
Journal of Machine Learning Research 22 (2021) 1-34 Submitted 10/20; Revised 8/21; Published 9/21

Hamilton–Jacobi Deep Q-Learning for
Deterministic Continuous-Time Systems

with Lipschitz Continuous Controls

Jeongho Kim jhkim206@snu.ac.kr
Institute of New Media and Communications
Seoul National University
Seoul 08826, South Korea

Jaeuk Shin sju5379@snu.ac.kr
Department of Electrical and Computer Engineering
Automation and Systems Research Institute
Seoul National University
Seoul 08826, South Korea

Insoon Yang insoonyang@snu.ac.kr

Department of Electrical and Computer Engineering

Automation and Systems Research Institute

Seoul National University

Seoul 08826, South Korea

Editor: Jan Peters

Abstract

In this paper, we propose Q-learning algorithms for continuous-time deterministic optimal
control problems with Lipschitz continuous controls. A new class of Hamilton–Jacobi–
Bellman (HJB) equations is derived from applying the dynamic programming principle to
continuous-time Q-functions. Our method is based on a novel semi-discrete version of the
HJB equation, which is proposed to design a Q-learning algorithm that uses data collected
in discrete time without discretizing or approximating the system dynamics. We identify
the conditions under which the Q-function estimated by this algorithm converges to the
optimal Q-function. For practical implementation, we propose the Hamilton–Jacobi DQN,
which extends the idea of deep Q-networks (DQN) to our continuous control setting. This
approach does not require actor networks or numerical solutions to optimization problems
for greedy actions since the HJB equation provides a simple characterization of optimal
controls via ordinary differential equations. We empirically demonstrate the performance
of our method through benchmark tasks and high-dimensional linear-quadratic problems.

Keywords: Q-learning, Deep Q-networks, Continuous-time dynamical systems, Optimal
control, Hamilton–Jacobi–Bellman equations

1. Introduction

Model-free reinforcement learning (RL) algorithms provide an effective data-driven solution
to sequential decision-making problems—in particular, to problems in the discrete-time set-
ting (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998; Szepesvari, 2010). Recently,
there has been a growing interest in and demand for applying these techniques to com-

c©2021 Jeongho Kim, Jaeuk Shin, and Insoon Yang.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/20-1235.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/20-1235.html

Kim, Shin and Yang

plex physical control tasks, motivated by robotic and autonomous systems. However, many
physical processes evolve in continuous time, requiring RL methods that can systematically
handle continuous-time dynamical systems. These systems are often described by determin-
istic ordinary differential equations (ODEs). Classical approaches first estimate the model
parameters using system identification techniques and then design a suitable model-based
controller (for example, (Ljung, 1998)). However, we do not often have such a luxury of
having a separate training period for parameter identification, which often requires large-
scale high-resolution data. Furthermore, when the model parameters change over time,
the classical techniques have fundamental limitations in terms of adaptivity. The focus of
this work is to study a control-theoretic model-free RL method that extends the popular
Q-learning (Watkins and Dayan, 1992) and deep Q-networks (DQN) (Mnih et al., 2015) to
the continuous-time deterministic optimal control setting.

One of the most straightforward ways to tackle such continuous-time control problems is
to discretize time, state, and action, and then employ an RL algorithm for discrete Markov
decision processes (MDPs). However, this approach could easily be rendered ineffective
when a fine discretization is used (Doya, 2000). To avoid the explicit discretization of state
and action, several methods have been proposed using function approximators (Gordon,
1995). Among those, algorithms that use deep neural networks as function approxima-
tors provide strong empirical evidence for learning high-performance policies on a range of
benchmark tasks (Todorov et al., 2012; Brockman et al., 2016; Duan et al., 2016; Tassa
et al., 2018). To deal with continuous action spaces, such discrete-time model-free deep
RL methods numerically solve optimization problems for greedy actions (Ryu et al., 2020)
or use parameterized policies and learn the network parameters via policy gradient (Schul-
man et al., 2015, 2017), actor-critic methods (Lillicrap et al., 2015; Mnih et al., 2016;
Haarnoja et al., 2018; Fujimoto et al., 2018; Tessler et al., 2019), or normalized advantage
functions (Gu et al., 2016). However, these algorithms do not exploit the structures and
characteristics of continuous-time system dynamics. Moreover, it is often ignored to analyze
how the size of sampling intervals affects such discrete-time methods.

The literature regarding continuous-time RL is relatively limited; most of them have
tried to avoid explicit discretization using the structural properties of limited classes of sys-
tem dynamics (for example, see (Palanisamy et al., 2015; Bian and Jiang, 2016; Vamvoudakis,
2017; Jiang and Jiang, 2015; Kim and Yang, 2020a; Bhasin et al., 2013; Modares and Lewis,
2014; Vamvoudakis and Lewis, 2010) for linear or control-affine systems, and see (Bradtke
and Duff, 1995) for semi-MDPs with finite state and action spaces). We also refer to (Munos,
2006), where the policy gradient method in continuous time is introduced. However, in this
framework the reward function does not depend on the control signal.

In general continuous-time cases, the dynamic programming equation is expressed as
a Hamilton–Jacobi–Bellman (HJB) equation that provides a sound theoretical framework.
Previous methods use HJB equations for learning the optimal state-value function or its
gradient via convergent discretization (Munos, 2000), barycentric interpolation (Munos and
Moore, 1999), advantage functions (Dayan and Singh, 1996), temporal difference algo-
rithms (Doya, 2000), kernel-based approximations (Ohnishi et al., 2018), adaptive dynamic
programming (Yang et al., 2017), path integrals (Theodorou et al., 2010; Rajagopal et al.,
2017), and neural network approximation (Tassa and Erez, 2007; Lutter et al., 2020).

2

Hamilton–Jacobi Deep Q-Learning for Deterministic Continuous-Time Systems

However, to our knowledge, HJB equations have not been studied to admit Q-functions
(or state-action value functions) as solutions in the previous methods, although there have
been a few attempts to construct variants of Q-functions for continuous-time dynamical sys-
tems. In (Kontoudis and Vamvoudakis, 2019), a Q-function for linear time-invariant systems
is defined as the sum of the optimal state-value function and the Hamiltonian. Another vari-
ant of Q-functions is introduced as the sum of the running cost and the directional derivative
of the state-value function (Mehta and Meyn, 2009), which is then approximated by a pa-
rameterized family of functions. However, the definitions of Q-functions in these works
are different from the standard state-action value function that is defined as the maximum
expected cumulative reward incurred after starting from a particular state with a specific
action. Moreover, they have only used HJB equations for state-value functions, without
introducing HJB equations for the constructed Q-functions. The practical performance of
these methods has been demonstrated only through low-dimensional tasks. More recently,
(Tallec et al., 2019) devises a new method combining advantage updating (Baird, 1994)
and existing off-policy RL algorithms to propose continuous-time RL algorithms that are
robust to time discretization. However, to tackle problems with continuous action spaces,
this method uses actor-critic methods rather than relying solely on state-value functions.

In this work, we consider continuous-time deterministic optimal control problems with
Lipschitz continuous controls in the infinite-horizon discounted setting. We show that the
standard Q-function coincides with the state-value function without any particular con-
straints on control trajectories. This observation motivates us to introduce Lipschitz con-
straints on controls. Applying the dynamic programming principle to the continuous-time
Q-function, we derive a novel class of HJB equations. The HJB equation is shown to admit
a unique viscosity solution, which corresponds to the optimal Q-function. To the best of
our knowledge, this is the first attempt to rigorously characterize the HJB equations for
Q-functions in continuous-time control. The HJB equations provide a simple model-free
characterization of optimal controls via ODEs and a theoretical basis for our Q-learning
method. We propose a new semi-discrete version of the HJB equation to obtain a Q-
learning algorithm that uses sample data collected in discrete time without discretizing or
approximating the continuous-time dynamics. By design, it attains the flexibility to choose
the sampling interval to take into account the features of continuous-time systems, but
without the need for sophisticated ODE discretization methods. We provide a convergence
analysis that suggests a sufficient condition on the sampling interval and stepsizes for the
Q-functions generated by our method to converge to the optimal Q-function. This study
may open a new avenue of research that connects HJB equations and Q-learning domain.

For a practical implementation of our HJB-based Q-learning, we combine it with the idea
of DQN. This new model-free deep RL algorithm, which we call the Hamilton-Jacobi DQN
(HJ DQN), is as simple as DQN but capable of solving continuous-time problems without
discretizing the system dynamics or the action space. Instead of using any parameterized
policy or numerically optimizing the estimated Q-functions to compute greedy actions, HJ
DQN benefits from the simple ODE characterization of optimal controls, which is obtained
in our theoretical analysis of the HJB equations. Thus, our algorithm is computationally
light and easy to implement, thereby requiring less hyperparameter tuning compared to
actor-critic methods for continuous control. We evaluate our algorithm on OpenAI bench-
mark tasks and high-dimensional linear-quadratic (LQ) control problems. The results of

3

Kim, Shin and Yang

our experiments suggest that actor networks in actor-critic methods may be replaced by
the optimal control obtained via our HJB equation.

This paper is significantly expanded from a preliminary conference version (Kim and
Yang, 2020b). A novel semi-discrete HJB equation is proposed and analyzed in this paper
to provide a theoretical basis for our method. A Q-learning algorithm and its DQN vari-
ant are newly designed in a principled manner to use transition data collected in discrete
time with a theoretically consistent target. Furthermore, convergence properties of our Q-
learning method are carefully studied in this paper. This paper also contains the results
of more thorough numerical experiments for several benchmark tasks and high-dimensional
LQ control problems, as well as design evaluations.

The remainder of this paper is organized as follows. In Section 2, we define the Q-
functions for continuous-time optimal control problems with Lipschitz continuous controls
and derive the associated HJB equations. We also characterize optimal control dynamics
via an ODE. In Section 3, we propose a Q-learning method based on the semi-discrete
HJB equation and analyze its convergence properties. In Section 4, we introduce the HJ
DQN algorithm and discuss its features. Section 5 provides the results of our experiments
on benchmark problems as well as LQ control problems. All the mathematical proofs are
contained in Appendix B.

2. Hamilton–Jacobi–Bellman Equations for Q-Functions

Consider a continuous-time dynamical system of the form

ẋ(t) = f(x(t), a(t)), t > 0, (1)

where x(t) ∈ Rn and a(t) ∈ Rm are the system state and the control action, respectively.1

Here, the vector field f : Rn × Rm → Rn is an unknown function. The standard infinite-
horizon discounted optimal control problem can be formulated as

sup
a∈A

Jx(a) :=

∫ ∞
0

e−γtr(x(t), a(t)) dt, (2)

with x(0) = x, where r : Rn × Rm → R is an unknown reward function of interest and
γ > 0 is a discount factor.2 We follow the convention in continuous-time deterministic op-
timal control that considers control trajectory, instead of control policy, as the optimization
variable (Bardi and Capuzzo-Dolcetta, 1997).

The (continuous-time) Q-function of (2) is defined as

Q(x,a) := sup
a∈A

{∫ ∞
0

e−γtr(x(t), a(t)) dt | x(0) = x, a(0) = a

}
, (3)

which represents the maximal reward incurred from time 0 when starting from x(0) = x
with a(0) = a. Suppose for a moment that the set of admissible controls A has no particular
constraints, that is, A :=

{
a : R≥0 → Rm | a measurable

}
. Then, Q(x,a) is reduced to the

1. Here, ẋ denotes dx/dt.
2. Although the focus of this work is deterministic control, one may also consider its stochastic counterpart.

We briefly discuss the extension of our method to the stochastic control setting in Appendix C.

4

Hamilton–Jacobi Deep Q-Learning for Deterministic Continuous-Time Systems

standard optimal value function v(x) := supa∈A
{ ∫∞

0 e−γtr(x(t), a(t)) dt | x(0) = x
}

for all
a ∈ Rm since the action can be switched immediately from a to an optimal control and in
this case a does not affect the total reward or the system trajectory in the continuous-time
setting.

Proposition 1 Suppose that A :=
{
a : R≥0 → Rm | a is measurable

}
. Then, the opti-

mal Q-function (3) corresponds to the optimal value function v for each a ∈ Rm, that is,
Q(x,a) = v(x) for all (x,a) ∈ Rn × Rm.

Thus, if A is chosen as above, the Q-function has no additional interesting property
under the standard choice of A. This observation is consistent with the previously reported
result on the continuous time limit of Q-functions (Baird, 1994; Tallec et al., 2019). Moti-
vated by the observation, we restrict the control a(t) to be a Lipschitz continuous function
in t. Since any Lipschitz continuous function is differentiable almost everywhere, we choose
the set of admissible controls as

A :=
{
a : R≥0 → Rm | a is measurable, |ȧ(t)| ≤ L a.e.

}
,

where | · | denotes the standard Euclidean norm, and L is a fixed constant. From now on,
we will focus on the optimal control problem (2) with Lipschitz continuous controls, and
the corresponding Q-function (3).

Our first step is to study the structural properties of the optimality equation and the
optimal control via dynamic programming. Using the discovered structural properties, a
DQN-like algorithm is then designed to solve the optimal control problem (2) in a model-free
manner.

2.1 Dynamic Programming and HJB Equations

By the dynamic programming principle, we have

Q(x,a) = sup
a∈A

{∫ t+h

t
e−γ(s−t)r(x(s), a(s)) ds

+ e−γh
∫ ∞
t+h

e−γ(s−(t+h))r(x(s), a(s)) ds | x(t) = x, a(t) = a

}
= sup

a∈A

{∫ t+h

t
e−γ(s−t)r(x(s), a(s)) ds+ e−γhQ(x(t+ h), a(t+ h)) | x(t) = x, a(t) = a

}
for any h > 0. Rearranging this equality, we obtain

0 = sup
a∈A

{
1

h

∫ t+h

t
e−γ(s−t)r(x(s), a(s)) ds+

1

h
[Q(x(t+ h), a(t+ h))−Q(x,a)]

+
e−γh − 1

h
Q(x(t+ h), a(t+ h))

∣∣∣ x(t) = x, a(t) = a

}
.

Letting h tend to zero and assuming for a moment that the Q-function is continuously
differentiable, its Taylor expansion yields

γQ(x,a)− sup
b∈Rm,|b|≤L

{∇xQ · f(x,a) +∇aQ · b + r(x,a)} = 0, (4)

5

Kim, Shin and Yang

where the optimization variable b represents ȧ(t), and the constraint |b| ≤ L is due to the
Lipschitz constraint on control trajectories, |ȧ(t)| ≤ L a.e. These two are the distinctive
features of our HJB equation compared to the standard HJB equation in which the op-
timization variable is the action itself, a. Since the terms ∇xQ · f(x,a) and r(x,a) are
independent of b, the supremum in (4) is attained at b? = L ∇aQ

|∇aQ| .
3 Thus, we obtain

γQ(x,a)−∇xQ · f(x,a)− L|∇aQ| − r(x,a) = 0, (5)

which is the HJB equation for the Q-function. However, the Q-function is not continuously
differentiable in general. This motivates us to consider a weak solution of the HJB equation.
Among several types of weak solutions, it is shown in Appendix A that the Q-function
corresponds to the unique viscosity solution (Crandall and Lions, 1983) of the HJB equation
under the following assumption:

Assumption 1 The functions f and r are bounded and Lipschitz continuous, that is, there
exists a constant C such that ‖f‖L∞ + ‖r‖L∞ < C and ‖f‖Lip + ‖r‖Lip < C, where ‖ · ‖Lip
denotes a Lipschitz constant of argument.

2.2 Optimal Controls

In the derivation of the HJB equation above, we deduce that an optimal control a must
satisfy ȧ = L ∇aQ

|∇aQ| when Q is differentiable. Since the Q-function is the unique viscosity so-

lution of our HJB equation, the viscosity solution framework (Bardi and Capuzzo-Dolcetta,
1997) can be used to obtain the following more rigorous characterization of optimal controls
when the Q-function is not differentiable.

Theorem 2 Suppose that Assumption 1 holds. Consider a control trajectory a?(s), s ≥ t,
defined by

ȧ?(s) = L
p2
|p2|

∀p = (p1, p2) ∈ D±Q(x?(s), a?(s)) (6)

for a.e. s ≥ t, and a?(t) = a, where ẋ? = f(x?, a?) for s ≥ t and x?(t) = x.4 As-
sume that the function Q is locally Lipschitz in a neighborhood of (x?(s), a?(s)) and that
D+Q(x?(s), a?(s)) = ∂Q(x?(s), a?(s)) for a.e. s ≥ t.5 Then, a? is optimal among those in
A such that a(t) = a, that is, it satisfies

a? ∈ arg max
a∈A

{∫ ∞
t

e−γ(s−t)r(x(s), a(s)) ds
∣∣∣ x(t) = x, a(t) = a

}
. (7)

3. Given a vector c ∈ Rm, the optimal solution of maxb∈Rm,|b|≤L c · b is b? = L c
|c| since c · b ≤ |c||b| ≤ L|c|

and the inequalities hold with equality when b = b?.
4. Here, D+Q and D−Q denote the super- and sub-differentials of Q, respectively, and D±Q :=
D+Q ∪ D−Q. The superdifferential and subdifferential are defined as D+Q(x,a) :={

(p1, p2) ∈ Rn+m | lim sup(x′,a′)→(x,a)
Q(x′,a′)−Q(x,a)−(p1,p2)·(x′−x,a′−a)

|(x′,a′)−(x,a)| ≤ 0
}

and D−Q(x,a) :={
(p1, p2) ∈ Rn+m | lim inf(x′,a′)→(x,a)

Q(x′,a′)−Q(x,a)−(p1,p2)·(x′−x,a′−a)
|(x′,a′)−(x,a)| ≥ 0

}
. At a point (x,a) where

Q is differentiable, the super- and sub-differentials are identical to the singleton of the classical derivative
of Q.

5. Here, ∂Q denotes the Clarke’s generalized gradient of Q (see, for example, p. 63 of (Bardi and Capuzzo-
Dolcetta, 1997)). Note that the right-hand side of ODE (6) can be arbitrarily chosen when p2 = 0.

6

Hamilton–Jacobi Deep Q-Learning for Deterministic Continuous-Time Systems

If, in addition,

a ∈ arg max
a′∈Rm

Q(x,a′),

then a? is an optimal control, that is, it satisfies

a? ∈ arg max
a∈A

{∫ ∞
t

e−γ(s−t)r(x(s), a(s)) ds
∣∣∣ x(t) = x

}
.

Note that at a point (x,a) where Q is differentiable, the ODE (6) is simplified to

ȧ? = L ∇aQ(x?,a?)
|∇aQ(x?,a?)| . A useful implication of this theorem is that for any a ∈ Rm, an

optimal control in A such that a(t) = a can be obtained using the ODE (6) with the initial
condition a?(t) = a. Thus, when the control is initialized as an arbitrary value a at arbitrary
time t in Q-learning, we can still use the ODE (6) to obtain an optimal control. Another
important implication of Theorem 2 is that an optimal control can be constructed without
numerically solving any optimization problem. This salient feature assists in the design of
a computationally efficient DQN algorithm for continuous control without involving any
explicit optimization or any actor network.

3. Hamilton–Jacobi Q-Learning

3.1 Semi-Discrete HJB Equations and Asymptotic Consistency

In practice, even though the underlying physical process evolves in continuous time, the
observed data, such as sensor measurements, are collected in discrete (sample) time. To
design a concrete algorithm for learning the Q-function using such discrete-time data in
practical problems, we propose a novel semi-discrete version of the HJB equation (5) without
discretizing or approximating the continuous-time system. Let h > 0 be a fixed sampling
interval, and let B := {b := {bk}∞k=0 | bk ∈ Rm, |bk| ≤ L}, where bk is analogous to ȧ(t) in
the continuous-time case. Given (x,a) ∈ Rn × Rm and a sequence b ∈ B, we let

Qh,b(x,a) := h
∞∑
k=0

r(xk, ak)(1− γh)k,

where {(xk, ak)}∞k=0 is defined by xk+1 = ξ(xk, ak;h) and ak+1 = ak + hbk with (x0, a0) =
(x,a).6 Here, ξ(xk, ak;h) denotes the state of (1) at time t = h with initial state x(0) = xk
and constant action a(t) ≡ ak, t ∈ [0, h). It is worth emphasizing that our semi-discrete
approximation does not approximate the system dynamics and thus is more accurate than
the standard semi-discrete method (Section VI, (Bardi and Capuzzo-Dolcetta, 1997)). The
optimal semi-discrete Q-function Qh,? : Rn × Rm → R is then defined as

Qh,?(x,a) := sup
b∈B

Qh,b(x,a). (8)

Then, Qh,? satisfies a semi-discrete version of the HJB equation (5).

6. The discounting factor (1− γh) is the first-order approximation of exp(−γh) as h→ 0. The validity of
using the first-order approximation is shown in Proposition 4.

7

Kim, Shin and Yang

Proposition 3 Suppose that 0 < h < 1
γ . Then, the function Qh,? is a solution to the

following semi-discrete HJB equation:

Qh,?(x,a) = hr(x,a) + (1− γh) sup
|b|≤L

Qh,?(ξ(x,a;h),a + hb). (9)

Under Assumption 1, Qh,? coincides with the unique solution of the semi-discrete HJB
equation (9). Moreover, the optimal semi-discrete Q-function converges uniformly to its
original counterpart in every compact subset of Rn × Rm.

Proposition 4 Suppose that 0 < h < 1
γ and Assumption 1 holds. Then, the function Qh,?

is the unique solution to the semi-discrete HJB equation (9). Furthermore, we have

lim
h→0

sup
(x,a)∈K,Kcompact

|Qh,?(x,a)−Q(x,a)| = 0.

This proposition justifies the use of the semi-discrete HJB equation for small h. We aim
to estimate the optimal Q-function using sample data collected in discrete time, enjoying
the benefits of both the semi-discrete HJB equation (9) and the original HJB equation (5).
Namely, the semi-discrete version yields to naturally make use of Q-learning and DQN,
and the original version provides an optimal control via (6) without requiring a numerical
solution for any optimization problems or actor networks as we will see in Section 4.

3.2 Convergence Properties

Consider the following model-free update of Q-functions using the semi-discrete HJB equa-
tion (9): In the kth iteration, for each (x,a) we collect data (xk := x, ak := a, rk, xk+1)
and update the Q-function, with learning rate αk, by

Qhk+1(x,a) := (1− αk)Qhk(x,a) + αk

[
hrk + (1− γh) sup

|b|≤L
Qhk(xk+1,a + hb)

]
, (10)

where xk+1 is obtained by running (or simulating) the continuous-time system from xk with
action ak fixed for h period without any approximation, that is, xk+1 = ξ(xk, ak;h), and
rk = r(xk, ak). We refer to this synchronous Q-learning as Hamilton–Jacobi Q-learning (HJ
Q-learning). Note that this method is not practically useful because the update must be
performed for all state-action pairs in the continuous space. In the following section, we
propose a DQN-like algorithm to approximately perform HJ Q-learning by employing deep
neural networks as a function approximator. Before doing so, we identify the conditions
under which the Q-function updated by (10) converges to the optimal semi-discrete Q-
function (8) in L∞.

Theorem 5 Suppose that 0 < h < 1
γ , 0 ≤ αk ≤ 1 and that Assumption 1 holds. If the

sequence {αk}∞k=0 of learning rates satisfies
∑∞

k=0 αk =∞, then

lim
k→∞

‖Qhk −Qh,?‖L∞ = 0.

Finally, by Propositions 4 and Theorem 5, we establish the following convergence result
associating HJ Q-learning (10) with the optimal Q-function in the original continuous-time
setting.

8

Hamilton–Jacobi Deep Q-Learning for Deterministic Continuous-Time Systems

Corollary 1 Suppose that 0 ≤ αk ≤ 1 and that Assumption 1 holds. If the sequence
{αk}∞k=0 of learning rates satisfies

∑∞
k=0 αk = ∞ then, for each 0 < h < 1

γ , there exists

kh ∈ N such that h
∑kh−1

τ=0 ατ →∞ as h→ 0. Moreover, for such a choice of kh, we have

lim
h→0

sup
k≥kh

sup
(x,a)∈K,Kcompact

|Qhk(x,a)−Q(x,a)| = 0.

Note that Corollary 1 provides the double limit of our approximate Q-function as it
takes into account the approximation error caused by the semi-discrete HJB in addition to
the Q-learning update rule. Thus, this result confirms the validity of using our semi-discrete
HJB in Q-learning with transition data sampled in discrete time.

4. Hamilton–Jacobi DQN

The convergence result in the previous section suggests that the optimal Q-function can
be estimated in a model-free manner via the semi-discrete HJB equation. However, as
previously mentioned, it is intractable to directly implement HJ Q-learning (10) over a
continuous state-action space. As a practical function approximator, we employ deep neural
networks. We then propose the Hamilton–Jacobi DQN that approximately performs the
update (10) without discretizing or approximating the continuous-time system. Since our
algorithm has no actor, we only consider a parameterized Q-function Qθ(x,a), where θ is
the parameter vector of the network.

As with DQN, we use a separate target function Qθ− , where the network parameter
vector θ− is updated more slowly than θ. This allows us to update θ by solving a regression
problem with an almost fixed target, resulting in consistent and stable learning (Mnih
et al., 2015). We also use experience replay by storing transition data (xk, ak, rk, xk+1)
in a buffer with fixed capacity and by randomly sampling a mini-batch of transition data
{(xj , aj , rj , xj+1)} to update the target value. This reduces bias by breaking the correlation
between sample data that are sequential states (Mnih et al., 2015).

When setting the target value in DQN, the target Q-function needs to be maximized
over all admissible actions, that is, y−j := hrj + γ′maxaQθ−(xj+1,a), where γ′ := 1 − γh
is the corresponding semi-discrete discount factor. Evaluating the maximum is tractable in
the case of discrete action spaces. However, in our case of continuous action spaces, it is
computationally challenging to maximize the target Q-function with respect to the action
variable. To resolve this issue, we go back to the original HJB equation and use the cor-
responding optimal action in Theorem 2. Specifically, we consider the action dynamics (6)

with bj := L
∇aQθ− (xj ,aj)
|∇aQθ− (xj ,aj)|

fixed over sampling interval h to obtain

aj+1 = aj + hbj := aj + hL
∇aQθ−(xj , aj)

|∇aQθ−(xj , aj)|
.

Using this optimal control action, we can approximate the maximal target Q-function value
as

max
|a−aj |≤hL

Qθ−(xj+1,a) ≈ Qθ−(xj+1, aj + hbj).

This approximation becomes more accurate as h decreases. In particular, the approximation
error has an O(h2) bound, as shown in the following proposition:

9

Kim, Shin and Yang

Algorithm 1: Hamilton–Jacobi DQN

Initialize Q-function Qθ with random weights θ, and target Q-function Qθ− with
weights θ− = θ;
Initialize replay buffer with fixed capacity;
for episode = 1 to M do

Randomly sample initial state-action pair (x0, a0);
for k = 0 to K do

Execute action ak and observe reward rk and the next state xk+1;
Store (xk, ak, rk, xk+1) in buffer;
Sample the random mini-batch {(xj , aj , rj , xj+1)} from buffer;

Set y−j := hrj + (1− γh)Qθ−
(
xj+1, a

′
j

)
∀j where a′j := aj + hL

∇aQθ(xj ,aj)
|∇aQθ(xj ,aj)| ;

Update θ by minimizing
∑

j(y
−
j −Qθ(xj , aj))2;

Update θ− ← (1− α)θ− + αθ for α� 1;

Set the next action as ak+1 := ak + hL ∇aQθ(xk,ak)
|∇aQθ(xk,ak)| + ε, where ε ∼ N(0, σ2Im);

end for
end for

Proposition 6 Suppose that Qθ− is twice continuously differentiable with bounded first and
second derivatives. If ∇aQθ−(xj , aj) 6= 0, we have

lim
h→0

∣∣∣ max
|a−aj |≤hL

Qθ−(xj+1,a)−Qθ−(xj+1, aj + hbj)
∣∣∣ = 0.

Moreover, the difference above is O(h2) as h→ 0.

The major advantage of using the optimal action obtained in the continuous-time case is
to avoid explicitly solving the nonlinear optimization problem max|a−aj |≤hLQθ−(xj+1,a),
which is computationally demanding. With this choice of target Q-function value and the
semi-discrete HJB equation (9), we set the target value as y−j := hrj+(1−γh)Qθ−(xj+1, aj+
hbj). To mitigate the overestimation of Q-functions, we can employ double Q-learning (Van

Hasselt et al., 2016) by simply modifying bj as bj := L
∇aQθ(xj ,aj)
|∇aQθ(xj ,aj)| to use a greedy action

with respect to Qθ instead of Qθ− . In this double Q-learning version, Proposition 6 remains
valid except for the O(h2) convergence rate. The network parameter θ can then be trained
to minimize the loss function

∑
j(y
−
j −Qθ(xj , aj))2. For exploration, we add the additional

Gaussian noise ε ∼ N(0, σ2Im) to generate the next action as ak+1 := ak+hL ∇aQθ(xk,ak)
|∇aQθ(xk,ak)|+

ε. However, one can use other exploration mechanisms such as the solution of a stochastic
differential equation (Tallec et al., 2019). The overall algorithm is presented in Algorithm 1.7

4.1 Discussion

We now discuss a few notable features of HJ DQN with regard to existing works:
No use of parameterized policies. Most model-free deep RL algorithms for contin-

uous control use actor-critic methods (Lillicrap et al., 2015; Haarnoja et al., 2018; Fujimoto

7. When ∇aQθ(xj , aj) = 0,
∇aQθ(xj ,aj)

|∇aQθ(xj ,aj)|
is replaced by an arbitrary vector with norm 1 of the same size.

10

Hamilton–Jacobi Deep Q-Learning for Deterministic Continuous-Time Systems

et al., 2018; Tessler et al., 2019) or policy gradient methods (Schulman et al., 2015; Gu
et al., 2016) to deal with continuous action spaces. In these methods, by parametrizing
policies, the policy improvement step is performed in the space of network weights. By
doing so, they avoid solving possibly complicated optimization problems over the policy or
action spaces. However, these methods are subject to the issue of being stuck at local op-
tima in the policy (parameter) space due to the use of gradient-based algorithms, as pointed
out in the literature regarding policy gradient/search (Kohl and Stone, 2004; Levine and
Koltun, 2013; Fazel et al., 2018) and actor-critic methods (Silver et al., 2014). Moreover, it
is reported that the policy-based methods are sensitive to hyperparameters (Quillen et al.,
2018). Departing from these algorithms, HJ DQN is a value-based method for continuous
control without requiring the use of an actor or a parameterized policy. Previous value-
based methods for continuous control (for example, (Ryu et al., 2020)) have a computational
challenge in finding a greedy action, which requires a solution to a nonlinear program. Our
method avoids numerically optimizing Q-functions over the continuous action space via the
optimal control (6). This is a notable benefit of using the proposed HJB framework.

Continuous-time control. Many existing RL methods for continuous-time dynamical
systems have been designed for linear systems (Palanisamy et al., 2015; Bian and Jiang,
2016; Vamvoudakis, 2017) or control-affine systems (Jiang and Jiang, 2015; Bhasin et al.,
2013; Modares and Lewis, 2014; Vamvoudakis and Lewis, 2010), in which value functions
and optimal policies can be represented in a simple form. For general nonlinear systems,
Hamilton–Jacobi–Bellman equations have been considered as the optimality equations for
state-value functions v(x) (Doya, 2000; Munos, 2000; Dayan and Singh, 1996; Ohnishi et al.,
2018). Unlike these methods, our method uses Q-functions and thus benefits from modern
deep RL techniques developed in the literature on DQN. Moreover, as opposed to discrete-
time RL methods, HJ DQN does not discretize or approximate the system dynamics ẋ =
f(x, a) in its algorithm design. Our theoretical analysis in Section 3.2 suggests a sufficient
condition on the sampling interval h for convergence.

4.2 Smoothing

A potential defect of our Lipschitz constrained control setting is that the rate of change in
action has a constant norm L ∇aQ(x?,a?)

|∇aQ(x?,a?)| . This is also observed in Algorithm 1, where the

action is updated by hL
∇aQθ(xj ,aj)
|∇aQθ(xj ,aj)| . Therefore, the magnitude of fluctuations in action is

always fixed as hL, which may lead to the oscillatory behavior of action. Such oscillatory
behaviors are not uncommon in optimal control (for example, bang-bang solutions). To
alleviate this potential issue, one may introduce an additional smoothing process when up-

dating action. Inspired by (Abu-Khalaf and Lewis, 2005), we modify the term
∇aQθ(xj ,aj)
|∇aQθ(xj ,aj)|

by multiplying a smoothing function. Instead of using hL
∇aQθ(xj ,aj)
|∇aQθ(xj ,aj)| in the update of

action, we suggest the use of

hL
φ(|∇aQθ(xj , aj)|)∇aQθ(xj , aj)

|∇aQθ(xj , aj)|
,

where φ : [0,+∞) → [0, 1] is an increasing function with φ(0) = 0 and limr→∞ φ(r) = 1.
Typical examples of such a function φ include φ(r) = tanh

(
r
L

)
and φ(r) = r

L+r . In-

11

Kim, Shin and Yang

deed, it is straightforward to observe that the value b? := Lφ(|∇aQ|)∇aQ|∇aQ| is the maxi-

mizer of b 7→ ∇aQ · b −
∫ |b|/L
0 φ−1(r)dr. Comparing this with the maximization prob-

lem in the HJB equation (4), the smoothing method can be interpreted as imposing the

penalty −
∫ |b|/L
0 φ−1(r)dr when selecting b. Since b represents the rate of changes in ac-

tions, the penalty discourages undesirable oscillations in action trajectories, as confirmed
in Section 5.3.

5. Experiments

In this section, we present the empirical performance of our method on benchmark tasks as
well as high-dimensional LQ problems. The source code of our HJ DQN implementation is
available online.8

5.1 Actor Networks vs. Optimal Control ODE

We choose deep deterministic policy gradient (DDPG) (Lillicrap et al., 2015) as a baseline
for comparison since it is another variant of DQN for continuous control. DDPG is an
actor-critic method that uses separate actor networks while ours is a valued-based method
that does not use a parameterized policy. Although there are state-of-the-art methods built
upon DDPG, such as TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018), we
focus on the comparison between ours and DDPG to examine whether the role of actor
networks can be replaced by the optimal control characterized through our HJB equation.
The hyperparameters used in the experiments are reported in Appendix D.

We consider continuous control benchmark tasks in OpenAI gym (Brockman et al., 2016)
simulated by MuJoCo engine (Todorov et al., 2012). Figure 1 shows the learning curves
for both methods, each of which is tested with five different random seeds for 1 million
steps. The solid curve represents the average of returns over 20 consecutive evaluations
while the shaded regions represent half a standard deviation of the average evaluation over
five trials. As shown in Figure 1, the performance of our method is comparable to that
of DDPG when the default sampling interval is used. Our method outperforms DDPG
on Walker2d-v2 while the opposite result is observed in the case of HalfCheetah-v2. As
sampling interval h is a hyperparameter of Algorithm 1, we also identify an optimal h for
each task aside from the default sampling interval. When we test the different sampling
interval, we also tune the learning rate α, as suggested in (Tallec et al., 2019).9 This
additional tuning process improves the final performances and learning speed except in the
case of HalfCheetah-v2. Overall, the results indicate that actor networks may be replaced
by the ODE characterization (6) of optimal control obtained using our HJB framework.
Without using actor networks, our method has clear advantages over DDPG in terms of
hyperparameter tuning and computational burden.

Figure 2 shows the action trajectories of HalfCheetah-v2, obtained by HJ DQN and
DDPG. The action trajectories obtained by HJ DQN oscillate less compared to DDPG.
This confirms the fact that oscillations in action are not uncommon in optimal control. In

8. https://github.com/HJDQN/HJQ

9. Precisely, when the sampling interval is multiplied by a constant, the learning rate is also multiplied by
the same constant.

12

https://github.com/HJDQN/HJQ

Hamilton–Jacobi Deep Q-Learning for Deterministic Continuous-Time Systems

0.0 0.2 0.4 0.6 0.8 1.0
steps (×106)

0

500

1000

1500

2000

2500

3000

3500

HJ DQN HJ DQN (h tuned) DDPG

0.0 0.2 0.4 0.6 0.8 1.0
steps (×106)

0

500

1000

1500

2000

2500

av
er

ag
e

re
tu

rn

(a) Hopper-v2

0.0 0.2 0.4 0.6 0.8 1.0
steps (×106)

20

0

20

40

60

80

100

120

140

(b) Swimmer-v2

0.0 0.2 0.4 0.6 0.8 1.0
steps (×106)

0

2000

4000

6000

8000

10000

(c) HalfCheetah-v2

0.0 0.2 0.4 0.6 0.8 1.0
steps (×106)

0

500

1000

1500

2000

2500

3000

3500

(d) Walker2d-v2

Figure 1: Learning curves for OpenAI gym continuous control tasks.

1
0
1

a 0

1
0
1

a 1

1
0
1

a 2

1
0
1

a 3

1
0
1

a 4

0 2 4 6 8 10 12
t

1
0a 5

(a) HJ DQN

1
0
1

a 0

1
0
1

a 1

1
0
1

a 2

1
0
1

a 3

1
0
1

a 4

0 2 4 6 8 10 12
t

1
0
1

a 5

(b) DDPG

Figure 2: Action trajectories of HalfCheetah-v2, obtained by HJ DQN and DDPG.

(a) HJ DQN

(b) DDPG

Figure 3: Rendered frame sequences of length 12 for Hopper-v2, obtained by (a) HJ DQN,
and (b) DDPG. The frames are selected every 20h = 0.16 from t = 3.6.

13

Kim, Shin and Yang

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
steps (×104)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

lo
g(

co
st

 /
co

st
*)

HJ DQN
DDPG

(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
steps (×104)

0

10

20

30

40

lo
g(

co
st

 /
co

st
*)

d=20
d=30
d=50

(b)

Figure 4: Learning curves for the LQ problem: (a) comparing HJ DQN and DDPG; (b) the
effect of problem sizes.

this particular case of HalfCheetah-v2, where DDPG outperforms HJ DQN, we suspect that
fast changes in action may be needed for good performance. Oscillatory actions may be
beneficial for some control tasks. On the other hand, the Lipschitz constraint in HJ DQN
acts as regularizer, preventing radical changes in motion.

We estimated the success rate (that is, the proportion of the episodes where the agent
proceeds until t = 8 without falling down) of the agent controlled by the two methods
on Hopper-v2 by running 5,000 episodes of length T = 8. While only 12.10% of episodes
were successfully solved by DDPG, the success rate of HJ DQN was 60.22% under the
same conditions. Figure 3 presents sample movements of Hopper-v2 obtained by HJ DQN
and DDPG. HJ DQN handled the hopper to successfully move forward, while the hopper
controlled by DDPG fell in the late period of the episode. In this case, the HJ DQN agent
benefited from the regularization induced by the Lipschitz constraint to generate a stable
motion.

5.2 Linear-Quadratic Problems

We now consider an LQ problem with system dynamics

ẋ(t) = Ax(t) +Ba(t), t > 0, x(t), a(t) ∈ Rd,

and reward function (negative cost)

r(x,a) = −(x>Qx + a>Ra),

where Q = Q> � 0 and R = R> � 0 (see, for example, (Anderson and Moore, 2007) for
details about the theory of the classical LQ control). Note that our method solves a problem
different from the classical LQ problem due to the Lipschitz constraint on controls. Thus,
the control learned by our method must be suboptimal.

Each component of the system matrices A ∈ Rd×d and B ∈ Rd×d was generated uni-
formly from [−0.1, 0.1] and [−0.5, 0.5], respectively. The produced matrix A has eigenvalues

14

Hamilton–Jacobi Deep Q-Learning for Deterministic Continuous-Time Systems

0.2 0.4 0.6 0.8 1.0
steps (×106)

0

20

40

60

80

100

120
av

er
ag

e
re

tu
rn

HJ DQN Double HJ DQN

(a) Double Q-learning

0.2 0.4 0.6 0.8 1.0
steps (×106)

20

0

20

40

60

80

100

120

h=0.01
h=0.08

h=0.02
h=0.16

h=0.04

(b) Sampling interval

0.2 0.4 0.6 0.8 1.0
steps (×106)

20

0

20

40

60

80

100

120

L=1
L=20

L=10
L=40

(c) Lipschitz constraint

Figure 5: Results of the ablation study using Swimmer-v2 with respect to (a) double Q-
learning, (b) sampling interval h, and (c) Lipschitz constraint on controls.

with positive real part, and thus the system is unstable. The cost weight matrices are se-
lected as Q = 5I and R = I. The discount factor γ and Lipschitz constant L are set to be
e−γh = 0.99999 and L = 10. We first compared the performance of HJ DQN with DDPG
for the case of d = 20 and reported the results in Figure 4 (a). The learning curves are
plotted in the same manner as Figure 1. The y-axis of each figure represents the log of the
ratio between the actual cost and the optimal cost. Therefore, the curve approaches the
x-axis as the performance improves. These results imply that DDPG is unable to reduce
the cost at all, whereas HJ DQN successfully learns an effective (suboptimal) policy. The
result implies that HJ DQN successfully learns an effective (suboptimal) policy which is
comparable to the DDPG policy, without the aid of a separate actor network. Figure 4 (b)
displays the learning curves for HJ DQN with different system sizes up to 50 dimensions.
Although learning speed is affected by the problem size, HJ DQN successfully solves the
LQ problem with high-dimensional systems. Moreover, it is observed that the standard
deviations over trials are relatively small, and the learning curves have almost no variation
over trials after approximately 104 steps. This result indicates the stability of our method.

5.3 Design Evaluation

We make modifications to HJ DQN to understand the contribution of each component.
Figure 5 presents the results for the following design evaluation experiments.

Double Q-learning. We first modify our algorithm to test whether double Q-learning
contributes to the performance of our algorithm, as in DQN. Specifically, when selecting

actions to update the target value, we instead use bj := L
∇aQθ− (xj ,aj)
|∇aQθ− (xj ,aj)|

to remove the ef-

fects of double Q-learning. Figure 5 (a) shows that double Q-learning improves the final
performance. This observation is consistent with the effect of double Q-learning in DQN.
Moreover, double Q-learning reduces the variance of the average return, indicating its con-
tribution to the stability of our algorithm.

Sampling interval. To understand the effect of sampling interval h, we run our algo-
rithm with multiple values of h. As mentioned before, we also adjust the learning rate α

15

Kim, Shin and Yang

0 2 4 6 8 10
t

1

2

3

4

no
rm

|x(t)|
|a(t)|
|x(t)| (smoothing)
|a(t)| (smoothing)

Figure 6: Effect of smoothing on the 20-dimensional LQ problem.

according to the sampling interval. As shown in Figure 5 (b), the final performance and
learning speed increase as h varies from 0.01 to 0.08 and the final performance decreases as
h varies from 0.08 to 0.16. When h is too small, each episode has too many sampling steps;
thus, the network is trained in a small number of episodes given fixed total steps. This
limits exploration, thereby diminishing the performance of our algorithm. On the other
hand, as Proposition 6 implies, the target error increases with sampling interval h. This
error is dominant in the case of large h. Therefore, there exists an optimal sampling interval
(h = 0.08 in this task) that presents the best performance.

Lipschitz constraint on controls. Recall that admissible controls should satisfy the
constraint |ȧ(t)| ≤ L a.e. The parameter L can be considered either a part of control
problems or a design choice. We consider the latter case and display the effect of L on
the learning curves in Figure 5 (c). The final reward is the lowest in the case of L = 1,
compared to others, because the set of admissible controls is too small to allow rapid changes
in control signals. With large enough L (≥ 10), HJ DQN presents a similar learning speed
and performance. The final performance and learning speed slightly decrease as L varies
from 20 to 40. This results from to too-large variation and frequent switching in action
values, prohibiting a consistent improvement of Q-functions.

Smoothing. Finally, we present the effect of the smoothing process introduced in
Section 4.2. Figure 6 shows |x(t)| and |a(t)| generated by the control learned with and
without smoothing on the 20-dimensional LQ problem. Here, φ(r) = tanh

(
r
L

)
is chosen

as the smoothing function. As expected, with no smoothing process, the action trajectory
shows wobbling oscillations (blue solid line). However, when the smoothing process is
applied, the action trajectory has no such undesirable oscillations and presents a smooth
behavior (red solid line). Regarding |x(t)|, the smoothing process has only a small effect.
Therefore, the smoothing process can eliminate oscillations in action without significantly
affecting the state trajectory.

16

Hamilton–Jacobi Deep Q-Learning for Deterministic Continuous-Time Systems

6. Conclusions

We have presented a new theoretical and algorithmic framework that extends DQN to
continuous-time deterministic optimal control for continuous action space under the Lips-
chitz constraint on controls. A novel class of HJB equations for Q-functions has been derived
and used to construct a Q-learning method for continuous-time control. We have shown the
theoretical convergence properties of this method. For practical implementation, we have
combined the HJB-based method with DQN, resulting in a simple algorithm that solves
continuous-time control problems without an actor network. Benefiting from our theoreti-
cal analysis of the HJB equations, this model-free off-policy algorithm does not require any
numerical optimization for selecting greedy actions. The results of our experiments indicate
that actor networks in DDPG may be replaced by our optimal control simply characterized
via an ODE, while reducing computational effort. Our HJB framework may provide an ex-
citing avenue for future research in continuous-time RL in terms of improving exploration
capabilities with maximum entropy methods and exploiting the benefits of system models
with theoretical guarantees.

Acknowledgments

This work was supported in part by the Creative-Pioneering Researchers Program through
SNU, the National Research Foundation of Korea funded by the MSIT(2020R1C1C1009766),
the Information and Communications Technology Planning and Evaluation (IITP) grant
funded by MSIT(2020-0-00857), and Samsung Electronics (Corresponding author: Insoon
Yang).

Appendix A. Viscosity Solution of the HJB Equations

The Hamilton–Jacobi equation is a partial differential equation of the form

F (z, u(z),∇zu(z)) = 0, z ∈ Rk, (11)

where F : Rk ×R×Rk → R. A function u : Rk → R that solves the HJ equation is called a
(strong) solution. However, such a strong solution exists only in limited cases. To consider
a broad class of HJ equations, it is typical to adopt the concept of weak solutions. Among
these, the viscosity solution is the most relevant to dynamic programming and optimal con-
trol problems (Crandall and Lions, 1983; Bardi and Capuzzo-Dolcetta, 1997). Specifically,
under a technical condition, the viscosity solution is unique and corresponds to the value
function of a continuous-time optimal control problem. In the following definition, C(Rk)
and C1(Rk) denote the set of continuous functions and the set of continuously differentiable
functions, respectively.

Definition 1 A function u ∈ C(Rk) is called the viscosity solution of (11) if it satisfies
the following conditions:

1. For any φ ∈ C1(Rk) such that u− φ attains a local maximum at z0,

F (z0, u(z0),∇zφ(z0)) ≤ 0;

17

Kim, Shin and Yang

2. For any φ ∈ C1(Rk) such that u− φ attains a local minimum at z0,

F (z0, u(z0),∇zφ(z0)) ≥ 0.

Note that the viscosity solution does not need to be differentiable. In our case, the HJB
equation (5)

γQ(x,a)−∇xQ(x,a) · f(x,a)− L|∇aQ(x,a)| − r(x,a) = 0

can be expressed as (11) with

F (z, q,p) = γq − p1 · f(z)− L|p2| − r(z),

where z = (x,a) ∈ Rn × Rm and p = (p1,p2) ∈ Rn × Rm. We can show that the HJB
equation admits a unique viscosity solution, which coincides with the optimal Q-function.

Theorem 7 Suppose that Assumption 1 holds.10 Then, the optimal continuous-time Q-
function is the unique viscosity solution to the HJB equation (5).

Proof First, recall that our control trajectory satisfies the constraint |ȧ| ≤ L. Therefore,
our dynamical system can be written in the following extended form:

ẋ(t) = f(x(t), a(t)), ȧ(t) = b(t), t > 0, |b(t)| ≤ L,

by viewing x(t) and a(t) as state variables. More precisely, the dynamics of the extended
state variable z(t) = (x(t), a(t)) can be written as

ż(t) = G(z(t), b(t)), t > 0, |b(t)| ≤ L, (12)

where G(z, b) = (f(z), b). Applying the dynamic programming principle to the Q-function,
we have

Q(z) = sup
|b(s)|≤L

{∫ t+h

t
e−γ(s−t)r(z(s)) ds+ e−γhQ(z(t+ h)) | z(t) = z

}
.

The remaining proof is almost the same as the proof of Proposition 2.8, Chapter 3 in (Bardi
and Capuzzo-Dolcetta, 1997). However, for the self-completeness of the paper, we provide
a detailed proof. In the following, we show that the Q-function satisfies the two conditions
in Definition 1.

First, let φ ∈ C1(Rn+m) such that Q − φ attains a local maximum at z. Then, there
exists δ > 0 such that Q(z) − Q(z′) ≥ φ(z) − φ(z′) for |z′ − z| < δ. Since f and r are
bounded Lipschitz continuous, there exists h0 > 0, which is independent of b(s), such that
|z(s)−z| ≤ δ, |r(z(s))− r(z)| ≤ C(s− t) and |f(z(s))− f(z)| ≤ C(s− t) for t ≤ s ≤ t+h0,
where z(s) is a solution to (12) for s ≥ t with z(t) = z. Now, the dynamic programming

10. Assumption 1 can be relaxed by using a modulus associated with each function as in Chapter III.1–3 in
(Bardi and Capuzzo-Dolcetta, 1997).

18

Hamilton–Jacobi Deep Q-Learning for Deterministic Continuous-Time Systems

principle for the Q-function implies that, for any 0 < h < h0 and ε > 0, there exists b(s)
with |b(s)| ≤ L such that

Q(z) ≤
∫ t+h

t
e−γ(s−t)r(z(s)) ds+ e−γhQ(z(t+ h)) + hε,

where z(s) is now a solution to (12) with z(t) = z under the particular choice of b. On the
other hand, it follows from our choice of h that∫ t+h

t
e−γ(s−t)r(z(s)) ds =

∫ t+h

t
e−γ(s−t)r(z) ds+ o(h),

which implies that

Q(z) ≤
∫ t+h

t
e−γ(s−t)r(z) ds+ e−γhQ(z(t+ h)) + hε+ o(h).

Therefore, we have

φ(z)− φ(z(t+ h)) ≤ Q(z)−Q(z(t+ h))

≤
∫ t+h

t
e−γ(s−t)r(z) ds+ (e−γh − 1)Q(z(t+ h)) + hε+ o(h).

Since the left-hand side of the inequality above is equal to−
∫ t+h
t

d
dsφ(z(s)) ds = −

∫ t+h
t ∇zφ(z(s))·

G(z(s), b(s)) ds, we obtain that

0 ≤
∫ t+h

t
∇zφ(z(s)) ·G(z(s), b(s)) ds

+

∫ t+h

t
e−γ(s−t)r(z) ds+

(
e−γh − 1

)
Q(z(t+ h)) + hε+ o(h)

≤
∫ t+h

t
(∇xφ(z(s)) · f(z) + L|∇aφ(z(s))|) ds

+

∫ t+h

t
e−γ(s−t)r(z) ds+

(
e−γh − 1

)
Q(z(t+ h)) + hε+ o(h).

By dividing both sides by h and letting h→ 0, we conclude that

∇xφ(z) · f(z) + L|∇aφ(z)|+ r(z)− γQ(z) + ε ≥ 0.

Since ε was arbitrarily chosen, we confirm that the Q-function satisfies the first condition
in Definition 1, that is,

γQ(z)−∇xφ(z) · f(z)− L|∇aφ(z)| − r(z) ≤ 0.

We now consider the second condition. Let φ ∈ C1(Rn+m) such that Q − φ attains
a local minimum at z, that is, there exists δ such that Q(z) − Q(z′) ≤ φ(z) − φ(z′) for
|z′ − z| < δ. Fix an arbitrary b ∈ Rm such that |b| ≤ L and let b(s) ≡ b be a constant

19

Kim, Shin and Yang

function. Let z(s) be a solution to (12) for s ≥ t with z(t) = z under the particular choice
of b(s) ≡ b. Then, for sufficiently small h, |z(t+ h)− z| ≤ δ, and therefore we have

Q(z)−Q(z(t+ h)) ≤ φ(z)− φ(z(t+ h)) = −
∫ t+h

t

d

ds
φ(z(s)) ds

= −
∫ t+h

t
∇zφ(z(s)) ·G(z(s), b) ds.

(13)

On the other hand, the dynamic programming principle yields

Q(z)−Q(z(t+ h)) ≥
∫ t+h

t
e−γ(s−t)r(z(s)) ds+ (e−γh − 1)Q(z(t+ h)). (14)

By (13) and (14), we have

(e−γh − 1)Q(z(t+ h)) +

∫ t+h

t
e−γ(s−t)r(z(s)) ds ≤ −

∫ t+h

t
∇zφ(z(s)) ·G(z(s), b) ds.

Dividing both sides by h and letting h→ 0, we obtain that

−γQ(z) + r(z) ≤ −∇zφ(z) · (f(z), b),

or equivalently
γQ(z)−∇xφ(z) · f(z)−∇aφ(z) · b− r(z) ≥ 0.

Since b was arbitrarily chosen from {b ∈ Rm : |b| ≤ L}, we have

γQ(z)−∇xφ(z) · f(z)− L|∇aφ(z)| − r(z) ≥ 0,

which confirms that the Q-function satisfies the second condition in Definition 1. Therefore,
we conclude that the Q-function is a viscosity solution of the HJB equation (5).

Lastly, the uniqueness of the viscosity solution can be proved by using Theorem 2.12,
Chapter 3 in (Bardi and Capuzzo-Dolcetta, 1997).

Appendix B. Proofs

B.1 Proposition 1

Proof Fix (x,a) ∈ Rn × Rm. Let ε be an arbitrary positive constant. Then, there exists
a ∈ A such that

∫∞
t e−γ(s−t)r(x(s), a(s)) ds < v(x)+ε, where x(s) satisfies (1) with x(t) = x

in the Carathéodory sense: x(s) = x+
∫ s
t f(x(τ), a(τ)) dτ . We now construct a new control

ã ∈ A as ã(s) := a if s = t; ã(s) := a(s) if s > t. Such a modification of controls at a single
point does not affect the trajectory or the total reward. Therefore, we have

v(x) ≤ Q(x,a) ≤
∫ ∞
t

e−γ(s−t)r(x(s), ã(s)) ds < v(x) + ε.

Since ε was arbitrarily chosen, we conclude that v(x) = Q(x,a) for any (x,a) ∈ Rn×Rm.

20

Hamilton–Jacobi Deep Q-Learning for Deterministic Continuous-Time Systems

B.2 Theorem 2

Proof The classical theorem for the necessary and sufficient condition of optimality (for
example, Theorem 2.54, Chapter III in (Bardi and Capuzzo-Dolcetta, 1997)) implies that
a? is optimal among those in A such that a(t) = a if and only if

p1 · f(x?(s), a?(s)) + p2 · ȧ?(s) + r(x?(s), a?(s))

= max
|b|≤L
{p1 · f(x?(s), a?(s)) + p2 · b + r(x?(s), a?(s))}

for all p = (p1, p2) ∈ D±Q(x?(s), a?(s)). This optimality condition can be expressed as the
desired ODE (6). Thus, its solution a? with a?(t) = a satisfies (7).

Suppose now that a ∈ arg maxa′∈Rm Q(x,a′). It follows from the definition of Q that

max
a∈A

{∫ ∞
t

e−γ(s−t)r(x(s), a(s)) ds | x(t) = x

}
= max

a′∈Rm
max
a∈A

{∫ ∞
t

e−γ(s−t)r(x(s), a(s)) ds | x(t) = x, a(t) = a′
}

= max
a′∈Rm

Q(x,a′) = Q(x,a) = max
a∈A

{∫ ∞
t

e−γ(s−t)r(x(s), a(s))ds | x(t) = x, a(t) = a

}
=

∫ ∞
t

e−γ(s−t)r(x?(s), a?(s)) ds.

Therefore, a? is an optimal control.

B.3 Proposition 3

Proof We first show that Qh,? satisfies (9). Fix an arbitrary sequence b := {bn}∞n=0 ∈ B.
It follows from the definition of Qh,b that

Qh,b(x,a) = hr(x,a) + (1− γh)Qh,b̃(ξ(x,a;h),a + hb0).

where b̃ := {b1, b2, . . .} ∈ B. Since Qh,b̃(ξ(x,a;h),a + hb0) ≤ Qh,?(ξ(x,a;h),a + hb0), we
have

Qh,b(x,a) ≤ hr(x,a) + (1− γh)Qh,?(ξ(x,a;h),a + hb0)

≤ hr(x,a) + (1− γh) sup
|b|≤L

{
Qh,?(ξ(x,a;h),a + hb)

}
.

Taking supremum of both sides with respect to b ∈ B yields

Qh,?(x,a) ≤ hr(x,a) + (1− γh) sup
|b|≤L

{
Qh,?(ξ(x,a;h),a + hb)

}
. (15)

To obtain the other direction of inequality, we fix an arbitrary b ∈ Rm such that |b| ≤ L.
Let x′ := ξ(x,a;h) and a′ := a + hb. Fix an arbitrary ε > 0 and choose a sequence
c := {cn}∞n=0 ∈ B such that

Qh,?(x′,a′) ≤ Qh,c(x′,a′) + ε.

21

Kim, Shin and Yang

We now construct a new sequence c̃ := {b, c0, c1, . . .} ∈ B. Then,

Qh,c̃(x,a) = hr(x,a) + (1− γh)Qh,c(x′,a′) ≥ hr(x,a) + (1− γh)(Qh,?(x′,a′)− ε),

which implies that

Qh,?(x,a) ≥ Qh,c̃(x,a) ≥ hr(x,a) + (1− γh)(Qh,?(x′,a′)− ε).

Taking the supremum of both sides with respect to b ∈ Rm such that |b| ≤ L yields

Qh,?(x,a) ≥ hr(x,a)− (1− γh)ε+ (1− γh) sup
|b|≤L

{
Qh,?(ξ(x,a;h),a + hb)

}
.

Since ε was arbitrarily chosen, we finally obtain that

Qh,?(x,a) ≥ hr(x,a) + (1− γh) sup
|b|≤L

{
Qh,?(ξ(x,a;h),a + hb)

}
. (16)

Combining two estimates (15) and (16), we conclude that Qh,? satisfies the semi-discrete
HJB equation (9). Since the proof for the uniqueness of the solution is almost the same
as the proof of Theorem 4.2, Chapter VI in (Bardi and Capuzzo-Dolcetta, 1997), we have
omitted the detailed proof.

B.4 Proposition 4

Proof For the completeness of the paper, we provide a sketch of the proof although it is
similar to the proof of Theorem 1.1, Chapter VI in (Bardi and Capuzzo-Dolcetta, 1997).
We begin by defining two functions Q? and Q

?
as

Q?(x,a) := lim inf
(x′,a′,h)→(x,a,0+)

Qh,?(x′,a′),

Q
?
(x,a) := lim sup

(x′,a′,h)→(x,a,0+)
Qh,?(x′,a′).

According to the proof of Theorem 1.1, Chapter VI in (Bardi and Capuzzo-Dolcetta, 1997),
it suffices to show that Q

?
satisfies the first condition of Definition 1 and Q? satisfies the

second condition of Definition 1. To this end, for any φ ∈ C1, let (x0,a0) be a strict local
maximum point of Q

? − φ and choose a small enough neighborhood N of (x0,a0) such
that (Q

? − φ)(x0,a0) = maxN (Q
? − φ). Then, there exists a sequence {(xn,an, hn)} with

(xn,an)→ (x0,a0) and hn → 0+ such that

(Qhn,? − φ)(xn,an) = max
N

(Qhn,? − φ)

and
Qhn,?(xn,an)→ Q

?
(x0,a0).

Recall that Qh,? satisfies (9). Thus, there exists bn with |bn| ≤ L such that

Qhn,?(xn,an)− hnr(xn,an)− (1− γhn)Qhn,?(ξ(xn,an;hn),an + hbn) = 0.

22

Hamilton–Jacobi Deep Q-Learning for Deterministic Continuous-Time Systems

Since Qhn,? − φ attains a local maximum at (xn,an), we have

(1− γhn)(φ(xn,an)− φ(ξ(xn,an;hn),an + hbn) + γhnQ
hn,?(xn,an)− hnr(xn,an) ≤ 0

(17)

for small enough hn > 0. Since |bn| ≤ L for all n ≥ 0, there exists a subsequence nk and
b with |b| ≤ L such that bnk → b as k → ∞. Then, we substitute n in (17) by nk, divide
both sides by hnk and let k →∞ to obtain that at (x0,a0)

−∇xφ · f −∇aφ · b + γQ
? − r ≤ 0,

where we use the fact that

lim
h→0

ξ(x,a;h)− x

h
= f(x,a).

This implies that the first condition of Definition 1 is satisfied. Similarly, it can be shown
that Q? satisfies the second condition of Definition 1.

B.5 Theorem 5

We begin by defining an optimal Bellman operator in the semi-discrete setting, T h : L∞ →
L∞, by

(T hQ)(x,a) := hr(x,a) + (1− γh) sup
|b|≤L

Q(ξ(x,a;h),a + hb), (18)

where ξ(x,a;h) denotes the solution of the ODE (1) at time t = h with initial state
x(0) = x and constant action a(t) ≡ a for t ∈ [0, h). Our first observation is that the
Bellman operator is a monotone (1− γh)-contraction mapping for a sufficiently small h.

Lemma 8 Suppose that 0 < h < 1
γ . Then, the Bellman operator T h is a monotone con-

traction mapping. More precisely, it satisfies the following properties:

(i) T hQ ≤ T hQ′ for all Q,Q′ ∈ L∞ such that Q ≤ Q′;

(ii) ‖T hQ− T hQ′‖L∞ ≤ (1− γh)‖Q−Q′‖L∞ for all Q,Q′ ∈ L∞.

Proof (i) Since Q(x,a) ≤ Q′(x,a) for all (x,a) ∈ Rn × Rm, we have

sup
|b|≤L

Q(ξ(x,a;h),a + hb) ≤ sup
|b|≤L

Q′(ξ(x,a;h),a + hb).

Multiplying (1− γh) and then adding hr(x,a) to both sides, we confirm the monotonicity
of T h as desired.

(ii) We first note that for any b ∈ Rm with |b| ≤ L,[
hr(x,a) + (1− γh)Q(ξ(x,a;h),a + hb)

]
−
[
hr(x,a) + (1− γh)Q′(ξ(x,a;h),a + hb)

]
= (1− γh)

[
Q(ξ(x,a;h),a + hb)−Q′(ξ(x,a;h),a + hb)

]
≤ (1− γh)‖Q−Q′‖L∞ .

23

Kim, Shin and Yang

By the definition of T hQ′, we have

hr(x,a) + (1− γh)Q(ξ(x,a;h),a + hb)

≤ (1− γh)‖Q−Q′‖L∞ + hr(x,a) + (1− γh)Q′(ξ(x,a;h),a + hb)

≤ (1− γh)‖Q−Q′‖L∞ + T hQ′(x,a).

Taking the supremum of both sides with respect to b ∈ Rm such that |b| ≤ L, yields

T hQ(x,a) ≤ (1− γh)‖Q−Q′‖L∞ + T hQ′(x,a),

or equivalently
T hQ(x,a)− T hQ′(x,a) ≤ (1− γh)‖Q−Q′‖L∞ .

We now change the role of Q and Q′ to obtain

|T hQ(x,a)− T hQ′(x,a)| ≤ (1− γh)‖Q−Q′‖L∞ .

Therefore, the operator T h is a (1− γh)-contraction with respect to ‖ · ‖L∞ .

Using the Bellman operator T h, HJ Q-learning (10) can be expressed as

Qhk+1 := (1− αk)Qhk + αkT hQhk .

Consider the difference ∆h
k := Qhk −Qh,?. Note that ‖∆h

k‖L∞ represents the optimality gap
at the kth iteration. It satisfies

∆h
k+1 = (1− αk)∆h

k + αk[T h(∆h
k +Qh,?)− T hQh,?], (19)

where we used the semi-discrete HJB equation Qh,? = T hQh,?. The contraction property
of the Bellman operator T h can be used to show that the optimality gap ‖∆h

k‖L∞ decreases
geometrically. More precisely, we have the following lemma:

Lemma 9 Suppose that 0 < h < 1
γ , 0 ≤ αk ≤ 1 and that Assumption 1 holds. Then, the

following inequality holds:

‖∆h
k‖L∞ ≤

(k−1∏
τ=0

(1− ατγh)

)
‖∆h

0‖L∞ .

Proof We use mathematical induction to prove the assertion. When k = 1, it follows from
the Q-function update (10) and the contraction property of T h that

‖∆h
1‖L∞ ≤ (1− α0)‖∆h

0‖L∞ + α0‖T h(∆h
0 +Qh,?)− T hQh,?‖L∞

≤ (1− α0)‖∆h
0‖L∞ + α0(1− γh)‖∆h

0‖L∞

= (1− α0γh)‖∆h
0‖L∞ .

Therefore, the assertion holds for k = 1. We now assume that the assertion holds for k = n:

‖∆h
n‖L∞ ≤

(
n−1∏
τ=0

(1− ατγh)

)
‖∆h

0‖L∞ .

24

Hamilton–Jacobi Deep Q-Learning for Deterministic Continuous-Time Systems

We need to show that the inequality holds for k = n+ 1. By using the same estimate as in
the case of k = 1 and the induction hypothesis for k = n, we obtain

‖∆h
n+1‖L∞ ≤ (1− αn)‖∆h

n‖L∞ + αn‖T h(∆h
n +Qh,?)− T hQh,?‖L∞

≤ (1− αn)‖∆h
n‖L∞ + αn(1− γh)‖∆h

n‖L∞

= (1− αnγh)‖∆h
n‖L∞

≤ (1− αnγh)

(
n−1∏
τ=0

(1− ατγh)

)
‖∆h

0‖L∞

=

(
n∏
τ=0

(1− ατγh)

)
‖∆h

0‖L∞ .

This completes our mathematical induction, and thus the result follows.

This lemma yields a condition on the sequence of learning rates under which the Q-
function updated by (10) converges to the optimal semi-discrete Q-function (8) in L∞.
Proof of Theorem 5 It suffices to show that

lim
k→∞

‖∆h
k‖L∞ = 0.

By Lemma 9 and the elementary inequality 1− x ≤ e−x, we have

‖∆h
k‖L∞ ≤

(
k−1∏
τ=0

(1− ατγh)

)
‖∆h

0‖L∞ ≤ exp

(
−γh

(
k−1∑
τ=0

ατ

))
‖∆h

0‖L∞ .

Therefore, if
∑∞

τ=0 ατ =∞, the result follows.

B.6 Corollary 1

Proof We first observe that there exists an index kh, depending on h, such that
∑kh−1

τ=0 ατ >
1
h2

since
∑∞

τ=0 ατ =∞. Then, we have

h

(
kh−1∑
τ=0

ατ

)
>

1

h
→∞ as h→ 0.

Moreover, by the triangle inequality, we have

|Qhk(x,a)−Q(x,a)| ≤ |Qhk(x,a)−Qh,?(x,a)|+ |Qh,?(x,a)−Q(x,a)|

for all (x,a) ∈ Rn×Rm. By Proposition 2, the second term on the right-hand side uniformly
vanishes over any compact subset K of Rn × Rm as h → 0. The first term is nothing but
|∆h

k(x,a)|, which is bounded as follows (by Lemma 9):

|∆h
k(x,a)| ≤

(
k−1∏
τ=0

(1− ατγh)

)
‖∆h

0‖L∞ ≤ exp

(
−γh

(
k−1∑
τ=0

ατ

))
‖∆h

0‖L∞ , k ≥ 1,

25

Kim, Shin and Yang

where the second inequality holds because 1− x ≤ e−x. Our choice of kh then yields

sup
k≥kh

‖∆h
k‖L∞ ≤ exp

(
−γh

(
kh−1∑
τ=0

ατ

))
‖∆h

0‖L∞ → 0

as h→ 0. Therefore, we conclude that

sup
k≥kh

sup
(x,a)∈K
Kcompact

|Qhk(x,a)−Q(x,a)|

≤ sup
k≥kh

sup
(x,a)∈K
Kcompact

|Qhk(x,a)−Qh,?(x,a)|+ sup
k≥kh

sup
(x,a)∈K
Kcompact

|Qh,?(x,a)−Q(x,a)|

≤ sup
k≥kh

‖∆h
k‖L∞ + sup

(x,a)∈K
Kcompact

|Qh,?(x,a)−Q(x,a)| → 0

as h→ 0.

B.7 Proposition 6

Proof We first notice that by the triangle inequality,∣∣∣∣ max
|a−aj |≤hL

Qθ−(xj+1,a)−Qθ−(xj+1, aj + hbj)

∣∣∣∣
≤
∣∣∣∣ max
|a−aj |≤hL

Qθ−(xj+1,a)−Qθ−
(
xj+1, aj + hL

∇aQθ−(xj+1, aj)

|∇aQθ−(xj+1, aj)|

)∣∣∣∣
+

∣∣∣∣Qθ−(xj+1, aj + hL
∇aQθ−(xj+1, aj)

|∇aQθ−(xj+1, aj)|

)
−Qθ−(xj+1, aj + hbj)

∣∣∣∣
=: ∆1 + ∆2.

We first consider ∆1. Let a? := arg max|a−aj |≤hL Qθ−(xj+1,a). By the Taylor expan-
sion, we have

max
|a−aj |≤hL

Qθ−(xj+1,a) = Qθ−(xj+1,a
?)

= Qθ−(xj+1, aj) +∇aQθ−(xj+1, aj) · (a? − aj) +O(h2).

Similarly, we again use the Taylor expansion to obtain that

Qθ−

(
xj+1, aj + hL

∇aQθ−(xj+1, aj)

|∇aQθ−(xj+1, aj)|

)
= Qθ−(xj+1, aj) + hL|∇aQθ−(xj+1, aj)|+O(h2).

Subtracting one equality from another yields

Qθ−(xj+1,a
?)−Qθ−

(
xj+1, aj + hL

∇aQθ−(xj+1, aj)

|∇aQθ−(xj+1, aj)|

)
= ∇aQθ−(xj+1, aj) · (a? − aj)− hL|∇aQθ−(xj+1, aj)|+O(h2) ≤ O(h2),

26

Hamilton–Jacobi Deep Q-Learning for Deterministic Continuous-Time Systems

where the last inequality holds because |a? − aj | ≤ hL. Since our choice of a? implies
that the left-hand side of the inequality above is always non-negative, we conclude that
∆1 = O(h2).

Regarding ∆2, we have

∆2 =

∣∣∣∣Qθ−(xj+1, aj + hL
∇aQθ−(xj+1, aj)

|∇aQθ−(xj+1, aj)|

)
−Qθ−

(
xj+1, aj + hL

∇aQθ−(xj , aj)

|∇aQθ−(xj , aj)|

)∣∣∣∣
≤ Lh‖∇aQθ−‖L∞

∣∣∣∣ ∇aQθ−(xj+1, aj)

|∇aQθ−(xj+1, aj)|
− ∇aQθ−(xj , aj)

|∇aQθ−(xj , aj)|

∣∣∣∣.
Note that for any two non-zero vectors v, w,∣∣∣∣ v|v| − w

|w|

∣∣∣∣ ≤ |v − w||v|
+ |w|

(
1

|v|
− 1

|w|

)
=
|v − w|
|v|

+
|w| − |v|
|v|

≤ 2|v − w|
|v|

.

On the other hand, we have

|∇aQθ−(xj+1, aj)−∇aQθ−(xj , aj)| ≤ ‖∇2
xaQθ−‖L∞ |xj+1 − xj | = O(h).

Since we assume that Qθ− is twice differentiable and |∇aQθ−(xj , aj)| =: C > 0, we have
|∇aQθ−(xj+1, aj)| > C/2 for sufficiently small h. Therefore, we obtain that

∆2 ≤ 2Lh‖∇aQθ−‖L∞
|∇aQθ−(xj+1, aj)−∇aQθ−(xj , aj)|

|∇aQθ−(xj+1, aj)|
= O(h2).

Combining the estimates of ∆1 and ∆2 yields∣∣∣∣ max
|a−aj |≤hL

Qθ−(xj+1,a)−Qθ−(xj+1, aj + hbj)

∣∣∣∣ = O(h2)

as desired.

Appendix C. Brief Discussion on Extension to Stochastic Systems

The Hamilton-Jacobi Q-learning can be extended to the continuous-time stochastic control
setting with controlled diffusion processes. Consider the following stochastic counterpart of
the system (1):

dxt = f(xt, at)dt+ σ(xt, at)dWt, t > 0, (20)

where σ : Rn×Rm → Rn×k is the diffusion coefficient and Wt is the k-dimensional standard
Bronwian motion. We now define the Q-function as

Q(x,a) := sup
a∈A

E
[∫ ∞

0
e−γtr(xt, at)dt | x0 = x, a0 = a

]
.

Again, the dynamic programming principle implies

0 = sup
a∈A

E
[

1

h

∫ t+h

t
e−γ(s−t)r(x(s), a(s)) ds+

1

h
[Q(x(t+ h), a(t+ h))−Q(x,a)]

+
e−γh − 1

h
Q(x(t+ h), a(t+ h)) | x(t) = x, a(t) = a

]
.

(21)

27

Kim, Shin and Yang

Then, we use the Itô formula

dQ(xt, at) = ∇xQ · dxt +∇aQ · ȧdt+
1

2
dx>t ∇2

xQdxt

= ∇xQ · (f(xt, at)dt+ σ(xt, at)dWt) +∇aQ · ȧdt+
(dWt)

>σ>∇2
xQσdWt

2

to derive the following Hamilton-Jacobi-Bellman equation for the stochastic system (20):

γQ−∇xQ · f(x,a)− L|∇aQ| − r(x,a)− tr(σ>∇2
xQσ)

2
= 0. (22)

Note that, in the stochastic case, the optimal control also satisfies ȧ = L ∇aQ
|∇aQ| when Q is

differentiable.
Since in most practical systems transition samples are collected in discrete time, we also

introduce the semi-discrete version of (22). We define a stochastic semi-discrete Q-function
Qh,? as

Qh,?(x,a) := sup
b∈B

E

[
h
∞∑
k=0

r(xk, ak)(1− γh)k

]
,

where B := {b := {bk}∞k=0 | bk ∈ Rm, |bk| ≤ L}, xk+1 = ξ(xk, ak;h) and ak+1 = ak + hbk.
Here, ξ(xk, ak;h) is now a solution to the stochastic differential equation (20) at time t =
h with initial state x and constant control a(t) ≡ a, t ∈ [0, h). Then, similar to the
deterministic semi-discrete HJB equation (9), its stochastic counterpart can be written as

Qh,?(x,a) = hr(x,a) + (1− γh) sup
|b|≤L

E
[
Qh,?(ξ(x,a;h),a + hb)

]
.

Using Robbins-Monro stochastic approximation (Robbins and Monro, 1951; Kushner and
Yin, 2003), we obtain the following model-free update rule: in the kth iteration, we collect
data (xk, ak, rk, xk+1) and update the Q-function by

Qhk+1(xk, ak) := (1− αk)Qhk(xk, ak) + αk

[
hrk + (1− γh) sup

|b|≤L
Qhk(xk+1, ak + hb)

]
, (23)

where xk+1 is obtained by simulating the stochastic system from xk with action ak fixed for
h period, that is, xk+1 = ξ(xk, ak;h). The corresponding HJ DQN algorithm for stochastic
systems is essentially the same as Algorithm 1 although the transition samples are now
collected through the stochastic system.

Appendix D. Implementation Details

All the simulations in Section 5 were conducted using Python 3.7.4 on a PC with Intel Core
i9-9900X @ 3.50GHz, NVIDIA GeForce RTX 2080 Ti, and 64GB RAM.

Table 1 lists the hyperparameters used in our implementation of HJ DQN for each
MuJoCo task and the LQ problem. Note that in this set of experiments we view the
Lipschitz constant L as a hyperparameter. When the task has a compact action space of
diameterD, the Lipschitz constant L is initially chosen aroundD/h to cover the entire action

28

Hamilton–Jacobi Deep Q-Learning for Deterministic Continuous-Time Systems

Table 1: Hyperparameters for HJ DQN.

Hyperparameter HalfCheetah-v2 Hopper-v2 Walker2d-v2

optimizer Adam (Kingma and Ba, 2015)
learning rate 5× 10−4 10−4 10−4

Lipschitz constant (L) 30 30 30
default sampling interval (h) 0.05 0.008 0.008
tuned sampling interval (h) 0.01 0.016 0.032
(Continuous) discount (γ) − log(0.99)/h, where h is the sampling interval
replay buffer size 106

target smoothing coefficient (α) 0.001
Noise coefficient (σ) 0.1
of hidden layers 2 (fully connected)
of hidden units per layer 256
of samples per minibatch 128
nonlinearity ReLU

Swimmer-v2 LQ

Adam (Kingma and Ba, 2015)
5× 10−4 10−3

15 10
0.04 0.05
0.08 -

− log(0.99)/h − log(0.99999)/h
106 2× 104

0.001
0.1

2 (fully connected)
256

128 512
ReLU

space. Additional tuning can then be performed to reduce its value until an appropriate
scale of L is identified. While taking L = D/h produces a reasonable learning result, the
additional tuning process can further improve the result in practice since control trajectories
generated with an overwhelmingly large L exhibit large fluctuations, as observed in Section
5.3. For DDPG, we list our chosen hyperparameters in Table 2, which have been taken from
(Lillicrap et al., 2015) for MuJoCo tasks, except the network architecture which was used in
OpenAI’s implementation of DDPG.11 The discount factor in the discrete-time algorithms
is chosen as γ′ = 0.99 for MuJoCo tasks and 0.99999 for the LQ problem so that it is
equivalent to e−γh ≈ (1− γh) in our algorithm for continuous-time systems.

11. https://spinningup.openai.com/en/latest/spinningup/bench.html

29

Kim, Shin and Yang

Table 2: Hyperparameters for DDPG.

Hyperparameter MuJoCo tasks LQ

optimizer Adam (Kingma and Ba, 2015)
actor learning rate 10−4

critic learning rate 10−3

(Discrete) discount (γ′) 0.99 0.99999
replay buffer size 106 2× 104

target smoothing coefficient (α) 0.001
of hidden layers 2 (fully connected)
of hidden units per layer 256
of samples per minibatch 128 512
nonlinearity ReLU

References

M. Abu-Khalaf and F. L. Lewis. Nearly optimal control laws for nonlinear systems with
saturating actuators using a neural network HJB approach. Automatica, 41:779–791,
2005.

B. D. Anderson and John B. Moore. Optimal Control: Linear Quadratic Methods. Courier
Corporation, 2007.

L. C. Baird. Reinforcement learning in continuous time: advantage updating. In IEEE
International Conference on Neural Networks, pages 2448–2453, 1994.

M. Bardi and I. Capuzzo-Dolcetta. Optimal Control and Viscosity Solutions of Hamilton–
Jacobi–Bellman Equations. Birkhäuser, Boston, MA, 1997.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
Belmont, MA, 1996.

S. Bhasin, R. Kamalapurkar, M. Johnson, K. G. Vamvoudakis, F. L. Lewis, and W. E.
Dixon. A novel actor-critic-identifier architecture for approximate optimal control of
uncertain nonlinear systems. Automatica, 49:82–92, 2013.

T. Bian and Z.-P. Jiang. Value iteration and adaptive dynamic programming for data-driven
adaptive optimal control design. Automatica, 71:348–360, 2016.

S. J. Bradtke and M. O. Duff. Reinforcement learning methods for continuous-time Markov
decision problems. In Advances in Neural Information Processing Systems, pages 393–400,
1995.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba. OpenAI gym. arXiv preprint arXiv:1606.01540, 2016.

M. Crandall and P.-L. Lions. Viscosity solutions of Hamilton–Jacobi equations. Transactions
of the American Mathematical Society, 277:1–42, 1983.

30

Hamilton–Jacobi Deep Q-Learning for Deterministic Continuous-Time Systems

P. Dayan and S. P. Singh. Improving policies without measuring merits. In Advances in
Neural Information Processing Systems, pages 1059–1065, 1996.

K. Doya. Reinforcement learning in continuous time and space. Neural Computation, 12:
219–245, 2000.

Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep re-
inforcement learning for continuous control. In International Conference on Machine
Learning, pages 1329–1338, 2016.

M. Fazel, R. Ge, S. M. Kakade, and M. Mesbahi. Global convergence of policy gradient
methods for the linear quadratic regulator. arXiv preprint arXiv:1801.05039, 2018.

S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In International Conference on Machine Learning, pages 1587–1596, 2018.

G. J. Gordon. Stable function approximation in dynamic programming. In International
Conference on Machine Learning, pages 261–268, 1995.

S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. Continuous deep Q-learning with model-
based acceleration. In International Conference on Machine Learning, pages 2829–2838,
2016.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, pages 1861–1870, 2018.

Y. Jiang and Z.-P. Jiang. Global adaptive dynamic programming for continuous-time non-
linear systems. IEEE Transactions on Automatic Control, 60:2917–2929, 2015.

J. Kim and I. Yang. Hamilton–Jacobi–Bellman equations for maximum entropy optimal
control. arXiv preprint arXiv:2009.13097, 2020a.

J. Kim and I. Yang. Hamilton–Jacobi–Bellman equations for Q-learning in continuous time.
In Learning for Dynamics and Control (L4DC), pages 739–748, 2020b.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representation, 2015.

N. Kohl and P. Stone. Policy gradient reinforcement learning for fast quadrupedal locomo-
tion. In IEEE International Conference on Robotics and Automation, pages 2619–2624,
2004.

G. P. Kontoudis and K. G. Vamvoudakis. Kinodynamic motion planning with continuous-
time Q-learning: An online, model-free, and safe navigation framework. IEEE Transac-
tions on Neural Networks and Learning Systems, 30:3803–3817, 2019.

H. Kushner and G. G. Yin. Stochastic Approximation and Recursive Algorithms and Ap-
plications. Springer Science & Business Media, New York, 2003.

31

Kim, Shin and Yang

S. Levine and V. Koltun. Guided policy search. In International Conference on Machine
Learning, pages 1–9, 2013.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971,
2015.

L. Ljung. System Identification: Theory for the User. Pearson, 2nd edition, 1998.

M. Lutter, B. Belousov, K. Listmann, D. Clever, and J. Peters. HJB optimal feedback
control with deep differential value functions and action constraints. In Conference on
Robot Learning, pages 640–650, 2020.

P. Mehta and S. Meyn. Q-learning and pontryagin’s minimum principle. In IEEE Conference
on Decision and Control, pages 3598–3605, 2009.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, and S. Petersen. Human-level control
through deep reinforcement learning. Nature, 518:529–533, 2015.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Interna-
tional Conference on Machine Learning, pages 1928–1937, 2016.

H. Modares and F. L. Lewis. Optimal tracking control of nonlinear partially-unknown
constrained-input systems using integral reinforcement learning. Automatica, 50:1780–
1792, 2014.

R. Munos. A study of reinforcement learning in the continuous case by the means of viscosity
solutions. Machine Learning, 40:265–299, 2000.

R. Munos. Policy gradient in continuous time. Journal of Machine Learning Research, 7:
771–791, 2006.

R. Munos and A. W. Moore. Barycentric interpolators for continuous space and time
reinforcement learning. In Advances in Neural Information Processing Systems, pages
1024–1030, 1999.

M. Ohnishi, M. Yukawa, M. Johansson, and M. Sugiyama. Continuous-time value function
approximation in reproducing kernel Hilbert spaces. In Advances in Neural Information
Processing Systems, pages 2813–2824, 2018.

M. Palanisamy, H. Modares, F. L. Lewis, and M. Aurangzeb. Continuous-time Q-learning for
infinite-horizon discounted cost linear quadratic regulator problems. IEEE Transactions
on Cybernetics, 45:165–176, 2015.

D. Quillen, E. Jang, O. Nachum, C. Finn, J. Ibarz, and S. Levine. Deep reinforcement
learning for vision-based robotic grasping: A simulated comparative evaluation of off-
policy methods. In IEEE International Conference on Robotics and Automation, pages
6284–6291, 2018.

32

Hamilton–Jacobi Deep Q-Learning for Deterministic Continuous-Time Systems

K. Rajagopal, S. N. Balakrishnan, and J. R. Busemeyer. Neural network-based solutions for
stochastic optimal control using path integrals. IEEE Transactions on Neural Networks
and Learning Systems, 28:534–545, 2017.

H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400–407, 1951.

M. Ryu, Y. Chow, R. Anderson, C. Tjandraatmadja, and C. Boutilier. CAQL: Continuous
action Q-learning. arXiv preprint arXiv:1909.12397, 2020.

J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel. Trust region policy optimiza-
tion. In International Conference on Machine Learning, pages 1889–1897, 2015.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy opti-
mization algorithms. arXiv preprint arXiv:1707.06347, 2017.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic
policy gradient algorithms. In International Conference on Machine Learning, pages
387–395, 2014.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.

C. Szepesvari. Algorithms for Reinforcement Learning. Morgan and Claypool Publishers,
San Rafael, CA, 2010.

C. Tallec, L. Blier, and Y. Ollivier. Making deep Q-learning methods robust to time dis-
cretization. In International Conference on Machine Learning, pages 6096–6104, 2019.

Y. Tassa and T. Erez. Least squares solutions of the HJB equation with neural network
value-function approximators. IEEE Transactions on Neural Networks, 18:1031–1041,
2007.

Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. L. Casas, D. Budden, A. Abdol-
maleki, J. Merel, A. Lefrancq, and T. Lillicrap. DeepMind control suite. arXiv preprint
arXiv:1801.00690, 2018.

C. Tessler, G. Tennenholtz, and S. Mannor. Distributional policy optimization: An alter-
native approach for continuous control. In Advances in Neural Information Processing
Systems, pages 1350–1360, 2019.

E. Theodorou, J. Buchli, and S. Schaal. A generalized path integral control approach to
reinforcement learning. Journal of Machine Learning Research, 11:3137–3181, 2010.

E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033,
2012.

K. G. Vamvoudakis. Q-learning for continuous-time linear systems: A model-free infinite
horizon optimal control approach. Systems & Control Letters, 100:14–20, 2017.

33

Kim, Shin and Yang

K. G. Vamvoudakis and F.L Lewis. Online actor-critic algorithm to solve the continuous-
time infinite horizon optimal control problem. Automatica, 46:878–888, 2010.

H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double Q-learning.
In Thirtieth AAAI Conference on Artificial Intelligence, pages 2094–2100, 2016.

C. J. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279–292, 1992.

Y. Yang, D. Wunsch, and Y. Yin. Hamiltonian-driven adaptive dynamic programming for
continuous nonlinear dynamical systems. IEEE Transactions on Neural Networks and
Learning Systems, 28:1929–1940, 2017.

34

	Introduction
	Hamilton–Jacobi–Bellman Equations for Q-Functions
	Dynamic Programming and HJB Equations
	Optimal Controls

	Hamilton–Jacobi Q-Learning
	Semi-Discrete HJB Equations and Asymptotic Consistency
	Convergence Properties

	Hamilton–Jacobi DQN
	Discussion
	Smoothing

	Experiments
	Actor Networks vs. Optimal Control ODE
	Linear-Quadratic Problems
	Design Evaluation

	Conclusions
	Viscosity Solution of the HJB Equations
	Proofs
	Proposition 1
	Theorem 2
	Proposition 3
	Proposition 4
	Theorem 5
	Corollary 1
	Proposition 6

	Brief Discussion on Extension to Stochastic Systems
	Implementation Details

