
Journal of Machine Learning Research 22 (2021) 1-52 Submitted 2/20; Revised 11/20; Published 1/21

Multi-class Gaussian Process Classification
with Noisy Inputs

Carlos Villacampa-Calvo carlos.villacampa@uam.es

Computer Science Department, Universidad Autónoma de Madrid, 28049, Madrid, Spain

Bryan Zald́ıvar bryan.zaldivarm@uam.es

Theoretical Physics Department, Universidad Autónoma de Madrid, 28049, Madrid, Spain

Instituto de F́ısica Teórica, 28049, Madrid, Spain

Eduardo C. Garrido-Merchán eduardo.garrido@uam.es

Computer Science Department, Universidad Autónoma de Madrid, 28049, Madrid, Spain

Daniel Hernández-Lobato daniel.hernandez@uam.es

Computer Science Department, Universidad Autónoma de Madrid, 28049, Madrid, Spain

Editor: Philipp Hennig

Abstract

It is a common practice in the machine learning community to assume that the observed
data are noise-free in the input attributes. Nevertheless, scenarios with input noise are
common in real problems, as measurements are never perfectly accurate. If this input
noise is not taken into account, a supervised machine learning method is expected to
perform sub-optimally. In this paper, we focus on multi-class classification problems and
use Gaussian processes (GPs) as the underlying classifier. Motivated by a data set coming
from the astrophysics domain, we hypothesize that the observed data may contain noise
in the inputs. Therefore, we devise several multi-class GP classifiers that can account
for input noise. Such classifiers can be efficiently trained using variational inference to
approximate the posterior distribution of the latent variables of the model. Moreover, in
some situations, the amount of noise can be known before-hand. If this is the case, it can
be readily introduced in the proposed methods. This prior information is expected to lead
to better performance results. We have evaluated the proposed methods by carrying out
several experiments, involving synthetic and real data. These include several data sets from
the UCI repository, the MNIST data set and a data set coming from astrophysics. The
results obtained show that, although the classification error is similar across methods, the
predictive distribution of the proposed methods is better, in terms of the test log-likelihood,
than the predictive distribution of a classifier based on GPs that ignores input noise.

Keywords: Gaussian processes, Multi-class classification, Input dependent noise

1. Introduction

Multi-class classification problems involve predicting a class label y that can take values in
a discrete set of C labels {1, . . . , C} with C > 2 (Murphy, 2012). For this task, one should
use the information contained in the input attributes x ∈ Rd, with d the dimensionality of
the data. That is, we assume input attributes in the real line. In order to infer the relation
between y and x it is assumed that one can use some training data in the form of N pairs

c©2021 Carlos Villacampa-Calvo, Bryan Zald́ıvar, Eduardo C. Garrido-Merchán and Daniel Hernández-Lobato.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/20-107.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/20-107.html

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

(x, y), namely, {(xi, yi)}Ni=1. Multi-class classification problems arise in a huge variety of
fields, from industry to science. Most of the times, however, it is common to have data
sets whose inputs x are the result of experimental measurements. These measurements are
unavoidably contaminated with noise, as a consequence of measurement error. Further-
more, in some situations, the errors in the measurement of the explaining attributes can be
well determined. See Barford (1985) for further details. Incorporating this inductive bias,
or prior knowledge about the particular characteristics of the inputs of the classification
problem is expected to lead to better results when training a classifier to predict y given
x. Conversely, ignoring errors or noise in the input measurements is expected to lead to
sub-optimal results when this is indeed the case. In this research work we have empiri-
cally validated this hypothesis on several commonly used data sets extracted from the UCI
repository (Bay et al., 2000), as well as on the well-known MNIST data set (LeCun et al.,
1998). Even for these commonly used data sets in the machine learning community, we find
better prediction results by assuming the presence (and learning the amount) of noise in
some of the corresponding input variables, as we will show later.

While inference tasks on data with noisy attributes have been considered since long time
in the context of regression—see for example W.H. et al. (2007), or more recently Mchutchon
and Rasmussen (2011), in the context of Gaussian processes—the specific case of multi-class
classification has received much less attention from the literature, with a few exceptions
(Sáez et al., 2014). Taking into account the presence of noise in the input is, as we show
below, potentially essential to better modeling the conditional distribution p(y|x) giving rise
to the observed labels. Considering input noise is also expected to have an important impact
on the classification of points that are not far from the decision boundaries, since those are
regions of the input space in which the data is more susceptible of being misclassified (at
least in the case of additive noise with finite variance). Needless to say, both improving the
estimated underlying predictive distribution and the better confidence in the classification
of difficult points are two desirable properties for real-world problems in generic science
applications, as for example in the case of the medical domain or in astrophysics applications
(Gal, 2016).

Gaussian Processes (GPs) are machine learning methods that are inherently specified
within a Bayesian framework (Rasmussen and Williams, 2006). Therefore, they can deliver
probabilistic outputs that allow to extract uncertainty in the predictions made. This un-
certainty is specified in terms of a predictive distribution for the target variable and may
arise both from the modeling of intrinsic noise and also due to the lack of observed data.
GPs are also non-parametric models. Therefore, their expressiveness grows as the number
of data points in the training set, of size N , increases. GPs are, however, expensive to train
since their complexity is in O(N3). Specifically, they require the inversion of a covariance
matrix of size N × N . These methods also suffer from the difficulty of requiring approxi-
mate techniques to compute the posterior distribution of the latent variables of the model
in the case of classification tasks. This posterior distribution is required to compute the
predictive distribution for the target variable. Nevertheless, in spite of this difficulties, GPs
have been successfully used to address multi-class classification problems and have been
shown to be competitive with other approaches such as support vector machines or neural
networks (Kim and Ghahramani, 2006; Hernández-Lobato et al., 2011; Henao and Winther,
2012; Hensman et al., 2015b; Villacampa-Calvo and Hernández-Lobato, 2017).

2

Multi-class Gaussian Process Classification with Noisy Inputs

To alleviate the problems of scalability of GPs several approximations have been pro-
posed in the literature. Among them, the most popular ones are based on using inducing
points representations (Snelson and Ghahramani, 2006; Titsias, 2009). These techniques
consist in introducing a set of M � N inducing points that are carefully chosen to approx-
imate the full GP model. Specifically, the locations of the inducing points are optimized
during training alongside with any other GP hyper-parameter, by maximizing an estimate of
the marginal likelihood (Hensman et al., 2015b; Villacampa-Calvo and Hernández-Lobato,
2017). The complexity of these approximations is in O(NM2), which is significantly better
than O(N3) when M � N . Importantly, sparse approximations based on inducing points
can be combined with stochastic optimization techniques, which allow to scale GPs to very
large data sets (Hensman et al., 2015a; Villacampa-Calvo and Hernández-Lobato, 2017).
Nevertheless, in spite of this, to our knowledge, all current methods for multi-class GPs
classification assume noiseless input attributes. In this paper we extend the framework of
multi-class GP classification to account for this type of noise.

Our work is motivated by a concrete multi-class classification problem and from a data
set coming from astrophysics, dealing with measurements, by the Fermi-LAT instrument
operated by NASA, of point-like sources of photons in the gamma ray energy range all
over the sky (https://fermi.gsfc.nasa.gov/). The experimental measurements obtained
from such a system are unavoidably contaminated with noise and, in practice, the level of
noise in some of the explaining attributes is known and can be well determined. As it
turns out, at present, a significant fraction of those point-like sources are not associated
to or labeled as known astrophysical gamma rays sources as for example pulsars, blazars
or quasars (Abdollahi et al., 2020). It is thus of paramount importance for the physics
related to those measurements to know whether those point-like sources belong to the
standard astrophysical classes, or instead whether they are part of other more exotic kind
of sources. As a study-case exercise, though, we train a fully supervised classifier using
exclusively the sources which do have labels already. Further details of the data set are
given when presenting our experimental results. These show that a GP multi-class classifier
which considers input noise can obtain better predictive distributions in terms of the test
log-likelihood in this data set.

In this paper we focus on multi-class classification problems. The reason for this is
partially that this is precisely the setting of the data set coming from astrophysics that
motivated this work. Besides this, multi-class classification using GPs is relevant since it
has systematically received less attention from the machine learning community than other
settings such as regression or binary classification (Kuss and Rasmussen, 2005; Titsias,
2009; Hensman et al., 2013). This is probably related to the fact that addressing multi-
class problems with GPs is more challenging. More precisely, in a multi-class setting there
is one latent function per class label that has to be modeled. By contrast, in the regression
and binary classification settings in there is only one latent function. Multi-class problems
also involve the difficulty of dealing with complicated likelihood factors which often have
the form of soft-max functions or Gaussian integrals that need to be approximated and that
may even lack a closed form expression. See, e.g., Villacampa-Calvo and Hernández-Lobato
(2017). In spite of this, we also give some intuitions about how to extend the proposed
approach to other supervised learning settings different from multi-class classification.

3

https://fermi.gsfc.nasa.gov/

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

To account for input noise in the context of multi-class GP classification, we describe
three different methods. A first approach is based on considering the actual noiseless in-
put attributes (which we denote by x) as a latent variable, to then perform approximate
Bayesian inference and compute their posterior distribution. The required computations
are approximated using variational inference (Blei et al., 2017) combined with Monte Carlo
methods and stochastic optimization. A second approach considers a first order Taylor
expansion of the predictive mean of the GPs contained in the multi-class GP classifier (typ-
ically, one different GP per each potential class label), following Mchutchon and Rasmussen
(2011). Under this linear approximation the input noise is simply translated into output
noise, which is incorporated in the modeling process. The variance of the output noise is
determined by the slope of the GP predictive mean, which can be obtained using automatic
differentiation tools. Variational inference is also used in this second method to approxi-
mate the required computations. The two methods described to account for input noise in
the context of multi-class GP classification are validated on several experiments, including
synthetic data, data sets from the UCI repository, MNIST, and the data set related to
astrophysics that motivated this work described above. These experiments give empirical
claims supporting our hypothesis that our methods can effectively deal with noise in the
inputs. In particular, we have consistently observed that the predictive distribution of the
methods proposed is better, in terms of the test log-likelihood, than the one of a standard
multi-class GP classifier that ignores input noise. The prediction error of the proposed
method is, however, similar. A better predictive distribution means that in general the un-
certainty about the potential class label of a data instance is better modeled. We illustrate
that this is indeed the case in a set of active learning experiments. In these experiments
one chooses the most informative points from a validation set to be labeled and included in
the training set with the goal of reducing the prediction error. The most informative points
are those for which the model prediction is most uncertain. Our results confirm that by
taking into account input noise a better prediction error is obtained in these experiments.

The rest of the manuscript is organized as follows: We first introduce the fundamentals
about multi-class GP classification and sparse GPs in Section 2. Section 3 describes the
proposed models and methods to account for input noise in the observed attributes. Related
work about input noise in GPs and other machine learning methods is described in Section
4. Section 5 illustrates the empirical performance of the proposed methods. Finally, Section
6 gives the conclusions of this work.

2. Multi-class Gaussian Process Classification

In this section we describe how Gaussian processes (GPs) can be used to address multi-class
classification problems. We consider first a noiseless input setting. Next, in the following
section, we describe how noisy inputs can be incorporated into the model. Assume a data
set consisting of N instances with X = (x1, . . . ,xN)T the observed explaining attributes
and y = (y1, . . . , yN)T the target class labels, where yi ∈ {1, . . . C} and C > 2 is the number
of classes. The task of interest is to make predictions about the label y∗ of a new instance
x? given the observed data X and y.

Following the representation introduced by Kim and Ghahramani (2006) for multi-class
classification with GPs, we assume that each class label has been obtained with the labeling

4

Multi-class Gaussian Process Classification with Noisy Inputs

rule

yi = arg max
c

f c(xi) , (1)

where f c(·), for c = 1, . . . , C, are different latent functions, each one of them corre-
sponding to a different class label. Therefore the class label has been obtained sim-
ply by considering the latent function with the largest value at the data point xi. Let
fi = (f1(xi), . . . , f

C(xi))
T. Under this labeling rule the likelihood of the value of each

latent function at a training point is given by

p(yi|fi) =
∏
c6=yi

Θ (fyi(xi)− f c(xi)) ,

where Θ(·) is a Heaviside step function. Other likelihood functions such as the soft-max
likelihood arise simply by considering and marginalizing Gumbel noise around the latent
functions f c(·) (Maddison et al., 2014). Here we instead consider Gaussian noise around
each f c, as described later on. To account for labeling errors, we consider that the actual
class label yi associated to xi could have been flipped with probability ε to some other
class label (Hernández-Lobato et al., 2011; Hensman et al., 2015b). Under this setting, the
likelihood becomes

p(yi|fi) = (1− ε)
∏
c 6=yi

Θ (fyi(xi)− f c(xi)) +
ε

C − 1

1−
∏
c 6=yi

Θ (fyi(xi)− f c(xi))

 . (2)

In order to address multi-class classification with GPs, a GP prior is assumed for each
latent function f c(·) (Rasmussen and Williams, 2006). That is, p(f c) ∼ GP(0, kθ(·, ·)),
where kθc(·, ·) is a covariance function, with hyper-parameters θc. Popular examples of
covariance functions include the squared exponential covariance function. Namely,

kθc(x,x
′) = σ2 exp

−1

2

d∑
j=1

(xj − x′j)2

`j

+ I[x = x′]σ2
0 ,

where I[·] is an indicator function and θc = {σ2, σ0, {`j}dj=1} are the hyper-parameters.

More precisely, σ2 is the amplitude parameter, `j are the length-scales and σ2
0 is the level of

additive Gaussian noise around f c. See Rasmussen and Williams (2006) for further details.
In practice, the hyper-parameters will be different for each latent function f c(·). We have
ignored here their dependence on the latent function f c(·) for the sake of readability.

In order to make predictions about the potential class label of a new data point x?,
one would like to compute the posterior distribution of f = {fi}Ni=1. This distribution
summarizes which values of the latent functions are compatible with the observed data.
The posterior distribution can be computed using Bayes’ rule as follows:

p(f |y) =
p(y|f)p(f)

p(y)
=

[∏N
i=1 p(yi|fi)

] [∏C
c=1 p(f

c)
]

p(y)
. (3)

5

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

where f c = (fc(x1), . . . , fc(xN))T and p(f c) = N (f c|0,Kc) is a multi-variate Gaussian distri-
bution with zero mean and covariance matrix Kc, with Kc

i,j = kθc(xi,xj). The denominator
in the previous expression, p(y) =

∫
p(y|f)p(f)df , is just a normalization constant and is

known as the marginal likelihood. It can be maximized to obtain good values for the model
hyper-parameters θc, for c = 1, . . . , C. Note that in this setting, we assume independence
among the latent functions f c(·), since the prior factorizes as p(f) =

∏C
c=1 p(f

c).

A practical problem, however, is that the non-Gaussian likelihood in (2) makes infeasible
the exact computation of the marginal likelihood, so one has to make use of approximate
inference methods to approximate the posterior in (3). One of the most widely used methods
for approximate inference is variational inference (VI), which will be explained in detail in
the following sections (Titsias, 2009; Hensman et al., 2015a,b). In VI (3) is approximated
by a Gaussian distribution q whose parameters are obtained by minimizing the Kullback-
Leibler (KL) divergence between q and the exact posterior. The main advantage of VI is
that it transforms the approximate inference problem into an optimization problem that
can be solved using stochastic optimization techniques, and can hence scale to large data
sets. Furthermore, it can be easily implemented in modern frameworks for machine learning
such as Tensorflow (Abadi et al., 2015).

Other techniques that have been used for approximate inference in the context of multi-
class GP classification include the Laplace approximation (Williams and Barber, 1998).
This technique finds a Gaussian approximation matching the curvature of the posterior at
its mode. Nevertheless, it scales poorly to large data sets, since finding the model hyper-
parameters by approximately maximizing the marginal likelihood requires a double loop al-
gorithm (Rasmussen and Williams, 2006), and there is evidence showing that other methods
(such as expectation propagation) give better results, at least for binary classification (Nick-
isch and Rasmussen, 2008). Expectation propagation (EP) has also been used for approx-
imate inference in multi-class GP classification (Riihimäki et al., 2013; Villacampa-Calvo
and Hernández-Lobato, 2017). This method is competitive with VI and sometimes gives
better predictive distributions. Unlike VI, EP approximately minimizes the KL-divergence
between the posterior (3) and an approximate Gaussian distribution q. The disadvantage is
that it is based on a set of update rules to find q and not on solving directly an optimization
problem. These update rules are difficult to implement in frameworks such as Tensorflow.

The KL-divergence is generalized by a set of divergences known as the α-divergence
(Bui et al., 2017). The use of these divergences for approximate inference in multi-class
GP classification has been investigated by Villacampa-Calvo and Hernández-Lobato (2020),
showing that sometimes one can obtain better results than those of VI or EP. In this work we
focus on VI for approximate inference because of its simplicity and ease of implementation.
The potential use of α-divergences for approximate inference is left as future work.

2.1 Sparse Gaussian Processes

A difficulty of the method described so far is that, even if the likelihood was Gaussian and
exact inference was tractable, the cost of computing the posterior distribution would be in
O(N3), where N is the training set size. The reason for this cost is the need of inverting
the prior covariance matrices Kc. See Rasmussen and Williams (2006) for further details.

6

Multi-class Gaussian Process Classification with Noisy Inputs

As a consequence, multi-class GPs classification would only be applicable on a data set of
at most a few thousand data points.

A popular and successful approach to reduce the previous cost, is to consider an ap-
proximation based on sparse Gaussian processes (Titsias, 2009). Under a sparse setting, a
set of M pseudo-inputs or inducing points is introduced associated to each latent function
f c(·). Namely, Zc = (zc1, . . . , z

c
M). These points Zc will lie in the same space as the training

data. Namely, Rd, and their locations will be specified during training, simply by maximiz-
ing an estimate of the marginal likelihood. Associated to these inducing points Zc we will
consider some inducing outputs uc, where ucj = f c(zcj). The process values at each xi, i.e.,

f c = (f c(x1), . . . , f c(xN))T, are characterized by Zc and uc and can then be obtained from
the predictive distribution of a GP as follows:

p(f c|uc) = N
(
f c|Kc

X,Zc(Kc
Zc,Zc)−1uc,Kc

X,X −Kc
X,Zc(Kc

Zc,Zc)−1Kc
Zc,X

)
, (4)

where Kc
X,Zc is a N × M matrix of covariances of f c(·) between the process values at

the observed data points X and the inducing points Zc. Similarly, Kc
Zc,Zc is the M ×M

covariance matrix. Each entry in this matrix contains the covariances among the process
values at the inducing points Zc. Under the sparse approximation, the prior for each uc is
simply the Gaussian process prior. Namely,

p(uc) = N
(
uc|0,Kc

Zc,Zc

)
.

Importantly, now one only has to invert the matrices Kc
Zc,Zc of size M ×M and compute

the product Kc
X,Zc(Kc

Zc,Zc)−1. Therefore, the training cost will be in O(M2N), which is
significantly better if M � N .

In practice, the inducing point values uc will be unknown and they are treated as latent
variables of the model. An approximate Gaussian posterior distribution will be specified
for them. Namely, q(uc) = N (uc|mc,Sc) for c = 1, . . . , C. This uncertainty about uc can
be readily introduced in (4) simply by marginalizing these latent variables. The result is a
Gaussian distribution for f c with extra variance due to the randomness of uc. That is,

p(f c|y) ≈
∫
p(f c|uc)q(uc) = N (f c|µc,Σc) , (5)

where

µc = Kc
X,Zc(Kc

Zc,Zc)−1mc ,

Σc = Kc
X,X −Kc

X,Zc(Kc
Zc,Zc)−1(Kc

Zc,Zc + Sc)(K
c
Zc,Zc)−1Kc

Zc,X .

In the following sections we describe how to compute the parameters of each approximate
distribution q(uc), for c = 1, . . . , C, using variational inference.

3. Multi-class GP Classification with Input Noise

In this section we describe the proposed approaches for dealing with noisy inputs in the
context of multi-class GP classification. Let us consider that X̃ is the matrix of noisy
observations in which the data patterns are contaminated with additive Gaussian noise

7

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

with some mean and some variance. Again, consider that X is the matrix of noiseless
inputs. That is,

x̃i = xi + εi , εi ∼ N (0,Vi) , (6)

where x̃i ∈ Rd is a particular observation and Vi is a d × d diagonal matrix. That is, we
assume independent additive Gaussian noise for the inputs. For the moment, we consider
that the variance of the additive noise Vi is known beforehand. Later on, we describe
how this parameter can be inferred from the training data. Recall that we assume input
attributes in the real line.

3.1 Modeling the Input Noise Using Latent Variables

A first approach for taking into account noisy inputs X̃ in the context of GP multi-class
classification is based on making approximate Bayesian inference about the actual noiseless
inputs xi, for i = 1, . . . , N . Importantly, these variables will be latent. The observed
variables will be the ones contaminated with Gaussian noise x̃i, for i = 1, . . . , N . With this
goal, note that the assumption made in (6) about the generation of x̃i provides a likelihood
function for the actual observation. That is,

p(x̃i|xi) = N (x̃i|xi,Vi) .

In order to make inference about the noiseless observation xi, we need to specify a prior
distribution for that variable. In practice, however, the actual prior distribution for xi is
specific of each classification problem and unknown, in general. Therefore, we set the prior
for xi to be a multi-variate Gaussian with a broad variance. Namely,

p(xi) = N (xi|0, Is) ,

where I is the identity matrix and s is chosen to have a large value, i.e., s = 1, 000, in order
to make it similar to a non-informative uniform distribution. This prior has shown good
results in our experiments.

3.1.1 Joint and Posterior Distribution

The first step towards making inference about xi is to describe the joint distribution of all
the variables of the model (observed and latent). This distribution is given by

p(X, X̃,y,F,U) =

[
N∏
i=1

p(yi|fi)

][
C∏
c=1

p(f c|uc)p(uc)

][
N∏
i=1

p(x̃i|xi)p(xi)

]
,

where X̃ = (x̃1, . . . , x̃N)T is the matrix of noisy observations, X = (x1, . . . ,xN)T is the
matrix of actual noiseless inputs, y is the vector of observed labels, F = (f1, . . . , fN)T is the
matrix of process values at the actual noiseless inputs (i.e., at each xi instead of at each
x̃i), and U = (u1, . . . ,uC)T is the matrix of process values at the inducing points.

The posterior distribution of the latent variables, i.e., X, F and U is obtained using
Bayes’ rule:

p(X,F,U|y, X̃) =
p(X̃,X,y,F,U)

p(y, X̃)
. (7)

8

Multi-class Gaussian Process Classification with Noisy Inputs

Again, as in the case of standard multi-class classification where there is noise in the in-
puts, computing this posterior distribution is intractable and approximate inference will be
required. To approximate this distribution we employ variational inference, as described in
the next section.

3.1.2 Approximate Inference Using Variational Inference

We will use variational inference (VI) as the approximate inference method (Jordan et al.,
1999). The posterior approximation that will target the exact posterior (7) is specified to
be

q(X,F,U) =

[
C∏
c=1

p(f c|uc)q(uc)

][
N∏
i=1

q(xi)

]
, (8)

where

q(uc) = N (uc|mc,Sc) , q(xi) = N (xi|µxi ,Vx
i) , (9)

with Vx
i a diagonal matrix. This posterior approximation assumes independence among

the different GPs of the model and the actual noiseless inputs X.
To enforce that q looks similar to the target posterior distribution, VI minimizes the

Kullback-Leibler (KL) divergence between q and the exact posterior p, given by the dis-
tribution in (7). This is done indirectly by maximizing the evidence lower bound L. See
Jordan et al. (1999) for further details. The evidence lower bound (ELBO) is given by

L = Eq

[
log

p(X, X̃,y,F,U)

q(X,F,U)

]

=

N∑
i=1

Eq [log p(yi|fi)] +

N∑
i=1

Eq[log p(x̃i|xi)]

−
C∑
c=1

KL(q(uc)|p(uc))−
N∑
i=1

KL(q(xi)|p(xi)) , (10)

where KL(·|·) is the Kullback-Leibler divergence and where we have used the fact that the
factors of the form p(f c|uc) described in (4) and present in both the joint distribution and
in q will cancel.

One problem that arises when computing the previous expression is that the first ex-
pectation in (10), i.e. Eq [log p(yi|fi)], does not have a closed form solution. It can,
however, be computed using a one dimensional quadrature and Monte Carlo methods
combined with the reparametrization trick (Kingma and Welling, 2014; Hensman et al.,
2015b). Concerning the other factors, the second expectation,

∑N
i=1Eq[log p(xi|x̃i)], is

the expectation of the logarithm of a Gaussian distribution, so it can be computed in a
closed form. We can also evaluate analytically the KL divergences in the lower bound,∑K

k=1 KL(q(uk)|p(uk))−
∑N

i=1 KL(q(x̃i)|p(x̃i)), since they involve Gaussian distributions.
Importantly, the ELBO in (10) is expressed as a sum across the observed data points.

This means that this objective is suitable for being optimized using mini-batches. The

9

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

required gradients can be obtained using automatic differentiation techniques such as those
implemented in frameworks such as Tensorflow (Abadi et al., 2015). Appendix A describes
the details about how to obtain an unbiased noisy estimate of the ELBO, L.

One last remark is that it is possible to show that

log p(y, X̃) = L+ KL[q||p] ,

where KL[q||p] is the Kullback-Leibler (KL) divergence between q and the target posterior
distribution p in (7) (Jordan et al., 1999). After maximizing the ELBO, L, it is expected that
the KL term is fairly small and hence log p(y, X̃) ≈ L. Therefore, L can be maximized to
find good values for the model hyper-parameters. This is expected to maximize log p(y, X̃),
which will correspond to a type-II maximum likelihood approach (Rasmussen and Williams,
2006). The locations of the inducing points Zc, for c = 1, . . . , C, are found by maximizing
L, an estimate of the marginal likelihood, as in Hensman et al. (2015b); Villacampa-Calvo
and Hernández-Lobato (2017). Note, however, that these correspond to parameters of the
posterior approximation q, defined in (8), and not of the described probabilistic model
(Titsias, 2009).

3.1.3 Predictions

After the maximization of the lower bound (10), the approximate distribution q is fitted
to the actual posterior. The predictive distribution for the class label y? of a new instance
x? can be approximated by replacing the exact posterior by the posterior approximation in
the exact predictive distribution. Namely,

p(y?|x?) ≈
∫
p(y?|f?)

[
C∏
c=1

p(f c? |uc)q(uc)duc
]
p(x?|x̃?)dx?df? , (11)

where p(x?|x̃?) is the posterior distribution of the actual attributes of the new instance given
the observed attributes x̃?. This posterior is the normalized product of the prior times the
likelihood. Therefore, it can be computed in closed form and is a Gaussian. Namely,

p(x?|x̃?) =
p(x̃?|x?)p(x?)

p(x̃?)
= N (x?|µx? ,Vx

?) ,

where Vx
? = (V−1

? + Is−1)−1 and µx? = Vx
?(V−1

? x̃?), and where V? is a diagonal matrix
with the variances of the Gaussian noise around x?. Note that if s is fairly large, as it is in
our case, then essentially Vx

? ≈ V?

In general, the integral in (11) is intractable. However, we can generate samples of x?
simply by drawing from p(x?|x̃?) to then compute a Monte Carlo approximation:

p(y?|x?) ≈
1

S

S∑
s=1

∫
p(y?|f s?)

[
C∏
c=1

p(f cs,?|uc)q(uc)duc
]
df s? , (12)

where S is the number of samples, f s? = (f1(xs?), . . . , f
C(xs?))

T, f cs,? = f c(xs?) with xs? the
generated s sample of x?.

10

Multi-class Gaussian Process Classification with Noisy Inputs

The only remaining thing is how to compute the integral in the right hand side of
(12). It turns out that the integral with respect to each uc can be computed analytically
using (5). The integral with respect to f s? can be approximated using a one-dimensional
quadrature. In particular, under the likelihood function in (2), the approximation of the
predictive distribution becomes

p(y?|x?) ≈
ε

C − 1
+ (1− ε) 1

S

S∑
s=1

∫
N (fy?s |ms

y? , v
s
y?)

∏
c6=y?

Φ

(
f cs −ms

c√
vsc

)
dfy?s , (13)

where fy?s = fy?(xs?), f
c
s = f c(xs?), Φ(·) is the cumulative probability of a standard Gaussian

distribution and

ms
c = kcxs

?,Z
c(Kc

Zc,Zc)−1mc ,

vsc = kcxs
?,x

s
?
− kcxs

?,Z
c(Kc

Zc,Zc)−1KZc,xs
?

+ kcxs
?,Z

c(Kc
Zc,Zc)−1Sc(K

c
Zc,Zc)−1kcZc,xs

?
,

for c = 1, . . . , C with kcxs
?,x

s
?

the variance of f c(·) at x?, kcxs
?,Z

c the matrix of covariances
between the values of f c(·) at xs? and Zc, and Kc

Zc,Zc the covariances of f c(·) among the
inducing points Zc. Note that the integral over fy?s in (13) has no closed form solution but
it can be computed using one-dimensional quadrature.

3.2 Amortized Approximate Inference

A limitation of the method described is that the approximate posterior distribution over
the noiseless inputs, i.e.,

∏N
i=1 q(xi), demands storing in memory a number of parameters

that is in O(N), where N is the number of observed instances. Of course, in the big data
regime, i.e., when N is in the order of thousands or even millions the memory resources
needed to store those parameters can be too high. To alleviate this problem, we propose to
use amortized approximate inference to reduce the number of parameters that need to be
store in memory (Kingma and Welling, 2014; Shu et al., 2018).

Amortized variational inference assumes that the parameters of each distribution q(xi),
i.e., the mean and the diagonal covariance matrix, can be obtained simply as a non-linear
function that depends on the observed data instance (x̃i, yi). This non-linear function is set
to be a neural network whose parameters are optimized during training. That is,

q(xi) = N (xi|µθ(x̃i, yi),Vθ(x̃i, yi)) ,

where both µθ(x̃i, yi) and Vθ(x̃i, yi) are obtained as the output of a neural network with
parameters θ (we use a one-hot encoding for the label yi). Therefore, one only has to
store in memory the neural network which has a fixed number of parameters. This number
of parameters does not depend on N . The neural network can be adjusted simply by
maximizing w.r.t θ the evidence lower bound described in (10). The computational cost of
the method is not changed, since the cost for the feed-forward pass of the network to obtain
µθ(x̃i, yi) and Vθ(x̃i, yi) is constant.

Amortized approximate inference introduces the inductive bias that points that are lo-
cated in similar regions of the input space should have similar parameters in the correspond-
ing posterior approximation q(xi). Of course, this has the benefit property of reducing the

11

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

number of parameters of the approximate distribution q. A second advantage is, however,
that the neural network can provide a beneficial regularization that is eventually trans-
lated into better generalization results (Shu et al., 2018). More precisely, our experiments
show that amortized variational inference sometimes provides better results than using an
approximate distribution q that has separate parameters per each data point x̃i.

Besides using this neural network to compute the parameters of q(xi), the model is not
changed significantly. Prediction is done in the same way, and hyper-parameter optimization
is also carried out by maximizing the evidence lower bound.

3.3 First Order Approximation

In this section we describe an alternative method to account for input noise in the context
of multi-class classification with GPs. This method is inspired on work already done for
regression problems (Mchutchon and Rasmussen, 2011). Consider the relation between the
noisy and the noiseless input measurements given by (6). Now, consider a Taylor expansion
of a latent function f(·) around the noiseless measurement xi. Namely,

f(xi + εi) = f(xi) + εT
i

∂f(xi)

∂xi
+ · · · ≈ f(x̃i) + εT

i

∂f(x̃i)

∂x̃i
+ · · · (14)

where x̃i is the noisy observation. Since we do not have access to the noiseless input vector
xi, we simply approximate it with the noisy one x̃i. Note that this last expression involves
the derivatives of the GP. Although they can be showed to be again GPs (see Rasmussen
and Williams (2006) for further details), we here decide to approximate these derivatives
with the derivatives of the mean of GP, as in Mchutchon and Rasmussen (2011). This
approximation corresponds to ignoring the uncertainty about the derivative. Let ∂f (x̃i)
denote the d-dimensional vector corresponding to the derivative of the mean of the GP
with respect to each input dimension at x̃i. If we expand the right hand side of (14) up to
the first order terms, we get a linear model. Namely,

f(xi + εi) = f(x̃i) + εT
i ∂f (x̃i) .

Therefore, the input noise can be understood as output noise whose variance is proportional
to square of the derivative of the mean value of f at x̃i.

The model just described can be combined with the framework for sparse GPs described
in Section 2.1 to give an alternative posterior predictive distribution for f c to the one
described in (5). That is,

p(f c|uc) = N (f c|µc,Σc) , (15)

with

µc = Kc
X̃,Zc(K

c
Zc,Zc)−1mc ,

Σc = Kc
X̃,X̃
−Kc

X̃,Zc(K
c
Zc,Zc)−1

(
(Kc

Zc,Zc)−1 − Sc
)

(Kc
Zc,Zc)−1KZc,X̃ + ∆ ,

where mc and Sc are the parameters of q(uc), the covariance matrices are evaluated at the
noisy measurements X̃ and

∆i,i = ∂fc(x̃i)
TVi∂fc(x̃i) . (16)

12

Multi-class Gaussian Process Classification with Noisy Inputs

Therefore, ∆ is a diagonal matrix whose entries account for the extra output noise that
results from the corresponding input noise. This makes sense, since the input noise is
expected to have a small effect in those regions of the input space in which the latent
function is expected to be constant. Importantly, in the sparse setting

∂fc(x̃i) =
∂µc
∂x̃i

=
∂kcx̃i,Zc(Kc

Zc,Zc)−1mc

∂x̃i
.

This partial derivative can be easily obtained automatically in modern frameworks for im-
plementing multi-class GP classifiers such as Tensorflow (Abadi et al., 2015). The expression
in (15) can replace (5) in a standard sparse multi-class GP classifier to account for input
noise. One only has to provide the corresponding input noise variances Vi, for i = 1, . . . , N .
Approximate inference in such a model can be carried out using variational inference, as
described in Hensman et al. (2015b).

Figure 1 shows the predictive distribution of the model described, which we refer to as
NIMGPFO, for each latent function in a three class toy classification problem described in
Section 5.1. The figure on the left shows the predictive distribution obtained when the extra
term in the predictive variance ∆ that depends on the slope of the mean is ignored in (15).
The figure on the right shows the resulting predictive distribution when that term is taken
into account. We can observe that the produced effect is to increase the variance of the
predictive distribution by some amount that is proportional to the squared value of slope
of the predictive mean. This is particularly noticeable in the case of the latent function
corresponding to class number 2. A bigger variance in the predictive distribution for the
latent function will correspond to less confidence in the predictive distribution for the class
label. See Section 5.1 for further details.

Figure 1 also shows the learned locations of the inducing points for each latent function
(displayed at the bottom of each image). We observe that they tend to be placed uniformly
in the case of the latent functions corresponding to class labels 0 and 1. However, in the
case of the latent function corresponding to class label 2, they concentrate in specific regions
of the input space. Namely, in those regions in which the latent function changes abruptly.

The inductive bias of a machine learning algorithm is a set of assumptions that the chosen
methodology uses to predict outputs given, in this case, uncertain inputs. The stochastic
estimate of the lower bound, in contrast w.r.t the linear approximation of NIMGPFO, is
unbiased, as it is shown in Appendix A. In the NIMGPFO method, the input noise is
converted to output noise through a linear approximation based in a second-order Taylor
expansion, that assumes that the input noise distribution fits a quadratic approximation
and regularity assumptions that need not be necessarily true.

3.4 Learning the Level of Noise in the Inputs

The previous sections assumed that the variance of Gaussian noise associated to each input
dimension, i.e., the diagonal matrix Vi, is known before-hand. This is the case of many
practical problems in which the error associated to the measurement instrument that is used
to obtain the observed attributes x̃i is well-known. However, in certain situations it can be
the case that the variance of the error is unknown. In this case, it may still be possible to
infer this level of error from the observed data.

13

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

Figure 1: For the NIMGPFO model, the predictive mean GP and variances (right) and original
variances (left), for each latent function, for a classification problem with three classes
shown in red, green and blue. The learned locations of the inducing points, Zc, are shown
in a row at the bottom of each figure. Best seen in color.

Typically, in this case, one will assume that the level of noise is the same across all
observed data instances. That is, Vi = V. This has the advantage of reducing the number
of parameters that have to be inferred. To estimate V one can simply treat this parameter
as a hyper-parameter of the model. Its value can be estimated simply by type-II maxi-
mum likelihood, as any other hyper-parameter of the GP (Rasmussen and Williams, 2006).
Under this setting, one simply maximizes the marginal likelihood of the model, i.e., the de-
nominator in Bayes’ theorem w.r.t the parameter of interest. This is precisely the approach
followed in Mchutchon and Rasmussen (2011) for regression problems.

Because evaluating the marginal likelihood is infeasible in the models described so far,
one has to use an approximation. This approximation can be the evidence lower bound
described in (10), which will be similar to the marginal likelihood if the approximate dis-
tribution q is an accurate posterior approximation. The maximization of (10) w.r.t V
can be simply done with no extra computational cost using again stochastic optimization
techniques.

In general, we will assume that Vi is known for each data instance. If that is not the
case, we will infer that level of noise using the method described in this section.

3.5 Other Problems Different from Multi-class Classification

The methods described so far focus on multi-class problems as we are initially motivated by
a real-world application from the field of astrophysics. This setup is challenging since there is
a latent function for each potential class label. This also results in complex likelihood factors
and the need to approximate the first expectation in (10) using one dimensional quadrature
and Monte Carlo methods. Of course, addressing regression problems is straight-forward.
In this case, the likelihood factors are Gaussian and some of the required computations to

14

Multi-class Gaussian Process Classification with Noisy Inputs

evaluate the (10) are tractable (the only expectation that needs to be approximated is that
with respect to each q(xi)). A single GP is used in this case. There has been plenty of
research work considering this setting in the literature and we refer the reader to Section 4.

We describe how the proposed method can be used in problems involving other non-
Gaussian likelihood functions. For example, in problems in which the task of interest is to
predict count data, we may want to use the likelihood factors that are Poisson distributed
(Diggle et al., 1998). That is, p(yi|fi) = Pois(yi|λi), where λi is the rate parameter that
may non-linearly depend on xi through a GP, e.g., λi = exp(fi), with fi the process value
at xi. Similarly, in binary classification, where yi ∈ {−1, 1}, the likelihood factors can be
of the form p(yi|fi) = Φ(fiyi), where Φ(·) is the sigmoid or the probit function (Rasmussen
and Williams, 2006). Multi-label data can also be considered by using similar sigmoid
likelihood factors, several GPs and a linear transformation to account for each potential
label (Panos, 2019). A robustified GP for regression can be considered by using Student-t
factors in the likelihood, as an alternative to the standard Gaussian factors (Neal, 1997).
Namely, p(yi|fi) = Student(yi|fi, σ, µ), where fi, σ and ν are the location, scale and degrees
of freedom parameters, respectively. Other problems may involve ordinal regression, where
the target variables are discrete but ordered (Chu and Ghahramani, 2005). In that case
the likelihood function may involve two probit functions to account for the fact that the
process value fi associated to xi should lie in a particular interval of the real line.

All these problems are characterized by non-Gaussian likelihood factors involving a
single GP. In this case, the expectation of Eq[log p(yi|fi)] with respect to q(fi) required
to evaluate (10) is intractable. However, it can be easily approximated also using a one-
dimensional quadrature. The expectation with respect to each q(xi) can be approximated
using Monte Carlo methods, as in the case of multi-class classification. The evaluation of
the proposed method in the described settings is left for future work since the focus of this
paper is multi-class classification.

3.6 Summary of the Proposed Methods to Deal with Input Noise

Below we briefly describe the different methods explained so far to deal with input noise in
the context of multi-class GP classification:

• NIMGP: This is the method described in Section 3.1 which uses latent variables
to model the original noiseless inputs. It relies on a Gaussian distribution for the
actual observation with the mean being a random variable representing the noiseless
input. We assume a non-informative Gaussian prior for the noiseless input. The joint
posterior distribution that involves non-Gaussian likelihood factors for the process
values is approximated using variational inference. Quadrature and Monte Carlo
methods are combined with the reparametrization trick to obtain a noisy estimate of
the lower bound which is optimized using stochastic methods.

• NIMGPNN: A limitation of the previous method is the need of storing parameters for
each data instance. This is a disadvantage in big data applications. To circumvent this
problem, amortized approximate inference is employed in this method, as explained
in Section 3.2. We use a neural network to compute the parameters of posterior
approximation for the noiseless attributes of each data instance. This network reduces

15

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

the number of parameters of the approximate distribution and also regularizes the
model. Approximate inference is carried out as in NIMGP.

• NIMGPFO: This is the method described in Section 3.3. In this method we adapt
for classification with sparse GPs an already proposed method for regression that
accounts for noisy inputs using GPs. This method is based on propagating the noise
found in the inputs to the variance of the GPs predictive distribution. For this, a
local linear approximation of the GP is used at each input location. This allows the
input noise to be recast as output noise proportional to the squared gradient of the
GP predictive mean.

A summary of the parameters employed by each method is provided in Appendix C.

4. Related Work

In the literature there are some works dealing with GPs and input points corrupted with
noise in the context of regression problems (Mchutchon and Rasmussen, 2011). For this, a
local linear approximation of the GP at each input point is performed. When this is done,
the input noise is translated into output noise proportional to the squared gradient of the
GP posterior mean. Therefore, the mentioned paper simplifies the problem of modeling
input noise by assuming that the input measurements are deterministic and by inflating the
corresponding output variance to compensate for the extra noise. When this operation is
performed, it leads to output noise variance varying across the input space. This property is
defined as heteroscedasticity. The model presented in that paper can hence be described as a
heteroscedastic GP model. We have extended the linearization approach of Mchutchon and
Rasmussen (2011) to address multi-class classification problems as they only considered
regression problems. Furthermore, we have compared such a method, NIMGPFO, with
another approach that uses latent variables to model the noiseless inputs, NIMGP, and
that, in principle, does not rely on a linear approximation of the GP. We show that on
synthetic data NIMGP performs better than NIMGPFO which indicates that the linear
approximation used in NIMGPFO may be inaccurate. In fact, the GP is non-linear in
practice. Note that we also consider sparse GPs instead of standard GPs, which make our
approach more scalable to data sets with a larger number of instances. These differences
are common between our proposed methods and most of the techniques described in this
section.

As described in the previous paragraph, one of our proposed methods can be understood
as a GP model in which the level of output noise depends on the input location, i.e., the
data can be considered to be heteroscedastic. Several works have tried to address such a
problem in the context of GPs and regression tasks. In particular, Goldberg et al. (1998)
introduce a second GP to deal with the output noise level as a function of the input location.
This approach uses a Markov chain Monte Carlo method to approximate the posterior noise
variance, which is time-consuming. A more efficient MAP estimation approach is described
by Le et al. (2005). This other method is applicable in models with likelihood factors in the
exponential family and it leads to a convex optimization problem solvable by the Newton
method. An interesting extension to the work of Goldberg et al. (1998) tries to circumvent
its computational limitations by replacing the Monte Carlo method with an approximative

16

Multi-class Gaussian Process Classification with Noisy Inputs

most likely noise approach (Kersting et al., 2007). This other work learns both the hidden
noise variances and the kernel parameters simultaneously. Furthermore, it significantly
reduces the computational cost.

Other related work concerning heteroscedasticity in the context of regression problems
is the one of Lázaro-Gredilla and Titsias (2011). This approach also relies on variational
inference for approximate inference in the context of GPs. These authors explicitly take into
account the input noise, and model it with GP priors. By using an exponential transfor-
mation of the noise process, they specify the variance of the output noise. Exact inference
in the heteroscedastic GP is intractable and the computations need to be approximated
using variational inference. Variational inference in such a model has equivalent cost to
an analytically tractable homoscedastic GP. Importantly, this work focuses exclusively on
regression and ignores classification tasks. Furthermore, no GP sparse approximation is
considered by these authors. Therefore, the problems addressed cannot contain more than
a few thousand instances.

Copula processes are another alternative to deal with input noise in the context of re-
gression tasks and GPs (Wilson and Ghahramani, 2010). In this case, approximate inference
is carried out using the Laplace approximation and Markov chain Monte Carlo methods.
There also exists in the literature an approach for online heteroscedastic GP regression that
tackles the incorporation of new measurements in constant run-time and makes the com-
putation cheaper by considering online sparse GPs (Bijl et al., 2017). This approach has
proven to be effective in a practical applications considering, e.g., system identification.

The work of Mchutchon and Rasmussen (2011) has been employed in several practical
applications involving machine learning regression problems. For example, in a problem
concerning driving assistant systems (Armand et al., 2013), where the velocity profile that
the driver follows is modeled as the vehicle decelerates towards a stop intersection. An-
other example application can be found in the context of Bayesian optimization (Nogueira
et al., 2016; Oliveira et al., 2017), where a GP models an objective function that is being
optimized. In this scenario, the input space is contaminated with i.i.d Gaussian noise. Two
real applications are considered: safe robot grasping and safe navigation under localization
uncertainty (Nogueira et al., 2016; Oliveira et al., 2017).

Another approach that considers input noise in the context of regression problems in
arbitrary models is that of Bócsi and Csató (2013). This approach corrects the bias caused
by the integration of the noise. The correction is proportional to the Hessian of the learned
model and to the variance of the input noise. The advantage of the method is that it works
for arbitrary regression models and the disadvantage is that it does not improve prediction
for high-dimensional problems, where the data are implicitly scarce, and the estimated
Hessian is considerably flattened.

Input dependent noise has also been taken into account in the context of binary classi-
fication with GPs by Hernández-lobato et al. (2014). In particular, these authors describe
the use of an extra GP to model the variance of additive Gaussian noise around a latent
function that is used for binary classification. This latent function is modeled again using
a GP. Importantly, in this work the level of noise is expected to depend on privileged infor-
mation. These are extra input attributes that are only available at training time, but not
at test time. The goal is to exploit that privileged information to obtain a better classifier
during the training phase. Approximate inference is done in this case using expectation

17

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

propagation instead of variational inference (Minka, 2001). The experiments carried out
show that privileged information is indeed useful to obtain better classifiers based on GPs.

Importantly, in all these related works involving output noise that depends on the input,
the domain of application is different from ours since only regression or binary classification
problems are addressed. Furthermore, it is assumed a level of correlation between the
location of the input features and the amount of extra output noise. This relation between
input features and the extra output noise can be arbitrarily complicated, since it is most of
the times modeled via another GP. In NIMGPFO the level of extra output noise not only
depends on the input location of the instance, but also on the variance of the input noise
associated to that particular instance. Moreover, the expression for the dependence of the
output noise with respect to the input is fixed (it cannot be learned from the data) and is
given by the second derivative of the GP. See Eq. (16) for further details. This expression
is just obtained as a consequence of modeling in an approximate way the input noise.

Random inputs have also been considered in the context of GPs for un-supervised learn-
ing in the Bayesian GP latent variable model (GP-LVM) (Titsias and Lawrence, 2010;
Damianou et al., 2016). In this model the observed data is assumed to be obtained using a
non-linear mapping applied to a set of latent variables. The non-linear mapping is modeled
using GPs and the latent variables are estimated using a Bayesian approach. This involves
setting a prior distribution for their potential values and using variational inference (VI) to
compute an approximate posterior distribution. This framework is very similar to the VI
approach we describe for the proposed method NIMGP. The main difference, however, be-
tween NIMGP and the Bayesian GP-LVM is that the latter can only address unsupervised
learning problems and it requires tractable Gaussian likelihood factors. A generalization
of the Bayesian GP-LVM to account for partially observed input attributes is described by
Damianou and Lawrence (2015). The resulting framework also resembles the VI approach
described for the NIMGP method. However, in that case, the approximate distribution q
over the latent attributes is constrained to be a Gaussian with fixed mean and adjustable
variance, unlike the approximate distribution in Eq. (9), which includes adjustable means.
Again, this model requires tractable Gaussian likelihood factors and cannot be used to
address multi-class classification problems, like NIMGP.

A generalization of the Bayesian GP-LVM considers a concatenation of non-linear trans-
formations of the latent features using GPs. This leads to deep GPs for unsupervised
learning (Damianou and Lawrence, 2013). The applicability of such a method is, however,
restricted to small data sets partially because of the large number of variational parame-
ters that grows linearly with the size of the data set. This problem can be alleviated by
augmenting the model with a recognition system that constraints the variational posterior
over the latent variables of each layer (Dai et al., 2016). The recognition system is given
by a neural network that amortizes the approximate distribution q, as in the proposed
method NIMGPNN. The main difference is that, although the extension to address regres-
sion problems is straight-forward, it is not clear how to use such a method for classification
problems.

To tackle input noise in the context multi-class classification, when one does does not
rely on the use of GPs, some decomposition strategies can be used. Specifically, it is possi-
ble to decompose the problem into several binary classification subproblems, reducing the
complexity and, hence, dividing the effects caused by the noise into each of the subproblems

18

Multi-class Gaussian Process Classification with Noisy Inputs

(Sáez et al., 2014). There exist several of these decomposition strategies, being the one-vs-
one scheme a method that can be applied for well known binary classification algorithms.
The results obtained by these authors show that the one-vs-one decomposition leads to
better performances and more robust classifiers than other decompositions. A problem of
these decompositions, however, is that they can lead to ambiguous regions in which it is not
clear what class label should be predicted (Bishop, 2006). Furthermore, they do not learn
an underlying true multi-class classifier and rely on binary classifiers to solve the multi-class
problem, which is expected to be sub-optimal.

Random input attributes that follow a Gaussian distribution have been considered in
the context of GP regression in Girard et al. (2003). That work addresses the problem of
learning in such a setting by using a Gaussian approximation that matches the mean and
the variance of the GP predictive distribution when the input attributes are noisy. The
required computations are tractable for some particular covariance functions such as the
squared exponential. Such an approach has also been applied in the context of solving
control problems using GPs (Deisenroth and Rasmussen, 2011). In that setting, however,
the likelihood is a reinforcement learning cost function that has been chosen carefully so
that all computations remain tractable. Moment matching to account for random inputs
has also been used the context of deep Gaussian processes in which the input to a hidden
layer is the output of the previous layer, which is random (Bui et al., 2016). An alternative
approximation based on Kalman filters that is potentially more accurate than the one
obtained by moment matching has also been considered in the literature in the context
of sequential state estimation (Ko et al., 2007) and in the context of GPs with arbitrary
non-linear likelihood functions (Steinberg and Bonilla, 2014). Nevertheless, all these works
differ from NIMGP in that no inference is been made about the noiseless inputs. More
precisely, the mean of the random input attributes is assumed to be known, unlike in our
setting, in which it is a latent variable. Moreover, no multi-class classification problems
have been specifically addressed.

Solving regression problems in the context of noisy input observations has been addressed
by Dallaire et al. (2009) using the moment-matching technique described in the previous
paragraph. Accounting for noise in the inputs significantly improves the prediction results
of a standard GP. In that work, however, the posterior distribution for the noiseless inputs is
computed without conditioning to the observed targets. Note, however, that the likelihood
factors p(yi|fi) constrain the potential values that the noiseless inputs can take. This
is information is ignored when such an approach is used. By contrast, NIMGP is able
to consider the label information by learning a specific posterior approximation for each
noiseless input, as described in Eq. (8). This posterior approximation is inferred at the
same time as the other latent variables of the model. The consequence is that the approach
suggested by Dallaire et al. (2009) is expected to be suboptimal. Furthermore, the variance
associated to the inputs is assumed to be given. We show that this parameter can be inferred
from the observed data in NIMGP and NIMGPNN. Moreover, no classification problems
are addressed by those authors.

Another work that has addressed noisy inputs only for test data in the context of GPs is
Oakley and O’Hagan (2002). Given the distribution of a test input, the resulting predictive
distribution is approximated using Monte Carlo methods. More precisely, samples from
the posterior process are generated approximately and the quantities of interest (e.g., the

19

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

expected value at the test point) are approximated by sampling from the distribution of
the test inputs. The advantage of such a method is that it can take into account arbitrary
distributions for the noisy inputs. The limitation is, however, that only regression problems
are addressed, the training inputs are assumed to be noiseless, and the distribution of the
noisy test inputs is assumed to be known beforehand.

Noisy inputs have also been considered in the context of distribution regression in which
the inputs of the regression problem are data sets and/or probability distributions (Law
et al., 2018). In this case, a kernel mean embedding can be used a summary or feature
representation of each data set (Muandet et al., 2017). This feature representation can be
estimated from empirical data, and the variance of the estimation is expected to be reduced
with the size of each data set. In the referred work it is described how to account for
uncertainty in the estimation of the kernel mean embedding in the context of regression
problems using a Bayesian approach. A sophisticated method based on Hamilton Monte
Carlo (HMC) is suggested to approximate the required computations. As described pre-
viously, this work only considers regression problems, assumes that the distribution of the
inputs is known before hand and, moreover, it could be limited by the expensive cost of
running a Markov Chain using HMC.

Noisy inputs have also been consider in the context of other methods not directly related
to GPs. More precisely, other approaches to deal with input noise involve using robust
features in the context of multi-class SVMs (Rabaoui et al., 2008) or enhancements of fuzzy
models (Ge and Wang, 2007). The first work can be understood as a pre-processing step
in which robust features are generated and used for training with the goal of reducing
the effect of background noise in a sound recognition system. These robust features are,
however, specific of the application domain conspired. Namely, sounds recognition. They
are not expected to be useful in other classification problems. The second work focuses
exclusively on linear regression models and hence cannot address multi-class classification
problems, as the ones considered in our work.

5. Experiments

In this section we carry out several experiments to evaluate the performance of the proposed
method for multi-class GP classification with input noise. More precisely, we compare the
performance of a standard multi-class Gaussian process that does not consider noise in
the inputs (MGP) and the three proposed methods. Namely, the approach described in
Section 3.1 (NIMGP), the variant described in Section 3.2 where the parameters of the
Gaussian posterior approximation are computed using a neural network (NIMGPNN) and
the method proposed in Section 3.3 (NIMGPFO), which is based on the work of Mchutchon
and Rasmussen (2011), and uses a first order approximation to account for input noise.
The experiments considered include both in synthetic and real data. All the experiments
carried out (except those related to the MNIST data set) involve 100 repetitions and we
report average results. These are detailed in the following sections.

All the methods described have been implemented in Tensorflow (Abadi et al., 2015).
The source code to reproduce all the experiments carried out is available online at https:

//github.com/cvillacampa/GPInputNoise. In these experiments, for each GP, we have
employed a squared exponential covariance function with automatic relevance determina-

20

https://github.com/cvillacampa/GPInputNoise
https://github.com/cvillacampa/GPInputNoise

Multi-class Gaussian Process Classification with Noisy Inputs

tion (Rasmussen and Williams, 2006). All hyper-parameters, including the GP amplitude
parameter, the length-scales and the level of additive Gaussian noise have been tuned by
maximizing the ELBO. The class noise level has been set equal to 10−3, and kept fixed
during training as in Hensman et al. (2015b). Unless indicated differently, we have set the
number of inducing points for the sparse Gaussian process to the minimum of 100 and 5%
of the total number of points. For the optimization of the ELBO we have used the ADAM
optimizer with learning rate equal to 0.01, the number of epochs has been set to 750 and the
mini-batch size to 50 (Kingma and Ba, 2015). This number of epochs seems to guarantee
the convergence of the optimization process. All other ADAM parameters have been set
equal to their default value. In NIMGPNN the neural network has 50 hidden units and one
hidden layer. The activation function is set to be ReLu. Finally, the number of Monte
Carlo samples used to approximate the predictive distribution in NIMGP and NIMGPNN

is set to 300.

5.1 Illustrative Toy Problem

Before performing a fairly complete study on more realistic examples, we show here the
results of the three proposed methods on a one-dimensional synthetic data set with three
classes. This data set is simple so that it can be analyzed in detail and the optimal predictive
distribution provided by the Bayes classifier can be computed in closed-form. The data set is
generated by sampling the latent functions from the GP prior using specific hyper-parameter
values and then applying the labeling rule in (1). The input locations have been generated
randomly by drawing from a uniform distribution in the [−3, 3] interval. Then, we add a
Gaussian noise to each observation xi to generate x̃i, with standard deviation Vi = 0.1I
for i = 1, . . . , N . We consider 1, 000 training instances and the number of inducing points
M = 100. The mini-batch size is set to 200 points. Since in this experiment the variance
of the input noise is known beforehand we do not infer its value from the observed data
and rather specify its actual value in each method. The number of test points is 1, 000. In
NIMGPNN the neural network is set to have 2 hidden layers with 50 units each.

We have trained each method on this data set and compared the resulting predictive
distribution with that of the optimal Bayes classifier, which we can compute in closed form
since we know the generating process of the labels. Figure 2 shows, for each method, as a
function of the input value x, the predicted distribution for each of the three classes1. The
observed labels for each data point are shown at the top of each figure as small vertical bars
in green, blue and red colors, depending on the class label. We observe that each method
produces decision boundaries that agree with the optimal ones (i.e., all methods predict
the class label that has the largest probability according to the optimal Bayes classifier).
However, the predictive distributions produced differ from one method to another. More
precisely, the first method, i.e., MGP (top-left), which ignores the input noise, does produce
a predictive distribution that is significantly different from the optimal one, especially in
regions of the input space that are close to the decision boundaries. This method produces
a predictive distribution that is too confident. The closest predictive distribution to the op-

1. The wiggles in the prediction probability for some of the classes for the NIMGP and NIMGPNN are
produced by the Monte Carlo approximation of the predictive distribution. Here we use a Monte Carlo
average across 700 samples.

21

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

Figure 2: Comparison of the predictive distribution computed by each method and the optimal
Bayes prediction (shown as a dashed line). The observed labels are shown as small
vertical bars at the top of the plot in green, blue and red. (Top-left) Model without
input noise (MGP), (top-right) NIMGP model, (bottom-left) NIMGPNN and (bottom-
right) NIMGPFO. While the decision boundaries of each method agree with the optimal
ones, NIMGP is the method that more accurately computes the predictive probabilities
of each class label. By contrast MGP produces predictions that are too confident.

timal one is obtained by NIMGP (top-right), followed by NIMGPNN (bottom-left). Finally,
NIMGPFO (bottom-right) seems to improve the results of MGP, but is far from NIMGP.

Figure 2 shows very clearly the advantage of including the input noise when estimating
the predictive distribution p(c|x) for each class label c = 1, 2, 3, given a new test point x.
Indeed, the proposed models reproduce more closely the optimal predictive distribution of
the Bayes classifier. By contrast, the model that ignores the input noise, i.e., MGP fails to
produce an accurate predictive distribution. Therefore, we expect to obtained better results
for the proposed methods in terms of the log-likelihood of the test labels.

22

Multi-class Gaussian Process Classification with Noisy Inputs

Table 1 shows the prediction error of each method and the corresponding negative test
log-likelihood (NLL). Standard deviations are estimated using the bootstrap. Importantly,
NLL can be understood as a measure of the quality of the predictive distribution. The
smaller the better. We observe that while the prediction error of each method is similar
(since the decision boundaries produced are similar) the NLL of the proposed methods is
significantly better than the one provided by MGP, the method that ignores input noise.
These results highlight the importance of accurately modeling the input noise to obtain
better predictive distributions, which can play a critical role when one is interested in the
confidence on the decisions to be made in terms of the classifier output.

MGP NIMGP NIMGPNN NIMGPFO

Test error 0.125±0.011 0.129± 0.011 0.125±0.010 0.128± 0.010
Test NLL 0.884± 0.079 0.286±0.017 0.347± 0.030 0.495± 0.046

Table 1: Test error and negative test log-likelihood (NLL) for the one-dimensional toy ex-
periment.

5.2 Synthetic Experiments

Next, we compare the methods on 100 synthetic two-dimensional classification problems
with three classes. As in the case of the one-dimensional data set described above, these
problems are generated by sampling the latent functions from a GP prior with the squared
exponential function and then applying the labeling rule in (1). The GP hyper-parameters
employed are σ2 = 0.5, σ2

0 = 0, `j = 2,∀j. The input vectors xi are chosen uniformly in the
box [−2.5, 2.5]2. Then, we add three different levels of random noise to each observation xi,
i.e., Vi = {0.1I, 0.25I, 0.5I}. The interest of these experiments is to evaluate the proposed
methods in a controlled setting in which the expected optimal model to explain the observed
data is a multi-class GP classifier and we can control the level of input noise in the data. In
the next section we carry out experiments with real data sets. The number of training and
test instances, inducing points, mini-batch size and parameters of the ADAM optimizer are
the same as in the previous experiment. Again, since the level of injected noise is known
in these experiments, we directly codify this information in each method. Figure 3 shows a
sample data set before and after the noise injection.

The average results obtained on the 100 data sets, for each method, are displayed in
Tables 2 and 3. We report results when the variance of the input noise is given beforehand
(given), and when it is learned from the observed data (learned). In this last case, the lower
bound given by Eq. (10) is maximized to estimate the input noise variance, as described in
Section 3.4. We assume the same variance of the Gaussian input noise for each attribute.

In the first scenario (given), we observe that, in terms of the negative test log-likelihood,
all the proposed methods improve over MGP, i.e., the standard GP multi-class classifier
that ignores input noise. Among the proposed methods, the best performing one is NIMGP,
closely followed by NIMGPNN. Therefore, these experiments highlight the benefits of using
a neural network to compute the parameters of the posterior approximation q(xi). Specif-
ically, there is no performance degradation. The method that is based on the first order

23

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

Figure 3: Sample synthetic classification problem with three class labels. (left) Input data and
associated class label before the noise injection in the observed attributes. (right) Input
data and associated class labels after the noise injection. The variance of the Gaussian
noise is set equal to 0.1. Best seen in color.

approximation, i.e., NIMGPFO, also improves over MGP, but the differences are smaller.
In terms of the prediction error the differences are much smaller. However, in spite of this,
the proposed methods improve the results of MGP. Among them, again NIMGP is the best
method, except when Vi = 0.5I. In that case, NIMGPFO performs best, but the differences
are very small. Summing up, the results obtained agree with the ones obtained in the one-
dimensional problem. Namely, the proposed approaches significantly improve the quality
of the predictive distribution in terms of the neg. test log-likelihood. The prediction error
is, however, similar.

In the second scenario, i.e., when the variance of the input noise is learned from the
data, we observe that NIMGPFO performs more or less similarly to MGP, and that NIMGP
and NIMGPNN obtain better results in terms of the test log-likelihood, particularly in the
case of the second method. In terms of the prediction error all the methods give similar
results, as in the previous scenario. The reason for these results is that NIMGPNN seems
to be the only method that can provide sensible estimates of the input noise variance from
the observed data. This is confirmed by Figure 4, which shows a histogram of the input
noise variances inferred by each method across the 100 repetitions of the experiments. Note
that NIMGP and NIMGPFO seem to always estimate a variance level that is close to zero.
By contrast, NIMGPNN estimates an input noise variance that is very similar to the actual
one. This is an unexpected observation. We believe that the better results obtained by
NIMGPNN over NIMGP can be a consequence of the regularization properties introduced
by the neural network employed in this method. This is confirmed by the experiments
carried out in the next section. The bad results of NIMGPFO could be related to the linear
approximations introduced in this method.

In Appendix B we report extra experimental results on the synthetic data sets described
using other configurations (i.e., varying the number of classes, the number of dimensions and

24

Multi-class Gaussian Process Classification with Noisy Inputs

Noise MGP NIMGP NIMGPNN NIMGPFO

G
iv

en

0.1 0.758±0.022 0.0256±0.007 0.0265±0.008 0.321±0.009
0.25 1.14±0.033 0.0369±0.011 0.0388±0.012 0.53±0.015
0.5 1.537±0.041 0.0493±0.012 0.0526±0.014 0.77±0.021

L
ea

rn
ed 0.1 0.758±0.022 0.61±0.016 0.28±0.0087 0.72±0.021

0.25 1.14±0.033 0.87±0.021 0.4±0.012 1.1±0.032
0.5 1.537±0.04 0.93±0.017 0.53±0.014 1.5±0.041

Table 2: Average Neg. Test Log Likelihood for each method on the synthetic problems
when the variance of the input noise is given and learned from the data.

Noise MGP NIMGP NIMGPNN NIMGPFO

G
iv

en

0.1 0.113±0.003 0.108±0.003 0.108±0.003 0.109±0.003
0.25 0.164±0.006 0.158±0.005 0.158±0.005 0.158±0.005
0.5 0.218±0.006 0.21±0.058 0.22±0.063 0.21±0.006

L
ea

rn
ed 0.1 0.113±0.003 0.11±0.003 0.11±0.003 0.11±0.003

0.25 0.164±0.006 0.17±0.005 0.17±0.005 0.16±0.005
0.5 0.218±0.006 0.23±0.006 0.21±0.006 0.22±0.006

Table 3: Average Test Error for each method on the synthetic problems when the variance
of the input noise is given and learned from the data.

the number of training instances). We also report results for two other baselines. These are
(i) using MGP and augmenting the training set with samples from the posterior distribution
of each data instance assuming a uniform prior; and (ii) using MGP but sampling the input
attributes for each mini-batch from the previous distribution. The results obtained for the
other data configurations are similar to the ones reported here. Moreover, the other baselines
do not seem to improve the results of MGP at all, or the improvements are significantly
smaller the ones obtained by NIMGP, NIMGPNN and NIMGPFO.

5.3 Experiments on data sets Extracted from the UCI Repository

Another set of experiments evaluates the proposed methods on 8 different multi-class data
sets extracted from the UCI repository (Dua and Graff, 2017). Table 4 displays the charac-
teristics of the data sets considered. For each of these data sets, we consider 100 splits into
train and test, containing 90% and 10% of the data respectively. Unlike in the previous ex-
periments, in these data sets, a GP multi-class classifier need not be optimal. Furthermore,
the input attributes may already be contaminated with additive noise. To assess the bene-
fits of considering such noise during the learning process, we have considered four different
setups. In each one, we inject Gaussian noise in the observed attributes with different vari-
ances. Namely, 0.0, 0.1, 0.25 and 0.5. This will allow to evaluate the different methods in a
setting in which there may be or may be not input noise due to the particular characteristics
of the problem addressed (i.e. when the variance of the injected noise is equal to 0.0), and
also for increasing levels of input noise (i.e., when the variance of the injected noise is equal

25

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

NIMGP NIMGPNN NIMGPFO

N
o
is

e
0
.1

0

10

20

30

40

50

0.0 0.1 0.2 0.3 0.4 0.5
Attributes noise

de
ns

ity
0

5

10

0.0 0.1 0.2 0.3 0.4 0.5
Attributes noise

de
ns

ity

0

10

20

30

40

50

0.0 0.1 0.2 0.3 0.4 0.5
Attributes noise

de
ns

ity

N
o
is

e
0
.2

5

0

10

20

30

40

0.0 0.1 0.2 0.3 0.4 0.5
Attributes noise

de
ns

ity

0

2

4

6

0.0 0.1 0.2 0.3 0.4 0.5
Attributes noise

de
ns

ity
0

10

20

30

40

50

0.0 0.1 0.2 0.3 0.4 0.5
Attributes noise

de
ns

ity

N
o
is

e
0
.5

0

10

20

0.0 0.1 0.2 0.3 0.4 0.5
Attributes noise

de
ns

ity

0.0

2.5

5.0

7.5

10.0

0.0 0.1 0.2 0.3 0.4 0.5
Attributes noise

de
ns

ity

0

10

20

30

40

50

0.0 0.1 0.2 0.3 0.4 0.5
Attributes noise

de
ns

ity

Figure 4: Histogram of the estimated values (across the 100 experiments) for the variance
of the input noise, for each method. Note that NIMGPNN is the only method
producing sensible estimates of the input noise variance in each case. The other
methods most of the times estimate values for the noise variance that are almost
zero.

to 0.1, 0.25 and 0.5). This noise injection process is done after a standardization step in
which the observed attributes are normalized to have zero mean and unit variance in the
training set. All methods are trained for 1, 000 epochs using a mini-batch size of 50. In
these experiments, in each of the proposed methods, the level of noise is learned during the
training process by maximizing the ELBO. The reason for this is that the actual level of
noise in the input attributes need not be equal to the injected level of noise.

Table 5 shows the average results obtained for each method in terms of the negative
test log-likelihood, for each level of noise considered. We also report the mean rank for each
method across data sets and splits. If a method is always the best one, it will receive a
mean rank equal to 1. Conversely, if a method is always worst, it will receive a mean rank
equal to 4. Therefore, in general lower is better. We can see that on average, the proposed
methods improve over MGP and the method that works the best (according to the mean
rank) is NIMGPNN, even for the case where we do not introduce noise in the inputs. This
suggests that these data sets have already some noise in the inputs. Also, as we increase the
noise level the mean rank for MGP and NIMGP is worsen and NIMGPNN and NIMGPFO

26

Multi-class Gaussian Process Classification with Noisy Inputs

both improve. The fact that NIMGPNN and NIMGPFO give better results than NIMGP
as we increase the level of noise indicates that the use of the neural network and the first
order approximation act as a regularizer with better generalization properties (Shu et al.,
2018).

Table 6 shows the average results obtained for each method in terms of the prediction
error. In this case, we do not observe big differences among the different methods. Moreover,
the methods that take into account the noise in the inputs do not improve the prediction
error as we increase the noise level. These small differences in terms of the error can be due
to each method having similar decision boundaries, even when we obtain better predictive
distributions in terms of the test log-likelihood, as illustrated in Section 5.1.

5.4 Experiments on the MNIST data set

In this section we consider a data set in which sparse GPs are needed in order to train
a multi-class classifier based on GPs. Namely, the MNIST data set (LeCun et al., 1998).
This data set has 10 different class labels and 60, 000 training instances lying in a 28× 28
dimensional space. The test set has 10, 000 data instances. We consider a similar setup to
the previous experiments and inject noise in the inputs (after a standardization to guarantee
zero mean and unit standard deviation on the input attributes) with variances equal to 0.0,
0.1, 0.25 and 0.5. The level of noise is also learned during the training process by maximizing
the ELBO. The mini-batch size is set to 200 and the number of training epochs is set to
350. This number of epochs seems to be large enough to guarantee the convergence of the
different methods evaluated. In the case of NIMGPNN the neural network has 250 units and
two hidden layers. We also slightly modified the neural network so that at the beginning
of the training process it outputs as the mean the noisy observed attributes x̃i fed at the
input. The number of Monte Carlo samples used to approximate the predictive distribution
in NIMGP and NIMGPNN is set to 500. We use a bigger number of Monte Carlo samples
in these experiments because of the bigger size of the classification problem (10 classes) and
the input dimensionality, i.e., 784 dimensions. All the computations are sped-up by using
a TESLA P100 GPU for training. In these experiments we use a polynomial kernel with
automatic relevance determination since there is evidence supporting that it works better
on this data set (Henao and Winther, 2012).

data set #Instances #Attributes #Classes
Glass 214 9 6
New-thyroid 215 5 3
Satellite 6435 36 6
Svmguide2 391 20 3
Vehicle 846 18 4
Vowel 540 10 6
Waveform 1000 21 3
Wine 178 13 3

Table 4: Characteristics of the data sets extracted from the UCI repository.

27

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

MGP NIMGP NIMGPNN NIMGPFO

N
oi

se
=

0
.0

glass 1.63±0.048 1.28±0.04 1.17 ±0.033 1.19±0.033
new-thyroid 0.096±0.007 0.083 ±0.006 0.122±0.006 0.113±0.005
satellite 0.5±0.007 0.363±0.005 0.281 ±0.002 0.316±0.003
svmguide2 0.594±0.024 0.586±0.023 0.519 ±0.018 0.531±0.02
vehicle 0.638±0.019 0.514±0.019 0.408 ±0.005 0.497±0.006
vowel 0.415±0.025 0.278 ±0.019 0.321±0.012 0.445±0.015
waveform 0.676±0.017 0.657±0.015 0.335 ±0.006 0.451±0.01
wine 0.054 ±0.004 0.056±0.004 0.074±0.004 0.065±0.004

Mean rank 3.05±0.0429 2.39±0.0377 2.05±0.0486 2.51±0.0295

N
oi

se
=

0.
1

glass 1.71±0.051 1.91±0.055 1.33 ±0.034 1.37±0.041
new-thyroid 0.278±0.025 0.303±0.026 0.19 ±0.011 0.201±0.013
satellite 0.703±0.008 0.613±0.007 0.347 ±0.003 0.421±0.004
svmguide2 0.663±0.025 0.655±0.024 0.565 ±0.018 0.596±0.021
vehicle 1.25±0.027 1.28±0.026 0.612 ±0.007 0.795±0.014
vowel 0.836±0.026 0.815±0.025 0.656 ±0.012 0.673±0.018
waveform 0.752±0.017 0.734±0.016 0.381 ±0.006 0.52±0.011
wine 0.087 ±0.007 0.089±0.007 0.097±0.006 0.093±0.007

Mean rank 3.19±0.038 3.06±0.03 1.71±0.037 2.04±0.022

N
oi

se
=

0.
25

glass 1.89±0.053 1.96±0.06 1.36 ±0.034 1.45±0.037
new-thyroid 0.445±0.035 0.472±0.034 0.271 ±0.015 0.302±0.02
satellite 0.835±0.009 0.77±0.008 0.409 ±0.003 0.472±0.004
svmguide2 0.761±0.025 0.756±0.025 0.627 ±0.015 0.638±0.019
vehicle 1.61±0.031 1.65±0.03 0.783 ±0.008 0.967±0.017
vowel 1.37±0.037 1.38±0.033 1.04±0.013 0.943 ±0.017
waveform 0.849±0.018 0.836±0.018 0.434 ±0.006 0.519±0.009
wine 0.134 ±0.011 0.136±0.011 0.15±0.008 0.141±0.008

Mean rank 3.25±0.033 3.16±0.028 1.68±0.037 1.92±0.025

N
oi

se
=

0.
5

glass 2.03±0.053 2.01±0.051 1.45 ±0.034 1.52±0.038
new-thyroid 0.565±0.038 0.623±0.04 0.369 ±0.018 0.381±0.021
satellite 0.973±0.009 0.932±0.009 0.491 ±0.003 0.531±0.004
svmguide2 0.877±0.025 0.878±0.025 0.706±0.013 0.702 ±0.018
vehicle 1.93±0.032 1.99±0.031 0.994 ±0.006 1.1±0.016
vowel 1.99±0.038 2.08±0.037 1.33±0.012 1.25 ±0.018
waveform 1.01±0.021 0.984±0.021 0.503 ±0.006 0.565±0.01
wine 0.253±0.017 0.264±0.017 0.24±0.01 0.236 ±0.011

Mean rank 3.33±0.027 3.25±0.028 1.63±0.03 1.79±0.027

Table 5: Average neg. test log likelihood for the experiments on the UCI data sets.

28

Multi-class Gaussian Process Classification with Noisy Inputs

MGP NIMGP NIMGPNN NIMGPFO

N
oi

se
=

0
.0

glass 0.346±0.008 0.387±0.01 0.375±0.009 0.345 ±0.009
new-thyroid 0.041±0.004 0.031 ±0.004 0.042±0.005 0.044±0.004
satellite 0.092±0.001 0.092 ±0.001 0.118±0.001 0.093±0.001
svmguide2 0.166±0.006 0.165 ±0.006 0.174±0.006 0.165 ±0.006
vehicle 0.16±0.004 0.155 ±0.004 0.216±0.004 0.159±0.004
vowel 0.07±0.004 0.054 ±0.003 0.096±0.004 0.068±0.004
waveform 0.155±0.003 0.153±0.003 0.14 ±0.003 0.155±0.003
wine 0.024±0.003 0.024±0.003 0.019 ±0.003 0.022±0.003

Mean rank 2.37±0.0349 2.32±0.0393 2.92±0.0461 2.39±0.0326

N
oi

se
=

0.
1

glass 0.389±0.009 0.412±0.01 0.413±0.009 0.387 ±0.009
new-thyroid 0.076±0.006 0.078±0.006 0.07 ±0.005 0.075±0.006
satellite 0.128±0.001 0.127 ±0.001 0.142±0.001 0.128±0.001
svmguide2 0.198±0.006 0.198±0.006 0.192 ±0.006 0.198±0.006
vehicle 0.291±0.005 0.295±0.005 0.291 ±0.005 0.291±0.005
vowel 0.217±0.005 0.217 ±0.004 0.246±0.005 0.218±0.005
waveform 0.162±0.003 0.163±0.003 0.154 ±0.003 0.162±0.003
wine 0.034±0.004 0.036±0.004 0.033 ±0.004 0.033±0.004

Mean rank 2.44±0.036 2.51±0.04 2.64±0.0503 2.41±0.0357

N
oi

se
=

0.
25

glass 0.433±0.009 0.456±0.01 0.467±0.01 0.432 ±0.009
new-thyroid 0.101±0.007 0.106±0.006 0.093 ±0.006 0.098±0.007
satellite 0.155±0.001 0.155 ±0.001 0.163±0.001 0.155±0.001
svmguide2 0.217±0.006 0.218±0.006 0.237±0.006 0.216 ±0.006
vehicle 0.357±0.006 0.366±0.006 0.351 ±0.006 0.36±0.006
vowel 0.351±0.007 0.345 ±0.006 0.432±0.008 0.349±0.007
waveform 0.193±0.003 0.193±0.004 0.188 ±0.003 0.193±0.003
wine 0.052±0.006 0.055±0.006 0.049 ±0.005 0.052±0.005

Mean rank 2.39±0.0316 2.48±0.0377 2.71±0.0444 2.42±0.0356

N
oi

se
=

0.
5

glass 0.47 ±0.009 0.501±0.01 0.51±0.011 0.473±0.01
new-thyroid 0.125±0.007 0.148±0.008 0.139±0.007 0.122 ±0.007
satellite 0.181±0.002 0.181 ±0.002 0.188±0.002 0.181±0.001
svmguide2 0.256±0.007 0.256 ±0.007 0.288±0.006 0.256 ±0.007
vehicle 0.428±0.006 0.422 ±0.006 0.445±0.005 0.424±0.006
vowel 0.473 ±0.007 0.478±0.008 0.565±0.007 0.475±0.007
waveform 0.225±0.004 0.225±0.004 0.222 ±0.004 0.225±0.004
wine 0.092±0.006 0.092±0.006 0.093±0.006 0.088 ±0.007

Mean rank 2.35±0.0354 2.46±0.0396 2.91±0.0389 2.29±0.0353

Table 6: Average Test Error for experiments on UCI data sets

29

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

Noise Metric MGP NIMGP NIMGPNN NIMGPFO

0.
0 NLL 0.0649 0.0652 0.0630 0.0651

Error 0.0203 0.02 0.0196 0.0202

0.
1 NLL 0.0718 0.0712 0.0704 0.0720

Error 0.0215 0.0221 0.0215 0.0216
0
.2

5 NLL 0.0878 0.0879 0.0852 0.0880
Error 0.0265 0.0275 0.0253 0.0265

0.
5 NLL 0.1023 0.1024 0.1005 0.1024

Error 0.029 0.0293 0.0284 0.0288

Table 7: Average test error and neg. test log-likelihood (NLL) of each method on the
MNIST data set.

The results obtained in these experiments, for each method, are displayed in Table 7.
The results obtained are similar to others reported in the literature (Henao and Winther,
2012; Hensman et al., 2015b; Villacampa-Calvo and Hernández-Lobato, 2017). We observe
that the proposed methods always outperform the MGP, i.e., the multi-class GP that ignores
the input noise. Both in terms of the test error and the negative test log-likelihood. In this
case, however, the gains are small. We believe this is because this data set is particularly
challenging for GPs (Van der Wilk et al., 2017).

Figure 5 shows a histogram of the estimated variances for the input noise of each of
the 784 attributes of the MNIST data set, for each method and level of injected noise. We
observe that in general all the methods except NIMGPNN tend to estimate input variances
that are very similar for each attribute and that are close to zero. By contrast, NIMGPNN

estimates different values for the input noise variance associated to each attribute. Further-
more, these values are significantly bigger than the ones estimated by the other methods.
This may explain the better results obtained by this method on this data set. However, in
spite of this, the estimated variances are much smaller than the level of injected noise. This
means that the method is underestimating the level of input noise. We believe that this can
be a consequence of the difficulty of this data set for models based on GPs, as commented
by Van der Wilk et al. (2017).

Table 8 shows the average training time employed on each epoch for each method.
We observe that MGP, NIMGP and NIMGPNN have similar training times. However,
NIMGPFO takes a significantly larger amount of training time on each epoch. This is due
to the extra cost of computing the gradients of the GP predictive mean, for each latent
function. This is an expensive operation. Recall that the input dimensionality of this data
set is high (784 dimensions) and also the number of class labels (10 class labels).

MGP NIMGP NIMGPNN NIMGPFO

Avg. Time 7.19±0.007 11.93±0.011 7.62±0.011 24.01±0.074

Table 8: Average time per epoch, in seconds, for each method on the MNIST data set.

30

Multi-class Gaussian Process Classification with Noisy Inputs

NIMGP NIMGPNN NIMGPFO

N
o
is

e
0
.1

Input Noise Variances

D
en

si
ty

0.000 0.010 0.020

0
20

0
60

0
10

00

Input Noise Variances

D
en

si
ty

0.000 0.010 0.020

0
10

0
30

0

Input Noise Variances

D
en

si
ty

0.000 0.010 0.020

0
20

0
60

0
10

00

N
o
is

e
0
.2

5

Input Noise Variances

D
en

si
ty

0.000 0.010 0.020

0
20

0
60

0
10

00

Input Noise Variances

D
en

si
ty

0.000 0.010 0.020

0
10

0
20

0
30

0
40

0

Input Noise Variances

D
en

si
ty

0.000 0.010 0.020

0
20

0
60

0
10

00

N
o
is

e
0
.5

Input Noise Variances

D
en

si
ty

0.000 0.010 0.020

0
20

0
60

0
10

00

Input Noise Variances

D
en

si
ty

0.000 0.010 0.020

0
50

15
0

25
0

Input Noise Variances

D
en

si
ty

0.000 0.010 0.020

0
20

0
60

0
10

00

Figure 5: Histogram of the estimated values for the variance of the input noise, for each
method, across the 784 dimensions of the MNIST data set. Note that NIMGPNN

is the only method producing sensible estimates of the input noise variance in
each case. The other methods most of the times estimate values for the noise
variance that are almost zero.

5.5 Active Learning Experiments

We have observed that modeling input noise can lead to better prediction results in terms of
the test log-likelihood while the prediction error is similar in most of the cases. Therefore,
it seems that the main benefit is a more accurate predictive distribution. In this section, we
consider an active learning experiment on the Waveform data set to illustrate that a better
predictive distribution can be useful to improve the generalization error. In active learning
the task of interest is to identify which examples should be labeled and introduced into the
training set to produce a better prediction model. We aim at showing that the predictive
distribution can be used to identify the training examples that are expected to be most
useful for learning a particular task (Settles, 2009). In particular, a popular choice is to

31

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

consider the examples whose associated labels the model is more uncertain about (Seeger,
2008). Therefore, a better predictive distribution should be translated into better active
learning results. That is, the predictive performance should improve more as more and
more examples are introduced into the training set, using the aforementioned strategy.

With the goal described, we begin with an initial training set, a test set to evaluate
the performance, and a validation set from which we will iteratively pick up a new point
to be labeled and included the training set. At each iteration, we will select the point for
which the predictive entropy is highest. In order to validate such an approach, we compare
this selection criterium with an approach that selects the next point at random from the
validation set. We randomly split the Waveform data set into 100 points for the initial
training set, 500 points for testing and 400 points for validation. We add 100 new points
to the training set using the active learning strategies described. We report results for
each method. Namely, MGP, NIMGP, NIMGPNN and NIMGPFO and each level of noise
considered in the experiments of Section 5.3. All methods are trained using ADAM with a
learning rate of 10−3 the first time for 1, 000 epochs, and then re-trained each time a new
point is added to the training set for another 1, 000 epochs, reusing the solution that we
have obtained in the previous iteration. The number of inducing points is set to 50. We
report averages over 100 repetitions of the experiments using different splits of the data. In
these experiments we also infer the variance of the input noise from the observed data.

Figure 6 shows the test error as a function of the number of new added points, for
each method and each input noise variance injected in the data. In the top row, the new
points have been added by using the active learning approach described. That is, the point
whose associated predictive entropy is highest, according to the predictive distribution of
the corresponding model. In the bottom row, the new points have been added at random
from the validation set. We observe that the test error is always lower when the active
learning selection approach based on the entropy is used. This illustrates that a good
predictive distribution can lead to better generalization error. We also observe that the
prediction error increases at the beginning as the number of new training points considered
increases. Eventually it plateaus and begins to decrease. We believe that this behavior
could be related to over-fitting happening as a consequence of the procedure to estimate
the model hyper-parameters, which maximizes an estimate of the marginal likelihood in all
the methods. If the number of training points is fairly small, this approach can produce
over-fitting (Rasmussen and Williams, 2006). As in the experiments carried out in Section
5.3, the best performing method is NIMGPNN.

Figure 6 shows that an active learning strategy can be useful to produce better predic-
tion results. We now analyze in which method such a strategy leads to bigger improvements.
For this, Figure 7 shows the test error reduction w.r.t. the initial test error for each method
and each values of the input noise variance. We observe that the reduction is higher for
NIMGPNN than for the other methods, and the difference is bigger between the methods as
we increase the variance of the input noise. This suggests that the predictive distribution
obtained by NIMGPNN is better. Moreover, it illustrates the potential benefits of consid-
ering in the classifier that the observed attributes have been contaminated with additive
Gaussian noise.

32

Multi-class Gaussian Process Classification with Noisy Inputs

0.14

0.16

0.18

0.20

0 25 50 75 100
Number of new points

Te
st

 E
rr

or
Act. Learning (Var. Noise 0.0)

0.18

0.20

0.22

0.24

0 25 50 75 100
Number of new points

Te
st

 E
rr

or

Act. Learning (Var. Noise 0.1)

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0 25 50 75 100
Number of new points

Te
st

 E
rr

or

Act. Learning (Var. Noise 0.25)

0.26

0.28

0.30

0 25 50 75 100
Number of new points

Te
st

 E
rr

or

Act. Learning (Var. Noise 0.5)

0.14

0.16

0.18

0.20

0 25 50 75 100
Number of new points

Te
st

 E
rr

or

Random (Var. Noise 0.0)

0.18

0.20

0.22

0.24

0 25 50 75 100
Number of new points

Te
st

 E
rr

or

Random (Var. Noise 0.1)

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0 25 50 75 100
Number of new points

Te
st

 E
rr

or

Random (Var. Noise 0.25)

0.26

0.28

0.30

0 25 50 75 100
Number of new points

Te
st

 E
rr

or

Random (Var. Noise 0.5)

Method
MGP
NIMGP
NIMGP_FO
NIMGP_NN

Figure 6: Test error on the Waveform data set for different values of the input noise variance (0.0,
0.1, 0.25 and 0.5) as a function of the number of added points to the training set, selected
using an active learning approach (top) and or at random (bottom).

5.6 Experiments on a data set Coming from Astrophysics

In this last experimental section we describe the results obtained by each method on a three
class data set coming from the astrophysics domain. Importantly, in this data the errors in
some of the observed inputs are available at training time. Therefore, it is suited to be ana-
lyzed using the methods proposed in our paper. As briefly commented in the introduction,
the data set consists of a series of attributes measured for a set of point-like astrophysical
sources located all over the sky which have already been identified (distinguished from the
diffuse background of photon emission) by the Fermi-LAT collaboration. Such catalogue of
sources is fully public and can be downloaded from Collaboration (2019), while a detailed
description can be found in Abdollahi et al. (2020).

Among the available attributes of the sources, there is the position in the sky, the flux
of photons in different energy bins, the significance of detection (according to a specified
test statistics), the variability of the flux over some period of time, characteristics of the
energy spectrum, and many others. Among these, we have only taken into account the
following attributes: 1) the photon flux between 1 GeV and 100 GeV, 2) the detection
significance (in number of sigmas), 3) the curvature significance 2, 4) the pivot energy 3, 5)
the index α 4 and 6) the index β 5. Of these attributes, the flux, the index α and the index
β come with associated estimated error bars, whereas the rest, by definition, do not. The
choice of these attributes among all the available ones is motivated from a physics point of
view, where it has been shown (see Abdollahi et al., 2020) that some combinations of them

2. Defined as the significance, in number of sigmas, of the fit improvement between PowerLaw and Log-
Parabola fits of the energy spectrum.

3. Defined as the energy at which the error in the differential photon flux is minimum.
4. Defined as the spectral slope at pivot energy of a log-parabola fit of the spectrum.
5. Defined as the curvature parameter of a log-parabola fit of the spectrum.

33

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

−0.03

−0.02

−0.01

0.00

0.01

0 25 50 75 100
Number of new points

Te
st

 E
rr

or
 R

ed
uc

tio
n

Active Learning (Var. Noise 0.0)

−0.01

0.00

0.01

0.02

0 25 50 75 100
Number of new points

Te
st

 E
rr

or
 R

ed
uc

tio
n

Active Learning (Var. Noise 0.1)

−0.01

0.00

0.01

0.02

0 25 50 75 100
Number of new points

Te
st

 E
rr

or
 R

ed
uc

tio
n

Active Learning (Var. Noise 0.25)

−0.01

0.00

0.01

0.02

0 25 50 75 100
Number of new points

Te
st

 E
rr

or
 R

ed
uc

tio
n

Active Learning (Var. Noise 0.5)

Method
MGP
NIMGP
NIMGP_FO
NIMGP_NN

Figure 7: Test error reduction on the Waveform data set as a function of the number of new added
points to the training set, selected using an active learning approach.

offer a promising discrimination power among the classes of point-like sources considered.
The reader may wonder about the motivation of two unusual attributes: the detection
significance and the curvature significance, being both goodness-of-fit quantities. While the
detection significance is indeed partially correlated with the photon flux (which is one of the
attributes), the curvature significance a priori may contribute to the discrimination power,
since different classes have relatively different spectral shapes. We have checked that the
performance of the model without these two attributes is somewhat smaller (see Appendix
B.4), although compatible at the three standard deviation level, with the performance
obtained with the full list of attributes.

On the other hand, the catalogue offers as well several classes of sources. Here, for
simplicity, we have chosen three classes: pulsars (in the catalogue, psr), blazars (bll) and
quasars (fsrq) 6, which are also the most abundant classes among all the catalogue. The
final data set, after pre-processing and pre-selection7 contain 454 sources (points), of which
184 are pulsars, 168 are blazars and 102 are quasars. Figure 8 shows two of the six attributes
included in the input of the models alongside with the corresponding error bars. From that
figure, one can already observe a good separability of the classes, which improves as the
other attributes are taken into account. In general, the pulsars class has larger values of β

6. In reality, the FSRQ objects are a type of blazars, even though this is an acronym for Flat-Spectrum
Radio Quasars.

7. Specifically, we work with sources whose significance of detection is larger than 30 sigmas, otherwise the
classes are too overlapped and some of the inputs have too large error bars.

34

Multi-class Gaussian Process Classification with Noisy Inputs

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
 ("LP index")

0.0

0.2

0.4

0.6

0.8
 ("

cu
rv

at
ur

e
in

de
x"

)

4FGL Fermi-LAT's dataset
blazars
quasars
pulsars

Figure 8: The astrophysics data set considered in this work, showing two of the six attributes
included in the input with their associated error bars, for the three classes of sources.

with respect to the other two classes, whereas blazars are separable from quasars in the α
direction, but also in the pivot energy direction.

As in the previous experiments, we have estimated the prediction performance of each
method on this data set. For this, we have generated 100 splits of the data into training
and test partitions with 90% and 10% of the instances, respectively. We have evaluated
the test error rate and negative test log-likelihood on each partition, for each method. The
average results obtained are displayed in Table 9. As expected, we obtain a significant
improvement in the test log-likelihood when using the proposed methods, which improve
on the baseline MGP, which does not take into account the input noise. On the other hand,
and consistently as well with the previous experiments, the test error rate is similar for all
methods, which is an indication that the decision boundaries among the classes are well
captured already by the MGP model.

We show in Table 10 the average confusion matrix of the four different methods consid-
ered in this work. More concretely, each entry in such a table represents the average (across
the different splits) of the number of test samples (which consist of a total of 46 instances)
that are assigned a particular class label (rows), for a particular actual label of the example
(columns). Therefore, elements outside of the diagonal are classification errors. As can be
observed for such table, the errors are more frequent when discriminating between bll and
fsrq classes, than when classifying the psr class. This could have been guessed at some

35

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

MGP NIMGP NIMGPNN NIMGPFO

NLL 0.377±0.0194 0.246±0.0097 0.261±0.011 0.292±0.0158
Test error 0.075±0.0043 0.088±0.0038 0.082±0.0041 0.071±0.0038

Table 9: Average test error and neg. test log-likelihood (NLL) of each method on the
astrophysics data set.

Model bll (true) fsrq (true) psr (true)

bll (pred.)

MGP 17.66±0.31 1.31±0.14 0.01±0.01
NIMGP 17.61±0.31 1.66±0.12 0.04±0.024

NIMGPNN 17.76±0.3 1.53±0.11 0.01±0.01
NIMGPFO 17.8±0.32 1.27±0.12 0.01±0.01

fsrq (pred.)

MGP 1.48±0.13 15.16±0.29 0.36±0.056
NIMGP 1.53±0.12 14.8±0.29 0.47±0.077

NIMGPNN 1.38±0.12 14.95±0.29 0.46±0.072
NIMGPFO 1.34±0.12 15.2±0.28 0.37±0.06

psr (pred.)

MGP 0.00±0.00 0.29±0.054 9.73±0.28
NIMGP 0.00±0.00 0.3±0.056 9.59±0.27

NIMGPNN 0.00±0.00 0.28±0.047 9.63±0.28
NIMGPFO 0.00±0.00 0.29±0.052 9.72±0.27

Table 10: Average confusion matrix for the astrophysics data set, for each different method
considered in this work (see text for details).

extent by looking at Figure 8, where the psr class (green points) is, at least for the two
attributes shown there, easier to discriminate than the other two.

6. Conclusions

Multi-class classification problems involve estimating a predictive distribution for the class
label given the observed data attributes. Multi-class Gaussian process classifiers are kernel
machines that can be used to address these problems with the benefit that they will take
into account uncertainty in the estimation process. Often, the supervised machine learning
community assumes that the observed data are noise-free in the explaining inputs. Notwith-
standing, in some scenarios the measurement of the explaining variables is contaminated
with noise. Therefore, input noise is often common in many problems of interest. If this
input noise is not modeled correctly, the quality of the resulting predictive distribution can
be sub-optimal.

In this paper we have proposed several multi-class GP classifiers that can account for
input noise. All these classifiers can be efficiently trained using variational inference to
approximate the posterior distribution of the latent variables of the model. They also
allow to specify manually, or to infer from the observed data, the level of input noise. Two

36

Multi-class Gaussian Process Classification with Noisy Inputs

approaches are based on introducing extra latent variables in the model to account for noisy
inputs, one of them using a neural network to amortize variational parameters. The last
method is, however, based on a linear approximation of the GPs of the classifier. Under
this approximation input noise is directly translated into output noise.

The inductive bias described is expected to lead to better performance results in practical
data sets. To show this, we have evaluated the proposed methods on several experiments,
involving synthetic and real data. These include several data sets from the UCI repository,
the MNIST data set and also a data set coming from astrophysics. We have compared
the results of the proposed methods with those of a standard multi-class GP classifier that
ignores input noise. The experiments show that the predictive distribution of the proposed
methods is significantly better in terms of the test log-likelihood. The classification error
is, however, similar. This means that the decision boundaries of the classifier are not
significantly changed. Only the class prediction probabilities.

We have also analyzed the ability of each method to infer the level of input noise from
the observed data by approximately maximizing the marginal likelihood. Our results show
that accurate estimation results can only be obtained in the case of synthetic data sets, and
only for the method that uses a neural network to amortize variational parameters. The
other methods prefer input noise variances that are close to zero. This is an unexpected
result and analyzing the reason for this behavior is left for future work. In consequence, the
method that uses the neural network is the one that obtains the best results in real-world
problems in which input noise has been injected in the observed attributes. These problems
include data sets extracted from the UCI repository and the MNIST data set.

We have also measured the average time per epoch for each method. Our results show
that the method that amortizes the variational parameters using a neural network has a
training time that is very similar to that of a standard multi-class GP classifier. This
method scales better to bigger data sets. By contrast, the other two methods lead to a
significant increment in the computational cost. This increment is much bigger in the case
of the method that uses a linear approximation of the GPs employed in the classifier. The
reason for this is that computing the required derivatives is expensive.

We have illustrated the utility of a better predictive distribution by carrying out a
active learning experiments. In these experiment the uncertainty about the class label of
new unseen data is used to choose which data instances should be labeled and introduced
into the training set with the goal of improving prediction error the most. Our results
show that the method that produces the most accurate predictive distribution (i.e., the one
using the neural network to amortize variational parameters) is also the one that identifies
the most relevant training points, leading to the largest reduction in the prediction error.
This specific application shows that a better predictive distribution can also result in better
prediction error.

We have also evaluated the proposed methods in a real data set involving astrophysics
data with success, both in terms of error rate and negative test log-likelihood. These
experiments add empirical evidence to the hypothesis that if we model input noise the
results of multi-class classification using GPs can be enhanced. Summing up, our results
indicate that if one is interested in obtaining accurate predictive distributions, it is of
vital importance to take into account any potential input noise that has contaminated the
explaining variables of the multi-class classification problem.

37

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

We believe that the reason for the prediction error being similar is due to the fact
that it only depends on the decision boundaries. These boundaries are fully determined
by the class label with the largest posterior probability, as estimated by the corresponding
method. Therefore, an accurate decision boundary estimation does not require an accurate
class posterior probability estimation. However, if one is concerned about the quality of
the predictive distribution and the uncertainty in the predictions made by the method, an
accurate class posterior probability estimation is strictly required. The proposed methods
significantly improve the quality of class posterior probability estimation, while providing
similar prediction errors.

Acknowledgments

We would like to thank M. A. Sánchez-Conde, J. Coronado and V. Gammaldi for point-
ing our attention to the data set that motivated this work, as well as for the discussions
concerning the data extraction. We thank as well E. Fernández-Mart́ınez, A. Suárez and
C. M. Aláız-Gud́ın for useful discussions and feedback about the work. BZ especially ac-
knowledges the hospitality of the Machine Learning group of UAM during the development
of this project. BZ is supported by the Programa Atracción de Talento de la Comunidad
de Madrid under grant n. 2017-T2/TIC-5455, from the Spanish MINECO’s “Centro de Ex-
celencia Severo Ochoa” Programme via grant SEV-2016-0597, and from the Comunidad de
Madrid project SI1-PJI-2019-00294, of which BZ is the P.I. The authors gratefully acknowl-
edge the use of the facilities of Centro de Computación Cient́ıfica (CCC) at Universidad
Autónoma de Madrid. The authors also acknowledge financial support from Spanish Plan
Nacional I+D+i, grants TIN2016-76406-P. Finally, the authors acknowledge financial sup-
port from PID2019-106827GB-I00 / AEI / 10.13039/501100011033.

Appendix A. Stochastic Approximation of the Lower Bound

In this section we describe how to compute an stochastic estimate of the ELBO, described
in (10). The stochasticity of the approximation arises from (i) using mini-batches of data
to approximate the data-dependent term, and from (ii) approximating the corresponding
expectations using Monte Carlo sampling. For this, we use the fact that the approximate
distribution q is reparametrizable in the sense that it allows to separate, in each random
sample, the dependence on the distribution parameters and the randomness.

Consider the first term in the ELBO and a mini-batch of data instances B. Then,

N∑
i=1

Eq [log p(yi|fi)] ≈
|B|
N

∑
i∈B

Eq [log p(yi|fi)] (17)

results in an un-biased estimate of the first term in (10).

Consider now the term Eq [log p(yi|fi)]. The expectation with respect to the q distribu-
tion can be computed analytically in the case of the random variables U. For this, we only
have to use (5). Furthermore, the expectation with respect to the posterior distribution of

38

Multi-class Gaussian Process Classification with Noisy Inputs

fi can be approximated accurately using a one-dimensional quadrature. In particular,

Eq(fi)[log p(yi|fi)] = (1− e) 1

S

S∑
i=1

∫
N (fyi(xi)|myi , vyi)

∏
c 6=yi

Φ

(
fyi(xi)−mc)√

vc

)
dfyi(xi)

+
e

C − 1
, (18)

where Φ(·) is the cumulative probability of a standard Gaussian distribution and

mc = kcxi,Zc(KZc,Zc)−1mc ,

vc = kcxi,xi
− kcxi,Zc(Kc

Zc,Zc)−1KZc,xi + kcxi,Zc(Kc
Zc,Zc)−1Sc(K

c
Zc,Zc)−1kcZc,xi

,

for k = 1, . . . , C with kcxi,xi
the variance of f c(xi), kxi,Zc the covariance vector between

f c(xi) and f c(·) evaluated at Zc, and KZc,Zc the covariance matrix among the values of
f c(·) at Zc. All these values and matrices can be easily computed given the correspond-
ing covariance functions {kθc(·, ·)}Cc=1. Finally, mc and Sc are the mean and covariance
parameters of q(uc), respectively. See (9) for further details.

It remains now to approximate the expectation of Eq(fi)[log p(yi|fi)] with respect to q(xi).
This is done by using a Monte Carlo approximation combined with the reparametrization
trick (Kingma and Welling, 2014). More precisely, we generate a single sample from q(xi)
by separating the randomness and the dependence on the parameters of q(xi). Namely,

x̂i = Liε + µxi , ε ∼ N (0, I) ,

where Li is a diagonal matrix whose entries contain the square root of the diagonal en-
tries of Vx

i , and µxi is the mean of xi. See (9) for further details. Let us define f̂i =
(f1(x̂i), . . . , f

C(x̂i))
T. Then,

Eq(xi)[Eq(fi)[log p(yi|fi)]] ≈ Eq(f̂i)[log p(yi|f̂i)] ,

where the right hand side is given by (18) in which we have replaced xi by x̂i. The conse-
quence is that

N∑
i=1

Eq [log p(yi|fi)] ≈
|B|
N

∑
i∈B

Eq(f̂i)

[
log p(yi|f̂i)

]
, (19)

where the right hand side of is an unbiased estimate of the left hand side.
The second term in (10) can be approximated using a mini-batch and the corresponding

expectation can be computed analytically. In particular,

N∑
i=1

Eq[log p(x̃i|xi)] ≈
|B|
N

∑
i∈B

Eq[log p(x̃i|xi)]

=
|B|
N

∑
i∈B

[
−d

2
log 2π − 1

2
log |Vi|

−1

2
trace

(
Vi(V

x
i + µxi (µxi)T)

)
+ x̃T

i Viµ
x
i −

1

2
x̃T
i Vix̃i

]

39

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

The third term in (10) is the Kullback-Leibler divergence between Gaussian distribu-
tions. This is given by

C∑
c=1

KL(q(uc)|p(uc)) =

C∑
c=1

1

2

[
trace

(
(Kc

Zc,Zc)−1Sc
)

+mT
c (Kc

Zc,Zc)−1mc −M + log
|Kc

Zc,Zc |
|Sc|

]
.

where mc and Sc are the parameters of q(uc), and Kc
Zc,Zc is the covariance matrix of p(uc).

The fourth term in (10) can be approximated using a mini-batch and the corresponding
Kullback-Leibler divergence can be computed analytically. In particular,

N∑
i=1

KL(q(xi)|p(xi)) ≈
|B|
N

∑
i∈B

KL(q(xi)|p(xi))

=
|B|
N

∑
i∈B

1

2

[
trace

(
Vx
i Is
−1
)

+ (µxi)Tµxi s
−1 − d+ log

sd

|Vx
i |

]
.

Note that all these estimates are unbiased. In practice, the stochastic estimate of the
lower bound can be easily codified in a framework such as Tensorflow (Abadi et al., 2015),
and the corresponding unbiased estimate of the gradient can be computed using automatic
differentiation.

40

Multi-class Gaussian Process Classification with Noisy Inputs

Appendix B. Extra Experiments

In this section we report extra experimental results not covered in the main manuscript.

B.1 Synthetic Experiments Using Data Augmentation and Sampling

In this section we compare the original MGP model when we do not take into account
the noise in the inputs with two baselines. Namely, the same model, i.e., MGP trained
on an augmented data set with samples from the posterior distribution of the observations
p(x̃i|xi) = N (x̃i|xi,Vi) assuming uniform prior. The second baseline is a modified version
of MGP in which the input attributes of each batch are obtained by sampling from the
corresponding posterior distribution under a uniform prior, ignoring label information. For
example, if xi ∼ N(x̃i, σ

2), where x̃i is the noiseless attribute, then p(x̃i|xi) = N (x̃i|xi, σ2),
assuming a uniform prior distribution for x̃i. When processing each batch of points MGP,
we simply sample the input attributes from p(x̃i|xi). The synthetic data set from Section 5.2
is considered. We generate as many data as twice the amount of data instances present in
the training set. Note that we cannot sample from the prior distribution of noisy data since
we observe noisy observations of the inputs and hence have no access to such a distribution.
We report averages over 100 repetitions of the experiments.

MGP MGP (aug.) MGP (sampling)

Noise 0.1 0.76±0.022 0.8±0.022 0.45±00.009
Noise 0.25 1.1±0.033 1.2±0.035 0.61±00.013
Noise 0.5 1.5±0.042 1.6±0.045 0.74±00.014

Table 11: Average Neg. Test Log Likelihood comparison between MGP, MGP with an
augmented data set and MGP using sampling from the posterior distribution of
the attributes.

MGP MGP (aug.) MGP (sampling)

Noise 0.1 0.11±0.0032 0.12±0.0031 0.13±0.0035
Noise 0.25 0.16±0.0048 0.17±0.005 0.194±0.0056
Noise 0.5 0.22±0.0058 0.22±0.0063 0.26±0.0066

Table 12: Average Test Error comparison between MGP, MGP with an augmented data
set and MGP using sampling from the posterior distribution of the attributes.

Tables 11 and 12 show the average test log-likelihood and average test error for MGP,
MGP on the augmented data set and MGP using the sampling scheme described. We ob-
serve that augmenting the data set with samples from the posterior distribution does not
improve the results. The sampling approach leads to worse prediction error results. How-
ever, the test log-likelihood improves slightly. In any case, the improvements over MGP are
smaller than those obtained by the proposed methods NIMGP, NIMGPNN and NIMGPFO

in Section 5.2. We believe that the reason for the sampling approach not performing very

41

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

well compared to these methods is that it ignores the information provided by the labels
about the potential vales of the noiseless input attributes.

42

Multi-class Gaussian Process Classification with Noisy Inputs

B.2 Synthetic Experiments Varying the Dimensions and the Number of Points

We repeat the experiments of Section 5.2 changing the number of dimensions d and the
number of training data N . We assume the variance of the input noise is given. The results
obtained are similar to the ones reported in that Section. Larger d and N lead to better
results as there are more explaining attributes and more training data.

Model D = 2 D = 5 D = 10

Noise 0.1

MGP 0.556±0.018 0.528±0.015 0.273±0.019
NIMGP 0.36±0.01 0.456±0.012 0.246±0.016

NIMGPNN 0.336±0.01 0.439±0.0096 0.271±0.015
NIMGPFO 0.369±0.012 0.437±0.011 0.244±0.016

Noise 0.25

MGP 0.825±0.026 0.674±0.018 0.358±0.022
NIMGP 0.505±0.012 0.521±0.014 0.309±0.016

NIMGPNN 0.455±0.012 0.501±0.012 0.328±0.016
NIMGPFO 0.519±0.015 0.508±0.013 0.3±0.018

Noise 0.5

MGP 1.07±0.033 0.828±0.026 0.419±0.026
NIMGP 0.62±0.013 0.583±0.016 0.348±0.019

NIMGPNN 0.548±0.013 0.569±0.014 0.353±0.016
NIMGPFO 0.655±0.017 0.565±0.016 0.323±0.02

(a) N=100
Model D = 2 D = 5 D = 10

Noise 0.1

MGP 0.763±0.025 0.545±0.016 0.261±0.019
NIMGP 0.27±0.0085 0.292±0.0077 0.154±0.011

NIMGPNN 0.277±0.0089 0.291±0.0076 0.153±0.01
NIMGPFO 0.332±0.011 0.313±0.0078 0.166±0.011

Noise 0.25

MGP 1.15±0.036 0.814±0.026 0.442±0.029
NIMGP 0.391±0.011 0.383±0.011 0.222±0.014

NIMGPNN 0.398±0.012 0.384±0.011 0.218±0.013
NIMGPFO 0.515±0.013 0.413±0.01 0.24±0.014

Noise 0.5

MGP 1.41±0.044 1.07±0.031 0.491±0.036
NIMGP 0.477±0.014 0.463±0.012 0.229±0.016

NIMGPNN 0.5±0.016 0.468±0.012 0.235±0.015
NIMGPFO 0.698±0.021 0.513±0.011 0.26±0.016

(b) N=500
Model D = 2 D = 5 D = 10

Noise 0.1

MGP 0.802±0.021 0.553±0.02 0.287±0.02
NIMGP 0.268±0.007 0.252±0.0083 0.141±0.009

NIMGPNN 0.274±0.0077 0.255±0.008 0.139±0.0093
NIMGPFO 0.34±0.009 0.275±0.0081 0.156±0.01

Noise 0.25

MGP 1.13±0.036 0.865±0.025 0.454±0.03
NIMGP 0.372±0.012 0.355±0.0095 0.197±0.012

NIMGPNN 0.388±0.013 0.357±0.0092 0.2±0.012
NIMGPFO 0.529±0.016 0.391±0.0097 0.217±0.013

Noise 0.5

MGP 1.49±0.042 1.12±0.037 0.507±0.04
NIMGP 0.485±0.012 0.437±0.012 0.211±0.015

NIMGPNN 0.507±0.013 0.453±0.012 0.215±0.014
NIMGPFO 0.76±0.021 0.507±0.011 0.238±0.016

(c) N=1000

Table 13: Average negative test log-likelihood and standard deviations over 100 splits on
synthetic data sets varying the number of data points and dimensions.

43

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

Model D = 2 D = 5 D = 10

Noise 0.1

MGP 0.146±0.0047 0.179±0.0047 0.0965±0.0069
NIMGP 0.144±0.0044 0.176±0.005 0.0941±0.0067

NIMGPNN 0.134±0.0044 0.173±0.0041 0.0997±0.0069
NIMGPFO 0.14±0.0046 0.171±0.0045 0.0954±0.0072

Noise 0.25

MGP 0.196±0.0059 0.212±0.0061 0.119±0.0078
NIMGP 0.205±0.0065 0.208±0.006 0.118±0.0072

NIMGPNN 0.186±0.0054 0.199±0.0056 0.122±0.0069
NIMGPFO 0.188±0.0055 0.201±0.0061 0.117±0.0075

Noise 0.5

MGP 0.242±0.0072 0.243±0.0079 0.133±0.0092
NIMGP 0.251±0.0073 0.241±0.0083 0.133±0.0092

NIMGPNN 0.228±0.0066 0.23±0.007 0.129±0.0085
NIMGPFO 0.229±0.0071 0.223±0.0074 0.127±0.009

(a) N=100
Model D = 2 D = 5 D = 10

Noise 0.1

MGP 0.124±0.0042 0.129±0.0036 0.0663±0.0053
NIMGP 0.117±0.0039 0.117±0.0031 0.0598±0.0044

NIMGPNN 0.117±0.0037 0.117±0.0031 0.0587±0.0042
NIMGPFO 0.118±0.0039 0.121±0.0031 0.0642±0.005

Noise 0.25

MGP 0.177±0.0054 0.169±0.0051 0.099±0.0065
NIMGP 0.168±0.005 0.154±0.0049 0.0903±0.0059

NIMGPNN 0.167±0.005 0.153±0.005 0.0883±0.0056
NIMGPFO 0.169±0.0051 0.158±0.0051 0.0934±0.0061

Noise 0.5

MGP 0.216±0.007 0.209±0.0059 0.102±0.0078
NIMGP 0.204±0.0068 0.189±0.0054 0.0914±0.0069

NIMGPNN 0.205±0.0069 0.187±0.0052 0.0902±0.0071
NIMGPFO 0.204±0.0068 0.19±0.0054 0.0945±0.0072

(b) N=500
Model D = 2 D = 5 D = 10

Noise 0.1

MGP 0.122±0.0032 0.115±0.0038 0.0635±0.0043
NIMGP 0.115±0.003 0.102±0.0035 0.0567±0.0038

NIMGPNN 0.115±0.0031 0.102±0.0033 0.056±0.0039
NIMGPFO 0.116±0.0029 0.107±0.0038 0.0607±0.004

Noise 0.25

MGP 0.167±0.0055 0.161±0.0044 0.0897±0.0058
NIMGP 0.16±0.0052 0.145±0.0043 0.0812±0.0053

NIMGPNN 0.16±0.0049 0.145±0.0041 0.0811±0.0052
NIMGPFO 0.16±0.005 0.148±0.0043 0.0844±0.0054

Noise 0.5

MGP 0.213±0.0058 0.193±0.0059 0.0929±0.0074
NIMGP 0.204±0.0057 0.178±0.0054 0.0852±0.0067

NIMGPNN 0.206±0.0058 0.181±0.0054 0.0844±0.0066
NIMGPFO 0.205±0.0055 0.179±0.0056 0.0865±0.0064

(c) N=1000

Table 14: Average test error and standard deviations over 100 splits on synthetic data sets
varying the number of data points and dimensions.

B.3 Synthetic Experiments when Varying Number of Classes

We repeat the experiments of Section 5.2 using a different number of classes. In these
experiments we assume the variance of the input noise is given. The results obtained are
similar to the ones reported in that section. In general, when we increase the number of
class labels the prediction performance is reduced, since the classification problem is more
difficult.

44

Multi-class Gaussian Process Classification with Noisy Inputs

Model C = 4 C = 5 C = 6 C = 7

Noise 0.1

MGP 1.11±0.022 1.28±0.021 1.45±0.02 1.58±0.02
NIMGP 0.361±0.0064 0.419±0.0075 0.47±0.0067 0.512±0.006

NIMGPNN 0.37±0.0069 0.424±0.007 0.482±0.0074 0.527±0.0064
NIMGPFO 0.45±0.0093 0.512±0.0097 0.583±0.0098 0.636±0.0095

Noise 0.25

MGP 1.63±0.027 1.92±0.029 2.13±0.028 2.34±0.027
NIMGP 0.529±0.0087 0.612±0.0081 0.688±0.0087 0.748±0.0088

NIMGPNN 0.553±0.01 0.637±0.011 0.72±0.01 0.792±0.011
NIMGPFO 0.757±0.014 0.882±0.015 0.976±0.015 1.06±0.015

Noise 0.5

MGP 2.13±0.035 2.47±0.04 2.77±0.031 3.06±0.035
NIMGP 0.685±0.011 0.787±0.01 0.891±0.009 0.991±0.01

NIMGPNN 0.735±0.015 0.842±0.015 0.94±0.013 1.07±0.016
NIMGPFO 1.08±0.019 1.25±0.02 1.37±0.02 1.54±0.017

Table 15: Average negative test log-likelihood error and standard deviations over 100 splits
on synthetic data sets varying the number of classes.

Model C = 4 C = 5 C = 6 C = 7

Noise 0.1

MGP 0.161±0.0029 0.183±0.0031 0.203±0.0029 0.221±0.0026
NIMGP 0.152±0.003 0.174±0.0029 0.192±0.0029 0.21±0.0028

NIMGPNN 0.153±0.0028 0.174±0.0028 0.192±0.0029 0.211±0.0027
NIMGPFO 0.153±0.003 0.175±0.0028 0.195±0.0028 0.213±0.0026

Noise 0.25

MGP 0.228±0.004 0.261±0.0037 0.286±0.0038 0.308±0.0034
NIMGP 0.219±0.0039 0.251±0.0036 0.277±0.0038 0.297±0.0033

NIMGPNN 0.221±0.004 0.254±0.0039 0.278±0.0037 0.299±0.0035
NIMGPFO 0.221±0.0038 0.252±0.0036 0.279±0.0038 0.299±0.0035

Noise 0.5

MGP 0.293±0.005 0.33±0.0052 0.366±0.0044 0.397±0.0046
NIMGP 0.282±0.0047 0.32±0.0048 0.355±0.0043 0.387±0.0045

NIMGPNN 0.284±0.0052 0.322±0.0052 0.354±0.0046 0.384±0.0044
NIMGPFO 0.281±0.0047 0.318±0.0049 0.354±0.0041 0.385±0.0044

Table 16: Average test error and standard deviations over 100 splits on synthetic data sets
varying the number of classes.

B.4 Astrophysics data set without Detection and Curvature Significance

This section reports the results obtained on the Astrophysics data set without using the
two attributes described. The results obtained are slightly worse than the ones reported in
Section 5.6 which indicates that these attributes contain useful information.

MGP NIMGP NIMGPNN NIMGPFO

NLL 0.381±0.021 0.268±0.013 0.28±0.012 0.309±0.015
Test error 0.077±0.0039 0.0811±0.0043 0.0885±0.0047 0.0867±0.0043

Table 17: Average test error and neg. test log-likelihood (NLL) of each method on the as-
trophysics data set without using detection and curvature significance attributes.

45

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

Model bll (true) fsrq (true) psr (true)

bll (pred.)

MGP 17.52±0.32 1.2±0.11 0.07±0.026
NIMGP 17.59±0.33 1.45±0.13 0.02±0.014

NIMGPNN 17.43±0.31 1.55±0.13 0.06±0.028
NIMGPFO 17.65±0.32 1.87±0.16 0.02±0.014

fsrq (pred.)

MGP 1.59±0.12 15.26±0.29 0.37±0.058
NIMGP 1.52±0.12 15.08±0.29 0.49±0.07

NIMGPNN 1.65±0.14 14.78±0.28 0.43±0.071
NIMGPFO 1.49±0.11 14.63±0.29 0.37±0.06

psr (pred.)

MGP 0.03±0.017 0.3±0.054 9.66±0.27
NIMGP 0.03±0.017 0.23±0.049 9.59±0.27

NIMGPNN 0.06±0.024 0.43±0.07 9.61±0.28
NIMGPFO 0.00±0.00 0.26±0.05 9.71±0.28

Table 18: Average confusion matrix for the astrophysics data set for the different meth-
ods considered in this work without using detection and curvature significance
attributes.

Appendix C. Summary of the Parameters of Each Method

We provide a table where we show the parameters used by each of the described meth-
ods. We also report the number of parameters employed. All methods share the typical
GP hyper-parameters, including the length-scales, amplitudes, noise and inducing points
locations. Since this parameters are the same for each method they are not included here.
Similarly, all methods share the parameters for the variational distribution q(uc) modeling
the process values at the inducing points for class c. These parameters are not included
here either. NIMGP, NIMGPNN and NIMGPFO share the parameters of the variance of
the input noise Vi associated to each training instance. Let N and d be respectively the
number of training points and the dimensionality of each method. Last, let M the note the
number of parameters (weights and biases) of the neural network considered in NIMGPNN.

MGP NIMGP NIMGPNN NIMGPFO

Parameters None µxi ,V
x
i , Vi θ, Vi Vi

Param. None N × (d+ d+ d) M +N × d N × d

Table 19: Parameters and number of parameters of each method

Recall that µxi and Vx
i are the variational parameters modeling the posterior distribu-

tion (means and variances, respectively) of the attributes of each noiseless data instance.
Similarly, θ is the set of parameters of the neural network that predicts µxi and Vx

i in
NIMGPNN. Finally, Vi are the input noise variance parameters associated to the i-th data
instance. Depending on the number data instances, the methods with the largest number
of parameters are either NIMGP or NIMGPNN. In large data sets, however, it is expected
that M � N .

46

Multi-class Gaussian Process Classification with Noisy Inputs

References

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y.Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore,
D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available
from tensorflow.org.

S. Abdollahi, F. Acero, M. Ackermann, M. Ajello, W. B. Atwood, M. Axelsson, L. Baldini,
J. Ballet, G. Barbiellini, D. Bastieri, J. Becerra Gonzalez, R. Bellazzini, A. Berretta,
E. Bissaldi, R. D. Blandford, E. D. Bloom, R. Bonino, E. Bottacini, T. J. Brandt, J. Bre-
geon, P. Bruel, R. Buehler, T. H. Burnett, S. Buson, R. A. Cameron, R. Caputo, P. A.
Caraveo, J. M. Casandjian, D. Castro, E. Cavazzuti, E. Charles, S. Chaty, S. Chen,
C. C. Cheung, G. Chiaro, S. Ciprini, J. Cohen-Tanugi, L. R. Cominsky, J. Coronado-
Blázquez, D. Costantin, A. Cuoco, S. Cutini, F. D’Ammando, M. DeKlotz, P. de la Torre
Luque, F. de Palma, A. Desai, S. W. Digel, N. Di Lalla, M. Di Mauro, L. Di Venere,
A. Domı́nguez, D. Dumora, F. Fana Dirirsa, S. J. Fegan, E. C. Ferrara, A. Franckowiak,
Y. Fukazawa, S. Funk, P. Fusco, F. Gargano, D. Gasparrini, N. Giglietto, P. Giommi,
F. Giordano, M. Giroletti, T. Glanzman, D. Green, I. A. Grenier, S. Griffin, M. H.
Grondin, J. E. Grove, S. Guiriec, A. K. Harding, K. Hayashi, E. Hays, J. W. Hewitt,
D. Horan, G. Jóhannesson, T. J. Johnson, T. Kamae, M. Kerr, D. Kocevski, M. Ko-
vac’evic’, M. Kuss, D. Landriu, S. Larsson, L. Latronico, M. Lemoine-Goumard, J. Li,
I. Liodakis, F. Longo, F. Loparco, B. Lott, M. N. Lovellette, P. Lubrano, G. M. Madejski,
S. Maldera, D. Malyshev, A. Manfreda, E. J. Marchesini, L. Marcotulli, G. Mart́ı-Devesa,
P. Martin, F. Massaro, M. N. Mazziotta, J. E. McEnery, I. Mereu, M. Meyer, P. F. Michel-
son, N. Mirabal, T. Mizuno, M. E. Monzani, A. Morselli, I. V. Moskalenko, M. Negro,
E. Nuss, R. Ojha, N. Omodei, M. Orienti, E. Orlando, J. F. Ormes, M. Palatiello, V. S.
Paliya, D. Paneque, Z. Pei, H. Peña-Herazo, J. S. Perkins, M. Persic, M. Pesce-Rollins,
V. Petrosian, L. Petrov, F. Piron, H. Poon, T. A. Porter, G. Principe, S. Rainò, R. Rando,
M. Razzano, S. Razzaque, A. Reimer, O. Reimer, Q. Remy, T. Reposeur, R. W. Romani,
P. M. Saz Parkinson, F. K. Schinzel, D. Serini, C. Sgrò, E. J. Siskind, D. A. Smith,
G. Spandre, P. Spinelli, A. W. Strong, D. J. Suson, H. Tajima, M. N. Takahashi, D. Tak,
J. B. Thayer, D. J. Thompson, L. Tibaldo, D. F. Torres, E. Torresi, J. Valverde, B. Van
Klaveren, P. van Zyl, K. Wood, M. Yassine, and G. Zaharijas. Fermi large area telescope
fourth source catalog. The Astrophysical Journal Supplement Series, 247(1):33, 2020. doi:
10.3847/1538-4365/ab6bcb.

A. Armand, D. Filliat, and J. Ibanez-Guzman. Modelling stop intersection approaches using
Gaussian processes. In IEEE Conference on Intelligent Transportation Systems, pages
1650–1655, 2013.

N. C. Barford. Experimental Measurements: Precision, Error and Truth. Wiley, 1985.

47

https://www.tensorflow.org/

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

S. D. Bay, D. F. Kibler, M. J. Pazzani, and P. Smyth. The UCI KDD archive of large data
sets for data mining research and experimentation. SIGKDD explorations, 2:81–85, 2000.

H. Bijl, T. B. Schön, J. W. van Wingerden, and M. Verhaegen. System identification through
online sparse Gaussian process regression with input noise. IFAC Journal of Systems and
Control, 2:1–11, 2017.

C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statis-
tics). Springer, 2006.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statis-
ticians. Journal of the American Statistical Association, 112:859–877, 2017.

B. Attila Bócsi and L. Csató. Hessian corrected input noise models. In International
Conference on Artificial Neural Networks (ICANN), pages 1–8, 2013.

T. D. Bui, D. Hernández-Lobato, J. M. Hernandez-Lobato, Y. Li, and R. E. Turner. Deep
Gaussian processes for regression using approximate expectation propagation. In Inter-
national Conference on Machine Learning (ICML), pages 1472–1481, 2016.

T.D. Bui, J. Yan, and R.E. Turner. A unifying framework for Gaussian process pseudo-
point approximations using power expectation propagation. Journal of Machine Learning
Research, 18(1):3649–3720, 2017.

W. Chu and Z. Ghahramani. Gaussian processes for ordinal regression. Journal of Machine
Learning Research, 6:1019–1041, 2005.

Fermi-LAT Collaboration. 4th fgl catalogue. Available at https: // heasarc. gsfc. nasa.
gov/ W3Browse/ fermi/ fermilpsc. html , 2019.

Z. Dai, A. Damianou, J. González, and N. Lawrence. Variational auto-encoded deep Gaus-
sian processes. In International Conference on Learning Representations (ICLR), 2016.

P. Dallaire, C. Besse, and B. Chaib-Draa. Learning Gaussian process models from uncertain
data. In International Conference on Neural Information Processing (ICONIP), pages
433–440, 2009.

A. Damianou and N. D. Lawrence. Deep Gaussian processes. In Artificial Intelligence and
Statistics, pages 207–215, 2013.

A. Damianou and N. D. Lawrence. Semi-described and semi-supervised learning with Gaus-
sian processes. In Unvertainty in Artificial Intelligence, pages 228–237, 2015.

A. Damianou, M. K. Titsias, and N. D. Lawrence. Variational inference for latent variables
and uncertain inputs in Gaussian processes. Journal of Machine Learning Research, 17:
1425–1486, 2016.

M. Deisenroth and C.E. Rasmussen. Pilco: A model-based and data-efficient approach to
policy search. In International Conference on Machine Learning (ICML), pages 465–472,
2011.

48

https://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermilpsc.html
https://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermilpsc.html

Multi-class Gaussian Process Classification with Noisy Inputs

P. J. Diggle, J. A Tawn, and R. A. Moyeed. Model-based geostatistics. Journal of the Royal
Statistical Society: Series C (Applied Statistics), 47:299–350, 1998.

D. Dua and C. Graff. UCI machine learning repository, 2017. URL http://archive.ics.

uci.edu/ml.

Y. Gal. Uncertainty in Deep Learning. PhD thesis, PhD thesis, University of Cambridge,
2016.

H.W. Ge and S.T. Wang. Dependency between degree of fit and input noise in fuzzy linear
regression using non-symmetric fuzzy triangular coefficients. Fuzzy Sets and Systems,
158:2189–2202, 2007.

A. Girard, C. E. Rasmussen, J. Quiñonero Candela, and R. Murray-Smith. Gaussian process
priors with uncertain inputs application to multiple-step ahead time series forecasting. In
Conference on Neural Information Processing Systems (NeurIPS), pages 545–552, 2003.

P. W. Goldberg, C. K. I. Williams, and C. M. Bishop. Regression with input-dependent
noise: A Gaussian process treatment. In Conference on Neural Information Processing
Systems (NeurIPS), pages 493–499, 1998.

R. Henao and O. Winther. Predictive active set selection methods for Gaussian processes.
Neurocomputing, 80:10–18, 2012.

J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In Uncertainty
in Artificial Intelligence (UAI), page 282–290, Arlington, Virginia, USA, 2013.

J. Hensman, A. Matthews, and Z. Ghahramani. Scalable variational Gaussian process classi-
fication. In International Conference on Artificial Intelligence and Statistics (AISTATS),
2015a.

J. Hensman, A. G. Matthews, M. Filippone, and Z. Ghahramani. MCMC for variationally
sparse Gaussian processes. pages 1648–1656, 2015b.

D. Hernández-Lobato, J. M. Hernández-Lobato, and P. Dupont. Robust multi-class Gaus-
sian process classification. In Conference on Neural Information Processing Systems
(NeurIPS), pages 280–288, 2011.

D. Hernández-lobato, V. Sharmanska, K. Kersting, C. H. Lampert, and N. Quadrianto.
Mind the nuisance: Gaussian process classification using privileged noise. In Conference
on Neural Information Processing Systems (NeurIPS), pages 837–845. 2014.

M. I. Jordan, Ghahramani Z., T. Jaakkola, and L. K. Saul. An introduction to variational
methods for graphical models. Machine Learning, (2):183–233, 1999.

K. Kersting, C. Plagemann, P. Pfaff, and W. Burgard. Most likely heteroscedastic Gaussian
process regression. In International conference on Machine learning (ICML), pages 393–
400, 2007.

49

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

H.C. Kim and Z. Ghahramani. Bayesian Gaussian process classification with the EM-EP
algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28:1948–
1959, 2006.

D. P. Kingma and J. Ba. ADAM: a method for stochastic optimization. In International
Conference on Learning Representations (ICLR), pages 1–15, 2015.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations (ICLR), 2014.

J. Ko, D. J. Kleint, D. Fox, and D. Haehnelt. Gp-ukf: Unscented kalman filters with
Gaussian process prediction and observation models. In International Conference on
Intelligent Robots and Systems (IROS), pages 1901–1907, 2007.

M. Kuss and C. E. Rasmussen. Assessing approximate inference for binary Gaussian process
classification. Journal of Machine Learning Research, 6:1679–1704, 2005.

H.C.L. Law, D. Sutherland, D. Sejdinovic, and S. Flaxman. Bayesian approaches to dis-
tribution regression. In International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 1167–1176, 2018.

M. Lázaro-Gredilla and M. K. Titsias. Variational heteroscedastic Gaussian process regres-
sion. In International Conference on Machine Learning (ICML), pages 841–848, 2011.

Q.V. Le, A.J. Smola, and S. Canu. Heteroscedastic Gaussian process regression. In Inter-
national Conference on Machine Learning (ICML), pages 489–496, 2005.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86:2278–2324, 1998.

C. J. Maddison, D. Tarlow, and T. Minka. A∗ sampling. In Conference on Neural Infor-
mation Processing Systems (NeurIPS), pages 3086–3094. 2014.

A. Mchutchon and C. E. Rasmussen. Gaussian process training with input noise. In Con-
ference on Neural Information Processing Systems (NeurIPS), pages 1341–1349, 2011.

T. Minka. Expectation propagation for approximate Bayesian inference. In Uncertainty in
Artificial Intelligence (UAI), pages 362–36, 2001.

K. Muandet, K. Fukumizu, B. Sriperumbudur, and B. Schölkopf. Kernel mean embedding
of distributions: A review and beyond. Foundations and Trends in Machine Learning,
10:1–141, 2017.

K. Murphy. Machine Learning: a Probabilistic Perspective. The MIT Press, 2012.

R. M. Neal. Monte Carlo implementation of Gaussian process models for Bayesian regression
and classification. Technical report, Department of Statistics, University of Toronto, 1997.
URL http://www.cs.toronto.edu/%7eradford. Technical Report 9702.

H. Nickisch and C. E. Rasmussen. Approximations for binary Gaussian process classifica-
tion. Journal of Machine Learning Research, 9:2035–2078, 2008.

50

http://www.cs.toronto.edu/%7eradford.

Multi-class Gaussian Process Classification with Noisy Inputs

J. Nogueira, R. Martinez-Cantin, A. Bernardino, and L. Jamone. Unscented Bayesian
optimization for safe robot grasping. In International Conference on Intelligent Robots
and Systems (IROS), pages 1967–1972, 2016.

J. Oakley and A. O’Hagan. Bayesian inference for the uncertainty distribution of computer
model outputs. Biometrika, 89:769–784, 2002.

R. Oliveira, L. Ott, V. Guizilini, and F. Ramos. Bayesian optimisation for safe navigation
under localisation uncertainty. arXiv preprint arXiv:1709.02169, 2017.

A. Panos. Extreme Multi-label Learning with Gaussian Processes. PhD thesis, University
College London, 2019.

A. Rabaoui, H. Kadri, Z. Lachiri, and N. Ellouze. Using robust features with multi-class
SVMs to classify noisy sounds. In International Symposium on Communications, Control
and Signal Processing (ISCCSP), pages 594–599, 2008.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press, 2006.

J. Riihimäki, P. Jylänki, and A. Vehtari. Nested expectation propagation for Gaussian
process classification with a multinomial probit likelihood. Journal of Machine Learning
Research, 14:75–109, 2013.

J. A. Sáez, M. Galar, J. Luengo, and F. Herrera. Analyzing the presence of noise in multi-
class problems: alleviating its influence with the one-vs-one decomposition. Knowledge
and information systems, 38(1):179–206, 2014.

M. W. Seeger. Bayesian inference and optimal design for the sparse linear model. Journal
of Machine Learning Research, 9:759–813, 2008.

B. Settles. Active learning literature survey. Technical report, University of Wisconsin-
Madison Department of Computer Sciences, 2009.

R. Shu, H. H Bui, S. Zhao, M. J. Kochenderfer, and S. Ermon. Amortized inference reg-
ularization. In Conference on Neural Information Processing Systems (NeurIPS), pages
4393–4402, 2018.

E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Confer-
ence on Neural Information Processing Systems (NeurIPS), pages 1257–1264, 2006.

D. M. Steinberg and E. V. Bonilla. Extended and unscented Gaussian processes. In Con-
ference on Neural Information Processing Systems (NeurIPS), pages 1251–1259, 2014.

M. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In
International Conference on Artificial Intelligence and Statistics (AISTATS), pages 567–
574, 2009.

M. Titsias and N. D Lawrence. Bayesian Gaussian process latent variable model. In Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS), pages 844–851,
2010.

51

Villacampa-Calvo, Zald́ıvar, Garrido-Merchán and Hernández-Lobato

M. Van der Wilk, C. E. Rasmussen, and J. Hensman. Convolutional Gaussian processes.
In Conference on Neural Information Processing Systems (NeurIPS), pages 2849–2858,
2017.

C. Villacampa-Calvo and D. Hernández-Lobato. Scalable multi-class Gaussian process clas-
sification using expectation propagation. In International Conference on Machine Learn-
ing (ICML), pages 3550–3559, 2017.

C. Villacampa-Calvo and D. Hernández-Lobato. Alpha divergence minimization in multi-
class Gaussian process classification. Neurocomputing, 378:210–227, 2020.

Press W.H., Teukolsky S. A., Vetterling W. T., and Flannery B. P. Numerical recipes: The
art of scientific computing (3rd ed.). Cambridge University Press, 2007.

C. K. I. Williams and D. Barber. Bayesian classification with Gaussian processes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20:1342–1351, 1998.

A. G. Wilson and Z. Ghahramani. Copula processes. In Conference on Neural Information
Processing Systems (NeurIPS), pages 2460–2468, 2010.

52

	Introduction
	Multi-class Gaussian Process Classification
	Sparse Gaussian Processes

	Multi-class GP Classification with Input Noise
	Modeling the Input Noise Using Latent Variables
	Joint and Posterior Distribution
	Approximate Inference Using Variational Inference
	Predictions

	Amortized Approximate Inference
	First Order Approximation
	Learning the Level of Noise in the Inputs
	Other Problems Different from Multi-class Classification
	Summary of the Proposed Methods to Deal with Input Noise

	Related Work
	Experiments
	Illustrative Toy Problem
	Synthetic Experiments
	Experiments on data sets Extracted from the UCI Repository
	Experiments on the MNIST data set
	Active Learning Experiments
	Experiments on a data set Coming from Astrophysics

	Conclusions
	Stochastic Approximation of the Lower Bound
	Extra Experiments
	Synthetic Experiments Using Data Augmentation and Sampling
	Synthetic Experiments Varying the Dimensions and the Number of Points
	Synthetic Experiments when Varying Number of Classes
	Astrophysics data set without Detection and Curvature Significance

	Summary of the Parameters of Each Method
	References

