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Abstract

Effective decision making requires understanding the uncertainty inherent in a prediction. In
regression, this uncertainty can be estimated by a variety of methods; however, many of these
methods are laborious to tune, generate overconfident uncertainty intervals, or lack sharpness
(give imprecise intervals). We address these challenges by proposing a novel method to capture
predictive distributions in regression by defining two neural networks with two distinct loss functions.
Specifically, one network approximates the cumulative distribution function, and the second network
approximates its inverse. We refer to this method as Collaborating Networks (CN). Theoretical
analysis demonstrates that a fixed point of the optimization is at the idealized solution, and that
the method is asymptotically consistent to the ground truth distribution. Empirically, learning is
straightforward and robust. We benchmark CN against several common approaches on two synthetic
and six real-world datasets, including forecasting A1c values in diabetic patients from electronic
health records, where uncertainty is critical. In the synthetic data, the proposed approach essentially
matches ground truth. In the real-world datasets, CN improves results on many performance metrics,
including log-likelihood estimates, mean absolute errors, coverage estimates, and prediction interval
widths.
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1. Introduction

Deep learning techniques have provided breakthroughs in a multitude of prediction problems;
however, effective decision-making often requires accurate assessment of uncertainty in addition to
prediction (Bellman and Zadeh, 1970). In a single continuous outcome, the conditional probability
distribution can be used more effectively in decision-making. For example, consider forecasting
future lab values of diabetic patients from electronic health record data. This forecast should be used
only if it is high confidence, which depends on how recent and complete the data is. Therefore, we
want to build a system that faithfully quantifies its uncertainty based on the available information.

Quantifying uncertainty has a long history in statistics and has recently been extended into neural
network frameworks (Blundell et al., 2015; Gal, 2016; Blei et al., 2017). The outputs of these systems
should ideally be statistically calibrated (Mitchell and Wallis, 2011), meaning that the nominal level
of uncertainty should reflect the true occurrence rate of an event. Calibration has been extensively
researched on binary classification problems, where out-of-the-box deep learning methods typically
result in over-confident uncertainty quantification. In these cases, correction methods such as Platt
scaling are necessary to adjust the predictions (Platt, 1999; Guo et al., 2017).

Poor calibration also hinders effective decision making in regression problems (continuous
outcomes). Although various methods can estimate uncertainty for continuous outcomes such as
heteroskedastic regression (Harvey, 1976), Bayesian approximate methods (Gal, 2016; Gal et al.,
2017), ensemble methods (Lakshminarayanan et al., 2017), and quantile regression based methods
(Tagasovska and Lopez-Paz, 2019; Koenker and Hallock, 2001), they can fall short due to model
misspecification, training instability, or lack of generalizability (Kuleshov et al., 2018). Adjusting
for poor calibration is a challenging task in continuous outcome spaces, as the number of events
to calibrate is virtually indefinite. Additionally, customization is often required for different types
of intervals (e.g., one-sided or two-sided, continuous or noncontinuous) or the proposed nominal
levels of coverage (e.g., 70 %, 90 %, 95 %) used in a given application. In addition to well-calibrated
predictions, it is necessary to have sharp, precise intervals. Given the same level of coverage, a
sharper interval is preferred and is more informative (Pearce et al., 2018). Empirically, simultaneously
ensuring sharpness and calibration is difficult as methods typically achieve sharpness by sacrificing
calibration or the other way around.

In this manuscript, we introduce a new modeling framework capable of learning two networks
to provides both faithful coverage intervals and sharp predictions. One of our networks attempts to
learn the conditional Cumulative Distribution Function (CDF) given a collection of data observations.
To help learn this network, we pair it with a second network that approximates the conditional
inverse CDF. Despite the seeming similarity to an autoencoder with these paired functions, the
networks must be learned with separate losses in a similar fashion as Generative Adversarial Network
(GANs) (Goodfellow et al., 2014). Because these networks interact and must be consistent with
one another, we refer to this method as the Collaborating Networks (CN). We show that the desired
solution (the two networks give the true conditional CDF and inverse CDF) is a fixed point of the
optimization scheme and that the approach yields a stable solution with asymptotic consistency under
certain model classes. In the following sections we provide theoretical analyses and demonstrate
empirical performance on two synthetic dataset and six real-world datasets. The code to reproduce
the experiments is publicly available1.

1. https://github.com/thuizhou/Collaborating-Networks
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2. Related Work

Uncertainty in binary classification is well-explored. In the classical logistic regression setting,
the probability is usually well calibrated (Kull et al., 2017). However, deep networks become
overconfident due to overfitting, which can be partially addressed by the usage of normalization and
weight decay (Guo et al., 2017) or by intelligently varying the inputs (Thulasidasan et al., 2019). Platt
scaling has been fairly effective (Platt, 1999). In this two-step method, the initial prediction is learned
as pi on the training data, and then a small reserved dataset is used to fit qi = σ(a + bpi) as the
calibrated probability. Another frequently used nonparametric calibration method is called isotonic
regression (Zadrozny and Elkan, 2002), where the interval from 0 to 1 is binned from the pre-trained
network, and the observed proportions on the data replaces the original predicted probability.

The challenge of studying continuous problems is that it often requires the modeling of the
full span of the conditional distribution. Classically, the tilted loss function in quantile regression
provides a nonparametric framework to predict conditional quantile information for any given
percentile q ∈ (0, 1) (Koenker and Bassett, 1978), which has been extended into neural network
frameworks to make it simultaneously mimic the full distribution over the full support (Tagasovska
and Lopez-Paz, 2019). Although quantile regression asymptotically learns the true conditional
quantile information, it could be subject to underfitting or overfitting, failing to calibrate empirical
coverage in practice (Rodriguez and Yao, 2017). Modern uses of quantile regression could also be
combined with conformal prediction to obtain finite sample calibration (Romano et al., 2019).

Bayesian Neural Networks naturally form a scheme to generate uncertainty estimates (Neal,
2012). One can draw a posterior predictive distribution based on the data we observed using
sampling methods (Neal, 2012). To address computational challenges, one can approximate the
Bayesian solution by introducing dropout training as an approximation to Bayesian inference (Gal
and Ghahramani, 2016; Gal, 2016), by using variational inference (Blei et al., 2017; Blundell et al.,
2015; Wainwright and Jordan, 2008; Graves, 2011), or by using stochastic gradient sampling methods
(Li et al., 2016). Approximate Bayesian approaches are sensitive to model misspecifications that
can result in mismatch between the claimed credibility and reality (Pernot and Cailliez, 2017).
Essentially, model misspecifications arise when there is discrepancy between the specified and the
actual data generating process (Frazier et al., 2019). Adopting overly complex or simple model
architectures, erroneous priors or parameter specifications, or an unsuitable choice of uncertainty
model are different specific cases of model misspecifications.

Regression schemes can be modified to generate heteroscedastic uncertainty by training networks
to produce both a mean and variance estimate under a Gaussian likelihood (Nix and Weigend, 1994).
This formulation can suffer from instability and is prone to overfitting, but can be enhanced by
adjusting the gradient calculation and training the mean and variance model separately (Skafte et al.,
2019). One could add mild perturbations to the covariate space and combine several independently
trained uncertainty models either with regression or other frameworks for a more empirically
stable and calibrated uncertainty estimate (Lakshminarayanan et al., 2017). Mixing or combining
more underlying models provides more flexible approximation to different forms of distribution
functions (Brando et al., 2019).

Finally, uncalibrated models for continuous outcomes could be calibrated in a post-hoc fashion.
For example, calibrated regression is a method that fits an extra isotonic regression after an initial
model has been trained (Kuleshov et al., 2018), which requires an extra validation set to form a
recalibration mapping between nominal level of coverage and the empirical level of coverage. One
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could also add calibration as a regularization term to the loss of original uncertainty model to enforce
the model to yield calibrated predictions with a certain extent of introduced inductive bias (Utpala
and Rai, 2020).

Compared to these approaches, our method is unique because it provides an approximation to
any family of distribution functions with Lipschitz continuity. Under this framework, it ensures
calibration and is not subject to model misspecification in any Lipschitz continuous distribution.
The losses give straightforward gradient calculations. It is theoretically sound with a large sample
property. We prove consistency to ground truth for broad model classes. We have adopted several
techniques to stabilize the model training, and we have practical evidence of it being robust to
extreme cases such as overfitting. Empirically, we can incorporate all training covariates to learn the
conditional distribution function with our model that effectively generates the prediction interval for
any possible quantile, which is shown to be precise and faithful in our empirical evaluations.

3. Preliminaries

Before introducing our learning methodology, we first set up the notation and network definitions.

3.1 Notation

Let X denote the input features, X ∈ X ⊂ Rp, with x denoting an observed sample. We denote
Y ∈ R as the continuous outcome variable with an observed values y. It is assumed to have a joint
distribution function p(Y,X) and an underlying conditional distribution function, p(Y |X = x). Let
y(q,X=x) denote the q′th conditional quantile, where P(Y < y(q,X=x)|X = x) = q. For instance,
q = 0.5 would yield the median of the conditional distribution. p(q) is a chosen distribution to
generate the percentiles in (0, 1).

3.2 Neural Network Approximation Functions

The proposed method is based on jointly learning two functions. We will first define the functions
along with their predictive goals. We define a function fθ(q,X) with parameters θ, which will be
denoted as f for simplicity. The goal of this network is to approximate the inverse conditional
CDF or quantile function of Y |X . An optimal function f should have the property that f(q,X) =
y(q,X), ∀ q ∈ (0, 1), X ∈ X . We then define a second function as gγ(y(q,X), X) with parameters
γ (simplified as g) that tries to approximate the conditional CDF. It can take any random value
z, together with covariate information X , to predict where z is located in the full outcome space,
P(Y < z|X). A perfect g should have the property g(y(q,X), X) = q, ∀ q ∈ (0, 1), X ∈ X . When
both f and g perfectly match their goals, they satisfy the following properties that ∀ q ∈ (0, 1),

g(f(q,X), X) = q. (1)

This property states that composing a well-learned CDF and inverse CDF function should produce
an identity function. This identity is essential in connecting the two functions and their distribution
properties, which will be exploited in the following to create a learning scheme.
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Figure 1: Illustration of the CN framework. 1(a) describes training for a conditional quantile ŷ(q, x)
directly as the objective function to ensure calibration. However, the dashed arrow implies
that the objective function does not produce a useful gradient. 1(b) gives the g-network,
which helps with the non-differentiable objective function in Eq. (2). In this framework, g
and f are jointly trained to learn the CDF and conditional CDF, and they are connected by
Eq. (1). 1(c) gives the final mapping to generate the conditional quantiles after the network
has been trained.

4. Joint Function Learning

A good conditional quantile function f should have the following property to generate well-calibrated
quantile estimates,

Ep(Y |X)[Y < f(q,X)] ≈ q. (2)

At first glance, a straightforward approach to achieving the property in Eq. (2) would be to directly
adopt it as an objective (e.g., minimize the square loss ||Ep(Y |X)[Y < f(q,X)]−q||2); unfortunately,
this objective function’s gradient comes from an indicator function that is ineffective for learning
the network. We bypass this learning difficulty with our joint learning scheme, but still ensure the
property in Eq. (2) is properly satisfied when our framework is optimized.

Specifically, the neural networks fθ and gγ are bestowed with two distinct losses,

g-lossγ : Eq∼p(q),x,y∼p(X,Y )

[
`(1(y<fθ(q,x)), gγ(fθ(q,x),x))

]
, (3)

f-lossθ : Eq∼p(q),x∼p(X)

[
(q − gγ(fθ(q,x),x))2

]
. (4)

The loss ` is a binary cross-entropy loss (or logistic loss), `(b, a) = −b log a− (1− b) log(1− a).
Eq. (3) and (4) are the losses in expectation; in practice, we would use empirical risk minimization.
The distribution for quantiles p(q) can be chosen as desired. Any distribution that fully covers
the (0, 1) percentile space satisfies our theoretical framework; in practice, we choose Unif(0, 1)
(uniform distribution). A visualization of this proposed model framework is given in Figure 1. Under
conditions similar to the theoretical claims in GANs (Goodfellow et al., 2014), these losses induce a
fixed point for f and g with their desired properties (see Section 4.1).

The design of this two-loss framework can be understood as follows. When g is updated to
minimize the the g-loss, f functions as a space searching tool to help g acquire information about
the distribution function over the full relevant space. We demonstrate in our theoretical analysis that
f needs only to satisfy mild conditions for g to be able to learn the optimal function. Essentially,
if f varies constantly as a function of q and covers the full probability space, then g will learn the
CDF by matching the relative count of these events to their estimated probabilities. We show in
experiments that even when using a fixed f with a prespecified distribution, g is still able to yield
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good results. We are still motivated to learn f to make searching the space as efficient as possible, as
a good representation of the inverse CDF function will better discriminate low density versus high
density regions in outcome spaces and can improve performance with finite samples.

We demonstrate this effect empirically and note that it matches concepts in noise contrastive
learning, where efficiency is dependent on how well the generated samples match the true distribution
(Gutmann and Hyvärinen, 2010). Thus, we update f to minimize Eq. (4) to learn the distribution
information directly from g. Hence, g is the main function that we use to learn the distribution
information from data and f is regarded as an auxiliary function that better assists g in space searching
when it gets improved during the training. Thus, although both functions target on learning the
conditional distribution of Y |X , g is preferred in inferring the outcome uncertainties over the space
explorer f after the training process is completed.

The g-loss and f-loss defined in Eq. (3) and Eq. (4) are straightforward to optimize, and they
are convex in function forms, which allows an alternating learning scheme with standard gradient
methods. Note that most neural network architectures could be easily incorporated in this framework.
We describe the full learning strategy in Section 4.2 and provide pseudo-code in Algorithm 1.

Additionally, if desired, our model could be integrated into advanced neural network architectures,
such as an LSTM, to enable it to produce uncertainties. This is demonstrated with a time-series
dataset in Section 5.4.

4.1 Theoretical Results

The functions g and f are designed to learn the conditional CDF and conditional inverse CDF of
Y |X . Here, we explore when the loss functions in (3) and (4) will lead to these goals. We limit our
discussion to the family of distributions with Lipschitz continuity, which can be well approximated
by the deep neural networks according to the universal approximation theorem (Lu and Lu, 2020).
Suppose that f and g have enough capacity to represent the ground truth distribution functions within
the Lipschitz continuous family. We can then show that the optimal solution is a fixed point of the
training scheme. Below is a sketch of proof of these claims, with more detailed proofs available in
Appendix A. We begin our analysis with g.

Proposition 1 Assume that f(q,X) is a function we use to approximate the inverse conditional CDF
or conditional quantile function of Y |X, ∀q ∈ (0, 1) (not necessarily optimal but satisfying mild
conditions defined in Appendix A), then a g-function minimizing (3) is optimal when it is equivalent
to the CDF, or Y |X →d g(Y,X)

Proof [Sketch of Proposition 1] First, recall our g-loss can be expanded as:

− Eq∼p(q),x∼p(X)[P(Y < f(q,x)|x) log(g(f(q,x),x))

+ P(Y ≥ f(q,x)|x) log(1− g(f(q,x),x))] (5)

Succinctly, by fixing any {q, x} and letting f(q,x) = z, then the inner part becomes P(Y <
z|x) log(g(z,x)) + P(Y ≥ z|x) log(1 − g(z,x)). For any function f(b) = −{a log b + (1 −
a) log(1 − b)}, its unique minimum is attained when b = a. Therefore, g(z,x) is optimal when:
g(z,x) = P(Y < z|x) =⇒ Y |X →d g(Y,X).
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The result is also robust to the distribution p(q) over percentiles as long as it has support over all
of (0, 1). Our default choice is the uniform distribution Unif(0, 1). The Beta distribution such as
β(0.5, 0.5) could as well be utilized if we want to emphasize the distribution on the tails. Proposition
1 reveals an interesting result: g has a fixed point at the optimal solution even when f is not optimal.
In the meantime, this raises an open ended question on how ‘sub-optimal’ an f can be to ensure
such property. In practice, each conditional distribution Y |X could vary on (−∞,∞), and having
f properly covering all areas in (−∞,∞) is not realistic. Instead, we could narrow our attention
to conditional distributions within certain percentile range, such as q ∈ (0.001, 0.999). In this way
each Y |X is bounded, and we can always come up with a reasonable f to search the space. For
example, a fixed uniform distribution f ∼ Unif(K1,K2) where K1 is small enough and K2 is large
enough to cover the outcome space it will satisfy the assumption.

The optimality of g leads to an additional question, which is whether our estimate will actually
achieve our optimal result. To do that, we sketch out a consistency proof of g that is independent
of f . This assumption is critically dependent on the existing M-Estimation theory (Van der Vaart,
2000). Prior to the statement of the theorem, we need to introduce additional notation. We define
any learned g to be a function δ that comes from function space ∆. We make this switch in notation
because the theorem is proved in the function space rather than the parameter space of g. We make
the assumption that the ground truth CDF function g0 is included in ∆ as δ0. Note that using this
function space is important for the theory because two different parameter settings in g can map
to the same function. Let d be a distance measurement (e.g., absolute difference in L1 or squared
difference in L2).

Next, note that the g-loss of a single sample g-lossi is:

−[1(yi<zi|xi) log(g(zi,xi)) + 1(yi≥zi|xi) log(1− g(zi,xi))]

Let the M -estimator Mn be the n-sample average of the objective evaluated at function g: Mn(g) =
−
∑n

i (g-lossi)/n and M(g) = −E(g-lossi) (true expectation). With that, we can now state the
theorem:

Theorem 2 For ε > 0, If the following three conditions are satisfied, then d(δ0, δ̂n) →P 0, as
n→∞.

1. sup
δ∈∆
|Mn(δ)−M(δ)| Pr−→ 0

2. sup
δ:d(δ,δ0)>ε

M(δ) < M(δ0)

3. The sequence of estimators δ̂n satisfy Mn(δ̂n) ≥Mn(δ0)− op(1)

To show that our optimal finite sample estimator is consistent (ĝn → g0, the ground truth conditional
CDF (δ0 in theorem)), we need to satisfy these three conditions. A detailed derivation can be found
in Appendix A, but we will give some intuition on the conditions. Note that in our derivations we
limit the function class to those that satisfy Lipschitz continuity in order to satisfy these conditions.
Lipschitz continuity can be imposed in neural networks (Arjovsky et al., 2017) and is a realistic
assumption in many uncertainty quantification problems because of the smoothness over q. The
main idea of the consistency proof is to link the function proximity δ → δ0 through their proximity
in the evaluated objective M(δ) → M(δ0). The first condition is a form of uniform convergence
in probability, and describes that the finite sample objective function should well-approximate the

7



ZHOU, LI, WU, AND CARLSON

objective function in expectation as the number of samples increases regardless of the chosen δ.
The second condition states that the ground truth δ0 is the only setting that maximizes the objective
function in expectation. The third condition states that we should have a sequence of functions δ̂n
(estimator) estimated at each finite sample of size n, that approximately equals δ0 in the the evaluation
of finite sample objective Mn. Their difference in finite sample objective Mn is commensurate with
a small quantity op(1) which converges in probability to zero as n→∞.

Then by the large sample property of condition (1), the limit of the sequence will dominate the
objective function in expectation. Thus, the δ̂n should be a consistent estimator for δ0, the only
maximum. Otherwise, it cannot dominate the objective function, which leads to a contradiction.

Succinctly, for our smooth model class, our estimator g is consistent.
While we assume that the optimization method will minimize the finite-sample objectives, recent

theoretical advances in deep learning suggest that it may be a reasonable assumption in practice (Du
et al., 2018), which covers related model setups.

Next we explore the fixed point properties on f :

Proposition 3 When the g-function is ideal, then the f -function is optimal under Eq. (4). The
optimum is attained when f captures the inverse CDF, i.e. f(q,x)→d Y |X given q ∼ Unif(0, 1).

Proof [Sketch of Proposition 3] For an ideal g-function, g(z,x) = P(Y < z|x) =⇒ g(f(q,x),x)
= P(Y < f(q,x)|x). Including this in our f -loss gives

min
θ

Eq∼p(q),x∼p(X)

[
(q − gγ(fθ(q,x),x))2

]
= min

θ
Eq∼p(q),x∼p(X)

[
(q − P(Y < fθ(q,x)))2

]
.

If we make q = P(Y < f(q,x)|x), then f -loss= 0 and the loss is optimal. Let the distribution
of Y |x be represented as Fx. Then we have q = P(Y < f(q,x)|x) =⇒ q = Fx(f(q,x)) =⇒
F−1
x (q) = f(q,x) =⇒ f(q,x)→d Y |X .

By combining Proposition 1 and 3, it is clear that our ideal functions are a fixed point when we
have access to the complete data distribution and our learned functions have sufficient complexity.
We observe from this proof that the fixed point of the f-loss in Eq. (4) relies on g’s optimal solution
to be achieved first. However, since f does not need to be optimal for g to learn effectively, we are
satisfied with getting f close to the true distribution to more efficiently search the space.

As a final note, since our theory is more robust on g than it is for f , we expect that using g to
capture uncertainty will perform better, which is also verified empirically in Section 5. Using f ,
though, is still a competitive solution, demonstrating that both networks are effectively learned with
these losses.

4.2 Learning Initialization and Stabilization

As demonstrated in Section 4.1, the learning of the g-function has a fixed point at the optimal
solution as long as the f -function possesses some mild properties. Regardless, we prefer the joint
learning scheme over g and f because a better f enables more efficient learning on g. Second,
we note that f can collapse if g becomes “too good” (100 % prediction confidence), as the loss
of f is embedded in g, and f learns the inverse CDF by inverting g. Therefore, it is important
that g is initialized properly and stays stable to prevent the f function from experiencing mode
collapse (Creswell et al., 2018; Salimans et al., 2016), deteriorating the efficiency of space exploration.
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For the initialization, we start by training g independently of f , also known as the pre-training
step. Instead of using fθ(qi,xi) to randomly generate samples from the conditional distribution,
we adopt a generator p(Z) with enough variability to help g conduct some initial explorations of
the distribution in the whole outcome space. As is shown Section 4.1, the space searching tool
p(Z) does not change the optimal value of g in expectation, so this is a reasonable initialization
technique. Here, we pick p(Z) to be a uniform distribution ranging below the smallest and above the
largest observed outcome U(min(y)−K,max(y) +K), such that z ∼ p(Z). Large and positive
K enforces the initial exploration of g on a larger space. It could also be chosen as the marginal
empirical distribution of outcomes, as long as enough variability is involved. This pre-training step
adopts the following loss,

−Ez∼p(Z),y,x[1(yi<zi|xi) log(g(zi,xi)) + 1(yi≥zi|xi) log(1− g(zi,xi))]. (6)

We will show in Section 5 that learning g with this pre-training procedure already makes a competitive
uncertainty method. For all the experimental datasets we included, the pre-training process plateaus
within 1,000 training iterations, which we interpret as a sign of quick stabilization. The pre-training is
further discussed in Appendix D. We usually prolong the pre-training iterations to be between 10,000
to 20,000 to fully stabilize g by searching the outcome spaces more extensively. This pre-training
process assists f and g in reinforcing each other during the joint learning process.

After g is pre-trained, we use the property described in Eq. (1) to robustify and refine the training
under the full collaborating networks framework by jointly learning f and g. Specifically, for ideal
functions the mapping g(f(u,X), X) = u reduces the g-loss to −[q log(q) + (1 − q) log(1 − q)]
for a given q. Thus, a requirement for a well-trained network is that the output from the g function
actually matches the chosen p(q) distribution, which it should do in an optimally trained model. We
enforce this condition by constraining the first and second moment of the logits in the g-network.

g-lossγ : Eq∼p(q),x,y∼p(X,Y )

[
`(1(Y <fθ(q,x)), gγ(fθ(q,x),x))

]
, (7)

s.t. Eq∼p(q),x,y∼p(X,Y )[σ
−1(gγ(fθ(q,x),x))] = Eq∼p(q)[σ−1(q)],

Eq∼p(q),x,y∼p(X,Y )[(σ
−1(gγ(fθ(q,x),x)))2] = Eq∼p(q)[(σ−1(q))2].

Here, σ−1(·) is the inverse sigmoid function (or logit function), σ−1(q) = log(q/(1− q)), and maps
from a probability to logits. Since we define q ∼ p(q) as the uniform distribution in practice, these mo-
ments are straightforward to calculate as Eq∼Unif(0,1)[(σ

−1(q))] = 0 and Eq∼Unif(0,1)[(σ
−1(q))2] ≈

3.29. While at first glance, enforcing these constraints seems like it may require a detailed optimiza-
tion algorithm, it can be accomplished approximately by using batch normalization functions (Ioffe
and Szegedy, 2015). Instead of the typical batch normalization function, it is implemented with the
learned affine transformation on the output replaced by a predefined scale and shift to approximately
match these idealized first and second moments. This technique forces the predicted coverage to
roughly match the implied optimal distribution over q, stabilizing learning and providing additional
information to the model to reduce overfitting. This regularization is another merit of learning the g
and f jointly. Another indication of this regularization is that the g-loss will plateau around 0.5 after
f appropriately learns its inverse, since Eq∼Unif(0,1)[−q log(q)− (1− q) log(1− q)] = 0.5. This
phenomenon in the training loss is observed in each of our experimental datasets, and more details
can be found in Appendix D. In practice, we prefer to have q ∼ Unif(0, 1), as a well learned inverse
CDF with uniform quantile generator emulates the data generating process of the true distributions
which discriminate high versus low density regions. Because of this, we expect that a learned f could
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Algorithm 1 Full Learning Algorithm
[Input]: Training samples {xi, yi}, for i = 1, · · · , T . A random generator q ∼ p(q) for percentile
and a random generator p(Z) to generate value z for space searching during the pre-training.
[Output]: Model parameters θ and γ.

[Optional] Reduce the raw covariates of X .
Pre-training to initialize g:
for iter = 1...N iter

pre do
Sample a mini-batch from training samples and generate zi ∼ p(Z) for space searching.
Optimize pre-train loss in Eq. (6).

end for
Joint learning f and g:
for iter = 1, · · · , N iter do

Sample a mini-batch of training samples and generate percentiles qi ∼ p(q) for each sample.
Optimize f-loss in Eq. (4).
Optimize g-loss in Eq. (3).

end for

be weak in tails because they cover a wide region with low densities compared to the high-density
middle region. This phenomenon is observed in the experimental results of Section 5. This limitation
could be addressed by choosing a heavy-tailed q distribution (e.g., q ∼ Beta(.5, .5)); however, since
we primarily evaluate on the g function this is not a limitation in practice.

With these aforementioned techniques, the learning algorithm has been highly stable and robust
in our empirical evaluations. This full procedure is shown in Algorithm 1. In our setup, we define g
as a multilayer perception (MLP) with 2 hidden layers and f with 3 hidden layers. The full model
specifications are given in Appendix C. The computation cost is comparable to training two regular
MLPs. When we trained the networks with a single NVIDIA P100 GPU, the pre-training process ran
at 483 it/s, and updates of g and f in the joint learning process ran at 152 it/s with batch size of 128
and an input feature space size of less than 50. Empirically, 20,000 pre-training iterations and 20,000
joint training iterations are sufficient to yield good uncertainty estimates for dataset with fewer than
10,000 samples.

5. Results

In the following sections we report on our empirical simulations. We explore the impact of learning
the f network in Section 5.2. We then evaluate our proposed method on synthetic data to explore
its performance compared to competing methods and the optimal ground truth functions in Section
5.3. Then we compare methods on multiple real-world datasets in Section 5.4, showing improved
performance across a variety of tasks. We include three variants of CN in this experimental section to
evaluate CN’s theoretical properties empirically. The first two variants come from the joint learning
framework over g and f , and we denote the distributions estimated by g as “CN-g” and f as “CN-f.”
The third variant is learn g with a fixed f , which is denoted as “g-only.”
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5.1 Metrics

We base our uncertainty estimation evaluation on four main criteria, which are described mathemat-
ically below. First is calibration, which measures how well the predicted coverage of certain interval
matches with the actual coverage. Second is sharpness, which evaluates the width of the interval.
For example, if two methods both have calibrated intervals, but one method has a much smaller
range of uncertainty, it is preferred. Third, we evaluate how well we capture the full conditional
distribution by evaluating a discretized approximation to the conditional log-likelihood. Fourth, we
evaluate prediction of the median of the data by evaluating Mean Absolute Error (MAE). We note
that it is possible to evaluate Mean Squared Error (MSE) as well, but this requires averaging over the
full conditional CDF. Median estimates, as evaluated by MAE, are more natural to evaluate in these
methods.

5.1.1 CALIBRATION

Our quantitative calibration definition follows established literature (Kuleshov et al., 2018; Gneiting
et al., 2007). A predicted nominal quantile is well calibrated when

Ep(Y |X)[y(q1,X) < Y < y(q2,X)] = q2 − q1, (8)

which holds ∀ 0 ≤ q1 ≤ q2 ≤ 1, X ∈ X .
In practice, we could also construct intervals with different widths on which the calibration

property should still hold. Hence, we introduce a more generic notation for intervals with q (e.g. 95
%) nominal level as Iq,x for Y |X = x. The miscalibration at q can be quantified as the absolute
difference between q and the true probability of Y |X = x falling in this interval: |u− PY |X=x(Y ∈
1u,x)|. In practice, only one or a few samples givenX = x can be observed, hence the miscalibration
is aggregated over the full data, and has become a marginal concept. The miscalibration at q can be
defined as follows:

ˆcalq = |q −
N∑
i=1

I(yi ∈ Iq,i)/N |. (9)

This quantity ˆcalq can be evaluated and averaged over a sequence of qj ∈ {q1, ...qM} between
(0, 1) to evaluate calibration on the full spread of outcome distributions. The importance of each
nominal level q can also vary by assigning different weights wq, which creates a metric:

ˆcal =
M∑
j=1

wqj
ˆcalqj/M. (10)

Note that several definitions of the interval could be used. For the purpose of our study, we pick
two-sided equal tail interval [yq/2,X , y1−q/2,X ] as our uncertainty objective. In empirical evaluation
for ˆcal, we picked equally spaced 8 percentiles, with q1 = 0.02, q8 = 0.98 and all weights wqj set as
1. In some scenarios, 90% intervals are of special interest for decision making, so we also report the
empirical coverage for intervals at the nominal 90% level,

9̂0% =

N∑
i=1

I(yi ∈ I0.9,i)/N. (11)

11
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Note that the metrics ˆcal and 9̂0% do not discriminate between a marginally calibrated method
and a conditionally calibrated method as both can perform well on these metrics. Thus, we require
additional metrics to fully evaluate the methods.

5.1.2 SHARPNESS

At first glance, evaluating sharpness appears straightforward because a sharper method should
produce narrower interval given any proposed nominal level q. However, simply reporting the interval
width under any nominal level q does not form a fair standard for comparing sharpness, as it could
reward some less calibrated methods which achieve sharpness by sacrificing calibration and being
overconfident in interval estimate. While some prior works do report sharpness as a function of
the nominal interval and evaluate the sharpness versus calibration tradeoff (Gneiting et al., 2007;
Thiagarajan et al., 2020), we instead focus on making a visual approach to characterize the trade-offs
between empirical coverage generated by each method and the predicted average width.

Explicitly, given a method, for any proposed nominal level qj , we first generate the uncertainly
interval for each validation sample i with lower and upper bound Iqj ,i = (lqj ,i, uqj ,i). The median
interval width under qj can be represented as widthqj = medNi=1(uqj−i, lqj ,i). Then we calculate
the true frequency also known as the empirical coverage value of outcomes truly covered by these
intervals: q̂j =

∑N
i=1 I(yi ∈ Iqj ,i)/N . We repeat this procedure for different qj and generate a

mapping between {q̂j , widthqj}. By plotting q̂j against widthqj , we produce a curve characterizing
the empirical coverage and interval sharpness. Sharp methods will correspond to a lower curve in
this visualization result.

This will allow the reader to understand the sharpness with regards to the actual coverage, as this
evaluation does not reward methods that achieve “sharpness” by producing overly confident intervals.

5.1.3 PREDICTIVE LOG-LIKELIHOOD APPROXIMATION: GOODNESS OF FIT

In order to assess how well the predicted conditional distribution actually fits the data, a standard
statistical approach is to evaluate the log-likelihood. Because the algorithms we are comparing more
naturally produce intervals rather than probability density functions, this is challenging to do directly.
Instead, we will use a “goodness-of-fit” (gof ) metric that approximates the log-likelihood by using a
discretization of the interval. Specifically, we discretize the real line into mutually exclusive bins
B1, B2, · · · , Bm, and

⋃
iBi = R. The discretization approximation to our log-likelihood is then

given by

ˆgof(P̂ ) = 1
N

m∑
j=1

N∑
i=1

I(yi ∈ Bj) log(P(Yi ∈ Bj |xi). (12)

In all our experiments, we picked 10 bins, with B1 ∈ (−∞, a1], and B10 ∈ (a9,∞), with a1 and a9

denoting the fifth and ninety-fifth percentile of the empirical distribution on Y . The intermediate
bins were chosen to be equally spaced between those intervals.

Note that the log-likelihood values here will be maximized in expectation when the estimated
distribution exactly matches the conditional distribution, which could also be viewed as compre-
hensively assessing the calibration and sharpness. Note also that the values of our ˆgof metric are
dependent on the locations of a1, ..., a9 and the number of bins. However, these are held constant for
all algorithms for a fair comparison.
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5.1.4 MEAN ABSOLUTE ERROR

The mean absolute error is minimized in theory if the point estimate captures the true median of
the outcome. For each observation i, we estimate its conditional median ŷ(.5,X=xi), and define the
MAE as follows:

MAE =
N∑
i=1

|ŷ(.5,X=xi) − yi|/N. (13)

5.2 Impact of Learning the f -Network

Since f only needs to satisfy mild conditions for g to be able to learn effectively in the asymptotic
limit, it might seem unnecessary to learn f at all.

We set up a synthetic example to evaluate the impact of learning f in the finite sample case.
To facilitate visualization, we draw N = 100 equally spaced points between [−0.5, 0.5],

{x1, · · ·x100}, to form a covariate space with a single dimension. For each subject i with covariate
xi, we draw Yi|xi ∼ N(sin (4πxi), [0.5 + 0.3 sin (4πxi)]

2). The range of the covariate, [−0.5, 0.5],
covers two full periods of the trigonometric mean function, sin (4πxi), and the heteroskedastic error
assigns larger outcome uncertainty to subjects with larger mean values. Appendix C gives the full
training details.

We adopt an overparameterized neural network architecture, which creates an interpolating
setting in a typically trained neural network (Belkin et al., 2019). We first demonstrate that overfitting
occurs for the point predictions from the mean squared error (MSE) loss, the conditional median
(QR 0.5), the conditional 25’th quantile (QR 0.25), and the conditional 75’th quantile (QR 0.75)
estimated by the quantile regression. Quantile regression is designed to approximate any conditional
quantile information for a given q ∈ (0, 1). These methods all collapse to the observed outcomes
and present little spread as shown in Figure 2(a).

Next, we evaluate the learned distribution for different variants of CN by comparing their
estimated medians and Inter-Quartile Range (IQR) versus the ground truth. First, we set up the
g-only approach with f fixed as the uniform distribution, U(−2.5, 3.5), which we denote as U-g.
We do not enforce the moment matching as in Section 4.2. U-g does not collapse (Figure 2(b)),
but its median and interval estimates are poor. Next, we set f to the ground truth conditional CDF.
This setting is infeasible in practice, but will evaluate performance with the theoretically optimal
f . We denote this case as T-g, and it gives good agreement to the ground truth, as shown in Figure
2(c). Finally, we use the full framework of CN to learn the outcome distributions with the results
of learned g (CN-g) and f (CN-f) functions presented in Figure 2(d) and 2(e) respectively. CN-g
and CN-f both have good median estimates, but CN-g’s interval estimates are sharper and closer to
the true values. While the performance of full CN is not quite as good as T-g in constructing sharp
intervals, it is drastically better than using a suboptimal f function and more precisely predicts the
spread of the true distribution.

From this setup, we see that while using a suboptimal f does not effect g in the asymptotic
limit, it does in the finite sample case. Since setting f to the ground truth distribution is not realistic,
it is important to adopt the collaborating structure. To address how this impacts the function’s
convergence to the true distribution, we set up a second study to explore how these different modeling
approaches match the theoretically optimal distribution (true distribution) as N increases in this
generation procedure using the ˆgof metric. Training details can be found in Appendix C. The
performances are visualized in Figure 3.
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(a) MSE Loss and Quantile Regression
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(b) Learning g with a fixed uniform f : U-g
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(c) Learning g with an optimal f : T-g
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(d) Full Collaborating Networks Strategy: CN-g
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(e) Full Collaborating Networks Strategy: CN-f

Figure 2: Visualizations of uncertainty estimates in a 1-d synthetic dataset. 2(a) shows that MSE
and Quantile Regression (QR) methods essentially fit all data exactly in these settings.
2(b), 2(c) visualize the median and uncertainty estimate of g given a fixed f function from
uniform distribution (U-g), a fixed f function from the theoretically optimal distribution
(T-g). 2(d) and 2(e) give the results of g (CN-g) and f (CN-f) functions learned under the
complete collaborating networks scheme.
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Figure 3: Visualization of ˆgof from T-g, CN-g, CN-f and U-g with varying training size.

When f is the true inverse CDF, T-g stabilizes at small values of N with excellent performance.
The joint learning scheme (CN-g) has only a small performance margin to when we known the
inverse CDF. On the other hand, U-g and CN-f’s curve of ˆgof progress much slower, requiring
many more samples for the same performance. In practice when the inverse CDF is unknown, the
collaborating learning scheme should be preferred over a fixed f since it leads to faster convergence
as a function of data samples. Note, though, that all methods converge to the ground truth distribution
asymptotically, which is consistent with our theory.

5.3 Comparisons on Synthetic Data

We propose two synthetic cases to evaluate how well the Collaborating Networks recover the
ground truth conditional distribution, which we denote as the theoretically optimal uncertainty
estimate (TH). The first synthetic case uses a heteroskedastic Gaussian distribution, which offers
scale and location transformations. The second case is simulated under the Weibull distribution that
varies through scale and shape transformations. We include the three variants of CN: CN-g, CN-f,
and g-only (with fixed f ) to further assess their empirical performance. Moreover, six extra methods
that are capable of estimating outcome uncertainties are also encompassed for full comparison. The
first method is MC Dropout (DP), an approximate Bayesian inference for Gaussian process assuming
homoskedastic outcome error (Gal and Ghahramani, 2016). The second is Concrete Dropout (CDP)
which uses the same dropout scheme while combining heteroskedastic error (Gal et al., 2017). Then
we have the exact Gaussian process regression (GPR) and parametric Gaussian process regression
(PPGPR) (Jankowiak et al., 2020). The latter accounts for homoskedasticity and emulates the
outcome distribution with variational methods. The fifth method is the Deep Ensemble Model (EN),
which is constructed by fitting and combining five heteroskedastic regressions (Lakshminarayanan
et al., 2017). The last method is the Conformilized Quantile Regression CQR, a two-step method
that first estimates intervals through quantile regression and then adjusts the interval with residual
errors for finite sample calibration (Romano et al., 2019). CQR is not scalable for full distribution
estimation as it estimates one nominal level q at a time. Hence, CQR is skipped for ˆgof evaluation.

In the two synthetic cases, each method is run for 10 replications. The means and standard devia-
tions of their evaluation metrics over these replications are reported. In these synthetic experiments,
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the MAE evaluation is compared to the ground truth medians which are known to us. This is to help
us better gauge a method’s closeness to the ground truth value. The detailed model specifications and
tuning strategies for all methods are described in Appendix C.

5.3.1 SCALE AND LOCATION SHIFT WITH A GAUSSIAN DISTRIBUTION

The first synthetic data follows a Gaussian distribution with a unique mean and variance value for
each sample, yi ∼ N (µi, σ

2
i ). Specifically, µi ∼ N (0, 4), σi ∼ Unif(0.5, 2, 5), and the covariate

space xi = [µi, σi]. We generate 1,000 samples in total and each replication is based on randomly
splitting the dataset in a 7:3 ratio for training and testing. This heteroskedastic Gaussian example
represents an ideal setup for some of the competing methods: CPD, PPGPR and EN. DP and GPR
both assume the correct family (Gaussian), but slightly misspecify the uncertainty model by assuming
homoskdacticity rather than heteroskedasticity. On the other hand, CN and CQR do not require any
information on either the distribution or uncertainty a priori, and they learn such information through
their distribution approximations.

Table 1: Metrics on the heteroskedastic Gaussian synthetic data. In this case, the proposed methods
CN-g and g-only essentially match the theoretical optimal values, and match the perfor-
mance of EN, which assumes the correct model form. We use boldface for the first two
top-performing methods under each evaluation metric.

Method ˆcal(%) ˆgof 9̂0%(%) MAE

TH 1.535 ± 0.388 -1.668 ± 0.037 87.767 ± 1.651 -

CN-g 1.418 ± 0.741 -1.684 ± 0.039 89.233 ± 1.667 0.064 ± 0.029
CN-f 2.401 ± 0.865 -1.779 ± 0.070 86.267 ± 2.318 0.066 ± 0.034

g-only 1.631 ± 0.671 -1.701 ± 0.034 89.200 ± 1.851 0.108 ± 0.060

DP 2.934 ± 0.738 -1.782 ± 0.047 86.485 ± 1.452 0.131 ± 0.034
CDP 2.378 ± 1.243 -1.686 ± 0.038 90.129 ± 2.065 0.176 ± 0.038
GPR 4.283 ± 1.446 -1.777 ± 0.043 89.767 ± 1.745 0.103 ± 0.024

PPGPR 4.197 ± 1.478 -1.825 ± 0.088 82.967 ± 2.705 0.300 ± 0.055
EN 1.721 ± 0.464 -1.684 ± 0.050 88.348 ± 2.152 0.175 ± 0.023

CQR 1.936 ± 1.022 - 89.600 ± 1.873 0.728 ± 0.073

The empirical metrics are given in Table 1. All methods provide good marginal calibration results
by having ( ˆcal) less than 5% and nearly 90 % actual coverage for the nominal 90 % intervals. Based
on these results alone, all methods are competitive. However, since both ˆcal and 90 % are marginal
quantities, they do not penalize a method for failing to capture the heteroskedasticity. However, the
ˆgof and MAE metrics differ between the methods, revealing differences in how well they capture

the distribution. In the ˆgof evaluation, CN-g, EN and CDP all essentially match the theoretically
optimal value (TH). We assume that the heteroskedastic Gaussian assumption in EN and CDP give
them the edge in performance. Although PPGPR assumes heteroskedasticity, its variational inference
strategy might cause it to lose some extent of precision in discerning nuanced details of the ground
truth distributions. In MAE estimation, CN-g and CN-f prevail by more accurately capturing the
true medians. It is also suggested by our joint learning scheme that CN-f helps refine CN-g more
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in the middle spread of the outcome spaces. CQR has a less competitive MAE. Despite having an
unbiasedness property in large samples, this is not guaranteed for a finite sample approximation.
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Figure 4: Scatter plot of the optimal 90 % interval widths against the estimated 90 % interval widths
for all evaluation samples in the synthetic heteroskedastic Gaussian data. Points scattering
closely on the 45 degree dashed diagonal line indicates a good agreement with ground
truth. The full CN approach in 4(a) has overall the best agreement, whereas the competing
methods do not capture the varying width as well. Note that DP in 4(c) and GPR in 4(d)
both assume a fixed variance in each ensemble model, so intervals vary only slightly based
on the samples in DP and the functional uncertainty in the GPR.

Moreover, we could assess how each method responds to the heteroskedastic variance. Under
the Gaussian distribution, the optimal 90 % interval scales with σi (Lehmann and Romano, 2006).
To visualize the results, we estimate the 90 % intervals for all evaluation samples and plot their
interval widths against the optimal interval width. Having all points distributed near the 45 degree
diagonal line is an indication of accurately capturing the heteroskedasticity. The result is summarized
in Figure 4. Here, CN-g and CN-f visually have the best agreement with TH, as their resulting widths
scatter narrowly and only deviate in the extreme widths. g-only, CDP, PPGPR and EN all capture the
heteroskedasticity but present larger variations. CQR learns the basic trend of how uncertainty varies,
but with a lot more estimation variability. DP and GPR have intervals that vary only slightly because
they assume a fixed variance on top of functional uncertainty.
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(a) Random sample 1 CDF: µi = −1.34, σi = 1.77
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(b) Random sample 2 CDF: µi = −1.41, σi = 2.09
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(c) Random sample 1, difference to the true CDF
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(d) Random sample 2, difference to the true CDF

Figure 5: Visualization of the estimated CDF against the ground truth CDF (TH) for two random
samples in the synthetic case 1. CN-g and g-only closely mimic the true CDF curves for
both of the random samples.

We further evaluate whether the estimated conditional CDF reproduces the ground truth by
sketching the estimated distributions in Figure 5. Note that CN-g and g-only almost perfectly mimic
the ground truth, and this holds up across a variety of input features. Except for the tail regions, CN-f
provides a close match to TH as suggested by the property of our joint learning scheme. Compared
with the three variants of CN, other methods less accurately describe the individual distributions.

5.3.2 SCALE AND SHAPE TRANSFORMATION WITH A WEIBULL DISTRIBUTION

The second synthetic example is based on the Weibull distribution. The Weibull distribution’s
support is on non-negative values and is frequently used in survival analysis to model the relationship
between failure and time (Collett, 2015). The Weibull distribution has two parameters that define its
scale (λ) and shape (k). Each sample yi is generated from a Weibull distribution with a unique scale
λi ∼ Unif(0.5, 2) and an unique shape ki ∼ Unif(1, 5). The input covariates to the method are
xi = [λi, ki]. We generate 1,000 samples and each split of training and testing sample follow a 7:3
ratio.
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Note that the Gaussian distribution can provide approximations to the Weibull distribution
(Kulkarni and Powar, 2011), but they are ultimately from two different distributional families.
Therefore, all Gaussian models are subject to misspecification. Table 2 summarizes the metrics
on these results. CN-g dominates three out of four metrics and is comparable to the ground truth
(TH). EN and CDP are no longer as competitive as CN-g in this case. Due to their flexibile
heteroskedastic Gaussian structures, they are still able to give reasonable uncertainty estimates, and
they both outperform the other homoskedastic Gaussian methods. As the Weibull distribution is not
a symmetric distribution like the Gaussian, all Gaussian based approaches fall short in estimating the
true median. CQR still calibrates the marginal uncertainty well, but does not accurately estimate the
median values.

Table 2: Metrics on the Weibull synthetic data. In this non-Gaussian conditional distribution, it is
clear that CN nearly matches the theoretically optimal values (TH), and methods assuming
Gaussianity struggle.

Method ˆcal (%) ˆgof 9̂0% (%) MAE

TH 2.169 ± 0.874 -1.816 ± 0.032 86.700 ± 1.402 -

CN-g 2.158 ± 1.398 -1.843 ± 0.037 88.633 ± 2.335 0.036 ± 0.011
CN-f 3.661 ± 1.385 -2.066 ± 0.147 83.400 ± 3.408 0.037 ± 0.010

g-only 2.928 ± 1.629 -1.865 ± 0.052 88.667 ± 2.352 0.053 ± 0.019

DP 22.424 ± 1.110 -2.384 ± 0.037 98.766 ± 0.395 0.087 ± 0.019
CDP 6.544 ± 1.500 -1.914 ± 0.049 95.566 ± 1.106 0.072 ± 0.009
GPR 10.337 ± 2.031 -2.096 ± 0.043 93.800 ± 1.492 0.082 ± 0.013

PPGPR 4.418 ± 2.023 -2.057 ± 0.119 82.900 ± 2.599 0.109 ± 0.018
EN 2.845 ± 0.892 -1.906 ± 0.052 91.333 ± 1.842 0.093 ± 0.009

CQR 3.007 ± 1.382 - 89.633 ± 1.791 0.246 ± 0.025

Considering the Weibull distribution’s utility in survival analysis, we additionally estimate the
survival probability to compare how well each method captures the scale and shape information.
Given a method, we estimate the survival probability beyond 1 (P(Yi > 1|Xi = xi) for all evaluation
samples and plot their estimates against the ground truth values. From Figure 6, we observe that
CN-g has the best agreement with TH; CN-f and g-only also estimate the survival probability well,
but have more variability. CDP, PPGPR and EN perform better than DP and GPR on average in
capturing the survival probabilities, but are still restricted due to their model misspecification.

Finally, we use each method to estimate individualized CDF and plot them against the ground
truth for some random drawn examples. The result is shown in Figure 7. Here, CN-g and g-only
outperform the other methods, and CN-g gives closer distribution approximation in the second
example than g-only. CN-f provides good estimates in the middle but not on the tails, likely due to
the Weibull distribution’s heavier tail. The three variants of CN assign nearly zero probabilities to
the outcome region near 0, which exemplifies their good understanding of Weibull outcomes after
proper learning. On the other hand, all Gaussian methods give relatively large probabilities to the
outcome region near 0 especially in the second example in Figure 7(d). Their struggles are attributed
to approaching an asymmetric family of distribution with their symmetric forms.
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Figure 6: Scatter plot of the estimated survival probabilities, P(Yi > 1|X = xi), against the true
survival probabilities on all evaluation samples in the Weibull synthetic data. Points
scattering closely on the 45 degree dashed diagonal line indicates a good model fit. The
full model (CN-g) provides a close fit to the true distribution 6(a). The model variants CN-f
and g-only in 6(b) and 6(c) are close but comparatively less precise. The other Gaussian
based approaches are limited by model misspecifications, shown in 6(d), 6(e) and 6(f).

5.4 Comparisons on Real-world Datasets

In this section, we evaluate our methods on six real-world dataset examples. In addition to
the comparisons on CN-g, CN-f, g-only, DP, CDP, GPR, PPGPR, and CQR used in the synthetic
experiments, we include calibrated regression (CR) that provides post-hoc recalibration to a trained
model (Kuleshov et al., 2018). As DP is not always guaranteed to be well calibrated (Gal and
Ghahramani, 2016), we use CR as a second calibration step for DP (DP-CR). The introduction of CR
is also helpful in demonstrating that our sharpness evaluation is invariant despite a model’s calibration.
The first four datasets are publicly available UCI datasets with relatively small sample size2. They
are Computer Hardware Data Set (CPU), Individual household electric power consumption Data Set
(Energy), Auto MPG Data Set (MPG), Communities and Crime Data Set (Crime), which were studied
in published literature for outcome calibration (Kuleshov et al., 2018). The fifth is a publicly available

2. http://archive.ics.uci.edu/ml/datasets
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(a) Random sample 1 CDF: λi = 1.34, ki = 1.51
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(b) Random sample 2 CDF: λi = 1.39, ki = 2.05
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(c) Random sample 1, difference to the true CDF
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(d) Random sample 2, difference to the true CDF

Figure 7: Visualization of the estimated CDFs compared to ground truth survival curves (TH) for
two random samples of the Weibull synthetic data. CN-g and g-only closely mimic the
true survival curves for both of the random samples, and CN-g slightly outperform g-only
in the second random example in 7(b). CN-f struggles on the tails of the distribution. We
believe that this is due to the fact that the network does not see that many tail samples
and can tend to shrink towards the mean; regardless, CN-f is still a competitive method.
Gaussian based approaches struggle as their approximations for the Weibull distribution
(asymmetric) are based on a symmetric distribution (Gaussian).

Kaggle dataset3 which tracks the delay of domestic flights by large airline carriers (Airline). This
dataset consists of 1,936,785 observations and has been utilized in published literature to evaluate the
performance of Gaussian process regression (Hensman et al., 2013; Salimbeni and Deisenroth, 2017).
The last dataset considered consists of electronic health records developed from the Southeastern
Diabetes Initiative (SEDI) (Miranda et al., 2013). This collection of data includes diabetic patients
medical records with the goal to forecast Hemoglobin A1c. There are records from 18,335 patients
with at least 6 and at most 122 A1c measurements with additional demographic information and lab
values. The total number of visits (records) for these 18,335 patients is 1,162,905. The measurements

3. https://www.kaggle.com/usdot/flight-delays
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from individual visits were discretized to monthly entries. A patient’s first visit was considered
to occur in the 0th month, so all time stamps are time since first measurement. Electronic health
records are rife with missing data and informative missingness, so recent medical-record-specific
LSTM-based methods were used as the base model in all methods to address this challenge (Che et al.,
2018). Informative missingness refers to the concept that when we do or do not have observations
contains information by itself in addition to the observed value (Che et al., 2018). To predict the
outcome distributions, we followed two strategies. First, we fit an LSTM model for mean prediction
and then use the latent representation extracted from LSTM as input features for all competing
methods. For CN, we purposed a second strategy to define the g and f networks as LSTMs: CN-g
(LSTM), CN-f (LSTM), g-only (LSTM). These full networks are optimized collectively.

We demonstrate with all six datasets how our method can scale and adapt to complex data
structures and be flexibly combined with many network architectures. Training and evaluation
follows a 0.6/0.4 split. Each method is run 10 times and we report their standard deviations on the
evaluation metrics in the first four datasets. In the last two datasets, each method is evaluated on a
single split due to the higher cost of computation. The detailed preprocessing process can be found
in Appendix C, which includes removing missing values and encoding categorical variables. The
following Table 3 summarizes the sample size and input feature of each preprocessed dataset.

Table 3: Sample size and input feature size of the preprocessed datasets.

Data CPU Energy MPG Crime Airline EHR

Sample Size (N) 209 1,441 392 1,993 797,126 192,425
Feature Size(P) 6 7 7 15 44 201

Table 4 gives the calibration results and the nominal 90 % interval coverage. CN-g and g-only
outperforms other competing methods in calibrating the nominal interval coverage in 5 out of 6 cases.
The CN-f is capable of generating intervals that have fair calibration but is not as strong. As Airline
and EHR are two large datasets, CN’s large sample property is highlighted and we witness improved
calibration for CN-g,CN-f and g-only. CQR also has consistently good calibration results across
the different cases. All heteroskedastic Gaussian approaches on average generate uncertainties that
calibrate outcomes better than their homoskedastic counterparts. DP’s performance varies, and it
fails to calibrate well enough nearly in all cases. However, after adjusting DP with CR (DP-CR), the
overall calibration is effectively rectified.

In addition to ˆcal, we also visualize how well a method calibrates each of the proposed nominal
levels. Figure 8 summarizes the results for Airline and EHR datasets. In these two datasets, we
observe that the three variants of CN barely differ from the true nominal levels, which provides
further evidence on CN’s consistency and stability in calibrating all nominal levels simultaneously.
It is also shown that CN-f calibrates well at lower nominal levels but is weaker for larger nominal
levels, consistent with the finding that CN-f is weaker at estimating tails.

Then we turn to two model fitting metrics, as MAE reflects the accuracy for the median estimates
and ˆgof reflects the accuracy for the distribution estimates, shown in Table 5. The CN methods dom-
inate in almost all datasets, with CN-g typically performing the best. g-only marginally outperforms
CN-g in small datasets with less than 500 samples (CPU and MPG) in ˆgof , and closely follows CN-g
in large datasets. g-only’s edge in small datasets and in its combined version with LSTM could be
due to its single loss structure, which eases its parameter optimization. CN-f still excels in capturing
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Table 4: Quantitative calibration results on the real-world dataset. Each method is given ( ˆcal / 9̂0%)
on each dataset. Because the EHR dataset was on a secure system, it had compatibility
issues with the CQR software and no result is given. In EHR dataset, the result of combining
CN with LSTM is reported in the parentheses. The symbol ∗ denotes that the full dataset
was not used due to computation or storage infeasibility in implementing the corresponding
methods. Appendix C includes the details of this approach. In the EHR dataset, the joint
optimization of CN with the LSTM is reported in the parentheses.

Method/Data CPU Energy MPG
ˆcal/9̂0% (%) ˆcal/9̂0% (%) ˆcal/9̂0% (%)

CN-g 4.62 ± 2.16 / 80.96 ± 3.64 1.78 ± 0.63 / 88.80 ± 1.26 3.16 ± 1.16 / 86.02 ± 2.14
CN-f 7.78 ± 1.68 / 72.41 ± 3.79 2.42 ± 0.81 / 88.29 ± 1.71 6.03 ± 1.02 / 75.32 ± 2.58
g-only 4.59 ± 2.01 / 88.67 ± 4.35 2.00 ± 0.91 / 88.95 ± 1.74 3.31 ± 1.35 / 86.21 ± 2.38

DP 35.58 ± 1.26 / 99.64 ± 0.77 15.36 ± 0.57 / 97.55 ± 0.54 29.79 ± 0.67 / 99.93 ± 0.19
DP-CR 5.61 ± 1.81 / 89.63 ± 5.18 2.45 ± 0.76 / 88.95 ± 2.37 3.82 ± 1.01 / 89.10 ± 3.15
CDP 4.88 ± 1.99 / 92.53 ± 1.93 2.17 ± 0.68 / 86.44 ± 2.34 4.58 ± 1.37 / 89.94 ± 2.03
GPR 6.82 ± 1.81 / 83.49 ± 4.73 3.53 ± 1.01 / 89.65 ± 1.56 5.19 ± 1.27 / 90.26 ± 2.52
PPGPR 10.61 ± 3.21 / 74.58 ± 6.45 6.98 ± 1.17 / 77.29 ± 2.30 7.14 ± 1.93 / 77.46 ± 3.47
EN 6.17 ± 3.45 / 81.69 ± 6.66 6.58 ± 1.41 / 77.95 ± 1.97 3.64 ± 1.22 / 85.32 ± 2.90
CQR 4.81 ± 2.12 / 89.88 ± 3.24 2.23 ± 0.94 / 91.01 ± 1.11 3.59 ± 1.29 / 91.47 ± 3.53

Method/Data Crime Airline EHR
ˆcal/9̂0% (%) ˆcal/9̂0% (%) ˆcal/9̂0% (%)

CN-g 2.70 ± 1.51 / 87.89 ± 1.72 0.30 / 90.36 0.18 / 90.01 (0.25 / 89.25)
CN-f 2.86 ± 1.50 / 88.38 ± 1.72 0.47 / 90.89 0.47 / 90.39 (0.65 / 89.09)
g-only 2.92 ± 1.55 / 87.43 ± 2.26 0.25 / 90.57 0.15 / 90.10 (1.61 / 89.81)

DP 15.72 ± 0.42 / 96.32 ± 0.39 16.16 / 96.39 20.71 / 97.36
DP-CR 1.60 ± 0.74 / 91.21 ± 1.20 0.64 / 89.67 0.34 / 90.45
CDP 10.65 ± 0.86 / 73.99 ± 1.18 5.03 / 91.46 3.64 / 89.03
GPR 7.84 ± 0.49 / 89.94 ± 0.99 8.30 / 93.16 6.46 / 90.62 ∗

PPGPR 4.00 ± 0.87 / 83.33 ± 1.18 7.02 / 93.61 2.98 / 90.25 ∗

EN 9.08 ± 0.67 / 76.39 ± 2.04 7.89 / 93.93 1.74 / 88.62
CQR 1.78 ± 0.85 / 90.27 ± 1.52 0.38 / 90.04 -

the middle spread of the outcome (MAE), but is less so on ˆgof because it struggles with the tails
of the distribution. As a Gaussian distribution provides a close approximation to many families
of distributions and also because of the central limit theorem, Gaussian based approaches provide
good uncertainty estimates in many cases such as in CPU and MPG, which is reflected by their ˆgof .
Nonetheless, in the cases where the outcome distribution is non-symmetric and less Gaussian-like,
CN’s advantage becomes more salient as it approximates a wider spectrum of outcome distributions.
For example, in the crime data, the outcome is the number of violent crimes per 100K population,
and the Poisson distribution is usually the appropriate choice for this type of outcomes (Short et al.,
2008). Since most of the regions have very low crime rate4, a larger sample size might be required
to approximate the distribution as a Gaussian-like. CR efficiently re-calibrate DP via a two-step

4. https://archive.ics.uci.edu/ml/datasets/communities+and+crime
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(a) Airline calibration
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(b) EHR calibration

Figure 8: Visualization of the difference between the nominal and the empirical coverage for two
real-world datasets: Airline and EHR. Curves lying closely on the 0 % horizontal line
represents a good calibration result. In both cases, the three variants of CN consistently
calibrate all nominal levels.
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(a) Crime sharpness
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(b) EHR sharpness

Figure 9: Visualization of the interval sharpness for two real-world dataset: Crime and EHR. The
true coverage for every nominal level of coverage is calculated for each method. These true
coverages (x axis) are plotted against the median interval widths under that true coverage
level (y axis). A curve in low position can be interpreted as given a level of true coverage,
it generates comparatively narrower intervals, which gives sharpness. CN-g typically
generates sharper intervals for both cases.

procedure, and has also rectified its understanding of the outcome uncertainties by augmenting the
model fitting ( ˆgof ).
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Table 5: Quantitative accuracy results on the real-world dataset. Each method is given (MAE /
ˆgof ) metric for each dataset. It is not computationally feasible to calculate ˆgof for CQR.

The symbol ∗ denotes that the full dataset was not used due to computation or storage
infeasibility in implementing the corresponding methods. Appendix C includes the details
on this approach. In the EHR dataset, the joint optimization of CN with the LSTM is
reported in the parentheses.

Method/Data CPU Energy MPG
MAE / ˆgof MAE / ˆgof MAE / ˆgof

CN-g 0.169 ± 0.022 / -1.053 ± 0.182 0.529 ± 0.013 / -1.796 ± 0.036 0.256 ± 0.010 / -1.289 ± 0.091
CN-f 0.167 ± 0.017 / -1.626 ± 0.354 0.529 ± 0.013 / -1.957 ± 0.132 0.257 ± 0.010 / -1.780 ± 0.022
g-only 0.155 ± 0.021 / -1.031 ± 0.147 0.531 ± 0.014 / -1.796 ± 0.036 0.262 ± 0.016 / -1.288 ± 0.071

DP 0.167 ± 0.027 / -2.265 ± 0.135 0.553 ± 0.015 / -2.009 ± 0.032 0.259 ± 0.011 / -1.928 ± 0.043
DP-CR 0.167 ± 0.028 / -1.294 ± 0.098 0.553 ± 0.015 / -1.859 ± 0.022 0.259 ± 0.013 / -1.338 ± 0.097
CDP 0.174 ± 0.030 / -1.020 ± 0.088 0.549 ± 0.018 / -1.887 ± 0.043 0.252 ± 0.011 / -1.281 ± 0.081
GPR 0.190 ± 0.043 / -1.310 ± 0.213 0.548 ± 0.016 / -1.850 ± 0.024 0.250 ± 0.012 / -1.293 ± 0.066
PPGPR 0.197 ± 0.042 / -1.286 ± 0.234 0.569 ± 0.016 / -2.122 ± 0.063 0.249 ± 0.013 / -1.394 ± 0.113
EN 0.191 ± 0.039 / -1.178 ± 0.181 0.567 ± 0.014 / -2.105 ± 0.076 0.263 ± 0.017 / -1.412 ± 0.207
CQR 0.203 ± 0.050 / - 0.552 ± 0.017 / - 0.276 ± 0.018 / -

Method/Data Crime Airline EHR
MAE / ˆgof MAE / ˆgof MAE / ˆgof

CN-g 0.384 ± 0.015 / -1.379 ± 0.041 0.545 / -1.824 0.445 / -1.525 (0.463 / -1.554)
CN-f 0.384 ± 0.015 / -1.459 ± 0.047 0.546 / -1.829 0.446 / -1.566 (0.463 / -1.652)
g-only 0.387 ± 0.016 / -1.383 ± 0.041 0.547 / -1.830 0.453 / -1.539 (0.453 / -1.517)

DP 0.443 ± 0.008 / -1.898 ± 0.040 0.565 / -2.207 0.464 / -1.969
DP-CR 0.443 ± 0.009 / -1.749 ± 0.045 0.532 / -1.905 0.457 / -1.660
CDP 0.408 ± 0.009 / -2.017 ± 0.094 0.571 / -2.122 0.462 / -1.699
GPR 0.403 ± 0.006 / -1.717 ± 0.038 0.606 / -2.152 0.506 / -1.797 ∗

PPGPR 0.400 ± 0.009 / -1.719 ± 0.059 0.588 / -2.100 0.472 / -1.663 ∗

EN 0.430 ± 0.010 / -1.932 ± 0.082 0.564 / -2.049 0.456 / -1.644
CQR 0.431 ± 0.020 / - 0.562 / - -

Figure 9 summarizes the interval sharpness information by plotting the true interval coverage
against the median interval width for each method. A lower curve indicates that a method generates
sharper intervals. In most tested tasks, CN is either the sharpest or equally sharp to competing
methods. In addition to the evaluation on numeric metrics, the sharpness plots also supports CN-g’s
advantage in more accurately capturing the conditional distributions as it achieves both calibration
and sharpness instead of trading one for another. We also learn from this sharpness plot that CR’s
recalibation on DP does not enforce sharper intervals. CR improves calibration by adjusting nominal
level to match up with the empirical level. However, it does not extract extra information from the
data.

In the EHR dataset, as patients did not visit hospitals in a regular pattern, their visiting times are
heterogeneous, which enables us to further assess how each method responds to this heterogeneity.
We use the 90% interval width to study heterogeneity in visiting times, since each method is able to
reach approximately 90% true coverage given 90% nominal levels. For each of the following criteria
on last observation time(t): t ≤ 8; t > 8 , we randomly select 2,000 observations and compare the
estimated interval widths among different methods. The result is encapsulated in Figure 10 with
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Figure 10: Visualization of the distributions of the generated 90 % intervals for different last observa-
tion times(t). The x axis describes the two criteria for last observation times: t ≤ 8; t > 8.
For each criterion, 2,000 random observations are selected to generate the distribution
of the corresponding interval withds (y axis) under each method. DP and GPR are not
included as they assumes homoskedasticity, so their intervals do not vary much. The
legend denotes each method and their respective empirical coverage under the nominal
90 % level.

boxplots. First, we notice that as times increases, the interval widths generally get larger with more
spread, which indicates these models’ agreement on giving larger variability and uncertainty to the
data points with increased time. Under each time, the position of CN-g’s IQR is lower than the others.
It also reflects CN-g’s sharpness as it reaches approximately the same true coverage but with mostly
narrower intervals. Overall, CN’s joint learning framework shows its capability in drawing reliable
uncertainty estimates for large-scale complex data, and producing significantly sharper intervals.
These uncertainty estimates can be used to derive future values for patients, and our empirical results
suggest that the uncertainty intervals are highly trustworthy.

6. Discussion and Conclusion

In this paper we propose a collaborative learning scheme by simultaneously training two neural
networks that characterize the CDF and inverse CDF of the conditional distribution P (Y |X). The
computational cost of training CN is approximately the same as training two MLPs with fast conver-
gence. In all of our empirical evaluations, CN’s performance was stable with varying architectures.
Even with overparameterization we did not see a significant change in the interval quality, whereas we
observed overfitting in this scenario in several competing methods. In analyses of real-world datasets
and synthetic data, our method showed its capability in drawing reliable uncertainty estimates from
small to large-scale data with both non-temporal and temporal data structures. Empirically, our
proposed method gives more accurate estimates of coverage and improved sharpness compared to
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the competing approaches. The method is supported by our theoretical analysis, and appears to be
robust in practice.

In Supplemental Section E, we show that CN has the potential to be extended to multi-output
problems. The computation cost of our proposed extension increases linearly with respect to the
size of output. Moving forward, we will also consider extensions to causal inference to model the
heterogeneous treatment effect for each individual and focus on interpretable modeling.
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Appendix Appendix A. M estimator for the consistency

We start by restating Theorem 1 in Section 4.1 for an M-Estimator due to Van der Vaart (2000):
Theorem 1

For ε > 0, if the following three conditions are satisfied, then d(δ0, δ̂n)→P 0, n→∞

1. sup
δ∈δ
|Mn(δ)−M(δ)| →P 0

2. sup
δ:d(δ,δ0)>ε

M(δ) < M(δ0)

3. The sequence of estimators δ̂n satisfy Mn(δ̂n) ≥Mn(δ0)− op(1)

In this theorem, we define ∆ as a function space. δ0 is the ground truth. Mn represents the
sample average of objective as a function of δ, and M represents the expectation as a function of δ.
The whole theorem to prove the consistency of estimator δ̂n is based on a maximization framework.

A.1 Marginal Consistency

We first prove the consistency of our estimating function in marginal form without X ⊂ Rd.
Throughout the rest of this document we use K as a positive constant that may have different values
in different situations.

27



ZHOU, LI, WU, AND CARLSON

A.1.1 CONSISTENCY OF g-NETWORK

Defining a Alternative Form of the Objective Function.
From the g-loss, we have

1[Y <f(q)] log(g(f(q)) + 1[Y≥f(q)] log(1− g(f(q)),

where f(q) can be replaced by any C ∼ G(c). G(c) is a pre-defined distribution, which does not
influence the consistency as long as it has support over (0, 1).

We assume that the distance measurement is the cumulative probability density of C, i.e. µ(c) =
P(C ≤ c). Based upon that, the distance between two functions can be defined as

d(F1, F2) = {
∫
|F1(c)− F2(c)|2dµ(c)}1/2. (14)

Then our g-loss can be re-written as:

−
[
(1[Y≤C] log(g(C)) + (1− 1[Y≤C]) log(1− g(C))

]
To use Theorem 1 to prove the function consistency, we need to transform the original minimization
problem of our g-loss into a maximization problem. The new objective function is:

max
g

[
(1[Y≤C] log(g(C)) + (1− 1[Y≤C]) log(1− g(C))

]
.

With the above objective, minimizing the g-loss is equivalent to maximizing the the objective function
with respect to M(g). Further, define

Mn(g) = 1/n
n∑
i=1

[
(1[Yi≤Ci] log(g(Ci)) + (1− 1[Yi≤Ci]) log(1− g(Ci))

]
and

M(g) = E
[
(1[Y≤C] log(g(C)) + (1− 1[Y≤C]) log(1− g(C))

]
,

where g is the general form for a CDF function and therefore should be monotonically non-decreasing.

Defining a New Parameter Space. In reality, it is impossible to learn the full span of the dis-
tribution with limited training samples (i.e., we get very few samples on the tails). For inference,
we are only interested in exploring a partial range, [φ1, 1 − φ2] (i.e., [0.025, 0.975]). Assuming
that there exist two real numbers low and high, such that for positive small numbers φ1 and φ2,
g0(low) = P(Y ≤ low) = φ1 and 1− g0(high) = P(Y > high) = 1− φ2, where g0 is the ground
truth CDF. Thus, we bound the domain of the exploring space to be within [low, high], which can
always be adjusted to cover the inference of interest.

Based upon the above claim, δ (function in Theorem 1) can be further extended as any functions
within the following family.

F : {Monotonically non-decreasing [low, high]→ [φ1∗, 1− φ2∗]}, (15)

where 0 < φ1∗ < φ1, 0 < φ2∗ < φ2 (that is, ∆ = F for ∆ in Theorem 1). It is always possible
to find the range, since we can choose small number or scale the variables in practice. Under this
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setup, since we are only interested in learning a fraction of the distribution function within a bounded
domain, it is possible to define a well-behaved function to generate the output C. Specifically, we
define C ∼ Unif [low, high], where each point is placed with equal importance, then according
to Van Der Vaart and Wellner (1996), for every r ≥ 1(in our case r = 1 for the L1 norm),

F ′ : {Monotonically non-decreasing and smooth, R→ [−1, 1]},

we have
logN[ ](ε,F ′, Lr(P )) ≤ K(r)(1/ε),

where we choose P = µ, the probability measure for C. Note that N[ ] is the notation for bracketing
number, which stands for the complexity of the family of functions (Van Der Vaart and Wellner,
1996). It is trivial to show that F ⊂ F ′ when we restrict the domains of all functions in F ′ to be
[low, high]. Then we have the bracketing number for our function space

logN[ ](ε,F , Lr(P )) ≤ K(r)(1/ε).

Therefore, ∀ g ∈ F , ∃ui, li, s.t. li ≤ g ≤ ui, where P |ui − li| ≤ ε and i ∈ 1, 2, · · · , O(exp(K/ε)).
Based upon the above inequality, the new family of functions is defined as with

M = {mg, g ∈ F}. (16)

We can easily construct a bracket for this new function by bracketing mg with

mu
i = 1[Y≤C] log(ui(C)) + (1− 1[Y≤C]) log(1− li(C))

and
ml
i = 1[Y≤C] log(li(C)) + (1− 1[Y≤C]) log(1− ui(C)).

Then by mean value theorem | log x| ≤ K|x − 1|, for any x with a positive lower bound, the
probability measurement for any space (∆, C) and measurement Pδ,c, there is

Pδ,c

∣∣∣mu
i −ml

i

∣∣∣ = Pδ,c

(
mu
i −ml

i

)
= E

[
1[Y≤C] log

{
ui(C)

li(C)

}
+ (1− 1[Y≤C]) log

{
1− li(C

1− ui(C)

}]
= Ec

[
g(C) log

{
ui(C)

li(C)

}
+ (1− g(C) log

{
1− li(C)

1− ui(C)

}]
≤ KEc [g(C) {ui(C)− li(C)}+ {1− g(C)} {ui(C)− li(C)}]
= KP (ui − li) ≤ Kε.

Therefore, it is proved that

N[ ](Kε,M, L1)) = O(exp(K/ε)) <∞.

Hence, our newly definedM in Eq. (16) is from the Glivenko-Cantelli class. It ensures the uniform
convergence of the functions in M, and therefore condition 1 in Theorem 1 follows naturally
(Van der Vaart, 2000).
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The second condition focuses on proving that the expectation of the loss function has enough
separation between two different functions. Let g0 denote the ground truth g-function, then the
difference of evaluated objective function M under two function g and g0 is

M(g0)−M(g) =Ec

[
g0(C) log

g0(C)

g(C)
+ {1− g0(C)} log

1− g0(C)

1− g(C)

]
=Ec

[
g(C)

{
g0(C)

g(C)
log

g0(C)

g(C)
− g0(C)

g(C)
+ 1

}]
+ Ec

[
{1− g(C)}

{
1− g0(C)

1− g(C)
log

1− g0(C)

1− g(C)
− 1− g0(C)

1− g(C)
+ 1

}]
For function with form h(x) = x log x − x + 1, it can be shown that for a large Z > 0, there

exists CZ , s.t. h(x) > CZ(x− 1)2, 0 < x < Z. Then

M(g0)−M(g) ≥ KEc

[
g(C)

{
g0(C)

g(C)
− 1

}2

+ {1− g(C)}
{

1− g0(C)

1− g(C)
− 1

}2
]

≥ Kd2(g, g0)

where d() is defined in Eq. (14). Condition 2 follows with the above inequality.
Condition 3 is obvious if we can get the maximum likelihood estimator (MLE) ĝn with the

full class defined by class F in Eq. (15). In practice, we try to attain the MLE within a function
class defined by neural networks, and we need to show that the maximization by neural networks
still makes the condition hold. Note that based on the proof of Theorem 1 (Van der Vaart, 2000), F
includes both g0 and ĝn for large n, i.e., ĝn is monotone. Hence, to guarantee this monotonicity, we
further assume this class attained by neural network is a subclass of F and defined by

F∗ : {Monotonically non-decreasing, attainable by neural network [low, high]→ [φ1∗, 1−φ2∗]}.

Now, we take a detour for establishing condition 3. Assuming that there exists gn ∈ F∗,
s.t. Mn(gn) > Mn(g0) − op(1). Additionally, with the fact Mn(ĝn) ≥ Mn(gn) when the neural
networks reach the finite sample maximization, we get

Mn(ĝn) > Mn(g0)− op(1).

Hence with all three conditions are satisfied, we can arrive at

d(ĝn, g0)→p 0, n→∞

Now, we switch our focus to the existence of the function gn. To simplify the argument,
assume g′0 is the true density function (the derivative of the CDF g0) which has a positive lower
bound within [low, high]. From the Universal Approximation Theorem, there exists a function
g′n(x) =

∑
i viφ(wix+ b) attained by a neural network, s.t. ‖g′n(x)− g′0(x)‖∞ < o(1). Then for

large n, g′n also has a positive lower bound.
Next we define gn =

∫
g′ndx. From this definition, it is easy to see that gn has form gn(x) =∑

i viψ(wix+ b), with ψ =
∫
φ, that is, gn(x) is also attained by neural network. Besides, we have
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‖gn(x)− g0(x)‖∞ < o(1). In addition, by the fact that for any large n, g′n also has a positive lower
bound, we know that gn is also a monotone function for any large n. This proves that gn ∈ F∗.

In the following, we will show Mn(gn) > Mn(g0)− op(1) to finish the verification of condition
3 and complete the proof. Since

|Mn(gn)−Mn(g0)| ≤ 1

n

n∑
i=1

∣∣∣∣1[Yi≤Ci] log
gn(Ci)

g0(Ci)
+
(
1− 1[Yi≤Ci]

)
log

1− gn(Ci)

1− g0(Ci)

∣∣∣∣ ,
and ∣∣∣∣1[Yi≤Ci] log

gn(Ci)

g0(Ci)
+
(
1− 1[Yi≤Ci]

)
log

1− gn(Ci)

1− g0(Ci)

∣∣∣∣ ≤ ∣∣∣∣log
gn(Ci)

g0(Ci)

∣∣∣∣+

∣∣∣∣log
1− gn(Ci)

1− g0(Ci)

∣∣∣∣
≤ K/min(φ1∗, φ2∗)o(1) = o(1),

by the fact that | log x| ≤ K|x− 1| for x with positive lower bound and using the boundedness of g0

and the fact that ‖gn(x)− g0(x)‖∞ < o(1).
Then we know |Mn(gn)−Mn(g0)| ≤ o(1). Therefore,

Mn(gn) > Mn(g0)− op(1).

A.1.2 CONSISTENCY OF f

The form of f -loss determines its strong reliance on the g function. This dependency shows up in
both the consistency and the fixed point solution. Although we can use the g function to directly solve
the quantiles, we are still interested in showing that f can reach consistency under some additional
assumptions.

We start by showing a stronger version of convergence of g. Previously, we have shown that g is
consistent in probability, now assume that we have:

sup
c∈[low,high]

|ĝn(c)− g0(c)| →p 0 (I)

When ĝn is attained, f̂n can be defined as ĝ−1
n , which minimizes the empirical f -loss as q =

ĝn(ĝ−1
n (q)). The question is whether the sequence of f̂n converges to f0 as expected.

We want to show that
sup

q∈[φ1∗,1−φ2∗]
|ĝ−1
n (q)− g−1

0 (q)| →p 0

since g0 is a monotonic and continuous function, its inverse g−1
0 is monotonic and continuous,

and its domain is a compact set [φ1∗, 1 − φ2∗]. Therefore, it is uniformly continuous. Let’s
define any q ∈ [φ1∗, 1 − φ2∗], we have yq = g−1

0 (q). assume that we have δ > 0, s.t. when
|q − q′| < 2δ =⇒ |g−1

0 (q)− g−1
0 (q′)| = |yq − g−1

0 (q′)| < ε. Hence,

g0(yq − ε) < q − δ and g0(yq + ε) > q + δ (II).

If not, we have g0(yq − ε) ≥ q − δ then |yq − ε − yq| < ε, which is a contradiction! The same
statement is true for the second part. With (I), we also have N1, s.t. when n > N1, we have
|ĝn(c)− g0(c)| < δ. Now, let ŷn,q = ĝ−1

n (q). We want to show that |yq − ŷn,q| < ε.
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Proof by contradiction: if yq − ŷn,q ≥ ε⇐⇒ yq − ε ≥ ŷn,q, then g(yq − ε) > ĝn(yq − ε)− δ ≥
ĝn(ŷn,q)− δ = q− δ, that contradicts with (II). Therefore, yq − ŷn,q < ε. The other direction can be
proved similarly. Then we get |yq − ŷn,q| < ε. In this whole process, we showed that for n ≥ N1

|ĝn(yq)− g0(yq)| < δ =⇒ |g−1
0 (q)− ĝ−1

n (q)| < ε,

which further implies that

P

(
sup

c∈[low,high]
|ĝn(c)− g0(c)| < δ

)
≤ P

(
sup

q∈[φ1∗,1−φ2∗]
|ĝ−1
n (q)− g−1

0 (q)| < ε

)
→ 0,

that completes the proof.

A.2 Extension to conditional distribution

In general, we are estimating the distribution of Y |X to prove the consistency of g. We still rely on
the construction of M-estimator, but limit it to a multivariate function family. The major difference
for the general case is using the smoothness of the conditional distribution to establish a multivariate
function family is a Glivenko-Cantelli while for the marginal case we have shown that a univariate
monotone function class is a Glivenko-Cantelli. The detailed proof for the general case with the
conditional distribution is otherwise almost the same with the previous proof and is not presented
here. In the following, we only present the theorem (Van Der Vaart et al., 1996) for evaluating the
bracketing number for a smooth multivariate function class and therefore verifying that the function
class is a Glivenko-Cantelli.

Theorem 4 Suppose X ⊂ Rd to be bounded and convex with nonempty interior.
There exists a constant K, depending only on α, diagram X , and d, s.t

logN[ ](ε, C
α
1 , Lr(P )) ≤ K(1/ε)d/a

In terms of the convergence of f , we can still ensure that it holds for each fixed covatiate X = x.
For the full covariate space of X , its convergence speed could differ given different X . However,
f is used under the CN framework as an auxiliary learning function only, and forcing it to learn
together with g makes space exploration more efficient on high density areas. Practically, g is our
choice for predicting the outcome uncertainty, which is also shown to empirically outperform f in
our experiments.

Appendix Appendix B. Proofs of Additional Claimed Properties

Lemma 5 The sampling distribution G on the quantiles does not influence the optimal solution of
f(·), as long as G’s support is on (0,1). F (q,X)→d Y |X given q ∼ Unif(0, 1).

Proof For g-loss and f-loss to attain its maximum, we have shown in the main article that for fixed X
and q ∈ (0, 1), the optimal solution is F−1

X (q) = f(q,X). Replacing the sampling distribution from
q ∼ Unif(0, 1) to any G, the optimal solution for each fixed q ∈ (0, 1) is still F−1

X (q) = f(q,X),
∀ q ∈ (0, 1) Therefore, we still have

F−1
X (q) = f(q,X),
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which perfectly learns the inverse CDF.

Lemma 6 The optimal g and f functions do not change if g-loss1=g-loss+ext is used to train the g
function, where ext = λEqEx(q − g(f(q,x),x))2 (λ is the tuning parameter and λ > 0)

Proof Since ext ≥ 0, so min g-loss≤ min g-loss1. Using the prior fixed point optimal solution
of g(z,x) = P(Y < z|x), f(q,x) = yq,x, we find that EqEx(q − g(f(q,x),x))2 = 0, since
g(f(q,x),x) = P(Y < f(q,x)|x), and P(Y < f(q,x)|x) = P(Y < yq,x|x) = q, so min g-loss=
min g-loss1, so g-loss1 also gets its minimization with same optimal solution.

Lemma 7 gof(p̂) = Ey,x∼p(Y,X) [log(p̂(y|x)] , is minimized when the estimated conditional density
p̂(y|x) matches the true density p(y|x): p̂(y|x) = p(y|x).

Proof For any estimated density of p̂(y|x) the difference of log likelihood evaluated by p(y|x) and
p̂(y|x) can be expressed as

D(p̂(y|x), p(y|x)) = Ey,x∼p(Y,X) [log(p̂(y|x)]− Ey,x∼p(Y,X) [log(p(y|x)] .

It can be simplified as,

D(p̂(y|x), p(y|x)) = Ex∼p(X) [log(p̂(y|x)/p(y|x)] p(y|x)dy

< Ex∼p(X)

[
log(

∫
y
p̂(y|x)/p(y|x)× p(y|x)dy)

]
(Jensen’s Inequality)

= Ex∼p(X)

[
log(

∫
y
p̂(y|x)dy)

]
= 0

Therefore, the true density always minimizes the expectation.

Appendix Appendix C. Description on Neural Network and Experimental Details

C.1 Model Specification

C.1.1 LEARNING UNDER A SUBOPTIMAL SETTING

We adopt over-parameterized neural network structures and a small learning rate to achieve an
environment where a method can easily overfit the data. The learning rate for all methods is fixed
to be 1e-5 with ADAM optimizer (Kingma and Ba, 2014). We set the batch size to be equal to the
sample size of 100 throughout all methods. For the four benchmarks that estimate points regarding
the conditional means with the MSE loss and three conditional quantiles(QR 0.5,QR 0.25,QR 0.75)
with the quantile regression losses, we designed the neural network structure as a feed-forward
network with two hidden layers both of size 1,000, and it uses ReLU as the layer activation function
(Nair and Hinton, 2010). For CN, the g function in this section is designed to be a feed-forward
network with two hidden layers both of size 1,000 and the f function is designed to be a feed-forward
network with three hidden layers all of size 1,000. The eLU activation function (Djork-Arné et al.,
2016) is used for both both g and f in CN.
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C.1.2 NETWORK FOR CONVERGENCE COMPARISONS

The auxiliary function f is set to be the ground truth for T-g, and a uniform distribution for U-g. In
this case, we stop using the over-parameterized network structures. We reduced the network size for
computational efficiency as a feed-forward network with two hidden layers with size of 100 and 80;
and the f function is designed as a feed-forward network with three hidden layers with size of 100,
80 and 60. The learning rate for g is 1e-4 and f is 5e-4. The batch size is set as 200 for all training
sizes. In the case where training sample size is less than 200, the batch size is automatically reduced
to the sample size.

C.1.3 NETWORKS FOR DATA ANALYSIS

This section describes the networks used in the experiments and their specifications in the two
synthetic examples and six real-world datasets. For methods that rely on stochastic gradient descent
(CN, DP, CDP, PPGPR, and EN), we set the batch size for CPU and MPG datasets to 64, and the rest
of the datasets to 128.
CN: The CN-g and g-only function in this section are both designed to be a feed-forward network
with two hidden layers of size 100 and 80, and the f function is designed as a feed-forward network
with three hidden layers with layer sizes of 100, 80, and 60. We use eLU as the activation function for
each layer. At the end of each layer, batch normalization is used. The optimizer of g and f functions
under the CN framework are based on ADAM with the step size fixed as 1e-4 and 5e-4 respectfully.
In the EHR dataset, we connect the existing forms of f and g with a 200-unit LSTM to create their
LSTM-modified versions. The LSTM units are updated together with each update of f and g.
DP: MC-dropout is implemented according to
https://github.com/yaringal/DropoutUncertaintyExps. The hidden layer archi-
tecture is identical to the g network in CN for a fair comparison. We use the recommended parameter
length scale 1e-2, and ADAM with the default settings. We tune over precision parameter τ and
dropout rate with grid search based on gof . The prediction of outcome is achieved by generating
1,000 posterior samples to estimate the first and second moment for the approximate Gaussian
Distribution. We train with 300 epochs in each experiment.

The second step, calibrated regression (Kuleshov et al., 2018), is implemented by fitting the
interp1d function from python scipy package with its default setting for less calibrated initial
estimates. Note that we first split the training data into 6/4 to generate a calibration mapping. Then
we train using the full training data and utilize the established mapping for the implementation of
DP-CR.
CDP: Concrete Dropout is implemented according to https://github.com/yaringal/
ConcreteDropout. Except for changing the hidden layer architecture to be the same as g, we
adopt all the recommended settings from the git repository. The predictions are approximated
by generating 1,000 posterior samples to estimate the first and second moment of the Gaussian
Distribution. We train with 300 epochs in each experiment.
GPR: The implementation of the exact Gaussian process regression is based on python package gpy-
torch, https://docs.gpytorch.ai/en/v1.1.1/examples/01_Exact_GPs/. We
used the RBF kernel and the trained for 100 epochs. Due to the intractability of fitting GPR and
storing the GPR object for large datasets, we used 1/20 of the airline and 1/5 of the EHR datasets to
generate the results of GPR.

34

https://github.com/yaringal/DropoutUncertaintyExps
https://github.com/yaringal/ConcreteDropout
https://github.com/yaringal/ConcreteDropout
https://docs.gpytorch.ai/en/v1.1.1/examples/01_Exact_GPs/


COLLABORATING NETWORKS

PPGPR: The implementation of the parametric Gaussian process regression is also based on python
package gpytorch. We used an RBF kernel. The heteroskedasticity in GPR is achieved by modifying
the marginal likelihood to PredictiveLogLikelihood according to https://docs.gpytorch.
ai/en/v1.1.1/marginal_log_likelihoods, which corresponds to the implementation
of PPGPR (Jankowiak et al., 2020). For datasets with size larger than 500, we randomly chose 500
points as inducing points. The system was trained for 200 epochs. Due to the intractability of storing
the PPGPR object for large datasets, we used 1/10 of the airline and 1/3 of the EHR datasets to
generate its results.

CQR: The conformalized quantile regression is implemented according to https://github.
com/yromano/cqr. We use its built-in random forest model with default parameter tuning
scheme and model specification. CQR can generate uncertainty interval for any specified nominal
level q at a time, but this is not scalable for the sketching of the full distribution, so we skip ˆgof
evaluation for CQR. The conditional median estimate using CQR is achieved by first estimating the
the uncertainty interval of which the left and right limit correspond to the conditional 49.5 % and
50.5 % quantiles. Then we take their average to obtain an approximation of the median.

EN: The deep ensemble model is implemented by stacking five heteroskedastic regressions. Each
of them were implemented by tensorflow probability, with negative log likelihood for Gaussian
distribution as its loss. The hidden layer architecture is identical to g network in CN for a fair
comparison. The optimizer is ADAM, and we use the inverse time decay with decay rate 1 and
decay step every 100 epochs through an available Keras module5. We train with 300 epochs for
each experiment. Grid search is employed to tune the a regularization term for variance estimates
based on gof . We use the mathematical expression of the predictive variance in Section 2.4 of
Lakshminarayanan et al. (2017) to calculate the heteroskedastic error of the outcome.

C.2 Dataset Preprocessing

Except for the EHR dataset, all datasets are normalized in both their input features and outcomes. All
categorical variables are re-coded in one-hot forms. Covariates with over half of the entries missing
are removed. In the Crime data, due to the strong correlation among its covariates, we extracted
the first 15 principle components which account for 86 % of its total variability. For the energy
data, the covariate of current time and the outcome of the previous observations are combined to
predict the current outcome. For the Airline dataset, we pick the first 800,000 observations and
remove observations with missing outcomes to constitute our experimental dataset. For electronic
health records data, the dataset is first discretized to month intervals. Missing data are imputed using
carry-last-one-forward or the population mean if no value is available. To help with informative
missingness, a binary indicator variable is augmented for each feature to mark whether the value
is real or imputed. After these preprocessing steps, an LSTM is applied to the data using 200 units
to predict the mean of the outcome with squared loss, but only the observed data contributed to the
calculation of empirical loss. We train it for 2,000 iterations with batch size 128 and default ADAM
optimizer. Then we output the LSTM units at those observed time points as the new covariate space
with an augmented variable added to represent the time since last visit for each current visit. Lastly,
we combine all the observed time points from all patients, which forms a long datasets.

5. https://keras.io/api/optimizers/learning_rate_schedules/inverse_time_decay/
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Appendix Appendix D. Visualizing Additional Results

In this section, we present some additional explorations and experimental results.
First, we visualize the loss of CN during the pre-training and post-training processes. We note

that the loss of g-only is exactly the loss for the pre-training process in CN-g. g-only does not have
the post-training and it uses the same loss throughout. We include three datasets to visualize their
losses. They are the first synthetic example with the heteroskedastic Gaussian distribution, the Airline
dataset, and the EHR dataset with an LSTM integrated into CN. The batch size is 128 in all three
examples. In the EHR dataset, the batch size for the LSTM modified CN is the complete trajectory
of 128 individuals. Each individual has multiple visits, so the 128 batch size include more data
points in this temporal setting, which produces smaller variations in their evaluated losses. Figure S1
characterizes the loss functions in the first 1,000 iterations of each of CN’s variants. All variants in
all three cases plateau within 1,000 interactions. The g-loss stabilizes around 0.5, which matches
the theoretical analysis. Figure S2 describes the losses of the full training process. Although each
method stabilizes early, we introduce the extended training to help in exploring the outcome spaces
more extensively and refining the learned distributions. It is observed that all variants of CN stay
stable for extended training iterations.

Next, we have the visualizations for calibration and sharpness in Figure S3 and S4. In all five
cases, CN-g is shown to generate both faithful and sharp uncertainty intervals.
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(a) Synthetic example 1
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(b) Synthetic example 1
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(c) Airline dataset
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(d) Airline dataset
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(e) EHR dataset (CN built into LSTM)
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(f) EHR dataset (CN built into LSTM)

Figure S1: The loss function in CN over first 1,000 in three datasets. All variants of CN in all three
cases plateaued within 1,000 interactions. g-loss stabilizes around 0.5, which matches
the theoretical analysis.
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(a) Synthetic Example 1
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(b) Airline dataset

0 10000 20000 30000 40000 50000
Training iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Em
pi

ri
ca

l l
os

s 0.5

g-loss(g-only)
g-loss(pre-training CN-g)
g-loss(CN-g)
f-loss(CN-f)

(c) EHR dataset (LSTM built into CN)

Figure S2: The full training loss of CN in three datasets. All variants of CN stay stable for extended
training iterations.
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Figure S3: This plot provides additional calibration results for the datasets explored in the
manuscripts. CN-g provides consistently good calibration on all levels of nominal
confidence. CN-f is relatively weak on the tails. In 3(e), both the two-step CN and the
joint LSTM-CN version calibrate the outcome uncertainty well. The worst miscalibration
level for CN-f is less than 5%.
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Figure S4: This plot provides additional visualizations on interval sharpness in the datasets explored
in the manuscripts. CN-g and g-only provide sharper empirical intervals as evident by
having lower curves. In 4(e), both the raw CN and their LSTM modified version generate
similarly sharp intervals.
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Appendix Appendix E. Extending CN to Multiple Outputs

Although the main focus of this manuscript is to estimate the conditional distribution of a single
outcome, CN can be straightforwardly extended to multiple outputs. Assume we have an output of
m dimensions as Y = {Y1, · · · , Ym} ∈ Rm. The joint distribution of p(Y |X) can be decomposed
by conditional distributions,

p({Y1, · · · , Ym}|X) = p(Y1|X)p(Y2|Y1, X) . . . p(Ym|Ym−1, · · · , Y1, X).

The order of the outcomes in the decomposition could be rearranged but that does not impact the
equivalence between the left and right side. The training of the joint conditional distribution is
characterized in Figure S5. For an output with m dimensions, we build m models sequentially. In the
first model, the feature space is X , which is used to learn the distribution of Y1|X . For the second
model, the feature space is the combination of Y1 and X to enable us to learn the distribution of
Y2|Y1, X . As we move along the chain, we sequentially combine the feature space and the observed
output of the last model to form a new feature space to train the present outcome. The model
complexity increases in linear time regarding fitting m models.

𝒇𝒎-loss
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Figure S5: The sequential training scheme for the m dimensional output {Y1, · · · , Ym}|X .

To make inferences in this framework we will use a sampling technique. For a single random
draw, we start by drawing a y1 given x with the learned model Y1|X . Then we feed the observed y1

and x to the model Y2|X,Y1 as its input feature to draw a random y2 and we continue this procedure
until a full set of {y1, · · · , ym} is drawn.

We use two synthetic cases with two-dimensional and correlated outputs to illustrate this strategy.
In the first case, we use a bi-variate Gaussian distribution. For each observation i, the outcome yi is
synthesized,

yi =

(
yi,1
yi,2

)
∼ N

((
µi,1
µi,2

)
,

(
σ2
i,1 0.5σi,1σi,2

0.5σi,1σi,2 σ2
i,2

))
.

The input space is xi = [µi,1, µi,2, σi,1, σi,2]. The outcome yi,1 and yi,2 both have heteroskedastic
errors and their correlation ρ = 0.5. The parameters are simulated as: µi,1 ∼ N (0, 2), µi,2 ∼
N (0, 2), σi,1 ∼ Unif(1, 2) and σi,2 ∼ Unif(1, 2). We draw 2,000 training samples to learn this
joint distribution. To demonstrate that the joint distribution is properly captured, we visualize the
estimated joint CDF of a random xi and compare it to the true value. The joint CDF here is defined
as F (z1, z2|xi) = P({yi,1 < z1} ∩ {yi,2 < z1}|xi). Figure S6 gives an example of the estimated
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Figure S6: Learning a bivariate Gaussian distribution. Given a random draw xi =
[2.977, 1.352, 1.139, 1.312], 6(a) and 6(b) are the true and estimated CDFs. Their abso-
lute difference in 6(c) demonstrates that the joint CDF is accurately learned.

joint CDF. We observe that the estimated value and the theoretical value are very close. Similar
results are achieved across many random draws.

For the second case, we demonstrate the learning of joint CDF with circular distribution whose
parameters are defined on the polar coordinate system. Specifically, we used the von Mises distribu-
tion to synthesize the angle ψ for our circular distribution. The von Mises distribution is also known
as circular normal distribution of which the PDF is defined as the following:

f(ψ | µ, κ) =
eκ cos(ψ−µ)

2πI0(κ)
.

The parameter µ and κ govern the location and shape of the distribution , and I0(κ) is the normalizing
constant. The density of ψ is symmetric around µ and it characterizes the distribution of ψ in the
support (0, 2π]. For each individual i, we set the input spaces to be two scale parameters for the
von Mises distribution: xi = [κ1,i, κ2,i], κ1,i ∼ Unif(0.5, 2) and κ2,i ∼ Unif(0.5, 2). Then we
generated two angles with the von Mises distribution given [κ1,i, κ2,i]: ψi,2 ∼ von Mises(0, κ1,i) and
ψ2,i ∼ von Mises(0, κ2,i). With fixed distance r = 1, these two angles correspond to the two points
in the polar coordinates: pi,1 = (1, ψi,1), pi,2 = (1, ψi,2). Then we convert the two points into the
Cartesian coordinate system: pi,1 = (cos(ψi,1), sin(ψi,1)) and pi,2 = (cos(ψi,2), sin(ψi,1)). Lastly,
the two-dimensional outputs are created by taking the average of the first and second coordinates:
yi = [yi,1, yi,2], yi,1 =

cos(ψi,1)+cos(ψi,2)
2 and yi,2 =

sin(ψi,1)+sin(ψi,2)
2 . We generate 5,000 training

samples for this case. The main purpose of this case is to show that CN can also learn the joint
distribution complicated by the transformation between the two coordinate systems.
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Figure S7: Given the random drawn [κ1,i = 1.409, κ2,i = 1.600], 7(a) and 7(b) are scatter plots
of 5,000 random samples simulated from the estimated and true distributions. We then
estimate their joint CDFs respectively in the Cartesian coordinate system . The absolute
difference in 6(c) demonstrates that the joint CDF is accurately learned.

We again visualize the estimated distribution in Figure S7. We observe a close match between
the estimated value and the true value concerning the joint CDF despite the increased complexity.

There are still a few challenges that require future research to make this framework more practical.
Although in theory the chain can be randomly ordered, it may impact the space searching efficiency
when the dimension goes higher. Thus, additional research regarding the relationship between each
output is necessary to create the most efficient order. In a one-dimensional setup, we have shown
that using g over f improved accuracy. However, using g for multiple outputs may bring unwanted
computational costs. As g models the CDF, we need to numerically invert it and use the inverse CDF
instead. On the other hand, although f naturally forms a framework of drawing random samples,
its weakness in the tails could also impact the quality of sampling given higher dimensions. Hence,
either improving the sampling easiness of g or rectifying the tail property of f is a challenge worthy
of further research.

As an alternative to this chain structure, the distribution can be modeled jointly by modifying the
g-loss to expand all possibilities of comparing Y1, · · · , Ym to any random value z = {z1, · · · , zm}
in the output space: 1Y1<z1,...,Ym<zm , 1Y1≥z1,··· ,Ym<zm , · · · , 1Y1≥z1,··· ,Ym≥zm . One caveat of this
alternative is that the computational cost increases exponentially since each z elicits 2m sets of
comparisons. Moreover, the design of f in a one dimensional framework is not straightforwardly
extendable for multiple outputs due to the difficulty of defining the higher dimensional inverse CDF.
Searching the space with a uniform distribution will be subject to the curse of dimensionality given a
large m. The strength of this tactic is its robustness to the ordering of outputs. Therefore, we are
interested in conducting further experiments to assess the properties of this alternative in the future.
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