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Abstract
In this paper, we propose an analytical method for performing tractable approximate
Gaussian inference (TAGI) in Bayesian neural networks. The method enables the analytical
Gaussian inference of the posterior mean vector and diagonal covariance matrix for weights
and biases. The method proposed has a computational complexity of O(n) with respect
to the number of parameters n, and the tests performed on regression and classification
benchmarks confirm that, for a same network architecture, it matches the performance of
existing methods relying on gradient backpropagation.
Keywords: Bayesian, Neural Networks, TAGI, Gaussian Inference, Approximate Inference,
Gaussian multiplicative approximation

1. Introduction

The estimation of weight and bias in neural networks is currently dominated by approaches
employing point estimates when learning model parameters using gradient backpropagation
(Rumelhart et al., 1986). Although these approaches allow for a state-of-the-art performance
in many domains of applications, it is recognized that they fall short in situations where,
for instance, datasets are small, when the task requires quantifying the uncertainty about
the prediction made, and for continual learning (Ghahramani, 2015; Kendall and Gal, 2017;
Farquhar and Gal, 2019). In general, the Bayesian approach for inferring the parameters’
posterior is known to be theoretically better suited than a point estimate (Goodfellow et al.,
2016; Murphy, 2012). This is in theory because applying exact Bayesian inference on large
neural networks has been considered to be intractable (Goodfellow et al., 2016).

In this paper, we propose a tractable approximate Gaussian inference method (TAGI) for
Bayesian neural networks. The approach, which does not rely on backpropagation, allows for
an analytical treatment of uncertainty for the weight and bias parameters. TAGI relies on two
key steps: The first one consists in the analytical forward uncertainty propagation through the
network using moment generating functions and a local linearization of activation functions.
This step allows computing the expected values, covariances, and cross covariances required
for performing analytical inference. The second step leverages the Gaussian assumptions
throughout the network in order to perform the analytical Gaussian inference for both the
hidden units and parameters. The key to the computational tractability of TAGI is to take
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advantage of the inherent conditional independence embedded in neural network in order to
perform both the forward propagation of uncertainty as well as the Gaussian inference in a
recursive layer-wise manner. This allows reaching a storage as well as the computational
complexity that is linear with respect to the number of weights in the network.

The paper is organized as follows: Section 2 first introduces the Gaussian multiplication
approximation (GMA) for propagating uncertainty in feedforward neural networks, and
second, it presents how to perform tractable Gaussian inference for the posterior mean vector
and diagonal covariance for the weight and bias parameters. Section 3, positions TAGI in the
context of the related work which has already tackled the problem of approximate inference
in Bayesian neural networks. Finally, Section 4 validates the performance of the approach on
benchmark regression problems and on the MNIST classification problem.

2. Gaussian Approximation for BNN

This section first introduces the nomenclature for Gaussian feedforward neural network, then
we present how to use matrix operations in order to propagate uncertainty through it, and
finally, we present how to perform tractable approximate Gaussian inference.

2.1 Gaussian Feedforward Neural Network

Let us consider a vector of input covariates X = [X1 X2 . . . XX]
ᵀ such that x ∈ RX that are

described by random variables in order to take into account errors potentially arising from
observation uncertainties, and then suppose we have a vector of Y observed system responses
Y = [Y1 Y2 . . . YY]

ᵀ such that y ∈ RY. Note that throughout the paper, the number of
variables in vectors or sets are denoted by typewriter typefaces such as X and Y. The details
of the nomenclature for the feedforward neural network (FNN) employed in this paper is
presented in Figure 9 from Appendix A. The relations between observed system responses
and its covariates are described by the observation model

y = z(O) + v, (1)

where the vector of hidden variables z(O) corresponds to the output layer of a neural network
on which observation errors v are added such that V ∼ N (v; 0,ΣV ). In common cases, ΣV

is a diagonal covariance matrix assuming that observation errors are independent from each
other, and further, we assume that ΣV is independent of x. The treatment heteroschedastic
problems with a closed-form analytical inference for σV (x) is outside the scope of this paper
and is not further treated. We can model the relations between covariates x and output
hidden variables z(O) using a feedforward neural network consisting of L hidden layers each
having A activation units a(j)i and hidden variables z(j)i , ∀i = {1, 2, · · · , A}, where an activation
unit a(j)i is a non-linear transformation of its associated hidden variable, a(j)i = σ(z

(j)
i ). Note

that for the sake of simplifying the notation and explanations, throughout the paper, we
consider that all hidden layers have the same number of units A. We go from the input layer
containing the covariates x, to the ith hidden variable on the first hidden layer, using an
affine function of x so that

z
(1)
i = w

(0)
i,1 x1 + w

(0)
i,2 x2 + · · ·+ w

(0)
i,X xX + b

(0)
i . (2)
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Equation 2 involves the product of weights w(0)
i,j and covariates xj with an additive bias

term b
(0)
i . In the context of a neural network, the process of learning consists in estimating

these weights and biases. Here, we consider that weight and bias parameters are described
by random variables so that our joint prior for {X,W (0),B(0)} is a multivariate Gaussian.
Although we know this distribution assumption may not be suited in all situations, we restrict
ourself to the Gaussian setup.

In Equation 2, we note that the product of Gaussian random variables is not Gaussian;
Despite this, we propose to employ moment generating functions in order to compute
analytically its expected value, its variance, as well as the covariance between the product of
Gaussian random variables and any other Gaussian random variable.

For instance, letX = [X1 . . . X4]ᵀ ∼ N (x;µ,Σ) be a generic vector of Gaussian random
variables, where µ is the mean vector and Σ is the covariance matrix, then the following
statements hold,

E[X1X2]=µ1µ2 + cov(X1, X2), (3)

cov(X3, X1X2)=cov(X1,X3)µ2+cov(X2,X3)µ1, (4)

cov(X1X2, X3X4)=cov(X1, X3)cov(X2, X4) + cov(X1, X4)cov(X2, X3) (5)

+cov(X1, X3)µ2µ4 + cov(X1, X4)µ2µ3

+cov(X2, X3)µ1µ4 + cov(X2, X4)µ1µ3,

var(X1X2) = σ21σ
2
2 + cov(X1, X2)

2 + 2cov(X1, X2)µ1µ2 + σ21µ
2
2 + σ22µ

2
1. (6)

The development of statements (3–6) is presented in the Appendix B. In this paper, we
define the Gaussian multiplication approximation as the approximation of the probability
density function (PDF) for any product term XiXj by a Gaussian whose first two moments
are defined by Equations (3–6). With this approximation, we can now employ XiXj along
with the random state vector X in affine functions. This allows propagating the uncertainty
from the input covariates and prior knowledge on weight and bias parameter through a FNN.

Figure 1a illustrates the passage from the activation units A, to a subsequent hidden unit
Z+
i . Figures 1b–d compare the true theoretical PDFs with those obtained using the GMA

for different numbers of activation units A, under the assumption that both Ak ∼ N (ak; 0, 1),
Wi,k ∼ N (wi,k; 0, 1) and bi = 0. This shows that even if the GMA is a crude approximation
for the true PDF resulting from the product of two Gaussians, when several of these

a1

a2

...

aA

z+i

(a) a→ z+1

z+

f
(z

+
)

True
GMA

(b) A = 1

z+

f
(z

+
)

(c) A = 5

z+

f
(z

+
)

(d) A = 10

Figure 1: Illustration of the effect of the GMA on the PDF of a hidden unit Z+
i as a function

of the number of activation units A on the preceding hidden layer. The blue curve represents
the true PDF estimated using sampling and the red one, the PDF resulting from the GMA.
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independent product terms are added, the result quickly tends to a Gaussian-like PDF.
In order for the central limit theorem (CLT) to apply, all activation units Ak must be
independent. We can demonstrate the validity of this hypothesis by revisiting the same
example while computing the correlation between pairs of hidden units {Z+

i , Z
+
j } on the

subsequent hidden layer. With this example, we want to show that starting from a hidden
layer having A independent activation units, pairs of hidden units on the subsequent layer are
also independent if A is sufficiently large, despite the fact that the hidden units {Z+

i , Z
+
j }

depend on the same activation units on the previous layer. Figure 2 presents the expected
value, and the one standard deviation confidence region for ρ(Z+

i , Z
+
j ), obtained from 1000

weight value realizations. The wide confidence region associated with small numbers of units,
e.g. A < 10, confirms that for most realizations, the dependence on the same activation units
will introduce a strong correlation between the hidden units of the subsequent layer. On
the other hand, for larger A values, the narrow confidence region centred around 0 confirms
that for any sets of weight realizations, the hidden units on the subsequent layer remain
independent. This shows that starting from independent activation units, any pairs of hidden
units on the following layer are also approximately independent. Because neural networks
employ the same operations recursively over multiple layers, this independence assumption for
the hidden units remains valid throughout the network. The theoretical example presented
here is a simplified version of a real neural network as weights are randomly sampled; For real
neural networks, Wu et al. (2019) have confirmed empirically that some form of CLT hold
for the hidden units during training as the independence hypothesis remained approximately
valid between layers. In Section 4.1 we further demonstrate on a real problem that if A is
large enough, the approximate independence of the hidden units within layers remains valid.

100 101 102 103
−1

0

1

A

ρ
(Z

+ i
,Z

+ j
) E[ρ]± σ
E[ρ]

Figure 2: Evolution of the correlation ρ(Z+
i , Z

+
j ) as a function of the number of activation

units A on the preceding layer. The expected value and the confidence region corresponding
to one standard deviation are presented for 1000 random realizations of weight values.

The passage from the hidden variables Z, to their corresponding activation unitsA cannot
be done analytically using non-linear activation functions. In order to work around this
difficulty, we propose to employ functions that are locally linearized at E[Z] = µZ , analogously
to what is done for the extended Kalman filter (Haykin, 2004). Locally linearized activation
functions σ̃(·) allow calculating analytically the expected vector E[A], the covariance cov(A),
as well as the cross-covariance between activation units and the weight and bias cov(A,θ),
where θ = {W ,B}. Figure 3 presents an example for the linearization of a softplus activation
function. Note that a locally linearized activation function is not equivalent to having a linear
activation function because for each instance of input covariates xi, the linearization is done
at a different value µz, which maintains the non-linear dependency between the input xi and
the output yi. This linearization procedure is an approximation of the change of variable
rule (Murphy, 2012, §2.6.2) that would be required to obtain the true theoretical PDF for
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Figure 3: Examples of local linearization for a softplus activation function σ(·) at the expected
value E[Z] for Z ∼ N (z;µZ , 0.252) where µZ = {−1, 0, 1}.

the output f(a) from the input f(z). Although it is known that this approach may lead to
poor approximation (Wan and Merwe, 2000) when there is a non-linearity in a region high
probability density, we choose to employ this linearization procedure because of its minimal
computational cost which still allows, as it will be shown in Section 4, matching the state-
of-the-art performance on equivalent neural networks architectures using backpropagation.
Finally, note that the linearization procedure is compatible with all the common activation
functions such as the ReLU, tanh, logistic sigmoid, etc.

The transition from the knowledge of the jth layer’s activation units to an activation unit
on the j+1 layer is defined by a(j+1)

i = σ̃(z
(j+1)
i ) = σ̃(w

(j)
i,1 a

(j)
1 +w

(j)
i,2 a

(j)
2 + · · ·+w(j)

i,A a
(j)
A +b

(j)
i ).

Analogously, we go from the last hidden layer to the output layer by following

z
(O)
i = w

(L)
i,1 a

(L)
1 + w

(L)
i,2 a

(L)
2 + · · ·+ w

(L)
i,A a

(L)
A + b

(L)
i ,

for all i ∈ {1, 2, · · · , Y}. All these steps define what we call the approximate Gaussian
feedforward neural network (AG-FNN), which can be summarized by the input-output
relation {

µ
(O)
Z ,Σ

(O)
Z ,Σ

(O)
Zθ

}
= AG-FNN (µX ,ΣX ,µθ,Σθ) . (7)

For the regression setup where y ∈ RY, the observed model output is directly defined
by the last layer as described in Equation 1 so that N (y;µY ,ΣY ), where, µY = µ

(O)
Z , and

ΣY = Σ
(O)
Z + ΣV .

For the classification setup, we need to convert the output y ∈ RY into a class observation
y(C) ∈ {1, 2, · · · , K}. Note that using the traditional Softmax output layer would not allow
for a closed-form solution for propagating and marginalizing the uncertainty associated with
the output Y . Instead, we propose to employ a hierarchical binary decomposition similar to
what was employed by Morin and Bengio (2005). The details regarding this formulation are
presented in Appendix C.
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2.2 Matrix operations for AG-FNN

In this section, we describe how the steps involved in the evaluation of Equation 7 can be
performed using matrix operations. Our first hypothesis supposes that the knowledge for
covariates, hidden units, as well as the weights and biases, is described by Gaussian random
variables. We can then generalize the operations for going from the A activation units at a
layer j to the subsequent A hidden units at layer j + 1 using matrix operations so that

Z
(j+1)
1

Z
(j+1)
2
...

Z
(j+1)
A


︸ ︷︷ ︸
Z(j+1)

=


W

(j)
1,1 W

(j)
1,2 · · · W

(j)
1,A

W
(j)
2,1 W

(j)
2,2 · · · W

(j)
2,A

...
...

. . .
...

W
(j)
A,1 W

(j)
A,2 · · · W

(j)
A,A


︸ ︷︷ ︸

W (j)

×


A

(j)
1

A
(j)
2
...

A
(j)
A


︸ ︷︷ ︸
A(j)

+


B

(j)
1

B
(j)
2
...

B
(j)
A


︸ ︷︷ ︸
B(j)

. (8)

Our prior knowledge for activation units is described by A(j) ∼ N (a(j);µ
(j)
A ,Σ

(j)
A ) as well

as by the cross-covariance cov(θ,A(j)) between the activation units and the vector θ ∈ RP

containing all the weight and bias parameters defined for all the layers in the network.
We can re-write Equation 8 by breaking down the matrix-vector product W ×A, into an
operation-wise equivalent vector (WA) ∈ RA2×1 for which the moments of the product terms
can be pre-computed; We can employ Equation 3 in order to compute the expected vector
µ
(j)
WA ≡ E[(WA)(j)], Equation 5–6 for the covariance matrix Σ

(j)
WA ≡ cov

(
(WA)(j)

)
∈ RA2×A2

associated with the product terms (WA)(j) ∈ RA2 , and Equation 4 for the cross-covariance
matrix Σ

(j)
WAθ ≡ cov

(
(WA)(j),θ

)
∈ RA2×P. We then introduce two new deterministic

matrices F
(j)
wa ∈ {0, 1}A×A2 and F

(j)
b ∈ {0, 1}A×A, which allow rewriting Equation 8 as a

system of linear equations involving the product-terms vector (WA),

Z(j+1) = F
(j)
wa(WA)(j) + F

(j)
b B

(j). (9)

Note that F
(j)
wa and F

(j)
b are non-unique as their specific definition depend on the ordering of

variables in the problem. An example of structure for these matrices is presented in Appendix
D. Using the properties for linear functions of Gaussian random variables, we obtain

µ
(j+1)
Z ≡ E[Z(j+1)]=F

(j)
waµ

(j)
WA+F

(j)
b µ

(j)
B ,

Σ
(j+1)
Z ≡ cov(Z(j+1))=F

(j)
waΣ

(j)
WAF

(j)ᵀ
wa + F

(j)
b Σ

(j)
B F

(j)ᵀ
b + 2F

(j)
wacov(WA(j),B(j))F

(j)ᵀ
b ,

Σ
(j+1)
Zθ ≡ cov(Z(j+1),θ)=F

(j)
waΣ

(j)
WAθ + Σ

(j)
Bθ,

(10)
where Σ

(j)
Bθ ≡ cov(B(j),θ) ∈ RA×P is the covariance between the bias parameters from the

jth layer and all the other parameters. In order to apply the locally linearized activation
function A(j+1) = σ̃(Z(j+1)),

A(j+1) = J(j+1)
(
Z(j+1) − µ(j+1)

Z

)
+ σ(µ

(j+1)
Z ), (11)

we need to define the diagonal Jacobian matrix of the transformation evaluated at µ(j+1)
Z ,

J(j+1) = diag
(
∇zσ(µ

(j+1)
Z )

)
. Using again the properties for linear functions of Gaussian
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random variables, we obtain

µ
(j+1)
A ≡ E[A(j+1)] = σ̃(µ

(j+1)
Z ),

Σ
(j+1)
A ≡ cov(A(j+1)) = J(j+1)Σ

(j+1)
Z J(j+1)ᵀ,

Σ
(j+1)
Aθ ≡ cov(A(j+1),θ) = J(j+1)Σ

(j+1)
Zθ .

(12)

Equations 10 & 12 allow propagating the information about the covariance of activation
units and its dependence on parameters through any pairs of successive layers. For the input
layer, the steps described in Equations 8–12 remain the same except that the activation units
A(j) are replaced by the covariates X ∼ N (x;µX ,ΣX).

2.3 Tractable Approximate Gaussian Inference (TAGI)

Let us assume we have a set of joint observations for covariates and system responses so
that D = {Dx,Dy} = {(xi,yi),∀i ∈ {1 : D}}. Given that our prior knowledge for the neural
network’s parameter is f(θ) = N (θ;µθ,Σθ), the method presented in §2.1 supposes that
the joint PDF f(θ,y) for parameters θ and observations y is Gaussian with mean vector
and covariance

µ =

[
µθ
µY

]
, Σ =

[
Σθ Σᵀ

Yθ

ΣYθ ΣY

]
.

The Gaussian inference for the vector θ given observations Y = y is described by the
Gaussian conditional equations f(θ|y) = N (θ;µθ|y,Σθ|y) defined by its conditional mean
vector and covariance matrix,

µθ|y = µθ + Σᵀ
YθΣ

−1
Y (y − µY )

Σθ|y = Σθ −Σᵀ
YθΣ

−1
Y ΣYθ.

(13)

This 1-step network-wise Gaussian inference procedure is computationally prohibitive because
the forward propagation of uncertainty depicted in Figure 4a involves large-sized densely
populated matrices, and the inference using Equation 13 again involves full matrices.

x z(1) · · · z(L) z(O) yθ(0) θ(1) θ(L-1) θ(L)

f(x)
f(θ) f(θ,z(1)) · · · f(θ,z(L)) f(θ,z(O)) f(θ,y)

f(θ|y) f(y)

(a) Intractable 1-step network-wise inference (Eq. 13)

x z(1) · · · z(L) z(O) yθ(0) θ(1) θ(L-1) θ(L)

f(x)
f(θ)

f(x,z(1))

f(θ(0),z(1)) · · ·
f(z(L-1),z(L))

f(θ(L-1),z(L))

f(z(L),z(O))

f(θ(L),z(O))
f(z(O),y)

f(x|y) f(z(1)|y) · · · f(z(L)|y) f(z(O)|y) f(y)
f(θ(0)|y) f(θ(1)|y) f(θ(L-1)|y) f(θ(L)|y)

(b) Tractable recursive layer-wise inference (Eq. 14–16)

Figure 4: Representation of the forward propagation of uncertainty (magenta arrows) and
inference procedures (cyan arrows).

The solution we propose to overcome these challenges is twofold: (1) employ a diagonal
covariance structure for both the parameters θ, and hidden units Z(j), and (2) use the inherent
conditional independence of hidden units between layers, that is, Z(j−1) ⊥⊥ Z(j+1)|z(j), in
order to perform recursive layer-wise Gaussian inference. As depicted in Figures 4 & 9, in the
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feedforward process, there is no direct information path between hidden layers j− 1 and j+ 1
other than through the hidden layer j. Therefore, the knowledge of hidden units at layer j
blocks the information from the layer j − 1, so that layers j + 1 and j − 1 are conditionally
independent under the assumptions that parameters θ are independent between layers. As
depicted in Figure 4b by the rightmost blue arrow from y to z(O), the first step consists in
inferring the posterior mean vector and diagonal covariance for the output layer following

f(z(O)|y) = N (z(O);µZ(O)|y,ΣZ(O)|y)

µZ(O)|y = µZ(O) + Σᵀ
YZ(O)Σ

−1
Y (y − µY )

ΣZ(O)|y = ΣZ(O) −Σᵀ
YZ(O)Σ

−1
Y ΣYZ(O) .

(14)

This step is analogous to performing message passing on the graph presented in Figure 9,
where an observation is only available for the output node at the right end. Note that for
classification problems, because of the hierarchical formulation described in Appendix C,
even if there are Y classes, only H = dlog2(Y)e hidden units from the output layer are updated
for each observation.

The layer-wise Gaussian inference for hidden units and parameters is again analogous
to performing message passing on the graph in Figure 9, but this time, from the output
layer to input. The backward passing of information depicted by blue arrows in Figure 4b, is
done using the Rauch-Tung-Striebel recursive procedure that was developed in the context
of state-space models (Rauch et al., 1965). For the RTS procedure, we define the short-hand
notation {θ+,Z+} ≡ {θ(j+1),Z(j+1)} and {θ,Z} ≡ {θ(j),Z(j)} so that

f(z|y) = N (z;µZ|y,ΣZ|y)

µZ|y = µZ + JZ
(
µZ+|y − µZ+

)
ΣZ|y = ΣZ + JZ

(
ΣZ+|y −ΣZ+

)
Jᵀ
Z

JZ = ΣZZ+Σ−1
Z+ ,

(15)

f(θ|y) = N (θ;µθ|y,Σθ|y)

µθ|y = µθ + Jθ
(
µZ+|y − µZ+

)
Σθ|y = Σθ + Jθ

(
ΣZ+|y −ΣZ+

)
Jᵀ
θ

Jθ = ΣθZ+Σ−1
Z+ .

(16)

The key aspect of this layer-wise approach is that in the forward step depicted in Figure
4b by magenta arrows, we only need to store the layer-wise mean vectors {µθ,µZ} and
covariances {Σθ,ΣZ ,ΣθZ+ ,ΣZZ+}, where in addition to the relations already given in §2.2,
the cross-covariance matrix for two successive layers is

ΣZZ+ = F
(j)
wacov(WA(j),Z(j)) + F

(j)
b cov(B(j),Z(j)).

With a diagonal covariance structure for both Z and θ, the covariance matrices defining
each layer contain at most A2 + A non-zero terms, i.e., the number of weights (A2) and biases
(A) per layer; Because of the diagonal structures of covariance matrices, equations 14–16 have
a computational complexity O(A2), which scales linearly with the number of hidden layers L.
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The inference of parameters θ is done recursively so that after having seen either a single
observation or a batch of them, the posterior becomes the prior for the next observations. In
order to learn from batches consisting of multiple observations, one can perform the forward
propagation of uncertainty for several observations, all sharing the same hyperparameters
η = {µθ,Σθ}, and then do a single update for all of them. As it is the case for deterministic
neural networks, the batch procedure allows leveraging parallel computing.

One aspect that needs to be considered is that the finals result of the inference will
depend on the initialization of hyperparameters η, as well as on data ordering. It happens
because neural networks are inherently non-identifiable so that the true posterior for their
parameters is multimodal. For example, we can imagine how any permutation of hidden
units in a same layer that would not change the results but would lead to a different posterior.
Therefore, TAGI depends upon hyperparameter initialization and data ordering because it
approximates a multimodal posterior with an unimodal multivariate Gaussian.

2.4 Hyper-parameter estimation

There are typically tens of thousands, if not millions, of parameters in θ, for which we typically
have little or no prior information for defining the hyper-parameters η(0) = {µ(0)

θ ,Σ
(0)
θ }. In

the case where we have small datasets, the weakly informative prior combined with limited
data will lead to a weakly informative posterior. One solution to go around this difficulty
while avoiding overfitting is to learn the model parameters over multiple epochs, E > 1,
using a training DT and validation set DV. Here, we propose to employ the posterior’s
hyper-parameter values at the ith iteration η(i) = {µ(i)

θ|DT
,Σ

(i)
θ|DT
} and use them as the prior’s

hyper-parameters at the next iteration i + 1. This recursive procedure is stopped when
the marginal likelihood f(Dy,V|Dx,V,η(i)) = N

(
DV;µ

(i)
yv|DT

,Σ
(i)
yv|DT

)
for the validation set

DV, has reached its maximal value. This procedure is analogous to the empirical Bayes
approach (Efron, 2012) where the prior knowledge’s hyper-parameters are learnt through the
maximization problem

η̂ = arg max
η

∫
f(Dy,V|Dx,V,θ) · f(θ|η)dθ. (17)

Note that unlike in Equation 17 where the maximization is explicit, in our case the max-
imization is implicitly performed by updating over multiple epochs. Even if the recursive
approach proposed is not guaranteed to lead to the Type-2 maximum likelihood estimate
solution sought by empirical Bayes, it is much more efficient than having to perform the
explicit maximization for the expected value and variance parameters.

3. Related work

Many researchers have already proposed approximate inference methods for Bayesian Neural
Networks (BNN). Early on, it was proposed to employ message passing methods (Murphy,
2012, §18.3) such as the Extended (Singhal and Wu, 1989; Puskorius and Feldkamp, 1991),
Unscented Kalman Filter (Wan and Merwe, 2000), and the RTS smoother (Haykin, 2004) to
leverage Gaussian inference in order to approximate the posterior. The main issue with these
approaches is related to their computational complexity which is proportional to the square
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of the number of weights (Wan and Merwe, 2000). More recently, this Gaussian inference
framework was extended with the Cubature filter (Arasaratnam and Haykin, 2008), which,
like the extended and unscented methods, is limited by its computational complexity. The
main factor limiting the computational efficiency of these approaches is the usage of full
covariance matrices for the network parameters. Plumer (1995) has proposed to employ
either fully-decoupled or layer-decoupled variants, but the loss in performance prevents their
recommendation as a default choice (Haykin, 2004).

In another early approach, MacKay (1992) employed the Laplace approximation to
describe the posterior covariance of parameters. The author experimented with neural
networks having a small number of hidden units per layer (i.e., 5–20) and noted that
“diagonal approximation are no good because of the strong posterior correlation”. Later, Neal
(1995) explored the potential of BNN using the Hamiltonian Monte Carlo (HMC) method.
Despite its lack of practical scalability in the context of large neural networks applied to
image classification tasks, natural language processing, or reinforcement learning, HMC is
seen as a classic reference method for Bayesian inference (Gelman et al., 2014). For instance,
Farquhar et al. (2020) have employed HMC and other structured-covariance methods to
demonstrate empirically that there is no significant difference in performance when using a
diagonal or a full covariance structure for the weight parameters of deep neural networks.

In parallel, several researchers have applied variational inference for estimating the
posterior distribution of neural networks’ parameters (Hinton and Van Camp, 1993; Barber
and Bishop, 1998). The development of moment matching and variational approaches for
BNN is still nowadays an active research area (Kingma et al., 2015; Hernández-Lobato and
Adams, 2015; Blundell et al., 2015; Louizos and Welling, 2016; Osawa et al., 2019; Wu et al.,
2019). Recently, the technique of using Dropout as a Bayesian approximation has received
a lot of attention in the community (Gal and Ghahramani, 2016). All the recent methods
that are either based on moment matching, variational approaches, or dropout, share a
common aspect; the inference of parameters is still treated as an optimization problem
relying on gradient backpropagation. Although some approaches such as the one by Wu et
al. (2019) have exploited approximate analytically tractable mean and variance propagation
under Gaussian assumptions, it still relies on variational inference, as none of the approaches
currently available allow for analytically tractable inference in neural networks, while reaching
a competitive level of performance and efficiency.

4. Experiments

In this section, we perform experiments using the TAGI method for a 1D toy problem, for a
set of benchmark regression problems, and for the MNIST classification dataset.

4.1 1D toy problem

We apply TAGI to the 1D regression problem y = x3 + v, such that V ∼ N (0, 9), as taken
from (Hernández-Lobato and Adams, 2015), using an AG-FNN having a single hidden layer
with 100 units, and ReLU activation functions. The objective of this case study is to showcase
how TAGI can be applied on small datasets (D = 20 points), and to compare the results
obtained by considering either diagonal or full covariance matrices. In this example, the
inference is performed using one observation at a time, where both the covariates x and
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observations y were normalized in the range [−1, 1]. The optimal number of epochs is
identified from a validation set DV consisting of 20 additional points. The prior covariance
for bias is initialized to Σ0

B = 0.01 · I, and for weights Σ0
W , by using the Xaviers’s approach

(Glorot and Bengio, 2010). The prior mean vector is randomly sampled from µ0
θ ∼ N (0,Σ0

θ)
in order to break the initial symmetry in the network, as starting with zero expected values
for weights adversely affects learning.

Figure 5 compares the true function employed to generate the data, with the AG-FNN
(with diagonal covariances) predictions described by their expected values and ±3σ confidence
regions. We can see in (a) that the prior predictive obtained before updating with observations
(E = 0) is weakly informative, and that the posterior predictive obtained after the first epoch
(b, E = 1) is still a poor approximation of the true function. The log-likelihood reported in
(d) for the validation set allows identifying that the optimal number of epochs is here E = 31.
The log-likelihood values reported in Figure 5d confirm that employing a training set to
identify the number of epochs would not be able to prevent overfitting as depicted in (c). We
can see in (e) the same results processed with Hamiltonian Monte-Carlo (HMC) using the
implementation by Cobb et al. (2019). One aspect we observe is that TAGI is not able to
correctly extrapolate the widening confidence region outside the training data, as correctly
displayed by HMC. The main reason behind this behaviour is that TAGI only provide an
unimodal posterior; In the case of HMC, the multiple posterior modes all coincide to similar
predictions when constrained by data but not during extrapolation.

−5 0 5

−50

0

50

x

y

(a) TAGI, E=0

−5 0 5

−50

0

50

x

y

(b) TAGI, E=1

−5 0 5

−50

0

50

x

y

(c) TAGI, E=50

0 10 20 30 40 50
0

10

20

30

Epoch #

lo
g-

lik
el

ih
oo

d

−5 0 5

−50

0

50

x

y

yT
g(x) = x3

E[a(O)]

E[a(O)]± 3σ

(d) TAGI, E=31

−5 0 5

−50

0

50

x

y

(e) HMC

Figure 5: Application of AG-FNN with diagonal covariances to a toy problem where (a–c)
describe the evolution of the predictive distribution with respect to the number of epochs E.
In (d), we compare the training and validation log-likelihood in order to identify the optimal
number of epochs, i.e., E = 31. In (e) we compare with the results obtained using HMC.

In a second experiment, we now apply TAGI to the same dataset while considering the
full covariance matrices for θ(j) and z(j). We study networks with either L=1 or 2 hidden
layers, each comprising either A = 5 or 50 hidden units. Figure 6 displays colour maps
where each pixel represents the layer-wise sorted correlation coefficients extracted from the
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upper-triangular portion of the posterior covariance matrices, for either the parameters θ(j)

(top), or the hidden units z(j) (bottom). Note that in the cases (b) and (d), results are
only presented for the fully connected layer θ(1) because of the disproportionate number of
weights in it in comparison with the input and output layers. The results displayed on the
left colour map from each subfigure corresponds to each observation from the first epoch,
and the right colour maps are for the last observation from subsequent epochs.

In Figure 6a,b for hidden layers of A = 5 units, we notice the presence of extensive large
positive and negative correlations in the posteriors. In Figure 6c,d for hidden layers of A = 50
units, non-zero correlations, i.e., those with a colour other than green, are restricted to a
small fraction of the covariance matrix. This can be explained by the theoretical results
presented in Figure 2, and by further looking at the simplified context for the sum of several
independent inputs Zi ∼ N (z; 0, 1) such that the observation model is y =

∑A
i=1 zi. If we

observe a constant y ∈ R, we can then exactly infer the Gaussian posterior for Z, for which
the correlations ρ(Zi, Zj), ∀i 6= j are directly impacted by the number of variables A as
depicted in Figure 7. For small numbers of hidden units, i.e. < 10, the posterior correlation
is non-negligible, whereas, for large numbers, i.e. > 100, it is almost zero. This confirms what
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Figure 6: Representation of the sorted correlation coefficients extracted from upper-triangular
posterior covariance matrices for the parameters θ(j) and hidden units z(j). The left-most
graphs present the correlations for each of the 20 observations within the first epoch, and
the center graphs present the correlations at the end of each epoch.
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was shown theoretically in Figure 2, that if the number of units per layer A is sufficient, the
hidden units among a layer are independent, and thus considering only diagonal covariance
matrices may lead to results that are comparable to those obtained while considering the full
covariance structure.

100 101 102 103
−1

0

A
ρ
(Z

i,
Z
j)

Figure 7: Evolution of the posterior correlation ρ(Zi, Zj) as a function of the number of
variables A for an observation model y =

∑A
i=1 zi, where all Zi ∼ N (z, 0, 1) are independent.

The third and last experiment exposes the limitations of using diagonal covariance
matrices for hidden units, in the case where we care about the correct propagation of the
input-layer uncertainty through a neural network. We use again the function g(x) = x3,
but this time in the range x ∈ [−1, 1], and with infinitely many exact observations so that
Σθ → 0 and the parameters can be considered as deterministic. Once we have learnt the
parameters exactly, we want to test the capacity to propagate the input-layer uncertainty
for any value x subject to an observation uncertainty such that X̃ ∼ N (x; 0, σ2X), where
σX = 2

10 . As depicted in Figure 8, because we use a ReLU activation function, the neural
network’s output is a piecewise-linear function and the reference conditional output standard
deviation for such a locally linearized function can be computed using the 1st order Taylor
expansion so that

σ
(O)
Z (x) =

√
var[g(X̃)|x] =

∣∣∣∣dg(x)

dx

∣∣∣∣ · σX =
6x2

10
. (18)

The results in Figure 8 are for both, full or diagonal hidden variable covariances ΣZ , and
for one or two hidden layers. We can see that with a full ΣZ , the neural network’s output
uncertainty closely follow the reference values for σ(O)Z (x). When using diagonal covariances
for hidden layers, ΣZ = diag(σZ), we are unable to retrieve the same reference values as
defined in Equation 18. Therefore, despite having attested in the previous experiments that
TAGI can learn the parameters while using diagonal covariance matrices, it remains unable
to correctly propagate uncertainty from the input layer to the output. For applications where
propagating the input-layer uncertainty is critical, e.g. in partially observable reinforcement
learning (Sutton and Barto, 2018; Jin et al., 2018), one may choose to sacrifice the linear
computational complexity of TAGI (see §2.3) by including full ΣZ matrices for each layer
during the forward propagation of uncertainty.

4.2 Benchmark regression problems

The performance of TAGI is now compared with PBP (Hernández-Lobato and Adams,
2015), VMG (Louizos and Welling, 2016), and MC-dropout (Gal and Ghahramani, 2016) for
benchmark regression datasets. For the purpose of comparison with existing results taken
from the literature, all the datasets are analyzed for a fixed number of epochs, that is E = 40.
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Figure 8: Comparison of the capacity to propagate uncertainty from the input to the output
of a neural network while using either a full or a diagonal covariance ΣZ . The top graphs
represent the neural network output with confidence interval where the bottom graphs
compare the reference values with the empirical ones.

For all cases, the data is normalized, the activation function is a ReLU, and the batch size
is B = 10; The prior covariance for biases is initialized to Σ0

B = 0.01 · I, and for weights
Σ0
W , by using the Xaviers’s approach (Glorot and Bengio, 2010); The initial value for the

observation error’s standard deviation is set to σV = 1, and this value is optimized using a
5-folds cross-validation setup.

The results reported in Table 1 indicate that TAGI matches the performance of existing
methods in terms of root mean square error (RMSE) and log-likelihood (LL). Even though
VMG displays the best predictive performance, its computational time is two orders of
magnitude greater than TAGI, PBP and MC-Dropout (Sun et al., 2017). The timing details
reported in Appendix E show that the current TAGI’s implementation has a computational

Table 1: Comparison TAGI’s results with those available in the literature for PBP (Hernández-
Lobato and Adams, 2015), VMG (Louizos and Welling, 2016), and MC-dropout (Gal and
Ghahramani, 2016) (Rank legend: first, second). The ±σ represent the standard deviation
over the 20 test-folds.

Root mean square error (RMSE) Average log-likelihood (LL)
Datasets PBP VMG MC-Dropout TAGI PBP VMG MC-Dropout TAGI

Boston 3.01±0.18 2.70±0.13 2.97±0.85 2.98±0.86 -2.56±0.12 -2.46±0.09 -2.46±0.25 -2.58±0.45
Concrete 5.67±0.09 4.89±0.12 5.23±0.53 5.72±0.52 -3.14±0.11 -3.01±0.03 -3.04±0.09 -3.17±0.09

Energy 1.80±0.05 0.54±0.02 1.66±0.19 1.46±0.22 -2.04±0.02 -1.06±0.03 -1.99±0.09 -1.81±0.14
Kin8nm 0.10±0.00 0.10±0.00 0.10±0.00 0.10±1E-3 0.90±0.01 1.10±0.01 0.95±0.03 0.88±0.04

Naval 0.01±0.00 0.00±0.00 0.01±0.00 0.01±6E-3 3.73±0.01 2.46±0.12 3.80±0.05 2.10±0.57
Power 4.12±0.03 4.04±0.04 4.02±0.18 4.12±0.16 -2.84±0.01 -2.82±0.01 -2.80±0.05 -2.83±0.04

Protein 4.73±0.01 4.13±0.02 4.36±0.04 4.70±0.02 -2.97±0.00 -2.84±0.00 -2.89±0.01 -2.97±4E-3
Wine 0.64±0.01 0.63±0.01 0.62±0.01 0.63±0.04 -0.97±0.01 -0.95±0.01 -0.93±0.06 -0.96±0.06
Yacht 1.02±0.05 0.71±0.05 1.11±0.38 1.02±0.42 -1.63±0.02 -1.30±0.02 -1.55±0.12 -1.49±0.45

14



Tractable Approximate Gaussian Inference for Bayesian Neural Networks

time that is more than four times faster than PBP and MC-Dropout (Gal and Ghahramani,
2016). Moreover, because TAGI had to be implemented from scratch, it is not yet fully
optimized for computational efficiency. The same is true for the optimization of hyper-
parameters such as σV , which is assumed to be constant over the covariate domain, and
which is currently treated as an hyperparameter to be estimated separately from the analytical
inference for weights and biases. The fact that TAGI is currently limited to the case of
homoscedastic variance reduces its performance in comparison with the other methods
presented, and also inevitably lead to poorly calibrated predictive uncertainties. Note that
as it was the case for the other methods reported in Table 1, the number of epochs employed
was not optimized.

4.3 Application on MNIST

We apply TAGI to the MNIST classification problem (LeCun et al., 1998) consisting of
D = 70 000 (28× 28) greyscale images for K = 10 classes (60 000 training and 10 000 test).
Here, we compare the performance of two AG-FNN configurations, each having L = 2 hidden
layers with a number of hidden units equal to A ∈ {100, 800}. Each AG-FNN has the same
structure for the input (X = 784 nodes) and the output layer (Y = 11 nodes). The ReLU
activation function is used for the two hidden layers. For each digit, the vector of covariates
xi ∈ (0, 1)784 is assumed to be deterministic so that µXi = xi and ΣXi = 0. The prior
covariance for bias is initialized to Σ0

B = 0.01 · I, and by using the Xaviers’s initialization
approach (Glorot and Bengio, 2010) for weights Σ0

W . The prior mean vector is randomly
sampled from µ0

θ ∼ N (0,Σ0
θ). The hyper-parameter associated with the output layer is

set to α = 1/3. The posterior mean vector as well as the main diagonal of the posterior
covariance are learnt using two setups: (1) a single observation per batch, that is, B = 1, and
(2) B = 10 observations per batch. Each network is evaluated for σV = {0.1, 0.2, 0.3, 0.4} and
the optimal value for σV is selected using a randomly selected validation set corresponding
to 5% of the training set. The optimal number of epochs E is identified using an early-stop
procedure evaluated on the validation set.

Table 2 presents the average test error evaluated on 10 000 images for the different
AG-FNN configurations for E = 1 epoch, and for the optimal number of epochs found using
early stopping. In order to factor in the effect of random weight initialization, the results
reported are the average and standard deviations from five runs. The performance achieved

Table 2: MNIST test-set average classification error [%] for the first and last epoch. A: number of
hidden units on each layer; B: number of observations per batch; E: number of epochs; e: optimal
number of epoch found using early-stop. The results reported are the average of five runs along with
± one standard deviation.

B = 1 B = 10

A E = 1 E = e e σV E = 1 E = e e σV

100 3.39±0.17 2.29±0.06 21±12 0.2 3.56±0.2 2.45±0.20 20±12 0.4

800 3.15±0.2 1.54±0.07 14±9 0.1 3.10±0.2 1.53±0.07 15±6 0.4

with respect to the average classification errors matches the reported state-of-the-art accuracy
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of approximately 1.6% for FNNs having a same architecture with 2 layers and 800 hidden
units and trained using gradient backpropagation (Simard et al., 2003; Wan et al., 2013).
Some Bayesian methods for neural networks have shown to be able to outperform their
deterministic counterparts. For example, Blundell et al. (2015) showed that they can reach
an error rate of 1.34% using Bayes by Backprop with scale mixture, while only reaching 1.99%
when using Gaussians. Similarly Louizos and Welling (2016) showed that VMG could reach
a performance of 1.15% with even smaller networks. The results in Table 2 indicate that
TAGI’s classification accuracy is not significantly affected by the usage of batch sizes greater
than one. Nevertheless, we noticed though our experiments that using large batch sizes
makes the learning phase sensitive to the network initialization as well as the observation
noise parameter σV .

5. Conclusion

The tractable approximate Gaussian inference method proposed in this paper allows for the
analytical inference of the posterior mean vector and diagonal covariance matrix for the
parameters of Bayesian neural networks. The applications on the regression and classification
datasets validate that the approach matches the performance of existing methods with respect
to computational efficiency and accuracy. TAGI’s performance and its linear complexity with
respect to the number of parameters makes it a viable alternative to gradient backpropagation.
By allowing the treatment of uncertainty and by being inherently suited for online inference, we
foresee that the approach will enable transformative developments in supervised, unsupervised,
and reinforcement learning.
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Appendix A. Feedforward neural network nomenclature
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(a) Expanded representation

x z(1) z(2) · · · z(L) z(O) yθ(0) θ(1) θ(2) θ(L-1) θ(L)

(b) Compact representation where θ = {w, b}

Figure 9: Expanded and compact representations of the variable nomenclature associated
with feedforward neural networks.

Appendix B. Derivation for the Gaussian multiplicative approximation

The proof of statement (3) can be obtained directly from the definition of covariance. To
prove the statement (4), one needs the moments of variables and their products. Because
the underlying distribution is Gaussian and its moment generating function are known,
MX(tᵀ) = E[et

ᵀX ] = et
ᵀµ+ 1

2
tᵀΣt, t = [t1 . . . t4]

ᵀ, all moments can be extracted using the
moment-generating function. Using the derivatives of the moment-generating function,

E[X1X2X3] =
∂3

∂t1∂t2∂t3
E[et

ᵀx]|t1=t2=t3=t4=0

=
∂3

∂t1∂t2∂t3
et

ᵀµ+ 1
2
tᵀΣt|t1=t2=t3=t4=0

=
∂3

∂t1∂t2∂t3
e
∑4

i=1tiµi+
1
2

∑4
i,j=1titjcov(Xi,Xj)|t1,2,3,4=0

= cov(X1, X2)µ3 + cov(X1, X3)µ2

+cov(X2, X3)µ1 + µ1µ2µ3. (19)

Using the definition of covariance and substituting (19), the statement (4) can be established:

cov(X3, X1X2) = E[X1X2X3]− E(X1X3)E(X2)

= cov(X1, X2)µ3 + cov(X1, X3)µ2

+cov(X2, X3)µ1 + µ1µ2µ3

−µ3
(
µ1µ2 + cov(X1, X2)

)
. (20)
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The expansion of the right side for the last statement leads to Equation (5) so that

cov(X1X2, X3X4) = E[X1X2X3X4]− E[X1X2]E[X3X4],

where the expected value of the product two random variables is given in (3) and the
expectation for the product of four random variables is a generalization of (19) that can be
obtained using the derivatives of the moment-generating function:

E[X1X2X3X4] =
∂4

∂t1∂t2∂t3∂t4
E[et

ᵀX ]|t1,2,3,4=0

=
∂4

∂t1∂t2∂t3∂t4
et

ᵀµ+ 1
2
tᵀΣt|t1,2,3,4=0

= cov(X1X2)
(
cov(X3, X4) + µ3µ4

)
+cov(X1X3)

(
cov(X2, X4) + µ2µ4

)
+cov(X2X3)

(
cov(X1, X4)

+µ1µ4
)

+ cov(X1, X4)µ2µ3 + cov(X2, X4)µ1µ3

+cov(X3, X4)µ1µ2 + µ1µ2µ3µ4.

Using the definition of variance

var(X1X2) = E[(X1X2)
2]− E[X1X2]

2 (21)

The elements of variance can be expended as below

E[(X1X2)
2] =

∂4

∂t21∂t
2
2

E[et
ᵀX ]|t1=t2=t3=t4=0

=
∂4

∂t21∂t
2
2

et
ᵀµ+ 1

2
tᵀΣt|t1=t2=t3=t4=0

= σ21σ
2
2 + 2cov(X1, X2)

2

+4cov(X1, X2)µ1µ2

+σ21µ
2
2 + σ22µ

2
1 + µ21µ

2
2. (22)

E[X1X2]
2 =

(
cov(X1, X2) + E(X1)E(X2)

)2
= cov(X1, X2)

2 + 2cov(X1, X2)µ1µ2

+µ21µ
2
2. (23)

Substituting (22) and (23) in (21) establishes (6).

Appendix C. Formulation for the binary tree hierarchical decomposition

For classification problem, each class is encoded in a binary tree with H = dlog2(K)e layers,
and which is defined by Y = K − 1 hidden states when log2(K) ∈ Z+. Figure 10 depicts
the hierarchical decomposition for K = 8 classes and H = 3 layers, where a given class y(C)C
such that C = {j, k, l} ∈ {0, 1}3 is uniquely described by a set of H indices. In a binary
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Figure 10: Representation of a 3-layers hierarchical binary decomposition of classes y(C)ijk ∈
{1, 2, · · · , 8} using the output layer variables y = [y y0 y1 y00 y01 y10 y11]

ᵀ ∈ R7.

context where H = 1, we can transform a regression problem into a probability for a class
yCi , i ∈ {0, 1} by using

p(yCi |y) = Φ
(
(−1)i

y

α

)
,

where, Φ(·) denotes the standard normal CDF, and α ∈ R+ is a scaling factor to account
for the fact that the standard normal CDF reaches values close to 0 or 1 for inputs close
to -3 and 3. Therefore, if the data is initially normalized in range -1 to 1, we need the
scaling factor α ≈ 1/3 in order to accommodate for this discrepancy. In the general case
with K-classes, the conditional probability of a class given the output values y is defined by

p(y
(C)
C |y) =

H∏
h=1

Φ

(
(−1)Ch

[yC ]h
α

)
,

where yC = [y yj yjk yjkl · · · ]ᵀ ∈ RH. For the example in Figure 10 where H = 3 layers, it
simplifies to yC = [y yj yjk]

ᵀ, so that

p(y
(C)
{ijk}|y) = Φ

(
(−1)i

y

α

)
· Φ
(
(−1)j

yj
α

)
· Φ
(
(−1)k

yjk
α

)
.

For the special case where YC |D ∼ N (µYC , diag(σ2
YC

)) follows a Gaussian distribution
with diagonal covariance, we can employ the development found in Rasmussen and Williams
(2006) in order to obtain a closed-form solution to marginalize the output layer’s uncertainty,

p(y
(C)
C |D) =

∫
p(y

(C)
C |yC) · f(yC |D)dy

=
H∏

h=1

Φ

(−1)Ch
[µYC ]h√
α2 + [σ2

YC
]h

 (24)

Note that in the case where the number of classes K does not correspond to an integer to
the power 2, it is required to normalize the marginal probabilities obtained in Equation 24
in order to account for the unused leaves from the binary tree. During the training phase
where we infer the network’s parameters from observations y(C) ∈ {1, 2, · · · , K}, we convert
each class into a H-component vector yC ∈ {−1, 1}H so that [yC ]i = (−1)Ci .

Appendix D. Example of F matrices for product-terms indices

Figure 11 presents an example of two successive hidden layers each comprising only two
hidden units. The formulation of the the F

(j)
wa and in F

(j)
b matrices corresponding to the
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Figure 11: Example of trivial network configuration employed to illustrate the configuration
for the matrices F

(j)
wa and F

(j)
b .

network in Figure 11 is

[
z
(2)
1

z
(2)
2

]
︸ ︷︷ ︸
z(j+1)

=

[
1 1 0 0
0 0 1 1

]
︸ ︷︷ ︸

F
(j)
wa

×


w

(1)
1,1a

(1)
1

w
(1)
1,2a

(1)
2

w
(1)
2,1a

(1)
1

w
(1)
2,2a

(1)
2


︸ ︷︷ ︸

(wa)(j)

+

[
1 0
0 1

]
︸ ︷︷ ︸

F
(j)
b

×
[
b
(1)
1

b
(1)
2

]
︸ ︷︷ ︸
b(j)

.

Note that the structure of F
(j)
wa depends on the ordering of variables.

Appendix E. Experiment configurations and supplementary results for
benchmark regression datasets

Table 3 presents the details for the experiments conducted for the benchmark regression
datasets. Note that the times presented in the last columns are the average parameter (i.e.
weights and biases) inference time in second per folds and the average hyper parameter (i.e.
σV ) optimization time in second. All these experiments were conducted using CPU.

Table 3: Experiment details for the benchmark regression datasets using BLNN. X: number
of covariates, L: number of layers, A: number of activation units per layer, F number of
random training/test folds.

Train Test Average inference (θ) Average optimization (σV ) Average σV
Datasets X #obs. #obs. L× A F time per fold (s) time per fold (s) (20 folds)

Boston 13 455 51 1×50 20 0.6 1.5 0.28
Concrete 8 927 103 1×50 20 0.9 2.3 0.32
Energy 8 691 77 1×50 20 0.6 2.7 0.15
Kin8nm 8 7373 819 1×50 20 6.7 16.7 0.36

Naval 16 11934 1193 1×50 20 13.7 32.6 0.31
Power 4 8611 957 1×50 20 6.6 17.7 0.24

Protein 9 41157 4373 1×100 5 39 53.5 0.74
Wine 11 1439 160 1×50 20 1.4 2.1 0.72
Yacht 6 277 31 1×50 20 0.2 1.4 0.07
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