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Abstract

Recent work has shown great promise in explaining neural network behavior. In particular,
feature attribution methods explain the features that are important to a model’s prediction
on a given input. However, for many tasks, simply identifying significant features may be
insufficient for understanding model behavior. The interactions between features within
the model may better explain not only the model, but why certain features outrank others
in importance. In this work, we present Integrated Hessians, an extension of Integrated
Gradients (Sundararajan et al., 2017) that explains pairwise feature interactions in neural
networks. Integrated Hessians overcomes several theoretical limitations of previous meth-
ods, and unlike them, is not limited to a specific architecture or class of neural network.
Additionally, we find that our method is faster than existing methods when the number of
features is large, and outperforms previous methods on existing quantitative benchmarks.

Keywords: Feature attribution, feature interaction, Aumann-Shapley value, interpretabil-
ity, neural networks

1. Introduction and Prior Work

Deep neural networks are one of the most popular classes of machine learning (ML) model.
They can achieve state-of-the-art performance in problem domains ranging from natural
language processing to image recognition (Devlin et al., 2018; He et al., 2016). They have
even outperformed other non-linear model types on structured tabular data (Shavitt and
Segal, 2018). Because neural networks have traditionally been more difficult to interpret
than simpler model classes, gaining a better understanding of their predictions is desirable
for many reasons. Where these algorithms are used in automated decisions that affect
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humans, explanations may be legally required (Selbst and Powles, 2017). When used in
high stakes applications, it is essential to ensure that models are making safe decisions for
the right reasons (Geis et al., 2019). During model development, interpretability methods
can help debug undesirable model behavior (Sundararajan et al., 2017).

1.1 Feature Attribution Methods

Many recent approaches focus on interpreting deep neural networks, ranging from those
aiming to distill complex models into simpler ones (Tan et al., 2018; Wu et al., 2018; Puri
et al., 2017) to those seeking to identify key concepts learned by a network (Kim et al., 2017;
Olah et al., 2018, 2017; Fong and Vedaldi, 2018; Erhan et al., 2009; Mahendran and Vedaldi,
2015). Other approaches aim to build interpretable deep models, such as probabilistic
interpretable deep models and deep networks for causal effects (Zhang et al., 2020; Zhou
et al., 2016; Louizos et al., 2017). Among the best-studied sets of approaches for interpreting
deep neural networks is a class known as feature attribution methods (Binder et al., 2016;
Shrikumar et al., 2017; Lundberg and Lee, 2017; Ribeiro et al., 2016). These approaches
explain a model’s prediction by assigning credit to each input feature based on how much
it influences the prediction. Although these approaches help practitioners identify salient
features, they do not explain why the features are important or address features interactions
in a model. To enrich our understanding of model behavior, we must develop methods to
explain both. For example, in Figure 1, we show that word-level interactions can help
us distinguish why deeper, more expressive neural networks outperform simpler ones on
language tasks.

1.2 Feature Interaction Methods

Several existing methods explain feature interactions in neural networks. Cui et al. (2019)
explain global interactions in Bayesian Neural Networks (BNN) by examining pairs of fea-
tures that have large second-order derivatives at the input. The Neural Interaction De-
tection method detects statistical interactions between features by examining the weight
matrices of feed-forward neural networks (Tsang et al., 2017). Further, several authors
have proposed domain-specific methods to find interactions in the area of deep learning for
genomics (Koo et al., 2018; Greenside et al., 2018). For example, Deep Feature Interaction
Maps detect interactions between two features by calculating the change in the attribution
of one feature that is incurred by changing the value of the second (Greenside et al., 2018).
Singh et al. (2018) generalize Contextual Decomposition (Murdoch et al., 2018) to explain
interactions for feed-forward and convolutional architectures. In game theory literature,
Grabisch and Roubens (1999) propose the Shapley Interaction Index, which allocates credit
to interactions between players in a coalitional game by considering all possible subsets of
players. Recently, Dhamdhere et al. (2019) suggested a modified version of the Shapley
Interaction Index that weights certain subsets of players differently in order to achieve a
different set of desired axioms.

A recent paper by Tsang et al. (2020) proposes a method for “interaction attribution,”
which they compare to our method. Their approach has three steps: (1) detect pairwise
interactions between features using a method called ArchDetect, (2) use these pairwise
interactions to cluster features into groups so that interactions occur only between features
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within the same group, and (3) attribute importance to those groups of features using a
method called ArchAttribute. In Appendix B.1, we show that the quantity described by
ArchAttribute is equivalent to a Group Shapley value rather than an interaction value,
a fundamentally different quantity than we aim to measure in our paper, and hence is
not comparable. Our method detects the extent of non-additivity between feature pairs,
while their approach quantifies the total contribution of a group of interacting features.
Both quantities may be of interest, depending on the particular application. Therefore, we
instead compare our interaction detection method to ArchDetect.

1.3 Limitations of Prior Approaches

Previous approaches have substantially advanced our understanding of feature interaction
in neural networks. However, all suffer from practical limitations, including being limited
to specific types of architectures. Neural Interaction Detection applies only to feed-forward
neural network architectures and cannot be used on networks with convolutions, recurrent
units, or self-attention. Contextual Decomposition has been applied to LSTMs, feed-forward
neural networks and convolutional networks, but to our knowledge is not straightforward
to apply to more recent innovations in deep learning, such as self-attention layers. The
approach suggested by Cui et al. (2019) is limited by its required use of Bayesian Neural
Networks; it is unclear how to apply the method to standard neural networks. Deep Feature
Interaction Maps work when a model’s input features have only a few discrete values (such
as genomic sequence data, which can be in silico mutated), since it marginalizes over all
possible values of paired input features. The Shapley Interaction Index and Shapley Taylor
Interaction Index, like the Shapley value, are NP-hard to compute exactly (Elkind et al.,
2009).

Furthermore, most current methods to detect interactions fail to satisfy the common-
sense axioms proposed for feature attribution methods (Sundararajan et al., 2017; Lundberg
and Lee, 2017). As a result, these approaches are provably unable to find learned interactions
or more generally find counter-intuitive interactions (see section 4). Current methods that
do satisfy such axioms, such as those based on the Shapley Interaction Index (Grabisch and
Roubens, 1999; Dhamdhere et al., 2019), are computationally inefficient to compute or even
approximate.

1.4 Our contributions

First, we propose an approach, Integrated Hessians, to quantify pairwise feature interac-
tions that can be applied to any neural network architecture. We also identify several
common-sense axioms that feature-level interactions should satisfy and show that our pro-
posed method satisfies them. Third, we provide a principled way to compute interactions
in ReLU-based networks, which are piece-wise linear and have zero second derivatives. Fur-
ther, we evaluate our method against existing methods and show that it more accurately
identifies interactions in simulated data. Finally, we demonstrate the utility of Integrated
Hessians in a variety of applications where identifying feature interactions in neural networks
is useful.
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Figure 1: Interactions explain why certain models outperform others. Here, we examine
word interactions in the sentence “this movie was not bad.” We compare two
models trained to perform sentiment analysis on the Stanford Sentiment data
set: a pre-trained transformer, DistilBERT (left), which predicts the sentence has
a positive sentiment with 98.2% confidence, and a convolutional neural network
trained from scratch (right), which predicts a negative sentiment with 97.6%
confidence. The transformer picks up negation patterns: “not bad” has a positive
interaction, despite the word “bad” being negative. The CNN mostly picks up
negative interactions, like “movie not” and “movie bad.”

2. Explaining Explanations with Integrated Hessians

To derive our feature interaction values, we first consider Integrated Gradients (IG), a
feature attribution method proposed by Sundararajan et al. (2017) based on the Aumann-
Shapley value; the Aumann-Shapley value is a variant of the Shapley value for cooperative
games with continuous rather than discrete players (Aumann and Shapley, 2015). We
represent our model as a function f : Rd 7→ R.1 For a function f(x), the IG attribution for
the ith feature is defined as:

φi(x) = (xi − x′i)×
∫ 1

α=0

∂f(x′ + α(x− x′))
∂xi

dα, (1)

where x is the sample to be explained and x′ is a baseline value. For notation concision, we
suppress the dependence on the choice of baseline x′ when we write the IG attribution φi(x),
but we discuss the importance of baselines in Section 2.1 and Appendix B.4.2. Although
f is often a neural network, the sole requirement for computing attribution values is that
f be differentiable along the path from x′ to x. Our key insight is that the IG value for a
differentiable model f : Rd 7→ R is itself a differentiable function φi : Rd 7→ R. This means

1. For multi-output models, such as multi-class classification problems, we assume the function is indexed
into the correct output class.
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that we can apply IG to itself in order to explain the degree to which feature j impacted
the importance of feature i:

Γi,j(x) = φj(φi(x)). (2)

For i 6= j, we derive that:

Γi,j(x) = (xi − x′i)(xj − x′j)×
∫ 1

β=0

∫ 1

α=0
αβ

∂2f(x′ + αβ(x− x′))
∂xi∂xj

dαdβ. (3)

For i = j, the formula Γi,i(x) has an additional first-order term:

Γi,i(x) = (xi − x′i)
∫ 1

β=0

∫ 1

α=0

∂f(x′ + αβ(x− x′))
∂xi

dαdβ+

(xi − x′i)2 ×
∫ 1

β=0

∫ 1

α=0
αβ

∂2f(x′ + αβ(x− x′))
∂xi∂xj

dαdβ.

(4)

We interpret Γi,j(x) as the explanation of the importance of feature i in terms of the
input value of feature j. For a full derivation of Integrated Hessians, see Appendix A.

2.1 Baselines and Expected Hessians

Several feature attribution methods have identified the necessity of a baseline value rep-
resenting a lack of information when generating explanations (Sundararajan et al., 2017;
Shrikumar et al., 2017; Binder et al., 2016; Lundberg and Lee, 2017). However, more re-
cent work notes that choosing a single baseline value to represent a lack of information
can be challenging in certain domains (Kindermans et al., 2019; Kapishnikov et al., 2019;
Sundararajan and Taly, 2018; Ancona et al., 2017; Fong and Vedaldi, 2017; Sturmfels et al.,
2020). As an alternative, Erion et al. (2019) proposed an extension of IG called Expected
Gradients (EG), which samples many baseline inputs from the training set. We can therefore
apply EG to itself to get Expected Hessians:

ΓEGi,j (x) = Eαβ∼U(0,1)×U(0,1),x′∼D

[
(xi − x′i)(xj − x′j)αβ

∂2f(x′ + αβ(x− x′))
∂xi∂xj

]
. (5)

ΓEGi,i (x) = Eαβ∼U(0,1)×U(0,1),x′∼D

[
(xi − x′i)

∂f(x′ + αβ(x− x′))
∂xi

+ (xi − x′i)2αβ
∂2f(x′ + αβ(x− x′))

∂xi∂xj

]
,

(6)

where the expectation is over x′ ∼ D for an underlying data distribution D, α ∼ U(0, 1)
and β ∼ U(0, 1). This formulation is useful when there is no single, natural baseline.
Deriving Expected Hessians follows the same steps as deriving Integrated Hessians, but
the integrals can be viewed as integrating over the product of two uniform distributions
αβ ∼ U(0, 1) × U(0, 1). We use Integrated Hessians for all main text examples; however,
some of the Appendix examples use the Expected Hessians formulation.
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Almost every attribution and interaction method to date requires a choice of baseline.
Some approaches explicitly discuss their reliance on baselines (Sundararajan et al., 2017;
Sundararajan and Najmi, 2019; Tsang et al., 2020), while others rely on baselines without
explicitly mentioning them in their work. For example, Contextual Decomposition turns
features “off” by setting them to a single reference baseline of 0 (Murdoch et al., 2018).
By implementing a solution for domains where it is difficult to choose a single baseline, we
seek to alleviate issues common to many interaction methods. Additionally, we note that
the formulation as an expectation strictly generalizes the Integrated Hessians formulation;
while it is possible to sample from many different baselines, integrating from a single one
can also be conceptualized as sampling from a distribution with all of its density on that
baseline. We do not always anticipate that sampling a larger distribution of baselines would
be advantageous, especially in application settings where a single natural baseline can be
easily defined.

2.2 Fundamental Axioms for Interaction Values

We now describe common-sense axioms that every interaction method should satisfy, and
we show that Integrated Hessians satisfies them all.

2.2.1 Self and Interaction Completeness Axiom

Sundararajan et al. (2017) showed that, among other theoretical properties, IG satisfies the
completeness axiom, which states:

∑
i φi(x) = f(x) − f(x′). We show the following two

equalities, which are immediate consequences of completeness:

∑
i

∑
j

Γi,j(x) = f(x)− f(x′). (7)

Γi,i(x) = φi(x)−
∑
j 6=i

Γi,j(x). (8)

We call equation (7) the interaction completeness axiom: the sum of the Γi,j(x) terms
adds up to the difference between the output of f at x and at the baseline x′. This axiom
lends itself to another natural interpretation of Γi,j(x): as the interaction between features
i and j. That is, it represents the contribution that the pair of features i and j together
add to the output f(x) − f(x′). It is vital to satisfy interaction completeness because it
demonstrates a relationship between model output and interaction values. Without this
axiom, it would not be clear how to interpret the scale of interactions.

Equation (8) shows how to interpret the self-interaction term Γi,i(x) as the main effect
of feature i after interactions with all other features have been subtracted. We note that
equation (8) also implies the following, intuitive property about the main effect: if Γi,j = 0
for all j 6= i, or in the degenerate case where i is the only feature, we have Γi,i = φi(x).
We call this the self-completeness axiom. Satisfying self-completeness provides the vital
guarantee that the main effect of feature i equals its feature attribution value if that feature
interacts with no other features.
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The proof of these two equations is straightforward. First, we note that φi(x
′) = 0 for

any i because x′i − x′i = 0. Then, by completeness of Integrated Gradients, we have that:∑
j

Γi,j(x) = φi(x)− φi(x′) = φi(x). (9)

Re-arrangement provides the self-completeness axioms:

Γi,i(x) = φi(x) if Γi,j(x) = 0, ∀j 6= i. (10)

Since Integrated Gradients satisfies completeness:∑
i

φi(x) = f(x)− f(x′). (11)

Making the appropriate substitution from equation 9 shows the interaction completeness
axiom: ∑

i

∑
j

Γi,j(x) = f(x)− f(x′). (12)

2.2.2 Sensitivity Axiom

Integrated Gradients satisfies an axiom called sensitivity, which states that given an input
x and a baseline x′, if xi = x′i for all i except j where xj 6= x′j and if f(x) 6= f(x′), then
φj(x) 6= 0. Specifically, by completeness we know that φj(x) = f(x) − f(x′). Intuitively,
this means that if only one feature differs between the baseline and the input and changing
that feature would change the output, then the amount the output changes should be equal
to the importance of that feature.

We can extend this axiom to interactions by considering the case where two features
differ from the baseline. We call this axiom interaction sensitivity and describe it as follows.
If an input x and a baseline x′ are equal everywhere except xi 6= x′i and xj 6= x′j , and if
f(x) 6= f(x′), then: Γi,i(x) + Γj,j(x) + 2Γi,j(x) = f(x) − f(x′) 6= 0 and Γ`,k = 0 for all
`, k 6= i, j. Intuitively, this states that if the only features that differ from the baseline are i
and j, then the difference in the output f(x)−f(x′) must be solely attributable to the main
effects of i and j plus the interaction between them. This axiom holds simply by applying
interaction completeness and observing that Γ`,k(x) = 0 if x` = x′` or xk = x′k.

2.2.3 Implementation Invariance Axiom

The implementation invariance axiom, described in Sundararajan et al. (2017), states that
for two models f and g such that f = g, then φi(x; f) = φi(x; g) for all features i and all
points x regardless of how f and g are implemented. Although seemingly trivial, this axiom
does not necessarily hold for attribution methods that use the network’s implementation
or structure to generate attributions. Critically, this axiom also does not hold for the
interaction method proposed by Tsang et al. (2017), which looks at the first layer of a
feed-forward neural network. Two networks may represent exactly the same function but
differ greatly in their first layer.
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This axiom is trivially seen to hold for Integrated Hessians since it holds for Integrated
Gradients. However, without this key axiom, attributions/interactions could encode in-
formation about unimportant aspects of model structure rather than the actual decision
surface of the model.

2.2.4 Linearity Axiom

Integrated Gradients also satisfies an axiom called linearity. Given two networks f and
g, consider the output of the weighted ensemble of both networks to be af(x) + bg(x).
Then, the attribution φi(x; af + bg) of the weighted ensemble equals the weighted sum of
attributions aφi(x; f) + bφi(x; g) for all features i and samples x. This important axiom
preserves network linearity and facilitates easy computation of attributions for network
ensembles.

We can generalize linearity to interactions using the interaction linearity axiom:

Γi,j(x; af + bg) = aΓi,j(x; f) + bΓi,j(x; g), (13)

for any i, j and all points x. Given that Γi,j is a composition of linear functions φi, φj in
terms of the parameterized networks f and g, it is itself a linear function of the networks;
therefore, Integrated Hessians satisfies interaction linearity.

2.2.5 Symmetry-Preserving Axiom

We say that two features xi and xj are symmetric with respect to f if swapping them does
not change the output of f anywhere. That is, f(· · · , xi, · · · , xj , · · · ) = f(· · · , xj , · · · , xi, · · · ).
Sundararajan et al. (2017) shows that Integrated Gradients is symmetry preserving, that is,
if xi and xj are symmetric with respect to f , and if xi = xj and x′i = x′j for some input x and
baseline x′, then φi(x) = φj(x). To generalize to interaction values, if the same conditions
as above hold, then Γk,i(x) = Γk,j(x) for any feature xk. This axiom, which holds since
Γk,i(x) = φi(φk(x)) and φi, φj are symmetry-preserving, is significant because it indicates
that if two features are functionally equivalent to a model, then they must interact in the
same way with respect to that model.

2.2.6 Interaction Symmetry Axiom

Another form of symmetry is important to note: interaction symmetry. This axiom states
that, for any i, j, we have Γi,j(x) = Γj,i(x). Although simple, it guarantees that the interac-
tion function itself is symmetric with respect to the features it explains. It is straightforward
to show that existing neural networks and their activation functions have continuous second
partial derivatives, which implies that Integrated Hessians satisfies interaction symmetry.2

2.3 Approximating Integrated Hessians in Practice

Our interaction values include a double integral, which is intractable to compute analytically
in the general case. To compute Integrated Gradients in practice, Sundararajan et al. (2017)
introduced the following discrete sum approximation:

2. Section 3 describes the special case of the ReLU activation function.
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φ̂i(x) = (xi − x′i)×
k∑
`=1

∂f(x′ + `
k (x− x′))
∂xi

× 1

k
, (14)

where k is the number of points used to approximate the integral. To compute Integrated
Hessians, we introduce a similar discrete sum approximation:

Γ̂i,j(x) = (xi − x′i)(xj − x′j)×
k∑
`=l

m∑
p=1

`

k
× p

m
×
∂f(x′ + ( `k ×

p
m)(x− x′))

∂xi∂xj
× 1

km
. (15)

Typically, it is easiest to compute this quantity when k = m and the number of samples
drawn is thus a perfect square. However, when a non-square number of samples is preferred
we can generate sample points from the product distribution of two uniform distributions so
that the number is the largest perfect square above the desired number of samples; we can
index the sorted samples appropriately to get the desired number. The preceding formula
omits the first-order term in Γi,i(x), but it can be computed using the same principle.

Expected Hessians has a similar, if slightly easier, form:

Γ̂EGi,j (x) = (xi − x′i)(xj − x′j)
k∑
`

ζ` ×
∂f(x′ + ζ`(x− x′))

∂xi∂xj
× 1

k
, (16)

where ζ` is the `th sample from the product distribution of two uniform distributions.
We find in general that less than 300 samples are required for any given problem to ap-
proximately satisfy interaction completeness. For most problems, far less than 300 suffices
(e.g., around 50), but the number is model and data dependent: larger models and higher-
dimensional data generally require more samples than smaller models and lower-dimensional
data.

3. Smoothing ReLU Networks

One major limitation not discussed in previous approaches to interaction detection in neural
networks relates to use of the ReLU activation function, ReLU(x) = max(0, x), in many
popular neural network architectures. Neural networks using ReLU are piecewise linear and
have second partial derivatives equal to zero in all places. Previous second-order approaches
(based on the Hessian) fail to detect any interaction in ReLU-based networks.

Fortunately, the ReLU activation function has a smooth approximation – the SoftPlus
function: SoftPlusβ(x) = 1

β log(1 + e−βx). SoftPlus more closely approximates ReLU as
β increases and has well-defined higher-order derivatives. Furthermore, Dombrowski et al.
(2019) have proved that a model’s outputs and first-order feature attributions are minimally
perturbed when ReLU activations are replaced by SoftPlus activations in a trained network.
Therefore, we can apply Integrated Hessians on a network with ReLU activations by first
replacing ReLU with SoftPlus. We note that no re-training is necessary for this approach.

9
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Figure 2: Replacing ReLU activations (left) with SoftPlusβ activations (right) where β = 10
smooths the decision surface of a neural network: gradients tend to be more ho-
mogeneous along the integration path. Orange arrows show the gradient vectors
at each point along the path from the reference (green x) to the input (blue dots).
ReLUs can cause small bends in the output space with aberrant gradients.

In addition to being twice differentiable and letting us calculate interaction values in
ReLU networks, replacing ReLU with SoftPlus offers other benefits when calculating inter-
action values. We show that smoothing a neural network (i.e., decreasing the value of β
in the SoftPlus activation function) lets us accurately approximate the Integrated Hessians
value with fewer gradient calls.

Theorem 1 For a one-layer neural network with softplusβ non-linearity, fβ(x) =
softplusβ(wTx), and d input features, we can bound the number of interpolation points k

needed to approximate the Integrated Hessians to a given error tolerance ε by k ≤ O(dβ
2

ε ).

The proof of Theorem 1 is shown in Appendix C. In addition to the proof for the single-
layer case, Appendix C also presents empirical results to show that many-layered neural
networks display the same property.

The intuition behind these results is that as we replace ReLU with SoftPlus, the decision
surface of the network is smoothed (see Figure 2). We observe that the gradients tend to
all have more similar direction along the path from reference to foreground sample once the
network has been smoothed with SoftPlus replacement.

4. Explanation of XOR function

To explain why feature interactions can be more informative than feature attributions, we
use the case of two binary features and a neural network representing an XOR function.
This network has a large output when either feature is on alone, but it has a low magnitude
output when both features are either on or off (Figure 3, left).

When we explain the network using Integrated Gradients with the zeros baseline, we see
that samples where both features are on and those where both features are off get identical
attributions (see Figure 3, middle). Integrated Hessians, however, differentiates these two
samples by identifying the negative interaction that occurs between the two features when
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Figure 3: (Left) The margin surface for a neural network representing an XOR function.
(Middle) Integrated Gradients feature attributions for two samples, the first where
both features are turned off, and the second where both features are turned on.
Both get identical Integrated Gradients attributions. (Right) Integrated Hessians
feature interactions for the same two samples. We see that the Integrated Hessians
values, but not the Integrated Gradients values, differentiate the two samples.

they are both on (Figure 3, right). Therefore, the interactions can usefully distinguish
between (0,0), which has an output of 0 because it is identical to the baseline, and (1,1),
which has an output of 0 because both features are on. When considered independently,
each feature would increase the model’s output, but when considered in interaction with
one another, they cancel out the positive effects and drive the model’s output back to the
baseline.

This example also illustrates a problem with methods like Cui et al. (2019), which use
the input Hessian without integrating over a path. In Figure 3, we see that the function is
saturated at all points on the data manifold, meaning all elements of the Hessian will be 0
for all samples. In contrast, by integrating between the baseline and the samples, Integrated
Hessians can correctly detect the negative interaction between the two features.

5. Empirical Evaluation

We empirically evaluated our method against other methods using benchmarks inspired by
recent literature on quantitatively evaluating feature attribution methods (Adebayo et al.,
2018; Kindermans et al., 2019; Hooker et al., 2019; Yeh et al., 2019; Lin et al., 2019).
We compare Integrated Hessians to six existing methods: the Shapley Interaction Index
(Grabisch and Roubens, 1999), the Shapley Taylor Interaction Index (Dhamdhere et al.,
2019), ArchDetect (Tsang et al., 2020), Generalized Contextual Decomposition (Singh et al.,
2018), Neural Interaction Detection (Tsang et al., 2017), and using the Hessian at the input
sample (Cui et al., 2019).

5.1 Computation Time

First, we compared the computation time of each method. We explained interactions in
a 5-layer neural network with SoftPlus activation and 128 units per layer. We ran each
method on models with 5, 50 and 500 input features, and evaluated each method on 1000
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Figure 4: Left : The time each method takes to compute all pairwise interactions on 1000
samples with d features as a function of d. Existing methods scale poorly com-
pared to our proposed method. We also benchmarked our methods against others
(Center, heuristic methods; Right, Shapley value-based methods) using a modified
version of Remove and Retrain (Hooker et al., 2019) on simulated interactions.
Our method more accurately identifies the most important interactions than all
existing methods other than the Shapley Interaction Index and Shapley Taylor
Index, which are much more computationally expensive.

samples. Because computing the Shapley Interaction Index and Shapley Taylor Interaction
Index is NP-hard in the general case (Elkind et al., 2009), we instead compared against
a Monte Carlo estimation of the Shapley Interaction Index with 200 samples, analogous
to how the Shapley Value is estimated in Kononenko et al. (2010). Even using a small
number of samples, this comparison could not run to completion for the 500 feature case
and would have taken an estimated 1000 hours to complete. For each method, we computed
all pairwise interactions: d2 interactions for d features. Figure 4 (left) shows results.

We observe that our method is more tractable than the two other axiomatic approaches
to interaction based on Shapley values. Further, we note that as the number of features
grows, our method is more tractable than several of the heuristic methods, as well: other
methods require at least O(d2) separate forward passes of the model to compute the inter-
actions, which is non-trivial to parallelize. However, back-propagating the Hessian through
the model is easily done in parallel on a GPU since this functionality already exists in
modern deep learning frameworks (see Appendix B.3) (Paszke et al., 2019; Abadi et al.,
2016).

5.2 Quantitative Comparison of Interaction Detection with Other Methods

To compare each method, we used the Remove and Retrain benchmark introduced in Hooker
et al. (2019). The benchmark compares feature attributions by progressively ablating the
most important features in each sample —ranked according to each attribution method
—and then retraining the model on the ablated data and measuring the performance drop.
The attribution method that incurred the fastest performance decline was the quickest to
identifythe most predictive features in the data.
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We generated a simulated regression task with 10 features where each feature was drawn
independently from N (0, 1). The label was an additive sum of 20 interactions with random
coefficients normalized to sum to 1, drawn without replacement from all possible pairs of
features. A 3-layer neural network’s predictions achieved over 0.99 correlation with the true
label. We leave further details about experimental setup, as well as how we “remove” an
interaction between two features, to Appendix B.4.1.

We compared each of the five interaction methods using Remove and Retrain on five
different interaction types: gtanhsum(xi, xj) = tanh(xi + xj), gcossum(xi, xj) = cos(xi + xj),
gmultiply(xi, xj) = xi ∗ xj , gmax(xi, xj) = max(xi, xj) and gmin(xi, xj) = min(xi, xj). The
results for gtanhsum are displayed in Figure 4 (right). Our method most quickly identified the
highest-magnitude interactions in the data, as demonstrated by the fastest increase in error.
We include the remaining results in Appendix B.4 but note here that our method outper-
formed all existing heuristic methods on all interaction types and performed equivalently
to both the Shapley Interaction Index and the Shapley Taylor Interaction Index.

In addition to the Remove and Retrain benchmark, we also tested our approach using the
“sanity checks” proposed in Adebayo et al. (2018) to ensure that our interaction attributions
were sensitive to network and data randomization. We found that our method passed both
sanity checks (see Appendix B.4.3).

6. Applications of Integrated Hessians

6.1 NLP

Over the past decade, neural networks have been the go-to model for language tasks, from
convolutional (Kim, 2014) to recurrent (Sundermeyer et al., 2012). More recently, large,
pre-trained transformer architectures (Peters et al., 2018; Devlin et al., 2018) have achieved
state-of-the-art performance on a wide variety of tasks. Previous work suggested investi-
gating the internal weights of the attention mechanisms in attention-based models (Ghaeini
et al., 2018; Lee et al., 2017; Lin et al., 2017; Wang et al., 2016). However, more recent work
suggests that examining attention weights may not be a reliable way to interpret models
with attention layers (Serrano and Smith, 2019; Jain and Wallace, 2019; Brunner et al.,
2019). To resolve this issue, feature attributions have been applied to text classification
models to understand which words most affect classification (Liu and Avci, 2019; Lai et al.,
2019). However, these methods do not explain how words interact with their surrounding
context.

We downloaded pre-trained weights for DistilBERT (Sanh et al., 2019) from the Hug-
gingFace Transformers library (Wolf et al., 2019). We fine-tuned the model on the Stanford
Sentiment Treebank data set (Socher et al., 2013), where the task was to predict whether a
movie review had positive or negative sentiment. After 3 epochs of fine-tuning, DistilBERT
achieved a validation accuracy of 0.9071 (0.9054 TPR / 0.9089 TNR).3 We present further
fine-tuning details in Appendix D.

In Figure 5, we show interactions generated by Integrated Hessians and attributions
generated by Integrated Gradients on an example drawn from the validation set. The figure

3. This performance does not represent state-of-the-art, nor is sentiment analysis representative of the
full complexity of existing language tasks. However, this paper focuses on explanation, and sentiment
analysis is easily fine-tuned without extensive hyperparameter search.
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demonstrates that DistilBERT learned intuitive interactions that would not be revealed from
feature attributions alone. For example, a word like “painfully,” which might have a negative
connotation on its own, has a large positive interaction with the word “funny” in the phrase
“painfully funny.” In Figure 1, we demonstrate how interactions can help us understand
why a fine-tuned DistilBERT model outperforms a simpler model: a convolutional neural
network (CNN) that achieves an accuracy of 0.82 on the validation set. DistilBERT picks up
positive interactions between negation words (“not”) and negative adjectives (“bad”) that a
CNN fails to fully capture. Finally, in Figure 5, we use interaction values to reveal saturation
effects: many negative adjectives describing the same noun interact positively. Although
this may initially seem counter-intuitive, it reflects the structure of language. If a phrase
has only one negative adjective, it stands prominently as the word that makes the phrase
negative. At some point, however, describing a noun with an increasing number of negative
adjectives makes any individual negative adjective less important towards classifying that
phrase as negative.
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Figure 5: Left : Interactions in text reveal learned patterns such as the phrase ”painfully
funny” having a positive interaction despite the word ”painfully” having a neg-
ative attribution. These interactions are not evident from attributions alone.
Right : Interactions help reveal an unintuitive pattern in language models: satu-
ration. Although the word “movie” interacts negatively with all negative modi-
fying adjectives, those negative adjectives themselves all interact positively. The
greater the number of negative adjectives in a sentence, the less each individual
negative adjective contributes to the overall classification of the sentence.

6.2 Drug Combination Response Prediction

In the domain of anti-cancer drug combination response prediction, plotting Integrated Hes-
sians can help to glean biological insights into the process we are modeling. We considered
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Figure 6: Left: Integrated Gradients values for Venetoclax. Middle: Venetoclax interac-
tions with Artemisinin across all samples. Right: Venetoclax and Artemisinin
interaction is driven by expression of genes in cancer samples.

one of the largest publicly available data sets measuring drug combination response in acute
myeloid leukemia (Tyner et al., 2018). Each of the 12,362 samples consists of the measured
response of a 2-drug pair tested on a patient’s cancer cells. The 1,235 input features are
split between features describing the drug combinations and those describing the cancerous
cells, which we modeled using the neural architectures described in Hao et al. (2018) and
Preuer et al. (2017).

According to the first-order explanations, the presence or absence of the drug Venetoclax
in the drug combination was the most important feature. We also easily see that first-order
explanations were inadequate in this case: while the presence of Venetoclax was generally
predictive of a more responsive drug combination, the amount of positive response to this
drug was predicted to vary across samples (see Figure 6, top left).

Integrated Hessians reveals that some of this variability is attributable to the drug with
which Venetoclax was combined. The model learned a strong negative interaction between
Venetoclax and Artemisinin (see Figure 6, middle), which we confirmed matched the ground
truth ascertained from additional external data (p = 2.31× 10−4, see Appendix F). Finally,
we gained insight into the variability in the interaction values between Venetoclax and
Artemisinin by plotting them against the expression level of a pathway containing cancer
genes (see Figure 6, right). We found that patients with higher expression of this pathway
tended to have a more negative interaction (sub-additive response) than those with a lower
expression of it. Integrated Hessians enriches both our understanding of the interactions
between drugs in our model and the genetic factors that influence this interaction.

7. Conclusion

We proposed a novel method called Integrated Hessians to explain feature interactions in
neural networks. The interaction values we proposed have two natural interpretations: (1)
as the effect of combining two features on a model’s output, and (2) as the explanation
of one feature’s importance in terms of another. Our method provably satisfied common-
sense axioms that previous methods did not and outperforms previous methods in practice
at identifying known interactions on simulated data. Additionally, we demonstrated how
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to glean interactions from neural networks trained with a ReLU activation function that
has no second derivative. In accordance with recent work, we showed why replacing the
ReLU activation function with the SoftPlus at explanation time was both intuitive and
efficient. Finally, we performed several experiments to reveal the utility of our method, from
understanding performance gaps between model classes to discovering patterns a model has
learned on high-dimensional data.

We conclude that although feature attribution methods provide valuable insight into
model behavior, such methods by no means end the discussion on interpretability. Rather,
they encourage further work in deeper understanding model behavior. For example, our
approach does not currently support the quantification of higher-order interactions between
features. Future research to characterize such interactions would be valuable. For example,
these methods may prove useful for image models, where individual pixels lack semantic
meaning. Extending the efficiency or theoretical guarantees of existing methods that can de-
tect these higher-order interactions, or developing new methods to provide these desiderata,
may be of particular interest. Finally, while interactions add a degree of expressivity to fea-
ture attribution methods, finding approaches to explain models from outside the paradigm
of feature attribution entirely would be creative and significant future research.
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Appendix A. Deriving Interaction Values

Here, we derive the formula for Integrated Hessians from its definition: Γi,j(x) = φj(φi(x)).
We start by expanding φj using the definition of Integrated Gradients:

Γi,j(x) := (xj − x′j)×
∫ 1

β=0

∂φi(x
′ + β(x− x′))
∂xj

dβ. (17)
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We consider the function ∂φi
∂xj

(x), and we first assume that i 6= j

∂φi
∂xj

(x) = (18)

(xi − x′i)×
∂

∂xj

(∫ 1

α=0

∂f(x′ + α(x− x′))
∂xi

dα

)
= (19)

(xi − x′i)×
∫ 1

α=0

∂

∂xj

(
∂f(x′ + α(x− x′))

∂xi

)
dα = (20)

(xi − x′i)×
∫ 1

α=0
α
∂2f(x′ + α(x− x′))

∂xi∂xj
dα, (21)

where we have assumed that the function f satisfies the conditions for the Leibniz Integral
Rule (i.e., that integration and differentiation are interchangeable). These conditions require

that the derivative of f , ∂f
∂xi

and its second derivative function ∂2f
∂xi∂xj

are continuous over x

in the integration region, and that the bounds of integration are constant with respect to
x. It is easy to see that the bounds of integration are constant with respect to x. It is also
straightforward to see that common neural network activation functions — for example,
sigmoid(x) = 1

1+e−x , softplusβ(x) = 1
β log(1 + e−βx), or gelu(x) = xΦ(x), where Φ(x) is the

cumulative distribution function of the normal distribution — have continuous first and
second partial derivatives; this implies that compositions of these functions have continuous
first and second partial derivatives, as well. Although this is not the case with the ReLU
activation function, we discuss replacing it with SoftPlus in the main text.

We can proceed by plugging equation 21 into the original definition of Γi,j(x):

Γi,j(x) := (xj − x′j)×
∫ 1

β=0

∂φi(x
′ + β(x− x′))
∂xj

dβ = (22)

(xj − x′j)×
∫ 1

β=0
(x′i − β(xi − x′i)− x′i)

∫ 1

α=0
α
∂2f(x′ + α(x′ − β(x− x′)− x′))

∂xi∂xj
dαdβ = (23)

(xj − x′j)(xi − x′i)
∫ 1

β=0

∫ 1

α=0
αβ

∂2f(x′ + αβ(x− x′))
∂xi∂xj

dαdβ, (24)

where all we’ve done is re-arrange terms.

Deriving Γi,i(x) proceeds similarly:
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∂φi
∂xi

(x) = (25)

∂

∂xi

(
(xi − x′i)

)
×
∫ 1

α=0

∂f(x′ + α(x− x′))
∂xi

dα+

(xi − x′i)×
∂

∂xi

(∫ 1

α=0

∂f(x′ + α(x− x′))
∂xi

dα

)
=

(26)

∫ 1

α=0

∂f(x′ + α(x− x′))
∂xi

dα+ (xi − x′i)×
∫ 1

α=0
α
∂2f(x′ + α(x− x′))

∂xi∂xj
dα, (27)

using the chain rule. After similar re-arrangement, we arrive at

Γi,i(x) = (xi − x′i)
∫ 1

β=0

∫ 1

α=0

∂f(x′ + αβ(x− x′))
∂xi

dαdβ+

(xi − x′i)2 ×
∫ 1

β=0

∫ 1

α=0
αβ

∂2f(x′ + αβ(x− x′))
∂xi∂xj

dαdβ.

(28)

Appendix B. Comparing Against Existing Methods

We now elaborate on the relationship between our method and six existing methods:

• Integrated Hessians: Our proposed method.

• Input Hessian: Uses the Hessian at the input instance. Using the input Hessian at a
particular instance to measure interaction values is the natural generalization of using
the gradient to measure the importance of individual features, as done by Simonyan
et al. (2013).

• Contextual Decomposition (CD): Introduced by Murdoch et al. (2018) for LSTMs and
extended to feed-forward and convolutional architectures by Singh et al. (2018). We
focus on the generalized version introduced by the latter.

• Neural Interaction Detection (NID): Introduced by Tsang et al. (2017), this method
generated interactions by inspecting the weights of the first layer of a feed-forward
neural network.

• Shapley Interaction Index (SII): Introduced by Grabisch and Roubens (1999) to al-
locate credit in coalitional game theory. It is used to explain interactions in neural
networks similarly to how the Shapley value is used to explain attributions in Lund-
berg and Lee (2017).

• Shapley Taylor Interaction Index (STI): Introduced by Dhamdhere et al. (2019), this
method is similar to the Shapley Interaction Index, but it changes the weighting of
certain coalitions in order to naturally fulfill the axiom that interactions should sum
to the output.
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• ArchDetect (AD): Introduced by Tsang et al. (2020), this method detects interactions
between pairs of features using a quantity similar to a discrete second-order derivative.
See Appendix B.1 for more detail.

• Group Expected Hessian (GEH): Introduced by Cui et al. (2019), this method aggre-
gates the input Hessian over many samples with respect to a Bayesian neural network.

• Deep Feature Interaction Maps (DFIM): Introduced by Greenside et al. (2018), this
method determines interactions by seeing how much attributions change when features
are perturbed.

We first discuss practical considerations regarding each method and then evaluate the
degree to which each satisfies the axioms we identified in Section 2.2.

B.1 Comparison to Tsang et al. 2020

In Tables 1 and 2 of their recent paper, “How does this interaction affect me?: Interpretable
attribution for feature interactions,” Tsang et al. (2020) compare their “interaction attribu-
tion” method ArchAttribute to Integrated Hessians. We believe this is a faulty comparison.
Their overall approach consists of three steps: (1) detect pairwise interactions between
features using a method called ArchDetect, (2) use these pairwise interactions to cluster
features into groups, such that interactions occur only between features within the same
group, and (3) attribute importance to those groups of features using a method called
ArchAttribute.

For a group I formed using the first two steps of this procedure, the ArchAttribute
value is:

φ(I) = f(x∗I + x
′

\I)− f(x′), (29)

where for p features in a data set, we let I be a subset of feature indices, I ⊆ {1, 2, · · · , p}.
For a vector x ∈ Rp, let xI ∈ Rp be defined as

(xI)i =

{
xi, if i ∈ I
0 otherwise.

(30)

We let x∗ represent the sample we want to explain, x′ represent a neutral reference sample,
and f be a black box model that takes a vector input and has a scalar output.

We prove why we believe this is a flawed comparison by showing that from a game-
theoretic perspective, the value calculated by ArchAttribute corresponds to a Group Shapley
Value rather than any sort of interaction value.

Theorem 2 For a set of features I found using the first two steps of the procedure in Tsang
et al. (2020), the ArchAttribute value Φ(I) is exactly the Group Shapley Value.

Proof Define a value function v : 2N 7→ R as v(S) = f(x∗S + x
′

\S), where x∗ is the sample

we want to explain and x
′

is the all zeros vector. Therefore, we can write:

Φ(I) = v(I)− v(∅). (31)
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Because the Archipelago method defines I as a set of features that do not interact with
features outside of the set I, we have that:

v(I)− v(∅) = v(I ∪ S)− v(∅ ∪ S),∀S ⊆ N \ I. (32)

For any family of coefficients {pIS(N)}S⊆N\I that define a probability distribution on 2N\I ,
since these coefficients will sum to 1, we can say:

v(I ∪ S)− v(∅ ∪ S) =
∑

S⊆N\I

pIS(N)[v(I ∪ S)− v(S)]. (33)

The R.H.S. of the last equation defines a “probabilistic generalized value,” the most
well-known of which is the Group Shapley Value (Marichal et al., 2007; Flores et al., 2019).

If values measure the individual power of a player in a cooperative game, generalized
values extend this notion to coalitions of players (Marichal et al., 2007). Since the Ar-
chAttribute method appears to be a method for calculating group attributions rather than
feature interactions, we instead compare to the interaction detection method ArchDetect,
also described in Tsang et al. (2020). The ArchDetect value for a pair of features i and j is
given as

ω̄i,j =
1

2
(ωi,j(x

∗) + ωi,j(x
′
)), (34)

where the quantities ω are defined:

ωi,j(x) =
( 1

hihj

(
f(x∗{i,j} + x\{i,j})− f(x

′

{i} + x∗{j} + x\{i,j})

−f(x∗{i} + x
′

{j} + x\{i,j}) + f(x
′

{i,j} + x\{i,j})
))2

.

(35)

If we substitute the more familiar set function notation, v(S) = f(x∗S+x
′

\S), we see that this

value very closely resembles the Shapley Interaction Index (Grabisch and Roubens, 1999),
where only two contexts are considered and the terms within the summation are squared.
Hence, it is a significantly better comparison to make with our method.

B.2 Practical Considerations

This section describes four desirable properties that interaction methods may or may not
satisfy:

1. Local: A method is local if it operates at the level of individual predictions. It is global
if it operates over the entire data set. Which is better is task dependent, but local
methods are often more flexible because they can be aggregated globally (Lundberg
et al., 2020).

2. Architecture Agnostic: A method is architecture agnostic if it can be applied to any
neural network architecture.
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Interaction Method Local
Architecture

Agnostic
Data

Agnostic
Higher-Order
Interactions

Input Hessian X X X
Integrated Hessians (ours) X X X

CD (Singh et al., 2018) X ∼* X X
NID (Tsang et al., 2017) X X X

SII (Grabisch and Roubens, 1999) X X X X
STI (Dhamdhere et al., 2019) X X X X

AD (Tsang et al., 2020) X X X
GEH (Cui et al., 2019) X X

DFIM (Greenside et al., 2018) X X

Table 1: Comparing the practical properties of existing interaction methods. Because GEH
and DFIM are neither architecture nor data agnostic, respectively, we omit them
from empirical comparisons. *Contextual Decomposition was originally introduced
for LSTMs in Murdoch et al. (2018), and was generalized to feed-forward and
convolutional architectures in Singh et al. (2018). However, the method has yet
to be adapted to other architectures (e.g., transformers Devlin et al. (2018)).

3. Data Agnostic: A method is data agnostic if it can be applied to any type of data, no
matter the structure.

4. Higher-Order Interactions: This paper primarily discusses interactions between pairs
of features. However, some methods can generate interactions between groups of
features larger than 2, and these are said to generate higher-order interactions.

In Table 1, we depict methods and the properties they satisfy. We note that GEH
and DFIM are neither architecture nor data agnostic, respectively. Therefore, we do not
include them in empirical comparisons since they cannot be run on feed-forward neural
networks with arbitrary data. We also note that our method does not generate higher order
interactions. Although in principle one could generate kth order interactions by recursively
applying integrated gradients to itself k times, we do not discuss doing so in this paper.

B.3 Theoretical Considerations

We now evaluate which methods satisfy the axioms we presented in Section 2.2. Results
are presented in Table 2. We note that Integrated Hessians and the Shapley Interaction
Index share many theoretical properties, except that the Shapley Interaction Index trades
completeness for the recursive axioms, which state that higher order interactions should be
recursively defined from lower order ones. Whether this is preferable to satisfying complete-
ness seems subjective.

The Shapley-Taylor Interaction Index satisfies completeness, although Dhamdhere et al.
(2019) refer to it as the “efficiency” axiom. They also introduce a new “interaction distri-
bution” axiom, which guarantees that interaction effects between a set of featuers are not
improperly credited towards any proper subset of the original set. However, their inter-
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Interaction Method
Complete-

ness
Interaction
Sensitivity

Implementation
Invariant

Input Hessian X
Integrated Hessians (ours) X X X

CD (Singh et al., 2018) ∼**

NID (Tsang et al., 2017)

AD (Tsang et al., 2020) X X
SII (Grabisch and Roubens, 1999) X X

STI (Dhamdhere et al., 2019) X X X
GEH (Cui et al., 2019) X

DFIM (Greenside et al., 2018) ∼***

Interaction Method
Symmetry
Preserving

Interaction
Linearity

Recursive
Axioms*

Input Hessian X X
Integrated Hessians (ours) X X

CD (Singh et al., 2018) X
NID (Tsang et al., 2017)

AD (Tsang et al., 2020) X
SII (Grabisch and Roubens, 1999) X X X

STI (Dhamdhere et al., 2019) X X
GEH (Cui et al., 2019) X

DFIM (Greenside et al., 2018) ∼*** ∼***

Table 2: Comparing the theoretical guarantees of interaction methods. We define each ax-
iom in Section 2.2. *The recursive axioms are discussed in Grabisch and Roubens
(1999) and guarantee that higher-order interactions satisfy a specific recurrence
relation. **Contextual Decomposition does not satisfy the exact sensitivity axiom
we present, but it does guarantee that features equal to 0 will have zero interaction
with any other feature. ***Whether or not Deep Feature Interaction Maps (DFIM)
satisfies these properties relies on the underlying feature attribution method used:
if the underlying method satisfies the properties, so does DFIM.

action index does not provide a relationship between attribution values (Shapley values)
and interaction values, while our method does. Which proprety is more desirable is, again,
subjective.

The Hessian satisfies implementation invariance for the same reason that our method
does: it relies only on the value of the network function and its derivatives. The hessian also
satisfies (1) linearity since the derivative is a linear operator, and (2) symmetry preservation
due to Schwarz’s theorem. Contextual decomposition is symmetry preserving by definition
but fails on implementation invariance due to the way it splits the bias.

In terms of computational efficiency, we can better appreciate the benefit of our approach
compared to the Shapley Interaction Index and the Shapley Taylor interaction index by ex-
amining the asymptotic complexity of each algorithm. For a given neural network, forward
and backward passes have the same asymptotic time complexity, which is a function of the

22



Explaining Explanations

number of nodes and layers (matrix multiplications) as well as the activation functions used
(Rojas, 2013). Since the network itself does not change with the interaction method, we
can therefore analyze each algorithm on the basis of the number of either forward or back-
ward passes required to calculate all interactions. For each interaction, both the Shapley
Interaction Index and the Shapley Taylor interaction index require considering an expo-
nential number of subsets and require O(2d) forward passes. To calculate all interactions,
these methods hence take O(2dd2) forward passes. Integrated Hessians reduces the number
of passes to be polynomial in the number of features, O(kd2), requiring k interpolation
steps. For further discussion of the dependence of k on the smoothness of the function
being explained, see Appendix C. Finally, heuristic methods like ArchDetect or Contextual
Decomposition require O(d2) forward passes.

Although the Integrated Hessians method occupies an intermediate position in terms
of asymptotic analysis, in practice we can calculate all possible pairs of interactions more
quickly using this method due to the parallelization built into popular deep learning frame-
works, back-propagating the Hessian through the model in parallel using GPUs (Paszke
et al., 2019; Abadi et al., 2016).

B.4 Quantitative Evaluations

We now elaborate on the quantitative comparisons presented in the main text. Note that
we do not compare with GEH and DFIM because they are not applicable to feed-forward
neural networks with continuous data.

B.4.1 Remove and Retrain

The Remove and Retrain benchmark starts with a trained network on a given data set. It
ranks the features most important for prediction on every sample in the data set according
to a given feature attribution method. Using the ranking, it iteratively ablates the most
important features in each sample and then re-trains the model on the ablated data. To run
this method, it is necessary to ablate a feature, which the original paper does by mean or
zero imputation (Hooker et al., 2019). However, doing so presents a problem when trying
to compare methods that explain interactions between features rather than attributions to
features.

Unlike ablating features, it is not straightforward to ablate an interaction between two
features. Ablating both features in the interaction does not work, because it mixes main
effects with interactions. Consider the function f(x1, x2, x3, x4) = x1+x2+0.1∗x3 ∗x4. For
f(1.0, 1.0, 1.0, 1.0) = 2.1, the largest and only interaction is between x3 and x4. However,
ablating the pair x1, x2 would incur a larger performance hit because the features x1 and
x2 have larger main effects than x3 and x4.

Instead, we opt to generate simulated data where the interactions are known and then
ablate the interactions in the labels directly. We generate a simulated regression task with
10 features, where each feature is drawn independently from N (0, 1). The label is an
additive sum of 20 interactions with random coefficients, drawn without replacement from
all possible pairs of features. That is, for some specified interaction function g, we generate
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the label y as
20∑
i=1

αig(xi,1, xi,2),

where xi,1, xi,2 is the pair of features chosen to be part of the ith interaction and αi are
random coefficients drawn from a uniform distribution and normalized to sum to 1:

20∑
i=1

αi = 1

.

To ablate an interaction, we multiply the interaction in the label with gaussian noise,
which ensures ablating the largest interactions adds the most amount of noise to the label.
For example, let f(x1, x2, x3) = 0.5 ∗ g(x1, x2) + 0.3g(x1, x3). To ablate the interaction be-
tween x1 and x2, we compute the ablated label f̂(x1, x2, x3) = ε∗0.5∗g(x1, x2)+0.3g(x1, x3),
where ε ∼ N (0, 1). The interaction method that identifies the largest interactions in the
data adds the largest amount of random noise into the label, thus increasing error the
fastest.

For the simulated data set described in Section 5.2, we trained a 3 layer neural network
with 64 hidden units each and ReLU activation. It achieved near-perfect performance
on the simulated regression task, explaining over 99% of variance in the label. For each
progressive ablation of an interaction, we retrained the network 5 times and re-evaluated
performance. We then plotted the mean and standard deviation of performance on a held-
out set, as recommended by the original paper (Hooker et al., 2019). In Section 5.5, we
showed the results for gtanhsum(xi, xj) = tanh(xi + xj). We show results for these four
additional interaction types:

• gcossum(xi, xj) = cos(xi + xj)

• gmultiply(xi, xj) = xi ∗ xj

• gmaximum(xi, xj) = max(xi, xj)

• gminimum(xi, xj) = min(xi, xj)

The results, in Figure 7 and Figure 8, show that our method consistently outperforms
all other methods except the Monte Carlo estimation of the Shapley Interaction Index,
which performs as well as our method. As discussed in Section 5.1, our method is much
more computationally tractable than the Shapley Interaction Index, even using Monte Carlo
estimation. We also observe that Neural Interaction Detection (Tsang et al., 2017) is not
a local interaction method; rather, it detects interactions globally. To compare with it, we
simply ablate the top-ranked interaction globally in all samples.

B.4.2 Impact of baseline

To demonstrate the impact of baseline selection on interaction detection, we re-ran our
benchmark for interaction detection using four different choices of baseline. The first single
baseline, called “min,” sets each element in the baseline vector to its minimum observed
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Figure 7: Additional comparisons with heuristic methods on known simulated interactions.
The charts plot the mean and standard deviation across 5 re-trainings of the
model as a function of ablated interactions. Our method (in blue) outperforms
all existing heuristic methods on all interaction types.
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Figure 8: Additional comparisons with Shapley value-based methods on known simulated
interactions (Top Left: cossum, Top Right: multiplicative, Bottom Left: maxi-
mum, Bottom Right: minimum). The charts plot the mean and standard devia-
tion across 5 re-trainings of the model as a function of ablated interactions. Our
method (in blue) performs comparably to the Shapley value-based methods on
all interaction types but is significantly more computationally efficient.
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Figure 9: Using one of our synthetic data sets (with pairwise multiplicative interaction
label), we demonstrate how for certain tasks, the choice of baseline can impact
the quality of interaction detection. Both methods that take an expectation over
distributions of baselines outperform single baseline methods, while using the
training set as the distribution of baselines outperforms sampling baselines from
the product of uniform distributions over the range of each individual feature.

value from the training data. It is similar to using the black image in image attribution.
The second, “uniform,” is a single randomly selected baseline from the product of uniform
distributions ranging from the minimum to maximum observed values of each feature for
the training data. The third baseline is a random sample (expected hessians) over baselines
drawn from the product of uniform distributions mentioned above. The fourth is a random
sample over baselines drawn from the training distribution (the approach we defined in
Section 2.1). In Figure 9 we note that (1) both approaches that took an expectation over
multiple baselines outperformed the single baseline options, and (2) that sampling base-
lines from the training data outperformed sampling baselines from the product of uniform
distributions covering the feature ranges.

B.4.3 Sanity Checks

To ensure that our interaction attributions were sensitive to network and data randomiza-
tion, we tested our approach using the “sanity checks” proposed in Adebayo et al. (2018).
For this experiment, we used a data set of synthetic features, which consisted of five 0-mean
unit-variance independent Gaussian random variables. The synthetic label was the sum of
each of the ten possible pairwise multiplicative interactions between features with coeffi-
cients ranging in magnitude from 10 to 1. For our model, we used a neural network with two
hidden layers and Tanh non-linearities until convergence (validation set > R2 : 0.99). We
next fit a network and found the interactions using Integrated Hessians. We then compared
the rank correlation of these interactions with the interactions attained from explaining
(1) a network with randomly initialized weights and (2) a network trained to convergence
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on the training set on data where labels were shuffled at random (but the features were
the same). In both settings, we found that the Spearman correlation between the true and
randomized interactions was 0. This indicates that our method passed the sanity checks in
Adebayo et al. (2018).

Appendix C. Effects of Smoothing ReLU Networks

C.1 Proof of Theorem 1

Theorem 1 For a one-layer neural network with softplusβ non-linearity, fβ(x) =
softplusβ(wTx), and d input features, we can bound the number of interpolation points k

needed to approximate the Integrated Hessians to a given error tolerance ε by k ≤ O(dβ
2

ε ).
Proof As pointed out in Sundararajan et al. (2017) and Sturmfels et al. (2020), com-
pleteness can be used to assess the convergence of the approximation. We first show that
decreasing β improves convergence for Integrated Gradients. To accurately calculate the
Integrated Gradients value Φ for a feature i, we need to bound the error between the
approximate computation and exact value. The exact value is given as:

Φi(θ, x, x
′) = (xi − x′i)×

∫ 1

α=0

∂f(x′(1− α) + xα)

∂xi
dα. (36)

To simplify notation, we can define the partial derivative that we want to integrate over
in the ith coordinate as gi(x) = ∂F (x)

∂xi
:

Φi(θ, x, x
′) = (xi − x′i)×

∫ 1

α=0
gi(x

′α+ x(1− α))dα. (37)

Since the single-layer neural network with SoftPlus activation is monotonic along the
path, the error in the approximate integral can be lower bounded by the left Riemann sum
Lk:

Lk =
‖x− x′‖

k

k−1∑
i=0

gi(x
′ +

i

k
(x− x′)) ≤

∫ 1

α=0
gi(x

′α+ x(1− α))dα (38)

and can likewise be upper-bounded by the right Riemann sum Rk:∫ 1

α=0
gi(x

′α+ x(1− α))dα ≤ Rk =
‖x− x′‖

k

k∑
i=1

gi(x
′ +

i

k
(x− x′)). (39)

We can then bound the magnitude of the error between the Riemann sum and the true
integral by the difference between the right and left sums:

ε ≤ |Rk − Lk| =
‖x− x′‖2

k
|gi(x)− gi(x′)|. (40)

By the mean value theorem, we know that for some η ∈ [0, 1] and z = x′ + η(x − x′),
gi(x)− gi(x′) = ∇xgi(z)>(x− x′). Therefore:

ε ≤ ‖x− x
′‖

k
∇xgi(z)>(x− x′). (41)

28



Explaining Explanations

Rewriting in terms of the original function, we have:

ε ≤ ‖x− x
′‖

k

d∑
j=0

(
∂2f(z)

∂xixj
(xj − x′j)

)
. (42)

We can then consider the gradient vector of gi(x):

∇xgi(x) =

[
βw0e

βwT x

(eβwT x + 1)2
,
βw1e

βwT x

(eβwT x + 1)2
, · · ·

]
(43)

where each coordinate is maximized at the zeros input vector and takes a maximum value
of βwi/4. We can therefore bound the error in convergence as:

ε ≤ ‖x− x
′‖

k

d∑
j=0

(
β‖w‖∞

4
(xj − x′j)

)
. (44)

Ignoring the dependency on path length and the magnitude of the weights of the neural
network, we see that:

k ≤ O
(
dβ

ε

)
. (45)

This demonstrates that the number of interpolation points k necessary to achieve a set error
rate ε decreases as the activation function is smoothed (the value of β decreases). While
this proof bounds the error in the approximation of the integral for a single feature, we get
the error in completeness by multiplying by an additional factor of d features.

We can extend the same proof to Integrated Hessians values. We first consider the error
for estimating off-diagonal terms Γi,j , i 6= j. The true value we are trying to approximate
is given as:

Γij = (xi − x′i)(xj − x′j)×
∫
αβ

∂2f(x′ + αβ(x− x′))
∂xi∂xj

dαdβ. (46)

For simplicity of notation, we can say hij(x) = ∂2F (x)
∂xi∂xj

. Assuming that we are integrating

from the all-zeros baseline (as suggested in Sundararajan et al. (2017)), since hij(x) = is
monotonic on either interval from the 0 baseline, we can again bound the error in the double
integral by the magnitude of the difference in the left and right Riemann sums:

ε ≤
∣∣∣∣‖x− x′‖22k

k∑
j=1

k∑
i=1

hij(x
′ +

ij

k
(x− x′))− ‖x− x

′‖22
k2

k−1∑
j=0

k−1∑
i=0

hij(x
′ +

ij

k
(x− x′))

∣∣∣∣, (47)

ε ≤ ‖x− x
′‖22

k

∣∣∣∣(hij(x) + 2
k−1∑
i=1

hij(x
′ +

i√
k

(x− x′))
)
−
(
hij(x

′) + 2

k−1∑
i=1

hij(x
′)
)∣∣∣∣. (48)

29



Janizek, Sturmfels, and Lee

We can then use monotonicity over the interval to say that hij(x
′ + i√

k
(x − x′)) < hij(x),

which gives us:

ε ≤ (2k − 1)‖x− x′‖22
k

∣∣∣∣hij(x)− hij(x′)
∣∣∣∣. (49)

By the mean value theorem, we know that for some β ∈ [0, 1], hij(x)−hij(x′) = ∇xhij(β)>(x−
x′). Substituting gives us:

ε ≤ (2k − 1)‖x− x′‖22
k

∇xhij(β)>(x− x′). (50)

We can then consider the elements of the gradient vector:

∇xhij(x) =

[
−
β2wiwjw1e

βwT x
(
eβw

T x − 1
)

(eβwT x + 1)3
,−

β2wiwjw2e
βwT x

(
eβw

T x − 1
)

(eβwT x + 1)3
, · · ·

]
. (51)

For the univariate version of each coordinate, we can maximize the function by taking
the derivative with respect to x and setting it equal to 0:

d

dx

(
−
β2eβx

(
eβx − 1

)
(eβx + 1)3

)
=
β3eβx(−4eβx + e2βx + 1)

(eβx + 1)4
= 0. (52)

We can see that this equation holds only when (−4eβx + e2βx + 1) = 0, and we can solve
it by finding the roots of this quadratic equation, which occur when x = 1

β log(2 ±
√

3).
When we plug that back in, we find the absolute value of the function in that coordinate

takes a maximum value of β2

6
√
3
. Therefore, for a given set of fixed network weights, we

observe that the coordinate-wise maximum magnitude of ∇xhij ,∝ β2 and that the number
of interpolation points necessary to reach a desired level of error in approximating the double
integral decreases as β is decreased. Again ignoring the fixed weights and path length, the
number of interpolation points necessary is bounded by

k ≤ O
(
dβ2

k

)
. (53)

For the i = j terms (main effect terms), the error will have another additive factor of
β, since main effect has an additional term equal to:

(xi − x′i)
∫ 1

β=0

∫ 1

α=0

∂f(x′ + αβ(x− x′))
∂xi

dαdβ. (54)

When we bound the error in this approximate integral by the difference between the
double left sum and double right sum, we find that:

ε ≤ (2k − 1)‖x− x′‖22
k

∣∣gi(x)− gi(x′)
∣∣. (55)

Following the exact same steps as in Equation 40 through Equation 44, we can then show
the bound on the error of the on-diagonal terms will have an additional term that is ∝ β.
Due to the axiom of interaction completeness, the error bound of the entire convergence can
be obtained by summing all individual terms, incurring another factor of d2 in the bound.
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Figure 10: 5-Layer Network Results. Interaction completeness error (difference between
model output and sum of Integrated Hessians values) decreases more quickly
with the number of interpolation points as the β parameter for the SoftPlus
activation function is decreased (as the function is smoothed). Results are av-
eraged over 10 samples with 100 features for a neural network with 5 hidden
layers of 50 nodes each.

C.2 SoftPlus Activation Empirically Improves Convergence

In addition to theoretically analyzing the effects of smoothing the activation functions of
a single-layer neural network on the convergence of the approximate values of Integrated
Gradients and Integrated Hessians, we wanted to empirically analyze the same phenomenon
in deeper networks. We first created two networks: one with 5 hidden layers of 50 nodes,
and a second with 10 hidden layers of 50 nodes. We then randomly initialized these networks
using the Xavier Uniform intialization scheme (Glorot and Bengio, 2010). We created 10
samples to explain, each with 100 features drawn at random from the standard normal
distribution. To evaluate the convergence of our approximate Integrated Hessians values,
we plotted the interaction completeness error (the difference between model output and the
sum of Integrated Hessians values) as a fraction of the magnitude of the function output.
As we decreased the value of β, we smoothed the activations. We observed that the number
of interpolations required to converge decreased (see Figure 10 and Figure 11). Note that
the randomly initialized weights of each network were held constant, and only the value of
β in the activation function changed.
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Figure 11: 10-Layer Network Results. Decreasing β has an even more dramatic effect on
convergence when the network is deeper than in the 5-layer case. Again, this
result shows that the interaction completeness error decreases more quickly with
the number of interpolation points as the activation function is smoothed. Re-
sults are averaged over 10 samples with 100 features for a neural network with
10 hidden layers of 50 nodes each.
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Appendix D. Details on the Sentiment Analysis Task

D.1 Fine-Tuning DistilBERT

As mentioned in Section 6.1, we downloaded pre-trained weights for DistilBERT, a pre-
trained language model introduced in Sanh et al. (2019), from the HuggingFace Transform-
ers library (Wolf et al., 2019). We fine-tuned the model on the Stanford Sentiment Treebank
data set introduced by Socher et al. (2013). We fine-tuned for 3 epochs using a batch size of
32 and a learning rate of 0.00003. We used a a max sequence length of 128 tokens, and the
Adam algorithm for optimization (Kingma and Ba, 2014). We tokenize using the Hugging-
Face uncased tokenizer. We did not search for these hyper-parameters; rather, they were
the defaults presented for fine-tuning in the HuggingFace repository. We found that they
worked adequately for our purposes, so we did not attempt to search through additional
hyperparameters.

D.2 Training a CNN

The convolutional neural network we used for comparison in Section 6.1 was trained from
scratch on the same data set. We randomly initialized 32-dimensional embeddings and used
a max sequence length of 52. First, we applied dropout to the embeddings, with a dropout
rate of 0.5. The network itself was composed of 1D convolutions with 32 filters of size 3
and 32 filters of size 8. Each filter size was applied separately to the embedding layer, after
which max pooling with a stride of 2 was applied; the output of both convolutions was then
concatenated and fed through a dropout layer, with a dropout rate of 0.5 during training.
A hidden layer of size 50 followed the dropout, finally followed by a linear layer generating
a scalar prediction to which the sigmoid function was applied.

We trained with a batch size of 128 for 2 epochs and used a learning rate of 0.001.
We optimized using the Adam algorithm with the default hyper-parameters (Kingma and
Ba, 2014). Since this model was not pre-trained on a large language corpus and lacks the
expressive power of a deep transformer, it cannot capture patterns like negation that a
fine-tuned DistilBERT can.

D.3 Generating Attributions and Interactions

To generate attributions and interactions, we used Integrated Gradients and Integrated
Hessians with the zero-embedding baselinne, i.e., the embedding produced by the all zeros
vector, which normally encodes the padding token. Because embedding layers are not
differentiable, we generated attributions and interactions to the word embeddings and then
summed over the embedding dimension to get word-level attributions and interactions, as
done in Sundararajan et al. (2017). When computing attributions and interactions, we
used 256 background samples. Because DistilBERT uses the GeLU activation function
(Ramachandran et al., 2017), which has continuous first and second partial derivatives,
there was no need to use the SoftPlus replacement. When we plotted interactions, we
avoided plotting the main-effect terms in order to better visualize the interactions between
words.
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D.4 Additional Examples of Interactions

Here, we include additional examples of interactions learned on the sentiment analysis task.
First, we expand upon the idea of saturation in natural language, displayed in Figure
12. We display interactions learned by a fine-tuned DistilBERT on the following phrases:
“a bad movie” (negative with 0.9981 confidence), “a bad, terrible movie” (negative with
0.9983 confidence), “a bad, terrible, awful movie” (negative with 0.9984 confidence), and
“a bad, terrible, awful, horrible movie” (negative with 0.9984 confidence). The confidence
of the network saturates: a network output can get only so negative before it begins to
flatten. However, the number of negative adjectives in the sentence increases. This means
a sensible network would spread the same amount of credit (because the attributions sum
to the saturated output) across a larger number of negative words, which is exactly what
DistilBERT does. However, each word then gets less negative attribution than it would if
it were alone. Thus, negative words have positive interaction effects, which is exactly what
we see from the figure.

In Figure 13, we show another example of the full interaction matrix on a sentence from
the validation set. In Figure 14, we present an example of how explaining the importance
of a particular word can indicate whether that word is important because of its main effect
or because of its surrounding context. We show additional examples from the validation
set in Figures 15, 16, 17, 18, 19. Note that while some interactions make intuitive sense to
humans (“better suited” being negative or “good script” being positive), many others are
less intuitive. These interactions could indicate that the Stanford Sentiment Treebank data
set does not fully capture the expressive power of language (e.g., it does not have enough
samples to fully represent all possible interactions in language), or they could indicate that
the model has learned higher order effects that cannot be explained by pairwise interactions
alone.

Appendix E. Additional Experiments

E.1 Heart Disease Prediction

We aggregated interactions learned from many samples in a clinical data set and used them
to reveal global patterns. We examined the Cleveland heart disease data set (Detrano
et al., 1989; Das et al., 2009). After preprocessing, the data set contained 298 patients
with 13 associated features, including demographic information like age and gender and
clinical measurements such as systolic blood pressure and serum cholesterol. The task was
to predict whether a patient had coronary artery disease. The list of features, which we
reproduce here, is from Detrano et al. (1989), the original paper introducing the data set:

1. Age of patient (mean: 54.5 years ± standard deviation: 9.0)

2. Gender (202 male, 96 female)

3. Resting systolic blood pressure (131.6 mm Hg ± 17.7)

4. Cholesterol (246.9 mg/dl ± 51.9)

5. Whether or not a patient’s fasting blood sugar was above 120 mg/dl (44 yes)
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Figure 12: The effects of increasing saturation. As we add more negative adjectives to
describe the word “movie,” they interact increasingly positively even though
they interact negatively with the word they describe. This is because each
individual negative adjective has less impact on the overall negativity of the
sentence the more negative adjectives there are.

6. Maximum heart rate achieved by exercise (149.5 bpm ± 23.0)

7. Whether or not a patient has exercise-induced angina (98 yes)

8. Excercise-induced ST-segment depression (1.05 mm ± 1.16)

9. Number of major vessels appearing to contain calcium as revealed by cinefluoroscopy
(175 patients with 0, 65 with 1, 38 with 2, 20 with 3)

10. Type of pain a patient experienced if any (49 experienced typical anginal pain, 84
experienced atypical anginal pain, 23 experienced non-anginal pain and 142 patients
experienced no chest pain)

11. Slope of peak exercise ST segment (21 patients had upsloping segments, 138 had flat
segments, 139 had downsloping segments)

12. Whether or not a patient had thallium defects as revealed by scintigraphy (2 patients
with no information available, 18 with fixed defects, 115 with reversible defects and
163 with no defects)

13. Classification of resting electrocardiogram (146 with normal resting ecg, 148 with an
ST-T wave abnormality, and 4 with probable or definite left centricular hypertrophy)
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Figure 13: An example from the Stanford Sentiment Analysis Treebank validation set. In-
teractions highlight intuitive patterns in text, such as phrases like “beautifully
observed” and “miraculously unsentimental” being strongly positive interac-
tions.

zhang . . . has done an amazing job of getting realistic performances from his mainly nonprofessional cast .

zhang . . . has done an amazing job of getting realistic performances from his mainly cast .nonprofessional
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Word-level attributions:

Explaining the importance of "nonprofessional":

Figure 14: An example from the Stanford Sentiment Analysis Treebank validation set. This
example shows that the word “nonprofessional” has a main effect that is neg-
ative, but the surrounding context outweighs the main effect and makes the
overall attribution positive.
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Figure 15: An example from the Stanford Sentiment Analysis Treebank validation set. This
example highlights the phrase “better suited” being strongly negative, which is
very intuitive. However, some of the other interactions are slightly less intuitive
and may indicate lack of training data or higher order interactions beyond word
pairs.

We split the data into 238 patients for training (of which 109 had coronary artery
disease) and 60 for testing (of which 28 have coronary artery disease). We used a two-
layer neural network with 128 and 64 hidden units, respectively, with SoftPlus activation
after each layer. We optimized using gradient descent (processing the entire training set
in a single batch) with an initial learning rate of 0.1 that decays exponentially with a rate
0.99 after each epoch. We used nesterov momentum with β = 0.9 (Sutskever et al., 2013).
After training for 200 epochs, the network achieved a held-out accuracy of 0.8667, with a
0.8214 true positive rate and a 0.9062 true negative rate. Note that the hyper-parameters
chosen here were not carefully tuned on a validation set - they simply seemed to converge
to a reasonable performance on the training set. Our focus is not making state-of-the-
art predictions or comparing model performance, but rather interpreting the patterns a
reasonable model learns.

To generate attributions and interactions for this data set, we used Expected Gradients
and Expected Hessians, with the training set forming the background distribution. We used
200 samples to compute both attributions and interactions, although we note this number
is probably larger than necessary but was easy to compute due to the data set’s small size.

Figure 20 shows which features were most important for predicting heart disease ag-
gregated over the entire data set, as well as the trend of importance values. Interestingly,
the model learns some strangely unintuitive trends: if a patient did not experience chest
pain, they were more likely to have heart disease than if they experienced anginal chest
pain. This could indicate problems with the way certain features were encoded, or per-
haps data set bias. Figure 21 demonstrates an interaction learned by the network between
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Figure 16: Another example from the Stanford Sentiment Analysis Treebank validation set.
Notice how the strongest interact pairs may not necessarily be adjacent words,
e.g., “artfully” and “technical.”
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Figure 17: An example from the Stanford Sentiment Analysis Treebank validation set. In-
terestingly, the phrase “a good” has a negative interaction. This may indicate
saturation effects, higher order effects, or that the model has simply learned an
unintuitive pattern.
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Figure 18: An example from the Stanford Sentiment Analysis Treebank validation set.
This example shows some very intuitive negative interactions among the phrase
“there’s little to love”. Interestingly, “this english” has a positive interaction:
perhaps the data set has a bias for English movies?
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Figure 19: An example from the Stanford Sentiment Analysis Treebank validation set. This
also shows intuitive patterns, e.g., “quite compelling” being strongly positive.

maximum heart rate achieved and gender, and Figure 22 demonstrates an interaction be-
tween exercise-induced ST-segment depression and the number of major vessels appearing
to contain calcium.

In Figure 23, we examine interactions with a feature describing the number of major
coronary arteries with calcium accumulation (0 to 3), as determined by cardiac cinefluo-
roscopy (Detrano et al., 1986). Previous research has shown that this technique is a reliable
way to gauge calcium build-up in major blood vessels, and it serves as a strong predictor
of coronary artery disease (Detrano et al., 1986; Bartel et al., 1974; Liu et al., 2015). Our
model correctly learned that more coronary arteries with evidence of calcification indicate
increased risk of disease. Additionally, Integrated Hessians reveals that our model learns
a negative interaction between the number of coronary arteries with calcium accumulation
and female gender. This supports the well-known phenomenon of under-recognition of heart
disease in women – at the same levels of cardiac risk factors, women are less likely to have
clinically manifest coronary artery disease (Maas and Appelman, 2010).

E.2 Pulsar Star Prediction

We used a physics data set to confirm that a model learned a global pattern that was
visible in the training data. We utilized the HRTU2 data set, curated by Lyon et al.
(2016) and originally gathered by Keith et al. (2010). The task was to predict whether
or not a particular signal measured from a radio telescope was a pulsar star or generated
from radio frequency interference (e.g. background noise). The features included statistical
descriptors of measurements made from the radio telescope. The data set contained 16,259
examples generated through radio frequency interference and 1,639 examples that were
pulsars. The data set had 4 statistical descriptors — mean, standard deviation, skewness
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Figure 20: A summary of the most important features for predicting heart disease. A posi-
tive attribution indicates increased risk of heart disease (negative value indicates
decreased risk of heart disease). The features are ordered by largest mean ab-
solute magnitude over the data set. For binary features, high (yellow) indicates
true while low (green) indicates false. For example, for the feature “experienced
atypical angina,” yellow means the patient did experience atypical angina, and
green means the patient did not.

Figure 21: An interaction learned by the model between maximum achieved heart rate
during exercise and the gender of the patient. In general, achieving a higher
heart rate during exercise indicated a lower risk of heart disease, but the model
learns that this pattern is stronger for men than for women.
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Figure 22: An interaction learned between ST-segment depression and the number of major
vessels appearing to contain calcium. The interaction seems to indicate that
if a patient has many vessels appearing to contain calcium, then st-segment
depression is less important toward driving risk, probably because the number
of major vessels containing calcium becomes the main risk driver.

Figure 23: Left: Expected Gradients feature importance of the number of major vessels
with accumulation of calcium as indicated by cardiac cinefluoroscopy. More ves-
sels with calcium build-up indicated increased risk. Right: Expected Hessians
feature interactions between patient gender and the number of major vessels con-
taining calcium. When the Expected Hessians interactions are aggregated across
the data set, they reveal that our model has learned that women with calcium
deposition in one coronary artery are less likely than men to be diagnosed with
coronary artery disease.
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and kurtosis — of two measurements relating to pulsar stars: the integrated pulse profile (IP)
and the dispersion-measure signal-to-noise ratio curve (DM-SNR), for a total of 8 features.
The integrated pulse profile measures how much signal the supposed pulsar star emits as
a function of the phase of the pulsar: as pulsars rotate, they emit radiation from their
magnetic poles, which periodically sweeps over the earth. We can measure the radiation
over time using a radio telescope and aggregating measurements over the phase to get the
IP. Signals that are pulsar stars should in theory have stronger, more peaked integrated
pulse profiles than those generated from radio frequency interference. The DM-SNR curve
measures the degree to which phase correction changes the signal-to-noise ratio in the
measured signal. Since pulsars are far away, their radio emissions get dispersed as they
travel from the star to earth: low frequencies get dispersed more than high frequencies
(e.g., they arrive later). Phase correction attempts to re-sync the frequencies; however, no
amount of phase correction should help peak a signal if the signal was generated from radio
frequency interference rather than a legitimate pulsar.

On this task, we used a two-layer neural network with 32 hidden units in both layers and
the SoftPlus activation function after each layer. We optimized using stochastic gradient
descent with a batch size of 256. We used an initial learning rate of 0.1, which decays with
a rate of 0.96 every batch, and nesterov momentum with β = 0.9 (Sutskever et al., 2013).
We trained for 10 epochs and used a class-weight ratio of 1:3 negative to positive to combat
the imbalance in the training data set. Again, we note that these hyper-parameters are not
necessarily optimal but were simply chosen because they produced reasonable convergence
on the training set. We split the data into 14,318 training examples (1,365 are pulsars) and
3,580 testing examples (274 are pulsars) and achieved a held out test accuracy of 0.98 (0.86
TPR and 0.99 TNR).

To generate attributions and interactions for this data set, we used Expected Gradients
and Expected Hessians, with the training set forming the background distribution. We
used 200 samples to compute both attributions and interactions, although, as noted in
Appendix E.1, 200 samples was probably larger than necessary. In Figure 24, we examine
the interaction between two key features in the data set: kurtosis of the integrated profile,
which we abbreviate as kurtosis (IP), and standard deviation of the dispersion-measure
signal-to-noise ratio curve, which we abbreviate as standard deviation (DM-SNR). The
bottom of Figure 24 shows that kurtosis (IP) is a highly predictive feature, while standard
deviation (DM-SNR) is less predictive. However, in the range where kurtosis (IP) is roughly
between 0 and 2, standard deviation (DM-SNR) helps distinguish between a concentration
of negative samples at standard deviation (DM-SNR) < 40. We can verify that the model
we trained correctly learns this interaction. By plotting the interaction values learned by
the model against the value of kurtosis (IP), we see a peak positive interaction for points in
the indicated range and with high standard deviation (DM-SNR). Interaction values show
us that the model has successfully learned the expected pattern: that standard deviation
(DM-SNR) has the highest discriminative power when kurtosis (IP) is in the indicated
range.
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Figure 24: Top Left: Attributions to kurtosis (IP) generated by expected gradients. Top
Right: The model learns a peak positive interaction when kurtosis (IP) is in
the range [0, 2]. Bottom: A plot of the training data along the axes of the two
aforementioned features, colored by class label. Although kurtosis (IP) seems to
be the more predictive feature, in the highlighted band the standard deviation
(DM-SNR) provides useful additional information: a larger standard deviation
(DM-SNR) implies a higher likelihood of being a pulsar star.
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Appendix F. Details for Anti-Cancer Drug Combination Response
Prediction

F.1 Data Description

As mentioned in Section 6.2, our data set consisted of 12,362 samples (available from the
CTD2 data portal). Each sample contained the measured response of a 2-drug pair tested
on the cancer cells of a patient (Tyner et al., 2018). The 2-drug combination was described
by both a drug identity indicator and a drug target indicator. For each sample, the drug
identity indicator was a vector xid ∈ R46 where each element represented one of the 46 anti-
cancer drugs present in the data; each element took a value of 0 if the corresponding drug
was not present in the combination and a value of 1 if the corresponding drug was present in
the combination. Therefore, for each sample, xid had 44 elements equal to 0 and 2 elements
equal to 1, the most compact possible representation for the 2-drug combinations. The drug
target indicator was a vector xtarget ∈ R112, where each element represented one of the 112
unique molecular targets of the anti-cancer drugs in the data set. Each entry in this vector
equalled 0 if neither drug targeted the given molecule, equalled 1 if one of the drugs in the
combination targeted the given molecule, and equalled 2 if both drugs targeted the molecule.
The targets were compiled using the information available on DrugBank (Wishart et al.,
2018). The ex vivo samples of each patient’s cancer was described using gene expression
levels for each gene in the transcriptome, as measured by RNA-seq, xRNA ∈ R15377. Before
training, the data was split into two parts – 80% of the samples were used for model training,
and an additional 20% were used as a held-out validation set to determine when the model
had been trained for a sufficient number of epochs.

F.2 RNA-seq Preprocessing

The cancerous cells in each sample were described using RNA-seq data, i.e., measurements
of the expression level of each gene in the sample. We describe here the preprocessing
steps used to remove batch effects while preserving biological signals. We first converted
raw transcript counts to fragments per kilobase of exon model per million mapped reads
(FPKM), a measure known to better reflect the molar amount of each transcript in the
original sample than raw counts. FPKM accounts for this by normalizing the counts for
different genes according to the length of transcript, as well as for the total number of reads
included in the sample (Mortazavi et al., 2008). The equation for FPKM is

FPKM =
Xi × 109

Nli
, (56)

where Xi is the vector containing the number of raw counts for a particular transcript i
across all samples, li is the effective length of that transcript, and N is the total number
of counts. After converting raw counts to FPKM, we opted to consider only the protein-
coding part of the transcriptome by removing all non-protein-coding transcripts from the
data set. Protein-coding transcripts were determined according to the list provided by the
HUGO Gene Nomenclature Committee (https://www.genenames.org/download/statistics-
and-files/). In addition to non-protein-coding transcripts, we also removed any transcript
that was not observed in > 70% of the samples. Transcripts were then log2 transformed and
made 0-mean, unit variance. Finally, the ComBat tool (a robust empirical Bayes regression
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Figure 25: Neural network architecture for anti-cancer drug combination response predic-
tion. We learn an embedding from all RNA-seq gene expression features (xRNA)
to KEGG pathways by sparsely connecting the inputs only to nodes correspond-
ing to the pathways of which they are members. When we calculate feature
attributions and interactions, we attribute to the layer that contains the raw
drug inputs and the learned pathway embeddings (layer boxed with dashed blue
line).

implemented as part of the sva R package) was used to correct for batch effects (Leek and
Storey, 2007).

F.3 Model and Training Description

To model the data, we combined the successful approaches of Preuer et al. (2017) and Hao
et al. (2018). Our network architecture was a simple feed-forward network (Figure 25), as in
Preuer et al. (2017), where there were two hidden layers of 500 and 250 nodes, respectively,
both with Tanh activation. To improve performance and interpretability, we followed Hao
et al. (2018) in learning a pathway-level embedding of the gene expression data. The RNA-
seq data, xRNA ∈ R15377, was sparsely connected to a layer of 1077 nodes, where each node
corresponded to a single pathway from KEGG, BioCarta, or Reactome (Kanehisa et al.,
2002; Nishimura, 2001; Croft et al., 2014). We made this embedding non-linear by following
the sparse connections with a Tanh activation function. The non-linear pathway embeddings
were then concatenated to the drug identity indicators and the drug target indicators, and
these served as inputs to the densely connected layers.We trained the network to optimize
a mean squared error loss function and used the Adam optimizer in PyTorch with default
hyperparameters and a learning rate equal to 10−5 (Kingma and Ba, 2014). We stopped
the training when mean squared error on the held-out validation set failed to improve over
10 epochs, and found that the network reached an optimum at 200 epochs. For easier
calculation and more intuitive attribution, we attributed the model’s output to the layer
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with the pathway embedding and drug inputs rather than to the raw RNA-seq features and
drug inputs (see Figure 25).

For this experiment, we calculated all explanations and interactions using the Integrated
Gradients and Integrated Hessians approach, using the all zeros vector as reference and
k > 256 interpolation points.

F.4 Biological Interaction Calculation

To evaluate how well the interactions detected by Integrated Hessians matched with the
ground truth for biological drug-drug interactions in this data set, we can use additional
single drug response data (that our model was not given access to) in order to calculate
biological synergy. Drug synergy is the degree of extra-additive or sub-additive response
observed when two drugs are combined as compared to the additive response that would be
expected if there were no interaction between the two compounds. The drug response for
a single drug is measured as IC50single, or the dose of that single drug necessary to kill half
of the cells in an ex vivo sample. The drug response for a drug combination is measured
as IC50combination, or the dose of an equimolar combination of two drugs necessary to kill
half of the cells in an ex vivo sample. The drug synergy between two drugs a and b can be
calculated using the CI, or combination index:

CIa,b =
IC50combination

a

IC50singlea

+
IC50combination

b

IC50singleb

. (57)

For CI, a value greater than 1 indicates anti-synergy (negative interaction), while a value
less than 1 indicates synergy (positive interaction). While our model was trained solely to
predict IC50combination, we determined how well the model learned true biological interac-
tions by using the additional single drug response data to calculate synergy for particular
samples. As described in Section 6.2, when we calculated CI values for all samples in which
the combination of Venetoclax and Artemisinin was tested, then binarized the samples into
synergistic and anti-synergistic, we saw that the Integrated Hessians values were higher in
the truly synergistic group than in the truly anti-synergistic group (p = 2.31× 10−4). This
is remarkable given that the model had no access to single drug data whatsoever.
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