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Abstract

Labeling patients in electronic health records with respect to their statuses of having a
disease or condition, i.e. case or control statuses, has increasingly relied on prediction
models using high-dimensional variables derived from structured and unstructured elec-
tronic health record data. A major hurdle currently is a lack of valid statistical inference
methods for the case probability. In this paper, considering high-dimensional sparse logis-
tic regression models for prediction, we propose a novel bias-corrected estimator for the
case probability through the development of linearization and variance enhancement tech-
niques. We establish asymptotic normality of the proposed estimator for any loading vector
in high dimensions. We construct a confidence interval for the case probability and pro-
pose a hypothesis testing procedure for patient case-control labelling. We demonstrate the
proposed method via extensive simulation studies and application to real-world electronic
health record data.

Keywords: EHR phenotyping; Case-control; Outcome labelling; Re-weighting; Contrac-
tion principle.

1. Introduction

Electronic health record (EHR) data provides an unprecedented resource for clinical and
translational research. Since EHRs were initially designed to support documentation for
medical billing, patients’ data are frequently not represented with sufficient precision and
nuance for accurate phenotyping. Therefore, heuristic rules and statistical methods are
needed to identify patients with a specific health condition. Logistic regression models have
been frequently adopted for this “EHR phenotyping” task (Parikh et al., 2019; Alhassan
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et al., 2020; Honga et al., 2019; Faisal et al., 2020). These methods commonly require a
curated set of patients who are accurately labeled with regard to the presence or absence of
a phenotype (e.g. disease or health condition). To obtain such a dataset, medical experts
need to retrospectively review EHR charts and/or prospectively evaluate patients to label
them. For many phenotypes, the labor and cost of the label assignment processes limit
the achievable sample size, which is typically in the range of 50 to 1, 000. On the other
hand, potential predictors in EHRs may include hundreds or thousands of variables derived
from billing codes, demographics, disease histories, co-morbid conditions, laboratory test
results, prescription codes, and concepts extracted from doctors’ notes through methods
such as natural language processing. The dimension of these predictors is usually large in
comparison to the sample size of the curated dataset (Castro et al., 2015).

One important example of phenotyping goal that would benefit from accurate risk pre-
diction models leveraging large EHR data is primary aldosteronism (PA), the most common
identifiable and specifically treatable cause of secondary high blood pressure (Reincke et al.,
2012; Lin et al., 2012; Catena et al., 2007). PA is thought, based on epidemiological stud-
ies, to affect up to 1% of US adults (Kayser et al., 2016; Hannemann and Wallaschofski,
2011), but is diagnosed in many fewer individuals. Endocrine Society Guidelines recom-
mend screening for PA in specific subgroups of hypertension patients, including patients
with treatment-resistant high blood pressure or high blood pressure with low blood potas-
sium (Funder et al., 2016). While simple, expert-curated heuristics can be used to identify
patients that meet PA screening guidelines, it is of great interest to derive more sensitive
and specific prediction models by leveraging the larger set of available potential features in
the EHR. One goal of the current paper is to use data extracted from the Penn Medicine
EHR and develop preliminary prediction models to help identify patients with hypertension
and subsets thereof for which PA screening is recommended by guidelines.

1.1 Problem Formulation

We introduce a general statistical problem, which is motivated by EHR phenotyping. For
the i-th observation, the outcome yi ∈ {0, 1} indicates whether the interest condition (e.g.
PA) is present and Xi· ∈ Rp denotes the observed high-dimensional covariates. Here we
assume that {yi, Xi·}1≤i≤n are independent and identically distributed and allow the number
of covariates p to be larger than the sample size n as often seen in analyzing EHR data.
We consider the following high-dimensional logistic regression model, for 1 ≤ i ≤ n,

P(yi = 1|Xi·) = h(Xᵀ
i·β) with h(z) = exp(z)/[1 + exp(z)] (1)

where β ∈ Rp denotes the high-dimensional vector of odds ratio parameters. The high-
dimensional vector β is assumed to be sparse throughout the paper.

The quantity of interest is the case probability P(yi = 1|Xi· = x∗) ≡ h (xᵀ∗β), which is
the conditional probability of yi = 1 given Xi· = x∗ ∈ Rp. The outcome labeling problem
in EHR phenotyping is formulated as testing the following null hypothesis on the case
probability,

H0 : h(xᵀ∗β) < 1/2. (2)

2



Inference for Case Probability

Here, the threshold 1/2 can be replaced by other positive numbers in (0, 1), which are
decided by domain scientists. Throughout the paper, we use the threshold 1/2 to illustrate
the main idea of EHR phenotyping.

Although the statistical inference problem is motivated from EHR phenotyping, the
proposed inference procedure in the high-dimensional logistic model has a broader scope of
applications. The linear functional xᵀ∗β itself and the conditional probability of being a case
are important quantities in statistics. Additionally, the case probability h(Xᵀ

i·β) is the same
as the propensity score in causal inference, which is a central quantity for both matching
(Pearl, 2000; Rosenbaum and Rubin, 1983) and double robustness estimators (Bang and
Robins, 2005; Kang and Schafer, 2007).

1.2 Our Results and Contribution

The penalized maximum likelihood estimation methods have been well developed to esti-
mate β ∈ Rp in the high-dimensional logistic model (Bunea, 2008; Bach, 2010; Bühlmann
and van de Geer, 2011; Meier et al., 2008; Negahban et al., 2009; Huang and Zhang, 2012).
The penalized estimators enjoy desirable estimation accuracy properties. However, these
methods do not lend themselves directly to statistical inference for the case probability
mainly because the bias of the penalized estimator dominates the total uncertainty. Our
proposed method is built upon the idea of bias correction that has been first developed to
aid confidence interval construction for individual regression coefficients in high-dimensional
linear regression models (van de Geer et al., 2014; Javanmard and Montanari, 2014; Zhang
and Zhang, 2014). This idea has also been extended to making inference for βj for 1 ≤ j ≤ p
in high-dimensional logistic regression models (van de Geer et al., 2014; Ning and Liu, 2017;
Ma et al., 2018). However, there is a lack of methods and theories for inference for the case
probability P(yi = 1|Xi· = x∗), which depends on the high-dimensional loading vector
x∗ ∈ Rp and involves the entire regression vector β ∈ Rp.

We propose a novel two-step bias-corrected estimator of the case probability. In the
first step, we estimate β by a penalized maximum likelihood estimator β̂ and construct the
plug-in estimator h(xᵀ∗β̂) = exp(xᵀ∗β̂)/[1 + exp(xᵀ∗β̂)]. In the second step, we correct the
bias of this plug-in estimator. The existing bias correction method (van de Geer et al.,
2014) requires an accurate estimator of the high-dimensional vector [EĤ(β)]−1x∗ ∈ Rp
where Ĥ(β) denotes the sample Hessian matrix of the negative log-likelihood (see Section
2.1 for its definition). However, it is challenging to extend this idea to inference for the
case probability since the Hessisan matrix EĤ(β) is complicated in the logistic model and
x∗ ∈ Rp can be an arbitrary high-dimensional vector (with no sparsity structure).

We address these challenges through development of linearization and variance enhance-
ment techniques. The linearization technique is introduced to handle the complex form of
the Hessian matrix in the logistic model. Particularly, instead of assigning equal weights, we
conduct a weighted average by reweighing Xi·[yi − h(xᵀ∗β̂)] by 1/Var(yi | Xi), which leads
to a re-weighted Hessian matrix n−1

∑n
i=1Xi·X

ᵀ
i·. We refer to this re-weighting step as

“Linearization” since the re-weighted Hessian matrix corresponds to the Hessian matrix of
the least square loss in the linear model. In addition, to develop an inference procedure for
any high-dimensional vector x∗, we introduce an extra constraint in constructing the pro-
jection direction for bias correction. The additional constraint is to enhance the variance
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component of the proposed bias-corrected estimator such that its variance dominates its
bias for any high-dimensional loading vector x∗. We refer to the proposed inference method
as Linearization with Variance Enhancement, shorthanded as LiVE.

We establish the asymptotic normality of the proposed LiVE estimator for any high-
dimensional loading vector x∗ ∈ Rp. We then construct a confidence interval for the case
probability and conduct the hypothesis testing (2) related to the outcome labelling. We
develop new technical tools to establish the asymptotic normality for the re-weighted esti-
mator; see Section 3.3.

We conduct a large set of simulation studies to compare the finite-sample performance
of the proposed LiVE estimator with the existing state-of-the art methods: the plug-in
Lasso estimator, post-selection method, the plug-in hdi (Dezeure et al., 2015), the plug-in
WLDP (Ma et al., 2018) and generalization of the transformation method (Zhu and Bradic,
2018; Tripuraneni and Mackey, 2020) to logistic models. We demonstrate the proposed
method using Penn Medicine EHR data to identify patients with hypertension and two
subsets thereof that should be screened for PA, per specialty guidelines.

To sum up, the contribution of the current paper is two-fold.

1. We propose a novel bias-corrected estimator of the case probability and establish its
asymptotic normality. To our best knowledge, this is the first inference method for the
case probability in high dimensions, which is computationally efficient and statistically
valid for any high-dimensional vector x∗.

2. The theoretical justification on establishing the asymptotic normality of the re-weighted
estimators is of independent interest and can be used to handle other inference prob-
lems in high-dimensional nonlinear models.

Our proposed LiVE estimator has been implemented in the R package SIHR, which is
available from CRAN. More detailed illustration of the R package SIHR can be found in
Rakshit et al. (2021).

1.3 Comparison with Existing Literature

We have proposed a two-step bias correction procedure to make inference for h(xᵀ∗β) in the
high-dimensional logistic model. Specifically, the linearization and variance enhancement
techniques are introduced to ensure that our proposed confidence intervals are valid for any
x∗ ∈ Rp and a broad class of design covariance matrix. We shall mention other related
works and discuss the connections and differences.

Post-selection inference (Belloni and Chernozhukov, 2013, e.g.) is a commonly used
method in constructing confidence intervals, where the first step is to conduct model se-
lection and the second step is to run a low-dimensional logistic model with the selected
sub-model. However, such a method typically requires the consistency of model selection
in the first step. Otherwise, the constructed confidence intervals are not valid as the uncer-
tainty of model selection in the first step is not properly accounted for. It has been observed
in Section 4 that the post-selection method has produced under-covered confidence intervals
in finite samples; see Tables 1 and 2 for a detailed comparison.

Inference for a linear combination of regression coefficients in high-dimensional linear
model has been investigated in Cai and Guo (2017); Athey et al. (2018); Zhu and Bradic
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(2018); Cai et al. (2019). However, these methods cannot be directly applied to make
inference for the case probability in the logistic model. Our proposed linearization tech-
nique is useful in generalizing the inference methods for linear models to logistic models.
The connection established by the linearization is also useful for simplifying the sufficient
conditions for estimating the precision matrix or the inverse Hessian matrix. Specifically,
the established results in the current paper impose no sparsity condition on the precision
matrix or the inverse Hessian matrix, where such a requirement has typically been imposed
in theoretical justifications on inference for individual regression coefficients in the logistic
regression setting (van de Geer et al., 2014; Ning and Liu, 2017; Ma et al., 2018). More
detailed comparisons are provided in Section 2.5.

In Section 4, we provide detailed numerical comparisons to the inference methods by
van de Geer et al. (2014); Ma et al. (2018); Zhu and Bradic (2018); Tripuraneni and Mackey
(2020).

Belloni et al. (2014); Farrell (2015); Chernozhukov et al. (2018) studied inference for
treatment effects in high-dimensional regression models while the current paper focuses on
inference for a different quantity, the case probability. Sur and Candès (2019); Sur et al.
(2019) studied inference in high-dimensional logistic regression and focused on the regime
where the dimension p is a fraction of the sample size n. The current paper considered the
regime allowing for the dimension p being much larger than the sample size n with imposing
additional sparsity conditions on β.

Another related work is the iterated re-weighted least squares (IRLS) (Fox, 2015), which
is the standard technique used to maximize the likelihood of the logistic model. The weight-
ing is used in IRLS to facilitate the optimization problem. In contrast, the weighting used
in the current paper is to facilitate the bias-correction for the statistical inference.

1.4 Notation

For a matrix X ∈ Rn×p, Xi·, X·j and Xi,j denote respectively the i-th row, j-th column,
(i, j) entry of the matrix X. Xi,−j denotes the sub-row of Xi· excluding the j-th entry. Let
[p] = {1, 2, · · · , p}. For a subset J ⊂ [p] and a vector x ∈ Rp, xJ is the subvector of x with
indices in J and x−J is the subvector with indices in Jc. For a vector x ∈ Rp, the `q norm

of x is defined as ‖x‖q = (
∑p

i=1 |xi|q)
1
q for q > 0 with ‖x‖0 denoting the cardinality of the

support of x and ‖x‖∞ = max1≤j≤p |xj |. We use ei to denote the i-th standard basis vector
in Rp. We use max |Xi,j | as a shorthand for max1≤i≤n,1≤j≤p |Xi,j |. For a symmetric matrix
A, λmin (A) and λmax (A) denote respectively the smallest and largest eigenvalues of A. We
use c and C to denote generic positive constants that may vary from place to place. For
two positive sequences an and bn, an . bn means an ≤ Cbn for all n and an & bn if bn . an
and an � bn if an . bn and bn . an, and an � bn if lim supn→∞ an/bn = 0.

2. Methodology

We describe the proposed method for the case probability under the high-dimensional lo-
gistic model (1). In Section 2.1, we review the penalized maximum likelihood estimation of
β and highlight the challenges of inference for the case probability. Then we introduce the
linearization technique in Section 2.2 and the variance enhancement technique in Section
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2.3. In Section 2.4, we construct a point estimator and a confidence interval for the case
probability and conduct hypothesis testing related to outcome labelling. In Section 2.5, we
compare with the existing estimators (van de Geer et al., 2014; Ma et al., 2018; Zhu and
Bradic, 2018; Tripuraneni and Mackey, 2020; Bickel, 1975).

2.1 Challenges Underlying Inference for the Case Probability

The negative log-likelihood function for the data {(Xi·, yi)}1≤i≤n under the logistic regres-
sion model (1) is written as `(β) =

∑n
i=1 [log (1 + exp (Xᵀ

i·β))− yi · (Xᵀ
i·β)] . The penalized

log-likelihood estimator β̂ is defined as (Bühlmann and van de Geer, 2011),

β̂ = arg min
β
`(β) + λ‖β‖1, (3)

with the tuning parameter λ �
√

log p/n. It has been shown that β̂ satisfies certain
nice estimation accuracy and variable selection properties. However, the plug-in estimator
h(xᵀ∗β̂) cannot be directly used for confidence interval construction and hypothesis testing,
because its bias can be as large as its variance as demonstrated in later simulation studies;
see Table C.6 in the supplement for the numerical illustration.

Our proposed method is built on the idea of correcting the bias of the plug-in estimator
xᵀ∗β̂ and then applying the h function to estimate the case probability. We conduct the bias
correction through estimating the error of the plug-in estimator xᵀ∗β̂−xᵀ∗β = xᵀ∗(β̂−β). Be-
fore proposing the method, we review the existing bias-correction idea in high-dimensional
linear and logistic models (van de Geer et al., 2014; Javanmard and Montanari, 2014; Zhang
and Zhang, 2014). In particular, a bias-corrected estimator of βj can be constructed as

β̂j + ûᵀ
1

n

n∑
i=1

Xi·(yi − h(Xᵀ
i·β̂)) (4)

where û ∈ Rp is the projection direction used for correcting the bias of β̂j . Define the error
εi = yi−h(Xᵀ

i·β) for 1 ≤ i ≤ n. We apply the Taylor expansion of the h function and obtain

yi − h(Xᵀ
i·β̂) = h(Xᵀ

i·β)− h(Xᵀ
i·β̂) + εi = h′(Xᵀ

i·β̂)Xᵀ
i·(β − β̂) +Ri + εi

with the approximation error Ri =
∫ 1

0 (1− t)h′′(Xᵀ
i·β̂ + tXᵀ

i·(β − β̂))dt · (Xᵀ
i·(β̂ − β))2. Since

h′(x) = h(x)(1− h(x)) for any x ∈ R, we simplify the above expression as

yi − h(Xᵀ
i·β̂) = h(Xᵀ

i·β̂)(1− h(Xᵀ
i·β̂))[Xᵀ

i·(β − β̂) + ∆i] + εi with ∆i = Ri/h
′(Xᵀ

i·β̂). (5)

By multiplying both sides of (5) by Xi and summing over i, we obtain

1

n

n∑
i=1

Xi·(yi−h(Xᵀ
i·β̂)) = Ĥ(β̂)(β− β̂)+

1

n

n∑
i=1

εiXi·+
1

n

n∑
i=1

h(Xᵀ
i·β̂)(1−h(Xᵀ

i·β̂))∆iXi·, (6)

where Ĥ(β) = 1
n

∑n
i=1 h(Xᵀ

i·β)(1 − h(Xᵀ
i·β))Xi·X

ᵀ
i· is the Hessian matrix of the negative

log-likelihood `(β).
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To conduct the bias-correction, van de Geer et al. (2014) construct the projection di-
rection û ∈ Rp in (4) such that Ĥ(β̂)û ≈ ej and hence

ûᵀ
1

n

n∑
i=1

Xi·(yi − h(Xᵀ
i·β̂)) ≈ ûᵀĤ(β̂)(β − β̂) ≈ βj − β̂j .

Such an approximation has been shown to be accurate by assuming a sparse [EĤ(β)]−1ej
(van de Geer et al., 2014). However, [EĤ(β)]−1x∗ can be an arbitrarily dense vector and
hence it is challenging to accurately estimate [EĤ(β)]−1x∗ and generalize the bias-correction
procedure in van de Geer et al. (2014). Specifically, [EĤ(β)]−1 may be dense for the
following two reasons: (1) the columns of [EĤ(β)]−1 are dense; (2) x∗ is a dense vector.

In the following two sections, we develop new techniques, which can effectively correct
the bias for an arbitrary loading x∗ ∈ Rp in the high-dimensional logistic regression.

2.2 Linearization: Connecting Logistic to Linear

We introduce a linearization technique to simplify the Hessian matrix. Instead of averaging
with equal weights as in (6), we introduce the following re-weighted summation,

1

n

n∑
i=1

[h(Xᵀ
i·β̂)(1− h(Xᵀ

i·β̂))]−1︸ ︷︷ ︸
weight for i−th observation

Xi·(yi − h(Xᵀ
i·β̂)).

In contrast to (6), the above re-weighted summation has the following decomposition:

1

n

n∑
i=1

[h(Xᵀ
i·β̂)(1− h(Xᵀ

i·β̂))]−1εiXi· + Σ̂(β − β̂) +
1

n

n∑
i=1

∆iXi·, with Σ̂ =
1

n

n∑
i=1

Xi·X
ᵀ
i·.

The main advantage of the re-weighting step is that the second component Σ̂(β− β̂) on the
right hand side is multiplication of the sample covariance matrix Σ̂ and the vector difference
β̂−β. In contrast to (6), it is sufficient to invert Σ̂, instead of the more complicated Hessian
matrix Ĥ(β̂). Since the main purpose of this re-weighting step is to match the re-weighted
Hessian matrix to that of the least square loss in the linear models, we refer to this as
the “Linearization” technique. We shall point out that, although linearization connects the
logistic model to the linear model, it also poses challenges in the theoretical justification of
the proposed method. The corresponding technical challenge will be addressed in Section
3.3 with suitable empirical process techniques.

2.3 Variance Enhancement: Uniform Procedure for x∗

We apply the linearization technique and correct the bias of the plug-in estimator xᵀ∗β̂ as,

x̂ᵀ∗β = xᵀ∗β̂ + ûᵀ
1

n

n∑
i=1

[h(Xᵀ
i·β̂)(1− h(Xᵀ

i·β̂))]−1Xi·(yi − h(Xᵀ
i·β̂)), (7)

with û ∈ Rp denoting a projection direction to be constructed. To see how to construct û,

we decompose the estimation error x̂ᵀ∗β − xᵀ∗β as

1

n

n∑
i=1

[h(Xᵀ
i·β̂)(1− h(Xᵀ

i·β̂))]−1εiû
ᵀXi· + (Σ̂û− x∗)ᵀ(β − β̂) +

1

n

n∑
i=1

∆iû
ᵀXi·, (8)
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and notice that all three terms depend on our constructed projection direction û ∈ Rp.
Motivated by the decomposition in (8), we construct û ∈ Rp as the solution to the

following optimization problem,

û = arg min
u∈Rp

uᵀΣ̂u subject to ‖Σ̂u− x∗‖∞ ≤ ‖x∗‖2λn (9)

|xᵀ∗Σ̂u− ‖x∗‖22| ≤ ‖x∗‖22λn (10)

‖Xu‖∞ ≤ ‖x∗‖2τn (11)

where λn � (log p/n)1/2 and τn � (log n)1/2. The details on implementing the above algo-
rithm with tuning parameters selection are presented in Section 4.1.

We now provide some explanations on the construction of û in (9) to (11) by connecting
it to the error decomposition (8). The objective function in (9) scaled by 1/n, uᵀΣ̂u/n, is of
the same order of magnitude as the variance of the first term in the error decomposition (8).
The constraints (9) and (11) are introduced to control the second and third terms in the error
decomposition (8), respectively. Hence, the objective function, together with the constraints

(9) and (11), ensure that the error x̂ᵀ∗β−xᵀ∗β is controlled to be small. Such an optimization
idea has been proposed in the linear model (Javanmard and Montanari, 2014; Zhang and
Zhang, 2014) and is shown to be effective when x∗ = ej (Javanmard and Montanari, 2014;
Zhang and Zhang, 2014), a sparse x∗ (Cai and Guo, 2017) and x∗ with a bounded `2
norm (Athey et al., 2018). We shall emphasize that such an idea cannot be extended to
general loadings x∗ since the variance level of 1

n

∑n
i=1[h(Xᵀ

i·β̂)(1−h(Xᵀ
i·β̂))]−1εiû

ᵀXi· is not
guaranteed to dominate the other two bias terms in (8), without the additional constraint
(10). Cai et al. (2019) has presented examples where such bias correction method will fail;
see Proposition 2 of Cai et al. (2019).

To resolve this, we introduce the additional constraint (10) such that the variance com-
ponent 1

n

∑n
i=1[h(Xᵀ

i·β̂)(1−h(Xᵀ
i·β̂))]−1εiû

ᵀXi· is the dominating term in the error decompo-
sition (8), for any high-dimensional vector x∗ ∈ Rp. In particular, this constraint enhances
the variance component in the error decomposition (8) and hence we refer to the above
construction of projection direction û in (9) to (11) as “variance enhancement”.

Remark 1 We have shown in Theorem 1 that, with a high probability, u∗ = Σ−1x∗ belongs
to the feasible set defined by (9), (10) and (11). Although û defined by the optimization
problem (9) to (11) is targeting at u∗ = Σ−1x∗, the asymptotic normality of the proposed
LiVE estimator defined in (7) does not rely on û to be an accurate estimator of u∗. This
explains why the proposed bias-corrected estimator does not require any sparsity condition
on Σ−1, x∗ or Σ−1x∗. See Theorem 1 and its proof for details.

Remark 2 In the high-dimensional linear model, the variance enhancement idea has been
proposed in constructing the bias corrected estimator for xᵀ∗β (Cai et al., 2019). However,
the method developed for linear models in Cai et al. (2019) cannot be directly applied to
the inference problem for the case probabilities due to the complexity of the Hession matrix,
as highlighted in Section 2.2. A valid inference procedure for the case probability depends
on both Linearization and Variance Enhancement techniques.

Remark 3 The idea of adding the constraint ‖Xu‖∞ ≤ ‖x∗‖2τn was first introduced in Ja-
vanmard and Montanari (2014) to establish the asymptotic normality for the non-Gaussian
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error in the linear model. In our analysis, this additional constraint is not just introduced
to establish the asymptotic normality for the non-Gaussian error εi, but also facilitates the
empirical process proof. The range of values for τn is also different from that in Javan-
mard and Montanari (2014), where equation (54) of Javanmard and Montanari (2014) has
‖x∗‖2 = 1 and τn � nδ0 with 1/4 < δ0 < 1/2 while τn in our paper is required to satisfy

(log n)1/2 . τn � n1/2. We have set τn � (log n)1/2 throughout the rest of the paper.

2.4 LiVE: Inference for Case Probabilities

We propose to estimate xᵀ∗β by x̂ᵀ∗β as defined in (7), with the initial estimator β̂ defined
in (3) and the projection direction û defined in (9) to (11). Subsequently, we estimate the
case probability P(yi = 1|Xi· = x∗) by

P̂(yi = 1|Xi· = x∗) = h(x̂ᵀ∗β) (12)

From the above construction, the asymptotic variance of x̂ᵀ∗β can be estimated by

V̂ = ûᵀ

[
1

n2

n∑
i=1

[h(Xᵀ
i·β̂)(1− h(Xᵀ

i·β̂))]−1Xi·X
ᵀ
i·

]
û.

We construct the confidence interval for the case probability P(yi = 1|Xi· = x∗) as follows:

CIα(x∗) =
[
h
(
x̂ᵀ∗β − zα/2V̂1/2

)
, h
(
x̂ᵀ∗β + zα/2V̂1/2

)]
, (13)

where zα/2 is the upper α/2-quantile of the standard normal distribution. We conduct the
following hypothesis testing related to outcome labeling (2)

φα(x∗) = 1
(
x̂ᵀ∗β − zαV̂1/2 ≥ 0

)
. (14)

Here, the testing procedure (14) will label the observation as a case if x̂ᵀ∗β is above zαV̂1/2;
as a control, otherwise. If the goal is to test the null hypothesis H0 : h(xᵀ∗β) < c∗ for

c∗ ∈ (0, 1), we generalize (14) to φc∗α (x∗) = 1
(
x̂ᵀ∗β − zαV̂1/2 ≥ h−1(c∗)

)
, where h−1 is the

inverse function of h defined in (1).

2.5 Comparison to Other Estimators

In the following, we discuss the difference between the proposed LiVE method and related
methods. A detailed numerical comparison with the methods in van de Geer et al. (2014);
Ma et al. (2018); Zhu and Bradic (2018); Tripuraneni and Mackey (2020) is provided in
Section 4.

The main distinction is that the existing literature focused on single regression coeffi-
cients, instead of the case probability. We shall use β̃j to denote the existing coordinate-wise
debiased estimator of βj for 1 ≤ j ≤ p (van de Geer et al., 2014; Ma et al., 2018). The

computation cost of the plug-in estimator xᵀ∗β̃ is much higher than our proposed method,
as the proposed method targets at xᵀ∗β directly and requires construction of one projection
direction as in (9) to (11). In contrast, the plug-in debiased estimator xᵀ∗β̃ (van de Geer
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et al., 2014; Ma et al., 2018) requires construction of p projection directions. See Tables 1
and 2 for a detailed comparison of computation times. We also mention that there exist
technical difficulties of controlling the bias of the plug-in debiased estimator; see Section
A.1 in the supplement.

The re-weighting idea has been proposed in Ma et al. (2018) for inference for the sin-
gle regression coefficient βj in the high-dimensional logistic model. However, it is not
straightforward to extend it to make inference for a general linear combination of regression
coefficients. A brief summary of the method can be found in Section A.2 in the supplement.
Moreover, the analysis in Ma et al. (2018) requires sample splitting, where half of the data
was used for constructing an initial estimator of the regression coefficient vector and the
other half was used for bias correction. But our empirical process results in Section 3.3 can
carry out the analysis for an arbitrary combination of the regression vector and bypass the
sample splitting related to the re-weighting step.

The transformation methods have been proposed in Zhu and Bradic (2018); Tripuraneni
and Mackey (2020) for high-dimensional linear models. We now extend this method to the
logistic model. With H∗ = x∗x

ᵀ
∗/ ‖x∗‖22 , we have

Xᵀ
i·β = Xᵀ

i·H∗β +Xᵀ
i· (I−H∗)β =

Xᵀ
i·x∗

‖x∗‖22
(xᵀ∗β) + (Xᵀ

i·U) (Uᵀβ)

where I − H∗ = UUᵀ and UᵀU = Ip−1. We construct U ∈ Rp×(p−1) with its columns
denoting the eigenvectors of I−H∗ corresponding to its non-zero eigenvalues. This defines
an equivalent logistic regression model

P(yi = 1|X̌i·) = h(X̌ᵀ
i·η) i = 1, 2, · · · , n (15)

with η1 = xᵀ∗β, η−1 = Uᵀβ and X̌i,1 = Xᵀ
i,·x∗/ ‖x∗‖

2
2 , X̌i,−1 = Xᵀ

i,·U. We apply our proposed
method to the newly defined logistic regression model and obtain the bias-corrected esti-
mator η̂1 and its variance estimator V̂U . The CI and the testing procedure related to xᵀ∗β
are given by

CIα(x∗) =
[
h(η̂1 − zα/2V̂

1/2
U ), h(η̂1 + zα/2V̂

1/2
U )

]
, φα(x∗) = 1

(
η̂1 − zαV̂ 1/2

U ≥ 0
)
. (16)

In Section 4.3, we provide a comparison between (16) and our proposed method. We observe
that the transformation method suffers from a larger bias and does not achieve the desired
coverage when x∗ is relatively dense; see Table 3 for details.

Furthermore, it can be challenging to analyze the transformed model (15) since η is
not necessarily sparse (even if β is sparse). To guarantee a sparse η, certain special struc-
tures (e.g. sparsity) need to be imposed on the loading x∗. More detailed discussions on
Tripuraneni and Mackey (2020) are provided in Section A.3 in the supplement.

Our proposed debiased estimator is closely related to the one-step estimator in Bickel
(1975). Our bias correction step corresponds to the following estimating equation

Eψ(yi, Xi·, β) = 0 with ψ(yi, Xi·, β) =
Xi·(yi − h(Xᵀ

i·β))

h(Xᵀ
i·β)(1− h(Xᵀ

i·β))
, (17)

which is a weighted version of the estimating equation EXi·(yi − h(Xᵀ
i·β)) = 0. We shall

point out that the weight in (17) depends on both the data and the unknown parameter β.

10
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In comparison to Bickel (1975), we propose our bias-correction step by taking a Taylor
expansion of Xi·(yi − h(Xᵀ

i·β)) instead of ψ(yi, Xi·, β); see equation (5). Note that the
derivative of ψ(yi, Xi·, β) with respect to β has a complicated form due to the fact that
the weight in (17) also involves β. Hence, it is not straightforward to express our weighted
bias-corrected as a one-step estimator since the weight in the estimating equation (17) also
depends on β.

3. Theoretical Justification

3.1 Model Conditions and Initial Estimators

We introduce the following modeling assumptions to facilitate theoretical analysis.

(A1) The rows {Xi·}1≤i≤n are i.i.d. p-dimensional Sub-gaussian random vectors with Σ =
E(Xi·X

ᵀ
i·) where Σ satisfies c0 ≤ λmin (Σ) ≤ λmax (Σ) ≤ C0 for some positive constants

C0 ≥ c0 > 0; The high-dimensional vector β is assumed to be of k non-zero entries.

(A2) With probability larger than 1− p−c, min{h(Xᵀ
i·β), 1− h(Xᵀ

i·β)} ≥ cmin for 1 ≤ i ≤ n
and some small positive constant cmin ∈ (0, 1).

Condition (A1) imposes the tail condition for the high-dimensional covariates Xi· and as-
sumes that the population second order moment matrix is invertible. Condition (A2) is
imposed such that the case probability is uniformly bounded away from 0 and 1 by a small
positive constant cmin. Condition (A2) requires Xᵀ

i·β to be bounded for all 1 ≤ i ≤ n
with a high probability. Such a condition has been commonly made in in analyzing high-
dimensional logistic models (Athey et al., 2018; van de Geer et al., 2014; Ma et al., 2018;
Ning and Liu, 2017). For example, see condition (iv) of Theorem 3.3 of van de Geer et al.
(2014) and the overlap assumption (Assumption 6) in Athey et al. (2018). As a remark,
Condition (A2) may be stringent for certain applications; we test the robustness of our
proposed method to the violation of (A2) in Section 4.6.

The following proposition states the theoretical properties of the penalized estimator β̂
in (3), which have been established in Negahban et al. (2009); Huang and Zhang (2012).

Proposition 1 Suppose that Conditions (A1) and (A2) hold and there exists a positive
constant c > 0 such that maxi,j |Xij | kλ0 ≤ c with λ0 =

∥∥ 1
n

∑n
i=1 εiXi

∥∥
∞. For any positive

constant δ0 > 0 and the proposed estimator β̂ in (3) with λ = (1 + δ0)λ0, with probability
greater than 1− p−c − exp(−cn),

‖β̂Sc − βSc‖1 ≤ (2/δ0 + 1)‖β̂S − βS‖1 and ‖β̂ − β‖1 ≤ Ckλ0 (18)

where S denotes the support of β and C > 0 is a positive constant.

We will choose λ0 at the scale of (log p/n)1/2 and then Proposition 1 shows that the initial
estimator β̂ satisfies the following property:

(B) With probability greater than 1− p−c − exp(−cn) for some constant c > 0,

‖β̂ − β‖1 ≤ Ck (log p/n)1/2 and ‖β̂Sc − βSc‖1 ≤ C0‖β̂S − βS‖1

where S denotes the support of β and C > 0 and C0 > 0 are positive constants.

11



Guo, Rakshit, Herman and Chen

The asymptotic normality established in next subsection will hold for any initial estimator
satisfying condition (B), including our initial estimator defined in (3).

3.2 Asymptotic Normality and Statistical Inference

We now establish the limiting distribution for the proposed point estimator x̂ᵀ∗β.

Theorem 1 Suppose that Conditions (A1) and (A2) hold, τn � (log n)1/2 defined in (11)
satisfies τnk log p/

√
n → 0. Then for any initial estimator β̂ satisfying condition (B) and

any constant 0 < α < 1,

P
[
V−1/2

(
x̂ᵀ∗β − xᵀ∗β

)
≥ zα

]
→ α

where

V = ûᵀ

[
1

n2

n∑
i=1

[h(Xᵀ
i·β)(1− h(Xᵀ

i·β))]−1Xi·X
ᵀ
i·

]
û. (19)

With probability greater than 1− p−c − exp(−cn),

c0‖x∗‖2/n1/2 ≤ V1/2 ≤ C0‖x∗‖2/n1/2, (20)

for some positive constants c, c0, C0 > 0.

Theorem 1 can be used to justify the validity of the proposed confidence interval.

Proposition 2 Under the same conditions as in Theorem 1, the confidence interval CIα(x∗)
proposed in (13) satisfies lim infn→∞ P [P(yi = 1|Xi· = x∗) ∈ CIα(x∗)] ≥ 1− α, and

lim sup
n→∞

P
(
L(CIα(x∗)) ≥ (1 + δ)

(
ρ2V

)1/2)
= 0,

where L(CIα(x∗)) denotes the length of the confidence interval CIα(x∗), δ > 0 is any positive
constant, V is defined in (19) and ρ = h(xᵀ∗β)(1− h(xᵀ∗β)).

A few remarks are in order for Theorem 1 and Proposition 2. Firstly, the asymptotic nor-
mality in Theorem 1 is established without imposing any condition on the high-dimensional
vector x∗ ∈ Rp. The variance enhancement construction of the projection direction û in (9)
to (11) is crucial for establishing such a uniform result over any x∗ ∈ Rp. Specifically, with
the additional constraint (10), we can establish the lower bound of the asymptotic variance
in (20), which guarantees that the variance component of (8) dominates the remaining bias.

Secondly, to establish the asymptotic normality result, we do not impose any sparsity
condition on the precision matrix Σ−1. This has weakened sparsity conditions imposed on
the inverse of the Hessian matrix E (h(Xᵀ

i·β) (1− h(Xᵀ
i·β))Xi·X

ᵀ
i·) or the precision matrix

Σ−1 (van de Geer et al., 2014; Ning and Liu, 2017; Ma et al., 2018). Thirdly, with τn �
(log n)1/2, the required sparsity condition on β is k � n1/2/[log p (log n)1/2]. Such sparsity
conditions are imposed for confidence interval construction for both high-dimensional linear
models and logistic models (Javanmard and Montanari, 2014; Zhang and Zhang, 2014;
van de Geer et al., 2014; Ning and Liu, 2017; Ma et al., 2018). Regarding confidence interval

12
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construction for βj in high-dimensional linear models, Cai and Guo (2017) have shown
that the ultra-sparse condition k � n1/2/log p is necessary and sufficient for constructing
a confidence interval of length 1/

√
n. Recently, Cai et al. (2021) extended this result to

inference for single regression coefficients in the high-dimensional logistic regression.
Theorem 1 also justifies the validity of the proposed testing procedure. To study the

testing procedure, we introduce the following parameter space for θ = (β,Σ),

Θ(k) = {θ = (β,Σ) : ‖β‖0 ≤ k, c0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ C0}

for some positive constants C0 ≥ c0 > 0. We consider the following null parameter space
H0 = {θ = (β,Σ) ∈ Θ(k) : xᵀ∗β ≤ 0} and the local alternative parameter space

H1(µ) =
{
θ = (β,Σ) ∈ Θ(k) : xᵀ∗β = µ/n1/2

}
, for some µ > 0.

Proposition 3 Under the same conditions as in Theorem 1, for each θ ∈ H0, the proposed
testing procedure φα(x∗) in (14) satisfies lim supn→∞ Pθ [φα(x∗) = 1] ≤ α. For θ ∈ H1(µ),
we have

lim sup
n→∞

∣∣∣Pθ [φα(x∗) = 1]− [1− Φ−1(zα − µ/(nV)1/2)]
∣∣∣ = 0, (21)

where Φ−1 is the inverse of the cumulative function of standard normal distribution.

The proposed hypothesis testing procedure is shown to have a well-controlled type I error
rate. The asymptotic power expression in (21) holds for any µ. Since (20) implies c0‖x∗‖2 ≤
(nV)1/2 ≤ C0‖x∗‖2, the power of the proposed test in (21) is nontrivial if µ ≥ C‖x∗‖2 holds
for a large positive constant C. If µ/‖x∗‖2 →∞ or equivalently n1/2xᵀ∗β/‖x∗‖2 →∞, then
the power will be 1 in the asymptotic sense. It has also been observed in Section 4 that the
finite sample performance of the proposed procedure depends on the sample size n and the
`2 norm ‖x∗‖2; see Tables 1 and 2 for details.

3.3 Analysis Related to Reweighting in Linearization

In the following, we provide more insights on how to establish the asymptotic normality and
summarize technical tools for analyzing the re-weighted estimator obtained by the lineariza-
tion procedure. Regarding the decomposition (8), the first term captures the stochastic er-
ror due to the model error εi, the second term is a bias component arising from estimating
Σ−1x∗, and the third term appears due to the nonlinearity of the logistic regression model.
The following proposition controls the second and third terms.

Proposition 4 Suppose that Conditions (A1) and (A2) hold. For any estimator β̂ satisfy-
ing Condition (B), with probability larger than 1−p−c−exp(−cn) for some positive constant
c > 0,

n1/2
∣∣∣(Σ̂û− x∗)ᵀ(β̂ − β)

∣∣∣ ≤ n1/2‖x∗‖2λn‖β̂ − β‖1 . ‖x∗‖2k log p · n−1/2, (22)

and

n1/2|ûᵀ 1

n

n∑
i=1

Xi·∆i| ≤ τn‖x∗‖2k log p · n−1/2 (23)
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Together with (8), it remains to establish the asymptotic normality of the following term,

ûᵀ
1

n

n∑
i=1

[h(Xᵀ
i·β̂)(1− h(Xᵀ

i·β̂))]−1Xi·εi. (24)

Because of the dependence between the weight [h(Xᵀ
i·β̂)(1−h(Xᵀ

i·β̂))]−1 and the model error
εi, it is challenging to establish the asymptotic normality of this re-weighted summation (24).

We decouple the correlation between β̂ and εi through the following expression,

ûᵀ
1

n

n∑
i=1

[h(Xᵀ
i·β̂)(1− h(Xᵀ

i·β̂))]−1Xi·εi = ûᵀ
1

n

n∑
i=1

[h(Xᵀ
i·β)(1− h(Xᵀ

i·β))]−1Xi·εi

+ ûᵀ
1

n

n∑
i=1

(
[h(Xᵀ

i·β̂)(1− h(Xᵀ
i·β̂))]−1 − [h(Xᵀ

i·β)(1− h(Xᵀ
i·β))]−1

)
Xi·εi.

(25)

The first component on the right hand side of the above summation is not involved with
the estimator β̂, so that the standard probability argument can be applied to establish the
asymptotic normality. The second component on the right hand side of (25) captures the
error incurred on estimating β by β̂. We now provide a sharp control of this error term by
suitable empirical process theory.

Lemma 1 Suppose that Conditions (A1) and (A2) hold and the initial estimator β̂ satisfies
Condition (B), then with probability greater than 1− p−c − exp(−cn)− 1/t0,∣∣∣∣∣ûᵀ 1

n1/2

n∑
i=1

(
[h(Xᵀ

i·β̂)(1− h(Xᵀ
i·β̂))]−1 − [h(Xᵀ

i·β)(1− h(Xᵀ
i·β))]−1

)
Xi·εi

∣∣∣∣∣ ≤ Ct0τn‖x∗‖2 k log p

n1/2

(26)

where τn is defined in (11), t0 > 1 is a large positive constant and c > 0 and C > 0 are
positive constants.

The main step in establishing the above lemma is to apply a contraction principle for
i.i.d. symmetric random variables taking values {−1, 1, 0}. See Lemma 7 for the precise
statement. This extends the existing results on contraction principles for i.i.d Rademacher
random variables (Koltchinskii, 2011). This lemma and the related analysis are particularly
useful for carefully characterizing the approximation error in (26) and can be of indepen-
dent interest in establishing asymptotic normality of other re-weighted estimators in high
dimensions. The proof of Lemma 1 is presented in Section 6.

Remark 4 In comparison, in case of the linear model or the logistic model without re-
weighting (van de Geer et al., 2014; Javanmard and Montanari, 2014; Zhang and Zhang,
2014), such a challenge does not exist since the corresponding term is of the form ûᵀ 1

n

∑n
i=1Xi·εi

and the direction û, defined in van de Geer et al. (2014); Javanmard and Montanari
(2014); Zhang and Zhang (2014), is either directly independent of εi or can be replaced
by u∗ = Σ−1x∗ (by assuming Σ−1x∗ to be sparse).
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4. Numerical Studies

4.1 Algorithm Implementation and Method Comparision

We provide details on how to implement the LiVE estimator defined in (7). The initial
estimator β̂ defined in (3) is computed using the R-package cv.glmnet (Friedman et al.,
2010) with the tuning parameter λ chosen by cross-validation. To compute the projection
direction û ∈ Rp, we implement the following constrained optimization,

û = arg min
u∈Rp

uᵀΣ̂u subject to ‖Σ̂u− x∗‖∞ ≤ ‖x∗‖2λn, |xᵀ∗Σ̂u− ‖x∗‖22| ≤ ‖x∗‖22λn.
(27)

This construction does not include the constraint (11), which is mainly imposed to
facilitating the theoretical proof. We have conducted an additional check in simulations
and observed that our constructed û in (27) satisfies ‖Xû‖∞ ≤ C

√
log n‖x∗‖2; see Section

C.2 in the supplementary material for details.
We solve the dual problem of (27),

v̂ = arg min
v∈Rp+1

1

4
vᵀHᵀΣ̂Hv + bᵀHv + λn‖v‖1 with H = [b, Ip×p] , b =

1

‖x∗‖2
x∗ (28)

and then solve the primal problem (27) as û = − (v̂−1 + v̂1b) /2. We refer to Proposition 2
in Cai et al. (2019) for the the detailed derivation of the dual problem (28). In this dual
problem, when Σ̂ is singular and the tuning parameter λn > 0 gets sufficiently close to 0,
the dual problem cannot be solved as the minimum value converges to negative infinity.
Hence, we choose the smallest λn > 0 such that the dual problem has a finite minimum
value. The tuning parameter λn selected in this manner is at the scale of

√
log p/n. We

investigate the ratio λn/
√

log p/n in Section C.1 in the supplement.
We compare our proposed LiVE estimator with the following state-of-the-art methods.

• Plug-in Lasso. Estimate xᵀ∗β by xᵀ∗β̂ with β̂ denoting the penalized estimator in (3).

• Post-selection method. First select important predictors through penalized logistic
regression estimator β̂ in (3) and then fit a standard logistic regression with the
selected predictors. The post-selection estimator β̂PL ∈ Rp is used to estimate xᵀ∗β
by xᵀ∗β̂PL. The variance of this post-selection estimator xᵀ∗β̂PL can be obtained by the
inference results in the classical low-dimensional logistic regression, denoted by V̂PL.

• Plug-in hdi (Dezeure et al., 2015). The R package hdi is implemented to obtain
the coordinate debiased Lasso estimator β̂hdi ∈ Rp and the plug-in estimator xᵀ∗β̂hdi
is used to estimate xᵀ∗β, with the variance estimator as V̂hdi.

• Plug-in WLDP (Ma et al., 2018). We compute the debiased lasso estimator β̂WLDP ∈
Rp by the Weighted LDP algorithm in Table 1 of Ma et al. (2018). The plug-in esti-
mator of xᵀ∗β and the associated variance are given by xᵀ∗β̂WLDP and V̂WLDP respectively.

• Generalization of Transformation Method (Zhu and Bradic, 2018) in (16).

We compare the above estimators with the proposed LiVE estimator in (7) in terms
of Root Mean Square Error (RMSE), standard error and bias. Since the plug-in Lasso
estimator is not useful for CI construction due to its large bias, we compare with Post-
selection method, plug-in hdi, WLDP and the transformation method, from the perspectives
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of CI construction and hypothesis testing (2). Recall that our proposed CI and testing
procedure for (2) are implemented as in (13) and (14), respectively. The inference procedures
based on post-selection method, plug-in hdi and plug-in weighted WLDP are defined as,

CIα(x∗) =
[
h(xᵀ∗β̃ − zα/2Ṽ1/2), h(xᵀ∗β̃ + zα/2Ṽ1/2)

]
, φα(x∗) = 1

(
xᵀ∗β̃ − zαṼ1/2 ≥ 0

)
,

with replacing (β̃, Ṽ) by (β̂PL, V̂PL), (β̂hdi, V̂hdi) and (β̂WLDP, V̂WLDP) respectively.
Throughout the simulation, we set Xi,1 = 1 to represent the intercept and generate

the covariates {Xi,−1}1≤i≤n from the multivariate normal distribution with zero mean
and covariance matrix Σ. Conditioning on Xi·, the binary outcome is generated by yi ∼
Bernoulli (h (Xᵀ

i·β)) , for 1 ≤ i ≤ n. We generate the following loadings x∗.

• Loading 1: We set xbasis,1 = 1 and generate xbasis,−1 ∈ R(p−1) following N(0, Σ̃) with

Σ̃ = {q · 0.51+|j−l|}1≤j,l≤(p−1) for some q > 0; for r ≥ 0, generate x∗ as

x∗,j =

{
xbasis,j for 1 ≤ j ≤ 11

r · xbasis,j for 12 ≤ j ≤ p
. (29)

• Loading 2: xbasis,1 is set as 1 and xbasis,−1 ∈ R(p−1) is generated as following N(0, Σ̃)

with Σ̃ = {q · (−0.75)|j−l|/2}1≤j,l≤(p−1) for some q > 0; generate x∗ using (29).

All simulation results are averaged over 500 replications. The loadings are only generated
once and kept the same across all 500 replications.

4.2 Varying sample size n and loading norm ‖x∗‖2
We investigate the performance of our method across different sample sizes n and loading
norms ‖x∗‖2. We set p = 501, Σ = {0.51+|j−l|}1≤j≤l≤(p−1) and vary n ∈ {200, 400, 600}. We
carry out the simulations for both Loading 1 and Loading 2 with q = 1 and r ∈ {1, 1/25}.
We generate the exactly sparse regression vector β as

(S1) β1 = 0, βj = (j − 1)/20 for 2 ≤ j ≤ 11 and βj = 0 for 12 ≤ j ≤ p.

Here, the scale parameter r in (29) controls the magnitude of the noise variables in x∗. As r
decreases, ‖x∗‖2 decreases but the case probability h(xᵀ∗β) remains the same for all choices
of r since only the values of x∗,j for 1 ≤ j ≤ 11 affect xᵀ∗β. Since the R package hdi and the
WLDP algorithm only report the debiased estimators together with their variance estimators
for the regression coefficients excluding the intercept, the intercept β1 is set as 0 to have a
fair comparison. In Section C.4 in the supplement, we conduct additional simulation studies
for models with a non-zero intercept.

In Table 1, we compare the proposed LiVE method with post-selection, hdi and WLDP,
in terms of CI construction and hypothesis testing for the setting (S1) with x∗ generated as
Loading 1. The CIs constructed by LiVE and hdi have coverage over different scenarios and
the lengths are reduced when a larger sample is used to construct the CI. WLDP overcovers
and the post-selection method undercovers.

Regarding the testing procedure, we report the empirical rejection rate (ERR), which is
defined as the proportion of null hypothesis in (2) being rejected out of the 500 replications.
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Setting (S1), Loading 1 with q = 1

LiVE Post Selection hdi WLDP

‖x∗‖2 r Prob n Cov ERR Len t Cov ERR Len t Cov ERR Len t Cov ERR Len t

16.1 1 0.732
200 0.98 0.05 0.88 5 0.68 0.54 0.42 1 0.97 0.06 0.93 370 1.00 0.00 1.00 34
400 0.97 0.10 0.81 14 0.71 0.57 0.38 2 0.96 0.10 0.87 751 1.00 0.00 1.00 56
600 0.95 0.13 0.74 23 0.70 0.68 0.32 6 0.94 0.10 0.83 3212 1.00 0.00 1.00 118

1.90 1
25 0.732

200 0.96 0.62 0.34 5 0.80 0.77 0.31 1 0.92 0.86 0.31 371 1.00 0.36 0.58 34
400 0.94 0.92 0.23 14 0.83 0.93 0.24 2 0.92 0.96 0.23 751 1.00 0.45 0.53 54
600 0.95 0.95 0.19 22 0.82 0.95 0.20 5 0.95 0.97 0.19 3211 1.00 0.47 0.50 118

Table 1: Varying n and ‖x∗‖2. “r” and “Prob” represent the shrinkage parameter and
Case Probability respectively. The columns indexed with “Cov” and “Len” repre-
sent the empirical coverage and length of the CIs; the column indexed with “ERR”
represents the empirical rejection rate of the test; “t” represents the averaged com-
putation time (in seconds). The columns under “LiVE” ,“Post Selection”, “hdi”
and “WLDP” correspond to the proposed estimator, the post selection estimator,
the plug-in debiased estimator using hdi and WLDP, respectively.

Under the null hypothesis, ERR is an empirical measure of the type I error; under the al-
ternative hypothesis, ERR is an empirical measure of the power. For Loading 1 (alternative
hypothesis), the empirical power increases with sample sizes, for all methods. For the case
that ‖x∗‖2 is relatively small, the proposed LiVE method has a power above 0.90 when the
sample size reaches 400. For settings with a large ‖x∗‖2, the power is not as high mainly due
to the high variance of the bias-corrected estimator. This is consistent with the theoretical
results established in Proposition 3.

We have investigated the computational efficiency of all methods and reported the av-
eraged time of implementing each method under the column indexed with “t” (the units
are seconds). The proposed LiVE method is computationally efficient and can be finished
within 25 seconds on average. The hdi algorithm provides valid CIs but requires around
an hour to achieve the same goal for n = 600 and p = 501. The main reason is that the
hdi is not designed for inference for case probabilities and requires the implementation of
p high-dimensional penalization algorithms for bias-correction.

The inference results for Loading 2 are similar and reported in Table C.5 in the supple-
ment. We report Root Mean Squared Error (RMSE), bias and standard deviation of the
proposed LiVE estimator, plug-in Lasso, post-selection, hdi and WLDP in Table C.6 in the
supplementary material. It is observed that the plug-in Lasso estimator cannot be used
for confidence interval construction as its bias component is a dominant component of the
RMSE and the uncertainty of the bias component is hard to quantify.

Post selection inference methods can produce incorrect inference due to the fact that the
model selection uncertainty is not quantified. The post-selection method can select either
a larger model or a smaller model compared to the true one. In Table 1, post selection
undercovers since post-selection tends to select a relatively large set of variables and this
results in a perfect separation in the re-fitting step. In Section C.3 in the supplementary
material, we show another setting where the post-selection method selects a smaller model
and leads to a substantial omitted variable bias.
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In practical settings, the regression vector β might not be exactly sparse but can have
some large regression coefficients and most others are small but not exactly zero. To simulate
these practical settings, we consider the following generation of β:

(S2) β1 = 0 and βj = (j − 1)−decay for 2 ≤ j ≤ p, with decay ∈ {1, 2}.

We illustrate the method comparison using Loading 1. The inference results are reported
in Table 2 for decay = 1. The results for decay = 2 are similar to those for decay = 1 and
summarized in Table C.7 in the supplement. The estimation results are reported in Table
C.8 in the supplement.

Setting (S2) with decay=1, Loading 1 with q = 1

LiVE Post Selection hdi WLDP

‖x∗‖2 r Prob n Cov ERR Len t Cov ERR Len t Cov ERR Len t Cov ERR Len t

16.1 1 0.645
200 0.96 0.05 0.93 5 0.58 0.26 0.45 1 0.96 0.06 0.93 370 1.00 0.00 1.00 34
400 0.96 0.04 0.85 14 0.60 0.31 0.41 2 0.97 0.07 0.90 751 1.00 0.00 1.00 56
600 0.97 0.05 0.80 23 0.62 0.37 0.37 6 0.96 0.07 0.86 3212 1.00 0.00 1.00 118

1.09 1
25 0.523

200 0.96 0.06 0.40 5 0.69 0.13 0.31 1 0.96 0.05 0.39 371 1.00 0.00 0.75 34
400 0.96 0.11 0.28 14 0.58 0.16 0.24 2 0.94 0.11 0.28 751 1.00 0.00 0.68 54
600 0.97 0.07 0.24 22 0.71 0.09 0.21 5 0.96 0.04 0.24 3211 1.00 0.00 0.65 118

Table 2: Varying n and ‖x∗‖2. “r” and“Prob” represent the shrinkage parameter and
Case Probability respectively. The columns indexed with “Cov” and “Len” repre-
sent the empirical coverage and length of the CIs; the column indexed with “ERR”
represents the empirical rejection rate of the test; “t” represents the averaged com-
putation time (in seconds). The columns under “LiVE” ,“Post Selection”, “hdi”
and “WLDP” correspond to the proposed estimator, the post selection estimator,
the plug-in debiased estimator using hdi and WLDP respectively.

Note that as the regression coefficient is decaying, the shrinking parameter r in (29)
plays a role in determining the case probability. The main observations are consistent
with those in Table 1: only the proposed LiVE method and hdi have proper coverage
across different scenarios while the CI by post selection undercovers and the CI by WLDP

overcovers. The proposed method is computationally more efficient than hdi: for n = 600,
the average computation time for the proposed algorithm is 23 seconds while hdi with a
similar performance requires more than 3200 seconds.

For decay = 1 and r = 1, the case probability (0.645) is above 0.5; the proposed
LiVE method and hdi achieve the correct coverage level but the testing procedures have
low powers. This matches with Proposition 3, that is, the power of the proposed testing
procedure tends to be low for the observation x∗ with very large ‖x∗‖2. For decay =
1 and r = 1/25, the case probability is 0.523 and this represents an alternative in the
indistinguishable region and the power of the proposed testing procedure is low as expected.

4.3 Comparison with the Transformation Method

We compare LiVE with the Transformation method (Zhu and Bradic, 2018; Tripuraneni
and Mackey, 2020) based on settings (S3) and (S4), which are variations of setting (S1).

(S3) p = 501; β1 = 0, βj = (j − 1)/10 for 2 ≤ j ≤ 11 and βj = 0 for 12 ≤ j ≤ 501.
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(S4) p = 1001; β1 = 0; βj = (j − 1)/20 for 2 ≤ j ≤ 11 but j 6= 3, 4, 6; βj = 1 for j = 3, 4, 6
and βj = 0 for 12 ≤ j ≤ 1001.

Set Σ = {0.51+|j−l|}1≤j≤l≤(p−1). Table 3 summarizes the results for (S3) and (S4) with
Loading 1 with q = 1 and r ∈ {1, 1/2, 1/5, 1/25}. We vary n ∈ {200, 400, 600}.

Setting (S3), Loading 1 with q = 1

LiVE Transformation Method

‖x∗‖2 r Prob n Cov ERR Len RMSE Bias SE Cov ERR Len RMSE Bias SE

16.1 1 0.881
200 0.99 0.08 0.92 0.28 -0.12 0.25 0.84 0.06 0.82 0.34 -0.26 0.22
400 1.00 0.12 0.87 0.23 -0.08 0.22 0.98 0.13 0.82 0.28 -0.18 0.22
600 0.98 0.17 0.81 0.19 -0.05 0.18 0.96 0.14 0.82 0.26 -0.16 0.21

8.18 1
2 0.881

200 0.99 0.22 0.72 0.16 -0.06 0.14 0.65 0.11 0.63 0.27 -0.24 0.14
400 0.98 0.38 0.62 0.13 -0.04 0.12 0.90 0.20 0.64 0.23 -0.17 0.15
600 0.97 0.58 0.51 0.10 -0.03 0.10 0.92 0.28 0.60 0.20 -0.14 0.14

3.66 1
5 0.881

200 0.94 0.78 0.40 0.10 -0.06 0.09 0.60 0.54 0.41 0.19 -0.15 0.12
400 0.97 0.95 0.32 0.07 -0.03 0.06 0.74 0.85 0.32 0.12 -0.08 0.09
600 0.95 0.98 0.25 0.06 -0.02 0.06 0.84 0.94 0.26 0.09 -0.06 0.07

1.90 1
25 0.881

200 0.88 0.96 0.26 0.09 -0.05 0.07 0.92 0.99 0.20 0.06 -0.03 0.06
400 0.92 0.99 0.21 0.06 -0.03 0.05 0.94 0.99 0.16 0.04 -0.01 0.04
600 0.92 0.99 0.17 0.05 -0.02 0.04 0.96 1.00 0.14 0.03 0.00 0.03

Setting (S4), Loading 1 with q = 1

LiVE Transformation Method

‖x∗‖2 r Prob n Cov ERR Len RMSE Bias SE Cov ERR Len RMSE Bias SE

22.2 1 0.814
200 0.99 0.02 0.97 0.33 -0.11 0.31 0.00 0.35 0.04 0.31 -0.30 0.08
400 0.99 0.04 0.94 0.30 -0.09 0.29 0.04 0.10 0.31 0.28 -0.27 0.09
600 0.98 0.08 0.91 0.26 -0.06 0.25 0.87 0.08 0.69 0.26 -0.19 0.18

11.2 1
2 0.814

200 0.99 0.10 0.85 0.20 -0.05 0.20 0.06 0.17 0.29 0.27 -0.25 0.10
400 0.99 0.17 0.75 0.17 -0.03 0.17 0.77 0.12 0.68 0.21 -0.13 0.16
600 0.99 0.22 0.71 0.15 -0.03 0.15 0.87 0.20 0.64 0.19 -0.11 0.15

4.90 1
5 0.814

200 0.96 0.50 0.52 0.10 -0.02 0.10 0.89 0.50 0.42 0.14 -0.08 0.11
400 0.97 0.75 0.41 0.08 -0.01 0.08 0.90 0.73 0.35 0.11 -0.05 0.10
600 0.97 0.76 0.39 0.08 -0.02 0.08 0.91 0.85 0.30 0.09 -0.03 0.09

2.29 1
25 0.814

200 0.96 0.91 0.30 0.08 -0.02 0.07 0.89 0.98 0.22 0.07 0.02 0.07
400 0.94 0.98 0.24 0.06 -0.02 0.06 0.88 0.99 0.19 0.06 0.02 0.06
600 0.93 0.98 0.23 0.06 -0.02 0.06 0.90 1.00 0.17 0.05 0.02 0.04

Table 3: Comparison with Transformation Method. “r” and “Prob” represent the
shrinkage parameter and Case Probability respectively. The columns indexed with
“Cov” and “Len” represent the empirical coverage and length of the CIs; the
column indexed with “ERR” represents the empirical rejection rate of the test;
The columns indexed with “RMSE”, “Bias” and “SE” represent the RMSE, bias
and standard error, respectively. The columns under “LiVE” and “Transformation
Method” correspond to LiVE and the transformation method, respectively.

We observe that the performance of our proposed LiVE estimator and the transformation
method are similar for a sparse loading (e.g. r = 1/25) while the performance of these two
methods can be quite different for a dense loading (e.g. r = 1, 1/2, 1/5). Specifically, for
a dense loading, the bias of the transformation method is typically larger than that of our
proposed LiVE estimator; our proposed confidence intervals in general have coverage while
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the transformation method undercovers. For (S3), when r = 1/5, our proposed confidence
intervals have better coverage than those by the transformation method while their lengths
are similar; with a relatively dense loading (e.g. r = 1 or r = 1/2) and a smaller sample size
(n = 200), the transformation method undercovers while the confidence intervals by the
LiVE method provide coverage at the expense of longer lengths. For (S4), the observation
is similar to that for (S3).

4.4 Increasing dimension p and coefficient magnitudes

We vary p across {1001, 2001, 5001} and generate β as a mixture of large and small signals.

(S5) β1 = 0; βj = (j − 1)/20 for 7 ≤ j ≤ 11; βj = 1 for j = 2, 3, 4; βj = −1 for j = 5, 6
and βj = 0 for 12 ≤ j ≤ p

(S6) β1 = 0; βj = (j − 1)−decay for 7 ≤ j ≤ p; βj = 1 for j = 2, 3, 4 and βj = −1 for
j = 5, 6 with decay ∈ {1, 2}

Set Σ = {0.51+|j−l|/2}1≤j≤l≤(p−1). Settings (S5) and (S6) are variations of Settings (S1)
and (S2), respectively. The results for Setting (S5) with respect to Loading 1 with q = 1/2
and r = 1/5 are summarized in Table 4. We vary n across {400, 600, 1000}. In Section C.6
in the supplement, we report the results for Setting (S5) with respect to Loading 2 with
q = 1/2 and r = 1/5 in Table C.9 and the results for (S6) in Tables C.10 and C.11. The
results are similar to that reported in Table 4.

Setting (S5), Loading 1 with q = 1/2

p ‖x∗‖2 r Prob n Cov ERR Len RMSE Bias SE

1001 3.21 1
5 0.263

400 0.91 0.00 0.42 0.13 0.07 0.11
600 0.94 0.00 0.38 0.11 0.04 0.10

1000 0.93 0.00 0.30 0.08 0.04 0.07

2001 4.60 1
5 0.531

400 0.96 0.12 0.55 0.15 0.07 0.14
600 0.95 0.12 0.49 0.13 0.05 0.12

1000 0.97 0.15 0.42 0.11 0.03 0.11

5001 7.07 1
5 0.385

400 0.97 0.00 0.72 0.19 0.02 0.19
600 0.98 0.00 0.65 0.15 0.02 0.15

1000 0.97 0.00 0.57 0.13 0.01 0.13

Table 4: Inference properties of LiVE with increasing p and coefficient magni-
tudes. “r” and “Prob” represent the shrinkage parameter and Case Probability
respectively. The columns indexed with “Cov” and “Len” represent the empirical
coverage and length of the CIs; the column indexed with “ERR” represents the
empirical rejection rate of the test; The columns indexed with “RMSE”, “Bias”
and “SE” represent the RMSE, bias and standard error, respectively.

The observations are persistent with those in Section 4.2. The proposed LiVE method has
coverage across different scenarios. In Table 4, when p ∈ {1001, 5001} the case probabilities
(< 0.5) correspond to the null hypothesis and the testing procedure has type I error con-
trolled. However when p = 2001, the case probability (0.531) corresponds to an alternative
in the indistinguishable region and consequently the testing procedure does not have power.
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4.5 Varying sparsity of β

We test the sensitivity of our method to the sparsity assumption k .
√
n/log p by varying

the sparsity over a range of values. To mimic the configuration of real data in Section 5,
we set n = 318 and p = 199. Set Σ = {0.51+|j−l|}1≤j≤l≤(p−1) and generate β as

(S7) β1 = 0, βj = (j − 1)/d for 2 ≤ j ≤ l + 1 and βj = 0 for l + 2 ≤ j ≤ 199.

We vary d ∈ {5, 10, 20} and l ∈ {5, 10, 12, 15, 20}. With d increasing or l decreasing, the
effective sparsity level decreases. Table 5 summarizes the results for the setting (S7) with x∗
generated as Loading 1 with q = 1/2 and r = 1/5. For d = 5, our proposed LiVE method
is more reliable for l = 5 or 10. Even though the coverage is guaranteed for a larger l, the
proposed confidence intervals overcover. When d is increased to 10, the method works well
for l ≤ 12; for l = 15, 20, the confidence intervals are conservative. For d = 20, our proposed
method is reliable for l being as large as 20. In general, our proposed confidence intervals
are reliable for the relatively sparse signals; for the setting with a dense signal, the proposed
confidence intervals are conservative and hence less informative.

Setting (S7), Loading 1 with q = 1/2 and r = 1/5

‖x∗‖2 d l Prob Cov ERR Len RMSE Bias SE

2.22 5

5 0.627 0.94 0.35 0.32 0.08 -0.01 0.08
10 0.939 0.95 0.38 0.66 0.08 -0.06 0.05
12 0.940 0.99 0.07 0.89 0.09 -0.07 0.06
15 0.951 0.99 0.01 0.98 0.13 -0.11 0.07
20 0.891 0.99 0.00 0.99 0.23 -0.20 0.11

2.22 10

5 0.564 0.93 0.23 0.29 0.08 0.00 0.08
10 0.798 0.94 0.88 0.32 0.08 -0.04 0.07
12 0.798 0.95 0.62 0.43 0.08 -0.04 0.08
15 0.815 0.97 0.20 0.67 0.10 -0.06 0.08
20 0.741 0.99 0.01 0.93 0.14 -0.10 0.10

2.22 20

5 0.532 0.94 0.14 0.29 0.08 0.00 0.08
10 0.665 0.92 0.62 0.28 0.08 -0.01 0.08
12 0.665 0.94 0.60 0.30 0.08 -0.01 0.08
15 0.677 0.95 0.49 0.35 0.08 -0.01 0.08
20 0.629 0.97 0.08 0.53 0.10 -0.04 0.10

Table 5: Varying sparsity of β. The columns indexed with “Cov” and “Len” represent
the empirical coverage and length of the constructed CIs respectively; the column
indexed with “ERR” represents the empirical rejection rate of the testing proce-
dure; The columns indexed with “RMSE”, “Bias” and “SE” represent the RMSE,
bias and standard error, respectively.

4.6 Robustness to Violation of (A2)

We now test the robustness of our proposed method to the violation of Condition (A2). We
generate β as

(S8) β1 = 0, βj = 1 for 2 ≤ j ≤ 11 and βj = 0 for 12 ≤ j ≤ 501.

We construct different covariance matrices Σ such that a certain proportion of the
conditional case probability

{
h
(
X>i β

)}n
i=1

are near 0 or 1.

21



Guo, Rakshit, Herman and Chen

(i) Toeplitz Covariance : Σ ∈ R500×500 is constructed as a block diagonal matrix.
Each block, Σ0 is a matrix of dimension 50 × 50 constructed as: (Σ0)i,i = 0.5 for
1 ≤ i ≤ 50 and (Σ0)i,j = 0.03

2 (1− |i− j|/49) for 1 ≤ i 6= j ≤ 50.

(ii) Decaying Covariance : Σ = {0.51+|j−l|}1≤j≤l≤500.

In Figure 1, we plot the case probability for n = 600. The left panel of Figure 1 corresponds
to the setting with the Toeplitz covariance matrix, where 37 out of 600 conditional case
probabilities lie below 0.1 while 35 lie above 0.9; The right panel of Figure 1 corresponds to
the setting with the decaying covariance matrix, where 79 out of 600 conditional case prob-
abilities lie below 0.1 while 77 lie above 0.9, which suggests stronger violation of assumption
(A2). Due to the deeper U-shape on the right of Figure 1, Condition (A2) is more violated
for the setting with a decaying covariance matrix. The inference results are summarized in
Table 6.

Figure 1: Histogram of {h(Xᵀ
i·β)}ni=1 for a sample of n = 600 observations with respect to

setting (S8) with Toeplitz Covariance (left) and Decaying Covariance (right).

In table 6, we observe that the stronger violation of (A2) results in our constructed CIs
overcovering. The wider CIs are expected since the weights, [h(Xᵀ

i·β)(1− h(Xᵀ
i·β))]−1, can

be quite large when a large proportion of {h(Xᵀ
i·β)}ni=1 are close to 0 or 1. To summarize,

the less U-shaped the histogram of the conditional case probabilities is, the better is the
inference produced by the LiVE method.

We plot the histogram of the conditional case probability {h(Xᵀ
i·β)}ni=1 and Condition

(A2) is strongly violated if a large proportion of {h(Xᵀ
i·β)}ni=1 concentrate around 0 or 1.

We have plotted the histogram for simulation settings (S1), (S2), (S5) and (S6) in Figure
C.3 in the supplement.

5. Real Data Analysis

We applied the proposed methods to develop preliminary models for predicting three re-
lated disease conditions, hypertension, hypertension that appears to be resistant to stan-
dard treatment (henceforth “R-hypertension”), and hypertension with unexplained low
blood potassium (henceforth “LP-hypertension”). The data were extracted from the Penn
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Setting (S8), Loading 2 with q = 1

Toeplitz Covariance

‖x∗‖2 r Prob n Cov ERR Len RMSE Bias SE

6.21 1
5 0.200

200 0.97 0.00 0.75 0.28 0.09 0.27
400 0.96 0.00 0.61 0.21 0.06 0.20
600 0.93 0.00 0.54 0.19 0.04 0.18

Decaying Covariance

‖x∗‖2 r Prob n Cov ERR Len RMSE Bias SE

6.21 1
5 0.200

200 0.98 0.00 0.95 0.30 0.11 0.28
400 0.99 0.00 0.90 0.26 0.10 0.24
600 0.98 0.00 0.86 0.19 0.06 0.18

Table 6: Robustness to violation of (A2). “r” and“Prob” represent the shrinkage pa-
rameter and Case Probability respectively. The columns indexed with “Cov” and
“Len” represent the empirical coverage and length of the CIs; the column indexed
with “ERR” represents the empirical rejection rate of the test; The columns in-
dexed with “RMSE”, “Bias” and “SE” represent the RMSE, bias and standard
error, respectively.

Medicine clinical data repository, including demographics, laboratory results, medication
prescriptions, vital signs, and encounter meta information. The analysis cohort consisted
of 348 patients who were at least 18 years old, had at least 5 office visits over at least
three distinct years between 2007 and 2017, and at least 2 office visits were at one of the
37 primary care practices. Patient charts were reviewed by a dedicated physician to deter-
mine each of the three outcome statuses, and unclear cases were secondarily reviewed by
an additional expert clinician. The prevalence of the three outcome variables were 39.4%,
8.1%, and 4.6%, respectively. Longitudinal EHR variables, which had varied values over
multiple observations, were summarized by minimum, maximum, mean, median, standard
deviation, and/or skewness, and these summary statistics were used as predictors after ap-
propriate normalization. Highly right-skewed variables were log-transformed. We included
198 predictors in the final analyses, after removing those with missing values.

In our analysis, we randomly sampled 30 patients as the test sample, then their predictor
vectors were treated as x∗. A prediction model for each outcome variable was developed
using the remaining 318 patients and then applied to the test sample to obtain bias-corrected
estimates of the case probabilities using our method. The left and right columns in Figure 2
present results on two independent test samples, where the three rows within each column
correspond to the three outcome variables. In each panel, the x-axis represents the predicted
probability generated by our method, and the y-axis represents the true outcome status (1
or 0). In all six panels, the predicted probabilities by the LiVE method for true cases tended
to be high and for true controls tended to be low. This illustrates that the LiVE estimator
in (12) is predictive for the true outcome status.

Figure 3 presented confidence intervals constructed using our method for the case prob-
abilities shown in the top two panels in the right column in Figure 2, corresponding to
prediction of hypertension and resistant hypertension. The length of the constructed confi-
dence intervals appeared to vary since each patient in the test sample had different observed
predictors x∗. This observation is consistent with the established theory in Theorem 1,
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Figure 2: Performance for predicting three phenotypes in two random sub-samples.
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which states that the length of confidence interval depends on ‖x∗‖2. More interestingly,
the constructed confidence intervals appeared to be informative of the outcome statuses for
the majority of the test patients. For hypertension, 80% of the confidence intervals lied
either above or below 50%; For R-hypertension, 83% of the confidence intervals lie either
above or below 50%.
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Figure 3: Confidence interval construction: on the left panel, indexes 1 to 11 correspond
to observations with hypertension; indices 12 to 30 correspond to those without
hypertension. On the right panel, indices 1 to 4 correspond to observations with
R-hypertension; indices 5 to 30 correspond to those without R-hypertension.

We further divide the 30 randomly sampled observations into two subgroups by their
true status and then investigate the performance of constructed confidence intervals for the
subgroup of observations being cases and the other subgroup of observations being controls.
On the left panel of Figure 3, the observations with indexes between 1 and 11 correspond
to cases (observations with hypertension) while the remaining 19 observations correspond
to observations without hypertension. Out of the 11 observations with hypertension, six
constructed CIs are predictive with the whole interval above 0.5, one is misleading as the
interval is below 0.5 and the remaining four are not predictive as the CIs come cross 0.5;
Out of the 19 patients without hypertension, 17 constructed CIs are below 0.5 and hence
predictive but the remaining two are not. On the right hand side of Figure 3, the observa-
tions with indexes between 1 and 4 correspond to observations with R-hypertension while
the remaining 26 observations correspond to the observations without R-hypertension. Out
of the four observations with R-hypertension, only one constructed CI is predictive and the
other three are not; out of the 26 observations without R-hypertension, 24 are predictive
and the other two are not. Overall, the constructed CIs are predictive for the outcome for
77% (hypertension), 83%(R-hypertension), and 77% (LP-hypertension) of subjects, where
a constructed CI is predictive if either the constructed CI lies above 0.5 for the true case or
below 0.5 for the true control. This demonstrated the practical usefulness of the developed
models for evaluating the outcome status of patients, the labor-intensive chart review may
be avoided for the majority of patients.
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Additional results corresponding to the remaining four panels are presented in Figure
D.1 in the supplementary materials. The observation is similar to that in Figure 3.
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6. Proof

We provide the proof of Theorem 1 in Section 6.1 and that of Lemma 1 in Section 6.2. The
remaining proofs are postponed to Section B in the supplementary material.

We introduce the following events

A1 =

{
max

1≤i≤n, 1≤j≤p
|Xij | ≤ C

√
log n+ log p

}
, A2 =

{
min

‖η‖2=1,‖ηSc‖1≤C‖ηS‖1

1

n

n∑
i=1

(Xᵀ
i·η)

2 ≥ cλmin (Σ)

}

A3 =

{
min

1≤i≤n

exp (Xᵀ
i·β)

[1 + exp (Xᵀ
i·β)]

2 ≥ c
2
min

}
, A4 =

{
λ0 =

∥∥∥∥∥ 1

n

n∑
i=1

εiXi

∥∥∥∥∥
∞

≤ C
√

log p

n

}

A5 =

{
‖β̂ − β‖2 ≤ C

√
k log p

n

}
, A6 =

{
‖(β̂ − β)Sc‖1 ≤ C0‖(β̂ − β)S‖1

}
where S denotes the support of the high-dimensional vector β. The following lemma 2

controls the probability of these defined events and the proof is omitted as it is similar to
Lemma 4 in Cai and Guo (2017).

Lemma 2 Suppose Conditions (A1) and (A2) hold, then P
(
∩4
i=1Ai

)
≥ 1− exp(−cn)− p−c

and on the event ∩4
i=1Ai, the events A5 and A6 hold.

The following Lemma is about the Taylor expansion of logit function and the corresponding
proof is presented in Section B.5 in the supplementary material.

Lemma 3 For h(x) = exp(x)
1+exp(x) , we have

(
h′(a)

)−1
(h(x)− h(a)) = (x− a) +

∫ 1

0
(1− t)(x− a)2h

′′(a+ t(x− a))

h′(a)
dt. (30)
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where h′(x) = exp(x)
(1+exp(x))2

and h′′(x) = 2 exp(2x)
(1+exp(x))3

. We further have

exp (− |x− a|) ≤ h′(x)

h′(a)
≤ exp (|x− a|) and

∣∣∣∣h′(x)

h′(a)
− 1

∣∣∣∣ ≤ exp (|x− a|) (31)

and ∣∣∣∣∫ 1

0
(1− t)(x− a)2h

′′(a+ t(x− a))

h′(a)
dt

∣∣∣∣ ≤ exp(|x− a|)(x− a)2 (32)

6.1 Proof of Theorem 1

Proof of (20). On the eventA3, we have ûᵀ
[

1
n2

∑n
i=1Xi·X

ᵀ
i·
]
û ≤ V ≤ 1

c2min
ûᵀ
[

1
n2

∑n
i=1Xi·X

ᵀ
i·
]
û.

To control the upper bound part
√

V ≤ C0‖x∗‖2
n , we define the following events

B1 =
{∥∥∥Σ̂Σ−1x∗ − x∗

∥∥∥
∞
≤ ‖x∗‖2λn

}
; B2 =

{∥∥∥xᵀ∗Σ̂Σ−1x∗ − ‖x∗‖22
∣∣∣ ≤ ‖x∗‖22λn}

B3 =
{
‖XΣ−1x∗‖∞ ≤ ‖x∗‖2τn

} (33)

The following lemma controls the probability of ∩3
i=1Bi and its proof is presented in section

B.2.

Lemma 4 Suppose Condition (A1) holds and λn �
√

log p/n and τn . nδ for 0 < δ < 1
2 ,

then
P
(
∩3
i=1Bi

)
≥ 1− n−c − p−c. (34)

On the event ∩3
i=1Bi, then u = Σ−1x∗ satisfies the constraints (9), (10) and (11). As a

consequence, the feasible set is non-empty on the event ∩3
i=1Bi and we further obtain an

upper bound for the minimum value, that is, V ≤ xᵀ∗Σ−1Σ̂Σ−1x∗/n.

The proof of the lower bound part
√

V ≥ c0‖x∗‖2
n is facilitated by the optimization

constraint (9). We define a proof-facilitating optimization problem,

ũ = arg min
u∈Rp

uᵀ

(
1

n

n∑
i=1

Xi·X
ᵀ
i·

)
u subject to |xᵀ∗Σ̂u− ‖x∗‖22| ≤ ‖x∗‖22λn (35)

Note that û satisfies the feasible set of (35) and hence

ûᵀ

(
1

n

n∑
i=1

Xi·X
ᵀ
i·

)
û ≥ ũᵀ

(
1

n

n∑
i=1

Xi·X
ᵀ
i·

)
ũ

≥ ũᵀ
(

1

n

n∑
i=1

Xi·X
ᵀ
i·

)
ũ+ t

(
(1− λn)‖x∗‖22 − xᵀ∗Σ̂ũ

)
for any t ≥ 0,

(36)

where the last inequality follows from the constraint of (35). For a given t ≥ 0, we have

ũᵀ

(
1

n

n∑
i=1

Xi·X
ᵀ
i·

)
ũ+ t

(
(1− λn)‖x∗‖22 − xᵀ∗Σ̂ũ

)
≥ min

u∈Rp
uᵀ

(
1

n

n∑
i=1

Xi·X
ᵀ
i·

)
u+ t

(
(1− λn)‖x∗‖22 − xᵀ∗Σ̂u

)
.

(37)
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By solving the minimization problem of the right hand side of (37), we have the minimizer
u∗ satisfies Σ̂u∗ = t

2 Σ̂x∗ and hence the minimized value of the right hand side of (37) is

− t2

4 x
ᵀ
∗Σ̂x∗ + t(1− λn)‖x∗‖22. Combined with (36) and (37), we have

ûᵀ

(
1

n

n∑
i=1

Xi·X
ᵀ
i·

)
û ≥ max

t≥0

[
− t

2

4
xᵀ∗Σ̂x∗ + t(1− λn)‖x∗‖22

]
. (38)

For t∗ = 2
(1−λn)‖x∗‖22

xᵀ∗Σ̂x∗
> 0, the minimum of the right hand side of (38) is achieved and hence

establish

ûᵀ

(
1

n

n∑
i=1

Xi·X
ᵀ
i·

)
û ≥ (1− λn)2‖x∗‖42

xᵀ∗Σ̂x∗
. (39)

Then P
[
V−1/2

(
x̂ᵀ∗β − xᵀ∗β

)
≥ zα

]
→ α follows from the decomposition (8), the variance

control in (20), Lemma 1 and Proposition 4 and the following lemma.

Lemma 5 Suppose that Conditions (A1) and (A2) hold and τn defined in (11) satisfies

(log n)1/2 . τn � n1/2, then 1
V 1/2 û

ᵀ 1
n

∑n
i=1[h(Xᵀ

i·β)(1 − h(Xᵀ
i·β))]−1Xi·εi → N(0, 1) where

V is defined in (19).

6.2 Proof of Lemma 1

To start the proof, we recall that h(z) = exp(z)
1+exp(z) and define the functions gi for 1 ≤ i ≤ n

gi(ti) =

( exp (Xᵀ
i·β + ti)

(1 + exp (Xᵀ
i·β + ti))

2

)−1

−

(
exp (Xᵀ

i·β)

(1 + exp (Xᵀ
i·β))

2

)−1
 ûᵀXi·,

and the space for δ ∈ Rp as

C =

{
δ : ‖δSc‖1 ≤ c‖δS‖1, ‖δ‖2 ≤ C∗

√
k log p

n

}
. (40)

for some positive constants c > 0 and C∗ > 0. We further define

T = {t = (t1, · · · , tn) : ti = Xᵀ
i·δ where δ ∈ C} , (41)

We can rewrite the main component of the left hand side of (26) as∣∣∣∣∣∣∣ûᵀ
1√
n

n∑
i=1


 exp(Xᵀ

i·β̂)(
1 + exp(Xᵀ

i·β̂)
)2


−1

−

(
exp (Xᵀ

i·β)

(1 + exp (Xᵀ
i·β))

2

)−1
Xi·εi

∣∣∣∣∣∣∣ · 1A1∩A3∩A5∩A6

≤ sup
δ∈C

∣∣∣∣∣ 1√
n

n∑
i=1

gi(X
ᵀ
i·δ) · 1A1∩A3 · εi

∣∣∣∣∣ = sup
t∈T

∣∣∣∣∣ 1√
n

n∑
i=1

gi(ti) · 1A1∩A3 · εi

∣∣∣∣∣
(42)

where C is defined in (40) and T is defined in (41). In the following, we control the last part
of (42) via applying the symmetrization technique van de Geer (2006) stated in Lemma
6 and the contraction principle in Lemma 7. The proofs of Lemma 6 and Lemma 7 are
presented in Sections B.6 and B.7 in the supplementary materials, respectively.
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Lemma 6 Suppose that y′i is an independent copy of yi and ε′i is defined as y′i−E(y′i | Xi).
For all convex nondecreasing functions Φ : R+ → R+, then

EΦ

(
sup
t∈T

∣∣∣∣∣
n∑
i=1

gi(ti)εi

∣∣∣∣∣
)
≤ EΦ

(
sup
t∈T

∣∣∣∣∣
n∑
i=1

gi(ti)ξi

∣∣∣∣∣
)
, (43)

where ξi = εi − ε′i = yi − y′i.

The following lemma is a modification of Theorem 2.2 in Koltchinskii (2011), where the
result in Koltchinskii (2011) was only developed for i.i.d Rademacher variables ξi. The
following lemma is more general in the sense that ξ1, ξ2, · · · , ξn are only required to be
independent and satisfy the probability distribution (45). The following lemma can also be
derived by extending the proof of Theorem 4.12 in Ledoux and Talagrand (1991). To be
self-contained, we give a proof of Lemma 7 in the supplementary section B.7.

Lemma 7 Let t = (t1, · · · , tn) ∈ T ⊂ Rn and let φi : R → R, i = 1, · · · , n be functions
such that φi(0) = 0 and |φi(u)− φi(v)| ≤ |u − v|, u, v ∈ R. For all convex nondecreasing
functions Φ : R+ → R+, then

EΦ

(
1

2
sup
t∈T

∣∣∣∣∣
n∑
i=1

φi(ti)ξi

∣∣∣∣∣
)
≤ EΦ

(
sup
t∈T

∣∣∣∣∣
n∑
i=1

tiξi

∣∣∣∣∣
)
, (44)

where {ξi}1≤i≤n are independent random variables with the probability density function

P (ξi = 1) = P (ξi = −1) ∈ [0,
1

2
], P (ξi = 0) = 1− 2P (ξi = 1) . (45)

We will apply Lemmas 6 and 7 and control supt∈T

∣∣∣ 1√
n

∑n
i=1 gi(ti) · 1A1∩A3 · εi

∣∣∣ in (42).

For t, s ∈ T ⊂ Rn, then there exist δt, δs ∈ C ⊂ Rp such that ti − si = Xᵀ
i·
(
δt − δs

)
and

ti = Xᵀ
i·δ
t for 1 ≤ i ≤ n. Hence on the event A1,

max

{
max

1≤i≤n
|ti − si|, max

1≤i≤n
|ti|
}
≤ Ck

√
log p

n

√
log p+ log n ≤ 1. (46)

where the last inequality follows as long as
√
n ≥ k log p

(
1 +

√
logn
log p

)
Define q(x) =

(
exp(x)

(1+exp(x))2

)−1
and then

gi(si)− gi(ti) =

(
q (Xᵀ

i·β + si)

q (Xᵀ
i·β + ti)

− 1

)
q (Xᵀ

i·β + ti)

q (Xᵀ
i·β)

q (Xᵀ
i·β) ûᵀXi·. (47)

By (31), we have ∣∣∣∣q (Xᵀ
i·β + si)

q (Xᵀ
i·β + ti)

− 1

∣∣∣∣ ≤ |exp(|si − ti|)− 1| ≤ e|si − ti|, (48)
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where the last inequality holds as long as |si − ti| is sufficiently small, as verified in (46).

Similarly, we establish that
q(Xᵀ

i·β+ti)
q(Xᵀ

i·β)
≤ e. Combined with (47) and (48), we obtain

|gi(si)− gi(ti)| ≤
1

c2
min

e2 |si − ti| |ûᵀXi·| ≤
1

c2
min

e2 |si − ti| ‖x∗‖2τn, (49)

where the last inequality follows from the constraint (11). By applying (49), we have

1

Ln
|gi(ti)− gi(si)| · 1A1∩A3 ≤ |ti − si| where Ln =

e2

c2
min

‖x∗‖2τn. (50)

Define φi(ti) = 1
Ln
gi(ti) · 1A1 . We then apply (43) and (44) with Φ(x) = x and obtain

Eξ|X sup
t∈T

∣∣∣∣∣ 1n
n∑
i=1

φi(ti) · 1A1∩A3ξi

∣∣∣∣∣ ≤ 2Eξ|X sup
δ∈C

∣∣∣∣∣ 1n
n∑
i=1

δᵀXi·ξi

∣∣∣∣∣
and hence E supt∈T

∣∣ 1
n

∑n
i=1 φi(ti) · 1A1∩A3ξi

∣∣ ≤ 2E supδ∈C
∣∣ 1
n

∑n
i=1 δ

ᵀXi·ξi
∣∣ . Note that

E sup
δ∈C

∣∣∣∣∣ 1n
n∑
i=1

δᵀXi·ξi

∣∣∣∣∣ ≤ sup
δ∈C
‖δ‖1E

∥∥∥∥∥ 1

n

n∑
i=1

Xi·ξi

∥∥∥∥∥
∞

≤ sup
δ∈C
‖δ‖1

√
2 log p

n
‖Xi·‖ψ2 ,

where the last inequality follows from the fact that 1√
n

∑n
i=1Xi·ξi is sub-gaussian random

variable with sub-gaussian norm ‖Xi·‖ψ2 . Combined with supδ∈C ‖δ‖1 ≤ Ck
√

log p
n , we

establish E supδ∈C
∣∣ 1
n

∑n
i=1 δ

ᵀXi·ξi
∣∣ ≤ C k log p

n ‖Xi·‖ψ2 and E supt∈T
∣∣ 1
n

∑n
i=1 φi(ti) · 1A1ξi

∣∣ ≤
C k log p

n ‖Xi·‖ψ2 . By Chebyshev’s inequality,

P

(
sup
t∈T

∣∣∣∣∣ 1n
n∑
i=1

gi(ti) · 1A1ξi

∣∣∣∣∣ ≥ Ct‖x∗‖2τnk log p

n
‖Xi·‖ψ2

)
≤ 1

t
.

By (42), we establish that (26) holds with probability larger than 1− (1
t +p−c+ exp(−cn)).
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Appendix A. Additional Discussion

A.1 Technical Difficulty of the Plug-in Debiased Estimator

There exists technical difficulties to establish the asymptotic normality of the plug-in esti-
mators xᵀ∗β̃ with β̃ ∈ Rp denoting any coordinate-wise bias-corrected estimator proposed in
van de Geer et al. (2014); Ning and Liu (2017); Ma et al. (2018). To see this, we can apply
the results in van de Geer et al. (2014); Ning and Liu (2017); Ma et al. (2018) to show that
for 1 ≤ j ≤ p,

β̃j = βj +M(β̃j) + Bias(β̃j)

where
√
nM(β̃j) is asymptotically normal and Bias(β̃j) is a small bias component. Then

we have the following error decomposition

xᵀ∗β̃ − xᵀ∗β =

p∑
j=1

x∗,jM(β̃j) +

p∑
j=1

x∗,jBias(β̃j).

The component
√
n
∑p

j=1 x∗,jM(β̃j) is asymptotically normal with its standard error of

the order ‖x∗‖2 and the bias
∑p

j=1 x∗,jBias(β̃j) is upper bounded by ‖x∗‖1k log p/n, with
a high probability. If ‖x∗‖1 is much larger than ‖x∗‖2, the upper bound for the bias∑p

j=1 x∗,jBias(β̃j) is not necessarily dominated by the standard error of
∑p

j=1 x∗,jM(β̃j),
even if k �

√
n/ log p.

We shall point out that, the upper bound for the bias depends on ‖x∗‖1 instead of ‖x∗‖2
mainly because the coordinate-wise inference results constrained the bias Bias(β̃j) separately

instead of directly constraining
∑p

j=1 x∗,jBias(β̃j) as a total. This makes it challenging to
establish asymptotic normality of the plug-in estimators for any high-dimensional loading
x∗.

A.2 A Brief Review of Ma et al. (2018)

The bias corrected estimator proposed in Ma et al. (2018) is

β̃j = β̂j +

∑n
i=1 vij

(
yi − h

(
β̂ᵀXi·

))
∑n

i=1 vijh
′
(
β̂ᵀXi·

)
Xij

, j = 1, . . . , p (51)

where β̂ is the penalized logistic estimator of β and vj = (vj1, · · · , vjn)ᵀ is the score vector
to be constructed. Let Xj and X−j denote the j-th column of X and the submatrix of X
excluding the j-th column, respectively. Ma et al. (2018) construct the score vj as follows,

vj = Ŵ−1(Xj −X−j γ̂)

where

γ̂ = arg min
b

{
‖Xj −X−jb‖22

2n
+ λ‖b‖1

}
, Ŵ = diag

(
h′(β̂ᵀX1·), · · · , h′(β̂ᵀXn·)

)
.
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Then the estimator in (51) can be written as

β̃j = β̂j +

∑n
i=1[h(Xᵀ

i·β̂)(1− h(Xᵀ
i·β̂))]−1(Xi,j −Xᵀ

i,−j γ̂)
(
yi − h

(
β̂ᵀXi·

))
∑n

i=1(Xi,j −Xᵀ
i,−j γ̂)Xij

. (52)

The results in Ma et al. (2018) are about inference for βj instead of an arbitrary linear
combination xᵀ∗β. This bias-corrected estimator in (51) is shown to be effective under a
sparsity condition on Σ−1ej where ej is the j−th Euclidean basis. However, it is not
straightforward to extend this to deal with arbitrary x∗ and non-sparse Σ−1.

A.3 Additional discussion about Tripuraneni and Mackey (2020)

The focus of the paper by Tripuraneni and Mackey (2020) is on estimation of linear func-
tional or the related prediction problem in high-dimensional linear models. However, the
high-dimensional estimation and confidence interval construction can be very different for
a dense loading x∗. With respect to the method proposed in Section 3.1 in Tripuraneni
and Mackey (2020), this difference has been established in Cai et al. (2019) in the high-
dimensional linear model.

Firstly, Proposition 3 in Cai et al. (2019) established that if the loading x∗ is of certain
dense structure, then the projection direction introduced in Section 3.1 of Tripuraneni and
Mackey (2020) is zero and hence the “bias-corrected” estimator is reduced to the plug-
in estimator. We believe that this fact is also true in case of high-dimensional logistic
regression. We have further shown that the plug-in estimator has a large bias and is not
suitable for confidence interval construction.

Secondly, the confidence interval construction in Proposition 4 of Tripuraneni and
Mackey (2020) requires the sparsity of β, which may be hard to obtain in practical ap-
plications.

Appendix B. Additional Proofs

B.1 Proof of Proposition 4

Proof of (22) The first inequality of (22) follows from Holder’s inequality and the second
inequality follows from Condition (B).
Proof of (23) By Cauchy inequality, we have

√
n

∣∣∣∣∣ûᵀ 1

n

n∑
i=1

Xi·∆i

∣∣∣∣∣ ≤ max
1≤i≤n

|ûᵀXi·|
1√
n

n∑
i=1

|∆i| ≤ τn‖x∗‖2
1√
n

n∑
i=1

|∆i| (53)

By Lemma 3, we have |∆i| ≤ exp
(
|Xᵀ

i·(β̂ − β)|
)(

Xᵀ
i·(β̂ − β)

)2
. On the event A = ∩6

i=1Ai,
we have

n∑
i=1

|∆i| ≤
n∑
i=1

exp
(
|Xᵀ

i·(β̂ − β)|
)(

Xᵀ
i·(β̂ − β)

)2

≤ exp
(

max |Xij | · ‖β̂ − β‖1
) n∑
i=1

(
Xᵀ
i·(β̂ − β)

)2
≤ C

n∑
i=1

(
Xᵀ
i·(β̂ − β)

)2
.

(54)
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where the second inequality follows from Holder inequality and the last inequality follows

from the fact that
√
n� k log p

(
1 +

√
logn
log p

)
. On the event A, we have

1

n

n∑
i=1

(
Xᵀ
i·(β̂ − β)

)2
≤ C‖β̂ − β‖22 ≤ C

k log p

n
. (55)

Together with (53) and (54), we establish that, on the event A,

√
n

∣∣∣∣∣ûᵀ 1

n

n∑
i=1

Xi·∆i

∣∣∣∣∣ ≤ Cτn‖x∗‖2k log p√
n

. (56)

B.2 Proof of Lemma 4

Define u∗ = Σ−1x∗. Let D ∈ Rn be defined as D := Σ̂u∗−x∗
‖u∗‖2 so that the jth element of D

is given by Dj =
( 1
n

∑n
i=1XijX

ᵀ
i·u
∗−x∗,j)

‖u∗‖2 where x∗,j denotes the jth component of x∗. Due

to sub-gaussianity of the design {Xi·}ni=1, Dj is a sub-exponential random variable. Since
E(Dj) = 0 for all 1 ≤ j ≤ p, we apply Corollary 5.17 in Vershynin (2011) and establish,

P

(
|Dj | ≥ C

√
log p

n

)
≤ p−c0 for some C, c0 > 0 ∀j

=⇒ P

(
‖D‖∞ ≥ C

√
log p

n

)
≤ p1−c0

(57)

Let D̃ :=
xᵀ∗Σ̂u

∗−‖x∗‖22
‖u∗‖22

. Note that D̃ is centered and sub-exponential random variable.

Hence, by Corollary 5.17 in Vershynin (2011),

P

(
|D̃| ≥ C1

√
log p

n

)
≤ p−c0 for some C1, c1 > 0. (58)

By Condition (A1), we have ‖Σ−1‖ ≤ C2 where C2 > 0 is a constant. This implies
‖u∗‖2 = ‖Σ−1x∗‖2 ≤ C2‖x∗‖2. By sub-gaussianity ofX, using Proposition 5.10 in Vershynin
(2011),

‖Xu∗‖∞ = max
1≤i≤n

|Xᵀ
i·u
∗| ≤ ‖x∗‖2τn (59)

holds with probability of at least n(1−c1) where c1 > 0 is a constant. Combining (57), (58)
and (59) we establish (34).

B.3 Proof of Lemma 5

We want to establish

1

n

n∑
i=1

(
exp (Xᵀ

i·β)

(1 + exp (Xᵀ
i·β))

2

)−1

ûᵀXi·εi → N(0,V) (60)
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Define

Wi =
1√
V

(
exp (Xᵀ

i·β)

(1 + exp (Xᵀ
i·β))

2

)−1

ûᵀXi·εi (61)

Conditioning on X, then {Wi}1≤i≤n are independent random variables with E(Wi | Xi) = 0
and

∑n
i=1 Var(Wi | Xi) = n2. To establish (60), it is sufficient to check the Lindeberg’s

condition, that is, for any constant ε̄ > 0,

lim
n→∞

1

n2

n∑
i=1

E
(
W 2
i 1{|Wi|≥ε̄

√
n}
)

= 0. (62)

Note that

max
1≤i≤n

∣∣∣∣∣∣ 1√
V

(
exp (Xᵀ

i·β)

(1 + exp (Xᵀ
i·β))

2

)−1

ûᵀXi·εi

∣∣∣∣∣∣ ≤ 2
max1≤i≤n |ûᵀXi·|√

V
≤ 2τn‖x∗‖2√

V
≤ ε̄
√
n (63)

where the first inequality follows from the fact that

(
exp(Xᵀ

i·β)
(1+exp(Xᵀ

i·β))
2

)−1

εi ≤ 2
cmin

, the second

inequality follows from |ûᵀXi·| ≤ τn‖x∗‖2 and the last inequality follows from (20) and the
condition τn �

√
n. Then (62) follows from (63) and by Lindeberg’s central limit theorem,

we establish (60).

B.4 Proof of Proposition 1

For t ∈ (0, 1), by the definition of β̂, we have

`(β̂)+λ‖β̂‖1 ≤ `(β̂+t(β−β̂))+λ‖β̂+t(β−β̂)‖1 ≤ `(β̂+t(β−β̂))+(1−t)λ‖β̂‖1+tλ‖β‖1 (64)

where `(β) = 1
n

∑n
i=1 (log (1 + exp (Xᵀ

i·β))− yi · (Xᵀ
i·β)) . Then we have

`(β̂)− `(β̂ + t(β − β̂))

t
+ λ‖β̂‖1 ≤ λ‖β‖1 for any t ∈ (0, 1) (65)

and taking the limit t→ 0, we have

1

n

n∑
i=1

(
exp(Xᵀ

i·β̂)

1 + exp(Xᵀ
i·β̂)
− yi

)
Xᵀ
i·(β̂ − β) + λ‖β̂‖1 ≤ λ‖β‖1 (66)

Note that(
exp(Xᵀ

i·β̂)

1 + exp(Xᵀ
i·β̂)
− yi

)
Xᵀ
i·(β̂ − β) =

(
−εi +

(
exp(Xᵀ

i·β̂)

1 + exp(Xᵀ
i·β̂)
−

exp (Xᵀ
i·β)

1 + exp (Xᵀ
i·β)

))
Xᵀ
i·(β̂ − β)

= −εiXᵀ
i·(β̂ − β) +

∫ 1

0

exp
(
Xᵀ
i·β + tXᵀ

i·(β̂ − β)
)

[
1 + exp

(
Xᵀ
i·β + tXᵀ

i·(β̂ − β)
)]2

(
Xᵀ
i·(β̂ − β)

)2
dt

(67)
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By (31), we have

exp
(
Xᵀ
i·β + tXᵀ

i·(β̂ − β)
)

[
1 + exp

(
Xᵀ
i·β + tXᵀ

i·(β̂ − β)
)]2 ≥

exp (Xᵀ
i·β)

[1 + exp (Xᵀ
i·β)]

2 exp
(
−t
∣∣∣Xᵀ

i·(β̂ − β)
∣∣∣)

≥
exp (Xᵀ

i·β)

[1 + exp (Xᵀ
i·β)]

2 exp

(
−t max

1≤i≤n

∣∣∣Xᵀ
i·(β̂ − β)

∣∣∣)
(68)

Combined with (67), we have

∫ 1

0

exp
(
Xᵀ
i·β + tXᵀ

i·(β̂ − β)
)

[
1 + exp

(
Xᵀ
i·β + tXᵀ

i·(β̂ − β)
)]2

(
Xᵀ
i·(β̂ − β)

)2
dt

≥
exp (Xᵀ

i·β)

[1 + exp (Xᵀ
i·β)]

2

(
Xᵀ
i·(β̂ − β)

)2
∫ 1

0
exp

(
−t max

1≤i≤n

∣∣∣Xᵀ
i·(β̂ − β)

∣∣∣) dt
=

exp (Xᵀ
i·β)

[1 + exp (Xᵀ
i·β)]

2

(
Xᵀ
i·(β̂ − β)

)2 1− exp
(
−max1≤i≤n

∣∣∣Xᵀ
i·(β̂ − β)

∣∣∣)
max1≤i≤n

∣∣∣Xᵀ
i·(β̂ − β)

∣∣∣

(69)

Together with (66), we have

1− exp
(
−max1≤i≤n

∣∣∣Xᵀ
i·(β̂ − β)

∣∣∣)
max1≤i≤n

∣∣∣Xᵀ
i·(β̂ − β)

∣∣∣
(

1

n

n∑
i=1

exp (Xᵀ
i·β)

[1 + exp (Xᵀ
i·β)]

2

(
Xᵀ
i·(β̂ − β)

)2
)

+ λ‖β̂‖1

≤ λ‖β‖1 +
1

n

n∑
i=1

εiX
ᵀ
i·(β̂ − β) ≤ λ‖β‖1 + λ0‖β̂ − β‖1.

(70)
By the fact that ‖β̂‖1 = ‖β̂S‖1 + ‖β̂Sc − βSc‖1 and ‖β‖1 − ‖β̂S‖1 ≤ ‖β̂S − βS‖1, then we
have

1− exp
(
−max1≤i≤n

∣∣∣Xᵀ
i·(β̂ − β)

∣∣∣)
max1≤i≤n

∣∣∣Xᵀ
i·(β̂ − β)

∣∣∣
(

1

n

n∑
i=1

exp (Xᵀ
i·β)

[1 + exp (Xᵀ
i·β)]

2

(
Xᵀ
i·(β̂ − β)

)2
)

+ δ0λ0‖β̂Sc − βSc‖1 ≤ (2 + δ0)λ0‖β̂S − βS‖1

(71)

Then we deduce (18) and

1− exp
(
−max1≤i≤n

∣∣∣Xᵀ
i·(β̂ − β)

∣∣∣)
max1≤i≤n

∣∣∣Xᵀ
i·(β̂ − β)

∣∣∣
(

1

n

n∑
i=1

exp (Xᵀ
i·β)

[1 + exp (Xᵀ
i·β)]

2

(
Xᵀ
i·(β̂ − β)

)2
)

≤ (2 + δ0)λ0‖β̂S − βS‖1.

(72)

Lemma 8 On the event A2 ∩ A3, then

1

n

n∑
i=1

exp (Xᵀ
i·β)

[1 + exp (Xᵀ
i·β)]

2

(
Xᵀ
i·(β̂ − β)

)2
≥ cλmin (Σ) ‖β̂ − β‖22 (73)
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Then (72) is further simplified as

1− exp
(
−max1≤i≤n

∣∣∣Xᵀ
i·(β̂ − β)

∣∣∣)
max1≤i≤n

∣∣∣Xᵀ
i·(β̂ − β)

∣∣∣ cλmin (Σ) ‖β̂ − β‖22 ≤ (2 + δ0)λ0‖β̂S − βS‖1 (74)

Case 1: Assume that

max
1≤i≤n

∣∣∣Xᵀ
i·(β̂ − β)

∣∣∣ ≤ c1 for some c1 > 0 (75)

then we have

1− exp
(
−max1≤i≤n

∣∣∣Xᵀ
i·(β̂ − β)

∣∣∣)
max1≤i≤n

∣∣∣Xᵀ
i·(β̂ − β)

∣∣∣ =

∫ 1

0
exp

(
−t max

1≤i≤n

∣∣∣Xᵀ
i·(β̂ − β)

∣∣∣) dt
≥
∫ 1

0
exp (−tc1) dt =

1− exp (−c1)

c1

(76)

Define c2 = cλmin(Σ)
2+δ0

1−exp(−c1)
c1

, then we have

c2‖β̂ − β‖22 ≤ λ0‖β̂S − βS‖1 ≤
√
kλ0‖β̂S − βS‖2 (77)

and hence

‖β̂ − β‖2 .
1

λmin

√
kλ0 and ‖β̂ − β‖1 ≤ kλ0 (78)

Case 2: Assume that (75) does not hold, then

1− exp
(
−max1≤i≤n

∣∣∣Xᵀ
i·(β̂ − β)

∣∣∣)
max1≤i≤n

∣∣∣Xᵀ
i·(β̂ − β)

∣∣∣ ≥ 1− exp(−c1)

max1≤i≤n

∣∣∣Xᵀ
i·(β̂ − β)

∣∣∣ (79)

Together with (74), we have

c2c1‖β̂ − β‖22 ≤ λ0‖β̂S − βS‖1 max
1≤i≤n

∣∣∣Xᵀ
i·(β̂ − β)

∣∣∣ (80)

By max1≤i≤n

∣∣∣Xᵀ
i·(β̂ − β)

∣∣∣ ≤ max |Xij | ‖β̂ − β‖1 and (18), we further have

λ0‖β̂S − βS‖1 max
1≤i≤n

∣∣∣Xᵀ
i·(β̂ − β)

∣∣∣ ≤ 2 + 2δ0

δ0
max |Xij |λ0‖β̂S − βS‖21

≤ 2 + 2δ0

δ0
max |Xij | kλ0‖β̂S − βS‖22,

(81)

where the last inequality follows from Cauchy inequality. Combining (80) and (81), we have
shown that if (75) does not hold, then

max |Xij |
2 + 2δ0

δ0
kλ0 ≥ c2c1, (82)

Since this contradicts the assumption that max |Xij | kλ0 <
c2c1δ0
2+2δ0

, we establish (78) and
hence (18).
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B.5 Proof of Lemma 3

We first introduce the following version of Taylor expansion.

Lemma 9 If f ′′(x) is continuous on an open interval I that contains a, and x ∈ I , then

f(x)− f(a) = f ′(a)(x− a) +

∫ 1

0
(1− t)(x− a)2f ′′(a+ t(x− a))dt (83)

By applying Lemma 9, we have

h(x)− h(a) = h′(a)(x− a) +

∫ 1

0
(1− t)(x− a)2h′′(a+ t(x− a))dt

Divide both sides by (h′(a))−1, we establish (30). The inequality (31) follows from

h′(x)

h′(a)
= exp(x− a)

[1 + exp(a)]2

[1 + exp(x)]2
≤ exp(x− a) exp(2(a− x)+) = exp(|x− a|)

and
h′(a)

h′(x)
≤ exp(|x− a|)

The control of (32) follows from the following inequality,

h′′(a+ t(x− a))

h′(a)
=

2 exp(2a+ 2t(x− a))

(1 + exp(a+ t(x− a)))3
· (1 + exp(a))2

exp(a)

≤ 2 exp(t(x− a)) · (1 + exp(a))2

(1 + exp(a+ t(x− a)))2
≤ 2 exp(t|x− a|)

B.6 Proof of Lemma 6

We start with the conditional expectation Ey|XΦ (supt∈T |
∑n

i=1 gi(ti)εi|) and note that

Ey|XΦ

(
sup
t∈T

∣∣∣∣∣
n∑
i=1

gi(ti)εi

∣∣∣∣∣
)

= Ey|XΦ

(
sup
t∈T

∣∣∣∣∣
n∑
i=1

gi(ti)εi −Ey′|X

n∑
i=1

gi(ti)ε
′
i

∣∣∣∣∣
)
.

Since supt∈T
∣∣∑n

i=1 gi(ti)εi −Ey′|X
∑n

i=1 gi(ti)ε
′
i

∣∣ ≤ Ey′|X supt∈T |
∑n

i=1 gi(ti)(εi − ε′i)| and Φ
is a non-decreasing function, we have

Φ

(
sup
t∈T

∣∣∣∣∣
n∑
i=1

gi(ti)εi −Ey′|X

n∑
i=1

gi(ti)ε
′
i

∣∣∣∣∣
)
≤ Φ

(
Ey′|X sup

t∈T

∣∣∣∣∣
n∑
i=1

gi(ti)(εi − ε′i)

∣∣∣∣∣
)
.

Since Φ is a convex function, we have

Ey|XΦ

(
Ey′|X sup

t∈T

∣∣∣∣∣
n∑
i=1

gi(ti)(εi − ε′i)

∣∣∣∣∣
)
≤ E(y,y′)|XΦ

(
sup
t∈T

∣∣∣∣∣
n∑
i=1

gi(ti)(εi − ε′i)

∣∣∣∣∣
)
.

Integration of both sides of the above inequality leads to (43).
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B.7 Proof of Lemma 7

The proof follows from that of Theorem 2.2 in Koltchinskii (2011) and some modification
is necessary to extend the results to the general random variables ξ1, ξ2, · · · , ξn which are
independent and follow the probability distribution (45).

We start with proving the following inequality for a function A : T → R,

EΦ

(
sup
t∈T

[A(t) +

n∑
i=1

φi(ti)ξi]

)
≤ EΦ

(
sup
t∈T

[A(t) +

n∑
i=1

tiξi]

)
, (84)

We first prove the special case n = 1, which is reduced to be the following inequality,

EΦ

(
sup
t∈T

[t1 + φ(t2)ξ0]

)
≤ EΦ

(
sup
t∈T

[t1 + t2ξ0]

)
, (85)

where T ⊂ R2 and P(ξ0 = 1) = P(ξ0 = −1) ∈ [0, 1
2 ] and P(ξ0 = 0) = 1 − 2P(ξ = 1). It

suffices to verify (85) by establishing the following inequality,

P(ξ0 = 1)Φ

(
sup
t∈T

[t1 + φ(t2)]

)
+ P(ξ0 = −1)Φ

(
sup
t∈T

[t1 − φ(t2)]

)
+ P(ξ0 = 0)Φ

(
sup
t∈T

[t1]

)
≤ P(ξ0 = 1)Φ

(
sup
t∈T

[t1 + t2]

)
+ P(ξ0 = −1)Φ

(
sup
t∈T

[t1 − t2]

)
+ P(ξ0 = 0)Φ

(
sup
t∈T

[t1]

)
This is equivalent to show

Φ

(
sup
t∈T

[t1 + φ(t2)]

)
+ Φ

(
sup
t∈T

[t1 − φ(t2)]

)
≤ Φ

(
sup
t∈T

[t1 + t2]

)
+ Φ

(
sup
t∈T

[t1 − t2]

)
(86)

The above inequality follows from the same line of proof as that in Koltchinskii (2011). It
remains to prove the lemma by applying induction and (85), that is,

E(ξ1,··· ,ξn)|XΦ

(
sup
t∈T

[A(t) +
n∑
i=1

φi(ti)ξi]

)
= E(ξ1,··· ,ξn−1)|XEξn|XΦ

(
sup
t∈T

[A(t) +
n∑
i=1

φi(ti)ξi]

)

≤ E(ξ1,··· ,ξn−1)|XEξn|XΦ

(
sup
t∈T

[A(t) +

n−1∑
i=1

φi(ti)ξi + tnξn]

)

= Eξn|XE(ξ1,··· ,ξn−1)|XΦ

(
sup
t∈T

[A(t) +

n−1∑
i=1

φi(ti)ξi + tnξn]

)
Continuing the above equation, we establish E(ξ1,··· ,ξn)|XΦ (supt∈T [A(t) +

∑n
i=1 φi(ti)ξi]) ≤

E(ξ1,··· ,ξn)|XΦ (supt∈T [A(t) +
∑n

i=1 tiξi]). Integration with respect to X leads to (84). In
the following, we will apply (84) to establish (44). Note that

EΦ

(
1

2
sup
t∈T

∣∣∣∣∣
n∑
i=1

φi(ti)ξi

∣∣∣∣∣
)

= EΦ

1

2

(
sup
t∈T

n∑
i=1

φi(ti)ξi

)
+

+
1

2

(
sup
t∈T

n∑
i=1

φi(ti)(−ξi)

)
+


≤ 1

2

EΦ

(sup
t∈T

n∑
i=1

φi(ti)ξi

)
+

+ EΦ

(sup
t∈T

n∑
i=1

φi(ti)(−ξi)

)
+


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By applying (84) to the function u→ Φ(u+), which is convex and non-decreasing, we have

EΦ
(

(supt∈T
∑n

i=1 φi(ti)ξi)+

)
≤ EΦ (supt∈T

∑n
i=1 tiξi) ≤ EΦ (supt∈T |

∑n
i=1 tiξi|). Then we

establish (44).

Appendix C. Additional Simulation Studies

C.1 Scale of λn

For our implemented algorithm, we identify the tuning parameter λn using the following
steps. Recall H = [b, Ip×p] and b = 1

‖x∗‖2
x∗. For t = 0, we initialise λ0 =

√
2.01 · log p/n

and calculate

v̂ = arg min
v∈Rp+1

1

4
vᵀHᵀΣ̂Hv + bᵀHv + λt‖v‖1.

1. If ‖v̂‖2 <∞, then, for t ≥ 0, we set λt+1 = λt/1.5 and calculate

v̂ = arg min
v∈Rp+1

1

4
vᵀHᵀΣ̂Hv + bᵀHv + λt+1‖v‖1.

Repeat until v̂ cannot be solved or t = 5.

2. If ‖v̂‖2 =∞, then, for t ≥ 0, we set λt+1 = λt · 1.5 and calculate

v̂ = arg min
v∈Rp+1

1

4
vᵀHᵀΣ̂Hv + bᵀHv + λt+1‖v‖1.

Repeat until v̂ can be solved.

By the above algorithm, we choose the smallest λn > 0 such that the dual problem has a
finite minimum value. Through the above algorithm, λn, starting from

√
2.01 · log p/n, can

be at most reduced to

√
2.01·log p/n

(1.5)6
. In theory, we can also increase λ but our observation is

that the decreasing of λ happens for almost all settings if we start with
√

2.01 · log p/n. We
provide results of the numerical experiment for our simulation setting (S1) in Table C.1.
The table shows λn ≈ 0.4

√
log p/n in this specific simulation setting.

Setting (S1), Loading 1 with q = 1

n λn
√

log p/n

200 0.07 0.18
400 0.05 0.12
600 0.04 0.10

Table C.1: Report of λn and
√

log p/n for the Setting (S1).

C.2 Constraint (11)

We now investigate whether our constructed projection direction û in (27) satisfies the con-
straint (11) through computing the ratio ‖Xû‖∞/‖x∗‖2.Note that as long as ‖Xû‖∞/‖x∗‖2 ≤
C
√

log n for some positive constant C > 0, then the constraint (11) is satisfied, which is
sufficient for us to establish the central limit theorem.
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For n = 200, the boxplot C.1 verifies Constraint (11) for Settings (S1) and (S2)(decay =
1) and Loading 1 with q = 1 and r ∈ {1, 1/25}. The boxplot C.2 summarizes the same for
n = 600. These boxplots show that ‖Xû‖∞/‖x∗‖2 is bounded above by 2.35 ·

√
log n. They

demonstrate that the constraint (11) is satisfied by our constructed û.

Figure C.1: Boxplot showing the distribution of ‖Xû‖∞/‖x∗‖2 for n = 200, summarized
over 500 simulations. Setting indices I1 and I2 denote setting (S1) with
r = 1 and r = 1

25 respectively while setting indices I3 and I4 denote set-
ting (S2)(decay = 1) with r = 1 and r = 1

25 respectively. The red line is
corresponding to y = 2.35 ·

√
log n

Figure C.2: Boxplot showing the distribution of ‖Xû‖∞/‖x∗‖2 for n = 600, summarized
over 500 simulations. Setting indices I1 and I2 denote setting (S1) with
r = 1 and r = 1

25 respectively while setting indices I3 and I4 denote set-
ting (S2)(decay = 1) with r = 1 and r = 1

25 respectively. The red line is
corresponding to y = 2.35 ·

√
log n
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C.3 Comparison of Proposed Method with Post Selection Method

We now consider a challenging setting for post-selection and compare the post-selection
method with the proposed LiVE method.

(S9) β1 = 0; βj = (j − 1)/20 for 2 ≤ j ≤ 11 but j 6= 9, 10; βj = 0.01 for j = 9, 10 and
βj = 0 for 12 ≤ j ≤ 501.

The loading x∗ is generated as follows :
Loading 3: We set xbasis,1 = 1 and generate xbasis,−1 ∈ R500 following N(0,Σ) with

Σ̃ = {0.51+|j−l|}1≤j,l≤500 and generate x∗ as

x∗,j =


xbasis,j for 1 ≤ j ≤ 11 ; j 6= 9, 10

10 for j = 9, 10
1
25 · xbasis,j for 12 ≤ j ≤ 501

We construct the new β and x∗ as we believe this is a challenging setting for post selection.
The insignificant regression coefficients β9, β10 make the corresponding covariates X·,9 and
X·,10 unlikely to be selected by Lasso in the first step. However, with enlarged entries
x∗,9, x∗,10, the corresponding covariates comprise a major part of the magnitude of the case
probability h(xᵀ∗β), thereby leading to a large omitted variable bias when these relevant
covariates are not selected by Lasso. We have observed in Table C.2 that the post selection
estimator has a large omitted variable bias and also produces a under-covered confidence
interval.

Setting (S9), Loading 3

LiVE Post Selection

‖xnew‖2 r Prob n Cov ERR Len RMSE Bias SE Cov ERR Len RMSE Bias SE

14.19 1
25 0.578

200 0.91 0.11 0.87 0.36 0.05 0.35 0.54 0.29 0.29 0.24 0.05 0.23
400 0.95 0.08 0.85 0.29 0.01 0.29 0.73 0.25 0.32 0.21 0.07 0.20
600 0.96 0.10 0.81 0.27 0.01 0.27 0.75 0.30 0.30 0.21 0.07 0.19

Table C.2: Comparison of the proposed method and the post selection method.
“r” and “Prob” represent the shrinkage parameter and Case Probability respec-
tively. The columns indexed with “Cov” and “Len” represent the empirical
coverage and length of the constructed CIs respectively; the column indexed
with “ERR” represents the empirical rejection rate of the testing procedure;
the columns indexed with “RMSE”, “Bias” and “SE” represent the RMSE, bias
and standard error, respectively. The columns under “LiVE” and “Post Selec-
tion” correspond to the proposed estimator and post model selection estimator
respectively.

C.4 Exactly Sparse with Intercept

Here we explore the performance of the inference procedures in presence of an intercept.
We generate β as in (S1) and instead of having null intercepts we consider two values for
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β1, β1 = −1 and β1 = 1 leading to two different target case probabilities 0.501 and 0.881
respectively. We investigate the finite sample performance of the inference methods for
Loading 1 with q = 1.

We report the simulation results based on 500 replications in Tables C.3 and C.4. Table
C.3 shows the proposed inference procedure continue to produce valid confidence intervals
and the confidence intervals have shorter lengths for a larger sample size or a smaller `2
norm ‖x∗‖2. In comparison, hdi undercovers in general while the over-coverage issue of
WLDP is still persistent. For β1 = −1, the case probability represents an alternative in the
indistinguishable region and hence the testing procedures do not have power in general while
for β1 = 1, the case probability is well above 0.5 and corresponds to an alternative to the null
hypothesis, thereby the ERR, an empirical measure of power, increases with a larger sample
size for all the testing procedures except for the one based on WLDP. It should be mentioned
here that the comparison of our proposed method with hdi and WLDP in the setting with
intercepts is unfair since hdi and WLDP are not designed to handle case probability and their
output does not handle inference for the intercept. However, in practical applications, the
intercept is an important term in capturing the case probabilities in logistic model.

Setting (S1) with β1 = −1, Loading 1 with q = 1

LiVE Post Selection hdi WLDP

‖x∗‖2 r Prob n Cov ERR Len Cov ERR Len Cov ERR Len Cov ERR Len

16.1 1 0.501
200 0.97 0.01 0.93 0.65 0.22 0.49 0.91 0.11 0.97 1.00 0.00 1.00
400 0.96 0.02 0.85 0.61 0.20 0.41 0.90 0.13 0.89 1.00 0.00 1.00
600 0.96 0.03 0.80 0.71 0.21 0.38 0.91 0.12 0.83 1.00 0.00 1.00

1.09 1
25 0.501

200 0.93 0.02 0.42 0.76 0.10 0.41 0.23 0.84 0.34 0.94 0.25 0.61
400 0.97 0.01 0.30 0.88 0.09 0.33 0.15 0.98 0.21 0.90 0.31 0.54
600 0.98 0.02 0.22 0.94 0.02 0.26 0.07 0.99 0.21 0.88 0.34 0.51

Setting (S1) with β1 = 1, Loading 1 with q = 1

LiVE Post Selection hdi WLDP

‖x∗‖2 r Prob n Cov ERR Len Cov ERR Len Cov ERR Len Cov ERR Len

16.1 1 0.881
200 0.97 0.07 0.91 0.65 0.80 0.28 0.91 0.07 0.98 1.00 0.00 1.00
400 0.97 0.14 0.79 0.61 0.84 0.24 0.93 0.07 0.91 1.00 0.00 1.00
600 0.96 0.18 0.74 0.71 0.88 0.20 0.91 0.06 0.86 1.00 0.00 1.00

1.09 1
25 0.881

200 0.93 0.97 0.24 0.65 0.99 0.16 0.51 0.79 0.43 1.00 0.17 0.63
400 0.94 0.98 0.15 0.71 1.00 0.11 0.39 0.94 0.24 1.00 0.30 0.55
600 0.91 1.00 0.12 0.85 1.00 0.11 0.21 0.96 0.20 1.00 0.32 0.52

Table C.3: Exactly sparse regression with intercept. “r” and “Prob” represent the
shrinkage parameter and Case Probability respectively. The columns indexed
with “Cov” and “Len” represent the empirical coverage and length of the con-
structed CIs respectively; the column indexed with “ERR” represents the empir-
ical rejection rate of the testing procedure. The columns under “LiVE” ,“Post
Selection”, “hdi” and “WLDP” correspond to the proposed estimator, the post
model selection estimator, the plug-in debiased estimator using hdi and WLDP

respectively.

46



Inference for Case Probability

Setting (S1) with β1 = −1, Loading 1 with q = 1

LiVE Post Selection hdi WLDP Lasso

‖x∗‖2 r Prob n RMSE Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE

16.1 1 0.501
200 0.35 0.01 0.35 0.31 0.01 0.31 0.40 0.15 0.38 0.41 0.19 0.36 0.14 -0.09 0.12
400 0.32 -0.01 0.32 0.27 -0.01 0.27 0.37 0.11 0.35 0.38 0.15 0.35 0.11 -0.07 0.09
600 0.26 0.02 0.26 0.20 0.02 0.20 0.31 0.16 0.27 0.32 0.10 0.25 0.08 -0.05 0.07

1.09 1
25 0.501

200 0.12 -0.04 0.11 0.21 -0.04 0.21 0.27 0.26 0.08 0.31 0.31 0.07 0.13 -0.10 0.08
400 0.08 -0.02 0.08 0.12 -0.02 0.12 0.23 0.23 0.05 0.30 0.30 0.04 0.09 -0.07 0.06
600 0.05 -0.02 0.05 0.08 0.02 0.07 0.22 0.22 0.04 0.29 0.29 0.04 0.08 0.06 0.05

Setting (S1) with β1 = 1, Loading 1 with q = 1

LiVE Post Selection hdi WLDP Lasso

‖x∗‖2 r Prob n RMSE Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE

16.1 1 0.881
200 0.33 -0.15 0.30 0.18 -0.02 0.18 0.48 -0.28 0.38 0.45 -0.25 0.38 0.13 -0.10 0.08
400 0.22 -0.07 0.21 0.17 -0.01 0.17 0.41 -0.20 0.33 0.35 -0.15 0.31 0.09 -0.07 0.05
600 0.23 -0.06 0.21 0.10 -0.01 0.10 0.38 -0.20 0.30 0.36 -0.20 0.30 0.07 -0.06 0.04

1.09 1
25 0.881

200 0.06 -0.02 0.06 0.08 0.03 0.07 0.16 -0.14 0.08 0.12 -0.09 0.07 0.11 -0.10 0.06
400 0.04 -0.01 0.04 0.06 0.04 0.05 0.16 -0.15 0.06 0.10 -0.09 0.05 0.08 -0.06 0.04
600 0.03 -0.01 0.03 0.03 0.02 0.03 0.16 -0.16 0.05 0.11 -0.10 0.04 0.06 -0.05 0.03

Table C.4: Exactly sparse regression with intercept. “r” and “Prob” represent the
shrinkage parameter and Case Probability respectively. The columns indexed
with “RMSE”, “Bias” and “SE” represent the RMSE, bias and standard er-
ror, respectively. The columns under “LiVE”, “Post Selection”, “hdi”, “WLDP”
and “Lasso” correspond to the proposed estimator, the post model selection
estimator, the plug-in hdi, the plug-in WLDP and the Plug-in Lasso estimator
respectively.

C.5 Additional Simulation Results for Section 4.2

We consider the exactly sparse regression setup (S1) and report the inference results for
Loading 2 with q = 1 in Table C.5. The CIs constructed by LiVE and hdi have coverage
over different scenarios while WLDP and the post-selection suffer from the issue of over-
coverage and under-coverage respectively. The case probability being less than 0.5 (0.293)
the proposed LiVE method, hdi and WLDP have type I error controlled across all sample
sizes while post selection does not have it controlled for the sample size at n = 200.

In Table C.6, we compare the proposed estimator, the post selection estimator, the plug-
in hdi, WLDP and Lasso estimator in terms of Root Mean Squared Error (RMSE), bias and
standard error with respect to regression setting (S1). Through comparing the proposed
and plug-in Lasso estimators, we observe that the bias component is reduced at the expense
of increasing the variance. Although the bias component is reduced, the total RMSE is not
necessarily decreasing after correcting the bias, since the increased variance can lead to a
larger RMSE in total. The increase in variance is proportional to the loading norm ‖x∗‖2;
specifically, if the loading norm is large, we may suffer from a larger total RMSE after
bias-correction; if the loading norm is relatively small, the variance only increases slightly
and the total RMSE decreases due to the reduction of the bias. This matches with the
theoretical results presented in Theorem 1.

The inference results in the approximately sparse regression setup (S2) with decay = 2
are summarized in Table C.7. The main observations are similar to that for decay = 1.
However for decay = 2, the testing procedures based on the proposed LiVE, hdi and WLDP
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Setting (S1), Loading 2 with q = 1

LiVE Post Selection hdi WLDP

‖x∗‖2 r Prob n Cov ERR Len t Cov ERR Len t Cov ERR Len t Cov ERR Len t

16.6 1 0.293
200 0.94 0.02 0.95 4 0.66 0.20 0.62 1 0.92 0.04 0.93 370 0.98 0.00 0.97 32
400 0.95 0.01 0.91 13 0.82 0.07 0.66 2 0.94 0.02 0.92 743 1.00 0.00 0.98 56
600 0.96 0.03 0.90 22 0.79 0.03 0.61 5 0.95 0.03 0.89 3132 1.00 0.00 0.98 115

5.38 1
25 0.293

200 0.93 0.02 0.81 4 0.66 0.17 0.62 1 0.93 0.01 0.78 369 1.00 0.00 0.72 32
400 0.96 0.00 0.67 13 0.83 0.03 0.67 2 0.95 0.00 0.68 742 0.99 0.00 0.65 56
600 0.95 0.01 0.61 21 0.82 0.03 0.59 5 0.94 0.01 0.58 3131 0.98 0.00 0.60 115

Table C.5: Varying n and ‖x∗‖2. “r” and “Prob” represent the shrinkage parameter and
Case Probability respectively. The columns indexed with “Cov” and “Len” rep-
resent the empirical coverage and length of the CIs; the column indexed with
“ERR” represents the empirical rejection rate of the test; “t” represents the
averaged computation time (in seconds). The columns under “LiVE” ,“Post
Selection”, “hdi” and “WLDP” correspond to the proposed estimator, the post
selection estimator, the plug-in debiased estimator using hdi and WLDP, respec-
tively.

Setting (S1), Loading 1 with q = 1

LiVE Post Selection hdi WLDP Lasso

‖x∗‖2 r Prob n RMSE Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE

16.1 1 0.732
200 0.33 -0.10 0.32 0.26 -0.02 0.26 0.38 -0.11 0.37 0.37 -0.04 0.37 0.14 -0.11 0.09
400 0.26 -0.04 0.26 0.21 -0.02 0.21 0.31 -0.06 0.31 0.31 0.01 0.31 0.11 -0.08 0.07
600 0.24 -0.05 0.24 0.20 -0.02 0.20 0.30 -0.08 0.29 0.30 -0.03 0.30 0.08 -0.06 0.06

1.09 1
25 0.732

200 0.10 -0.03 0.09 0.14 0.04 0.14 0.07 0.02 0.07 0.11 0.10 0.06 0.13 -0.11 0.07
400 0.07 -0.02 0.07 0.09 0.03 0.09 0.06 0.02 0.06 0.09 0.08 0.05 0.10 -0.08 0.06
600 0.06 -0.02 0.06 0.07 0.02 0.07 0.05 0.01 0.05 0.08 0.07 0.04 0.08 -0.06 0.05

Setting (S1), Loading 2 with q = 1

LiVE Post Selection hdi WLDP Lasso

‖x∗‖2 r Prob n RMSE Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE

16.6 1 0.293
200 0.45 0.16 0.42 0.43 0.19 0.40 0.44 0.17 0.40 0.35 0.12 0.32 0.29 0.20 0.22
400 0.38 0.10 0.37 0.33 0.08 0.32 0.39 0.10 0.37 0.29 0.08 0.28 0.23 0.13 0.19
600 0.36 0.04 0.35 0.25 0.03 0.25 0.34 0.05 0.34 0.22 0.01 0.22 0.22 0.13 0.19

5.38 1
25 0.293

200 0.29 0.05 0.29 0.39 0.14 0.37 0.28 0.07 0.27 0.22 -0.02 0.22 0.27 0.17 0.21
400 0.21 0.01 0.21 0.30 0.06 0.29 0.21 0.03 0.21 0.20 -0.03 0.20 0.22 0.13 0.18
600 0.22 0.03 0.22 0.24 0.01 0.24 0.20 0.03 0.20 0.17 0.01 0.17 0.21 0.11 0.18

Table C.6: Varying n and ‖x∗‖2. “r” and “Prob” represent the shrinkage parameter and
Case Probability respectively. The columns indexed with “RMSE”, “Bias” and
“SE” represent the RMSE, bias and standard error, respectively. The columns
under “LiVE”, “Post Selection”, “hdi”, “WLDP” and “Lasso” correspond to the
proposed estimator, the post model selection estimator, the plug-in hdi, the
plug-in WLDP and the plug-in Lasso estimator respectively.
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have type I error controlled for both r = 1 and r = 1/25 while the post selection method
suffers from an inflated Type I error for the setting r = 1.

Here we also report the estimation accuracy results for the approximately sparse re-
gression setup (S2) with decay ∈ {1, 2}. Table C.8 summarizes the estimation accuracy
results for Loading 1 and the results are similar to the exactly sparse setting in Table C.6.
Table C.8 shows again the plug-in Lasso estimator cannot be used for confidence interval
construction owing to its large bias.

Setting (S2) with decay = 2, Loading 1 with q = 1

LiVE Post Selection hdi WLDP

‖x∗‖2 r Prob n Cov ERR Len t Cov ERR Len t Cov ERR Len t Cov ERR Len t

16.1 1 0.488
200 0.95 0.04 0.91 5 0.66 0.14 0.37 1 0.94 0.03 0.92 370 1.00 0.00 1.00 34
400 0.96 0.03 0.86 14 0.60 0.18 0.29 2 0.95 0.04 0.88 751 1.00 0.00 1.00 56
600 0.96 0.03 0.78 23 0.67 0.15 0.27 6 0.93 0.03 0.85 3212 1.00 0.00 1.00 118

1.09 1
25 0.481

200 0.96 0.03 0.35 5 0.87 0.05 0.22 1 0.95 0.03 0.38 371 1.00 0.00 0.75 34
400 0.93 0.04 0.27 14 0.83 0.06 0.15 2 0.93 0.03 0.27 751 1.00 0.00 0.68 54
600 0.96 0.02 0.22 22 0.73 0.02 0.12 5 0.94 0.02 0.23 3211 1.00 0.00 0.65 118

Table C.7: Varying n and ‖x∗‖2. “r” and“Prob” represent the shrinkage parameter and
Case Probability respectively. The columns indexed with “Cov” and “Len”
represent the empirical coverage and length of the constructed CIs respectively;
the column indexed with “ERR” represents the empirical rejection rate of the
testing procedure; “t” represents the averaged computation time (in seconds).
The columns under “LiVE” ,“Post Selection”, “hdi” and “WLDP” correspond
to the proposed estimator, the post selection estimator, the plug-in debiased
estimator using hdi and WLDP respectively.

C.6 Additional Simulation Results for Section 4.4

The inference results for the exactly sparse regression setup (S5) with respect to Loading 2
with q = 1/2 are reported in Table C.9.

We summarize the results for the approximately sparse regression setup (S6) with decay = 1
and decay = 2 in Tables C.10 and C.11 respectively. Tables C.9, C.10 and C.11 further
support the validity of the constructed confidence intervals. The proposed test has type
I error controlled when the case probabilities correspond to the null hypothesis. How-
ever for p = 2001 the testing procedure does not have power since the case probabilities
(0.508, 0.530, 0.533) correspond to alternatives in the indistinguishable region.

C.7 Additional Simulation Results for Section 4.6

We plot the histograms of conditional case probabilities for settings (S1), (S2), (S5) and
(S6) in the figure C.3. The inverted U-shape of the histograms indicates that assumption
(A2) is plausible or weakly violated. Consequently the LiVE method performs well with
respect to CI construction and hypothesis testing as indicated earlier in sections 4.2 and
4.4.
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Setting (S2) with decay = 1, Loading 1 with q = 1

LiVE Post Selection hdi WLDP Lasso

‖x∗‖2 r Prob n RMSE Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE

16.1 1 0.645
200 0.37 -0.03 0.37 0.31 -0.09 0.31 0.38 -0.04 0.38 0.38 -0.02 0.38 0.18 -0.14 0.11
400 0.29 -0.05 0.28 0.28 -0.10 0.27 0.32 -0.06 0.31 0.32 0.02 0.32 0.16 -0.13 0.09
600 0.24 -0.03 0.24 0.23 -0.05 0.23 0.28 -0.02 0.28 0.29 0.07 0.29 0.15 -0.13 0.08

1.09 1
25 0.523

200 0.10 -0.01 0.10 0.18 -0.03 0.18 0.10 0.02 0.10 0.12 0.05 0.11 0.07 -0.03 0.06
400 0.08 -0.01 0.08 0.13 -0.01 0.13 0.08 0.01 0.08 0.09 0.04 0.09 0.05 -0.03 0.04
600 0.06 -0.02 0.06 0.09 -0.03 0.08 0.05 0.01 0.05 0.05 0.05 0.05 0.05 -0.03 0.04

Setting (S2) with decay = 2, Loading 1 with q = 1

LiVE Post Selection hdi WLDP Lasso

‖x∗‖2 r Prob n RMSE Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE

16.1 1 0.488
200 0.36 0.02 0.36 0.25 -0.02 0.25 0.38 0.01 0.38 0.41 0.02 0.41 0.08 0.00 0.08
400 0.31 0.01 0.31 0.19 -0.01 0.19 0.32 -0.01 0.32 0.38 0.00 0.38 0.06 0.00 0.06
600 0.26 -0.03 0.26 0.15 0.00 0.15 0.32 -0.02 0.32 0.26 -0.03 0.26 0.04 0.00 0.04

1.09 1
25 0.481

200 0.09 0.01 0.09 0.10 -0.01 0.10 0.10 0.01 0.10 0.11 0.01 0.11 0.04 0.01 0.04
400 0.07 0.01 0.07 0.05 0.00 0.05 0.08 -0.01 0.08 0.09 -0.01 0.09 0.03 0.01 0.03
600 0.06 0.01 0.06 0.05 -0.02 0.05 0.06 -0.01 0.06 0.06 -0.01 0.06 0.03 0.01 0.03

Table C.8: Varying n and ‖x∗‖2. “r” and “Prob” represent the shrinkage parameter and
Case Probability respectively. The columns indexed with “RMSE”, “Bias” and
“SE” represent the RMSE, bias and standard error, respectively. The columns
under “LiVE”, “Post Selection”, “hdi”, “WLDP” and “Lasso” correspond to the
proposed estimator, the post model selection estimator, the plug-in hdi, the
plug-in WLDP and the Plug-in Lasso estimator respectively.

Setting (S5), Loading 2 with q = 1/2

p ‖x∗‖2 r Prob n Cov ERR Len RMSE Bias SE

1001 3.35 1
5 0.278

400 0.97 0.00 0.56 0.14 -0.03 0.14
600 0.97 0.00 0.53 0.13 -0.03 0.13

1000 0.97 0.00 0.47 0.12 -0.02 0.12

2001 4.89 1
5 0.508

400 0.95 0.00 0.78 0.26 -0.14 0.22
600 0.93 0.01 0.73 0.24 -0.12 0.20

1000 0.95 0.00 0.67 0.19 -0.10 0.17

5001 7.10 1
5 0.363

400 0.98 0.02 0.88 0.29 0.08 0.28
600 0.99 0.00 0.85 0.23 0.07 0.21

1000 0.97 0.00 0.80 0.20 0.02 0.20

Table C.9: Inference properties of LiVE with increasing p and coefficient magni-
tudes. “r” and“Prob” represent the shrinkage parameter and Case Probability
respectively. The columns indexed with “Cov” and “Len” represent the empiri-
cal coverage and length of the constructed CIs respectively; the column indexed
with “ERR” represents the empirical rejection rate of the testing procedure; The
columns indexed with “RMSE”, “Bias” and “SE” represent the RMSE, bias and
standard error, respectively.
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Setting (S6) with decay = 1, Loading 1 with q = 1/2

p ‖x∗‖2 r Prob n Cov ERR Len RMSE Bias SE

1001 3.21 1
5 0.252

400 0.93 0.00 0.40 0.11 0.05 0.10
600 0.95 0.00 0.37 0.10 0.04 0.09

1000 0.95 0.00 0.28 0.07 0.03 0.07

2001 4.60 1
5 0.412

400 0.95 0.03 0.56 0.16 0.07 0.14
600 0.97 0.01 0.49 0.14 0.06 0.13

1000 0.96 0.01 0.45 0.11 0.04 0.11

5001 7.07 1
5 0.373

400 0.99 0.00 0.71 0.19 0.03 0.19
600 0.98 0.00 0.63 0.19 0.03 0.19

1000 0.97 0.00 0.55 0.13 0.00 0.13

Setting (S6) with decay = 1, Loading 2 with q = 1/2

p ‖x∗‖2 r Prob n Cov ERR Len RMSE Bias SE

1001 3.35 1
5 0.302

400 0.95 0.00 0.55 0.15 -0.06 0.14
600 0.96 0.00 0.53 0.14 -0.04 0.13

1000 0.96 0.00 0.47 0.13 -0.03 0.12

2001 4.89 1
5 0.530

400 0.97 0.02 0.80 0.25 -0.10 0.23
600 0.96 0.01 0.74 0.22 -0.08 0.20

1000 0.97 0.01 0.67 0.19 -0.07 0.17

5001 7.10 1
5 0.414

400 0.99 0.01 0.89 0.28 0.08 0.27
600 0.97 0.00 0.86 0.25 0.04 0.25

1000 0.98 0.00 0.80 0.20 0.01 0.20

Table C.10: Inference properties of LiVE with increasing p and coefficient magni-
tudes. “r” and“Prob” represent the shrinkage parameter and Case Probability
respectively. The columns indexed with “Cov” and “Len” represent the empiri-
cal coverage and length of the constructed CIs respectively; the column indexed
with “ERR” represents the empirical rejection rate of the testing procedure;
The columns indexed with “RMSE”, “Bias” and “SE” represent the RMSE,
bias and standard error, respectively.
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Setting (S6) with decay = 2, Loading 1 with q = 1/2

p ‖x∗‖2 r Prob n Cov ERR Len RMSE Bias SE

1001 3.21 1
5 0.257

400 0.95 0.00 0.40 0.11 0.05 0.10
600 0.95 0.00 0.37 0.10 0.04 0.09

1000 0.96 0.00 0.28 0.07 0.02 0.07

2001 4.60 1
5 0.365

400 0.97 0.01 0.55 0.15 0.05 0.14
600 0.95 0.01 0.48 0.13 0.03 0.13

1000 0.96 0.00 0.43 0.10 0.02 0.10

5001 7.07 1
5 0.396

400 0.96 0.01 0.71 0.20 0.03 0.20
600 0.96 0.00 0.66 0.16 0.02 0.16

1000 0.95 0.00 0.55 0.14 0.00 0.14

Setting (S6) with decay = 2, Loading 2 with q = 1/2

p ‖x∗‖2 r Prob n Cov ERR Len RMSE Bias SE

1001 3.35 1
5 0.322

400 0.97 0.00 0.58 0.15 -0.05 0.14
600 0.96 0.00 0.55 0.14 -0.04 0.14

1000 0.97 0.00 0.49 0.13 -0.03 0.12

2001 4.89 1
5 0.533

400 0.98 0.02 0.80 0.24 -0.06 0.23
600 0.96 0.02 0.75 0.20 -0.04 0.20

1000 0.97 0.03 0.67 0.19 -0.04 0.18

5001 7.10 1
5 0.431

400 0.98 0.03 0.89 0.32 0.11 0.30
600 0.99 0.06 0.81 0.28 0.06 0.27

1000 0.97 0.00 0.80 0.24 0.06 0.23

Table C.11: Inference properties of LiVE with increasing p and coefficient magni-
tudes. “r” and“Prob” represent the shrinkage parameter and Case Probability
respectively. The columns indexed with “Cov” and “Len” represent the empiri-
cal coverage and length of the constructed CIs respectively; the column indexed
with “ERR” represents the empirical rejection rate of the testing procedure;
The columns indexed with “RMSE”, “Bias” and “SE” represent the RMSE,
bias and standard error, respectively.
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Figure C.3: Histogram showing the distribution of {h(Xᵀ
i·β)}ni=1 for sample 1 with respect

to regression settings (S1) (top left), (S2) with decay = 1 (top right), (S5) with
p = 1001 (bottom left) and (S6) with decay = 1 and p = 1001 (bottom right).
Here sample size n = 600
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Appendix D. Additional Real Data Analysis

Figure D.1 presents confidence intervals constructed using our method for the predicted
probabilities shown in all six panels in Figure 2, corresponding to prediction of hypertension,
resistant hypertension and high blood pressure with unexplained low blood potassium across
two random subsamples.
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Figure D.1: Confidence interval construction for the random subsamples
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