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Abstract
Factorization machines (FMs) are machine learning predictive models based on second-order fea-
ture interactions and FMs with sparse regularization are called sparse FMs. Such regularizations
enable feature selection, which selects the most relevant features for accurate prediction, and there-
fore they can contribute to the improvement of the model accuracy and interpretability. However,
because FMs use second-order feature interactions, the selection of features often causes the loss of
many relevant feature interactions in the resultant models. In such cases, FMs with regularization
specially designed for feature interaction selection trying to achieve interaction-level sparsity may
be preferred instead of those just for feature selection trying to achieve feature-level sparsity. In
this paper, we present a new regularization scheme for feature interaction selection in FMs. For
feature interaction selection, our proposed regularizer makes the feature interaction matrix sparse
without a restriction on sparsity patterns imposed by the existing methods. We also describe
efficient proximal algorithms for the proposed FMs and how our ideas can be applied or extended
to feature selection and other related models such as higher-order FMs and the all-subsets model.
The analysis and experimental results on synthetic and real-world datasets show the effectiveness
of the proposed methods.

Keywords: factorization machines, sparse regularization, feature interaction selection, feature
selection, proximal algorithm

1. Introduction

Factorization machines (FMs) (Rendle, 2010, 2012) are machine learning predictive models based
on second-order feature interactions, i.e., the products xixj of two feature values. One advantage of
FMs compared with linear models with a polynomial term (namely, quadratic regression (QR)) and
kernel methods is efficiency. The computational cost of evaluating FMs is linear with respect to the
dimension of the feature vector d and independent of the number of training examples N . Another
advantage is that FMs can learn well even on a sparse dataset because they can estimate the weights
for feature interactions that are not observed from the training dataset. These advantages are due
to the low-rank matrix factorization modeling. In FMs, the weight matrix for feature interactions
W ∈ Rd×d is factorized as W = PP>, P ∈ Rd×k, where k ∈ N>0, called the rank hyperparameter,
is usually far smaller than d.

Feature selection methods based on sparse regularization (Tibshirani, 1996; Friedman et al., 2010)
have been developed to improve the performance and interpretability of FMs (Pan et al., 2016; Xu
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Table 1: A summary of sparse regularizers for FMs. `2,1 (Xu et al., 2016; Zhao et al., 2017) and

`1 (Pan et al., 2016) are those proposed in the existing methods, and ˜̀2
1,2 (TI) and `22,1 (CS) are

those proposed in this paper. The TI regularizer is for feature interaction selection and the CS
regularizer is for accurate feature selection. TI is an abbreviation of triangular inequality, and CS
is an abbreviation of Cauchy-Schwarz.

Regularizer Formula
Feature Feature

interaction selection selection

`2,1 ‖P ‖2,1 =
∑d
j=1 ‖pj‖2 No Yes

`1 ‖P ‖1 =
∑d
j=1

∑k
s=1 |pj,s| No Yes

˜̀2
1,2 (TI)

∥∥P>∥∥2

1,2
=
∑k
s=1 ‖p:,s‖21 Yes Yes

`22,1 (CS) ‖P ‖22,1 =
(∑d

j=1 ‖pj‖2
)2

No Yes

et al., 2016; Zhao et al., 2017). When one uses feature selection methods, it is assumed that there are
irrelevant features. However, because FMs use second-order feature interactions, not only feature-
level but also interaction-level relevance should be considered. Actually, FMs with feature selection
can work well only if all relevant interactions are those among a subset of features, but this is
not necessarily the case in practice. In such cases, FMs with regularization specially designed for
feature interaction selection trying to achieve interaction-level sparsity may be preferred instead of
those just for feature selection trying to achieve feature-level sparsity. Technically speaking, the
existing methods select features by inducing row-wise sparsity in P , often leading to undesirable
row/column-wise sparsity in W as a result. We would like to remove such row/column-wise sparsity-
pattern restrictions in the interaction-level sparsity modeling.

In this paper, we present a new regularization scheme for feature interaction selection in FMs.
The proposed regularizer is intended to make P sparse and W sparse without row/column-wise
sparsity-pattern restrictions, which means that our proposed regularizer induces interaction-level
sparsity inW . Our basic objectives are to design regularizers of P imposing a penalty on the density
(in some sense) of W and to develop efficient algorithms for the associated optimization problems.
We will see that our regularizer comes from mathematical analyses of norms (of matrices) and their
squares in association with upper bounds of the `1 norm for W . In addition, we will discuss how our
ideas can be applied or extended to better feature selection (in terms of the prediction performance)
and other related models such as higher-order FMs and the all-subsets model. The experiments
on synthetic datasets demonstrated that one of the proposed methods (but no other existing ones)
succeeded in feature interaction selection in FMs and all the proposed methods performed feature
selection more accurately in the cases where all relevant interactions are those among a subset of
features. Moreover, the experiments on real-world datasets demonstrated that the proposed methods
tend to be easier to use and select more relevant interactions and features for predictions than the
existing methods.

This paper is organized as follows. In Section 2, we review FMs and sparse FMs. Section 3
presents our basic idea and analyses for constructing regularizers that makeW sparse. In accordance
with them, we propose a new regularizer for feature interaction selection in Section 4 and then
another regularizer for better feature selection (in terms of the prediction performance) in Section 5,
as well as efficient proximal optimization methods for these proposed regularizers. We extend the
proposed regularizers to related models: higher-order FMs and the all-subsets model (Blondel et al.,
2016a) in Section 6. In Section 7, we discuss related work. In Section 8, we provide the experimental
results on two synthetic and four real-world datasets before concluding in Section 9.

Table 1 summarizes existing and proposed methods (regularizers).
Notation. We denote {1, 2, . . . , n} as [n]. We use ◦ for the element-wise product (a.k.a Hadamard

product) of the vector and matrix. We denote the `p norm for vector and matrix as ‖·‖p. Given a
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matrix X, we use xi for the i-th row vector and x:,i for the i-th column vector. Given a matrix

X ∈ Rn×m, we denote the `q norm of the vector (‖x1‖p , . . . , ‖xn‖p)> by ‖X‖p,q :=
(∑n

i=1 ‖xi‖
q
p

)1/q

and call it `p,q norm. We use the terms ˜̀
p and ˜̀

p,q norm for `p and `p,q norm for the transpose
matrix, i.e.,

∥∥P>∥∥
p

and
∥∥P>∥∥

p,q
, respectively. For the number of non-zero elements in vectors

(|{i : xi 6= 0}|) and matrices (|{(i, j) : xi,j 6= 0}|), we use nnz (·). We define supp(x), called the
support for x, as the indices of non-zero elements in x ∈ Rd: {i ∈ [d] : xi 6= 0}. We define
abs(x) : x ∈ Rn → Rn≥0 as abs(x) = (|x1| , . . . , |xn|)>.

2. Factorization Machines and Sparse Factorization Machines

In this section, we briefly review FMs (Rendle, 2010, 2012) and sparse FMs (Pan et al., 2016; Xu
et al., 2016; Zhao et al., 2017).

2.1 Factorization Machines

FMs (Rendle, 2010, 2012) are models for supervised learning based on second-order feature interac-
tions. For a given feature vector x ∈ Rd, FMs predict the target of x as

fFM(x;w,P ) := 〈w,x〉+
∑
j2>j1

〈pj1 ,pj2〉xj1xj2 = 〈w,x〉+
1

2

d∑
j1=1

∑
j2∈[d]\{j1}

〈pj1 ,pj2〉xj1xj2 , (1)

where w ∈ Rd and P ∈ Rd×k are learnable parameters, and k ∈ N>0 is the rank hyperparameter.
The first term in (1) represents the linear relationship, and the second term represents the second-
order polynomial relationship between the input and target. For a given training dataset D =
{(xn, yn)}Nn=1, the objective function of the FM is

LFM(w,P ;λw, λp) :=
1

N

N∑
n=1

`(fFM(xn), yn) + λw ‖w‖22 + λp ‖P ‖22 , (2)

where ` : R × R → R≥0 is the µ-smooth (i.e., its derivative is a µ-Lipschitz) convex loss function,
and λw, λp ≥ 0 are the regularization-strength hyperparameters.

The inner product of the j1-th and j2-th row vectors in P , 〈pj1 ,pj2〉, corresponds to the weight
for the interaction between the j1-th and j2-th features in the FM. Thus, FMs are equivalent to the
following linear model with a second-order polynomial term (we call it (distinct) quadratic regression
(QR) in this paper) with factorization of the feature interaction matrix W = PP>:

fQR(x;w,W ) = 〈w,x〉+
∑
j2>j1

wj1,j2xj1xj2 = 〈w,x〉+
1

2

d∑
j1=1

∑
j2∈[d]\{j1}

wj1,j2xj1xj2 , (3)

where W ∈ Rd×d is the feature interaction matrix. The computational cost for evaluating FMs is
O(nnz (x) k), i.e., it is linear w.r.t the dimension d of feature vectors, because the second term in
Equation (1) can be rewritten as

∑
j2>j1

〈pj1 ,pj2〉xj1xj2 =

k∑
s=1

(〈p:,s,x〉2 − 〈p:,s ◦ p:,s,x ◦ x〉)/2. (4)

On the other hand, the QR clearly requires O
(

nnz (x)
2
)

time and O
(
d2
)

space for storingW , which

is prohibitive for a high-dimensional case. Moreover, this factorized representation enables FMs to
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learn the weights for unobserved feature interactions but the QR does not learn such weights (Rendle,
2010).

The objective function in Equation (2) is differentiable, so Rendle (2010) developed a stochastic
gradient descent (SGD) algorithm for minimizing (2). Although the objective function is non-convex
w.r.t P , it is multi-convex w.r.t pj for all j ∈ [d]. It can thus be efficiently minimized by using
a coordinate descent (CD) (a.k.a alternating least squares) algorithm (Rendle et al., 2011; Blondel
et al., 2016b). Both the SGD and CD algorithms require O(nnz (X) k) time per epoch (using all
instances at one time in the SGD algorithm and updating all parameters at one time in the CD
algorithm), where X ∈ RN×d is the design matrix. It is linear w.r.t both the number of training
examples N and the dimension of feature vector d.

2.2 Sparse Factorization Machines

Feature selection methods based on sparse regualization (Tibshirani, 1996; Yuan and Lin, 2006; Bach
et al., 2012) have been developed to improve the performance and interpretability of FMs (Pan et al.,
2016; Xu et al., 2016; Zhao et al., 2017). Selecting features necessarily means making the weight
matrix W row/column-wise sparse.

Xu et al. (2016) and Zhao et al. (2017) proposed using ‖·‖2,1 regularization, it is well-known
as group-lasso regularization (Friedman et al., 2010; Yuan and Lin, 2006). We call FMs with this
regularization `2,1-sparse FMs. The objective function of this FM is LFM(w,P ;λw, λp) + λ̃p ‖P ‖2,1,

where λ̃p ≥ 0 is the regularization hyperparameter. 1 Xu et al. (2016) and Zhao et al. (2017)
proposed the proximal block coordinate descent (PBCD) and proximal gradient descent (PGD)
algorithms respectively, for minimizing this objective function. In our setting, at each iteration, the
PBCD algorithm updates the j-th row vector pj by

pj ← proxηλ̃p‖·‖2(pj − η∇pjL) = arg min
q

1

2

∥∥q − (p− η∇pjL)
∥∥2

2
+ ηλ̃p ‖q‖2 (5)

= max(1− ηλ̃p/
∥∥p′j∥∥2

, 0) · p′j , (6)

where η > 0 is the step size parameter and p′j := pj − η∇pjLFM(P ). This proximal algorithm
produces row-wise sparse parameter matrix P . When pj = 0, 〈pj ,pi〉 clearly equals zero for all
i ∈ [d]. This means that the feature interaction matrix W = PP> is row/column-wise sparse, so
the FM ignores all feature interactions that involve j-th feature, i.e., `2,1 regularizer enables feature
selection in FMs.

Pan et al. (2016) proposed using `1 (=`1,1) regularization for P . We call FMs with `1 regularized
objective function `1-sparse FMs 2. The PGD update for pj,s in `1-sparse FMs is given by

pj,s ← proxηλ̃p|·|(p
′
j,s) = arg min

q

1

2
(q − p′j,s)2 + ηλ̃p |q| (7)

= sign(p′j,s) ·max(
∣∣p′j,s∣∣− ηλ̃p, 0). (8)

`1-sparse FMs are intended to make not feature interaction matrix W = PP> row/column-wise
sparse but P sparse. However, they practically work well for feature selection in FMs (Pan et al.,
2016).

1. There are several differences between our formulations of `2,1-sparse FMs and the original ones. First, the original

formulations (Xu et al., 2016; Zhao et al., 2017) did not introduce the standard `22 regularization λp ‖P‖22 while
ours do because setting λp to zero reproduces the original formulations. Moreover, they modified the models or
assumed some additional information according to some domain specific knowledge. We do not modify the models
and do not assume such information since we do not specify any application.

2. Strictly speaking, Pan et al. (2016) considered probabilistic FMs and proposed the use of a Laplace prior. It
corresponds to a `1 regularization in our non-probabilistic formulation.
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Figure 1: Comparison of proximal operators associated with L1, and L21 regularizer. We evaluated
the proximal operators at a randomly sampled P with various λ. Left graph shows the number of
used feature interactions and right graph shows the number of used features in Q∗(Q∗)>, where Q∗

is the output of the proximal operator: Q∗ = proxλΩ(·)(P ) and Ω is `1 (L1 (Pan et al., 2016)) or
`2,1 (L21 (Xu et al., 2016; Zhao et al., 2017)).

3. Proposed Scheme for Feature Interaction Selection

Feature Interaction Selection: its Motivation. The existing sparse regularizers (Pan et al., 2016;
Zhao et al., 2017; Xu et al., 2016) can improve the performance and interpretability of FMs by
selecting only relevant features. However, because FMs use second-order feature interactions, not
feature-level but interaction-level relevance should be considered, in other words, feature interaction
selection is preferable to feature selection. Assume that a subset S of [d] is selected as a set of
relevant features. Then, for all j ∈ [d] \S, all feature interactions with j-th feature are lost but they
can contain important feature interactions. Moreover, FMs use all feature interactions from S and
they can contain irrelevant feature interactions. Therefore, the existing methods tend to produce
all-zeros W to remove all irrelevant interactions or all-non-zeros (dense) W to select all relevant
interactions. Many relevant interactions are lost in the former case and many irrelevant interactions
are used in the latter case. Actually, FMs with feature selection can work well only if all relevant
interactions are those among a subset of features, but this is not necessarily the case in practice.

In this section, firstly, we briefly verify whether the existing regularizers based on sparsity-
inducing norms can select feature interactions or not, experimentally. We next introduce a preferable
but hard to optimize regularizer Ω∗ for feature interaction selection in FMs. Then, we present a
relationship between norms and Ω∗. We next present a relationship between squares of norms and
Ω∗, and finalize our scheme: using the square of a sparsity-inducing (quasi-)norm.

3.1 Can `1 and `2,1 Regularizers Select Feature Interactions?

We verify whether the existing regularizers can select feature interactions or not. Because the
objective functions with the existing regularizers are typically optimized by the PGD algorithm, we
compared the output of their proximal operators for verification. We sampled P ∈ R200×30 with
pj,s ∼ N (0, 1.0) for all j ∈ [200], s ∈ [30], and evaluated proximal operators Q∗ = proxλΩ(·)(P )
with various Ω: `1 (L1 (Pan et al., 2016)) and `2,1 (L21 (Xu et al., 2016; Zhao et al., 2017)). Their
corresponding proximal operators are (8) and (6) respectively. Regarding P as the parameter of
FMs, we computed the number of used interactions (i.e.,

∣∣{(j1, j2) :
〈
q∗j1 , q

∗
j2

〉
6= 0, j2 > j1}

∣∣) and the

number of used features (i.e., the number of non-zero rows in Q∗). We set λ to be 2−7, 2−6, . . ., and
27.
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Results are shown in Fig. 1. Both L1 and L21 tended to produce completely dense (all-non-
zeros) or all-zeros feature interaction matrices. This result indicates that it is difficult for the existing
methods to select feature interactions. We will see later in Section 8.1, the proximal operators of
the proposed regularizers can produce moderately sparse feature interaction matrices and therefore
more useful for feature interaction selection and feature selection in FMs. Moreover, we will show
that one of the proposed regularizers can select relevant feature interactions and all of the proposed
regularizers can select relevant features in Section 8.2.

3.2 `1 Norm for Feature Interaction Weight Matrix

We here introduce a preferable but hard to optimize regularizer for feature interaction selection in
FMs. Selecting feature interactions necessarily means making the feature interaction weight matrix
W sparse, so our goal is learning sparse W = PP> in FMs. Although the existing regularizers are
intended to make P sparse, the sparsity of P does not necessarily imply the sparsity of W . Thus,
our basic idea is to use a regularization inducing sparsity W rather than P . Especially, we propose
using `1 regularization (Tibshirani, 1996) for the strictly upper triangular elements (or equivalently,
non-diagonal elements) in W , i.e.,∑

j2>j1

|wj1,j2 | =
∑
j2>j1

|〈pj1 ,pj2〉| =: Ω∗(P ), (9)

because `1 regularization is the well-known and one of the promising regularization for inducing
sparsity. The corresponding objective function is

L∗FM(w,P ;λw, λp, λ̃p) := LFM(w,P ;λw, λp) + λ̃pΩ∗(P ). (10)

Unfortunately, this objective function is hard to optimize w.r.t P . In the following, we introduce
three well-known algorithms for minimizing a sum of a differentiable loss and a non-smooth regu-
larization like (10) and show that the use of them is unrealistic.

Subgradient Descent Algorithm. Consider the use of the subgradient descent (SubGD) algorithm
for minimizing (10). Ω∗ is non-convex and thus its subdifferential cannot be defined. Fortunately,∥∥PP>∥∥

1
/2 = Ω∗(P ) + ‖P ‖22 /2 is convex, so its subdifferential can be defined. Therefore, consider

the minimization of L∗FM(w,P ;λw, λp + λ̃p/2, λ̃p), i.e.,

L∗FM(w,P ;λw, λp + λ̃p/2, λ̃p) = LFM(w,P ;λw, λp) +
λ̃p
2

∥∥PP>∥∥
1
. (11)

At each iteration, the SubGD algorithm for minimizing (11) picks a subgradient G ∈ ∂P
∥∥PP>∥∥

1
and updates the parameter P as

P ← P − η
(
∇PL+

λ̃p
2
G

)
. (12)

The subdifferential of
∥∥PP>∥∥

1
is defined as (Li et al., 2020)

∂
∥∥PP>∥∥

1
= {2ZP : Z ∈ ∂S ‖S‖1 ,S = PP>}. (13)

Therefore, picking a subgradient G ∈ ∂P
∥∥PP>∥∥

1
requires O(d2k) computational cost (for com-

puting PP>), so it might be prohibitive to use the SubGD algorithm for a high-dimensional
case. To be more precise, the computational cost of the SubGD algorithm at each iteration is
O(T (nnz (X) k + d2k)), where T is the number of line search iterations. Moreover, in general,
the SubGD algorithm cannot produce a sparse solution and therefore it is not suitable for feature
interaction selection (Bach et al., 2012).
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Inexact PGD Algorithm. To obtain a sparse W , we consider the use of a PGD algorithm for (11).
At each iteration, the PGD algorithm for minimizing (11) requires the evaluation of the following
proximal operator

proxλ‖··>‖1(P ) := arg min
Q∈Rd×k

1

2
‖P −Q‖22 + λ

∥∥QQ>∥∥
1

(14)

with some λ > 0. This proximal problem (14) is convex but unfortunately cannot be evaluated an-
alytically. The PGD algorithm with inexact evaluation of proximal operator is called inexact PGD
algorithm and we here consider the use of the inexact PGD algorithm (Gu et al., 2018; Yao et al.,
2017; Schmidt et al., 2011). Because (14) is a (d× k)-dimensional non-smooth convex optimization
problem, for example, it can be optimized using the SubGD algorithm (Gu et al., 2018). Unfortu-
nately, the SubGD algorithm for (14) requires O(d2k) computational cost at each iteration, which
is free from X but depends on d quadratically. Thus, one iteration of this inexact PGD algorithm
for (11) using the SubGD algorithm for inexact evaluation of (14) takes O(T (nnz (X) k + T ′d2k))
time, where T is the number of line search iteration and T ′ is the number of iterations of the SubGD
algorithm for (14). Moreover, the precision of the inexact proximal operator should be high in
practice and must be controlled carefully for convergence. Furthermore, the convergence rate of the
SubGD algorithm for a convex optimization problem is O(1/ε2) (Nesterov et al., 2018). Thus, we
must set T ′ to be a large value for a good solution, and then it is also not practical for (11) to use
the inexact PGD algorithm for a high-dimensional case.

Inexact PCD Algorithm. If we assume the use of proximal CD (PCD) algorithm for the regular-
ized objective (10), the proximal operator evaluated at p′j,s := pj,s − η∂LFM(P )/∂pj,s is

arg min
q

{
1

2

(
q − p′j,s

)2
+ ηλ̃p

∑
i∈[d]\{j}

∣∣∣qpi,s + rj,i,s

∣∣∣}, (15)

where rj,i,s =
∑
s′∈[k]\{s} pj,s′pi,s′ . The second term in Equation (15) takes the form of the sum

of the absolute deviations and can be rewritten as a d-dimensional linear programming problem
with inequality constraints (Boyd and Vandenberghe, 2004). Thus, the optimization problem in this
proximal operator is a typical quadratic programming problem and can be solved by some well-known
methods (e.g., an interior-point method). Alternatively, one can also solve (15) using the SubGD
algorithm or the alternating direction of direction method of multipliers (ADMM) algorithm (Boyd
et al., 2011). However, in any case, ri,j,s must be computed for all i ∈ [d] \ {j} and it requires
O(dk) computational cost. Thus, the inexact PCD algorithm for (10) requires Ω(dk(dk)) = Ω(d2k2)
computational cost only for evaluating (15) per epoch. It might be prohibitive for a high-dimensional
case.

3.3 Upper Bound Regularizers of Ω∗

As described above, Ω∗ regularizer seems appropriate for feature interaction selection but unfortu-
nately it is hard to optimize. Thus, we consider the use of an upper bound regularizer being easy
to optimize and ensuring sparsity to W . The use of an easy-to-optimize upper bound is a common
approach for minimizing a hard-to-optimize objective function (Zhou et al., 2012; Liu, 2011; Chen
et al., 2019a).

3.3.1 Non-equivalence of Norms and Ω∗

Firstly, are existing `2,1 and `1 regularizers upper bounds of Ω∗? Unfortunately, not only them but
also any norm on Rd×k can be neither an upper bound nor a lower bound; i.e., all norms are not
equivalent to Ω∗.
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Theorem 1 Let ‖·‖ be a norm on Rd×k. Then, for any C > 0, there exist P ,Q ∈ Rd×k such that

Ω∗(P ) < C ‖P ‖ ,Ω∗(Q) > C ‖Q‖ . (16)

Proof Since ‖·‖ is a norm on Rd×k, it is absolutely homogeneous ‖aP ‖ = |a| ‖P‖ for all a ∈ R and
‖P ‖ = 0 ⇐⇒ P = 0. On the other hand, Ω∗ is 2-homogeneous:

Ω∗(aP ) =

d∑
j1=1

∑
j2>j1

|〈apj1 , apj2〉| = a2Ω∗(P ), (17)

and Ω∗(P ) = 0 ⇐⇒ 〈pj1 ,pj2〉 = 0 for all j1 6= j2 ∈ [d]. Thus, we can take P ′ ∈ Rd×k
such that ‖P ′‖ 6= 0 and Ω∗(P ′) 6= 0. Given C > 0, we take a positive number a such that
0 < a < C ‖P ′‖ /Ω∗(P ′). Then, Ω∗(aP ′) = a2Ω∗(P ′) < a [C ‖P ′‖ /Ω∗(P ′)] Ω∗(P ′) = C ‖aP ′‖,
which is surely the first inequality in (16) (P = aP ′). Similarly, if we take a > C ‖P ′‖ /Ω∗(P ′), we
can derive the second inequality in (16).

In some cases, the fact that any norm cannot be an upper bound of Ω∗ is crucial. Suppose that
one wants FMs with P such that Ω∗(P ) ≤ λ; i.e., one solves the constrained minimization problem.
Since this problem is also hard to optimize, one can replace Ω∗ with ‖·‖, and the revised problem
may be easier to optimize. However, it is not guaranteed that the solution P satisfies Ω∗(P ) ≤ λ
because ‖·‖ cannot be an upper bound of Ω∗.

The existing methods using sparsity-inducing norms produce completely dense (all-non-zeros)
or all-zeros feature interaction matrices as shown in Fig. 1. This phenomenon can be explained
by Theorem 1. From the proof of Theorem 1, we have ‖P ‖ � Ω∗(P ), i.e, the regularization
strength of norm is much greater than that of Ω∗, if the absolute value of each element in P is
sufficiently small. Thus, when λ is large, the existing methods using norm regularizers can produce
all-zeros matrices. Similarly, we have ‖P ‖ � Ω∗(P ) if the absolute value of each element in P is
sufficiently large. Thus, when λ is small, the existing methods using norm regularizers can produce
completely dense matrices.

3.3.2 Upper Bound Regularizers of Ω∗ by Squares of (Quasi-)norms

In this section, we present how to construct an upper bound of Ω∗. We first define m-homogeneous
quasi-norms.

Definition 2 We say a function Ω : Rd×k → R≥0 is an m-homogeneous quasi-norm if, for all
P ,Q ∈ Rd×k, (i) Ω(P ) ≥ 0, Ω(P ) = 0 ⇐⇒ P = 0, (ii) there exists m ∈ N>0 for all a ∈ R
such that Ω(aP ) = |a|m Ω(P ), and (iii) there exists K > 0 (K ≥ 2m−1) such that Ω(P + Q) ≤
K(Ω(P ) + Ω(Q)). Note that m = 1 implies that Ω is a quasi-norm.

There is an important relationship between Ω∗ and 2-homogeneous quasi-norms: unlike norms,
any 2-homogeneous quasi-norm can be an upper bound of Ω∗.

Theorem 3 For any 2-homogeneous quasi-norm Ω, there exists C > 0 such that Ω∗(P ) ≤ CΩ(P )
for all P ∈ Rd×k.

Moreover, one can construct an m-homogeneous quasi-norm by m-th power of a (quasi-)norm.

Theorem 4 Ω : Rd×k → R≥0 is an m-homogeneous quasi-norm if and only if there exists a quasi-
norm ‖·‖′ such that Ω(·) = (‖·‖′)m.

Thus, one can construct an upper bound of Ω∗ by the square of a (quasi-)norm. The regularizer in
canonical FMs, `22, is clearly the square of the norm but it does not produce sparse feature interaction
matrix W = PP> (as indicated in our experimental results in Section 8). It means that using an

8
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upper bound of Ω∗ is not sufficient for feature interaction selection. We thus propose especially using
the square of a sparsity-inducing (quasi-)norm, which can make W = PP> sparse by making P
sparse since supp(pj1)∩supp(pj2) = ∅ implies wj1,j2 = 0. As described above, the sparsity of P does
not necessarily imply the sparsity of W . However, the square of a sparsity-inducing (quasi-)norm
can be more useful for feature interaction selection than a sparsity-inducing norm because the square
of a norm can be an upper bound of Ω∗. In the following sections, we present such regularizers.

3.4 Comparison of Norm and Squared Norm

Before presenting the proposed regularizers, we discuss relationships between regularizations based
on squared norms and those based on norms. Consider the optimization problem with the regular-
ization based on the squared norm

min
w,P

LFM(w,P ;λw, λp) + λ ‖P ‖2 (18)

and one of its stationary points {ŵ, P̂ }. Then, {ŵ, P̂ } is also one of the stationary points of the
optimization problem with the regularization based on the (non-squared) norm

min
w,P

LFM(w,P ;λw, λp) +
(

2λ
∥∥∥P̂∥∥∥) ‖P ‖ (19)

since ∂ ‖P ‖2 = 2 ‖P ‖ ∂ ‖P ‖ (from Theorem 12 in Appendix A.1). Therefore, one might consider

that the use of the squared norm ‖·‖2 is essentially equivalent to the use of the (non-squared) norm
‖·‖. However, the optimal solutions of (18) and (19) are not necessarily equivalent to each other
because LFM(w,P ;λw, λp) is non-convex w.r.t P . To the best of our knowledge, there are no known
relationships between the optimal solutions of the existing methods (Pan et al., 2016; Xu et al., 2016;
Zhao et al., 2017) and those of the QR with the `1 regularization for W . On the other hand, under
some conditions, the optimal solutions of one of the proposed methods are equivalent to those of the
QR with the `1 regularization for W , which is shown in Section 4.

As described above, the squared norm regularization is not necessarily equivalent to the norm
regularization. On the other hand, the squared norm regularization can be interpreted as the norm
regularization with an adaptive regularization-strength since λ ‖P ‖2 = (λ ‖P ‖) ‖P ‖. Indeed, as we
will see later in Section 4 and Section 5, the proposed TI (CS) regularizer based on squared norms
shrink elements (row vectors) of relatively small absolute value (`2 norm) to 0 (0). On the other
hand, the existing methods shrink absolutely small elements to 0 (i.e., elements that are smaller than
a fixed threshold are shrunk to 0). Therefore, regularizers based on squared norms (the proposed
methods) can be less sensitive to the choice of the regularization-strength hyperparameter than those
based on (non-squared) norms (the existing methods).

4. TI Upper Bound Regularizer

We first propose using ˜̀2
1,2 as an upper bound regularizer of Ω∗. We call this regularizer ˜̀2

1,2

regularizer or triangular inequality (TI) regularizer and call FMs with this regularization ˜̀2
1,2-sparse

FMs or TI-sparse FMs since this regularization can also be derived using the triangle inequality:

1

2

∥∥P>∥∥2

1,2
=

1

2

k∑
s=1

‖p:,s‖21 =
∑
j2>j1

k∑
s=1

|pj1,spj2,s|+
1

2
‖P ‖22 (20)

=: ΩTI(P ) +
1

2
‖P ‖22 ≥ Ω∗(P ) +

1

2
‖P ‖22 . (21)

Because
∥∥P>∥∥2

1,2
= 2ΩTI(P ) + ‖P ‖22 and ‖P ‖22 can be taken into LFM, we will sometimes discuss

not TI-sparse FMs but rather ΩTI-sparse FMs (FMs with ΩTI regularization).

9
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We here discuss the relationship between ΩTI-sparse FMs and the QR (3) with `22 regularization
for w and `1 regularization forW . Theorem 5 states that the optimal ΩTI-sparse FMs are equivalent
(or better in the sense of the objective value) to the optimal QR with such regularizations when
the rank hyperparameter k is sufficiently large. We also obtain a similar relationship between ΩTI

-sparse FMs and Ω∗-sparse FMs. It is shown in Appendix A.5. Note that ΩTI-sparse FMs can be
regarded as TI-sparse FMs (˜̀2

1,2-sparse FMs) when λp ≥ λ̃p/2.

Theorem 5 Let LQR(w,W ;λw) be the objective function of the QR with `22 regualrization for w:

LQR(w,W ;λw) :=

N∑
n=1

`(fQR(xn), yn)/N + λw ‖w‖22 . (22)

Then, for any λw, λp, λ̃p ≥ 0, there exists k′ ≤ d(d− 1)/2 such that for all k ≥ k′,

min
w∈Rd,P∈Rd×k

LFM(w,P ;λw, λp) + λ̃pΩTI(P )

≤ min
w∈Rd,W∈Rd×d

LQR(w,W ;λw) + (λ̃p + 2λp) ‖W ‖1 . (23)

Moreover, if λp = 0, the equality holds, and fFM(x;w∗TI,P
∗
TI) = fQR(x;w∗QR,W

∗
QR) for all x ∈ Rd,

where {w∗TI,P
∗
TI} and {w∗QR,W

∗
QR} are the solutions of the left- and right-hand sides, respectively,

of Equation (23).

We next consider TI (˜̀2
1,2) regularized objective function, i.e., LFM(w,P ;λw, λp) + λ̃p

∥∥P>∥∥2

1,2
.

Since
∥∥P>∥∥2

1,2
= ‖P ‖22 + 2ΩTI(P ), it can be written as the ΩTI regularized objective function:

LFM(w,P ;λw, λp + λ̃p) + 2λ̃pΩTI(P ). The optimization problem of the TI regularized objective
function can be written as

min
w∈Rd,P∈Rd×k

LFM(w,P ;λw, λp) + λ̃p
∥∥P>∥∥2

1,2
(24)

= min
w∈Rd,P∈Rd×k

LQR

(
w,PP>;λw

)
+

k∑
s=1

{
λp ‖p:,s‖22 + λ̃p ‖p:,s‖21

}
, (25)

= min
w∈Rd,W∈Rd×d

LQR(w,W ;λw) + ΩMF

(
W ; k, λp, λ̃p

)
, (26)

where

ΩMF

(
W ; k, λp, λ̃p

)
:= inf

r∈[k]
inf

U ,V ∈Rd×r,
UV >=W

r∑
s=1

{
λp ‖u:,s‖22 + λ̃p ‖u:,s‖21 + I{u:,s}(v)

}
, (27)

and IC : Rd → {0,∞} is the indicator function on C ⊆ Rd. When the rank hyperparameter k is
sufficiently large, ΩMF(W ; k, λp, λ̃p) satisfies the condition as matrix factorization regularizer (Haef-
fele and Vidal, 2019). Thus, from Proposition 2, Theorem 1, and Theorem 2 in (Haeffele and Vidal,
2019), we conclude that all local minima of the TI regularized objective function are global minima
when k is sufficiently large.

Theorem 6 (Haeffele and Vidal (2019)) When k ≥ d2, all local minima of (24) are global
minima.

Note that for any m ∈ N>0 all local minima of ˜̀2
m,2 regularized optimization problem are global

minima under the same condition.

10



FMs with Regularization for Sparse Interactions

4.1 PGD/PSGD-based Algorithm for TI Regularizer

Because the TI regularizer is continuous but non-differentiable, we consider the use of the PGD
algorithm for optimizing TI-sparse FMs similarly to `1-sparse FMs and `2,1-sparse FMs. The PGD
algorithm for TI-sparse FMs solves the following optimization problem at t-th iteration:

min
Q∈Rd×k

〈
∇`(t−1)
D ,Q− P (t−1)

〉
+

1

2η

∥∥∥Q− P (t−1)
∥∥∥2

2
+ λp ‖Q‖22 + λ̃p

∥∥Q>∥∥2

1,2
, (28)

where ∇`(t−1)
D :=

∑N
n=1∇`

(
fFM

(
xn;P (t−1)

)
, yn
)
/N and P (t−1) is the parameter matrix P after

(t−1)-th iteration (we omit w(t−1) for simplicity). Fortunately, the TI regularizer is separable w.r.t

each column vector:
∥∥P>∥∥2

1,2
=
∑k
s=1 ‖p:,s‖21. We thus can separate the optimization problem (28)

w.r.t each column as

min
q:,s∈Rd

〈
∇p:,s`

(t−1)
D , q:,s − p(t−1)

:,s

〉
+

1

2η

∥∥∥q:,s − p(t−1)
:,s

∥∥∥2

2
+ λp ‖q:,s‖22 + λ̃p ‖q:,s‖21,2 , (29)

where ∇p:,s
`
(t−1)
D :=

∑N
n=1∇p:,s

`(fFM(xn;P (t−1)), yn)/N and solve this separated problem for all
s ∈ [k] at t-th iteration. Therefore, the PGD algorithm for TI-sparse FMs surely solves the following
type of optimization problem for all s ∈ [k]:

proxλ‖·‖21(p) = arg min
q∈Rd

1

2
‖q − p‖22 + λ ‖q‖21 =: q∗, (30)

where λ ≥ 0. The following theorem gives us the insight needed for constructing an algorithm for
computing this proximal operator (Martins et al., 2011).

Theorem 7 (Martins et al. (2011)) Assume that p ∈ Rd is sorted in descending order by ab-
solute value: |p1| ≥ |p2| ≥ · · · ≥ |pd|. Then, the solution to the proximal problem (30) q∗ ∈ Rd
is

q∗j = sign(pj) max{|pj | − 2λSθ, 0} ∀j ∈ [d], (31)

where θ = max{j : |pj | − 2λSj ≥ 0}, and Sj =
∑j
i=1 |pi| /(1 + 2λj).

This theorem states that, for arbitrary p ∈ Rd, the proximal operator (30) can be computed in
O(d log d) time by first sorting p by absolute value and then computing Sj for all j ∈ [d] and θ. In
fact, this proximal operator can be evaluated in O(d) time in expectation by randomized-median-
finding-like method (Duchi et al., 2008). For more detail, please see our appendix (Algorithm 2
and Algorithm 3 in Appendix B). The proximal operator of `1 regularizer (8) shrinks each element
in p:,s: q

∗
j,s = 0 if |pj,s| ≤ λ for all j ∈ [d] and the threshold λ does not depend on P . Similarly, the

proximal operator of ˜̀2
1,2 (30) also shrinks each element in p:,s. However, its threshold depends on

p:,s: q
∗
j,s = 0 if |pj,s| ≤ 2λSθ and Sθ depends on p:,s. That is, intuitively, ˜̀2

1,2 regularizer shrinks
elements of relatively small absolute value among p1,s, . . . , pd,s to 0.

Clearly, one can construct a proximal SGD (PSGD) algorithm by replacing ∇`(t−1)
D in (28)

with a stochastic gradient. The PSGD-based algorithms are typically more useful than the PGD-
based (i.e., batch) algorithms when the number of instances N is large (Bottou, 2012; Bottou
et al., 2018; Allen-Zhu, 2018). For the (not necessarily convex) smooth optimization problem

minz∈Rd
∑N
n=1 fi(z)/N, fi : Rd → R for all i ∈ [N ], the GD and the SGD require respectively

O
(
1/ε2

)
and O

(
V/ε4

)
iterations to get an ε-approximate stationary point (Allen-Zhu, 2018), where

V is the upper bound of the variance of the stochastic gradients. In most cases, the GD requires
to compute N gradients while the SGD requires one gradient at each iteration. Thus, when N is
large and ε is moderate, the SGD is superior to the GD. Unfortunately, the PSGD algorithm and
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its variants with Algorithm 3 cannot leverage the sparsity of data: they require O(dk) time for each
iteration and O(Ndk) time for each epoch even if a dataset X is sparse. The O(dk) computational
cost is due to the evaluation of the proximal operator (Algorithm 3). A workaround for this issue is
the use of mini-batches. The use of mini-batch reduces the variance of the stochastic gradient and it
hence reduces the number of iteration for convergence, but in general it increases the computational
cost for each iteration. In our setting, if one chooses a mini-batch such that its number of non-zero
elements is O(d), the mini-batch PSGD also runs in O(dk) for one iteration, that is, the use of
appropriate-size-mini-batches can reduce the variance of the stochastic gradients without changing
the computational complexity for one iteration. However, it does not solve the issue completely:
the cost for one iteration, O(dk), is not so improved compared to the that of the PGD algorithm
O(nnz (X) k) when X is very sparse. Thus, the (mini-batch) PSGD algorithm should be used only
when nnz (X) /d is large.

4.2 Efficient PCD Algorithm for TI Regularizer

Here, we present an efficient PCD algorithm for TI-sparse FMs, which is often used for minimizing
the objective function with non-smooth regularization and has several advantages compared to the
PGD algorithm introduced in Section 4.1. Firstly, it does not require tuning nor using line search
technique for the step size, and this is its most important advantage compared with the PGD/PSGD-
based algorithms. Secondly, it can leverage sparsity of data: it runs in O(nnz (X) k) for one epoch.
Thirdly, it is easy to implement: its implementation is simple and almost the same as the CD
algorithm for canonical FMs and the PCD algorithm for `1-sparse FMs. Fourthly, it can be easily
extended to other related models as shown in Section 6. Strictly speaking, ˜̀2

1,2 is not separable w.r.t
p1,1, . . . , pd,k and thus the convergence of the PCD algorithm is not guaranteed. However, actually,
it doesn’t matter much that the convergence of the PCD algorithm is not guaranteed. Because the
objective function of FMs is non-convex, a global minimum solution cannot be obtained even if the
PGD algorithm is used.

Because
∥∥P>∥∥2

1,2
= 2ΩTI(P ) + ‖P ‖22 and ‖P ‖22 can be taken into LFM, for simplify we consider

ΩTI regularized objective function LFM(w,P ;λw, λp) + λ̃pΩTI(P ), focusing on one parameter pj,s
as the optimized parameter. Then, the ΩTI regularizer can be regarded as a `1 regularizer such that
its regularization strength is

∑
i∈[d]\{j} |pi,s|:

ΩTI(P ) =

 ∑
i∈[d]\{j}

|pi,s|

 |pj,s|+ const. (32)

Therefore, given this regularization strength,
∑
i∈[d]\{j} |pi,s|, the procedure of the PCD algorithm

for the ΩTI (and of course TI (˜̀2
1,2)) regularized objective function is the same as that for the `1

regularized objective function. Fortunately, by caching cs :=
∑d
j=1 |pj,s| before updating p1,s . . . pd,s,

the algorithm can compute
∑
i∈[d]\{j} |pi,s| in O(1) time at each iteration. Given cs, one can compute∑

i∈[d]\{j} |pi,s| by using cs − |pj,s|, and cs for the next iteration (i.e., for updating pj+1,s) can be

computed by using cs −
∣∣pold
j,s

∣∣ +
∣∣pnew
j,s

∣∣. Algorithm 1 shows the procedure for the PCD algorithm
for the TI regularized objective function. The computational cost of Algorithm 1 for one epoch is
O(nnz (X) k), which is the same as those of the CD and SGD algorithms for canonical FMs. For
more detail about the CD algorithm for canonical FMs, please see (Blondel et al., 2016a; Rendle
et al., 2011; Rendle, 2012) or Appendix B.

5. CS Upper Bound Regularizer

We next propose using `22,1 as an upper bound regularizer of Ω∗. Because `22,1 is an upper bound of Ω∗
and its corresponding proximal operator outputs row-wise sparse P (we will see it in Section 5.1),
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Algorithm 1 PCD algorithm for TI-sparse FMs

Input: {(xn,yn)}Nn=1, k ∈ N>0, λw, λp, λ̃p ≥ 0
1: Initialize P ∈ Rd×k, w ∈ Rd;
2: Compute caches as in canonical FM;
3: while not convergence do
4: Optimize w and update caches as in canonical FM;
5: for s = 1, . . . , k do
6: cs ←

∑d
j=1 |pj,s|; . Cache for ΩTI

7: for j = 1, . . . , d do
8: cs ← cs − |pj,s|; . cs =

∑
i∈[d]\{j} |pi,s|

9: η ← (µ
∑
n∈supp(x:,j)

(∂fFM(xn)/∂pj,s)
2/N + 2λp)

−1;
10: Update pj,s as in canonical FM;

11: pj,s ← proxηλ̃pcs|·|(pj,s) = sign(pj,s) max(|pj,s| − ηλ̃pcs, 0);

12: Update caches as in canonical FM;
13: cs ← cs + |pj,s|; . Update cache for pj+1,s

14: end for
15: end for
16: end while
Output: Learned P and w

it can be better for feature selection in FMs (i.e., it can select better features in terms of the
prediction performance) than the existing regularizers and TI regularizer. We call this regularizer
`22,1 regularizer or Cauchy–Schwarz (CS) regularizer and call FMs with this regularization `22,1-sparse
FMs or CS-sparse FMs since this regularization is derived using the Cauchy–Schwarz inequality:

1

2
‖P ‖22,1 =

∑
j2>j1

‖pj2‖2 ‖pj1‖2 +
1

2
‖P ‖22 (33)

=: ΩCS(P ) +
1

2
‖P ‖22 ≥ Ω∗(P ) +

1

2
‖P ‖22 . (34)

5.1 PGD/PSGD-based Algorithm for CS Regularizer

Similarly to TI regularizer, we consider the use of the PGD algorithm for optimizing CS-sparse FMs.
The PGD algorithm for CS-sparse FMs requires to compute the following proximal operator for a
d× k matrix:

proxλ‖·‖22,1(P ) = arg min
Q∈Rd×k

1

2
‖Q− P ‖22 + λ ‖Q‖22,1 . (35)

The following theorem states that the proximal operator (35) can be computed in O(dk + d log d)
by Algorithm 2 or O(dk) time in expectation by Algorithm 3.

Theorem 8 The solution to the proximal problem (35) Q∗ ∈ Rd×k is

q∗j =

{
c∗j
‖pj‖2

pj ‖pj‖2 6= 0,

0 ‖pj‖2 = 0,
(36)

where c∗ = proxλ‖·‖21

(
(‖p1‖2 , . . . , ‖pd‖2)

>
)

.

The proximal operator of `2,1 (6) shrinks row vectors in P : q∗j = 0 if ‖pj‖ ≤ λ and the threshold
λ does not depend on P , so it sets row vectors of absolutely small `2 norm to be 0. Since c∗ =
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proxλ‖·‖21

(
(‖p1‖2 , . . . , ‖pd‖2)

>
)

can be sparse, `22,1 (35) also shrinks row vectors in P : if ‖pj‖2 is

smaller than the threshold, then q∗j = 0. However, the threshold depends on P : q∗j = 0 if ‖pj‖2 ≤
2λSθ and Sθ depends on ‖p1‖2 , . . . , ‖pd‖2 as described in Theorem 7. That is, `22,1 regularizer
shrinks row vectors of relatively small `2 norm among p1, . . . ,pd to 0. Clearly, CS-sparse FMs also
cannot achieve feature interaction selection like `2,1-sparse FMs (Xu et al., 2016): they produce a
row-wise sparse P . However, the CS regularizer is more useful than the `2,1 one for feature selection
in FMs since it is also an upper bound of the `2,1 norm for PP> without diagonal elements, which
seems appropriates for feature selection in FMs.

Unfortunately, PSGD-based algorithms for the CS regularizer using Algorithm 3 cannot leverage
the sparsity of dataset X. Thus, PSGD-based algorithms should be used only when the number
of instances is large and dataset X is dense like those for the TI regularized objective function as
described in Section 4.

5.2 PBCD Algorithm for CS Regularizer

We here propose an efficient PBCD algorithm for CS-sparse FMs that optimizes each row vector in P
at each iteration. Like the PCD algorithm for TI-sparse FMs, strictly speaking, `22,1 is not separable
w.r.t p1, . . . ,pd and thus it should not be used but it has several advantages: the PBCD algorithm
does not require tuning nor using line search technique for the step size although its convergence is
not guaranteed due to non-separability.

We consider ΩCS regularized objective function LFM(w,P ;λw, λp)+λ̃pΩCS(P ) because ‖P ‖22 can
be taken into LFM as in Section 4.1, focusing on the j-th row vector in P as the optimized parameter.
Then, the ΩCS regularizer can be regarded as a `2 regularizer such that its regularization strength
is
∑
i∈[d]\{j} ‖pi‖2:

ΩCS(P ) =

 ∑
i∈[d]\{j}

‖pi‖2

 ‖pj‖2 + const. (37)

Therefore, as the PCD algorithm for TI-sparse FMs is almost the same as that for `1-sparse FMs, the
PBCD algorithm for CS-sparse FMs is almost the same as that for `2,1-sparse FMs (Xu et al., 2016).
Our remaining task is to design an algorithm for computing regularization strength

∑
i∈[d]\{j} ‖pi‖2

in O(k) time. Fortunately, given c :=
∑d
i=1 ‖pi‖2, we can compute cj :=

∑
i∈[d]\{j} ‖pi‖2 in O(k)

time as cj = c− ‖pj‖2. The gradient of
∑N
n=1 `(f(xn), yn)/N w.r.t pj is Lipschitz continuous with

constant µ
∑
n∈supp(x:,j)

∥∥∇pjfFM(xn)
∥∥2

2
/N since FMs are linear w.r.t pj . Thus, for determining

step size η, we do not have to use the line search technique (Tseng and Yun, 2009), which might
require a high computational cost. For more detail, please see Appendix B.

6. Extensions to Related Models

In this section, we extend ΩTI, ˜̀2
1,2,ΩCS and `22,1 to other related models.

6.1 Higher-order FMs

Blondel et al. (2016a) proposed higher-order FMs (HOFMs), which use not only second-order feature
interactions but also higher-order feature interactions. M -order HOFMs predict the target of x as

fMHOFM(x;w,P (2), . . . ,P (M)) := 〈x,w〉+

M∑
m=2

k∑
s=1

Km
A

(
x,p(m)

:,s

)
, (38)
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where P (2), . . . ,P (M) ∈ Rd×k are learnable parameters for 2, . . . ,M -order feature interactions, re-
spectively, and Km

A : Rd × Rd → R is the m-order ANOVA kernel:

Km
A (x,p) :=

∑
jm>jm−1>···>j1

xj1pj1 · · ·xjmpjm . (39)

M -order HOFMs clearly use from second to M -order feature interactions. Although the evaluation
of HOFMs (38) seems to take O (dmk) time at first glance, it can be completed in O

(
dkM2

)
(strictly

speaking, O(nnz (x) kM2)) time since m-order ANOVA kernels can be evaluated in O(dm) (strictly
speaking, O(nnz (x)m)) time by using dynamic programming (Blondel et al., 2016a; Shawe-Taylor
and Cristianini, 2004). Blondel et al. (2016a) also proposed efficient CD and SGD-based algorithms.

6.1.1 Extension of ΩTI and ˜̀2
1,2 for HOFMs

The output of M -order HOFMs (38) can be rearranged as

fMHOFM(x) := 〈x,w〉+

M∑
m=2

∑
jm>···>j1

wj1,...,jmxj1 · · ·xjm , where wj1,...,jm =

k∑
s=1

p
(m)
j1,s
· · · p(m)

jm,s
. (40)

Thus, we extend Ω∗ and ΩTI for higher-order feature interactions as

Ωm∗ (P ) :=
∑

jm>···>j1

∣∣∣∣∣
k∑
s=1

pj1,s · · · pjm,s
∣∣∣∣∣ ≤ ∑

jm>···>j1

k∑
s=1

|pj1,s · · · pjm,s| =: ΩmTI(P ). (41)

Obviously, ΩTI = Ω2
TI holds. We hence propose using the following regularization for higher-order

feature interactions in M -order HOFMs:

Ω2
TI

(
P (2)

)
+ · · ·+ ΩMTI

(
P (M)

)
. (42)

ΩmTI can be represented by the ANOVA kernel:

ΩmTI(P ) =

k∑
s=1

Km
A (abs (p:,s) ,1) . (43)

By using multi-linearity of the ANOVA kernel, we can rewrite ΩmTI(P ) as

ΩmTI(P ) = |pj,s|
∂

∂ |pj,s|
Km

A (abs (p:,s) ,1) + const. (44)

Hence, ΩmTI(P ) is also regarded as `1 regularization for one parameter pj,s, like ΩTI, and the PCD
algorithm for the ΩmTI regularized objective function is almost the same as that for TI-sparse FMs: at
each iteration, the algorithm first updates the parameter as in the canonical HOFMs and next applies

proxηλ̃p·c|·| to updated p
(m)
j,s , where c = ∂Km

A

(
abs

(
p

(m)
:,s

)
,1
)
/∂
∣∣∣p(m)
j,s

∣∣∣. Given Km
A

(
abs(p

(m)
:,s ),1

)
and additional caches, we can compute ∂Km

A

(
abs

(
p

(m)
:,s

)
,1
)
/∂
∣∣∣p(m)
j,s

∣∣∣ in O (m) time (Atarashi

et al., 2020). Therefore, we can update p
(m)
j,s in O (mnnz (x:,j) k) time, which is the same as that for

the PCD algorithm for canonical HOFMs.
Next, we consider the extension of ˜̀2

1,2 for higher-order feature interactions. We first present a
generalization of Theorem 3.

Theorem 9 For any m-homogeneous quasi-norm Ωm, there exists C > 0 such that Ωm∗ (P ) ≤
CΩm(P ) for all P ∈ Rd×k.
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Thus, we simply propose the use of ˜̀m
1,m as an extension of ˜̀2

1,2 for P (m), m ∈ {2, . . . ,M}.
Because ˜̀m

1,m is column-wise separable, PGD/PSGD-based algorithms for HOFMs with ˜̀m
1,m require

to evaluate the following proximal operator:

proxλ‖·‖m1 (p:,s) = arg min
q∈Rd

1

2
‖p− q‖+ λ ‖q‖m1 (45)

For this proximal operator, we show a generalization of Theorem 7.

Theorem 10 Assume that p ∈ Rd is sorted in descending order by absolute value: |p1| ≥ |p2| ≥
· · · ≥ |pd|. Then, the solution to the proximal problem (45) q∗ ∈ Rd is

q∗j =

{
sign(pj)

[
|pj | − λmSm−1

θ

]
j ≤ θ,

0 otherwise,
(46)

Sj ∈
[

0,

j∑
i=1

|pi|
]

s.t. λmjSm−1
j + Sj −

j∑
i=1

|pi| = 0 (47)

and θ = max{j : |pj | − λmSm−1
j ≥ 0}.

Like (30), (45) can be evaluated in O(d log d) time or O(d) time in expectation if Sj can be
computed in O(1). Unfortunately, Sj in (47) cannot be computed analytically whenm > 5. However,
HOFMs with M = 3 is typically recommended (Blondel et al., 2016a) and then it can be computed
analytically. Even if m > 5, one can approximately compute Sj by using a numerical method, e.g.,
Newton’s method.

6.1.2 Extension of ΩCS and `22,1 for HOFMs

We next extend ΩCS for higher-order feature interactions as

ΩmCS(P ) :=
∑

jm>···>j1
‖pj1‖2 ‖pj2‖2 · · · ‖pjm‖2 = Km

A

(
(‖p1‖2 , . . . , ‖pd‖2)>,1

)
, (48)

and we propose using the following regularization for (order-wise) feature selection in M -order
HOFMs:

Ω2
CS

(
P (2)

)
+ · · ·+ ΩMCS

(
P (M)

)
, (49)

Clearly, ΩCS = Ω2
CS holds. By using the multi-linearity, we can write it as

ΩmCS(P ) = ‖pj‖2
∂

∂ ‖pj‖2
Km

A

(
(‖p1‖2 , . . . , ‖pd‖2)>,1

)
+ const. (50)

Therefore, ΩmCS(P (m)) is also regarded as `2,1 regularization for one row vector p
(m)
j like ΩCS. Thus,

the PBCD algorithm for HOFMs with (49) can be extended similarly as the PCD algorithm for
HOFMs with (43).

Like the extension of ˜̀2
1,2, we simply propose using `m2,1 as an extension of `22,1. Then, PSGD/PGD-

based algorithm requires to evaluate the following proximal operator for P (m):

proxλ‖·‖m2,1(P ) = arg min
Q∈Rd×k

1

2
‖Q− P ‖22 + λ ‖Q‖m2,1 . (51)

The following is a generalization of Theorem 8 and states that (51) can be evaluated analytically in
O(dk) when m < 6.
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Theorem 11 The solution to the proximal problem (51) Q∗ ∈ Rd×k is

q∗j =

{
c∗j
‖pj‖2

pj ‖pj‖2 6= 0,

0 ‖pj‖2 = 0,
(52)

where c∗ = proxλ‖·‖m1

(
(‖p1‖2 , . . . , ‖pd‖2)

>
)

.

Therefore, (51) can be evaluated by (i) computing the `2 norm of each row vector (O(dk)),

(ii) evaluating c∗ = proxλ‖·‖m1

(
(‖p1‖2 , . . . , ‖pd‖2)

>
)

(O(d) in expectation), and (iii) computing

q∗j as (52) for all j ∈ [d] (O(dk)). When m > 5, (51) cannot be evaluated analytically since the
evaluation of (45) is required.

6.2 All-subsets Model

For using HOFMs, a machine learning user must determine the maximum order of interactions,
M . A machine learning user might want to consider all feature interactions. Although d-order
HOFMs use all feature interactions, they require O(dk(d2)) = O(d3k) computational cost and it
might be prohibitive for a high-dimensional case. To overcome this problem, Blondel et al. (2016a)
also proposed the all-subsets model, which uses all feature interactions efficiently. The output of the
all-subsets model is defined by

fall(x;P ) :=

k∑
s=1

Kall(x,p:,s) =

d∑
m=0

k∑
s=1

Km
A (p:,s,x), (53)

where P ∈ Rd×k is the learnable parameter, and Kall : Rd×Rd → R is the all-subsets kernel (Blondel
et al., 2016a):

Kall(x,p) :=

d∏
j=1

(1 + xjpj) =
∑
S∈2[d]

∏
j∈S

xjpj . (54)

Clearly, the all-subsets kernel (54) can be evaluated in O(d) (strictly speaking, O(nnz (x))) time, so
the all-subsets model (53) can be evaluated in O(dk) (strictly speaking, O(nnz (x))k) time. Blondel
et al. (2016a) also proposed efficient CD and SGD-based algorithms for the all-subsets model.

6.2.1 Extension of ΩTI and ˜̀2
1,2 for the All-subsets Model

The output of the all-subsets model (53) can be rearranged as

fall(x;P ) =
∑
S∈2[d]

wS
∏
j∈S

xj , where wS =

k∑
s=1

∏
j∈S

pj,s. (55)

Thus, we propose Ωall
TI, which is an extension of ΩTI to the all-subsets model:

Ωall
TI(P ) :=

∑
S∈2[d]

k∑
s=1

∏
j∈S
|pj,s| =

k∑
s=1

∑
S∈2[d]

∏
j∈S
|pj,s| · 1 =

k∑
s=1

Kall(abs(p:,s),1) =

d∑
m=1

ΩmTI(P ). (56)

Since the output of the all-subsets model is multi-linear and Ωall
TI(P ) can be regarded as a `1 regular-

ization for one parameter, the all-subsets model with this regularization can be optimized efficiently
by using the PCD algorithm. For pj,s, Ωall

TI(P ) is written as {∂Kall(abs(p:,s),1)/∂ |pj,s|}·|pj,s|+const,
and ∂Kall(abs(p:,s),1)/∂ |pj,s| can be computed in O(1) time if Kall(abs(p:,s),1) is given (Blondel
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et al., 2016a). Thus, we can extend the PCD algorithm for the canonical all-subsets model (Blondel
et al., 2016a) to the PCD algorithm for the all-subsets model with Ωall

TI regularization similarly as
for FMs and HOFMs.

We next extend ˜̀2
1,2 to the all-subsets model. Based on Theorem 9 and (56), we extend it as∑d

m=1

∥∥P>∥∥m
1,m

. We leave the development of an efficient algorithm for evaluating the corresponding

proximal problem for future work. Because the all-subsets model is multi-linear w.r.t p1, . . . ,pd (and
of course p1,1, . . . , pd,k), it is also optimized by using the CD algorithm efficiently (Blondel et al.,
2016a).

6.2.2 Extension of ΩCS and `22,1 for the All-subsets Model

Next, we extend ΩCS to all-subsets model as

Ωall
CS(P ) :=

d∑
m=1

ΩmCS(P ) = Kall

(
(‖p1‖2 , . . . , ‖pd‖2)>,1

)
. (57)

The all-subsets model with Ωall
CS is efficiently optimized by using the PBCD algorithm in a similar

manner because the all-subsets model is multi-linear w.r.t pj and Ωall
CS is also multi-linear w.r.t ‖pj‖2

for all j ∈ [d].

We also extend `22,1 to the all-subsets model as
∑d
m=1 ‖P ‖

m
2,1 but we leave the development of

an efficient algorithm for evaluating the corresponding proximal problem for future work.

7. Related Work

Because FMs are equivalent to the QR with low-rank factorized W and the QR is essentially a linear
model, one can näıvely use any feature selection method (Tibshirani, 1996; Liu et al., 2017; Mallat
and Zhang, 1993) for feature interaction selection in the QR. Especially, the QR with the `1 norm
and the trace (nuclear) norm ‖·‖tr regularization is one of the natural choice for learning a low-rank
W with feature interaction selection. Formally, the corresponding objective function is

LQR(w,W ;λw) + λtr ‖W ‖tr + λ̃ ‖W ‖1 , (58)

where λw, λtr, and λ̃ > 0 are regularization-strength hyperparameters. We call the QR learned
by minimizing (58) the sparse and low-rank QR (SLQR). Richard et al. (2012) firstly proposed
proximal algorithms for convex objective functions with ‖·‖1 and ‖·‖tr such as (58) for estimating a
simultaneously sparse and low-rank matrix. The incremental PGD algorithm proposed by Richard
et al. (2012) updates W as

W ← proxηλ̃

(
proxηλtr‖·‖tr (W − η∇LQR)

)
. (59)

Because the objective function (58) is convex, its all local minima are global minima unlike the FM-
based existing methods. It is a great advantage of the QR-based methods compared to the FM-based
methods. However, the QR (and of course the SLQR) requires O(d2) memory and O(nnz (x)

2
) time

for evaluation, so it is hard to use QR-based methods for a high-dimensional case. Moreover, the
evaluation of (59) takes O(d3) computational cost (Parikh and Boyd, 2014). Therefore, it is harder
to use the SLQR for a high-dimensional case.

Agrawal et al. (2019); Yang et al. (2019); Morvan and Vert (2018), and Suzumura et al. (2017)
proposed feature interaction selection methods in the QR and/or QR-like models. They can be more
efficient than above-mentioned näıve methods (Tibshirani, 1996; Liu et al., 2017; Mallat and Zhang,
1993). However, the methods of Agrawal et al. (2019) and Yang et al. (2019) require super linear
computational cost w.r.t d or N , and those of Morvan and Vert (2018) and Suzumura et al. (2017)
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can be used only when x ∈ [0, 1]d. Moreover, as described in Section 2, the QR cannot estimate the
weights for interactions that are not observed from the training data.

Cheng et al. (2014) proposed a greedy (forward) feature interaction selection algorithm in FMs
for context-aware recommendation. They call FMs with their algorithm gradient boosting FMs
(GBFMs). In general, greedy selection algorithms produce a sub-optimal solution and are often
inferior to shrinkage methods (e.g., methods based on sparse regularization) (Hastie et al., 2009).
Moreover, at each greedy interaction selection step, their algorithm sequentially selects each feature
that constructs the interaction, namely, their greedy step is approximately greedy.

Chen et al. (2019b) proposed a Bayesian feature interaction selection method in FMs for person-
alized recommendation. Assume that there are U users and I items, and xi, . . . ,xI ∈ Rd are feature
vectors of items. Then, they proposed (Bayesian) personalized FMs, which predict the preference of
each user for each item. The output of personalized FMs for u-th user fu : Rd → R is defined as

fu(x;πu,µ,P , φ) = 〈w̄u,x〉+
∑
j2>j1

w̄u,j1,j2xj1xj2 , (60)

where

w̄u,j = πu,jµj , w̄u,j1,j2 = πu,j1,j2µj1,j2 ,

πu,j1,j2 = πu,j1πu,j2 [1 + (1− πu,j1πu,j2)(πu,j1 + πu,j2)],

where µ ∈ Rd, πu ∈ [0, 1]d and Pu ∈ Rd×k are learnable parameters and µj1,j2 ∈ Rd is computed
defined by using µ, pj1 , and pj2 (for more detail, please see (Chen et al., 2019b)). Intuitively,
πu,j represents the selection probability of j-th feature. Similarly, πu,j1,j2 represents that of the
interaction between j1-th and j2-th features. Unfortunately, their method cannot actually select
feature interactions without selecting features because πu,j1,j2 = 0 if and only if πu,j1 = 0 or
πu,j2 = 0 (on πu,j ∈ [0, 1]), namely, their method actually is for feature selection.

Several researchers proposed FMs and deep-neural-network-extension of FMs that adapt feature
interaction weights depending on an input feature vector x (Xiao et al., 2017; Song et al., 2019;
Hong et al., 2019; Xue et al., 2020). While such methods outperformed FMs on some recommender

system tasks, they also require O
(

nnz (x)
2
)

time for evaluation. Moreover, their feature interaction

weights cannot be completely zero.

8. Experiments

In this section, we experimentally demonstrate the advantages of the proposed methods for feature
interaction selection (and additionally feature selection) compared with existing methods. Firstly,
we show the results for synthetic datasets. These results indicate that (i) TI-sparse FMs are useful
for feature interaction selection in FMs while existing methods are not and (ii) CS-sparse FMs are
more useful than existing methods for feature selection in FMs. Secondly, we show the results
for some real-world datasets on an interpretability constraint setting. Finally, we compares the
convergence speeds of some optimization algorithms for proposed methods on both synthetic and
real-world datasets.

We implemented the existing and proposed methods in Nim 3 and ran the experiments on
an Arch Linux desktop with an Intel Core i7-4790 (3.60 GHz) CPU and 16 GB RAM. The FM
implementation was as fast as libFM (Rendle, 2012), which is the implementation of FMs in C++.
Our implementation is available at https://github.com/neonnnnn/nimfm.
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Figure 2: Comparison of proximal operators associated with TI, CS, L21, and L1 regularizer. We
evaluated the proximal operators at a randomly sampled P with various λ. Left graph shows the
number of used feature interactions and right graph shows the number of used features in Q∗(Q∗)>,
where Q∗ is the output of the proximal operator: Q∗ = proxλΩ(·)(P ) and Ω=`1 (L1 (Pan et al.,

2016)), `2,1 (L21 (Xu et al., 2016; Zhao et al., 2017)), ˜̀2
1,2 (TI, proposed in Section 4), or `22,1 (CS,

proposed in Section 5).

8.1 Comparison of Proximal Operators

Firstly, we compared the outputs of proximal operators of the existing methods and the proposed
methods in the same way as in Section 3.1. We evaluated proximal operators of not only L1 (Pan
et al., 2016) and L21 (Xu et al., 2016; Zhao et al., 2017) but also ˜̀2

1,2 (TI) and `22,1 (CS). Their
corresponding proximal operators are (8), (6), (30), and (35), respectively.

Results are shown in Fig. 2. Unlike the existing methods (L1 and L21), the proposed methods
(TI and CS) could produce sparse but moderately sparse feature interaction matrices. Moreover,
the number of used features in TI was 200 for all λ ∈ {2−7, . . . , 27}. It means that TI successfully
selects feature interactions in FMs. The number of used features in CS decreased gradually as
λ increased. It indicates that CS can be more useful than TI and existing methods for feature
selection.

8.2 Synthetic Datasets

We next evaluated the performance of the proposed methods and existing methods on feature in-
teraction selection and feature selection problems using synthetic datasets. We ran the experiments
on an Ubuntu 18.04 server with an AMD EPYC 7402P 24-Core Processor (2.80 GHz) and 128 GB
RAM.

8.2.1 Settings

Datasets. To evaluate the proposed TI regularizer and CS regularizer in the feature interaction
selection and feature selection scenarios, we created datasets such that true models used partial
second-order feature interactions. We defined the true model as the QR without the linear term
with the block diagonal matrix W . We defined each block diagonal matrix as a (dtrue/b, dtrue/b)
all-ones matrix, where b is the number of blocks (we set b such that dtrue was dividable by b).
Intuitively, there were b distinct groups of features, and wj1,j2 = 1 if j1 and j2 were in the same
group of features and equaled zero otherwise. Precisely, if dj1/(dtrue/b)e = dj2/(dtrue/b)e, j1 and j2

3. https://nim-lang.org/
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were in the same group of features. For the distribution of feature vector x, we used a Gaussian
distribution, N (µ,Σ). We set µ = 0 and Σj,j = 1 for all j ∈ [dtrue] and set Σj1,j2 = 0.2 if j1 6= j2
were in the same feature group and zero otherwise. Moreover, we concatenated dnoise-dimensional
noise features to feature vector x and used the concatenated vector as the observed feature vector
(namely, the dimension of the observed feature vectors d = dtrue + dnoise). We set the distribution
of each noise feature to N (0, 1) (the noise features were independent of each other). Furthermore,
we added noise to the observation of target ftrue(x). We used N (0, 0.12) for the target noises. We
considered two settings.

• Feature interaction selection setting: dtrue = 80, b = 8, and dnoise = 20. In this setting,
there were eight groups of features, so the methods that perform only feature selection in FMs
like CS-sparse FMs and `2,1-sparse FMs were not useful. Again, our main goal is to develop
sparse FMs that are useful in this setting.

• Feature selection setting: dtrue = 20, b = 1, and dnoise = 80. In this setting, there was only
one group of features, so the methods that perform only feature selection in FMs were also
useful.

Evaluation Metrics. We mainly used three metrics. They were computed using the parameters
W of the true models.

• Estimation error: ‖W − P̂ P̂>‖2,>/ ‖W ‖2,>, where ‖·‖2,> is the `2 norm for only the

strictly upper triangular elements, W is the true feature interaction matrix, and P̂ is the
learned parameter in FMs and sparse FMs. Lower is better.

• F1-score: the F1-score of the support prediction problem. To be more precise, we regarded
(j1, j2) as a positive instance if wj1,j2 6= 0 and as a negative instance otherwise, and we regarded
(j1, j2) as a positive predicted instance if 〈p̂j1 , p̂j2〉 6= 0 and as a negative predicted instance
otherwise for all j2 > j1. Higher is better.

• Percentage of successful support recovery (PSSR) (Liu et al., 2017): the percentages of
the results such that {(j1, j2) : wj1,j2 6= 0, j2 > j1} = {(j1, j2) : 〈p̂j1 , p̂j2〉 6= 0, j2 > j1} among
the different datasets. Higher is better.

Methods Compared. We compared the following eight methods.

• TI: ˜̀2
1,2-sparse FMs (TI-sparse FMs) optimized using PCD algorithm.

• CS: `22,1-sparse FMs (CS-sparse FMs) optimized using PBCD algorithm.

• L21: `2,1-sparse FMs (Xu et al., 2016; Zhao et al., 2017) optimized using PBCD algorithm.

• L1: `1-sparse FMs (Pan et al., 2016) optimized using PCD algorithm.

• Ω∗-nmAPGD: Ω∗-sparse FMs optimized using non-monotone accelerated inexact PGD algo-
rithm (Li and Lin, 2015).

• Ω∗-SubGD: Ω∗-sparse FMs optimized using SubGD algorithm.

• SLQR: the SLQR optimized using the incremental PGD algorithm (Richard et al., 2012)
with acceleration (Nesterov, 1983; Beck and Teboulle, 2009) and restart (Giselsson and Boyd,
2014). The PGD algorithm with acceleration is known as a fast iterative shrinkage thresholding
algorithm (FISTA) (Beck and Teboulle, 2009).

• FM: canonical FMs (Rendle, 2010) optimized using CD algorithm.

For all methods, we omitted the linear term 〈w,x〉 since the true models do not use it. Since the
target values are in R, we used the squared loss for `(·, ·).
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(a) Feature interaction selection setting: dtrue = 80, b = 8, and dnoise = 20.
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(b) Feature selection setting: dtrue = 20, b = 1, and dnoise = 80.

Figure 3: Experimental results with tuned parameters for TI, CS, L21, L1, Ω∗-nmAPGD, Ω∗-
SubGD, SLQR, and FM methods on synthetic datasets using different numbers of training ex-
amples: (a) feature interaction selection setting datasets; (b) feature selection setting datasets. Left
graphs show estimation error (lower is better), center graphs show F1-score (higher is better), and
right graphs show PSSR (higher is better). In (a), the plots of estimation errors of CS and L21,
those of F1-scores of L1, L21, Ω∗-nmAPGD, and Ω∗-SubGD, and those of PSSRs except for TI
overlap, respectively. In (b), similarly, the plots of F1-scores of Ω∗-nmAPGD and Ω∗-SubGD and
those of PSSRs of SLQR, Ω∗-nmAPGD, and Ω∗-SubGD overlap, respectively.

8.2.2 Results with Tuned Hyperparameters

We compared the above-mentioned three metrics among the eight methods. Since these metrics
use the parameter of the true model, W , and the results clearly depended on the hyperparameter
settings, we followed Liu et al. (2017) for evaluation: created 150 datasets (not the number of
instances in a dataset but the number of datasets), divided them into 50 validation datasets and
100 test datasets, tuned the hyperparameters on the validation datasets (which also used W ), and
finally learned models on the test datasets with tuned hyperparameter and evaluated them. We tuned
hyperparameters λp and λ̃p. For the sparse FM methods (i.e., TI, CS, L21, L1, Ω∗-nmAPGD,
and Ω∗-SubGD), we set them to 10−2, 10−1, . . . , 102. Since the FM method had only λp, we tuned
it more carefully than the sparse FM methods: 10−3+0·7/24, 10−3+1·7/24, . . . , 10−3+24·7/24 = 104.
We set rank hyperparameter k to 30 for FM and the sparse FM methods and used N (0, 0.012)
to initialize P . We used line search techniques for computing step sizes in Ω∗-SubGD and Ω∗-
nmAPGD. We used the SubGD method for solving the proximal operator (14) in Ω∗-nmAPGD.
In this SubGD method, we used a diminishing step size: η = 0.1/

√
t at the t-th iteration, and

set the number of iteration to 20. In SLQR, we set λtr and λ̃ to 10−2, 10−1, . . . , 102. We ran
the experiment 10 times with different initial random seeds for FMs and sparse FMs since their
learning results depend on the initial value of P (we thus learned and evaluated above-mentioned
methods 100×10 = 1, 000 times). We also ran it with different numbers of instances in each dataset:
N = 50, 100, 150, and 200. For fair comparison, we set the time budgets for optimization to N/50
second (CPU time) for all methods. However, we stopped optimization if the absolute difference
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Figure 4: Sensitivity to regularization-strength hyperparameter λ̃p for sparse regularization for TI,
CS, L21, and L1 methods on feature selection setting synthetic datasets with dtrue = 20, b = 1,
dnoise = 80, and N = 200. Left graph shows estimation error (lower is better), center graph shows
F1-score (higher is better), and right graph shows PSSR (higher is better). The plots of F1-scores
of Ω∗-nmAPGD and Ω∗-SubGD and those of PSSRs of Ω∗-nmAPGD, Ω∗-SubGD, and SLQR
overlap, respectively.

between the current parameter and previous parameter was less than 10−3 for FM, L1, L21, TI,
and CS, and 10−7 for SLQR, Ω∗-SubGD, and Ω∗-nmAPGD.

As shown in Fig. 3a, TI performed the best on the feature interaction selection setting datasets
for all metrics. Note that the plots of estimation errors of CS and L21, those of F1-scores of L1,
L21, Ω∗-nmAPGD, and Ω∗-SubGD, and those of PSSRs except for TI overlap, respectively.
Only TI successfully selected feature interactions in this setting: the F1-score and PSSR of TI
increased with N , and TI achieved about 80% of PSSR when N = 200. The F1-scores and PSSRs
of CS, L21, L1, Ω∗-nmAPGD, Ω∗-SubGD, and FM did not increase with N . Although SLQR
achieved the better F1-scores than the other methods except for TI, its estimation errors were worst
and its PSSRs were zero for all N . We observed that SLQR could achieve as low estimation errors
as Ω∗-nmAPGD and Ω∗-SubGD if we set time budgets more than 10 × N/50 second. Namely,
SLQR could select feature interactions and learn a good W but it was inefficient compared to
TI. Ω∗-nmAPGD and Ω∗-SubGD achieved lower estimation errors than the existing methods
but their F1-scores and PSSRs were as low as those of the existing methods. This is because the
nmAPGD algorithm with an inexact proximal operator and the SubGD algorithm do not produce
a sparse P and a sparse W , and the PSSR and F1-score of a dense W are low by definition. In
contrast, not only TI but also CS, L21, and L1 selected features correctly for the feature selection
setting datasets (Fig. 3b). Note that the plots of F1-scores of Ω∗-nmAPGD and Ω∗-SubGD and
those of PSSRs of SLQR, Ω∗-nmAPGD, and Ω∗-SubGD overlap, respectively. CS performed
the best on all metrics for the feature selection setting datasets and it seems reasonable because CS
used the upper bound of Ω∗ and CS produces a row-wise sparse P (i.e., CS is more preferable for
feature selection than TI).

8.2.3 Sensitivity to Regularization-strength Hyperparameter

In this experiment, we investigated sensitivity to the regularization-strength hyperparameter for
sparse regularization in the existing and proposed sparse FM methods. We evaluated and compared
the estimation errors, F1-scores, and PSSRs for various λ̃p, which is the regularization strength for
sparse regularization. In this experiment, we used 50 feature selection datasets with N = 200 since
the results on the feature interaction selection datasets were bad except TI even with tuned λ̃p,

as discussed in Section 8.2.2. We set λ̃p and λ̃ to 2−10, 2−9, . . . , 26 and set λp = λtr = 0.1. The
other settings (rank-hyper parameter, initialization, and stopping criterion) were the same as those
described in Section 8.2.2. Again, we ran the experiment 10 times with different initial random seeds
for FM-based methods.
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(a) Feature interaction selection setting: dtrue = 80, b = 8 and dnoise = 20 with λ̃p = 0.1 (left) and 1.0 (right).
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(b) Feature selection setting: dtrue = 20, b = 1 and dnoise = 80 with λ̃p = 0.1 (left) and 1.0 (right).

Figure 5: Trajectories of ‖W ‖1 regularized objective value for TI, CS, L21, L1, Ω∗-nmAPGD,
Ω∗-SubGD, and SLQR methods on (a) feature interaction selection setting synthetic datasets and
(b) feature selection setting synthetic datasets with N = 200.

As shown in Fig. 4, although the regions of an adequate λ̃p differed among methods, that of

CS was wider than those of the other methods for all metrics. The regions of an adequate λ̃p of
TI for the F1-score and PSSR were also wider than those of other methods. Thus, our proposed
methods are less sensitive to λ̃p than the other methods. This is important in real-world applications,
especially large-scale applications that require high computational costs for hyperparameter tuning.

8.2.4 Efficiency and Scalability

In the third experiment, we evaluated the efficiency of the proposed and existing methods. We
first compared convergences of the ‖W ‖1 (it is equivalent to 2Ω∗(P ) + ‖P ‖22 in FMs as shown
in Section 3.2) regularized objective function value among TI, CS, L21, L1, Ω∗-nmAPGD, Ω∗-
SubGD, and SLQR methods. We tracked the value in the optimization processes using 50 feature
interaction selection setting datasets and feature selection setting datasets with N = 200. Since
the appropriate λ̃p differed among methods, as mentioned in Section 8.2.3, we ran the experiment

with λ̃p = 0.1 and 1.0. For both settings, we set λp = λtr = 0.1 and the other settings were the
same as those described in Section 8.2.2. Note that we show the results of this experiment on some
real-world datasets in Appendix C.1.
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Figure 6: Running times for one epoch in TI, CS, L21, L1, Ω∗-nmAPGD, Ω∗-SubGD, and
SLQR methods on synthetic datasets. The figure on the right is the same as the figure on the left,
except that the y-axis is on a logarithmic scale. The plots of TI and L1 overlap and those of CS
and L21 overlap.
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Table 2: Datasets used to demonstrate usefulness of proposed methods.

Dataset Task d Ntrain Nvalid Ntest

ML100K (Harper and Konstan, 2016) Regression 2,703 64,000 16,000 20,000
a9a (Chang and Lin, 2011) Classification 123 26,048 6,513 16,281

RCV1 (Chang and Lin, 2011) Classification 47,236 16,193 4,049 677,399
FD (Ke et al., 2017) Classification 696 16,000 4,000 80,000

As shown in Fig. 5a, the proposed TI method achieved the lowest ‖W ‖1 regularized objective

value on the feature interaction selection datasets. The difference was remarkable for λ̃p = 1.0. As
shown in Fig. 5b), the proposed TI and CS methods achieved lower ‖W ‖1 regularized objective
values on the feature selection datasets than the other methods for all parameter settings. Moreover,
the objective values converged faster with TI and CS than with the other methods all parameter
settings. Thus, our proposed sparse FMs are more attractive alternatives to Ω∗-sparse FMs than
the existing sparse FMs.

We next compared the scalability of the existing and proposed methods w.r.t the number of
features d. We created synthetic datasets with varying d and compared the running time for one
epoch among TI, CS, L21, L1, Ω∗-nmAPGD, Ω∗-SubGD, and SLQR methods. We changed
dtrue as 1000, 2000, 3000, and 4000. We set b = dtrue/100, dnoise = 0, and N = 2500. We created
ten datasets with different random seeds for all d and report the average running times. The other
settings were the same as those described in Section 8.2.2.

As shown in Fig. 6, the running time of TI, CS, L1 and L21 linearly increased w.r.t d. On
the other hand, that of Ω∗-nmAPGD and Ω∗-SubGD increased quadratically, and that of SLQR
increased cubically w.r.t d. When d = 4000, SLQR ran more than 100 times slower than TI, CS,
L1, and L21. Thus, the proposed TI and CS are better than Ω∗-nmAPGD, Ω∗-SubGD, and
SLQR for a high-dimensional case.

8.3 Real-world Datasets

Next, we used real-world datasets to demonstrate the usefulness of the proposed methods.
Settings and Datasets. We compared existing and proposed sparse FMs on an interpretability-

constraint setting: the number of interactions in sparse FMs were constrained to be (about) 1, 000.
We used one regression dataset, the MovieLens 100K (ML100K) (Harper and Konstan, 2016)
dataset, and three binary classification datasets, a9a, RCV1 (Chang and Lin, 2011), and Flight
Delay (FD) (Ke et al., 2017). Table 2 summarizes the details of these datasets. With the ML100K
dataset, which is used for movie recommendation, we considered a regression problem: predicting
the score given to a movie by a user. Possible scores were 1, 2, . . . , 5. We created feature vectors
by following the method of Blondel et al. (2016a). We divided the 100, 000 user-item scores in the
dataset into sets of 64, 000, 16, 000, and 20, 000 for training, validation, and testing, respectively.
For the a9a and RCV1 datasets, we used feature vectors and targets that are available from the LIB-
SVM (Chang and Lin, 2011) datasets repository. 4 Both a9a and RCV1 have already been divided
into training and testing datasets; we used 20% of the training dataset as the validation dataset and
the remaining 80% as the training dataset in this experiment. For the FD dataset, we considered the
classification task to predict whether a flight will be delayed by more than 15 minutes. We used the
scripts provided in https://github.com/szilard/benchm-ml: ran 2-gendata.txt and randomly
sampled train, valid, and test datasets from train-1m.csv and test.csv. Then, each instance had
eight attributes and we encoded them to one-hot features except DepTime and Distance. DepTime

represents an actual departure time and consists of four integers, HHMM. We split such DepTime

values to HH and MM, and encoded them to one-hot features (MM values were encoded to six-

4. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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dimensional one-hot features based on their tens digit). For Distance values, we regarded them as
numerical values and used their logarithm values.

Evaluation Metrics. As metrics, we used the root mean squared error (RMSE) for the ML100K
dataset and the area under the receiver operating characteristic curve (ROC-AUC) for the a9a,
RCV1, and FD datasets. Lower is better for the RMSE, and higher is better for the ROC-AUC.

Hyperparameter Settings. As in the experiments using synthetic datasets, we compared the TI,
CS, L21, L1, and FM methods. We used the squared error as loss function `. We set rank-hyper
parameter k to 30. We used the linear term 〈w,x〉 and introduced a bias (intercept) term. We
initialized each element in P by using N (0, 0.012) as in the experiments using synthetic datasets.
We initialized w to 0 and the bias term to 0. We ran the experiment five times with different
random seeds and calculated the average values of the evaluation metrics. For the FM method,
we chose λw and λp from 0.5 × 10−7, 0.5 × 10−6, . . . , 0.5 × 10−2. For the TI, CS, L21, and L1
methods, we set λw = λFM

w and λp = λFM
p /10, where λFM

w and λFM
p are the tuned λw and λp in the

FM method. Since sparse FMs have additional regularizers, we set λp to λFM
p /10, not λFM

p . As
described above, because we constrained the number of used interactions in sparse FMs to be about
1, 000, the method for tuning λ̃p was complicated. We searched for the appropriate λ̃p by binary
search since the number of used interactions (i.e., number of non-zero elements among the strictly
upper triangular elements in PP>) tended to be monotonically non-decreasing in λ̃p. For each
sparse FM, the initial range (i.e., upper bound and lower bound) of the binary search was chosen
from 10−7, 10−6, . . . , 10−2. After the initial range was chosen, we searched for the appropriate λ̃p
by binary search. Since it was hard to achieve the number of used interactions to be exactly 1, 000,
we accepted the models with the number of used interactions to be in [990, 1, 035]. The reason why
we set the acceptable range to be [990, 1, 035] is that CS and L21 achieve only feature selection,
and 990 and 1, 035 are the nearest binomial coefficients to 1, 000: 990 =

(
45
2

)
and 1, 035 =

(
46
2

)
.

Moreover, if the gap between an upper and a lower bound in binary search was lower than 10−12,
we gave up tuning λ̃p for such models and set their scores to be N/A. Although FM did not select
feature interactions, we showed results of it for comparison. We also show the results of TI, CS, L1
and L21 with tuned λ̃p ∈ {10−7, 10−6, . . . , 10−2} (i.e., the best results before doing binary search)
for comparison although the numbers of used interactions in them were not close to 1, 000.

Results. As shown in Table 3, although the differences were not remarkable, our proposed
methods achieved the best performance for each dataset. For ML100K and a9a datasets, TI achieved
the best performance. This results match the experimental results in Section 8.2.2. Among TI, CS,
L21, and L1, only TI can perform feature interaction selection. For the RCV1 dataset, only CS
succeeded in learning models using approximately 1, 000 feature interactions. For the FD dataset,
TI and CS succeeded in learning such models but L21 and L1 did not. This result matches the
experimental results in Section 8.2.2 and Section 8.2.3. TI and CS, especially CS, are less sensitive to
regularization-strength hyperparameter and can perform better feature selection than L21 and L1.
Moreover, as shown in Table 3b, TI achieved the best performance for a9a, RCV1, and FD datasets
and CS achieved the best performance for ML100K dataset on no interpretability constraint setting.
They used not all but partial feature interactions except CS for FD dataset. On the other hand,
FM used all feature interactions for ML100K, a9a, and FD datasets and used no feature interactions
for RCV1 dataset (in our training-validation-test splitting, the training ML100K dataset contained
only 2,640 features and the training FD dataset contained only 643 features). L1 and L21 also
used no feature interactions for RCV1 and FD datasets. From these results, we conclude that our
proposed methods could select better (important) features and feature interactions in terms of the
prediction performance.

9. Conclusion

In this paper, we have presented new sparse regularizers for feature interaction selection and feature
selection in FMs, the TI regulazier and the CS regularizer, respectively, as well as efficient proximal
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Table 3: Comparison of test RMSE for ML100K dataset and test ROC-AUC for a9a, RCV1, and
FD datasets. (a) Results on interpretability constraint setting. (b) Results on no interpretability
constraint setting (λ̃p ∈ {10−7, 10−6, . . . , 10−2}). We report not only RMSE and ROC-AUC (upper
value in each cell) but also the number of used interactions (lower value in each cell). Lower is better
for RMSE, and higher is better for ROC-AUC.

(a) Interpretability constraint setting.

Method ML100K (RMSE) a9a (ROC-AUC) RCV1 (ROC-AUC) FD (ROC-AUC)

TI
0.93018 0.90301

N/A
0.71373

991.4 1,001.6 1,004.4

CS
0.93127 0.90259 0.99197 0.71437
1,026.0 1,035.0 1,035.0 1,035.0

L1 N/A
0.90197

N/A N/A
1,026.0

L21
0.93302 0.90259

N/A N/A
1,030.2 990.0

(b) No interpretability constraint setting (λ̃p was tuned from {10−7, 10−6, . . . , 10−2}).
Method ML100K (RMSE) a9a (ROC-AUC) RCV1 (ROC-AUC) FD (ROC-AUC)

TI
0.91848 0.90288 0.99258 0.71378

186,600.4 1,408.2 663,793.8 2,471.4

CS
0.91610 0.90250 0.99243 0.71057
7264.0 903.0 170,820.0 0.0

L1
0.92612 0.90193 0.99195 0.71057

1,616,087.2 946.0 0.0 0.0

L21
0.91975 0.90269 0.99195 0.71057

1,775,679.2 1,081.0 0.0 0.0

FM
0.91734 0.90280 0.99195 0.71334

3,483,480.0 7,503.0 0.0 206,403.0

optimization methods for these proposed methods. Our basic idea is the use of `1 regularizer for
feature interaction weight matrix computed from the parameter matrix of FMs. This regularization
seems appropriate for feature interaction selection in FMs because it is reported as one of the
most promising sparse regularizers and selecting feature interactions necessarily means making W
sparse. Unfortunately, the associated objective function is hard to optimize w.r.t the parameter
matrix of FMs. To overcome this difficulty, we have proposed the use of squares of sparsity-inducing
(quasi-)norms as an upper bound of the `1 norm for W , and we have presented such regularizers
concretely, the TI regularizer and the CS regularizer. The TI enables feature interaction selection
without feature selection, and the CS can select better (more important) features. Fortunately, the
associated objective functions are now easy to optimize, because TI-sparse FMs and CS-sparse FMs
can be optimized at the same computational cost as canonical FMs. We have demonstrated the
effectiveness of the proposed methods on synthetic and real-world datasets.

As future work, we would like to (i) develop more efficient PSGD-based algorithms for TI/CS-
sparse FMs and (ii) investigate the theoretical properties of the proposed methods.
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Appendix A. Proofs

Additional Notation. For given two matrices P ,Q ∈ Rn×n, P => Q means pi,j = qi,j for all
0 < i < j ≤ n, that is, P and Q have same values in their strictly upper triangular elements. We
use edj ∈ {0, 1}d for the d-dimensional standard basis vector whose j-th element is one and the others

are zero. For given a scalar α ∈ R and a subset C of Rd, we define αC := {αc : c ∈ C}. For given a
d-dimensional vector x ∈ Rd and a subset C of Rd, we use x+ C as {x+ c : c ∈ C}.

A.1 Subdifferentials of Powers of Norms

For Theorem 10 and Theorem 11 (and of course Theorem 8), we first derive the subdifferentials of
powers of norms.

Lemma 12 Let x ∈ Rd and ‖·‖ be a norm on Rd. Then, for all m ≥ 1, the subdifferential of ‖·‖m
at x, ∂ ‖x‖m is

∂ ‖x‖m = m ‖x‖m−1
∂ ‖x‖ = m ‖x‖m−1 {z ∈ Rd : 〈z,x〉 = ‖x‖ , ‖z‖∗ ≤ 1}, (61)

where ‖·‖∗ : Rd → R is the dual norm of ‖·‖ : ‖x‖∗ = supz∈Rd,‖z‖≤1 〈z,x〉.

Proof (i) We first show that ∂ ‖x‖m ⊇ m ‖x‖m−1
∂ ‖x‖. For all x,y ∈ Rd and z ∈ ∂ ‖x‖, from the

definition of ∂ ‖x‖ and the Hölder’s inequality (〈z,y〉 ≤ ‖z‖∗ ‖y‖), we have

‖x‖m +
〈
m ‖x‖m−1

z,y − x
〉

= ‖x‖m +m ‖x‖m−1
(〈z,y〉 − 〈z,x〉) (62)

= ‖x‖m +m ‖x‖m−1
(〈z,y〉 − ‖x‖) ≤ ‖x‖m +m ‖x‖m−1 ‖z‖∗ ‖y‖ −m ‖x‖

m
(63)

≤ (1−m) ‖x‖m +m ‖x‖m−1 ‖y‖ . (64)

Moreover, from the convexity of xm on x ≥ 0 (m ≥ 1) and the non-negativity of the norm, we have

(‖y‖)m ≥ (‖x‖)m +m(‖x‖)m−1(‖y‖ − ‖x‖) = (1−m) ‖x‖m +m ‖x‖m−1 ‖y‖ . (65)

Combining them, we obtain

‖y‖m ≥ ‖x‖m +
〈
m ‖x‖m−1

z,y − x
〉
. (66)

The above inequality means (m ‖x‖m−1
z) ∈ ∂ ‖x‖m. Therefore ∂ ‖x‖m ⊇ m ‖x‖m−1

∂ ‖x‖.
(ii) We next prove that ∂ ‖x‖m ⊆ m ‖x‖m−1

∂ ‖x‖ by contradiction.

1. 〈z,x〉 = m ‖x‖m−1 ‖x‖ = m ‖x‖m for all z ∈ ∂ ‖x‖m. It clearly holds when x = 0, so we
consider the case where x 6= 0. Assume that 〈z,x〉 = m ‖x‖m + ε, where ε > 0, and we show
that then there exists y ∈ Rd such that ‖y‖m < ‖x‖m + 〈z,y − x〉 (this contradicts to the
definition of ∂ ‖x‖m: if z ∈ ∂ ‖x‖m, then ‖y‖m ≥ ‖x‖m + 〈z,y − x〉 for all y ∈ Rd). Let
y = cx, c > 0, and define h : R→ R as

h(c) := ‖x‖m + 〈z,y − x〉 − ‖y‖m = (1− cm) ‖x‖m − (1− c)(m ‖x‖m + ε). (67)

h(1) = 0, h′(c) = −mcm−1 ‖x‖m+(m ‖x‖m+ε), and h′(c) > 0 on cm−1 ∈ (0, 1+ε/(m ‖x‖m)),
so h(c) > 0 on c ∈ (1, {1 + ε/(m ‖x‖m)}1/(m−1)). This means that there exists y ∈ Rd such
that ‖y‖m < ‖x‖m + 〈z,y − x〉, and this contradicts to the definition of the subdifferential.
The contradiction can be derived under the assumption 〈z,x〉 = m ‖x‖m − ε in a similar
manner. Thus, 〈z,x〉 = m ‖x‖m for all z ∈ ∂ ‖x‖m.

29



Atarashi, Oyama, and Kurihara

2. ‖z‖∗ ≤ m ‖x‖m−1
for all z ∈ ∂ ‖x‖m. Assume that ‖z‖∗ = m ‖x‖m−1

+ ε, ε > 0. From
the Hölder’s inequality, 〈z,y〉 ≤ ‖z‖∗ ‖y‖ for all y ∈ Rd. We can take y ∈ Rd such that
〈z,y〉 = ‖z‖∗ ‖y‖. Then,

‖x‖m + 〈z,y − x〉 = ‖x‖m + ‖z‖∗ ‖y‖ −m ‖x‖
m

(68)

= (1−m) ‖x‖m + (m ‖x‖m−1
+ ε) ‖y‖ . (69)

We first consider the case where x 6= 0. If we choose y such that ‖y‖ = ‖x‖, then

(1−m) ‖x‖m + (m ‖x‖m−1
+ ε) ‖y‖ = (1 + ε) ‖y‖ > ‖y‖ . (70)

This contradicts to the definition of the subdifferential. We next consider the case where
x = 0. If we choose y such that ε > ‖y‖m−1

, then

(1−m) ‖x‖m + (m ‖x‖m−1
+ ε) ‖y‖ = ε ‖y‖ > ‖y‖m−1 ‖y‖ = ‖y‖m , (71)

and this also contradicts to the definition of the subdifferential. Thus ‖z‖∗ ≤ m ‖x‖m−1
for

all z ∈ ∂ ‖x‖m.

These results imply ∂ ‖x‖m ⊆ m ‖x‖m−1
∂ ‖x‖.

From (i) and (ii), we have ∂ ‖x‖m = m ‖x‖m−1
∂ ‖x‖.

From Theorem 12, we have the following corollaries.

Corollary 13 For all m ≥ 1, the subdifferential of ‖·‖m1 at p ∈ Rd, ∂ ‖p‖m1 is

∂ ‖p‖m1 = m ‖p‖m−1
1 ∂ ‖p‖1 = m ‖p‖m−1

1

d∏
i=1

J(pi), where J(p) =


{1} p > 0,

{−1} p < 0,

[−1, 1] p = 0.

(72)

Corollary 14 For all m ≥ 1, the subdifferential of ‖·‖m2,1 at P ∈ Rd×k, ∂ ‖P ‖m2,1 is

∂ ‖P ‖m2,1 = m ‖P ‖m−1
2,1 ∂ ‖P ‖2,1 = m ‖P ‖m−1

2,1 {Z ∈ Rd×k : zi ∈ ∂ ‖pi‖2 , i ∈ [d]}. (73)

A.2 Proximal Operator for ˜̀m
1,m

In this section, we prove Theorem 10. We first present some properties of q∗ = proxλ‖·‖m1 (p).

Proposition 15 Let q∗ = proxλ‖·‖m1 (p) ∈ Rd. Then, the followings hold for all i, j ∈ [d]:

(i) pi = 0 → q∗i = 0,

(ii) pi > 0 → q∗i ≥ 0,

(iii) pi < 0 → q∗i ≤ 0,

(iv) |pi| ≥ |pj | → |q∗i | ≥ |q∗j |,

Proof (i) is trivial.
(ii) Assume pi > 0. We prove (ii) by showing that q is not an optimal value if qi < 0. We

consider the objective function in the proximal operation: gλ‖·‖m1 (q;p) = ‖p− q‖22 /2 + λ ‖q‖m1 . By
construction q∗ = arg minq gλ‖·‖m1 (q;p). Let q be the d-dimensional vector with qi < 0 and q′ be
the d-dimensional vector such that q′i = |qi| and q′j = q′j for all j ∈ [d] \ {i} (i.e, the sign of i-th
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element is reversed compared to q). Then, gλ‖·‖m1 (q′;p) < gλ‖·‖m1 (q;p) since ‖q′‖m1 = ‖q‖m1 but

‖p− q′‖22 < ‖p− q‖
2
2. That is, when pi > 0, q with qi < 0 is not an optimal solution. It implies

(ii).
(iii) can be derived as in (ii).
(iv) Assume |pi| > |pj | and we prove (iv) as in the proof of (ii). Let q be the d-dimensional

vector such that |qi| < |qj | and sign(pi) · sign(qi) ≥ 0, sign(pj) · sign(qj) ≥ 0 (i.e., qi and qj satisfy
(i)-(iii)). Moreover, let q′ be the d-dimensional vector such that q′i = sign(pi)|qj |, q′j = sign(pj)|qi|,
and q′j′ = qj′ for all j′ ∈ [d] \ {i, j} (namely, q′ is defined by exchanging the absolute value of i-th
and j-th element in q). Then, gλ‖·‖m1 (q′;p) < gλ‖·‖m1 (q;p) like (ii): the values of second terms are

same (‖q′‖m1 = ‖q‖m1 ) but

‖p− q′‖22 − ‖p− q‖
2
2 = −2|pi||q′i| − 2|pj ||q′j |+ 2|pi||qi|+ 2|pj ||qj | (74)

= −2|pi||qj | − 2|pj ||qi|+ 2|pi||qi|+ 2|pj ||qj | = −2(|pi| − |pj |)(|qj | − |qi|) < 0. (75)

That is, when |pi| > |pj |, q with |qi| < |qj | is not an optimal solution, and it implies (iv).

Finally, we prove Theorem 10.

Theorem 10 Assume that p ∈ Rd is sorted in descending order by absolute value: |p1| ≥ |p2| ≥
· · · ≥ |pd|. Then, the solution to the proximal problem (45) q∗ ∈ Rd is

q∗j =

{
sign(pj)

[
|pj | − λmSm−1

θ

]
j ≤ θ,

0 otherwise,
(46)

Sj ∈
[

0,

j∑
i=1

|pi|
]

s.t. λmjSm−1
j + Sj −

j∑
i=1

|pi| = 0 (47)

and θ = max{j : |pj | − λmSm−1
j ≥ 0}.

Proof We first prove that there exists θ ∈ [d] such that Equation (46) holds. q∗ = proxλ‖·‖m1 (p)

means the subdifferential of gλ‖·‖m1 at q∗ includes 0. From ∂gλ‖·‖m1 (q∗) = q∗ − p + λ∂ ‖q∗‖m1 and
Theorem 13, we have

q∗j =

{
pj − λm ‖q∗‖m−1

1 q∗j > 0,

pj + λm ‖q∗‖m−1
1 q∗j < 0.

(76)

Moreover, from Theorem 15, q∗ is also sorted by absolute value and there exists θ ∈ [d] such that
|qj | > 0 for all j ≤ θ and |qj | = 0 for all j > θ. Therefore, Equation (76) can be rewritten as

q∗j =

sign(pj)

[
|pj | − λm

(∑θ
i=1 |q∗i |

)m−1
]

j ≤ θ,

0 otherwise,
(77)

Here, about the summation of |q∗1 |, . . . , |q∗θ |, we have

θ∑
i=1

|q∗i | =
θ∑
i=1

sign(q∗i )q∗i =

θ∑
i=1

sign(pi)q
∗
i =

θ∑
i=1

|pi| − λmθ
(

θ∑
i=1

|q∗i |
)m−1

. (78)
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Thus, (77) is rewritten as

q∗j =

{
sign(pj)

[
|pj | − λmSm−1

θ

]
j ≤ θ,

0 otherwise,
(45)

where

Sj ∈
[

0,

j∑
i=1

|pi|
]

s.t. λmjSm−1
j + Sj −

j∑
i=1

|pi| = 0. (47)

Such Sj always exists uniquely for all j ∈ [d] because λmj·0m−1+0−∑j
i=1 |pi| ≤ 0, λmj(

∑j
i=1 |pi|)m−1+∑j

i=1 |pi| −
∑j
i=1 |pi| ≥ 0, and λmjSm−1 + S is monotonically increasing w.r.t S when S ≥ 0.

It is worth noting that Sj is monotonically non-decreasing for all j such that |pj |−λmSm−1
j ≥ 0.

Assume that |pj′ | − λmSm−1
j′ ≥ 0. Then, for all j ∈ [j′], we have

λmjSm−1
j′ + Sj′ = λm(j + j′ − j′)Sm−1

j′ + Sj′ =

j∑
i=1

|pi|+

 j′∑
i=j+1

|pi|+ λm(j − j′)Sm−1
j′

 (79)

=

j∑
i=1

|pi|+

 j′∑
i=j+1

(|pi| − λmSm−1
j′ )

 ≥ j∑
i=1

|pi| = λmjSm−1
j + Sj , (80)

where the inequality follows from the assumption |pj | ≥ |pj′ | for all j ∈ [j′]. Because λmjSm−1 + S
is monotonically increasing w.r.t S (when S ≥ 0), (80) implies Sj′ ≥ Sj . Obviously, it also implies
|pj |−λmSm−1

j ≥ |pj′ |−λmSm−1
j′ ≥ 0 since |pj | ≥ |pj′ |. Therefore, Sj is monotonically non-decreasing

for all j such that |pj | − λmSm−1
j ≥ 0. Moreover, if |pj+1| − λmSm−1

j+1 = 0, Sj+1 = Sj . Assume that

|pj+1|−λmSm−1
j+1 = 0. Then, λm(j+1)Sm−1

j+1 +Sj+1−
∑j+1
i=1 |pi| = λmjSm−1

j+1 +Sj+1−
∑j
i=1 |pi| = 0

and thus Sj+1 = Sj .
Finally, we prove θ = max{j : |pj |−λmSm−1

j ≥ 0} by contradiction. Since |p1|−λmSm−1
1 = S1,

the maximum value exists. Let θ′ = max{j : |pj |−λmSm−1
j ≥ 0}. First suppose θ > θ′ (of course we

assume that θ′ < d). Then, from the assumption |pθ|−λmSm−1
θ < 0, we have sign(pθ) sign(qθ) = −1.

This contradicts (i)-(iii) in Theorem 15. Next suppose θ < θ′ (we assume θ′ > 1). Then, the
subdifferential of gλ‖·‖m1 at q∗ is

∂gλ‖·‖m1 (q∗) = q∗ − p+ λ∂ ‖q∗‖m1 = q∗ − p+ λm ‖q∗‖m−1
1

d∏
i=1

Ji(q
∗
i ) (81)

= q∗ − p+ λmSm−1
θ

d∏
i=1

J(q∗i ). (82)

If Sθ = Sθ′ , we can clearly replace θ with θ′ and thus we assume Sθ < Sθ′ (Sj is monotonically
non-decreasing for all j ∈ [θ′]). Then, |p′θ| ≥ λmSm−1

θ′ > λmSm−1
θ and hence for all α ∈ [−1, 1]

q∗θ′ − pθ′ + λmSm−1
θ α = 0− pθ′ + λmSm−1

θ α 6= 0. (83)

It implies 0 6∈ ∂gλ‖·‖m1 (q∗;p) ⇐⇒ q∗ 6= arg min gλ‖·‖m1 (q;p), and this is a contradiction.
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A.3 Proximal Operator for `m2,1

Theorem 11 The solution to the proximal problem (51) Q∗ ∈ Rd×k is

q∗j =

{
c∗j
‖pj‖2

pj ‖pj‖2 6= 0,

0 ‖pj‖2 = 0,
(52)

where c∗ = proxλ‖·‖m1

(
(‖p1‖2 , . . . , ‖pd‖2)

>
)

.

Proof If pj = 0, clearly q∗j = 0. Then, we can eliminate j-th row vector from the proximal
problem (51). Hence, with out loss of generality, we assume that pj 6= 0 for all j ∈ [d].

We first show that

∃C∗j ≥ 0 s.t. q∗j = C∗j pj ∀j ∈ [d]. (84)

If q∗j = 0, then q∗j = C∗j pj holds with C∗j = 0. Thus, we next consider the case where q∗j 6= 0.

Let gλ‖·‖m2,1(Q;P ) = ‖P −Q‖22 /2 + λ ‖Q‖m2,1. By construction, Q∗ = arg minQ gλ‖·‖m2,1(Q;P ) and

0 ∈ ∂gλ‖·‖m2,1(Q∗;P ). From Theorem 14, we have

0 ∈ −pj + q∗j + λm ‖Q∗‖m−1
2,1 ∂

∥∥q∗j∥∥2
,∀j ∈ [d]. (85)

By the assumption q∗j 6= 0, ∂
∥∥q∗j∥∥2

=
{
q∗j /

∥∥q∗j∥∥2

}
. Therefore, we obtain

0 = −pj + q∗j + λm ‖Q∗‖m−1
2,1

1∥∥q∗j∥∥2

q∗j →
(

1 +
λm ‖Q∗‖m−1

2,1∥∥q∗j∥∥2

)
q∗j = pj . (86)

It implies (84).
Since (84) holds, we consider the following optimization problem instead of (51):

C∗ = arg min
C∈Rd≥0

1

2

d∑
j=1

(
‖pj‖2 − Cj ‖pj‖2

)2
+ λ

∥∥∥(‖C1p1‖2 , . . . , ‖Cdpd‖2)
>
∥∥∥m

1
. (87)

Let c∗j = C∗j ‖pj‖2 for all j ∈ [d]. Then, we have q∗j = (c∗j/ ‖pj‖2) · pj , where

c∗ = arg min
c∈Rd≥0

1

2

d∑
j=1

(
‖pj‖2 − cj

)2
+ λ ‖c‖m1 (88)

= arg min
c∈Rd

1

2

∥∥(‖p1‖2 , . . . , ‖pd‖2)> − c
∥∥2

2
+ λ ‖c‖m1 (89)

= proxλ‖·‖m1
(
(‖p1‖2 , . . . , ‖pd‖2)>

)
, (90)

which concludes the proof.

Note that Theorem 11 is a generalization of Theorem 8.

A.4 Regularization by Powers of Norms

Theorem 4 Ω : Rd×k → R≥0 is an m-homogeneous quasi-norm if and only if there exists a quasi-
norm ‖·‖′ such that Ω(·) = (‖·‖′)m.

Proof (⇒) Let Ω : Rd×k → R≥0 be an m-homogeneous quasi-norm with Ω(P +Q) ≤ K(Ω(P ) +

Ω(Q)) for all P ,Q ∈ Rd×k. We show that m
√

Ω satisfies the axiom of quasi-norm. For all P ,Q ∈
Rd×k, we have
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• m
√

Ω(P ) ≥ 0 and m
√

Ω(P ) = 0 ⇐⇒ P = 0 since Ω(P ) ≥ 0 and Ω(P ) = 0 ⇐⇒ P = 0,

• m
√

Ω(αP ) = m
√
|α|m Ω(P ) = |α| m

√
Ω(P ) for all α ∈ R, and

• m
√

Ω(P +Q) ≤ m
√
K(Ω(P ) + Ω(Q)) ≤ m

√
K
{

m
√

Ω(P ) + m
√

Ω(Q)
}

.

Thus m
√

Ω is a quasi-norm.
(⇐) Let ‖·‖′ be a quasi-norm with ‖P +Q‖′ ≤ K(‖P ‖′ + ‖P ‖′) for all P ,Q ∈ Rd×k. We show

that (‖·‖′)m satisfies the axiom of m-homogeneous quasi-norm. For all P ,Q ∈ Rd×k, the following
holds:

• (‖P ‖′)m ≥ 0 and (‖P ‖′)m = 0 ⇐⇒ P = 0 since ‖P ‖′ ≥ 0 and ‖P ‖′ = 0 ⇐⇒ P = 0,

• (‖αP ‖′)m = (|α| ‖P ‖′)m = |α|m(‖P ‖′)m for all α ∈ R, and

• since ‖P ‖′ ≥ 0 for all P ∈ Rd×k and xm is convex and monotone for all x ≥ 0 and m ≥ 1,

(‖P +Q‖′)m ≤
{
K
(
‖P ‖′ + ‖Q‖′

)}m
= (2K)m

{
1

2
‖P ‖′ + 1

2
‖Q‖′

}m
(91)

≤ (2K)m
{

1

2

(
‖P ‖′

)m
+

1

2

(
‖Q‖′

)m}
(92)

= (2
m−1
m K)m

{
(‖P ‖′)m + (‖Q‖′)m

}
, (93)

where the last inequality follows from Jensen’s inequality.

Before proving Theorem 9, we show that all quasi-norms on a finite-dimensional vector space (in
this paper we consider Rd×k) are equivalent to each other.

Lemma 16 For given two quasi-norms on Rd×k, Ω,Ω′ : Rd×k → R, there exist c, C ∈ R>0 and for
all P such that

cΩ(P ) ≤ Ω′(P ) ≤ CΩ(P ). (94)

Proof We consider only P 6= 0 since it trivially holds for P = 0. We can prove it like the equivalence
of norms on a finite-dimensional vector space. Let Ω∞(P ) := maxj∈[d],s∈[k] |pj,s|. Ω∞ is clearly
(quasi-)norm and it is sufficient to prove that any quasi-norm is equivalent to Ω∞: if for given two
quasi-norms Ω,Ω′ : Rd×k → R there exist c, C, c′, C ′ > 0 such that cΩ∞(P ) ≤ Ω(P ) ≤ CΩ∞(P ) and
c′Ω∞(P ) ≤ Ω′(P ) ≤ C ′Ω∞(P ) for all P ∈ Rd×k, then (94) holds: C/c′Ω(P ) ≤ Ω′(P ) ≤ C ′/cΩ(P ).

We first show that for any quasi-norm Ω there exists C > 0 such that Ω(P ) ≤ CΩ∞(P ) for all

P . Assume that Ω is quasi-norm with Ω(P +Q) ≤ K(Ω(P ) + Ω(Q)) (K ≥ 1). Let Ed,k
j,s be the

d× k matrix such that its (j, s) element is 1 and others are 0. Then, we have

Ω(P ) = Ω

 ∑
j∈[d],s∈[k]

pj,sE
d,k
j,s

 ≤ Kdk
∑

j∈[d],s∈[k]

|pj,s|Ω(Ed,k
j,s ) (95)

≤

Kdk
∑

j∈[d],s∈[k]

Ω(Ed,k
j,s )

 max
j∈[d],s∈[k]

|pj,s| =

Kdk
∑

j∈[d],s∈[k]

Ω(Ed,k
j,s )

Ω∞(P ). (96)

Since Kdk
∑
j∈[d],s∈[k] Ω(Ed,k

j,s ) does not depend on P , setting C to be Kdk
∑
j∈[d],s∈[k] Ω(Ed,k

j,s )

produces Ω(P ) ≤ CΩ∞(P ) for all P .
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We next show that for any quasi-norm Ω there exists c > 0 such that cΩ∞(P ) ≤ Ω(P ) for all P .
We prove it by contradiction: suppose that there does not exist c > R such that cΩ∞(P ) ≤ Ω(P ).
This implies for all c > 0 there exists P such that Ω∞(P )/Ω(P ) > 1/c, i.e., sup Ω∞(P )/Ω(P ) =∞.
Thus, for all n ∈ N, there exists P (n) such that Ω∞(P (n))/Ω(P (n)) > n, and without loss of
generality we can assume that Ω∞(P (n)) = 1 and Ω(P (n)) < 1/n (if Ω∞(Q(n))/Ω(Q(n)) > n, then
define P (n) as Qn/Ω∞(Q(n))). We show the contradiction by constructing a convergent sequence
limn→∞P (n) = 0.

Since Ω∞(P (n)) = supj∈[d],s∈[k] |pj,s| for all n ∈ N, there exists (j′, s′) ∈ [d] × [k] such that

p
(n)
j′,s′ = 1 for infinitely many n ∈ N. We assume (j′, s′) = (1, 1) without loss of generality and

{P (n)} be the sequence such that Ω∞(P (n)) = 1, Ω(P (n)) < 1/n, and p
(n)
1,1 = 1. Then, {P (n)}

is a bounded sequence in Rd×k and hence it has a convergent subsequence on the normed space
(Rd×k, ‖·‖2) (Bolzano–Weierstrass theorem). Let P be the limit of that subsequence and we re-
define {P (n)} as the corresponding convergent subsequence. Then, Ω∞(P − P (n)) → 0 as n → ∞
since Ω∞ is a norm and we have

Ω(P ) ≤ K(Ω(P − P (n)) + Ω(P (n))) (97)

≤ K
(
CΩ∞(P − P (n)) +

1

n

)
. (98)

Since n is arbitrary, Ω(P ) = 0 and hence P = 0. However, p
(n)
1,1 = 1 for all n ∈ N. It implies p1,1 = 1

and P 6= 0. This is a contradiction and thus the assumption is wrong. Therefore, there exists c > R
such that cΩ∞(P ) ≤ Ω(P ).

Finally, we prove Theorem 9.

Theorem 9 For any m-homogeneous quasi-norm Ωm, there exists C > 0 such that Ωm∗ (P ) ≤
CΩm(P ) for all P ∈ Rd×k.

Proof From Theorem 4 and Theorem 16, it is sufficient to prove there exists a quasi-norm ‖·‖
such that Ωm∗ (P ) ≤ C ‖P ‖m for all P ∈ Rd×k, and here ‖·‖1 corresponds to such a norm:
Ωm∗ (P ) ≤ ΩmTI(P ) ≤ ‖P ‖m1 .

A.5 Justification for TI Regularizer

Theorem 5 Let LQR(w,W ;λw) be the objective function of the QR with `22 regualrization for w:

LQR(w,W ;λw) :=

N∑
n=1

`(fQR(xn), yn)/N + λw ‖w‖22 . (22)

Then, for any λw, λp, λ̃p ≥ 0, there exists k′ ≤ d(d− 1)/2 such that for all k ≥ k′,

min
w∈Rd,P∈Rd×k

LFM(w,P ;λw, λp) + λ̃pΩTI(P )

≤ min
w∈Rd,W∈Rd×d

LQR(w,W ;λw) + (λ̃p + 2λp) ‖W ‖1 . (23)

Moreover, if λp = 0, the equality holds, and fFM(x;w∗TI,P
∗
TI) = fQR(x;w∗QR,W

∗
QR) for all x ∈ Rd,

where {w∗TI,P
∗
TI} and {w∗QR,W

∗
QR} are the solutions of the left- and right-hand sides, respectively,

of Equation (23).
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Proof Without loss of generality, we can omit the linear term. We first consider the case λp = 0.
We prove (23) with λp = 0 by showing that for any strictly upper triangular matrix W ∈ Rd×d
there exists P ∈ Rd×d(d−1)/2 such that

PP> => W , ΩTI(P ) = Ω∗(W ). (99)

It is sufficient for (23) since PP> => W implies LFM(w,P ;D, λw, 0) = LQR(w,W ;D, λw, 0) and
W ∗

QR is always strictly upper triangular matrix since lower triangle elements are not used in fQR.

Fix W be a strictly upper triangular matrix and let Q be the d× d2 matrix with

qj = vec


√|w1,j |edj , . . . ,

√
|wj−1,j |edj︸ ︷︷ ︸

j−1

, sign(wj) ◦
√

abs(wj),0, . . . ,0︸ ︷︷ ︸
d−j


 (∈ Rd

2

), (100)

where
√· for a vector is the element-wise square root. Then, for all 0 < j1 < j2 ≤ d,

〈qj1 , qj2〉 =

j1−1∑
i=1

〈√
|wi,j1 |edj1 ,

√
|wi,j2 |edj2

〉
+

〈
sign(wj1) ◦

√
abs(wj1),

√
|wj1,j2 |edj2

〉

+

j2−1∑
i=j1+1

〈
0,
√
|wi,j2 |edj2

〉
+

〈
0, sign(wj2) ◦

√
abs(wj2)

〉
+

d∑
i=j2+1

〈0,0〉 (101)

= (d2 − 1) · 0 + sign(wj1,j2)
√
|wj1,j2 |

√
|wj1,j2 | = wj1,j2 ⇐⇒ QQ> => W , (102)

d2∑
i=1

|qj1,i| |qj2,i| = |wj1,j2 | ⇐⇒ ΩTI(Q) = Ω∗(W ). (103)

This proves (23) with λp = 0 when k ≥ d2.
Here, we show that Q has d(d+ 1)/2 all-zeros columns. Let Qj = (q:,d(j−1)+1, · · · , q:,d(j−1)+d) ∈

Rd×d, i.e., Q = (Q1, · · · ,Qd). Then, 1, . . . , j-th columns in Qj are all-zeros vectors since the row
vectors in Qj are

qjj1 = (qj1,d(j−1)+1 . . . , qj1,d(j−1)+d)
> = 0 for all j1 < j, (104)

qjj = wj = (0, . . . , 0, wj,j+1, . . . , wj,d)
>, (105)

qjj2 = edj2 = (0, . . . , 0︸ ︷︷ ︸
j2−1

, 1, 0, . . . , 0)> for all j2 > j. (106)

Thus, Q has 1 + 2 + · · ·+ d = d(d+ 1)/2 all-zeros columns and let P ∈ Rd(d−1)/2 be the sub-matrix
of Q such that its all-zeros columns are removed. Then PP> => W and ΩTI(P ) = ‖W ‖1. It
proves (23) with λp = 0. Furthermore, since ‖W ‖1 ≤ ΩTI(P ) for all PP> => W , the inverse
inequality clearly holds if λp = 0:

min
w∈Rd,P∈Rd×k

LFM(w,P ;D, λw, 0) + λ̃pΩTI(P ) ≥ min
w∈Rd,W∈Rd×d

LQR(w,W ;D, λw) + λ̃p ‖W ‖1 .
(107)

It implies the equality holds in (23) and fFM(x;w∗TI,P
∗
TI) = fQR(x;w∗QR,W

∗
QR) for all x ∈ Rd.

Next, we prove (23) with λp ≥ 0. For P as defined above, we have

‖P ‖22 =

d∑
j=1

‖pj‖22 =

d∑
j=1

{
j−1∑
i=1

|wi,j |+
d∑
i=1

|wj,i|
}

= 2 ‖W ‖1 . (108)
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Algorithm 2 Computation of the proximal operator (30) with sorting p (O(d log d)).

Input: p ∈ Rd, λ ≥ 0
1: p̃← (p(1), . . . , p(d))

>; . O(d log d)
2: S0 ← 0;
3: for j = 1, . . . , d do
4: Sj ← Sj−1 + |p̃j |;
5: end for
6: Sj ← Sj/(1 + 2λj) for all j ∈ [d];
7: θ ← max{j ∈ [d] : |p̃j | − 2λSj ≥ 0};
8: q∗j ← sign(pj) max{|pj | − 2λSθ, 0} for all j ∈ [d];

Output: q∗(= proxλ‖·‖21(p))

Combining it with the above-mentioned proof for λp = 0 implies (23) for all λp ≥ 0.

We also obtain a similar relationship between TI-sparse FMs and Ω∗-sparse FMs.

Theorem 17 For any λw, λp, λ̃p ≥ 0 and k∗ ∈ N>0, there exists k′ ≤ d(d − 1)/2 such that for all
k ≥ k′,

min
w∈Rd,P∈Rd×k

LFM(w,P ;λw, λp) + λ̃pΩTI(P )

≤ min
w∈Rd,P∈Rd×k∗

LFM(w,P ;λw, (d− 1)λp) + λ̃pΩ∗(P ). (109)

Proof Let P ∗Ω∗ be the optimal solution of the RHS in (109). Then, we easily obtain (109) with

λp = 0 by substituting the strictly upper triangular elements of P ∗Ω∗(P
∗
Ω∗

)> to those of W in the

proof of Theorem 5. Thus, for λp ≥ 0, we show that ‖P ‖22 ≤ (d−1)
∥∥P ∗Ω∗∥∥2

2
, where P ∈ Rd×d(d−1)/2

is constructed as in the proof of Theorem 5. It is sufficient for (109). From (108), we have

‖P ‖22 = 2
∑
j2>j1

|wj1,j2 | = 2
∑
j2>j1

∣∣〈p∗Ω∗,j1 ,p∗Ω∗,j2〉∣∣ ≤ 2
∑
j2>j1

∥∥p∗Ω∗,j1∥∥2

∥∥p∗Ω∗,j2∥∥2
(110)

≤
∑
j2>j1

∥∥p∗Ω∗,j1∥∥2

2
+
∥∥p∗Ω∗,j2∥∥2

2
= (d− 1)

∥∥P ∗Ω∗∥∥2

2
. (111)

Appendix B. Implementation Details

In this section, we briefly review and show the implementation details of the existing and proposed
algorithms.

O(d log d) Time Algorithm for Proximal Operator (30) (Martins et al., 2011). Algorithm 2 shows
the procedure for solving (30) in O(d log d) time, where p(i) is the i-th largest value of p(θ) in absolute
value; i.e., |p(1)| ≥ |p(2)| ≥ · · · ≥ |p(d)| and ∀j ∈ [d] ∃ i ∈ [d] s.t. pj = p(i).

O(d) Time Algorithm for Proximal Operator (30) (Martins et al., 2011). In fact, the proximal
operator (30) can be computed in O(d) time. Given p(θ) (not the index θ, but the value p(θ)), one
can compute Sθ in O(d) time: SG(θ)

:=
∑
j∈G(θ)

|pj |/(1 + 2λ|G(θ)|) = Sθ, where G(θ) := {j ∈ [d] :

|pj | ≥ |p(θ)|} (clearly, θ = |G(θ)|). Thus, even if p is not sorted by absolute value, one can compute
q∗ in O(d) time if only p(θ) is found. Fortunately, one can find p(θ) in O(d) time in expectation
by using the randomized-median-finding-like algorithm (Duchi et al., 2008). Algorithm 3 shows the
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Algorithm 3 Computation of the proximal operator (30) without sorting (O(d))

Input: p ∈ Rd, λ ≥ 0
1: C ← [d]; . Candidate index set
2: S ← 0;
3: θ ← 0;
4: while C 6= ∅ do . Find p(θ)

5: Pick i ∈ C at random;
6: G← {j ∈ C : |pj | ≥ |pi|};
7: L← {j ∈ C : |pj | < |pi|};
8: SGi ← (S +

∑
j∈G |pj |)/(1 + 2λ(θ + |G|));

9: if |pi| − 2λSGi ≥ 0 then . |pi| ≥ |p(θ)|;
10: C ← L, S ← S +

∑
j∈G |pj |, θ ← θ + |G|;

11: else . |pi| < |p(θ)|
12: C ← G \ {j ∈ G : |pj | = |pi|};
13: end if
14: end while
15: Sθ ← S/(1 + 2λθ);
16: q∗j ← sign(pj) max{|pj | − 2λSθ, 0} for all j ∈ [d];
Output: q∗(= proxλ‖·‖21(p))

procedure for computing the proximal operator (30) in O(d) time. It finds p(θ) and computes Sθ by
repeating (i) randomly sampling pi from {pi : i ∈ C}, (ii) determining whether |pi| ≥ |p(θ)| (although
p(θ) is unknown), and (iii) reducing C in accordance with whether |pi| ≥ |p(θ)|, where C ⊆ [d] is
the set of candidates of θ initialized as [d]. When i ∈ C is sampled, the algorithm partitions the
candidate index set C into G := {j ∈ C : |pj | ≥ |pi|} and L := {j ∈ C : |pj | < |pi|} and discards
one of them as follows. If |pi| ≥ λSGi , where Gi := {j ∈ [d] : |pj | ≥ |pi|}, |p(θ)| is smaller than
|pi|, so the algorithm next searches for p(θ) from L (i.e., it discards G). In this case, the algorithm
updates S and θ as S +

∑
j∈G |pj | and θ + |G|, respectively (both S and θ are initially 0 and are

simply desired values when C = ∅). Maintaining S and θ reduces the computation cost of SGi :
SGi = (S+

∑
j∈G |pj |)/[1 + 2λ(θ+ |G|)]. Otherwise (that is, if |pi| < 2λSGi), the algorithm discards

L and sets C = Gi \ {j ∈ G : |pj | = |pi|} since |p(θ)| is larger than |pi|.
CD Algorithm for Canonical FMs. Algorithm 4 shows the CD algorithm for objective func-

tion (2). The CD algorithm requires the predictions of all training instances fn = fFM(xn;w,P )
for all n ∈ supp(x:,j) for updating pj,s. The näıve computation of such fn at each iteration is too
costly, so a method for updating (synchronizing) predictions is essential for an efficient implemen-
tation. Typically, an efficient algorithm computes and caches fn for all n ∈ [N ] before starting
the optimization and synchronizes them every time a parameter is updated. Fortunately, FMs
are multi-linear w.r.t w1, . . . , wd and p1,1, . . . , pd,k, so each prediction can be easily synchronized
in O(1). For wj , the predictions are written as fn = xn,jwj + const for all n ∈ [N ], so fn are
synchronized as fn ← fn − xn,jηδ after updating wj as wj ← wj − ηδ. To be more precise, the
algorithm synchronizes fn for only n ∈ supp(x:,j) since fn does not change for all n 6∈ supp(x:,j).
For pj,s, the predictions are written as fn = f ′n,spj,s + const, where f ′n,s = xn,j(an,s − xn,jpj,s) and
an,s := 〈xn,ps〉. Thus the algorithm can synchronize fn as in the case for wj by caching an,s for
all n ∈ [N ], s ∈ [k]. Clearly, the gradient of the loss w.r.t pj,s can be efficiently computed by using
f ′n,s: ∂`(fn, yn)/∂pj,s = ∂`(fn, yn)/∂fn · f ′n,s. At each iteration, the algorithm requires an,s for all
n ∈ [N ] and therefore the additional space complexity for caches is O(N) (the algorithm does not
require an,s for all s ∈ [k] at the same time).

SGD for Canonical FMs. Algorithm 5 shows the SGD algorithm for objective function (2). Since
it is almost straightforward, we only describe the lazy update technique (Duchi et al., 2011), which
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Algorithm 4 CD algorithm for canonical FMs

Input: {(xn,yn)}Nn=1, k ∈ N>0, λw, λp ≥ 0
1: Initialize P ∈ Rd×k, w ∈ Rd;
2: Compute predictions: fn ← fFM(xn;w,P ) for all n ∈ [N ];
3: while not convergence do
4: for j = 1, . . . , d do . Update w
5: δ ←∑

i∈supp(x:,j)
`′(fn, yn)xn,j/N + 2λwwj ;

6: η ← (µ ‖x:,j‖22 /N + 2λw)−1;
7: wj ← wj − ηδ;
8: fn ← fn − xn,jηδ for all n ∈ supp(x:,j);
9: end for

10: for s = 1, . . . , k do . Update P
11: an,s ← 〈xn,p:,s〉 for all n ∈ [N ]; . Cache for updating p:,s

12: for j = 1, . . . , d do
13: f ′n,s ← xn,j(an,s − xn,jpj,s) for all n ∈ supp(x:,j);
14: δ ←∑

i∈supp(x:,j)
`′(fn, yn) · f ′n,s/N + 2λppj,s;

15: η ← [µ
∑
n∈supp(x:,j)

(f ′n,s)
2/N + 2λp]

−1;
16: pj,s ← pj,s − ηδ;
17: fn ← fn − f ′n,sηδ for all n ∈ supp(x:,j);
18: an,s ← an,s − xn,jηδ for all n ∈ supp(x:,j);
19: end for
20: end for
21: end while
Output: Learned P and w

improves the efficiency of the algorithm by leveraging the sparsity of a sampled instance. For all
j 6∈ supp(xt), where xt is the sampled instance at t-th iteration, the gradients of loss function w.r.t
wj and pj are 2λwwj and 2λppj , and update rules are wj ← (1 − 2ηtw)wj and pj ← (1 − 2ηtp)pj ,
respectively. The lazy update technique enables us to omit updating such parameters and makes
the computational cost of each iteration O(nnz(xn)+nnz(xn)k) while a näıve implementation takes
O(d+dk). Although we hereinafter consider for only w for simplicity, the same holds for P . Assume
that the algorithm is at t-th iteration and xtj 6= 0, and also assume that there exists tj < t such that

x
tj
j 6= 0 and xt

′

j = 0 for all tj < t′ < t (namely, j-th feature is 0 from (tj + 1)-th until (t − 1)-th

iteration. Then, the value of wj at (t− 1)-th iteration, wt−1
j , is written as

wt−1
j = (1− 2ηt−1

w λw)wt−2
j =


t−1∏

t′=tj+1

(1− 2ηt
′

wλw)

w
tj
j (112)

=

{∏t−1
t′=1(1− 2ηt

′

wλw)∏tj
t′=1(1− 2ηt′wλw)

}
w
tj
j =:

αt−1
w

α
tj
w

w
tj
j . (113)

Therefore, given αt−1
w and α

tj
w , the algorithm can update wtj from w

tj
j in O(1). Since xt

′

j = 0 for all
t′ ∈ {tj + 1, . . . , t − 1}, omitting to update wj from (tj + 1)-th until (t − 1)-th iteration does not

affect the result. αw,j in Algorithm 5 corresponds to α
tj
w . In our implementation, if αw < 10−9,

algorithm updates all wj and resets αw and αw,j for all j ∈ [d] in order to avoid numerical errors.
The additional space complexity for caches is O(d) (scaling values αw,j , αp,j for all j ∈ [d]).

PBCD Algorithm for Sparse FMs. Algorithm 6 shows the PBCD algorithm for sparse FMs
with/without the line search (Tseng and Yun, 2009), where Ω : Rd×k is a sparsity-inducing regular-
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Algorithm 5 SGD algorithm for canonical FMs

Input: {(xn,yn)}Nn=1, k ∈ N>0, λw, λp ≥ 0
1: Initialize P ∈ Rd×k, w ∈ Rd;
2: t← 1;
3: αw, αp, αw,j , αp,j ← 1 for all j ∈ [d]; . For lazy update
4: while not convergence do
5: Sample (xt, yt) ∈ {(x1, y1), . . . , (xN , yN )};
6: wj ← αw/αw,jwj , pj ← αp/αp,jpj for all j ∈ supp(xt); . Lazy update for regularization

term
7: Compute the prediction: f t ← fFM(xt;w,P );
8: f ′j,s ← xtj [〈xt,p:,s〉 − xtjpj,s] for all j ∈ supp(xt), s ∈ [k];
9: L′w,j ← `′(f t, yt) · xtj + 2λwwj for all j ∈ supp(xt);

10: L′p,j,s ← `′(f t, yt) · f ′j,s + 2λppj,s for all j ∈ supp(xt), s ∈ [k];
11: Compute step size parameter ηtw, η

t
p;

12: wj ← wj − ηtwL′w,j for all j ∈ supp(xt);
13: pj,s ← pj,s − ηtpL′p,j,s; for all j ∈ supp(xt), s ∈ [k];
14: αw ← (1− 2ηλw)αw, αp ← (1− 2ηλp)αp;
15: αw,j ← αw, αp,j ← αp for all j ∈ supp(xt);
16: t← t+ 1;
17: end while
18: wj ← αw/αw,jwj , pj ← αp/αp,jpj for all j ∈ [d]; . Finalize
Output: Learned P and w

izer. The operator proxΩ(·, j) in line 18 is the proximal operator for only j-th row vector. The PBCD
algorithm for such sparse FMs updates not pj,s but pj at each iteration and it takes O(nnz(x:,j)k)
computational cost (if the proximal operator can be evaluated in O(k)). In this algorithm, we show
the two variants for choosing step size η: using the line search method proposed by Tseng and Yun
(2009) and using the Lipschitz constant of the gradient. σ, ρ ∈ (0, 1) are hyperparameters for the
line search. In our experiments, we used the BCD algorithm without the line search. The additional
space complexity for caches is O(Nk) (caching an ∈ Rk for all n ∈ [N ] requires O(Nk) and caching
q, δ,d ∈ Rk requires O(k)). Some sparse regularizers (e.g, CS regularizer) require some additional
caches and how to compute/use caches depends on the regularizer. Moreover, in the case of using
the line search, some regularizers might also require a non-obvious efficient incremental evaluation
method (i.e., näıve computation of Ω(·) might take a high computational cost that is prohibitive at
each line search iteration).

PSGD Algorithm for Sparse FMs. The extension of Algorithm 5 to PSGD algorithm for sparse
FMs is straightforward: evaluates a proximal operator for a sparse regularization after updating P
at each iteration. For ˜̀2

1,2-sparse FMs (TI-sparse FMs), all parameters must be the latest values at
each iteration, i.e., a lazy update technique cannot be used.

Extension to HOFMs. Here we describe the extension of above described algorithms for M -order
HOFMs. The extended algorithms update w, P (2), . . . ,P (M) sequentially. HOFMs are also multi-

linear w.r.t w,p
(2)
1 , . . . ,p

(M)
d (and clearly w0, . . . , wd, p

(2)
1,1, . . . , p

(M)
d,k ) (Blondel et al., 2016a) and thus

the output of HOFMs are written as fMHOFM(x) =
〈
θ,∇θfMHOFM(x)

〉
+ const for a parameter θ ∈

{w,p(2)
1 , . . . ,p

(M)
d }. Given ∇θfMHOFM(x), the parameter θ and predictions can be updated efficiently

in both CD (updates only one element in θ) and BCD algorithms. For each case, ∂fMHOFM(x)/∂θj
is written as

∂fMHOFM(x)

∂θj
=

{
xj if θj = wj , j ∈ [d],

xjK
m−1
A (x¬j , (p:,s)¬j) if θj = p

(m)
j,s , m ∈ {2, . . . ,M}, j ∈ [k],

(114)

40



FMs with Regularization for Sparse Interactions

Algorithm 6 PBCD algorithm for sparse FMs

Input: {(xn,yn)}Nn=1, k ∈ N>0, λw, λp, λ̃p ≥ 0, optional: σ, ρ ∈ (0, 1) (for line search)
1: Initialize P ∈ Rd×k, w ∈ Rd;
2: Compute predictions: fn ← fFM(xn;w,P ) for all n ∈ [N ];
3: while not convergence do
4: Optimize w and update caches as in canonical FMs;
5: an ← P>xn ∈ Rs for all n ∈ [N ]; . Cache for update P
6: if Perform line search then
7: L←∑N

n=1 `(fn, yn)/N + λp ‖P ‖22 + λ̃pΩ(P ); . Objective value used in line search
8: end if
9: for j = 1, . . . , d do

10: f ′n ← xn,j(an − xn,jpj) for all n ∈ supp(x:,j);
11: ∇pj `n ← `′(fn, yn)f ′n for all n ∈ supp(x:,j);
12: d← (

∑
n∈supp(x:,j)

∇pj `n)/N + 2λppj ;
13: if Perform line search then
14: η−1 ← maxs∈[k]{2λp +

∑
n∈supp(x:,j)

`′′(fn, yn)(∂fFM(xn)/∂pj,s)
2/N};

15: else
16: η−1 ← 2λp + µ

∑
n∈supp(x:,j)

∥∥∇pj `n∥∥2

2
/N ;

17: end if
18: q ← proxλ̃pηΩ(P − ηedjd>; j); . Apply for only j-th row vector

19: δ ← pj − q;
20: if Perform line search then
21: Lnew ← L+

∑
n∈supp(x:,j)

[`(fn − 〈f ′n, δ〉 , yn)− `(fn, yn)]/N ;

22: Lnew ← Lnew + λp(‖q‖22 − ‖pj‖
2
2) + λ̃p

[
Ω(P − edjδ>)− Ω(P )

]
;

23: α← 1;
24: while not Lnew − L ≤ σα{− 〈d, δ〉+ λ̃p[Ω(P − edjδ>)− Ω(P )]} do
25: Lnew ← Lnew +

∑
n∈supp(x:,j)

[`(fn − 〈f ′n, αρδ〉 , yn)− `(fn − 〈f ′n, αδ〉 , yn)] /N ;

26: Lnew ← Lnew + λp

[
‖pj − αρδ‖22 − ‖pj − αδ‖

2
2

]
;

27: Lnew ← Lnew + λ̃p
[
Ω(P − αρedjδ>)− Ω(P − αedjδ>)

]
;

28: α← αρ;
29: end while
30: L← Lnew;
31: δ ← αδ;
32: end if
33: pj ← pj − δ;
34: an ← an − xn,jδ for all n ∈ supp(x:,j);
35: fn ← fn − 〈f ′n, δ〉 for all n ∈ supp(x:,j);
36: end for
37: end while
Output: Learned P and w

where x¬j ∈ Rd−1 is the (d − 1)-dimensional vector with xj removed. Thus, the replacement of

f ′n,s in Algorithm 4 (f ′n in Algorithm 6) with ∂fmHOFM(xn)/∂p
(m)
j,s (∇

p
(m)
j
fmHOFM(xn)) produces the

CD (BCD) algorithm for HOFMs. Algorithm 5 can be also extended to the SGD algorithm for

HOFMs similarly. Here, the issue is clearly how to compute ∂fMHOFM(xn)/∂p
(m)
j,s efficiently. Fortu-

nately, Blondel et al. (2016a) and Atarashi et al. (2020) proposed efficient computation algorithms
for Km−1

A (x¬j , (p:,s)¬j). For more detail, please see (Blondel et al., 2016a; Atarashi et al., 2020).
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(a) ML100K Dataset with λ̃p = 10−4 (left) and 10−5 (right).
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(b) a9a Dataset with λ̃p = 10−4 (left) and 10−5 (right).

Figure 7: Trajectories of ‖W ‖1 regularized objective value for TI, CS, L21, L1, Ω∗-nmAPGD,
Ω∗-SubGD, and SLQR methods on (a) ML100K dataset and (b) a9a dataset.

Appendix C. Additional Experiments

C.1 Efficiency Comparison on Real-world Datasets

We evaluated the efficiency of the proposed and existing methods on the ML100K dataset and the
a9a dataset as in Section 8.2.4. We ran the experiment with λ̃p = 10−4 and 10−5 on both datasets.
We set λp = λtr = 10−4 on the ML100K dataset and λp = λtr = 10−3 on the a9a dataset. The
other settings are the same those in Section 8.2.4. Because we compared the convergence speeds of
objective values, we didn’t separate datasets to training, validation, and testing datasets, i.e., we
used 100, 000 and 48, 642 instances for training on the ML100K and the a9a datasets, respectively.

As shown in Fig. 7a, TI and CS converged much faster than the other methods in terms of Ω∗
(‖W ‖1) regularized objective function on both the ML100K dataset and the a9a dataset. These
results indicate that the proposed regularizers can be good alternative to Ω∗ for not only synthetic
datasets but also some real-world datasets.
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C.2 Optimization Methods Comparison

We compared the convergence speeds of some algorithms for TI-sparse FMs and CS-sparse FMs on
both synthetic and real-world datasets. We ran this experiment on an Arch Linux desktop with an
Intel Core i7-4790 (3.60 GHz) CPU and 16 GB RAM.

Methods Compared. We compared the following algorithms for TI-sparse FMs and CS-sparse
FMs:

• PCD: the proximal coordinate descent algorithm (only TI-sparse FMs).

• PBCD: the proximal block coordinate descent algorithm (only CS-sparse FMs).

• APGD: FISTA with restart.

• nmAPGD: the non-monotone APGD algorithm (Li and Lin, 2015).

• PSGD: the PSGD algorithm.

• MB-PSGD: the mini-batch PSGD algorithm (only on real-world datasets).

• Katyusha: the Katyusha algorithm proposed by Allen-Zhu (2017). It is similar to an acceler-
ated proximal stochastic variance reduction gradient algorithm (Nitanda, 2014) but introduces
an additional moment term, which is called Katyusha momentum.

• MB-Katyusha: the mini-batch Katyusha algorithm (only on real-world datasets).

We used line search techniques for the step size in APGD and nmAPGD (Beck and Teboulle,
2009; Li and Lin, 2015) but we did not use them in PCD and PBCD because their sub-problems
are smooth. For the (mini-batch) PSGD-based algorithms, we ran the experiment using initial step
size η0 = 1.0, 0.1 and 0.01 but we show only the best results. In PSGD and MB-PSGD, rather
than using a constant step size, we used a diminishing step size as proposed by Bottou (2012):
η = η0(1 + η0λpt)

−1 at the t-th iteration. On the other hand, Katyusha and MB-Katyusha used
a constant step size: η = η0. In MB-PSGD and MB-Katyusha, we set the number of instances
in one mini-batch Nb to be Nd/nnz (X), which reduces the computational cost per epoch from
O(NdK) to O(nnz (X) k). For the evaluation of the proximal operator (30), we used Algorithm 3,
which runs in O(d) time in expectation.

Datasets. We used feature interaction selection setting datasets, feature selection setting datasets,
the ML100K dataset, and the a9a dataset. We set the number of instances of synthetic datasets
200 and 20, 000 in order to compare scalabilities of algorithms w.r.t N . As in Appendix C.1, we
used 100, 000 and 48, 642 instances for training on the ML100K and the a9a datasets, respectively.
We ran the experiment ten times using different initial random seeds. On synthetic datasets, we
set λp = λ̃p = 0.1 for the batch algorithms (PCD, PBCD, APGD, and nmAPGD). For the
stochastic algorithms (PSGD and Katyusha), we first scaled the feature vectors and targets: we
used xn/

√
d and yn/d as feature vectors and targets and set λp and λ̃p to 0.1/d2. Since we used

the squared loss and fFM(x/
√
d; 0,P ) = fFM(x; 0,P )/d, the balance between the loss term and

regularization term was the same as that in the batch algorithms. On the ML100K dataset, we set
λw = 0.5× 10−4, λp = 0.5× 10−4, and λ̃p = 0.5× 10−4 for all methods. On the a9a dataset, we set

λw = 0.5× 10−2, λp = 0.5× 10−3, and λ̃p = 0.5× 10−3 for all methods. They were chosen based on
the results in Section 8.3.

Results: batch vs stochastic. As shown in Fig. 8, on synthetic datasets, when the number of
training instances was 20, 000, the stochastic algorithms (PSGD and Katyusha) were faster than
the batch algorithms (PCD, PBCD, APGD, and nmAPGD). This indicates that stochastic
algorithms can be more useful than batch algorithms for large-scale dense datasets, as described
in Section 4.1 and Section 5.1. However, the stochastic algorithms take O(dk) time at each iteration
even if a sampled feature vector is sparse. On synthetic datasets, the feature vectors were dense since
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they were generated from Gaussian distributions, so the stochastic algorithms might be relatively
slower in some real-world applications. Indeed, as shown in Fig. 9, on real-world datasets, the
completely stochastic algorithms (PSGD and Katyusha) were not faster than batch algorithms
although although N � d on both datasets. The use of appropriate size mini-batch improved
the convergence speed as our expected: MB-PSGD and MB-Katyusha were faster than their
completely stochastic versions. Nevertheless, such mini-batch algorithms were slower than PCD
and PBCD on the ML100K dataset and the PCD on the a9a dataset. Moreover, performances of
(mini-batch) stochastic algorithms were sensitive w.r.t the choice of the step size hyperparameter
and the objective values usually diverged with η0 = 1.0. Thus, as our analysis in Section 4.1, the
PSGD-based algorithms should be used only when nnz (X) /d is large. Note that nnz (X) /d of
the ML100K and the a9a datasets in this experiment are 338 and 5, 506, respectively (clearly, on
synthetic datasets nnz (X) /d = N).

Results: PCD/PBCD vs APGD/nmAPGD. On synthetic datasets (Fig. 8), PCD/PBCD,
APGD, and nmAPGD tended to show similar results but PCD was much faster than APGD
and nmAPGD on the feature interaction selecting dataset with N = 200. On real-world datasets
(Fig. 9), PCD and PBCD were much faster than APGD and nmAPGD. Strictly speaking, not
PCD-based algorithms but PGD/PSGD-based algorithms should be used since TI (CS) regularizer
is not separable w.r.t each coordinate (each row vector) in P . However, our results indicate that
PCD and PBCD can work better than nmAPGD and APGD practically. Moreover, again,
PCD and PBCD have some important practical advantages: (i) easy to implement, (ii) easy to
extend to related models (as shown in Section 6), and (iii) having few hyperparameters.

C.3 Comparison of Algorithm 2 and Algorithm 3

We compared two algorithms for the proximal operator (30), Algorithm 2 (Sort) and Algorithm 3
(Random) proposed by Martins et al. (2011). For a d-dimensional vector, Sort and Random
run in O(d log d) time and O(d) time, respectively. We evaluated the runtime of two algorithms
for a d-dimensional vector generated from a Gaussian distribution, N (0, σ2Id) with varying d ∈
{23, 24, . . . , 214}. We set σ = 1.0 and σ = 10.0 and the regularization strength λ = 0.001, λ = 0.1,
and λ = 10.0. We ran the experiment 100 times with different initial random seeds and report the
average runtimes. For Sort, we used Nim’s standard sort procedure, which is an implementation
of merge sort.

As shown in Fig. 10, Random outperformed Sort in most cases. Sort sometimes ran faster
than Random only when d was very small (d ≤ 25 = 32). Thus, we basically recommend Random
(Algorithm 3) rather than Sort (Algorithm 2) for the evaluation of the proximal operator (30).
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Emile Richard, Pierre-André Savalle, and Nicolas Vayatis. Estimation of simultaneously sparse and
low rank matrices. In ICML, pages 51–58, 2012.

46



FMs with Regularization for Sparse Interactions

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Convergence rates of inexact proximal-gradient
methods for convex optimization. In NeurIPS, pages 1458—-1466, 2011.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge Univer-
sity Press, 2004.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang.
Autoint: Automatic feature interaction learning via self-attentive neural networks. In CIKM,
pages 1161–1170, 2019.

Shinya Suzumura, Kazuya Nakagawa, Yuta Umezu, Koji Tsuda, and Ichiro Takeuchi. Selective
inference for sparse high-order interaction models. In ICML, pages 3338–3347, 2017.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996.

Paul Tseng and Sangwoon Yun. A coordinate gradient descent method for nonsmooth separable
minimization. Mathematical Programming, 117(1-2):387–423, 2009.

Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua. Attentional factor-
ization machines: Learning the weight of feature interactions via attention networks. In IJCAI,
pages 3119–3125, 2017.

Jianpeng Xu, Kaixiang Lin, Pang-Ning Tan, and Jiayu Zhou. Synergies that matter: Efficient
interaction selection via sparse factorization machine. In SDM, pages 108–116, 2016.

Niannan Xue, Bin Liu, Huifeng Guo, Ruiming Tang, Fengwei Zhou, Stefanos P Zafeiriou, Yuzhou
Zhang, Jun Wang, and Zhenguo Li. Autohash: Learning higher-order feature interactions for deep
ctr prediction. IEEE Transactions on Knowledge and Data Engineering, 2020.

Shuo Yang, Yanyao Shen, and Sujay Sanghavi. Interaction hard thresholding: Consistent sparse
quadratic regression in sub-quadratic time and space. In NeurIPS, pages 7926–7936, 2019.

Quanming Yao, James T Kwok, Fei Gao, Wei Chen, and Tie-Yan Liu. Efficient inexact proximal
gradient algorithm for nonconvex problems. In IJCAI, pages 3308–3314, 2017.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006.

Huan Zhao, Quanming Yao, Jianda Li, Yangqiu Song, and Dik Lun Lee. Meta-graph based recom-
mendation fusion over heterogeneous information networks. In KDD, pages 635–644, 2017.

Dengyong Zhou, Sumit Basu, Yi Mao, and John Platt. Learning from the wisdom of crowds by
minimax entropy. In NeurIPS, pages 2204–2212, 2012.

47



Atarashi, Oyama, and Kurihara

10−2 10−1

CPU time (sec)

10−4

10−3

10−2

10−1

100

101

102

103

O
bj

ec
ti

ve
va

lu
e

m
in

us
b

es
t

PCD

APGD

nmAPGD

PSGD

Katyusha

100 101

CPU time (sec)

10−4

10−3

10−2

10−1

100

101

102

103

O
bj

ec
ti

ve
va

lu
e

m
in

us
b

es
t

(a) Feature interaction selection setting: dtrue = 80, b = 8 and dnoise = 20 with N = 200 (left) and 20, 000 (right) for TI
method.
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(b) Feature selection setting: dtrue = 20, b = 1 and dnoise = 80 with N = 200 (left) and 20, 000 (right) for TI method.
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(c) Feature selection setting: dtrue = 20, b = 1 and dnoise = 80 with N = 200 (left) and 20, 000 (right) for CS method.

Figure 8: Runtime comparisons among PCD, PBCD, APGD, nmAPGD, PSGD, and
Katyusha algorithms on synthetic datasets using different amounts of training data: (a) feature
interaction selection setting datasets for TI method; (b) feature selection setting datasets for TI
method; (c) feature selection setting datasets for CS method. Left and right graphs show results
for datasets with N = 200 and 20, 000 , respectively.
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(a) ML100K dataset (N = 100, 000): TI method (left) and CS method (right) with λw = 5 × 10−4, λp = 5 × 10−5, and

λ̃p = 5× 10−5.
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(b) a9a dataset (N = 48, 842): TI method (left) and CS method (right) with λw = 5×10−2, λp = 5×10−4, and λ̃p = 5×10−4.

Figure 9: Runtime comparisons among PCD, PBCD, APGD, nmAPGD, PSGD, MB-PSGD,
Katyusha, and MB-Katyusha algorithms on (a) ML100K dataset and (b) a9a dataset. Left and
right graphs show results for TI and CS method, respectively.
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(a) σ = 1.0.
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(b) σ = 10.0.

Figure 10: Comparison of Algorithm 2 (Sort) and Algorithm 3 (Random) with λ = 0.001 (left),
λ = 0.1 (center), and λ = 10.0 (right).
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