in (25),

B−1/2C−1/2B1/2v = B−1/2 · √µ1B
1/2v =

√
µ1v

is an optimal solution to Problem (6). Accordingly, the potential functions are

ϕ(B−1/2C1/2B1/2yt,Vp) = −2 log ‖V>p B1/2C1/2B1/2yt‖2

= min
v∈Vp,1

ϕ(B−1/2C1/2B1/2yt,v)

and
sin2 θ(B−1/2C1/2B1/2yt,Vp) = 1− ‖V>p B1/2C1/2B1/2yt‖22.

We have the following parallel theorem and lemmas. The proofs of the lemmas are
deferred to Appendix.

18

On the Riemannian Search for Eigenvector Computation

Theorem 7 Given the shift parameter σ = λ1 + c∆p for c ∈ [1
4 ,

3
2], Algorithm 5 with

fixed step-sizes and using accelerated gradient descent as the least-squares solver is able to
find one of the leading generalized eigenvectors, i.e., ϕ(B−1/2C1/2B1/2yt,Vp) < ε, after

T = O(log 1
ε) gradient steps, and the overall complexity is O(

√
κ(B) λ1

∆p
log 1

ε).

Lemma 8 For any x ∈ StB(n, 1), it holds for any q that

λ1 − x>Ax ≥ (λ1 − λq+1) sin2 θ(x,Vq).

Applying the lemma to B1/2C−1B1/2 for q = p, one gets for x ∈ StB(n, 1) that

µ1 − x>B1/2C−1B1/2x ≥ (τ1 − τp+1) sin2 θ(x,Vp) = τp sin2 θ(x,Vp).

Lemma 9 For any x ∈ StσB−A(n, 1), it holds that

‖∇̃h(y)‖2σB−A ≤ 4µ2
1 sin2 θ(B−1/2C1/2B1/2y,Vp). (27)

Lemma 10 Let

εt(y) = lt(y)− lt((σB−A)−1Byt) and ξt = ĝt − (σB−A)−1Byt.

• We have that

2εt(y) = ‖y − (σB−A)−1Byt‖2σB−A, 2εt(ĝt) = ‖ξt‖2σB−A,

2εt(‖yt‖2Byt) ≤ µ2
1 sin2 θ(B−1/2C1/2B1/2yt,Vp).

• If Nesterov’s accelerated gradient descent is adopted for solving Problem (11) with

warm-starter ‖yt‖2Byt, it can take O(
√
κB

λ1
∆p

log
εt(‖yt‖2Byt)

εt(ĝt)
) complexity to reach sub-

optimality εt(ĝt).

Proof of Theorem 7
We only give the sketch of the proof by following that of Theorem 2. For any v ∈ Vp,1,
consider

ϕ(B−1/2C1/2B1/2yt+1,v) = −2 log |v>B1/2C1/2B1/2yt+1|

= −2 log |v>B1/2C1/2B1/2(yt + αt ˜̂∇h(yt))|+ 2 log ‖yt + αt ˜̂∇h(yt)‖σB−A,

where, by Lemma 10, we have

˜̂∇h(yt) = (I− yty
>
t (σB−A))ĝt

= ∇̃h(yt) + (I− yty
>
t (σB−A))ξt.

For the first term above, we can write that

|v>B1/2C1/2B1/2(yt + αt ˜̂∇h(yt))|2

≥ |v>B1/2C1/2B1/2(yt + αt∇̃h(yt))|2

(1− 2αt
|v>B1/2C1/2B1/2(I− yty

>
t (σB−A))ξt|

|v>B1/2C1/2B1/2(yt + αt∇̃h(yt))|
). (28)

19

Zhiqiang Xu and Ping Li

Let

xt , B−1/2C1/2B1/2yt ∈ StB(n, 1). (29)

One then obtains that

v>B1/2C1/2B1/2∇̃h(yt)

= v>B1/2C1/2B1/2(σB−A)−1Byt − v>B1/2C1/2B1/2yty
>
t Byt

= v>B1/2C1/2B1/2B−1/2C−1B−1/2Byt − ‖yt‖2Bv>B1/2C1/2B1/2yt

= v>B1/2C−1C1/2B1/2yt − ‖yt‖2Bv>B1/2C1/2B1/2yt

= µ1v
>B1/2C1/2B1/2yt − ‖yt‖2Bv>B1/2C1/2B1/2yt

= (µ1 − ‖yt‖2B)v>B1/2C1/2B1/2yt

= (µ1 − x>t B1/2C−1B1/2xt)v
>Bxt

≥ τp sin2 θ(xt,Vp) · v>Bxt,

where the inequality is by Lemma 8. In addition,

|v>B1/2C1/2B1/2(I− yty
>
t (σB−A))ξt|

= |v>B1/2C1/2B1/2(I− yty
>
t (σB−A))(σB−A)−1/2(σB−A)1/2ξt|

≤ ‖v>B1/2C1/2B1/2(I− yty
>
t (σB−A))(σB−A)−1/2‖2‖ξt‖σB−A

= ‖v>B1/2C1/2B1/2(I− yty
>
t (σB−A))(σB−A)−1/2‖2︸ ︷︷ ︸
, Ω

‖ξt‖σB−A.

Since A and B are not commutative, Ω can be simplified in the following manner:

Ω2 = v>B
1
2 C

1
2 B

1
2 (I− yty

>
t (σB−A))(σB−A)−1(I− yty

>
t (σB−A))>B

1
2 C

1
2 B

1
2 v

= v>B
1
2 C

1
2 B

1
2 ((σB−A)−1 − yty

>
t − yty

>
t + yty

>
t (σB−A)yty

>
t)B

1
2 C

1
2 B

1
2 v

= v>B
1
2 C

1
2 B

1
2 ((σB−A)−1 − yty

>
t)B

1
2 C

1
2 B

1
2 v

= v>B
1
2 (I−C

1
2 B

1
2 yty

>
t B

1
2 C

1
2)B

1
2 v

= 1− (v>Bxt)
2,

where the second equality is due to yt ∈ StσB−A(n, 1), the fourth equality uses σB−A =

B
1
2 CB

1
2 , and the last one is by Equation (29). Thus, we can bound the previous first term

in Equation (28):

|v>B1/2C1/2B1/2(yt + αt ˜̂∇h(yt))|2

≥ (1 + αtτp sin2 θ(xt,Vp))
2(v>Bxt)

2(1− 2αt
‖ξt‖σB−A(1− (v>Bxt)

2)

(1 + αtτp sin2 θ(xt,Vp))|v>Bxt|
).

20

On the Riemannian Search for Eigenvector Computation

For the second term of the potential function, it holds that

‖yt + αt ˜̂∇h(yt)‖2σB−A = (yt + αt ˜̂∇h(yt))
>(σB−A)(yt + αt ˜̂∇h(yt))

= 1 + 2αty
>
t (σB−A) ˜̂∇h(yt) + α2

t ‖ ˜̂∇h(yt)‖2σB−A

= 1 + α2
t ‖ ˜̂∇h(yt)‖2σB−A,

and

‖ ˜̂∇h(yt)‖2σB−A
= ‖∇̃h(yt) + (I− yty

>
t (σB−A))ξt‖2σB−A

≤ 2‖ ˜̂∇h(yt)‖2σB−A + 2‖(σB−A)1/2(I− yty
>
t (σB−A))ξt‖22

≤ 2‖ ˜̂∇h(yt)‖2σB−A + 2‖(σB−A)1/2(I− yty
>
t (σB−A))(σB−A)−1/2‖2‖ξt‖2σB−A

= 2‖ ˜̂∇h(yt)‖2σB−A + 2‖I− (σB−A)1/2yty
>
t (σB−A)1/2‖2‖ξt‖2σB−A

≤ 2‖ ˜̂∇h(yt)‖2σB−A + 2‖ξt‖2σB−A.

Thus, the potential function can be bounded as follows:

ϕt+1 ≤ ϕt − 2 log(1 + αtτp sin2 θt)

+ log(1− 2αt
‖ξt‖σB−A tan θt

1 + αtτp sin2 θt
)

+2α2
t (‖ ˜̂∇h(yt)‖2σB−A + ‖ξt‖2σB−A).

The remaining proof can proceed exactly as in the proof of Theorem 2 to get the results,
using Lemmas 9-10.

5.2 CCA

Given two views of data, canonical correlation analysis is to find a low-dimensional data
representation of each view such that the cross-view correlation is maximized in the dimen-
sion reduced space (Hotelling, 1936). Formally, let X ∈ Rdx×n and Y ∈ Rdy×n be two views
of n objects4. Define auto-covariance and cross-covariance matrices as follows:

Cxx =
1

n
XX> + rxI,

Cyy =
1

n
YY> + ryI,

Cxy =
1

n
XY>,

4. Assume their rows are mean-centered.

21

Zhiqiang Xu and Ping Li

where rx, ry are regularization parameters for avoiding ill-conditioned matrices. Canonical
correlation ρ = (ρ1, · · · , ρd) between X and Y and corresponding pair of canonical vectors

{(φi, ψi) ∈ Rdx×1 × Rdy×1 : i = 1, · · · , d}

is recursively defined as ρi = (φi)
>Cxy(ψi), where d = min{dx, dy} and

(φi, ψi) ∈ arg max
φ>Cxxφ=1,φ>Cxxφj=0

ψ>Cyyψ=1,ψ>Cyyψj=0
j=1,··· ,i−1

φ>Cxyψ,

for i = 1, · · · , d. Clearly, ρ1 ≥ · · · ≥ ρd. In particular, the top-1 canonical subspace pair
(φ1, ψ1) corresponding to ρ1 constitutes one of solutions to the following succinct maximiza-
tion program:

ρ1 = max
‖φ‖Cxx=‖ψ‖Cyy=1

φ>Cxyψ.

By change of variable x = 1√
2

(
φ
ψ

)
and setting

A =

(
Cxy

C>xy

)
,B =

(
Cxx

Cyy

)
,

it is equivalent (Zhang, 2015) to Problem (4). Thus, we can call Algorithm 4 to get that

ψ(xT ,
1√
2

(
φ1, · · · , φp
ψ1, · · · , ψp

)
) <

ε

2
.

Suppose xT = (x1, · · · , xdx+dy)
> and denote

x
(1)
T = (x1, · · · , xdx)> and x

(2)
T = (xdx+1, · · · , xdx+dy)

>.

Letting

x̃
(1)
T =

x
(1)
T

‖x(1)
T ‖Cxx

and x̃
(2)
T =

x
(2)
T

‖x(2)
T ‖Cyy

, (30)

we then have that

max{sin2 θ(x̃
(1)
T , (φ1, · · · , φp)), sin2 θ(x̃

(2)
T , (ψ1, · · · , ψp))}

= max{1− ‖(φ1, · · · , φp)>Cxxx̃
(1)
T ‖

2
2, 1− ‖(ψ1, · · · , ψp)>Cyyx̃

(2)
T ‖

2
2}

< ε,

by the following lemma.

Lemma 11 If ψ(xT ,
1√
2

(
φ1, · · · , φp
ψ1, · · · , ψp

)
) < ε

2 , we then have that

max{sin2 θ(x̃
(1)
T , (φ1, · · · , φp)), sin2 θ(x̃

(2)
T , (ψ1, · · · , ψp))} < ε.

22

On the Riemannian Search for Eigenvector Computation

Proof Let

Φp = (φ1, · · · , φp), Ψp = (ψ1, · · · , ψp)).

It is easy to see that

sin2 θ(xT ,
1√
2

(
Φp

Ψp

)
) < ψ(xT ,

1√
2

(
Φp

Ψp

)
) <

ε

2
.

Noting that

‖B
1
2 x‖22 = ‖C

1
2
xxx

(1)
T ‖

2
2 + ‖C

1
2
yyx

(2)
T ‖

2
2 = 1

and by the Cauchy-Schwartz inequality, we have that

‖Φ>p Cxxx
(1)
T + Ψ>p Cyyx

(2)
T ‖2

≤ ‖Φ>p Cxxx
(1)
T ‖2 + ‖Ψ>p Cyyx

(2)
T ‖2 =

‖Φ>p Cxxx
(1)
T ‖2

‖C
1
2
xxx

(1)
T ‖2

‖C
1
2
xxx

(1)
T ‖2 +

‖Ψ>p Cyyx
(2)
T ‖2

‖C
1
2
yyx

(2)
T ‖2

‖C
1
2
yyx

(2)
T ‖2

≤

√√√√(
‖Φ>p Cxxx

(1)
T ‖2

‖C
1
2
xxx

(1)
T ‖2

)2 + (
‖Ψ>p Cyyx

(2)
T ‖2

‖C
1
2
yyx

(2)
T ‖2

)2 =

√
‖Φ>p Cxxx̃

(1)
T ‖22 + ‖Ψ>p Cyyx̃

(2)
T ‖22.

It hence holds that

‖Φ>p Cxxx̃
(1)
T ‖

2
2 + ‖Ψ>p Cyyx̃

(2)
T ‖

2
2 ≥ ‖Φ>p Cxxx

(1)
T + Ψ>p Cyyx

(2)
T ‖

2
2 ≥ 2(1− ε

2
) = 2− ε.

There must be ‖Φ>p Cxxx̃
(1)
T ‖22 ≥ 1 − ε, as ‖Ψ>p Cyyx̃

(2)
T ‖22 ≤ 1. Similarly, one gets that

‖Ψ>p Cyyx̃
(2)
T ‖22 ≥ 1− ε.

5.3 Shift by Lanczos for Matrix Pairs

We introduce here the Lanczos procedure for a matrix pair in order to produce an effective
upper bound on λ1 to be used as the shift parameter σ. The m-step Lanczos now can be
written as:

AQ = BQT + Bre>,

where Q ∈ StB(n,m) is a B-orthonormal basis of the m-dimensional Krylov subspace.
Thus, we have that

‖B−1/2AB−1/2 ·B1/2Q‖2 ≤ ‖B1/2QT‖2 + ‖B1/2re>‖2 = ‖T‖2 + ‖r‖B,

where ‖T‖2 + ‖r‖B will be an upper bound on λ1(B−1/2AB−1/2). The pseudo code of the
procedure is given in Algorithm 6, i.e., Algorithm 9.1 in Saad (2011), where the inverse-
matrix-vector multiplication is handled in the same way as before.

23

Zhiqiang Xu and Ping Li

Algorithm 6 Shift by Lanczos with Matrix Pairs

1: Input: matrix pair (A,B), random initial q, iteration number m, least-squares solver

ls(Ã, b̃, x̃0) for solving min
x̃

1

2
x̃>Ãx̃− b̃>x̃ with initial x̃0.

2: q← q
‖q‖B , r = Aq

3: η = r>q, r ≈ ls(B, r, ηq), r← r− ηq
4: T11 = η
5: for j = 2, · · · ,min{m, 20} do
6: ζ = ‖r‖B, q0 = q
7: q = 1

ζ r, r = Aq

8: η = r>q, r ≈ ls(B, r, ηq), r← r− ηq
9: r← r− ζq0

10: Tj,j−1 = ζ, Tj−1,j = ζ, Tj,j = η
11: end for
12: Output: σ = ‖T‖2 + ‖r‖B

6. Experiments

We now test our proposed eigensolvers on both synthetic and real data. Throughout ex-
periments, four iterations for the least-squares solvers are run to approximately solve those
least-squares subproblems. Nesterov’s accelerated gradient descent is used mostly for this
purpose. Each experiment uses the same random initials x0 across eigensolvers unless oth-
erwise stated. All the algorithms were implemented in matlab and running single threaded.
All the ground-truth information was obtained by matlab’s “eigs” function for evaluation
purpose only.

6.1 Synthetic Data

In this section, we focus on synthetic data starting from standard eigenvalue problems.
Following Shamir (2015), synthetic data is generated using A’s full eigenvalue decomposition
A = VnΣV>n , where Σ is diagonal. Specifically, it suffices to generate random orthogonal
matrix Vn and set Σ = diag(1, 1−∆1, 1− 1.1∆1, · · · , 1− 1.4∆1, g1/n, · · · , gn−6/n) with gi
being standard normal samples, i.e., gi ∼ N (0, 1). Here we set n = 1000 and σ = 1.005.
Values of ∆1 ∈ {5 × 10−3, 5 × 10−4} are used to generate two synthetic datasets. Three
eigensolvers are compared: Rimennian gradient descent solver (rgEIGS), shift-and-invert
preconditioned Rimennian gradient descent solver (SI-rgEIGS), and the shift-and-inverted
power method (SI-PM) (Garber et al., 2016). Step-sizes are constant and hand-tuned for
both rgEIGS and SI-rgEIGS. Two performance measures are used: relative function error
λ1−x>Ax

λ1
and potential sin2 θ(x,v1) = 1 − (x>v1)2 for x satisfying ‖x‖2 = 1. Smaller is

better for both measures.

Figure 1 and Figure 2 show the convergence curves of three algorithms on the two syn-
thetic datasets, in terms of the wall-clock time in seconds and counts of matrix vector mul-
tiplications (denoted as # A∗x). We can see that two shift-and-invert preconditioned meth-
ods, i.e., SI-rgEIGS and SI-PM, outperforms the rgEIGS that is unpreconditioned. This
demonstrates that the shift-and-invert preconditioning can accelerate Riemannian gradient

24

On the Riemannian Search for Eigenvector Computation

0 0.2 0.4 0.6

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

rgEIGS =1.84

rgEIGS =1.92

rgEIGS =2.00

SI-rgEIGS =0.015

SI-rgEIGS =0.018

SI-rgEIGS =0.021

SI-PM

0 500 1000 1500 2000

A*x

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1
0 0.4 0.8 1.2

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 v

1
)

0 500 1000 1500 2000

A*x

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 v

1
)

Figure 1: Algorithms for standard eigenvalue problems on synthetic data (∆1 = 5× 10−3).

0 1 2 3

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

0 4000 8000 12000

A*x

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

0 1 2 3

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 v

1
)

0 4000 8000 12000

A*x

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 v

1
)

rgEIGS =1.37

rgEIGS =1.99

rgEIGS =2.00

SI-rgEIGS =0.011

SI-rgEIGS =0.015

SI-rgEIGS =0.019

SI-PM

Figure 2: Algorithms for standard eigenvalue problems on synthetic data (∆1 = 5× 10−4).

25

Zhiqiang Xu and Ping Li

methods for solving standard eigenvalue problems as well. In addition, SI-rgEIGS can run
faster than SI-PM with proper step-sizes. This implies potential advantages of Riemannian
eigensolvers in practice.

Before turning to generalized eigenvalue problems, we would like to see the influence
of the shift parameter on the performance. Figure 3 reports the convergence of SI-rgEIGS
under different shift parameters and best-tuned step-sizes. It shows that smaller values of
σ can reap faster convergence, agreeing with the theory.

0 0.3 0.6 0.9

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

0 1000 2000 3000

A*x

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

=1.500, =1.84

=1.300, =1.04

=1.100, =0.32

=1.050, =0.16

=1.005, =0.02

0 0.3 0.6 0.9

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 v

1
)

0 1000 2000 3000

A*x

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 v

1
)

Figure 3: Influence of the shift parameter for SI-rgEIGS on synthetic data (∆1 = 5×10−3).

For generalized eigenvalue problems, we generate one synthetic dataset using A =
BVnΣV>nB, where Σ is set the same as before with ∆1 = 5×10−3. First, random orthogo-
nal matrix U ∈ Rn×n and diagonal matrix D are generated to get B = UDU>, where D =
diag(1 + g1/n, · · · , 1 + gn/n) with gi being standard normal samples. Then B-orthogonal
matrix Vn, i.e., VnBV>n = I, is generated. Finally, A is obtained. Three generalized
eigensolvers are compared accordingly: Rimennian gradient descent solver (rgGenEIGS),
shift-and-invert preconditioned Rimennian gradient descent solver (SI-rgGenEIGS), and the
shift-and-inverted power method (SI-PM-gen) (Wang et al., 2016). The potential now is
sin2 θ(x,v1) = 1 − (x>Bv1)2 for x satisfying ‖x‖B = 1. Following the same setting as for
the standard case, the performance of three algorithms is reported in Figure 4. Similar
patterns are observed.

26

On the Riemannian Search for Eigenvector Computation

0 0.2 0.4 0.6 0.8 1

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

0 1000 2000 3000 4000

A*x

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

0 0.2 0.4 0.6 0.8 1

Time (Sec.)

10
-15

10
-10

10
-5

10
0

s
in

2
(x

 ,
 v

1
)

rgGenEIGS =1.61

rgGenEIGS =1.97

rgGenEIGS =2.00

SI-rgGenEIGS =0.0088

SI-rgGenEIGS =0.0096

SI-rgGenEIGS =0.0104

SI-PM-gen

0 1000 2000 3000 4000

A*x

10
-15

10
-10

10
-5

10
0

s
in

2
(x

 ,
 v

1
)

Figure 4: Algorithms for generalized eigenvalue problems on synthetic data (∆1 = 5×10−3).

6.2 Real Data

We now demonstrate the performance of our algorithms on real data with ∆1 = 5× 10−3.

Table 1: Statistics of the matrix data.

Matrix n # nonzero entries

hangGlider5 16011 155246
Boeing35 30237 1450163
indef d 60000 299998
indef a 60008 255004
dimacs10 ct 67578 336352
dimacs10 nv 84538 416998
ch7 17640 1816920

6.2.1 Standard Case

We download real data from the sparse matrix collection5. The statistics of the matrix data
is given in Table 1. We compare our SI-rgEIGS (i.e., Algorithm 1) and SI-rgEIGS (F.A.)6

(i.e., Algorithm 2) with the SI-PM (Garber et al., 2016), accelerated power method (Xu

5. www.cise.ufl.edu/research/sparse/matrices/

6. F.A. stands for “for analysis”.

27

www.cise.ufl.edu/research/sparse/matrices/

Zhiqiang Xu and Ping Li

0 0.04 0.08 0.12

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

hangGlider5

SI-rgEIGS

SI-rgEIGS (F.A.)

SI-PM

APM-OM

Lanczos

0 0.2 0.4 0.6 0.8 1

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

Boeing35

0 2 4 6 8

Time (Sec.)

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

indef_d

0 100 200 300 400 500

A*x

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

0 200 400 600 800

A*x

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

0 5000 10000 15000

A*x

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

0 0.04 0.08 0.12

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 v

1
)

0 0.2 0.4 0.6 0.8 1

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 v

1
)

0 2 4 6 8

Time (Sec.)

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 v

1
)

0 100 200 300 400 500

A*x

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 v

1
)

0 200 400 600 800

A*x

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 v

1
)

0 5000 10000 15000

A*x

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 v

1
)

Figure 5: Algorithms for standard eigenvalue problems on real data - part I.

et al., 2018a) with optimal momentum β = λ2
2/4, i.e., APM-OM, for short, as well as

the symmetric Lanczos with thick restart (Watkins, 2007). All the three competitors are
eigensolvers with acceleration. Particularly, the performance of the Lanczos algorithm relies
heavily on a large amount of memory consumption which is significantly much larger than
those needed by other considered algorithms here. In order for comparisons to be as fair
as possible, we try to run the Lanczos algorithm with a minimum memory consumption7.

7. This minimum memory consumption is still larger than those required by other algorithms.

28

On the Riemannian Search for Eigenvector Computation

0 0.5 1 1.5 2 2.5

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

indef_a

0 0.2 0.4 0.6

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

dimacs10_ct

0 1 2 3 4

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

dimacs10_nv

SI-rgEIGS

SI-rgEIGS (F.A.)

SI-PM

APM-OM

Lanczos

0 500 1000 1500 2000

A*x

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

0 100 200 300 400

A*x

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

0 1000 2000 3000 4000

A*x

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

0 0.5 1 1.5 2 2.5

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 v

1
)

0 0.2 0.4 0.6

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 v

1
)

0 1 2 3 4

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 v

1
)

0 500 1000 1500 2000

A*x

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 v

1
)

0 100 200 300 400

A*x

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 v

1
)

0 1000 2000 3000 4000

A*x

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 v

1
)

Figure 6: Algorithms for standard eigenvalue problems on real data - part II.

The shift parameter is obtained using Algorithm 3 with parameter m = 9 and used for all
the shift-and-invert preconditioning based algorithms. To sidestep the difficult job of hand-
tuning step-sizes for Algorithms 1-2, we use the following simplified Riemannian Barzilai-
Borwein (BB) step-sizes (Barzilai and Borwein, 1988; Iannazzo and Porcelli, 2017),

αt =
‖xt − xt−1‖22

|(xt − xt−1)>(˜̂∇h(xt)− ̂∇̃h(xt−1))|
or
|(xt − xt−1)>(˜̂∇h(xt)− ̂∇̃h(xt−1))|

‖ ˜̂∇h(xt)− ̂∇̃h(xt−1)‖22
.

29

Zhiqiang Xu and Ping Li

with initial step-sizes set to α0 = 10−2. It is a non-monotone step-size scheme for which the
values of quality measures are not necessarily monotonically decreasing. Note that inexact

Riemannian gradients ˜̂∇h(xt) instead of exact ones ∇̃h(x) are used here. Nonetheless,
our SI-rgEIGS with this step-size scheme still performs well and significantly better than
the competitors in terms of the wall-clock time, and the SI-rgEIGS (F.A.) also outperform
the competitors in most cases, as observed in Figure 5 and Figure 6. In a few cases (i.e.,
hangGlider5 and Boeing35), Lanczos is ranked the best in terms of the count of matrix vector
multiplications. However, it is worth pointing out that a significant computational overhead
is unreasonably omitted in the Lanczos process, such as reorthogonalization, Rayleigh-Rits
procedure, and restart. That is why it is often not the case in terms of the running time.

0 0.5 1 1.5 2

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

SI-rgEIGS

SI-rgEIGS (F.A.)

SI-PM

APM-OM

Lanczos

0 200 400 600 800 1000

A*x

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

0 0.5 1 1.5 2

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 V

p
)

0 200 400 600 800 1000

A*x

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 V

p
)

Figure 7: Algorithms for standard eigenvalue problems on real data ch7.

Figure 7 for ch7 is a special case. The underlying matrix is A = RR> where R
corresponds to a real rectangular matrix from the sparse matrix collection. The multiplicity
of λ1 is p = 15 significantly greater than 1. Thus, the potential will be sin2 θ(x,Vp) =
1 − ‖V>p x‖22 for x satisfying ‖x‖2 = 1, instead of sin2 θ(x,v1). The advantages of our
SI-rgEIGS are observed again and the SI-rgEIGS (F.A.) works even better, compared to
others except for the Lanczos algorithm. On this special dataset, Lanczos achieves the
best performance in terms of the running time. This is because the solution space of this
low-rank dataset is relatively much larger than those of others such that the Lanczos with

30

On the Riemannian Search for Eigenvector Computation

the minimum memory consumption can also work well8. However, it is worth noting that
it still consumes more memory than other algorithms.

6.2.2 Generalized Case

We use two challenging real datasets9 for generalized eigenvalue problems. The challenges
spring from the clustered generalized eigenvalues which often result in small values of relative
eigengap. Statistics of the data are given in Table 2. We compare our SI-rgGenEIGS (i.e.,
Algorithm 4) and SI-rgGenEIGS (F.A.) (i.e., Algorithm 5) with the SI-PM-gen (Wang et al.,
2016). The shift parameter now is obtained using Algorithm 6 with parameter m = 18. The
BB step-sizes are used as well. As shown in Figure 8, our SI-rgGenEIGS and SI-rgGenEIGS
(F.A.) can work well while the SI-PM-gen fails.

Table 2: Statistics of the matrix pair data.

Matrix pair n nnz(A) nnz(B)

Lapla3 5795 136565 141779
Lapla5 18903 455337 489875

Table 3: Statistics of the CCA data

(X,Y) description dx dy n

JW11 acoustic and articulation measurements 273 112 30000
MNIST left and right halves of images 392 392 60000

We also test the algorithms on two CCA datasets that are given in Table 3. The regu-
larization parameters are set to rx = ry = 0.1. We compare our Algorithm SI-rgGenEIGS10

with the SI-PM-gen and CCALin (Ge et al., 2016). The SVRG is used as the least-
squares solver. It runs four epochs with each running n iterations as well as the step-size
ηx = 1

maxi ‖Xi‖22
or ηy = 1

maxi ‖Yi‖22
in our experiments, where Xi represents the i-th column

of X. The shift parameter is obtained using Algorithm 8 for which the parameters are set

as follows: ∆̃ = 0.06 (following Wang et al. (2016)), m1 = 2, and ε̃ = 1
3084(∆̃

18)m1−1. We
also use the output of Algorithm 8 to warm-start the three algorithms. The SI-rgGenEIS
adopts the BB step-size scheme with initial step-size α0 = 10−2. The following three quality
measures are used:

sin2 θ(xt,
1√
2

(
φ1

ψ1

)
), sin2 θ(x̃

(1)
t , φ1), and sin2 θ(x̃

(2)
t , ψ1),

8. To understand this rare case, we need to know how Lanczos essentially works. The Lanczos algorithm
constructs and repeatedly augments the Krylov subspace (Golub and Van Loan, 2013; Watkins, 2007)
which, further by periodical restarting, becomes increasingly close to top invariant subspaces of the given
matrix. The solution exists in the first sought invariant subspace and can be recovered by the Rayleigh-
Rits procedure on this subspace. Due to the low rank of the dataset and a large dimensionality of the
solution space, the demand on the memory consumption becomes lower accordingly.

9. http://faculty.smu.edu/yzhou/data/matrices.htm

10. Note that the postprocessing step (30) is required.

31

http://faculty.smu.edu/yzhou/data/matrices.htm

Zhiqiang Xu and Ping Li

0 0.5 1 1.5

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

Lapla3

SI-rgGenEIGS

SI-rgGenEIGS (F.A.)

SI-PM-gen

0 2 4 6 8 10

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

Lapla5

0 5000 10000 15000

A*x

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

0 0.5 1 1.5 2

A*x 10
4

10
-16

10
-12

10
-8

10
-4

10
0

(
1
 -

 x
T
A

x
)

 /

1

0 0.5 1 1.5

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 v

1
)

0 2 4 6 8 10

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 v

1
)

0 5000 10000 15000

A*x

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 v

1
)

0 0.5 1 1.5 2

A*x 10
4

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2
(x

 ,
 v

1
)

Figure 8: Algorithms for generalized eigenvalue problems on real data.

where x̃
(1)
t and x̃

(2)
t are defined similarly to Equation (30) and calculated during iterations

as is done at the postprocessing step for evaluation purpose. For brevity, denote

θ , θ(xt,
1√
2

(
φ1

ψ1

)
), θφ , θ(x̃

(1)
t , φ1), and θψ , θ(x̃

(2)
t , φ1).

32

On the Riemannian Search for Eigenvector Computation

0 4 8 12

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2

SI-rgGenEIGS

SI-PM-gen

CCALin

0 4 8 12

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2

0 4 8 12

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2

0 100 200 300 400

Passes

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2

0 100 200 300 400

Passes

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2

0 100 200 300 400

Passes

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2

Figure 9: Algorithms for generalized eigenvalue problems on CCA data JW11.

0 10 20 30 40

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2 SI-rgGenEIGS

SI-PM-gen

CCALin

0 10 20 30 40

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2

0 10 20 30 40

Time (Sec.)

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2

0 100 200 300 400

Passes

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2

0 100 200 300 400

Passes

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2

0 100 200 300 400

Passes

10
-16

10
-12

10
-8

10
-4

10
0

s
in

2

Figure 10: Algorithms for generalized eigenvalue problems on CCA data MNIST.

We plot the convergence curves of three algorithms in terms of the wall-clock time and the
number of passes over data for each measure in Figure 9 and Figure 10, where the wart-
starting time is excluded. As we can see, both SI-rgGenEIGS and SI-PM-gen achieve much

33

Zhiqiang Xu and Ping Li

faster convergence compared to the CCALin which runs inexact power iterations without
preconditioning. Furthermore, our SI-rgGenEIGS converges faster than the SI-PM-gen on
both datasets in terms of each measure.

7. Conclusion

This paper proposes the first (Riemannian) search method for eigenvector computation with
an optimal convergence rate. In order to achieve this rate, the shift-and-invert precondition-
ing is incorporated into the first-order Riemannian optimization framework and gives rise to
inexact Riemannian gradients. Compared to previous convergence rates of search methods,
it attains a quadratic improvement in terms of gap dependence. The novelty of our analysis
lies in dissecting an equivalent form of the problem where the Riemannian metric is given
by the shifted matrix. The analysis is extended to the problem of generalized eigenvector
computation as well. Empirically, we demonstrate that the proposed search method can
significantly outperform the state-of-the-art projection methods by leveraging the privilege
of search methods, that is, different step-size schemes. For future work, it is also interesting
to investigate other techniques for accelerating search methods for our problem.

References

Pierre-Antoine Absil, Robert E. Mahony, and Rodolphe Sepulchre. Optimization Algorithms
on Matrix Manifolds. Princeton University Press, 2008.

Kwangjun Ahn and Suvrit Sra. From nesterov’s estimate sequence to riemannian accel-
eration. In Proceedings of the Conference on Learning Theory (COLT), pages 84–118,
Virtual Event [Graz, Austria], 2020.

Zeyuan Allen-Zhu and Yuanzhi Li. Even faster SVD decomposition yet without agonizing
pain. In Advances in Neural Information Processing Systems (NIPS), pages 974–982,
Barcelona, Spain, 2016.

Zeyuan Allen-Zhu and Yuanzhi Li. Doubly accelerated methods for faster CCA and general-
ized eigendecomposition. In Proceedings of the 34th International Conference on Machine
Learning (ICML), pages 98–106, Sydney, Australia, 2017.

Raman Arora, Andrew Cotter, and Nati Srebro. Stochastic optimization of PCA with
capped MSG. In Advances in Neural Information Processing Systems (NIPS), pages
1815–1823, Lake Tahoe, NV, 2013.

Maria-Florina Balcan, Simon Shaolei Du, Yining Wang, and Adams Wei Yu. An improved
gap-dependency analysis of the noisy power method. In Proceedings of the 29th Conference
on Learning Theory (COLT), pages 284–309, New York, 2016.

Akshay Balsubramani, Sanjoy Dasgupta, and Yoav Freund. The fast convergence of in-
cremental PCA. In Advances in Neural Information Processing Systems (NIPS), pages
3174–3182, Lake Tahoe, NV, 2013.

34

On the Riemannian Search for Eigenvector Computation

Jonathan Barzilai and Jonathan M Borwein. Two-point step size gradient methods. IMA
Journal of Numerical Analysis, 8:141–148, 01 1988.

Silvere Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE Trans. Au-
tomat. Contr., 58(9):2217–2229, 2013.

Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and
Trends in Machine Learning, 8(3-4):231–357, 2015.

Jianqing Fan, Qiang Sun, Wen-Xin Zhou, and Ziwei Zhu. Principal component analysis for
big data. arXiv preprint arXiv:1801.01602, 2018.

Dan Garber and Elad Hazan. Fast and simple pca via convex optimization. arXiv preprint
arXiv:1509.05647, 2015.

Dan Garber, Elad Hazan, Chi Jin, Sham M. Kakade, Cameron Musco, Praneeth Netrapalli,
and Aaron Sidford. Faster eigenvector computation via shift-and-invert preconditioning.
In Proceedings of the 33nd International Conference on Machine Learning (ICML), pages
2626–2634, New York City, NY, 2016.

Rong Ge, Chi Jin, Sham M. Kakade, Praneeth Netrapalli, and Aaron Sidford. Efficient algo-
rithms for large-scale generalized eigenvector computation and canonical correlation anal-
ysis. In Proceedings of the 33nd International Conference on Machine Learning (ICML),
pages 2741–2750, New York City, NY, 2016.

Gene H Golub and Charles F Van Loan. Matrix Computations, forth edition. Johns Hopkins
University Press, 2013.

Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix decompositions.
SIAM Rev., 53(2):217–288, 2011.

Moritz Hardt and Eric Price. The noisy power method: A meta algorithm with applica-
tions. In Advances in Neural Information Processing Systems (NIPS), pages 2861–2869,
Montreal, Canada, 2014.

Trevor Hastie, Rahul Mazumder, Jason D. Lee, and Reza Zadeh. Matrix completion and
low-rank SVD via fast alternating least squares. J. Mach. Learn. Res., 16:3367–3402,
2015.

Uwe Helmke and John B Moore. Optimization and dynamical systems. Springer Science &
Business Media, 2012.

Harold Hotelling. Relations between two sets of variates. Biometrika, 28(3/4):321–377,
December 1936.

Bruno Iannazzo and Margherita Porcelli. The riemannian barzilai–borwein method with
nonmonotone line search and the matrix geometric mean computation. IMA Journal of
Numerical Analysis, 38(1):495–517, 2017.

35

Zhiqiang Xu and Ping Li

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In Advances in Neural Information Processing Systems (NIPS), pages
315–323, Lake Tahoe, NV, 2013.

John M. Lee. Introduction to smooth manifolds. Springer, 2012.

Qi Lei, Kai Zhong, and Inderjit S. Dhillon. Coordinate-wise power method. In Advances
in Neural Information Processing Systems (NIPS), pages 2056–2064, Barcelona, Spain,
2016.

Hongzhou Lin, Julien Mairal, and Zäıd Harchaoui. A universal catalyst for first-order
optimization. In Advances in Neural Information Processing Systems (NIPS), pages 3384–
3392, Montreal, Canada, 2015.

Huikang Liu, Weijie Wu, and Anthony Man-Cho So. Quadratic optimization with orthog-
onality constraints: Explicit lojasiewicz exponent and linear convergence of line-search
methods. In Proceedings of the 33nd International Conference on Machine Learning
(ICML), pages 1158–1167, New York City, NY, 2016.

Bojan Mohar and Svatopluk Poljak. Eigenvalues in combinatorial optimization. In Com-
binatorial and graph-theoretical problems in linear algebra, pages 107–151. Springer New
York, 1993.

Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger
and faster approximate singular value decomposition. In Advances in Neural Information
Processing Systems (NIPS), pages 1396–1404, Montreal, Canada, 2015.

Yurii Nesterov and Sebastian U. Stich. Efficiency of the accelerated coordinate descent
method on structured optimization problems. SIAM Journal on Optimization, 27(1):110–
123, 2017. doi: 10.1137/16M1060182. URL https://doi.org/10.1137/16M1060182.

Yurii E. Nesterov. Introductory Lectures on Convex Optimization - A Basic Course, vol-
ume 87 of Applied Optimization. Springer, 2004.

Yurii E. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization
problems. SIAM J. Optim., 22(2):341–362, 2012.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and
an algorithm. In Advances in Neural Information Processing Systems (NIPS), pages
849–856, Vancouver, Canada, 2001.

Beresford N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1998. ISBN 0-89871-402-8.

Yousef Saad. Numerical methods for large eigenvalue problems: revised edition. SIAM,
2011.

Ohad Shamir. A stochastic PCA and SVD algorithm with an exponential convergence rate.
In Proceedings of the 32nd International Conference on Machine Learning (ICML), pages
144–152, Lille, France, 2015.

36

https://doi.org/10.1137/16M1060182

On the Riemannian Search for Eigenvector Computation

Ohad Shamir. Fast stochastic algorithms for SVD and PCA: convergence properties and
convexity. In Proceedings of the 33nd International Conference on Machine Learning
(ICML), pages 248–256, New York City, NY, 2016a.

Ohad Shamir. Convergence of stochastic gradient descent for PCA. In Proceedings of the
33nd International Conference on Machine Learning (ICML), pages 257–265, New York
City, NY, 2016b.

U. Torbjorn Ringertz. Eigenvalues in optimum structural design. Institute for Mathematics
and Its Applications, 92:135, 1997.

Jialei Wang, Weiran Wang, Dan Garber, and Nathan Srebro. Efficient coordinate-wise lead-
ing eigenvector computation. In Proceedings of the Conference on Algorithmic Learning
Theory (ALT), pages 806–820, Lanzarote, Canary Islands, Spain, 2018.

Weiran Wang, Jialei Wang, Dan Garber, and Nati Srebro. Efficient globally convergent
stochastic optimization for canonical correlation analysis. In Advances in Neural Infor-
mation Processing Systems (NIPS), pages 766–774, Barcelona, Spain, 2016.

David S. Watkins. The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods.
Society for Industrial and Applied Mathematics, 2007.

Zaiwen Wen and Wotao Yin. A feasible method for optimization with orthogonality con-
straints. Math. Program., 142(1-2):397–434, 2013.

James H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, 1988.

Peng Xu, Bryan D. He, Christopher De Sa, Ioannis Mitliagkas, and Christopher Ré. Ac-
celerated stochastic power iteration. In Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS), pages 58–67, Playa Blanca, Lanzarote,
Canary Islands, Spain, 2018a.

Zhiqiang Xu and Ping Li. Towards practical alternating least-squares for CCA. In Advances
in Neural Information Processing Systems (NeurIPS), pages 14737–14746, Vancouver,
Canada, 2019.

Zhiqiang Xu and Ping Li. On the faster alternating least-squares for CCA. In Proceedings
of the 24th International Conference on Artificial Intelligence and Statistics (AISTATS),
pages 1621–1629, Virtual Event, 2021a.

Zhiqiang Xu and Ping Li. A comprehensively tight analysis of gradient descent for pca. In
Advances in Neural Information Processing Systems (NeurIPS), 2021b.

Zhiqiang Xu, Yiping Ke, and Xin Gao. A fast algorithm for matrix eigen-decompositionn.
In Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence
(UAI), Sydney, Australia, 2017.

Zhiqiang Xu, Xin Cao, and Xin Gao. Convergence analysis of gradient descent for eigenvec-
tor computation. In Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence (IJCAI), pages 2933–2939, Stockholm, Sweden, 2018b.

37

Zhiqiang Xu and Ping Li

Hongyi Zhang and Suvrit Sra. An estimate sequence for geodesically convex optimization. In
Proceedings of the Conference On Learning Theory (COLT), pages 1703–1723, Stockholm,
Sweden, 2018.

Hongyi Zhang, Sashank J. Reddi, and Suvrit Sra. Riemannian SVRG: fast stochastic opti-
mization on riemannian manifolds. In Advances in Neural Information Processing Systems
(NIPS), pages 4592–4600, Barcelona, Spain, 2016.

Zhihua Zhang. The singular value decomposition, applications and beyond. arXiv preprint
arXiv:1510.08532, 2015.

Yunkai Zhou, Yousef Saad, Murilo L. Tiago, and James R. Chelikowsky. Self-consistent-
field calculations using chebyshev-filtered subspace iteration. J. Comput. Physics, 219
(1):172–184, 2006.

38

On the Riemannian Search for Eigenvector Computation

Appendix

Algorithm 7 (Garber and Hazan, 2015; Wang et al., 2018) locate σ = λ1 + c∆p

1: Input: matrix A and lower estimate η satisfying c1∆p ≤ η ≤ c2∆p where 0 < c1 <
c2 ≤ 1, least-squares solver ls(Ã, b̃, x̃0).

2: ã0 = r
‖r‖2 where r ∈ Rn×1 and ri ∼ N (0, 1)

3: s = 0 and σs = 1 + η
4: repeat
5: a0 = ãs
6: for t = 1, 2, · · · ,m do
7: ât ≈ ls(σsI−A,at−1,

at−1

a>t−1(σsI−A)at−1
) and at = ât

‖ât‖2
8: end for
9: ãs+1 = am

10: w ≈ ls(σsI−A, ãs+1,
ãs+1

ã>s+1(σsI−A)ãs+1
)

11: ηs+1 = 1
2

1

ã>s+1w−
1
8

(1+
1−c2
c2

η)
and σs+1 = σs − 1

2ηs+1

12: s← s+ 1
13: until ηs ≤ η
14: Output: σ = σs and x0 = ãs

Algorithm 8 (Wang et al., 2016) locate σ = λ1 + c∆p

1: Input: matrix pair (A,B) and lower estimate η satisfying c1∆p ≤ η ≤ c2∆p where
0 < c1 < c2 ≤ 1, least-squares solver ls(Ã, b̃, x̃0).

2: ã0 = r
‖r‖B where r ∈ Rn×1 and ri ∼ N (0, 1)

3: s = 0 and σs = 1 + η
4: repeat
5: a0 = ãs
6: for t = 1, 2, · · · ,m do

7: ât ≈ ls(σsB−A,Bat−1,
a>t−1Bat−1

a>t−1(σsB−A)at−1
at−1) such that lt(ât) ≤ min lt(x) + ε̃

8: at = ât
‖ât‖2

9: end for
10: ãs+1 = am

11: w ≈ ls(σsB−A,Bãs+1,
ã>s+1Bãs+1

ã>s+1(σsB−A)ãs+1
ãs+1) such that ls(w) ≤ min ls(x) + ε̃

12: ηs+1 = 1

ã>s+1Bw−4
√
ε̃/∆̃

and σs+1 = σs − 1
2ηs+1

13: s← s+ 1
14: until ηs ≤ η
15: Output: σ = σs and x0 = ãs

39

Zhiqiang Xu and Ping Li

Proof of Lemma 3

Note that the full eigenvalue decomposition of A is

A = Vqdiag(λ1, · · · , λq)V>q + V⊥q diag(λq+1, · · · , λn)(V⊥q)>,

where V⊥q represents the orthogonal complement of Vq. We then have that

λ1 − x>Ax = λ1 − x>Vqdiag(λ1, · · · , λq)V>q x− x>V⊥q diag(λq+1, · · · , λn)(V⊥q)>x

≥ λ1 − λ1x
>VqV

>
q x− x>V⊥q diag(λq+1, · · · , λn)(V⊥q)>x

≥ λ1 sin2 θ(x,Vq)− λq+1x
>V⊥q (V⊥q)>x

= λ1 sin2 θ(x,Vq)− λq+1x
>(I−VqV

>
q)x

= (λ1 − λq+1) sin2 θ(x,Vq).

Proof of Lemma 4

Noting that x = C1/2y, we have

‖∇̃h(y)‖2C = ‖C1/2(I− yy>C)C−1y‖22
= ‖C1/2(I− yy>C)C−1/2C−1/2y‖22
= ‖(I− xx>)C−1/2y‖22 = ‖(I− xx>)C−1x‖22.

For any v ∈ Vp,1, it holds that

C−1 = µ1vv> + v⊥diag(µ2, · · · , µn)v>⊥.

Plugging in the above equation to the gradient, one gets

‖∇̃h(y)‖2C = ‖(I− xx>)C−1x‖22
= ‖x>⊥(µ1vv> + v⊥diag(µ2, · · · , µn)v>⊥)x‖22
≤ 2µ2

1‖x>⊥v‖2 + 2µ2
2‖v>⊥x‖2 = 2µ2

1(1− (x>v)2) + 2µ2
2(1− (v>x)2)

≤ 4µ2
1(1− (x>v)2).

Since the above inequality holds for any v ∈ Vp,1, we get

‖∇̃h(y)‖2C ≤ 4µ2
1 min
v∈Vp,1

(1− (x>v)2) = 4µ2
1 sin2 θ(x,Vp)

= 4µ2
1 sin2 θ(C1/2y,Vp).

Proof of Lemma 5

40

On the Riemannian Search for Eigenvector Computation

• First note that

lt(C
−1yt) =

1

2
y>t C−1C−1C−1yt − y>t C−1yt = −1

2
ytC

−1yt.

Then we have

1

2
‖y −C−1yt‖2C =

1

2
(y −C−1yt)

>C(y −C−1yt)

=
1

2
y>Cy − y>t C−1Cy +

1

2
y>t C−1CC−1yt

=
1

2
y>Cy − y>t y +

1

2
y>t C−1yt

= lt(y)− lt(C−1yt) = εt(y).

We next show that 2εt(‖yt‖22yt) ≤ µ2
1 sin2 θ(C1/2yt,Vp). Let r(γ) = εt(γyt). Noting

that yt ∈ StC(n, 1), we have

r(γ) = lt(γyt)− lt(C−1yt)

=
γ2

2
y>t Cyt − γy>t yt − lt(C−1yt)

=
γ2

2
− γ‖yt‖22 − lt(C−1yt),

which is minimized at the root of r′(γ) = 0, i.e., γ = ‖yt‖22. Thus, we have

εt(‖yt‖22yt) ≤ lt(µ1yt)− lt(C−1yt)

=
µ2

1

2
y>t Cyt − µ1y

>
t yt +

1

2
y>t C−1yt

=
µ2

1

2

n∑
i=1

(v>i yt)
2

µi
− µ1

n∑
i=1

(v>i yt)
2 +

1

2

n∑
i=1

µi(v
>
i yt)

2

=
n∑
i=1

(
µ2

1

2µi
− µ1 +

1

2
µi)(v

>
i yt)

2 =
n∑
i=1

(µ1 − µi)2

2µi
(v>i yt)

2

=

n∑
i=1

(µ1 − µi)2

2µi
(v>i C−1/2C1/2yt)

2 =
n∑
i=1

(µ1 − µi)2

2µi
(
√
µiv
>
i C1/2yt)

2

=
1

2

n∑
i=1

(µ1 − µi)2(v>i C1/2yt)
2 =

1

2

n∑
i>p

(µ1 − µi)2(v>i C1/2yt)
2

≤ µ2
1

2

n∑
i=p+1

(v>i C1/2yt)
2 =

µ2
1

2
(1−

p∑
i=1

(v>i C1/2yt)
2)

=
µ2

1

2
sin2 θ(C1/2yt,Vp).

41

Zhiqiang Xu and Ping Li

• The complexity can be obtained by noting that the Hessian of lt(y) satisfies

1

µ1
I 4 Hessian(lt(y)) = C 4

1

µn
I.

That is, lt(y) is 1
µ1

-strongly convex and 1
µn

-smooth. Thus, Nesterov’s accelerated
gradient descent (Nesterov, 2004; Bubeck, 2015) takes

O(

√√√√ 1
µn
1
µ1

log
lt(‖yt‖22yt)− lt(C−1yt)

εt(Ĉ−1yt)
) = O(

√
λ1

∆ε
log

εt(‖yt‖22yt)
εt(Ĉ−1yt)

)

complexity for the 1
µ1

-strongly convex and 1
µn

-smooth function lt(y) and

O(‖‖yt‖22yt −C−1yt‖2

√√√√ 2
µn

εt(Ĉ−1yt)
) = O(‖(‖yt‖22I−C−1)yt‖2

√
λ1

εt(Ĉ−1yt)
)

complexity for the convex and 1
µn

-smooth function lt(y) to reach sub-optimality

εt(Ĉ−1yt), where we have used that

1

µ1
= σ − λ1 = λ1 + c∆p − λ1 = c∆p,

1

µn
= σ − λn ≤ σ = λ1 + c(λ1 − λp+1) ≤ (1 + c)λ1.

Proof of Lemma 8
Note that the full generalized eigenvalue decomposition of (A,B) is

A = B(Vqdiag(λ1, · · · , λq)V>q + V⊥q diag(λq+1, · · · , λn)(V⊥q)>)B, (31)

where V⊥q represents the orthogonal complement of Vq in the B-norm, i.e., V>q BV⊥q = 0.
We then have that

λ1 − x>Ax = λ1 − x>BVqdiag(λ1, · · · , λq)V>q Bx

−x>BV⊥q diag(λq+1, · · · , λn)(V⊥q)>Bx

≥ λ1 − λ1x
>BVqV

>
q Bx− x>BV⊥q diag(λq+1, · · · , λn)(V⊥q)>Bx

≥ λ1 sin2 θ(x,Vq)− λq+1x
>BV⊥q (V⊥q)>Bx

= λ1 sin2 θ(x,Vq)− λq+1x
>B1/2(I−B1/2VqV

>
q B1/2)B1/2x

= (λ1 − λq+1) sin2 θ(x,Vq).

42

On the Riemannian Search for Eigenvector Computation

Proof of Lemma 9

Noting in Equation (29) that for x ∈ StB(n, 1) the relation

y = B−1/2C−1/2B1/2x ∈ StσB−A(n, 1)

holds, we have

‖∇̃h(y)‖2σB−A
= ‖((σB−A)−1 − yy>)By‖2σB−A
= y>B((σB−A)−1 − yy>)>(σB−A)((σB−A)−1 − yy>)By

= y>B((σB−A)−1 − yy> − yy> + yy>(σB−A)yy>)By

= y>B((σB−A)−1 − yy>)By

= x>B1/2C−
1
2 B−

1
2 B(B−

1
2 C−1B−

1
2 −B−

1
2 C−

1
2 B

1
2 xx>B

1
2 C−

1
2 B−

1
2)BB−

1
2 C−

1
2 B

1
2 x

= x>B1/2C−
1
2 (C−1 −C−

1
2 B

1
2 xx>B

1
2 C−

1
2)C−

1
2 B

1
2 x

= x>B1/2C−1(I−B
1
2 xx>B

1
2)C−1B

1
2 x

= ‖(I−B
1
2 xx>B

1
2)C−1B

1
2 x‖22.

For any v ∈ Vp,1, by Equation (31) it holds that

C−1 = (σI−B−
1
2 AB−

1
2)−1

= µ1B
1
2 vv>B

1
2 + B

1
2 v⊥diag(µ2, · · · , µn)v>⊥B

1
2 . (32)

Plugging in the above equation to the gradient, one gets

‖∇̃h(y)‖2σB−A = ‖(I−B
1
2 xx>B

1
2)C−1B

1
2 x‖22

= ‖x>⊥B
1
2 (µ1B

1
2 vv>B

1
2 + B

1
2 v⊥diag(µ2, · · · , µn)v>⊥B

1
2)B

1
2 x‖22

≤ 2µ2
1‖x>⊥Bv‖2 + 2µ2

2‖v>⊥Bx‖2

= 2µ2
1(1− (x>Bv)2) + 2µ2

2(1− (v>Bx)2)

≤ 4µ2
1(1− (x>Bv)2).

Since the above inequality holds for any v ∈ Vp,1, we get that

‖∇̃h(y)‖2σB−A ≤ 4µ2
1 min
v∈Vp,1

(1− (x>Bv)2) = 4µ2
1 sin2 θ(x,Vp)

= 4µ2
1 sin2 θ(B−1/2C1/2B1/2y,Vp).

Proof of Lemma 10

43

Zhiqiang Xu and Ping Li

• Noting that

lt((σB−A)−1Byt)

=
1

2
y>t B(σB−A)−1(σB−A)(σB−A)−1Byt − y>t B(σB−A)−1Byt

= −1

2
y>t B(σB−A)−1Byt,

we have that

1

2
‖y − (σB−A)−1Byt‖2C

=
1

2
(y − (σB−A)−1Byt)

>(σB−A)(y − (σB−A)−1Byt)

=
1

2
y>(σB−A)y − y>t By +

1

2
y>t B(σB−A)−1Byt

= lt(y)− lt((σB−A)−1Byt) = εt(y).

Let r(γ) = εt(γyt). Since yt ∈ StσB−A(n, 1), it holds that

r(γ) = lt(γyt)− lt((σB−A)−1Byt)

=
γ2

2
y>t (σB−A)yt − γy>t Byt − lt((σB−A)−1Byt)

=
γ2

2
− γ‖yt‖2B − lt((σB−A)−1Byt).

r(γ) is minimized at the root of r′(γ) = 0, i.e., γ = ‖yt‖2B, and thus we have

εt(‖yt‖2Byt) ≤ lt(µ1yt)− lt((σB−A)−1Byt)

=
µ2

1

2
y>t (σB−A)yt − µ1y

>
t Byt +

1

2
y>t B(σB−A)−1Byt

=
µ2

1

2
y>t B

1
2 CB

1
2 yt − µ1y

>
t Byt +

1

2
y>t B

1
2 C−1B

1
2 yt.

By Equations (31)-(32), it holds that

C−1 = B
1
2

n∑
i=1

µiviv
>
i B

1
2 .

44

On the Riemannian Search for Eigenvector Computation

Then

εt(‖yt‖2Byt) ≤
µ2

1

2

n∑
i=1

(v>i Byt)
2

µi
− µ1

n∑
i=1

(v>i Byt)
2 +

1

2

n∑
i=1

µi(v
>
i Byt)

2

=

n∑
i=1

(
µ2

1

2µi
− µ1 +

1

2
µi)(v

>
i Byt)

2 =

n∑
i=1

(µ1 − µi)2

2µi
(v>i Byt)

2

=

n∑
i=1

(µ1 − µi)2

2µi
(v>i B1/2C−1/2C1/2B1/2yt)

2

=
n∑
i=1

(µ1 − µi)2

2µi
(
√
µiv
>
i B1/2C1/2B1/2yt)

2

=
1

2

n∑
i=1

(µ1 − µi)2(v>i B1/2C1/2B1/2yt)
2 =

1

2

n∑
i>p

(µ1 − µi)2(v>i B1/2C1/2B1/2yt)
2

≤ µ2
1

2

n∑
i=p+1

(v>i B1/2C1/2B1/2yt)
2 =

µ2
1

2
(1−

p∑
i=1

(v>i BB−1/2C1/2B1/2yt)
2)

=
µ2

1

2
sin2 θ(B−1/2C1/2B1/2yt,Vp).

• It suffices for us to bound the extreme eigenvalues of σB −A for the complexity, as
the Hessian of lt(y) satisfies

λmin(σB−A)I 4 Hessian(lt(y)) = σB−A 4 λmax(σB−A)I.

We can write that

λ(σB−A) =
1

λ((σB−A)−1)
=

1

λ(B−
1
2 C−1B−

1
2)

≤ 1

λmin(B−
1
2)λmin(C−1)λmin(B−

1
2)

=
λmax(B)

λmin(C−1)
=
λmax(B)

µd

and

λ(σB−A) =
1

(σB−A)−1)
=

1

λ(B−
1
2 C−1B−

1
2)

≥ 1

λmax(B−
1
2)λmax(C−1)λmax(B−

1
2)

=
λmin(B)

λmax(C−1)
=
λmin(B)

µ1
.

45

Zhiqiang Xu and Ping Li

Thus, the ratio of the smooth parameter to the strong convexity parameter for lt(y)
can be bounded by

λmax(B)
µd

λmin(B)
µ1

= κ(B)
λ1

∆p
.

46

	Introduction
	Related Work
	Riemannian Geometry and Optimization
	Standard Eigenvector Computation
	Algorithm
	Analysis
	Potential Functions
	Main Results

	Shift by Lanczos

	Generalized Eigenvector Computation
	Analysis
	CCA
	Shift by Lanczos for Matrix Pairs

	Experiments
	Synthetic Data
	Real Data
	Standard Case
	Generalized Case

	Conclusion

