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Abstract

We consider bounds on the generalization performance of the least-norm linear regressor,
in the over-parameterized regime where it can interpolate the data. We describe a sense in
which any generalization bound of a type that is commonly proved in statistical learning
theory must sometimes be very loose when applied to analyze the least-norm interpolant.
In particular, for a variety of natural joint distributions on training examples, any valid
generalization bound that depends only on the output of the learning algorithm, the number
of training examples, and the confidence parameter, and that satisfies a mild condition
(substantially weaker than monotonicity in sample size), must sometimes be very loose—it
can be bounded below by a constant when the true excess risk goes to zero.

Keywords: generalization bounds, benign overfitting, linear regression, statistical learn-
ing theory, lower bounds

1. Introduction

Deep learning methodology has revealed some striking deficiencies of classical statistical
learning theory: large neural networks, trained to zero empirical risk on noisy training data,
have good predictive accuracy on independent test data. These methods are overfitting
(that is, fitting to the training data better than the noise should allow), but the overfitting
is benign (that is, prediction performance is good). It is an important open problem to
understand why this is possible.

The presence of noise is key to why the success of interpolating algorithms is mysterious.
Generalization of algorithms that produce a perfect fit in the absence of noise has been
studied for decades (see Haussler, 1992, and its references) A number of recent papers have
provided generalization bounds for interpolating algorithms in the absence of noise, either
for deep networks or in abstract frameworks motivated by deep networks (Li and Liang,
2018; Arora et al., 2019; Cao and Gu, 2019; Feldman, 2020). The generalization bounds
in these papers either do not hold or become vacuous in the presence of noise: Li and
Liang (2018) rule out noisy data in Assumption A1; the data-dependent bound of Arora
et al. (2019, Theorem 5.1) becomes vacuous when independent noise is added to the yi;
adding a constant level of independent noise to the yi in the setting of Cao and Gu (2019,
Theorem 3.3) gives an upper bound on excess risk that is at least a constant; and the
analysis of Feldman (2020) concerns the noise-free case.
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There has also been progress on bounding the gap between average loss on the training
set and expected loss on independent test data, based on uniform convergence arguments
that bound the complexity of classes of real-valued functions computed by deep networks.
For instance, the results of Bartlett (1998) for sigmoid nonlinearities rely on `1-norm bounds
on parameters throughout the network, and those of Bartlett et al. (2017) for ReLUs rely
on spectral norm bounds of the weight matrices throughout the network (see also Bartlett
and Mendelson, 2002; Neyshabur et al., 2015; Bartlett et al., 2017; Golowich et al., 2018;
Long and Sedghi, 2019). These bounds involve distribution-dependent function classes,
since they depend on some measure of the complexity of the output model that may be
expected to be small for natural training data. For instance, if some training method gives
weight matrices that all have small spectral norm, the bound of Bartlett et al. (2017) will
imply that the gap between empirical risk and predictive accuracy will be small. But while
it is possible for these bounds to be small for networks that trade off fit to the data with
complexity in some way, it is not clear that a network that interpolates noisy data could
ever have small values of these complexity measures. This raises the question: are there
any good data-dependent bounds for interpolating networks?

Zhang et al. (2017) claimed, based on empirical evidence, that conventional learning
theoretic tools are useless for deep networks, but they considered the case of a fixed class
of functions defined, for example, as the set of functions that can be computed by a neural
network, or that can be reached by stochastic gradient descent with some training data,
no matter how unlikely. These observations illustrate the need to consider distribution-
dependent notions of complexity in understanding the generalization performance of deep
networks. The study of such distribution-dependent complexity notions has a long history
in nonparametric statistics, where it is central to the problem of model selection (see, for
example, Bartlett et al., 2002, and its references); uniform convergence analysis over a
level in a complexity hierarchy is part of a standard outline for analyzing model selection
methods.

Nagarajan and Kolter (2019) provided an example of a scenario where, with high proba-
bility, an algorithm generalizes well, but two-sided uniform convergence fails for any hypoth-
esis space that is likely to contain the algorithm’s output. Their analysis takes an important
step in allowing distribution-dependent notions of complexity, but only rules out the ap-
plication of a specific set of tools: uniform convergence over a model class of the absolute
differences between expectations and sample averages. Indeed, in their proof, the failure is
an under-estimation of the accuracy of a model—a model has good predictive accuracy, but
performs poorly on a sample (one obtained as a transformed but equally likely version of
the sample that was used to train the model). However, in applying uniform convergence
tools to show good performance of an algorithm, uniform bounds are only needed to show
that bad models are unlikely to perform well on the training data. So if one wishes to
provide bounds that guarantee that an algorithm has poor predictive accuracy, Nagarajan
and Kolter (2019) provided an example where uniform convergence tools will not suffice. In
contrast, we are concerned with understanding what tools can provide guarantees of good
predictive accuracy of interpolating algorithms.

In this paper, motivated by the phenomenon of benign overfitting in deep networks, we
consider a simpler setting where the phenomenon occurs, that of linear regression. Negrea
et al. (2020, Lemma 5.2) adapt the construction of Nagarajan and Kolter (2019) to show
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a similar failure of uniform convergence in this context, and similarly cannot shed light
on tools that can or cannot guarantee good predictive accuracy. We study the minimum
norm linear interpolant. Earlier work (Bartlett et al., 2020) provides tight upper and lower
bounds on the excess risk of this interpolating prediction rule under suitable conditions on
the probability distribution generating the data, showing that benign overfitting depends on
the pattern of eigenvalues of the population covariance, and there is already a rich literature
on related questions (Liang and Rakhlin, 2020; Belkin et al., 2019b,a; Hastie et al., 2019a,b;
Negrea et al., 2020; Derezinski et al., 2020; Li et al., 2020; Tsigler and Bartlett, 2020). These
risk bounds involve fine-grained properties of the distribution. Is this knowledge necessary?
Is it instead possible to obtain data-dependent bounds for interpolating prediction rules?
Already the proof of Bartlett et al. (2020) provides some clues that this might be difficult:
when benign overfitting occurs, the eigenvalues of the empirical covariance are a very poor
estimate of the true covariance eigenvalues—all but a small fraction (the largest eigenvalues)
are within a constant factor of each other.

In this paper, we show that in these settings there cannot be good risk bounds based on
data-dependent function classes in a strong sense: For linear regression with the minimum
norm prediction rule, any “bounded-antimonotonic” model-dependent error bound that
is valid for a sufficiently broad set of probability distributions must be loose—too large
by an additive constant—for some (rather innocuous) probability distribution. Here the
“model” in “model-dependent” refers to the output of the learning algorithm, which is an
estimate of the regression function. The bounded-antimonotonic condition formalizes the
mild requirement that the bound does not degrade very rapidly with additional data. Aside
from this constraint, our result applies for any bound that is determined as a function of
the output of the learning algorithm, the number of training examples, and the confidence
parameter. This function could depend on the level in a hierarchy of models where the
output of the algorithm lies. Our result applies whether the bound is obtained by uniform
convergence over a level in the hierarchy, or in some other way.

The intuition behind our result is that benign overfitting can only occur when the
test distribution has a vanishing overlap with the training data. Indeed, interpolating the
data in the training sample guarantees that the conditional expectation of the prediction
rule’s loss on the training points that occur once must be at least twice the noise level.
Using a Poissonization method, we show that a situation where the training sample forms a
significant fraction of the support of the distribution is essentially indistinguishable from a
benign overfitting situation where the training sample has measure zero. A data-dependent
bound that is valid in both cases must be loose in the second case.

2. Preliminaries and Main Results

We consider prediction problems with patterns x ∈ `2 and labels y ∈ R, where `2 is the space
of square summable sequences of real numbers. In fact, all probability distributions that we
consider have support restricted to a finite dimensional subspace of `2, which we identify
with Rd for an appropriate d. For a joint distribution1 P over Rd × R and a (measurable)

1. Throughout the paper, whenever we refer to a probability distribution over R, it is with respect to the
Borel σ-field.
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hypothesis h : Rd → R, define the risk of h to be

RP (h) = E(x,y)∼P [(y − h(x))2].

Let R∗P be the minimum of RP over measurable functions.

For any positive integer k, a distribution D over Rk is sub-Gaussian with parameter σ if,

for any u ∈ Rk, Ex∼D[exp(u · (x−Ex))] ≤ exp
(
‖u‖2σ2

2

)
. A joint distribution P over Rd×R

has unit scale if (X1, ..., Xd, Y ) ∼ P is sub-Gaussian with parameter 1. It is innocuous if

• it is unit scale,

• the marginal on (X1, ..., Xd) is Gaussian, and

• the conditional of Y given (X1, ..., Xd) is continuous.

A sample is a finite multiset of elements of Rd×R. A least-norm interpolation algorithm
takes as input a sample (x1, y1), ..., (xn, yn), and outputs hθ which maps x to θ ·x for θ ∈ Rd
that minimizes ‖θ‖ subject to∑

i

(θ · xi − yi)2 = min
(ŷ1,...,ŷn)∈Rn

∑
i

(ŷi − yi)2.

We will refer both to the parameter vector θ output by the least-norm interpolation algo-
rithm and the function x→ θ · x parameterized by θ as the least-norm interpolant.

A function ε(h, n, δ) mapping a hypothesis h, a sample size n and a confidence δ to
a positive real number is a uniform model-dependent bound for unit-scale distributions if,
for all unit-scale joint distributions P , all sample sizes n, and any least-norm interpolation
algorithm A, with probability at least 1− δ over the random choice of S ∼ Pn,

RP (A(S))−R∗P ≤ ε(A(S), n, δ).

Here h may be any measurable function from Rd to R for any d, and n and δ may be any
positive integer and positive real number. The bound ε is c-bounded antimonotonic for c ≥ 1
if for all h, δ, n1 and n2, if n2/2 ≤ n1 ≤ n2 then ε(h, n2, δ) ≤ cε(h, n1, δ). This formalizes
the requirement that the bound cannot get too much worse too quickly with more data;
doubling the sample size can degrade the bound by at most a factor of c. If ε(h, ·, δ) is
monotone-decreasing for all h and δ, then it is 1-bounded antimonotonic.

A set B ⊆ N is β-dense if liminfN→∞
|B∩{1,...,N}|

N ≥ β. Say that B ⊆ N is strongly β-dense
beyond n0 if, for all s ∈ N such that s2 ≥ n0,

|B ∩ {s2, ..., (s+ 1)2 − 1}|
2s+ 1

≥ β.

The β-dense notion is standard; it roughly corresponds to the informal idea that at least a
fraction β of the natural numbers are in B. Notice that if a set is strongly β-dense beyond
n0, then it is β-dense, but also is, in a sense, “locally” β-dense as well.

The following is our main result.
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Theorem 1 If ε is a bounded-antimonotonic, uniform model-dependent bound for unit-scale
distributions, then there are constants c0, c1, c2, c3, c4 > 0 and innocuous distributions P1

over Rd1 ×R, P2 over Rd2 ×R, ... such that for, for any least-norm interpolation algorithm
A, for all 0 < δ < c1, for all large enough n,

PrS∼Pn
n

[
RPn(A(S))−R∗Pn

≤ c0/
√
n
]
≥ 1− δ

but nonetheless, the set of n such that

PrS∼Pn
n

[ε(A(S), n, δ) > c2] ≥
1

2

is strongly (1− c3
log(1/δ))-dense beyond c4 log(1/δ).

The distributions Pn in the theorem are slight variations on a joint gaussian distribution:
the marginal distribution of x is gaussian with a covariance matrix chosen to satisfy the
conditions in (Bartlett et al., 2020) that ensure the benign overfitting property, and the
conditional distribution of y given x is a linear function of x plus noise, where the noise is
a mixture of mean-zero gaussians with different variances.

3. Proof of Theorem 1

Our proof uses the following lemma (Birch, 1963; Feller, 1968; Batu et al., 2000, 2013),
which has become known as the “Poissonization lemma”. We use Poi(λ) to denote the
Poisson distribution with mean λ: For t ∼ Poi(λ) and k ≥ 0,

Pr[t = k] =
λke−λ

k!
.

Lemma 2 If, for t ∼ Poi(n), you throw t balls independently uniformly at random into m
bins,

• the numbers of balls falling into the bins are mutually independent, and

• the number of balls falling in each bin is distributed as Poi(n/m).

For each n, our proof uses three distributions: Dn, Qn and Pn. The first, Dn, is used to
define Qn and Pn; it is chosen so that the least-norm interpolant performs well on Dn. The
distribution Qn is defined so that the least-norm interpolant performs poorly on Qn. The
distribution Pn is defined so that, when the least-norm interpolant performs well on Dn, it
also performs well on Pn. Crucially, the least norm interpolants that arise from Qn and Pn
are closely related.

For each n, the joint distribution Dn on (x, y)-pairs is defined as follows. Let s = b
√
nc,

N = s2, d = N2. Let θ∗ be an arbitrary unit-length vector. Let Σs be an arbitrary
covariance matrix with eigenvalues λ1 = 1/81, λ2 = · · · = λd = 1/d2. The marginal of Dn

on x is then N (0,Σs). For each x ∈ Rd, the distribution of y given x is N
(
θ∗ · x, 1

81

)
. For

d ≥ 9, since (x, y) is Gaussian, ‖Σs‖ ≤ 1/81, and the variance of y is 1/81, each Dn is
innocuous.

For an absolute constant positive integer b, we get Qn from Dn through the following
steps.
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1. Sample (x1, y1), . . . , (xbn, ybn) ∼ Dbn
n .

2. Define Qn on Rd ×R so that its marginal on Rd is uniform on U = {x1, . . . , xbn} and
its conditional distribution of Y |X is the same as Dn.

Definition 3 For a sample S, the compression of S, denoted by C(S), is defined to be

C(S) = ((u1, v1), . . . , (uk, vk)) ,

where u1, . . . , uk are the unique elements of {x1, . . . , xn}, and, for each i, vi is the average
of {yj : 1 ≤ j ≤ n, xj = ui}.

For the least-norm interpolation algorithm A, for any pair S and S′ of samples such that
C(S) = C(S′), we have A(S) = A(S′). (This is true because the least-norm interpolant
A(S) is uniquely defined by the equality constraints specified by the compression C(S).)

So that a generalization bound often must apply to Qn, we need to show that it is likely
to be unit scale. The proof of this lemma is in Appendix A.

Lemma 4 There is a positive constant c5 such that, for all large enough n, with probability
at least 1− c5

n , Qn has unit scale.

We can show that the least-norm interpolant is bad for Qn by only considering the
points in the support of Qn that the algorithm sees exactly once.

Lemma 5 For any constant c > 0, there are constants c6, c7 > 0 such that, for all suf-
ficiently large n, almost surely for Qn chosen randomly as described above, if t is chosen
randomly according to Poi(cn) and S consists of t random draws from Qn, then with prob-
ability at least 1− e−c6n over t and S,

E(x,y)∼Qn

[
(A(C(S))(x)− y)2

]
−E(x,y)∼Qn

[
(f∗(X)− Y )2

]
≥ c7

where f∗ is the regression function for Dn (and hence also for Qn).

Proof Recall that U = {x1, . . . , xbn} is the support of the marginal of Qn on the inde-
pendent variables. With probability 1, U has cardinality bn. Define h = A(C(S)). If some
x ∈ U appears exactly once in S, then h(x) is a sample from the distribution of y given x
under Dn. Thus, for such an x, the expected quadratic loss of h(x) on a test point is the
squared difference between two independent samples from this distribution. This is twice
the variance of this distribution, that is, twice the expected loss of f∗, hence 2/81. On any
x ∈ U , whether or not it was seen exactly once in S, by definition, f∗(x) minimizes the
expected loss given x.

Lemma 2 shows that, conditioned on the random choice of Qn, the numbers of times the
various x in U in S are mutually independent and, the probability that x ∈ U is seen exactly
once in S is c

b exp
(
− c
b

)
≥ ce−c

b . Applying a Chernoff bound (see, for example Mitzenmacher
and Upfal, 2005, Theorem 4.5), the probability that fewer than ce−cn/2 members of U
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are seen exactly once in S is at most e−c6n for an absolute constant c6. Thus if U1 is the
(random) subset of points in U that were seen exactly once, we have

Qn
[
(h(X)− Y )2

]
−Qn

[
(f∗(X)− Y )2

]
=
∑
x∈U

Qn
[
((h(X)− Y )2 − (f∗(X)− Y )2)1X=x

]
≥
∑
x∈U1

E[(f∗(X)− Y )21X=x]

=
|U1|
81bn

.

Since, with probability 1− e−c6n, |U1| ≥ ce−cn/2, this completes the proof.

Definition 6 Define Pn as follows.

1. Set the marginal distribution of Pn on Rd the same as that of Dn.

2. To generate Y given X = x for (X,Y ) ∼ Pn, first sample a random variable Z
whose distribution is obtained by conditioning a draw from a Poisson with mean c

b on
the event that it is at least 1, then sample Z values V1, . . . , VZ from the conditional
distribution Dn(Y |X = x), and set Y = 1

Z

∑Z
i=1 Vj .

Note that, since Dn has a density, x1, ..., xr are almost surely distinct and hence S drawn
from P rn has C(S) = S a.s.

The following lemma implies that the bounds for Pn tend to be as big as those for Qn.

Lemma 7 Define Qn as above and let Qn be the resulting distribution over the random
choice of Qn. Suppose Pn is defined as in Definition 6. Let c > 0 be an arbitrary constant.
Choose S randomly by choosing t ∼ Poi(cn), Qn ∼ Qn and S ∼ Qtn. Choose T by choosing
r ∼ B

(
bn, 1− exp

(
− c
b

))
and T ∼ P rn. Then C(S) and T have the same distribution. In

particular, for all δ > 0, for any function ψ of the least norm interpolant h, a sample size
r, and a confidence parameter δ, we have

Et∼Poi(cn),Qn∼Qn
[ES∼Qt

n
[ψ(h(S), |C(S)|, δ)]] = Er∼B(bn,1−exp(− c

b))
[ET∼P r

n
[ψ(h(T ), r, δ)].

Proof Let C be the probability distribution over training sets obtained by picking Qn from
Qn, picking t from Poi(cn), picking S from Qtn and compressing it. Let C = C(S) be a
random draw from C. Let nC be the number of examples in C.

We claim that nC is distributed as B
(
bn, 1− exp

(
− c
b

))
. Conditioned on Qn, and

recalling that U is the support of Qn, for any x ∈ U , Lemma 2 implies that for each x ∈ U ,
the probability that x is not seen is the probability, under a Poisson with mean c

b , of drawing
a 0. Thus, the probability that x is seen is 1−exp

(
− c
b

)
. Since the numbers of times different

x are seen in S are independent, the number seen is distributed as B
(
bn, 1− exp

(
− c
b

))
.

Now, for each x ∈ U , the event that it is in C(S) is the same as the event that at appears
at least once in S. Thus, conditioned on the event that x appears in S, the number of y
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values that are used to compute the y value in C(S) is distributed as a Poisson with mean
c
b , conditioned on having a value at least 1.

Let Dn,X be the marginal distribution of Dn on the x’s. If we make n independent
draws from Dn,X , and then independently reject some of these examples, to get nC draws,
the resulting nC examples are independent. (We could first randomly decide the number
nC of examples to keep, and then draw those independently from Dn, and we would have
the same distribution.)

The last two paragraphs together, along with the definition of Qn, imply that the distri-
bution over T obtained by sampling r from B(bn, 1− e−c/b) and T from P rn is the same as
the distribution over C obtained by sampling Qn from Qn, t from Poi(cn), then sampling S
from Qtn and compressing it. Thus, the distributions of T and C(S) are the same, and hence
the distributions of (h(T ), |T |) and (h(S), |C(S)|) are the same, because h(S) = h(C(S)).

We will use the following bound on a tail of the Poisson distribution, due to Canonne
(2017).

Lemma 8 For any λ, α > 0, Prr∼Poi(λ)(r ≥ (1 + α)λ) ≤ exp
(
− α2

2(1+α)λ
)

.

Armed with these tools, we now show that ε must often have a large value.

Lemma 9 Then there are positive constants c1, c2, c3, c4 such that, for all 0 < δ < c1, the
set of n such that

PrS∼Pn
n

[ε(h, n, δ) > c2] ≥
1

2

is strongly (1− c3
log(1/δ))-dense beyond c4 log(1/δ).

Proof We will think of the natural numbers as being divided into bins [1, 2), [2, 4), [4, 7), ...
Let us focus our attention on one bin: {s2, ..., (s+ 1)2 − 1}. Let n denote the center of the
bin, n = s2 + s, so that s ∼

√
n.

For a constant c8 > 0 and any δ > 0, Lemma 7 implies

Er∼B(bn,1−e−c/b)[PrT∼P r
n
[ε(h(T ), r, δ) ≤ c8]]

= Et∼Poi(cn),Qn∼Qn
[PrS∼Qt

n
[ε(h(S), |C(S)|, δ) ≤ c8]]. (1)

Suppose that ε is B′-bounded-antimonotonic. Fix B > 0 such that B > B′. Then

Et∼Poi(cn),Qn∼Qn
[PrS∼Qt

n
[ε(h, |C(S)|, δ) ≤ c8]]

= Et∼Poi(cn),Qn∼Qn
[PrS∼Qt

n
[Bε(h, |C(S)|, δ) ≤ c8B]]

≤ Et∼Poi(cn),Qn∼Qn
[PrS∼Qt

n
[RQn(h)−R∗Qn

> Bε(h, |C(S)|, δ)]]
+ Et∼Poi(cn),Qn∼Qn

[PrS∼Qt
n
[RQn(h)−R∗Qn

≤ c8B]]. (2)

For each sample size t and any Qn that has unit scale

PrS∼Qt
n
[RQn(h)−R∗Qn

> Bε(h, |C(S)|, δ)]
≤ PrS∼Qt

n

[
RQn(h)−R∗Qn

> ε(h, t, δ)
]

+ PrS∼Qt
n

[Bε(h, |C(S)|, δ) ≤ ε(h, t, δ)]
≤ δ + PrS∼Qt

n
[|C(S)| < t/2]
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where the second inequality follows from the fact that ε is a valid B′-bounded-antimonotonic
uniform model-dependent bound for unit-scale distributions and B > B′. Combining this
with Lemma 4, we have

Et∼Poi(cn),Qn∼Qn
[PrS∼Qt

n
[RQn(h)−R∗Qn

> Bε(h, |C(S)|, δ)]]

≤ δ +
c5
n

+ PrS∼Qt
n
[|C(S)| < t/2].

Now by a union bound, for some constant c9 > 0,

Et∼Poi(cn),Qn∼Qn
[PrS∼Qt

n
[|C(S)| < t/2]]

≤ Et∼Poi(cn),Qn∼Qn
[PrS∼Qt

n
[|C(S)| < c9n]] + Prt∼Poi(cn)[t/2 ≥ c9n]

= PrZ∼B(bn,1−e−c/b)[Z < c9n] + Prt∼Poi(cn)[t/2 ≥ c9n]

≤ δ, (3)

where the last inequality follows from a Chernoff bound and from Lemma 8 with α =
1 − 2c9/c, provided n = Ω(log(1/δ)) and provided we can choose c9 to satisfy c/2 < c9 <
b(1− e−c/b). Our choice of b and c, specified below, will ensure this. In that case, we have
that

Et∼Poi(cn),Qn∼Qn
[PrS∼Qt

n
[ε(h, |C(S)|, δ) ≤ c8]]

≤ 2δ +
c5
n

+ Et∼Poi(cn),Qn∼Qn
[PrS∼Qt

n
[RQn(h)−R∗Qn

≤ c8B]].

Applying Lemma 5 to bound the RHS, if n is large enough and c8B < c7, then

Et∼Poi(cn),Qn∼Qn
[PrS∼Qt

n
[ε(h, |C(S)|, δ) ≤ c8]] ≤ 3δ +

c5
n
.

Returning to (1), we get

Er∼B(bn,1−e−c/b)[PrT∼P r
n
[ε(h, r, δ)) ≤ c8]] ≤ 3δ +

c5
n
. (4)

Let us now focus on the case that b = 2 and c = 2 ln 2, so that

Er∼B(bn,1−e−c/b)[r] = (1− e−c/b)bn = n.

(And note that c/2 = ln 2 < 1 = b(1 − e−c/b), as required for (3).) Chebyshev’s inequality
implies

Prr∼B(bn,1−e−c/b)[r 6∈ [n− s, n+ s]] ≤ c10
for an absolute positive constant c10. Returning now to (4), Markov’s inequality implies

Prr∼B(bn,1−e−c/b)[PrT∼P r
n
[ε(h, r, δ)) ≤ c8] > 1/2] ≤ c11

(
δ +

1

n

)
. (5)

Further, it is known (Slud, 1977; Box et al., 1978) that there is an absolute constant c12
such that, for all large enough n and all r0 ∈ [n− s, n+ s],

Prr∼B(bn,1−e−c/b)[r = r0] ≥
c12√
n
.
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Combining this with (5) and recalling that s and s′ are Θ(
√
n), we get

|{r ∈ [n− s, n+ s] : PrT∼P r
n
[ε(h, r, δ)) ≤ c8] > 1/2}|

2s+ 1
≤ c13

(
δ +

1

n

)
≤ c14

log(1/δ)
,

for n ≥ c4 log(1/δ) and small enough δ. Since, for all r ∈ [n − s, n + s], we have Pr = Pn,
this completes the proof.

The following bound can be obtained through direction application of the results of
Bartlett et al. (2020). The details are given in Appendix B.

Lemma 10 There is a constant c such that, for all large enough n, with probability at least

1− δ, for S ∼ Pnn , the least-norm interpolant h satisfies RPn(h)−R∗Pn
≤ c
√

log(1/δ)
n .

Combining this with Lemma 9 proves Theorem 1.

4. Conclusion

We have shown that valid bounds that depend only on the output of the learning algorithm
must be too loose to establish benign overfitting of linear regressors in the sense of Bartlett
et al. (2020); Tsigler and Bartlett (2020); additional information, such as properties of the
covariance, is necessary.

There are several interesting directions for further work. First, the construction pre-
sented in this paper uses a different probability distribution for each sample size. It is not
clear whether this is necessary. Second, it seems likely that a wider variety of generaliza-
tion bounds than the class analyzed in this paper must sometimes be loose. Finally, our
theoretical understanding of benign overfitting in the context of deep learning, where it was
originally observed, is much less developed than in the linear regression setting considered
here.
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Appendix A. Proof of Lemma 4

To prove Lemma 4, we will need some lemmas. The first is due to Buldygin and Kozachenko
(1980) (see Rivasplata, 2012).

Lemma 11 If X1 is a sub-Gaussian random variable with parameter σ1, and X2 is a (not
necessarily independent) sub-Gaussian random variable with parameter σ2, then X1 +X2 is
sub-Gaussian with parameter σ1 + σ2.

This immediately implies the following.

10
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Lemma 12 If X1 is a sub-Gaussian random vector with parameter σ1, and X2 is a (not
necessarily independent) sub-Gaussian random vector with parameter σ2, then X1 + X2 is
sub-Gaussian with parameter σ1 + σ2.

Proof Any projection of X1 + X2 is the sum of the projections of X1 and X2, so this
follows from Lemma 11.

Lemma 13 For a random vector X = (X1, ..., Xk), if X1 is sub-Gaussian with param-
eter 1/3, X2 is sub-Gaussian with parameter 1/3, and (X3, ..., Xk) is sub-Gaussian with
parameter 1/3, then X is sub-Gaussian with parameter 1.

Proof Embedding a random vector into a higher-dimensional space by adding components
that always evaluate to zero does not affect whether it is sub-Gaussian, or its sub-Gaussian
parameter. Since

X = (X1, 0, ..., 0) + (0, X2, 0, ..., 0) + (0, 0, X3, ..., Xk),

applying Lemma 12 above completes the proof.

Now, for U ∼ Dm
n , the uniform distribution Q over U , and (X1, ..., Xd, Y ) ∼ Q, we now

would like to show that X1 is sub-Gaussian with parameter 1/3. We will use the following
known sufficient condition, which can be recovered by tracing through the constants in the
proof of (Vershynin, 2018, Proposition 2.5.2).

Lemma 14 If a random variable X satisfies E
[
exp

(
18X2

e

)]
≤ 2, then X is sub-Gaussian

with parameter 1/3.

Now we are ready to analyze the marginal distribution of the first component.

Lemma 15 For U obtained from m independent samples from N (0, σ2) for σ ≤ 1/9 if Q
is the uniform distribution over U , then, with probability at least 1− 3

m , Q is sub-Gaussian
with parameter 1/3.

Proof Define a = 18/e and let Z = Ex∼Q[exp(ax2)].
We have

ES∼N (0,σ)m [Z] = ES∼N (0,σ)m [Ex∼Q[exp(ax2)]]

= Ex∼N (0,σ)[exp(ax2)]

=
1√
2πσ

∫ ∞
−∞

eax
2

exp

(
− x2

2σ2

)
dx

=
1√
2πσ

∫ ∞
−∞

exp

(
−
(

1

2σ2
− a
)
x2
)
dx

=
1√
2πσ

×
√
π√

1
2σ2 − a

=
1√

1− 2aσ2
.

11
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Similarly

VarS [Z] = VarS [Ex∼Q[exp(ax2)]]

=
1

m
Varx∼N (0,σ)[exp(ax2)]

≤ 1

m
Ex∼N (0,σ)[exp(2ax2)]

=
1

m
√

1− 4aσ2
.

By Chebyshev’s inequality,

Pr

[
Z ≥ 1√

1− 2aσ2
+

1√
3(1− 4aσ2)1/4

]
≤ 3

m
.

For σ ≤ 1/9, recalling that a = 18/e shows that Pr [Z ≥ 2] ≤ 3
m and applying Lemma 14

completes the proof.

Armed with these lemmas, we are now ready to prove Lemma 4. For S ∼ Dm
n , let Q

be the uniform distribution over S. For (X1, ..., Xd, Y ) ∼ Q, Lemma 15 implies that, with
probability 1 − 6/m, X1 and Y are both sub-Gaussian with parameter 1/3. It remains to
analyze (X2, ..., Xd). Let S′ be the projections of the elements of S onto these coordinates.
With probability at least 1 − 3/m, for all s′ ∈ S′, ||s′|| ≤ log(em2/3)/

√
d; see (Lovász and

Vempala, 2007, Lemma 5.17). Recalling that d = Θ(n2), if m = bn, then, for all large
enough n, with probability 1 − 3/m, maxs′∈S′ ||s|| ≤ 1/6, which implies that (X2, ..., Xd)
is sub-Gaussian with parameter 1/3. Putting this together with the analysis of X1 and Y ,
and applying Lemma 13, completes the proof.

Appendix B. Proof of Lemma 10

The lemma follows from (Bartlett et al., 2020, Theorem 1); before showing how to apply it,
let us first restate a special case of the theorem for easy reference.

B.1 A useful upper bound

The special case concerns the least-norm interpolant applied to n examples drawn from
a joint distribution P over (x, y) pairs. The marginal distribution of x is Gaussian with
covariance Σ. There is a unit length θ∗ such that, for all x, the conditional distribution of
y given x has mean θ∗ · x is sub-gaussian with parameter 1 and variance at most 1.

We will apply an upper bound in terms of the eigenvalues λ1 ≥ λ2 ≥ ... of Σ. The bound
is in terms of two notions of the effective rank of the tail of this spectrum:

rk(Σ) =

∑
i>k λi

λk+1
, Rk(Σ) =

(∑
i>k λi

)2∑
i>k λ

2
i

.

The rank of Σ is assumed to be greater than n.

12
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Lemma 16 () There are b, c, c1 > 1 for which the following holds. For all n, P and
Σ defined as above, write k∗ = min{k ≥ 0 : rk(Σ) ≥ bn}. Suppose that δ < 1 with
log(1/δ) < n/c. If k∗ < n/c1, then, with probability at least 1−δ, the least-norm interpolant
h satisfies

RP (h)−R∗P ≤ c

(
max

{√
r0(Σ)

n
.
r0(Σ)

n
.

√
log(1/δ)

n

}
+ log(1/δ)

(
k∗

n
+

n

Rk∗(Σ)

))
.

Lemma 16 was sharpened and generalized by Tsigler and Bartlett (2020). Both Bartlett
et al. (2020) and Tsigler and Bartlett (2020) provide examples of concrete instantiations of
their bounds.

B.2 The proof

To prove Lemma 10, we need to show that Pn satisfies the requirements on P in Lemma 16,
and evaluate the effective ranks rk and Rk of Pn’s covariance Σs. Define α = 1/d2. We
have

r0 =
1/81 + (d− 1)α

1/81
= 1 + 81(d− 1)α

(which is bounded by a constant) and

R0 =
(1/81 + (d− 1)α)2

1/812 + (d− 1)α2
.

For k > 0,
rk = Rk = d− k.

Since d grows faster than n, for large enough n, k∗ := min {k : rk ≥ bn} = 1. So

Rk∗ = d− 1 = Ω(n2).

Each sample from the distribution of Y given X = x has a mean of θ∗ · x, and is sub-
Gaussian with parameter at most 1

9 , and with variance at most 1/81 (because increasing Z
only decreases the variance of Y ).

Evaluating Lemma 16 on Pn then gives Lemma 10.
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