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Abstract

In this paper, we propose a unified convergence analysis for a class of generic shuffling-
type gradient methods for solving finite-sum optimization problems. Our analysis works
with any sampling without replacement strategy and covers many known variants such
as randomized reshuffling, deterministic or randomized single permutation, and cyclic and
incremental gradient schemes. We focus on two different settings: strongly convex and
nonconvex problems, but also discuss the non-strongly convex case. Our main contribu-
tion consists of new non-asymptotic and asymptotic convergence rates for a wide class of
shuffling-type gradient methods in both nonconvex and convex settings. We also study uni-
formly randomized shuffling variants with different learning rates and model assumptions.
While our rate in the nonconvex case is new and significantly improved over existing works
under standard assumptions, the rate on the strongly convex one matches the existing
best-known rates prior to this paper up to a constant factor without imposing a bounded
gradient condition. Finally, we empirically illustrate our theoretical results via two nu-
merical examples: nonconvex logistic regression and neural network training examples. As
byproducts, our results suggest some appropriate choices for diminishing learning rates in
certain shuffling variants.
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1. Introduction

This paper aims at analyzing convergence rates of a general class of shuffling-type gradient
methods for solving the following well-known finite sum minimization problem:

min
w∈Rd

{
F (w) :=

1

n

n∑
i=1

f(w; i)

}
, (P)

where f(·; i) : Rd → R is smooth and possibly nonconvex for i ∈ [n] := {1, · · · , n}.
Problem (P) covers a wide range of convex and nonconvex models in machine learn-

ing and statistical learning, including logistic regression, multi-kernel learning, conditional
random fields, and neural networks. Especially, it covers empirical risk minimization as a
special case. Very often, (P) lives in a high dimensional space, and/or it has a large number
of components n. Therefore, deterministic optimization methods relying on full gradients
are usually inefficient to solve (P), see, e.g., (Bottou et al., 2018; Sra et al., 2012).

The stochastic gradient descent (SGD) method has been widely used to solve (P) due
to its efficiency in dealing with large-scale problems in big data regimes. The first variant
of SGD (called stochastic approximation method) was introduced by (Robbins and Monro,
1951). In the last fifteen years, there has been a tremendous progress of research in SGD,
where various stochastic and randomized-based algorithms have been proposed, making it
be one of the most active research areas in optimization as well as in machine learning. In
addition, due to the deep learning revolution, research on SGD for nonconvex optimization
for deep learning also becomes extremely active nowadays.

SGD is also a method of choice to solve the following stochastic optimization problem:

min
w∈Rd

{
F (w) := E(x,y)∼D

[
f(w;x, y)

]}
, (1)

where D is some probability distribution. Clearly, (P) can be cast into a special case of (1).
To solve (P), at each iteration k (for k := 0, 1, · · · ,K), SGD chooses an index ik ∈ [n] (or

a minibatch) at random and updates an iterate sequence {wk} as wk+1 := wk−ηk∇f(wk; ik)
from a given starting point w0, which is up to n times “component gradient” cheaper than
one iteration of a full gradient method with the update wk+1 := wk − ηk

n

∑n
i=1 f(wk; i),

where ηk > 0 is called a learning rate at the k-th iteration and ik = (xk, yk), a single
sample or a mini-batch of the input data (x, y). Although the first variant of SGD was
introduced in the 1950s, its convergence rate was investigated much later, see, e.g., (Polyak
and Juditsky, 1992). The convergence rate of SGD for solving (1) under strong convexity
is O(K−1) (Nemirovski et al., 2009; Polyak and Juditsky, 1992; Nguyen et al., 2018), and
for finding a stationary point of (1) in the nonconvex case is O

(
K−1/2

)
(Ghadimi and Lan,

2013), where K is the total iteration number. In particular, these rates also apply to (P).

Motivation. This paper is motivated by a number of observations as follows.
• Firstly, shuffling gradient-type methods are widely used in practice. The classical SGD

scheme (we refer to it as the standard SGD method in this paper) for solving (P) relies on
an i.i.d. sampling scheme to select components ∇f(·; i) for updating the iterates wk. In
practice, however, other mechanisms for selecting components ∇f(·; i) such as randomized
[re]shuffling techniques are more desirable to use for implementing stochastic gradient al-
gorithms. Shuffling strategies are easier and faster to implement in practice. They have
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been implemented in several well-known packages such as TensorFlow and PyTorch. In
addition, it has been recognized that shuffling-type methods often decrease the training loss
faster than standard SGD, see, e.g., (Bottou, 2009, 2012; Hiroyuki, 2018). However, con-
vergence guarantee of shuffling-type algorithms has just recently emerged. This motivates
us to conduct a unified analysis for a general class of shuffling-type algorithms.

• Secondly, convergence analysis of shuffling-type schemes and cyclic strategies is much
more challenging than that of the standard SGD or its variants due to the lack of indepen-
dence. Hitherto, there is a limited number of theoretical works that analyze the convergence
rates of shuffling techniques, where a majority has focussed on the strongly convex case
(Gürbüzbalaban et al., 2019; HaoChen and Sra, 2019; Safran and Shamir, 2020; Nagaraj
et al., 2019). To the best of our knowledge, hitherto and prior to our work, only (Li et al.,
2020; Meng et al., 2019) have studied convergence rates of shuffling-type gradient methods
for solving nonconvex instances of (P). There exists no unified analysis that can cover a
wide class of shuffling-type gradient algorithms under different assumptions ranging from
strongly convex to nonconvex cases. In this paper, we will provide some key elements to
form a unified analysis framework for shuffling-type gradient methods, which can be applied
to different variants. While we only focus on the strongly convex and nonconvex cases with-
out specifying shuffling strategy, we believe that our framework can be customized to take
into account additional or alternative assumptions to achieve a possibly better convergence
rate (see, e.g., (Mishchenko et al., 2020) as an example).

• Thirdly, existing shuffling-type gradient algorithms for the strongly convex case of (P)
such as (Ahn et al., 2020; Gürbüzbalaban et al., 2019; HaoChen and Sra, 2019; Safran and
Shamir, 2020; Nagaraj et al., 2019) require a bounded gradient assumption. Although
the bounded gradient condition is widely used and accepted for strongly convex problems,
it leads to implicitly imposing a ball constraint on (P). More precisely, if F is µ-strongly
convex and G-bounded gradient as supi∈[n] ‖∇f(w; i)‖ ≤ G for ∀w ∈ dom (F ) (the domain

of F ), then it is easy to show that µ
2 ‖w − w

?‖2 ≤ F (w) − F (w?) ≤ 1
2µ ‖∇F (w)‖2 ≤ G2

2µ
for all w ∈ dom (F ), where w? is the unique minimizer of F (Nguyen et al., 2018). This
expression implies that ‖w − w?‖ ≤ G

µ as an implicit ball constraint on (P). However,
we usually do not know w? to quantify this condition in practice. Note that since F is
strongly convex, it is also coercive. Thus any sublevel set {w ∈ dom (F ) : F (w) ≤ F (w0)}
(for a fixed w0) is bounded, and consequently, G exists. Nevertheless, it is still difficult to
quantify G over this sublevel set since we do not know the size of this sublevel set explicitly.
If G is quantified inappropriately, it will change problem (P) from the unconstrained to the
constrained setting which may not be equivalent to (P). In addition, a projection is required
to guarantee the feasibility of the iterates in this case, adding another computational cost,
see, e.g., (Nagaraj et al., 2019). A recent work in (Mishchenko et al., 2020) can also avoid
the bounded gradient condition in their analysis, but only focuses on the case where each
component f(·; i) is convex.

• Fourthly, for the strongly convex case, prior to this work, existing analysis relies on a set
of strong assumptions. Such assumptions often include: strong convexity, L-smoothness,
Lipschitz Hessian, and bounded gradient. HaoChen and Sra prove an O((nT )−2 + T−3)
convergence rate for randomized reshuffling scheme in (HaoChen and Sra, 2019), where T
is the number of epochs (i.e. the number of passes over n component functions f(·; i)), but
under stronger assumptions than ours. Further improvement can be found in (Ahn et al.,
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2020; Mishchenko et al., 2020). The rates in these papers nearly match the lower bound
proven in (Safran and Shamir, 2020) or a sharper one in (Rajput et al., 2020). Our rate is
O(T−2) in the general case, and O(1/(nT 2)) in the randomized reshuffling case, but only
requires f(·; i) to be L-smooth and and F to be strongly convex with bounded variance.
Hence, it is unclear if one can fairly compare ours and (HaoChen and Sra, 2019) since they
consider two different classes of problems due to the use of different sets of assumptions.

• Finally, prior to our work, convergence analysis of shuffling-type gradient schemes has
not been rigorously investigated for the nonconvex setting of (P). Existing works only focus
on special variants such as incremental gradient or using nonstandard criterion (Li et al.,
2020; Meng et al., 2019). Our work is the first analyzing convergence rates of the general
shuffling-type gradient scheme in the nonconvex case under standard assumptions, which
achieves the best known O (T−2/3) or O(n−1/3T−2/3) rate in epoch.

Contribution. In this paper, we develop a new and unified convergence analysis frame-
work for general shuffling-type gradient methods to solve (P) and apply it to different shuf-
fling variants in both nonconvex and strongly convex settings under standard assumptions.
More specifically, our contribution can be summarized as follows:

(a) We prove O(1/T 2)-convergence rate in epoch of a generic shuffling-type gradient
scheme for the strongly convex case without imposing “gradient boundedness” and/or
Lipschitz Hessian assumptions, e.g., in (Gürbüzbalaban et al., 2019; HaoChen and Sra,
2019). In addition, our analysis does not require convexity of each component function
as in some existing works. Similar to (Gürbüzbalaban et al., 2019) our rate also can
be viewed as O(1/t2) for any 1 ≤ t ≤ T without fixing T a priori as in other works.

(b) If either a general bounded variance condition is imposed on F (see Assumption 2) or
each component f(·; i) is convex for all i ∈ [n], then by using a uniformly randomized
reshuffling strategy, our convergence rate in the strongly convex case is improved to
O(1/(nT 2)), which matches the best-known results in recent works, including (Ahn
et al., 2020; Mishchenko et al., 2020). Our latter case (i.e. when f(·; i) is convex)
holds for both constant and diminishing learning rates.

(c) We proveO(T−2/3)-convergence rate in epoch for the constant stepsizes and Õ(T−2/3)-
convergence rate1 for the diminishing stepsizes of a general shuffling-type gradient
method (Algorithm 1) to approximate a stationary point of the nonconvex problem
(P), where T := K/n is number of epochs. Our rate is significantly improved over
O(T−1/2) rate of the special incremental gradient method in (Li et al., 2020). To the
best of our knowledge, these are the first improved non-asymptotic rates for SGD with
shuffling for both constant and diminishing learning rates under standard assumptions.
When a uniformly randomized reshuffling strategy is used, our rate is improved by a
factor of n1/3 to O(n−1/3T−2/3).

(d) We establish asymptotic convergence to a stationary point under diminishing learning
rate scheme. We theoretically and empirically show that the shuffling-type gradient
algorithm achieves the best performance with the learning rate ηt = O(t−1/3), where
t is the epoch counter. Our learning rate closely relates to a “scheduled” one, i.e. it
is constant within each epoch t and decreases w.r.t. t. When a uniformly randomized
reshuffling strategy is used, our rate is also improved by a factor of n1/3.

1. The notation Õ(·) hides all logarithmic terms of the input (·) compared to the standard O(·) notation.
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Comparison. Our theoretical results are new and different from existing works in several
aspects. For the nonconvex case, (Meng et al., 2019) only proves O(1/

√
nT + log(n)/n)-

convergence rate to a neighborhood of a stationary point of a randomized reshuffling variant,
(Li et al., 2020) shows O(T−1/2) convergence rate under the bounded subgradients and
weak convexity conditions for an incremental subgradient variant. Our convergence rate is
O(T−2/3) in epoch, and hence is T−1/6 factor better than (Li et al., 2020) but using the
smoothness of f(·; i) instead of a weak convexity condition. Compared to standard SGD,
our rate is O(n2/3K−2/3) in the total of iterations, while the rate of SGD is O(K−1/2).
Our bound is only better than SGD if n < O(K1/4) under any shuffling strategy. If a
randomized reshuffling strategy is used, our rate is improved to O(n1/3K−2/3). This rate is
better than SGD if n < O(K1/2). Note that our results and the ones of standard SGD are
using different assumptions which may lead to the dependency on some constants for both
bounds. In theory, shuffling gradient methods seem not better than SGD when n is large.
However, these methods are often implemented in practice, especially in machine learning,
as we have mentioned earlier. Our detailed discussion on the comparison with SGD is given
in Remark 2. Further comparison between randomized reshuffling methods and SGD, GD,
and other deterministic shuffling schemes for strongly convex problems can be found, e.g.,
in (HaoChen and Sra, 2019; Safran and Shamir, 2020).

Related work. Let us briefly review the most related works to our methods in this pa-
per. The random shuffling-type method has been empirically studied in early works such
as (Bottou, 2009) and also discussed in (Bottou, 2012). Its cyclic variant, known as an
incremental gradient method was proposed even much earlier, see (Nedic and Bertsekas,
2001), where the convergence analysis was given in (Nedić and Bertsekas, 2001) for a sub-
gradient variant, and in (Gürbüzbalaban et al., 2015) for gradient variants. These results
are only for convex problems. Other incremental gradient variants can be found, e.g., in
(Defazio et al., 2014a,c) known as SAGA-based methods. Our method is more general since
it covers different shuffling variants in both deterministic and randomized worlds. When
a randomized reshuffling strategy is used, we can improve our results to match the best
known rates in both convex and nonconvex settings.

In (Gürbüzbalaban et al., 2019), the authors showed that if T is large, the random-
ized shuffling gradient method asymptotically converges with O(T−2) rate under a proper
stepsize. However, this rate was only shown for strongly convex problems with bounded
gradient/sequence, smoothness, and Lipschitz Hessian. These assumptions all together
are very restrictive to hold in practice. Under the same conditions, (HaoChen and Sra,
2019) improved the convergence rate to O((nT )−2 + T−3) non-asymptotically, but in the
regime of T/ log(T ) ≥ O(n). Another related work is (Nagaraj et al., 2019), which achieves
Õ(1/(nT 2)) convergence rates without Lipschitz Hessian when T is above some order of the
condition number. Such a paper still requires F to have uniformly bounded gradient on its
domain. Recently, an Ω(T−2 +n2T−3) lower bound is proved in (Safran and Shamir, 2020)
under the same assumptions as (HaoChen and Sra, 2019). Another Ω(nT−2) shaper lower
bound is recently established in (Rajput et al., 2020) when n > O(T ).

In (Ying et al., 2020), the authors replaced the i.i.d. sampling scheme by a randomized
reshuffling strategy and established that variance reduced methods such as SAGA and
SVRG still have a linear convergence rate for strongly convex problems but using an unusual
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energy function. Unfortunately, it is unclear how to transform such a criterion to standard
convergence criteria such as loss residuals or solution distances. The stochastic gradient
method and its variance-reduced variants (e.g., SAG (Roux et al., 2012), SAGA (Defazio
et al., 2014a), SVRG (Johnson and Zhang, 2013), and SARAH (Nguyen et al., 2017)) for
solving (P) under strong convexity and smoothness structures usually have theoretically
linear convergence rates compared to a sublinear rate in shuffling gradient variants. These
variance-reduced techniques have also been widely exploited in nonconvex settings, but
often require full gradient evaluations due to the use of double loops (Pham et al., 2020;
Reddi et al., 2016; Tran-Dinh et al., 2020). However, these algorithms are different from
the standard shuffling-type gradient method we study in this paper.

In (Shamir, 2016), a convergence rate to a neighborhood of the optimal value of an
SGD variant using a without-replacement sampling strategy is studied for general convex
problems. Clearly, this type of convergence is different from ours, and requires n to be
large to get a suitable bound. If (P) is generalized linear and strongly convex, then a faster
O(log(K)/K) rate is achieved. Another recent work is (Meng et al., 2019) which considers
different distributed SGD variants with shuffling for strongly convex, general convex, and
nonconvex problems. The authors can only show convergence to a neighborhood of an
optimal solution or a stationary point as in (Shamir, 2016). In addition, their rates are much
slower than existing results for the strongly convex case, and also slower than ours, while
requiring stronger assumptions. After the first draft of this paper was online, (Mishchenko
et al., 2020) have made a step further by improving the convergence rates of the randomized
reshuffling variant for the strongly convex case, but require convexity of each component
function f(·; i). Moreover, they only focus on constant stepsize, while our results cover both
constant and diminishing stepsizes.

Paper outline. The rest of this paper is organized as follows. Section 2 describes our
general shuffling gradient algorithm to solve (P). We state our main assumptions and pro-
vides necessary mathematical tools in Section 2.3. Sections 3 and 4 analyze convergence for
the nonconvex and convex cases, respectively. Several numerical experiments are presented
in Section 5. For the sake of presentation, all details and proofs are deferred to Appendix.

2. The Shuffling-Type Gradient Algorithm and Technical Lemmas

Let us first describe our generic shuffling-type gradient algorithm for (P). Next, we state
two standard assumptions imposed on (P), which will be used in this paper. Finally, we
prove two technical lemmas that serve as key steps for our convergence analysis.

2.1 The generic shuffling-type gradient algorithm

Shuffling-type gradient methods are widely used in practice due to their efficiency (Bottou,
2009). Moreover, these methods have been investigated in many recent papers, including
(Gürbüzbalaban et al., 2019; HaoChen and Sra, 2019; Nagaraj et al., 2019). In this paper,
we analyze convergence rates for a wide class of shuffling-type schemes to solve (P) in both
convex and nonconvex settings as described in Algorithm 1.

Note that π(t)(i) is the i-th element of π(t) for i ∈ [n]. Each outer iteration t of Algo-

rithm 1 can be counted for one epoch. The inner loop updates the iterate sequence {w(t)
i }ni=1
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Algorithm 1 (Generic Shuffling-Type Gradient Algorithm for Solving (P))

1: Initialization: Choose an initial point w̃0 ∈ dom (F ).
2: for t = 1, 2, · · · , T do

3: Set w
(t)
0 := w̃t−1;

4: Generate any permutation π(t) of [n] (either deterministic or random);
5: for i = 1, · · · , n do

6: Update w
(t)
i := w

(t)
i−1 − η

(t)
i ∇f(w

(t)
i−1;π(t)(i));

7: end for
8: Set w̃t := w

(t)
n ;

9: end for

using only one component per iteration as in SGD by shuffling the objective components.
Our analysis will be done in epoch-wise (i.e. the convergence guarantee is on F (w̃t) − F∗
evaluated at the outer iterate w̃t instead of w

(t)
i ). Depending on the choice of π(t) we obtain

different variants, especially the following methods:
• If π(t) = {1, 2, · · · , n} or some fixed permutation of {1, 2, · · · , n} for all epochs t,

then Algorithm 1 is equivalent to a cyclic gradient method. This method can also be
viewed as the incremental gradient scheme studied in (Nedic and Bertsekas, 2001),
and recently in (Li et al., 2020).
• If π(t) is randomly generated one time and repeatedly used at each iteration t, then

Algorithm 1 becomes a single shuffling variant (Safran and Shamir, 2020).
• If π(t) is randomly generated at each epoch t, then Algorithm 1 reduces to a random-

ized reshuffling scheme, broadly used in practice, see, e.g., (Hiroyuki, 2018).
The randomized reshuffling schemes have been studied, e.g., in (Gürbüzbalaban et al., 2019;
HaoChen and Sra, 2019; Nagaraj et al., 2019), but their convergence analysis has mainly
been investigated for the strongly convex case and often under a strong set of assumptions.

2.2 Model assumptions

Our analysis throughout the paper relies on the following standard assumptions of (P).

Assumption 1 Assume that problem (P) satisfies the following conditions:

(i) dom (F ) := {x ∈ Rd : F (x) < +∞} 6= ∅ and F∗ := infw∈Rd F (w) > −∞.

(ii) f(·; i) is L-smooth for all i ∈ [n], i.e. there exists a constant L ∈ (0,+∞) such that:

‖∇f(w; i)−∇f(ŵ; i)‖ ≤ L‖w − ŵ‖, ∀w, ŵ ∈ dom (F ) . (2)

Note that Assumption 1(i) is required in any algorithm to guarantee the well-definedness of
(P). Assumption 1(ii) is standard in gradient-type methods. Hence, we refer to Assump-
tion 1 as the standard assumption required throughout the paper. Assumption 1(ii) implies
that the objective function F is also L-smooth. Moreover, as proven in (Nesterov, 2004),
we have

F (w) ≤ F (ŵ) + 〈∇F (ŵ), w − ŵ〉+
L

2
‖w − ŵ‖2, ∀w, ŵ ∈ dom (F ) . (3)
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Apart from Assumption 1, we also require the following one in most of our results.

Assumption 2 There exists two constants Θ ∈ [0,+∞) and σ ∈ (0,+∞) such that

1

n

n∑
i=1

‖∇f(w; i)−∇F (w)‖2 ≤ Θ‖∇F (w)‖2 + σ2, ∀w ∈ dom (F ) . (4)

Note that if Θ = 0, then Assumption 2 reduces to the standard bounded variance assumption
Ei
[
‖f(w; i)−∇F (w)‖2

]
≤ σ2, which is often used in nonconvex problems, see, e.g., (Ghadimi

and Lan, 2013; Pham et al., 2020).

2.3 Technical lemmas for convergence analysis

The following two lemmas provide key estimates for our convergence analysis in this paper.
We first state them here and provide their proof in Appendix A.2.

Lemma 1 Let {Yt}t≥1 be a nonnegative sequence in R and q be a positive integer number.
Let ρ > 0 and D > 0 be two given constants and 0 < ηt ≤ 1

ρ be given for all t ≥ 1. Assume
that, for all t ≥ 1, we have

Yt+1 ≤ (1− ρ · ηt)Yt +D · ηq+1
t . (5)

If we choose ηt := q
ρ(t+β) for all t ≥ 1, where β ≥ q − 1, then we have

Yt+1 ≤
β · · · (β − q + 1)

(t+ β − q + 1) · · · (t+ β)
Y1 +

qq+1D log(t+ β)

ρq+1(t+ β − q + 1) · · · (t+ β)
. (6)

If we choose ηt := η ∈ (0, ρ−1) for all t ≥ 1, then we have

Yt+1 ≤ (1− ρη)tY1 +
Dηq[1− (1− ρη)t]

ρ
≤ Y1 exp(−ρηt) +

Dηq

ρ
. (7)

Lemma 2 Let {Yt}t≥1 and {Zt}t≥1 be two nonnegative sequences in R and m and q be two
positive numbers such that q > m. For positive constants ρ, α, β, γ, and D, assume that

Yt+1 ≤ Yt − ρηmt · Zt + ηqt ·D, where ηt :=
γ

(t+ β)α
and αm ≤ 1

2
. (8)

Suppose that Yt ≤ C + H log(t + θ) for some C > 0, H ≥ 0, θ > 0, and 1 + θ − β >

(1− αm)e
αm

1−αm for all t ≥ 1, (where e is the natural number). Then, we have

1

T

T∑
t=1

Zt ≤
1

T

[
(1 + β)αmY1

ργm
+
C(T − 1 + β)αm

2ραmγm
+
H(T − 1 + β)αm log(T + θ)

2ραmγm

]
+
Dγq−m

ρ
· A(T )

T
,

(9)

where

A(T ) :=

 log(T + β)− log(β) if α(q −m) = 1,

(T+β)1−α(q−m)

1−α(q−m) otherwise.
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Lemmas 1 and 2 are independent of interest, and play an important role not only
for deriving the results for shuffling-type gradient methods but also for applying our new
convergence analysis to the standard SGD algorithm (see Appendix D for more details).

Remark 1 (Types of guarantee) Since we can choose the permutation π(t) of Algo-
rithm 1 either deterministically or randomly, our bounds in the sequel will hold either deter-
ministically or in expectation, respectively. Without loss of generality, we write these results
in the context of expectation taken overall the randomness generated by the algorithm.

3. Convergence Analysis for Convex Case

In this section, we mainly consider two cases. In the first case, we only assume that the sum
function F is strongly convex while some components f(·; i) for i ∈ [n] are not necessarily
convex. In the second case, we assume that F is strongly convex and each f(·; i) for i ∈ [n]
is also convex. Let us state the strong convexity assumption of F as follows.

Assumption 3 (µ-strong convexity) The objective function F of (P) is µ-strongly con-
vex on dom (F ), i.e. there exists a constant µ ∈ (0,+∞) such that

F (w) ≥ F (ŵ) + 〈∇F (ŵ), w − ŵ〉+
µ

2
‖w − ŵ‖2, ∀w, ŵ ∈ dom (F ) . (10)

It is well-known from the literature (Nesterov, 2004; Bottou et al., 2018) that Assumption
3 implies the existence and uniqueness of the optimal solution w∗ of (P), and

µ

2
‖w − w∗‖2 ≤ F (w)− F (w∗) ≤

1

2µ
‖∇F (w)‖2, ∀w ∈ dom (F ) . (11)

As we have mentioned above, Assumption 3 only requires the sum function F to be strongly
convex, but some components f(·; i) can even be nonconvex.

Under Assumption 3, since problem (P) has a unique optimal solution w∗, we introduce
the following variance of F at w∗:

σ2
∗ :=

1

n

n∑
i=1

‖∇f(w∗; i)‖2 ∈ [0,+∞). (12)

Now, we state the convergence of Algorithm 1 with a constant learning rate in Theorem 1,
whose proof is given in Appendix B.1.

Theorem 1 Assume that Assumptions 1 and 3 hold (but some f(·; i) for i ∈ [n] are not
necessarily convex), σ2

∗ is defined by (12), and κ := L
µ is the condition number of F . Let

{w(t)
i }Tt=1 be generated by Algorithm 1 after T epochs with a constant stepsize η

(t)
i := 6 log(T )

µnT

and any shuffling strategy π(t). Then, for T ≥ 1 such that T ≥ 12κ2 log(T ), we have

E
[
F (w̃T )− F (w∗)

]
≤ 1

T 2

[(
F (w̃0)− F (w∗)

)
+

54(µ2 + L2)σ2
∗ log(T )2

µ3

]
= O

(
log(T )2

T 2

)
. (13)
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Assume additionally that π(t) is sampled uniformly at random without replacement from [n]

and Assumption 2 holds. Then, by choosing a learning rate η
(t)
i := 4 log(

√
nT )

µnT for T ≥ 1 such

that T ≥ 8L
√

Θ/n+1

µ2
log(
√
nT ), we have

E
[
F (w̃t)− F (w∗)

]
≤ 1

nT 2

[[
F (w̃0)− F (w∗)

]
+

2L2σ2 log(
√
nT )2

µ3

]
. (14)

Consequently, the convergence rate of
{
E
[
F (w̃T )− F (w∗)

]}
in this case is O

(
log(T )2

nT 2

)
.

Alternatively, assume additionally that π(t) is sampled uniformly at random without
replacement from [n] and each f(·; i) is convex for i ∈ [n]. Then, by choosing a constant

learning rate η
(t)
i := 2 log(

√
nT )

µnT for T ≥ 1 such that log(T
√
n) ≤ T

2 min
{

1,
√

5−1
κ

}
, we have

E
[
F (w̃t)− F (w∗)

]
≤ L

2
E
[
‖w̃t − w∗‖2

]
≤ L

2nT 2

[
E
[
‖w̃0 − w∗‖2

]
+

8Lσ2
∗ log(

√
nT )2

3µ3

]
. (15)

Consequently, the convergence rate of both
{
E
[
F (w̃T )− F (w∗)

]}
and

{
E
[
‖w̃T − w∗‖2

]}
in

this case is O
(

log(T )2

nT 2

)
.

The condition log(T
√
n) ≤ T

2 min
{

1,
√

5−1
κ

}
on T of (15) shows that T

log(T
√
n)
≥ O(κ),

where κ := L
µ is the condition number of F . This condition has been shown in previous

works, and aligns with recent results in (Ahn et al., 2020; Mishchenko et al., 2020). However,
unlike (Mishchenko et al., 2020), we have new results stated in (13) and (14).

Next, we prove the following result for the strongly convex case using diminishing learn-
ing rates. The detailed proof of this theorem is given in Appendix B.1.

Theorem 2 Assume that Assumptions 1 and 3 hold (but some f(·; i) for i ∈ [n] are not
necessarily convex), σ2

∗ is defined by (12), and κ := L
µ is the condition number of F . Let

{w(t)
i } be generated by Algorithm 1 with η

(t)
i := ηt

n and any shuffling strategy π(t) for solving
(P). Let ηt be updated by ηt := 6

µ(t+β) for all t ≥ 1, where β ≥ 12κ2 − 1. Then, we have

E
[
F (w̃t)− F (w∗)

]
≤ β(β − 1)

(t+ β)(t+ β − 1)

[(
F (w̃0)− F (w∗)

)
+

216(L2 + µ2)σ2
∗ log(t+ β)

µ3β(β − 1)

]
= O

(
log(t)

t2

)
. (16)

If, additionally, π(t) is sampled uniformly at random without replacement from [n], f(·; i)
(for all i ∈ [n]) are convex, and L ≤

√
5−1
2 , then by choosing ηt := 2

µ(t+1+1/n) for t ≥ 1, we
have

E
[
F (w̃t)− F (w∗)

]
≤ L

2
E
[
‖w̃t − w∗‖2

]
≤ 2L

n(t+ 1/n)(t+ 1/n+ 1)

[
E
[
‖w̃0 − w∗‖2

]
+
Lσ2
∗ log(t+ β)

3µ3

]
=O

(
log(t)

nt2

)
.

(17)
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The condition L ≤
√

5−1
2 in Theorem 2 holds without loss of generality. Indeed, if it does

not hold, then by rescaling f(·; i) by
√

5−1
2L · f(·; i), we obtain this condition. Clearly, with

a randomized reshuffling strategy, the convergence rate of Algorithm 1 is better than a
general shuffling one. This rate nearly matches the lower bound in previous works, e.g., in
(Nagaraj et al., 2019; Rajput et al., 2020). While our proof of (16) is new, the proof of
(17) is inspired by (Mishchenko et al., 2020), but it is rather different (see Lemma 7 in the
appendix). Moreover, our bound (17) is established for a diminishing stepsize ηt.

Since the total number of iterations is K := nT , if we write the convergence rates in
terms of K, then for any shuffling strategy, we have E

[
F (w̃T )−F (w∗)

]
≤ O

(
n2K−2

)
. How-

ever, for a randomized reshuffling one, we have E
[
F (w̃T )− F (w∗)

]
≤ O

(
nK−2

)
, matching

the result in (HaoChen and Sra, 2019; Mishchenko et al., 2020). As mentioned earlier, our
assumptions for (17) are as in (Mishchenko et al., 2020) and weaker than those in (HaoChen
and Sra, 2019; Nagaraj et al., 2019). Here, we use diminishing learning rates in Theorem 2
instead of constant ones as in (HaoChen and Sra, 2019; Mishchenko et al., 2020; Nagaraj
et al., 2019). Note that Algorithm 1 covers much broader class of algorithms compared to
existing methods in the literature.

Remark 1 (Non-strongly convex case) Similar to (Mishchenko et al., 2020), we can
use (39) of Lemma 7 to prove the following convergence rate for Algorithm 1 under only
convexity of f(·; i) for all i ∈ [n]. We state this result as follows without proof.

E
[
F (ŵT )− F (w∗)

]
≤ 1

ΣT

T∑
t=1

ηtE
[
F (w̃t−1)− F (w∗)

]
≤ 1

2ΣT
‖w̃0 − w∗‖2 +

Lσ2
∗

3nΣT
·
T∑
t=1

η3
t ,

where ΣT :=
∑T

t=1 ηt and ŵT := 1
ΣT

∑T
t=1 ηtw̃t−1 is a weighted averaging sequence.

• If we choose η := γn1/3

T 1/3 ≤ 1
2L as a constant learning rate, then we have

E
[
F (ŵT )− F (w∗)

]
≤ 1

n1/3T 2/3
·
[

1

2γ
‖w̃0 − w∗‖2 +

γ2Lσ2
∗

3

]
.

• If we choose ηt := γn1/3

(t+β)1/3
for 1 ≤ t ≤ T as a diminishing learning rate for some

γ > 0 and β ≥ 1 such that β ≥ 8L3γ3n− 1, then we have

E
[
F (ŵT )− F (w∗)

]
≤ 1

n1/3T 2/3
·
[

1

2γ
‖w̃0 − w∗‖2 +

γ2Lσ2
∗ log(T + β)

3

]
.

The constant learning rate case stated here is discussed in (Mishchenko et al., 2020). How-
ever, we add a new statement on diminishing learning rate that may be practically favorable.

4. Convergence Analysis for Nonconvex Case

We now provide convergence analysis for Algorithm 1 to solve nonconvex smooth instances
of (P). We consider two cases in Subsection 4.1 and 4.2, respectively.

11
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4.1 The general case

We state our first result on the nonconvex case, whose proof is given in Appendix C.1.

Theorem 3 Suppose that Assumptions 1 and 2 hold for (P). Let {w̃t}Tt=1 be generated by

Algorithm 1 with any shuffling strategy for π(t) and any learning rate η
(t)
i = ηt

n = η
n such

that 0 < η ≤ 1

L
√

2(3Θ+2)
. Then, we have

1

T

T∑
t=1

E
[
‖∇F (w̃t−1)‖2

]
≤ 4

Tη

[
F (w̃0)− F∗

]
+ 6L2σ2η2. (18)

If, additionally, π(t) is sampled uniformly at random without replacement from [n] and ηt
is chosen such that 0 < η ≤ 1

L
√

2(Θ/n+1)
, then we have

1

T

T∑
t=1

E
[
‖∇F (w̃t−1)‖2

]
≤ 4

Tη

[
F (w̃0)− F∗

]
+

4L2σ2η2

n
. (19)

If L, σ, and Θ are known, then we can choose the following learning rate to get a concrete
bound as stated in Corollary 1, whose proof can be found in Appendix C.1.

Corollary 1 Let {w̃t}Tt=1 be generated by Algorithm 1 for solving (P). For a given ε such
that 0 < ε ≤ 2σ2, under the same conditions as of (18) in Theorem 3, if we choose a

constant learning rate η :=
√
ε

2Lσ
√

3Θ+2
, then to guarantee 1

T

∑T
t=1 E

[
‖∇F (w̃t−1)‖2

]
≤ ε for

(P), it requires at most T :=
⌊

16Lσ(3Θ+2)3/2[F (w̃0)−F∗]
(6Θ+1) · 1

ε3/2

⌋
outer iterations. As a result,

the total number of gradient evaluations is at most T∇f :=
⌊

16Lσ(3Θ+2)3/2[F (w̃0)−F∗]
(6Θ+1) · n

ε3/2

⌋
.

If, in addition, π(t) is sampled uniformly at random without replacement from [n], then

by choosing η :=
√
nε

2Lσ
√

2(Θ/n+1)
for 0 < ε ≤ 4σ2

n , to guarantee 1
T

∑T
t=1 E

[
‖∇F (w̃t−1)‖2

]
≤ ε,

it requires at most T :=
⌊

16(Θ/n+1)3/2[F (w̃0)−F∗]
(2Θ/n+1) · Lσ√

nε3/2

⌋
outer iterations. Consequently, the

total number of gradient evaluations is at most T∇f :=
⌊

16(Θ/n+1)3/2[F (w̃0)−F∗]
(2Θ/n+1) · Lσ

√
n

ε3/2

⌋
.

Remark 2 To obtain the same bound, the total complexity of the standard SGD isO(LFσ
2
Sε
−2)

for solving (1) under the bounded variance Ei[‖∇f(w; i)−∇F (w)‖2] ≤ σ2
S for some σS > 0

and the LF -smoothness of F . Note that the standard SGD only requires F to be LF -smooth
while we impose the smoothness on individual realizations. Therefore, LF and L may be

different (Ghadimi and Lan, 2013). For a rough comparison, if n < O
(
LF σ

2
S

Lσ ·
1

ε1/2

)
, then

Algorithm 1 with any shuffling strategy seems to have advantages over the standard SGD
method in the nonconvex setting. In addition, if a randomized reshuffling strategy is used,

then for n ≤ 4σ2

ε , the complexity of Algorithm 1 is O
(
Lσ
√
n

ε3/2

)
, which is better than SGD

by a factor σ
ε1/3

. From this point of view, it seems that Algorithm 1 with a general shuffling
strategy is theoretically less efficient than SGD when a low accuracy solution is desirable
(i.e. ε is not too small) or when n� 1. However, we believe that Algorithm 1 allows more
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flexible strategy to choose f(·; i) rather than that i.i.d. sampling. For instance, choosing
a randomized reshuffling strategy significant improves the complexity of Algorithm 1. We
also note that our convergence guarantee is completely different from (Meng et al., 2019)
as mentioned earlier. Nevertheless, Assumptions 1 and 2 are very standard and hold for
various applications in machine learning.

Let us propose another choice of the learning rate ηt in the following result, who proof
can also be founded in Appendix C.1.

Corollary 2 Let {w̃t}Tt=1 be generated by Algorithm 1. Under the same conditions as of
(18) in Theorem 3, if we choose a constant learning rate η := γ

T 1/3 for some γ > 0 and

T ≥ 1 such that T 1/3 ≥ γL
√

2(3Θ + 2), then we have

1

T

T∑
t=1

E
[
‖∇F (w̃t−1)‖2

]
≤ 1

T 2/3

[
4
(
F (w̃0)− F∗

)
γ

+ 6L2σ2γ2

]
= O

(
1

T 2/3

)
. (20)

If, in addition, π(t) is sampled uniformly at random without replacement from [n], then by

choosing η := γn1/3

T 1/3 for some γ > 0 such that T 1/3 ≥ γLn1/3
√

2(Θ/n+ 1), we have

1

T

T∑
t=1

E
[
‖∇F (w̃t−1)‖2

]
≤ 4

n1/3T 2/3

[
(F (w̃0)− F∗)

γ
+ L2σ2γ2

]
= O

(
1

n1/3T 2/3

)
. (21)

Since the total number of iterations is K := nT , if we express (20) in terms of K, then

we have 1
T

∑T
t=1 E[‖∇F (w̃t−1)‖2] ≤ n2/3∆0

K2/3 , where ∆0 := F (w̃0)−F∗. Alternatively, we can

express (21) in terms of K as 1
T

∑T
t=1 E[‖∇F (w̃t−1)‖2] ≤ n1/3∆0

K2/3 .
The following theorem characterizes an asymptotic convergence for general diminishing

stepsizes, whose proof can be found in Appendix C.2.

Theorem 4 Suppose that Assumptions 1 and 2 hold for (P). Let {w̃t}t≥1 be generated by

Algorithm 1 with diminishing learning rate η
(t)
i = ηt

n such that
∑∞

t=1 ηt =∞ and
∑∞

t=1 η
3
t <

∞. Then, w.p.1. (i.e. almost surely), we have lim inf
t→∞

‖∇F (w̃t−1)‖2 = 0.

Now, if we vary ηt, then Theorem 5 shows how ηt affects our rates (see Appendix C.3).

Theorem 5 Suppose that Assumptions 1 and 2 hold for (P). Let {w̃t}Tt=1 be generated by

Algorithm 1 with η
(t)
i = ηt

n , where ηt := γ
(t+β)α , for some γ > 0, β > 0, and 1

3 < α < 1. If a

generic shuffling strategy is used, then we let D := 3
2L

2σ2 and assume that γL
√

2(3Θ + 2) ≤
(β+1)α. Otherwise, if a uniformly randomized reshuffling strategy is used, then we set D :=
L2σ2

n and assume that γL
√

2(Θ/n+ 1) ≤ (β+1)α. Let C := [F (w̃0)−F∗]+ Dγ3

(3α−1)β3α−1 > 0

be a given constant. Then, the following statements hold:
• If α = 1

2 , then the following bound holds:

1

T

T∑
t=1

E
[
‖∇F (w̃t−1)‖2

]
≤ 4(1 + β)1/2 [F (w̃0)− F∗]

γ
· 1

T
+

4C

γ
· (T − 1 + β)1/2

T

+ 4Dγ2 · log(T + β)− log(β)

T
.
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• If α 6= 1
2 , then we have

1

T

T∑
t=1

E
[
‖∇F (w̃t−1)‖2

]
≤ 4(1 + β)α [F (w̃0)− F∗]

γ
· 1

T
+

2C

αγ
· (T − 1 + β)α

T

+
4Dγ2

(1− 2α)
· (T + β)1−2α

T
.

If a uniformly randomized reshuffling strategy is used, then by replacing γ by n1/3γ, we have

• If α = 1
2 , then the convergence rate of Algorithm 1 is O

(
1 + T 1/2 + log(T )

n1/3T

)
.

• If α 6= 1
2 , then the convergence rate of Algorithm 1 is O

(
1 + T 1−2α + log(T )

n1/3T

)
.

Remark 3 In Theorem 5, if we choose α := 1
3 + δ for some 0 < δ < 1

6 , then we have

1

T

T∑
t=1

E
[
‖∇F (w̃t−1)‖2

]
≤ 4(1 + β)

1
3

+δ [F (w̃0)− F∗]
γ

· 1

T
+

2C

γ(1
3 + δ)

· (T − 1 + β)
1
3

+δ

T

+
12Dγ2

1− 6δ
· (T + β)

1
3
−2δ

T
,

where C := [F (w̃0)−F∗]+ Dγ3

3δβ3δ . Hence, the convergence rate of Algorithm 1 is O
(
T−( 2

3
−δ))

in general. If a randomized reshuffling strategy is used, then this rate is O
(
n−1/3T−( 2

3
−δ)
)

.

For the extreme case α := 1
3 , we have the following result (see Appendix C.3).

Theorem 6 Suppose that Assumptions 1 and 2 hold for (P). Let {w̃t}Tt=1 be generated

by Algorithm 1 with η
(t)
i := ηt

n , where ηt := γ
(t+β)1/3

for some γ > 0 and β > 0. If any

shuffling strategy is used, then let D := 3
2L

2σ2 and assume that γL
√

2(3Θ + 2) ≤ (β+1)1/3.

Otherwise, if a uniformly randomized reshuffling strategy is used, then let D := L2σ2

n and

assume that γL
√

2(Θ/n+ 1) ≤ (β + 1)1/3. Let C := [F (w̃0) − F∗] + Dγ3

(1+β) > 0 be a given
constant. Then the following bound holds:

1

T

T∑
t=1

E
[
‖∇F (w̃t−1)‖2

]
≤ 4(1 + β)1/3 [F (w̃0)− F∗]

γ
· 1

T
+ 12Dγ2 · (T + β)1/3

T

+ 6Dγ2 · (T − 1 + β)1/3 log(T + 1 + β)

T
+

6C

γ
· (T − 1 + β)1/3

T
.

Consequently, the convergence rate of Algorithm 1 is O
(

1
T + 1

T 2/3 + log(T )

T 2/3

)
. In addition,

if a uniformly randomized reshuffling strategy is used, then by replacing γ by n1/3γ into

the above estimate, the convergence rate of Algorithm 1 is O
(

1
n1/3T

+ 1
n1/3T 2/3 + log(T )

n1/3T 2/3

)
,

provided that γLn1/3
√

2(Θ/n+ 1) ≤ (β + 1)1/3.
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Remark 4 The choice of the learning rates in Theorems 5 and 6 is not necessarily depen-
dent on the smoothness constant L and Θ of Assumption 2. Since ηt is diminishing and both
L and Θ are finite, by choosing β large, the condition ηt ≤ 1

L
√

2(3Θ+2)
or ηt ≤ 1

L
√

2(Θ/n+1)

automatically holds. Therefore, the choices of γ, β, and α makes our results more flexible to
adjust in particular practical implementation. We believe that a diminishing or scheduled
diminishing learning rate is more favorable in practice than a constant one.

4.2 Convergence under gradient dominance

We can further improve convergence rates of Algorithm 1 in the nonconvex case by imposing
the following gradient dominance condition.

Assumption 4 A function F is said to be τ -gradient dominant if there exists a constant
τ ∈ (0,+∞) such that

F (w)− F∗ ≤ τ‖∇F (w)‖2, ∀w ∈ dom (F ) , (22)

where F∗ := infw∈Rd F (w).

This assumption is well-known and widely used in the literature, see, e.g., (Karimi et al.,
2016; Nesterov and Polyak, 2006; Polyak, 1964). It is also weaker than a strong convexity
assumption. When F∗ is achievable (i.e. F∗ = F (w∗) for some w∗), then we can observe
that every stationary point w∗ of the τ -gradient dominant function F is a global minimizer.
However, such a function F is not necessarily convex.

The following theorem states the convergence rate of Algorithm 1 under gradient dom-
inance, whose proof is deferred to Appendix C.4.

Theorem 7 Suppose that Assumptions 1, 2, and 4 hold for (P). Let {w(t)
i } be generated

by Algorithm 1 for solving (P) using η
(t)
i := ηt

n and any shuffling strategy. Let ηt be updated

as ηt := 2
t+β for some β ≥ max{2L

√
2(3Θ + 2)− 1, 1}. Then, for all t ≥ 1, we have

E
[
F (w̃t)−F∗

]
≤ 1

(t+ β − 1)(t+ β)

[
β(β−1)

(
F (w̃0)−F∗

)
+ 768 ·τ3L2σ2 log(t+β)

]
. (23)

Consequently, the convergence rate of
{
E
[
F (w̃t)− F∗

]}
is O

(
log(t)
t2

)
.

If, in addition, π(t) is uniformly sampled at random without replacement from [n] and
L
√

2(Θ/n+ 1) ≤ 1, then by choosing ηt := 2
t+1+1/n , for all t ≥ 1, we have

E
[
F (w̃t)− F∗

]
≤ 2

n(t+ 1/n)(t+ 1 + 1/n)

[(
F (w̃0)− F∗

)
+ 265 · τ3L2σ2 log(t+ β)

]
. (24)

Consequently, the convergence rate of
{
E
[
F (w̃t)− F∗

]}
is O

(
log(t)
nt2

)
.

As we mentioned earlier, the condition L
√

2(Θ/n+ 1) ≤ 1 for (24) is not restrictive.
One can always scale f(·; i) to guarantee this condition. The rate stated in (23) for the
general shuffling strategy is Õ(1/t2) for any 1 ≤ t ≤ T without fixing T a priori. If,
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in addition, a randomized reshuffling strategy is used, then our rate in (24) is improved to
Õ(1/(nt2)). Our rates in both cases are for diminishing learning rates. Note that (HaoChen
and Sra, 2019) provide O(1/(nT 2)) convergence rate but under a constant learning rate and
stronger assumptions, including Lipschitz Hessian continuity. A recent work in (Ahn et al.,
2020) also considers this gradient dominance case and achieves the O(1/(nT 2)) rate but
still requires a bounded gradient condition and using constant learning rate.

5. Numerical Experiments

In this section, we provide various numerical experiments to illustrate the theoretical con-
vergence results of Algorithm 1 for solving nonconvex problem instances of (P). We only
focus on the nonconvex setting since the convex case has been intensively studied in previ-
ous works, e.g., in (Ahn et al., 2020; Gürbüzbalaban et al., 2019; HaoChen and Sra, 2019;
Mishchenko et al., 2020). We implement Algorithm 1 in Python and compare between differ-
ent variants. Our code is available online at https://github.com/lamnguyen-mltd/shuffling.
For each experiment, we conduct 10 runs and reported the average results.

5.1 Nonconvex logistic regression example

We consider the following well-studied binary classification problem with nonconvex F :

min
w∈Rd

{
F (w) :=

1

n

n∑
i=1

[
log(1 + exp(−yix>i w)) +

λ

2

d∑
j=1

w2
j

1 + w2
j

]}
, (25)

where w ∈ Rd is the vector of model parameters and wj is the element of w, {(xi, yi)}ni=1 is
a set of training examples, and λ > 0 is a given regularization parameter.

We first conduct experiments to demonstrate the performance of Algorithm 1 on two
classification datasets w8a (n = 49, 749 samples) and ijcnn1 (n = 91, 701) from LIBSVM
(Chang and Lin, 2011). Since we only aim at testing the nonconvexity of each fi instead
of statistical properties, we simply choose λ := 0.01, but other values of λ also work. The
input data xi (i ∈ [n]) have been scaled in the range of [0, 1].

We apply Algorithm 1 with mini-batch size of 1 and η
(t)
i := ηt

n to solve (25), where

ηt := γ
(t+β)α and π(t) is generated randomly to obtain an SGD variant with randomized

reshuffling strategy. We experiment using different configurations: α = {1/3, 1/2, 1} and
γ/n = {0.001, 0.005, 0.01}, respectively on the two datasets: w8a and ijcnn1.

Figures 1 and 2 show our comparison on the loss value F (w̃t) and the test accuracy using
different configurations: α = {1/3, 1/2, 1} and γ/n = {0.001, 0.005, 0.01}, respectively on
the w8a and ijcnn1 datasets. The choices α = 1 and γ/n = 0.001 do not give good training
performances, hence we omit them in our plots.

Discussion. We observe from Figures 1 and 2 that the value α := 1/3 used in the
learning rate of Algorithm 1 usually gives the best performance. If we fix α := 1/3 and use
different ratios γ/n, then as showed in these plots, γ/n = 0.01 seems to work best. Note
that we plotted the confidence intervals in every figure, however these intervals for train
loss can barely be seen because the loss values for different random seeds do not deviate
much from the mean value in this experiment. The configuration α = 1/3 and γ/n = 0.01
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Figure 1: The behavior of the train loss F (w̃t) and the test accuracy (starting from the
2nd epoch) of (25) produced by different values of α and γ/n in Algorithm 1 using the w8a
dataset.

Figure 2: The behavior of the train loss F (w̃t) and the test accuracy (starting from the 2nd

epoch) of (25) produced by different values of α and γ/n in Algorithm 1 using the ijcnn1
dataset.

for the datasets w8a and ijcnn1 has larger confidence intervals for the test accuracy and
can be seen easily in Figures 1 and 2.

5.2 Fully connected neural network training example

Our second example is to test Algorithm 1 on a neural network training problem. We
perform this test on a fully connected neural network with two hidden layers of 300 and 100
nodes, followed by a fully connected output layer which fits into a soft-max cross-entropy
loss. We use PyTorch to train this model on the well-known MNIST dataset with n = 60, 000
(LeCun et al., 1998). This data set has 10 classes corresponding to 10 soft-max output
nodes. We also conduct another test on the CIFAR-10 dataset (n = 50, 000 samples and
10 classes) (Krizhevsky and Hinton, 2009). We scale the datasets by standardization. To
accelerate the performance, we run Algorithm 1 with a mini-batch size of 256 instead of
single sample. We use the same setting as in the previous experiment and do not use any
weight decay or any data augmentation techniques.

17



L. M. Nguyen, Q. Tran-Dinh, D. T. Phan, P. H. Nguyen, and M. van Dijk

We apply Algorithm 1 with a learning rate η
(t)
i := ηt

n , where ηt := γ
(t+β)α to solve this

training problem. We repeatedly run the algorithm 10 times and report the average results
in our figures. These plots compare the algorithms on different values of α = {1/3, 1/2, 1}
and γ/n = {0.01, 0.05, 0.1, 0.5}, respectively, on the two datasets.

Figures 3 and 4 show our comparison on the loss value F (w̃t) and test accuracy using
MNIST and CIFAR-10 datasets, respectively. For each dataset, we only plot the results of
experiments that yield the best training performance.

Figure 3: The behavior of the train loss F (w̃t) and the test accuracy (from the 4th epoch)
produced by Algorithm 1 for solving a neural network training problem on different values
of α and γ/n using the MNIST dataset.

Figure 4: The behavior of the train loss F (w̃t) and the test accuracy (from the 4th epoch)
produced by Algorithm 1 for solving a neural network training problem on different values
of α and γ/n using the CIFAR-10 dataset.

Discussion. We observe again from Figures 3 and 4 that α = 1/3 works best when
fixing γ/n. Once we fix α := 1/3 and test on γ/n, the ratios γ/n = 0.5 and γ/n = 0.1 give
the best performance for the MNIST and CIFAR-10 datasets, respectively. Similarly to the
nonconvex logistic regression datasets, the train loss values and the test accuracy for MNIST
do not deviate much in most cases. On the other hand, the CIFAR-10 dataset’s performance
is known to be noisy and we observe this phenomenon again in our experiments. The test
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accuracy for the choice α := 1/3 is not ideal in the early stage. However, it gives the best
performance and becomes stable toward the end of the training process.

5.3 Comparing different shuffling schemes

In this last subsection, we compare different shuffling strategies for Algorithm 1: Random
Reshuffling (RR), Shuffle Once (SO), and Incremental Gradient (IG). The behaviors of
Algorithm 1 for the CIFAR-10 dataset are particularly interesting since its optimization
problem is challenging to train. We experimented with the same neural network model as

in the previous experiment, but with a constant learning rate η
(t)
i = ηt/n := 0.05. The train

loss F (w̃t) and the test accuracy are shown in Figure 5.

Figure 5: The train loss F (w) and test accuracy produced by Algorithm 1 for the neural
network training problem using different shuffling schemes on the CIFAR-10 dataset.

Note that we start all experiments with the same initialization and run these algorithms
for 10 different random seeds. The only exception is the Incremental Gradient (IG) scheme
where a deterministic permutation π(t) := {1, 2, · · · , n} is used for all t ≥ 1. For this reason,
the IG scheme has only one run and we do not see its confidence intervals in Figure 5.

Discussion. We observe that the Random Reshuffling scheme works efficiently toward
the end of the training process. All shuffling schemes we test here are comparable at the
early stage, but the deviation seems to decrease along the training epochs.

6. Conclusions

We have conducted an intensive convergence analysis for a wide class of shuffling-type
gradient methods for solving a finite-sum minimization problem. In the strongly convex
case, we have established O(T−2) convergence rate under just strong convexity of the sum
function and the smoothness for any shuffling strategy. When a randomized reshuffling
strategy is used, our rate has been improved to O(n−1T−2), matching the results in the
literature but under different assumptions. For the nonconvex case, we have proved a non-
asymptotic O(T−2/3) convergence rate of our algorithm with any shuffling strategy under
standard assumptions, which is significantly better than some previous works such as (Li
et al., 2020). When a randomized reshuffling strategy is used, our rate has been improved
to O(n−1/3T−2/3), matching the recent result in (Mishchenko et al., 2020). We have also
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considered these rates in both constant and diminishing learning rates, and investigated an
asymptotic convergence. We believe that our results provide a unified analysis for shuffling-
type algorithms using both randomized and deterministic sampling strategies, where it
covers the well-known incremental gradient scheme as a special case. We have conducted
different numerical experiments to highlight some theoretical aspects of our results. We
believe that our analysis framework could be extended to study non-asymptotic convergence
rates of SGDs and minimax algorithms, including adaptive SGD variants such as Adam
(Kingma and Ba, 2014) and AdaGrad (Duchi et al., 2011) under shuffling strategies.
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Appendix A. Key Technical Lemmas for Convergence Analysis

This appendix provides the full proof of different technical lemmas using for our convergence
analysis in the entire paper. However, let us first outline the key idea of our analysis.

A.1 The outline of our convergence analysis

Let us briefly outline the key steps of our convergence analysis to help the readers easily
follow our main proofs.

• The key step of our analysis is to form a “quasi-descent” inequality between E
[
F (w̃t)−

F∗
]
, ηtE

[
‖∇F (w̃t−1)‖2

]
, and η3

t as, e.g., in (45) or (48), relying on (43) of Lemma 8.
• For the strongly convex case, we can form a “quasi-descent” inequality (see (39) of

Lemma 7) between E
[
F (w̃t)− F∗

]
, E
[
‖w̃t − w∗‖2

]
, and η3

t .
• To obtain such a desired bound, we need to upper bound the average deviation

1
n

∑n−1
j=0 ‖w

(t)
j − w

(t)
0 ‖2 between the inner iterates w

(t)
j and its epoch iterate w

(t)
0 via

‖∇F (w̃t−1)‖2 as in Lemma 6.
• The final step is to apply either Lemma 1 or Lemma 2 to obtain our results.

To improve our convergence rate for uniformly randomized reshuffling variants, we exploit
Lemma 3 below from (Mishchenko et al., 2020, Lemma 1).

A.2 General lemmas

In order to improve our theoretical results for randomized reshuffling variants, we will use
(Mishchenko et al., 2020, Lemma 1), which is stated as follows.

Lemma 3 Let X1, · · · , Xn be n given vectors in Rd, X̄ := 1
n

∑n
i=1Xi be their average,

and σ2 := 1
n

∑n
i=1 ‖Xi − X̄‖2 be their population variance. Fix any k ∈ {1, · · · , n}, let

Xπ1 , · · · , Xπk be sampled uniformly without replacement from {X1, · · · , Xn} and X̄π :=
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1
k

∑k
i=1Xπi be their average. Then, we have

E[X̄π] = X̄ and E
[
‖X̄π − X̄‖2

]
=

n− k
k(n− 1)

σ2.

Now, let us prove Lemma 1 and Lemma 2 in Subsection 2.3 of the main text.

Proof [The proof of Lemma 1] Let us choose ηt := q
ρ(t+β) for all t ≥ 1, where β ≥ q− 1.

Then, 0 < ρηt ≤ 1 for all t ≥ 1. From the condition Yt+1 ≤ (1− ρ · ηt)Yt +D · ηq+1
t in (5),

by induction, we can show that

Yt+1 ≤
t∏
i=1

(1− ρ · ηi)Y1 +D

t∑
i=1

ηq+1
i

t∏
j=i+1

(1− ρ · ηj). (26)

Using ηt := q
ρ(t+β) , we can directly compute the first coefficient as

Ct :=
∏t
i=1(1− ρ · ηi) =

∏t
i=1(1− q

i+β ) =
∏t
i=1

i+β−q
i+β

= β+1−q
β+1 ·

β+2−q
β+2 · · ·

β+1
β+q+1 · · ·

t+β−q
t+β

= (β+1−q)···β
(t+β−q+1)···(t+β) .

Similarly, we can show that, for any 1 ≤ i ≤ t, we have

Ei,t := ηq+1
i

∏t
j=i+1(1− ρ · ηj) = qq+1

ρq+1(i+β)q+1 · (i+β+1−q)···(i+β)
(t+β+1−q)···(t+β)

≤ qq+1

ρq+1(t+β+1−q)···(t+β)
· 1

(i+β) .

Therefore, we obtain∑t
i=1 η

q+1
i

∏t
j=i+1(1− ρ · ηj) =

∑t
i=1Ei,t ≤

qq+1

ρq+1(t+β+1−q)···(t+β)

∑t
i=1

1
i+β

≤ qq+1 log(t+β)
ρq+1(t+β−q+1)···(t+β)

Substituting this sum and Ct above into (26), we finally obtain (6), i.e.:

Yt+1 ≤ (β+1−q)···β
(t+β−q+1)···(t+β) · Y1 + Dqq+1 log(t+β)

ρq+1(t+β−q+1)···(t+β)
,

If we choose ηt := η ∈ (0, ρ−1) for all t ≥ 1, then 0 < ρηt ≤ 1, Ct = (1 − ρη)t, and

Ei,t = (1 − ρη)t−iηq+1. Hence, we get
∑t

i=1Ei,t = ηq+1
∑t

i=1(1 − ρη)t−i = ηq [1−(1−ρη)t]
ρ .

Substituting these Ct and Ei,t into (26), we obtain Yt+1 ≤ (1 − ρη)tY1 + Dηq [1−(1−ρη)t]
ρ ,

which proves the first inequality of (7). Now, since 1− ρη ≤ exp(−ρη) for 0 ≤ ρη ≤ 1 and
1− (1− ρη)t ≤ 1, we can easily prove the second inequality of (7).

Next, we prove the following elementary results, which will be used to prove Lemma 2.

Lemma 4 The following statements hold:
(a) For any 0 ≤ ν ≤ 1

2 and s > 0, we have (s+ 1)ν − sν ≤ 1
2s1−ν .
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(b) For any c > 0, θ > 0, β > 0, and 1 + θ− β > ce
1−c
c , the function f(t) := log(t+1+θ)

(t+β)c is

monotonically decreasing on [0,+∞).
(c) Suppose that f is a real-valued and monotonically decreasing function on [a,+∞) such

that f(x) ≥ 0 for all x ∈ [a,+∞). Then, for any integers t and t0 such that t ≥ t0 ≥ a,
we have

t∑
i=t0+1

f(i) ≤
∫ t

t0

f(x)dx ≤
t−1∑
i=t0

f(i). (27)

Proof (a) If 2ν ≤ 1, then
(
s+1
s

)1−2ν ≥ 1, which is equivalent to s+1
s ≥

(
s+1
s

)2ν
. This leads

to (s+ 1)νs1−ν − sν(s+ 1)1−ν ≤ 0. Hence, we have

(s+ 1)ν − sν =
1 + (s+ 1)νs1−ν − sν(s+ 1)1−ν

(s+ 1)1−ν + s1−ν ≤ 1

(s+ 1)1−ν + s1−ν ≤
1

2s1−ν ,

which proves assertion (a).
(b) Our goal is to show that f ′(t) < 0 for all t ≥ 0. We can directly compute f ′(t) as

f ′(t) = (t+ β)−c−1

[
1− 1 + θ − β

t+ 1 + θ
− c · log(t+ 1 + θ)

]
= (t+ β)−c−1g(t+ 1 + θ),

where g(τ) := 1− 1+θ−β
τ − c log(τ). We consider g(τ) for τ > 0. It is obvious to show that

g′(τ) = 1+θ−β
τ2
− c

τ = (1+θ−β)−cτ
τ2

and g′′(τ) = cτ−2(1+θ−β)
τ3

. Hence, g′(τ) = 0 has a unique

solution τ∗ := 1+θ−β
c > 0 and g′′(τ∗) = − c3

(1+θ−β)2
< 0. Consequently, g attains its unique

local maximum at τ∗. Moreover, for τ ≥ τ∗, we have g′(τ) ≤ 0. Hence, g is nonincreasing
on [τ∗,+∞), which leads to

g(τ) ≤ g(τ∗) = 1− c− c log

(
1 + θ − β

c

)
< 0.

Here, the last inequality holds since 1 + θ−β > ce
1−c
c . Since f ′(t) = (t+β)−c−1g(t+ 1 + θ),

where (t + β)−c−1 > 0 for any t ≥ 0 and c, we have f ′(t) < 0 for all t ≥ 0. Hence, f is
monotonically decreasing on [0,+∞).

(c) If f is monotonically decreasing and nonnegative on [a,+∞), then f(i + 1) ≤∫ i+1
i f(x)dx ≤ f(i) for any integer i ≥ a. Hence, summing this inequality from i := t0

to t− 1, we have

t∑
i=t0+1

f(i) =
t−1∑
i=t0

f(i+ 1) ≤
t−1∑
i=t0

∫ i+1

i
f(x)dx =

∫ t

t0

f(x)dx ≤
t−1∑
i=t0

f(i),

which proves (27).

Proof [The proof of Lemma 2] From the inequality (8) and ηt := γ
(t+β)α , we have

Zt ≤
1

ρηmt
(Yt − Yt+1) +

Dηq−mt

ρ
=

(t+ β)αm

ργm
(Yt − Yt+1) +

Dγq−m

ρ
· 1

(t+ β)α(q−m)
.
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Next, using Lemma 4(a) with s := t+ β and ν := mα we have

(t+ β + 1)αm − (t+ β)αm ≤ 1

2(t+ β)1−αm , (28)

because we assume that mα ≤ 1
2 . Summing up the first inequality from t = 1, · · · , T and

taking average, we have

1
T

∑T
t=1 Zt ≤

1
ργm ·

1
T

∑T
t=1(t+ β)αm(Yt − Yt+1) + Dγq−m

ρ · 1
T

∑T
t=1

1
(t+β)α(q−m)

= 1
ργm ·

1
T [(1 + β)αmY1 − (T + β)αmYT+1] + Dγq−m

ρ · 1
T

∑T
t=1

1
(t+β)α(q−m)

+ 1
ργm ·

1
T

∑T−1
t=1 ((t+ 1 + β)αm − (t+ β)αm)Yt+1

(28)

≤ (1+β)αmY1
ργm · 1

T + 1
2ργm ·

1
T

∑T−1
t=1

C+H log(t+1+θ)
(t+β)1−αm + Dγq−m

ρ · 1
T

∑T
t=1

1
(t+β)α(q−m)

(27)

≤ (1+β)αmY1
ργm · 1

T + C
2ργm ·

1
T

∫ T−1
t=0

dt
(t+β)1−αm + H

2ργm ·
1
T

∫ T−1
t=0

log(t+1+θ)
(t+β)1−αmdt

+ Dγq−m

ρ · 1
T

∫ T
t=0

dt
(t+β)α(q−m) ,

where the second inequality follows since 0 ≤ Yt ≤ C + H log(t + θ) for some C > 0,

H ≥ 0, and θ > 0, for all t ≥ 1, and αm ≤ 1
2 . The last inequality follows since log(t+1+θ)

(t+β)1−αm is

nonnegative and monotonically decreasing on [0,∞) according to Lemma 4(b) with 1−αm ≥
1
2 > 0 and 1+θ−β > (1−αm)e

αm
1−αm , and both 1

(t+β)1−αm and 1
(t+β)α(q−m) are also nonnegative

and monotonically decreasing on [0,∞). Note that∫ T−1
t=0

log(t+1+θ)
(t+β)1−αmdt = 1

αm(t+ β)αm log(t+ 1 + θ)
∣∣∣T−1

t=0
− 1

αm

∫ T−1
t=0

(t+β)αm

(t+1+θ) dt

≤ 1
αm(T − 1 + β)αm log(T + θ).

Therefore, we consider two cases:
• If α(q −m) = 1, we have

1
T

∑T
t=1 Zt ≤

(1+β)αmY1
ργm · 1

T + C
2ραmγm ·

(T−1+β)αm−βαm
T

+ H
2ραmγm ·

(T−1+β)αm log(T+θ)
T + Dγq−m

ρ · log(T+β)−log(β)
T

≤ (1+β)αmY1
ργm · 1

T + C
2ραmγm ·

(T−1+β)αm

T

+ H
2ραmγm ·

(T−1+β)αm log(T+θ)
T + Dγq−m

ρ · log(T+β)−log(β)
T .

• If α(q −m) 6= 1, we have

1
T

∑T
t=1 Zt ≤

(1+β)αmY1
ργm · 1

T + C
2ραmγm ·

(T−1+β)αm−βαm
T + H

2ραmγm ·
(T−1+β)αm log(T+θ)

T

+ Dγq−m

ρ(1−α(q−m)) ·
(T+β)1−α(q−m)−β1−α(q−m)

T

≤ (1+β)αmY1
ργm · 1

T + C
2ραmγm ·

(T−1+β)αm

T + H
2ραmγm ·

(T−1+β)αm log(T+θ)
T

+ Dγq−m

ρ(1−α(q−m)) ·
(T+β)1−α(q−m)

T .

Here, the result is obtained by directly computing the integrals. Hence, (9) is proved.
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A.3 Key estimates

This appendix provides four technical lemmas for the next steps of our analysis. However,
let us first state the following facts.
• Let w∗ be a stationary point of F , i.e. F (w∗) = 0. Then, if F is convex, then
w∗ ∈ arg minw∈Rd F (w). Consequently, for any permutation π(t) of [n], we have

n−1∑
j=0

∇f(w∗;π
(t)(j + 1)) = 0. (29)

• For any 1 ≤ i ≤ n, from the update of w
(t)
i in Algorithm 1, we have

w
(t)
i = w̃t−1 − ηt

n

∑i−1
j=0∇f(w

(t)
j ;π(t)(j + 1)),

w̃t = w̃t−1 − ηt
n

∑n−1
j=0 ∇f(w

(t)
j ;π(t)(j + 1)).

(30)

• Let us recalled σ2
∗ := 1

n

∑n
i=0 ‖∇f(w∗; i)‖2, the variance of F , defined by (12).

Now, we first upper bound 1
n

∑n−1
i=0 ‖w

(t)
i − w

(t)
0 ‖2 in the following lemma. This lemma

only requires Assumption 1(ii) to hold without convexity.

Lemma 5 Suppose that Assumption 1(ii) holds for (P). Let {w(t)
i } be generated by Al-

gorithm 1 with the learning rate η
(t)
i := ηt

n > 0 for a given positive sequence {ηt}. Then

‖w(t)
i − w

(t)
0 ‖2 ≤

2L2η2t ·i
n2

∑i−1
j=0 ‖w

(t)
j − w∗‖2 +

2η2t (n−i)
n · σ2

∗.

‖w(t)
i − w∗‖2 ≤ 2‖w(t)

0 − w∗‖2 +
4L2η2t ·i
n2 ·

∑i−1
j=0 ‖w

(t)
j − w∗‖2 +

4η2t (n−i)σ2
∗

n .
(31)

If, in addition, 0 < ηt ≤ 1
2L , then, for any 1 ≤ i ≤ n, we have∑i−1

j=0 ‖w
(t)
j − w∗‖2 ≤ 4i ·

[
‖w(t)

0 − w∗‖2 + 2η2
t σ

2
∗
]
. (32)

Consequently, if 0 < ηt ≤ 1
2L for all t ≥ 1, then we have

1

n

n−1∑
i=0

‖w(t)
i − w

(t)
0 ‖

2 ≤ η2
t ·

8L2

3
‖w(t)

0 − w∗‖
2 +

16L2σ2
∗

3
· η4
t + 2σ2

∗ · η2
t . (33)

Proof Using the first line of (30), the optimality condition ∇F (w∗) = 0 in (a), and
(u+ v)2 ≤ 2u2 + 2v2 and the Cauchy-Schwarz inequality in (b), for i ∈ [n], we can derive

‖w(t)
i − w

(t)
0 ‖2 =

η2t
n2

∥∥∑i−1
j=0∇f(w

(t)
j ;π(t)(j + 1))

∥∥2

(a)
=

η2t
n2

∥∥∑i−1
j=0

(
∇f(w

(t)
j ;π(t)(j + 1))−∇f(w∗;π

(t)(j + 1))
)

−
∑n−1

j=i ∇f(w∗;π
(t)(j + 1))

∥∥2

(b)

≤ 2η2t ·i
n2

∑i−1
j=0

∥∥∇f(w
(t)
j ;π(t)(j + 1))−∇f(w∗;π

(t)(j + 1))
∥∥2

+
2η2t ·(n−i)

n2

∑n−1
j=i

∥∥∇f(w∗;π
(t)(j + 1))

∥∥2
.

(34)

24



A Unified Convergence Analysis for Shuffling-Type Gradient Methods

Using (2) and (12), we can further estimate (34) as

‖w(t)
i − w

(t)
0 ‖2

(2)

≤ 2L2η2t ·i
n2

∑i−1
j=0 ‖w

(t)
j − w∗‖2 +

2(n−i)·η2t
n · 1

n

∑n−1
j=0 ‖∇f(w∗;π

(t)(j + 1))‖2

(12)

≤ 2L2η2t ·i
n2

∑i−1
j=0 ‖w

(t)
j − w∗‖2 +

2(n−i)·η2t
n · σ2

∗.

This is exactly the first inequality of (31).
Next, by ‖u+ v‖2 ≤ 2‖u‖2 + 2 ‖v‖2 for any u and v, for i ∈ [n], using the last inequality

we can easly show that

‖w(t)
i − w∗‖2 ≤ 2‖w(t)

0 − w∗‖2 + 2‖w(t)
i − w

(t)
0 ‖2

≤ 2‖w(t)
0 − w∗‖2 + η2

t · 4iL2

n2

∑i−1
j=0 ‖w

(t)
j − w∗‖2 +

4η2t (n−i)
n · σ2

∗,

which proves the second estimate of (31).
Now, summing up the second estimate of (31) from j = 0 to j = i− 1, we obtain∑i−1
j=0 ‖w

(t)
j − w∗‖2 ≤ 2i · ‖w(t)

0 − w∗‖2 +
4η2t σ

2
∗

n

∑i−1
j=0(n− j) +

4L2η2t
n2

∑i−1
j=0 j

∑j−1
k=0 ‖w

(t)
k − w∗‖

2

≤ 2i · ‖w(t)
0 − w∗‖2 + 4η2

t σ
2
∗ · i+

2L2η2t ·i(i−1)
n2

∑i−1
j=0 ‖w

(t)
j − w∗‖2

≤ 2i
[
‖w(t)

0 − w∗‖2 + 2η2
t σ

2
∗
]

+ 2L2η2
t

∑i−1
j=0 ‖w

(t)
j − w∗‖2.

Here, we obtain the second inequality by first rearranging the double sum and then upper
bound each term. Since 0 < ηt ≤ 1

2L , we have 1 − 2L2η2
t ≥ 1

2 . Rearranging the last
inequality and using the last fact, we obtain (32).

Finally, combining the first inequality of (31) and (32), we can derive that∑n−1
i=0 ‖w

(t)
i − w

(t)
0 ‖2

(31)

≤ 2L2η2t
n2

∑n−1
i=0 i ·

∑i−1
j=0 ‖w

(t)
j − w∗‖2 +

2σ2
∗η

2
t

n

∑n−1
i=0 (n− i)

(32)

≤ 2L2η2t
n2

∑n−1
i=0 4i2

[
‖w(t)

0 − w∗‖2 + 2η2
t σ

2
∗
]

+ σ2
∗η

2
t (n+ 1)

≤ 8L2η2t ·n
3 ‖w(t)

0 − w∗‖2 + 16L2σ2
∗·n

3 · η4
t + 2σ2

∗η
2
t · n,

which implies (33) after multiplying both sides by 1
n .

Lemma 6 Suppose that Assumption 1(ii) and Assumption 2 hold for (P). Let {w(t)
i } be

generated by Algorithm 1 with any shuffling strategy π(t) and a learning rate η
(t)
i := ηt

n > 0
for a given positive sequence {ηt} such that 0 < ηt ≤ 1

L
√

3
. Then, we have

n−1∑
j=0

‖w(t)
j − w

(t)
0 ‖

2 ≤ nη2
t ·
[
(3Θ + 2) ‖∇F (w

(t)
0 )‖2 + 3σ2

]
. (35)

If π(t) is uniformly sampled at random without replacement from [n] and the learning rate
ηt satisfies 0 < ηt ≤ 1

L
√

3
for all t ≥ 1, then we have

E
[ n−1∑
j=0

‖w(t)
j − w

(t)
0 ‖

2
]
≤ 2η2

t ·
[
(Θ + n)E

[
‖∇F (w

(t)
0 )‖2

]
+ σ2

]
. (36)
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Proof First, from the first line of (30), by using ‖
∑3

i=1 ai‖2 ≤ 3
∑3

i=1 ‖ai‖2 in (a) and the
Cauchy-Schwarz inequality in (b), we can derive that

‖w(t)
i − w

(t)
0 ‖2

(30)
=

i2·η2t
n2

∥∥1
i

∑i−1
j=0∇f(w

(t)
j ;π(t)(j + 1))

∥∥2

(a)

≤ 3i2·η2t
n2

[∥∥∥1
i

∑i−1
j=0

(
∇f(w

(t)
0 ;π(t)(j + 1))−∇F (w

(t)
0 )
)∥∥∥2

+ ‖∇F (w
(t)
0 )‖2

]
+

3i2·η2t
n2

∥∥∥1
i

∑i−1
j=0

(
∇f(w

(t)
j ;π(t)(j + 1))−∇f(w

(t)
0 ;π(t)(j + 1))

)∥∥∥2

(b)

≤ 3i2·η2t
n2

1
i

∑i−1
j=0

∥∥∇f(w
(t)
j ;π(t)(j + 1))−∇f(w

(t)
0 ;π(t)(j + 1))

∥∥2

+
3i2·η2t
n2

[
1
i

∑i−1
j=0

∥∥∇f(w
(t)
0 ;π(t)(j + 1))−∇F (w

(t)
0 )
∥∥2

+ ‖∇F (w
(t)
0 )‖2

]
.

(37)

Let us introduce ∆ :=
∑n−1

j=0 ‖w
(t)
j −w

(t)
0 ‖2. Then, using (2) from Assumption 1(ii) and (4)

from Assumption 2, we can further derive from (37) that

‖w(t)
i − w

(t)
0 ‖2

(2)

≤ 3i2·η2t
n2

[
1
i

∑i−1
j=0

∥∥∇f(w
(t)
0 ;π(t)(j + 1))−∇F (w

(t)
0 )
∥∥2

+ ‖∇F (w
(t)
0 )‖2

]
+

3i2·η2t
n2

L2

i

∑i−1
j=0 ‖w

(t)
j − w

(t)
0 ‖2

≤ 3i2·η2t
n2

[
n
i ·

1
n

∑n−1
j=0

∥∥∇f(w
(t)
0 ;π(t)(j + 1))−∇F (w

(t)
0 )
∥∥2

+ ‖∇F (w
(t)
0 )‖2

]
+

3iL2η2t
n2

∑i−1
j=0 ‖w

(t)
j − w

(t)
0 ‖2

(4)

≤ 3iL2η2t
n2

∑i−1
j=0 ‖w

(t)
j − w

(t)
0 ‖2 +

3i2·η2t
n2

[
n
i

(
Θ‖∇F (w

(t)
0 )‖2 + σ2

)
+ ‖∇F (w

(t)
0 )‖2

]
≤ 3iL2η2t

n2 ∆ +
3η2t
n2

[
n · i

(
Θ‖∇F (w

(t)
0 )‖2 + σ2

)
+ i2‖∇F (w

(t)
0 )‖2

]
.

Using this estimate and the definition of ∆, we have

∆ =
∑n−1

i=0 ‖w
(t)
i − w

(t)
0 ‖2

≤ 3L2η2t
n2

(∑n−1
i=0 i

)
∆ +

3η2t
n2

[
n
(
Θ‖∇F (w

(t)
0 )‖2 + σ2

)∑n−1
i=0 i+ ‖∇F (w

(t)
0 )‖2

∑n−1
i=0 i

2
]

≤ 3L2η2t
2 ∆ +

3nη2t
2

(
Θ‖∇F (w

(t)
0 )‖2 + σ2

)
+ nη2‖∇F (w

(t)
0 )‖2

≤ 3L2η2t
2 ∆ +

nη2t
2

[
(3Θ + 2) ‖∇F (w

(t)
0 )‖2 + 3σ2

]
,

where the second inequality follows since
∑n−1

i=0 i = n(n−1)
2 ≤ n2

2 and
∑n−1

i=0 i
2 = n(n−1)(2n−1)

6 ≤
n3

3 . Rearranging the last inequality and noticing that 1 − 3L2η2t
2 ≥ 1

2 due to the condition
0 < ηt ≤ 1√

3L
on ηt, we obtain (35).

Now, let π(t) := (π(t)(1), · · · , π(t)(n)) be sampled uniformly at random without replace-

ment from [n]. For each epoch t ≥ 1, we denote Ft := σ(w
(1)
0 , · · · , w(t)

0 ), the σ-algebra
generated by the iterates of Algorithm 1. Similar to the proof of (37), we can show that

‖w(t)
i − w

(t)
0 ‖2 ≤

3i2·η2t
n2

∥∥1
i

∑i−1
j=0

(
∇f(w

(t)
0 ;π(t)(j + 1))−∇F (w

(t)
0 )
)∥∥2

+
3i2·η2t
n2 ‖∇F (w

(t)
0 )‖2

+
3iL2η2t
n2

∑n−1
j=0 ‖w

(t)
j − w

(t)
0 ‖2.
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Taking expectation conditioned on Ft both sides of this estimate and using ∆, we get

E
[
‖w(t)

i − w
(t)
0 ‖2 | Ft

]
≤ 3i2·η2t

n2 E
[∥∥1

i

∑i−1
j=0

(
∇f(w

(t)
0 ;π(t)(j + 1))−∇F (w

(t)
0 )
)∥∥2 | Ft

]
+

3i2·η2t
n2 ‖∇F (w

(t)
0 )‖2 +

3iL2η2t
n2 E[∆ | Ft].

(38)

Applying Lemma 3 and (4), we can upper bound the first term of (38) as

T[2] := E
[∥∥1

i

∑i−1
j=0∇f(w

(t)
0 ;π(t)(j + 1))−∇F (w

(t)
0 )
∥∥2 | Ft

]
= n−i

i(n−1)
1
n

∑n−1
j=0

∥∥∇f(w
(t)
0 ; j + 1)−∇F (w

(t)
0 )
∥∥2

(4)

≤ i(n−i)
i2(n−1)

[
Θ
∥∥∇F (w

(t)
0 )
∥∥2

+ σ2
]
.

Substituting this inequality into (38), we get

E
[
‖w(t)

i − w
(t)
0 ‖2 | Ft

]
≤ 3iL2η2t

n2 E[∆ | Ft] +
3η2t
n2

i(n−i)
(n−1)

[
Θ
∥∥∇F (w

(t)
0 )
∥∥2

+ σ2
]

+
3i2·η2t
n2 ‖∇F (w

(t)
0 )‖2.

Taking full expectation over Ft of both sides of the last estimate, we have

E
[
‖w(t)

i − w
(t)
0 ‖2

]
≤ 3iL2η2t

n2 E[∆] +
3η2t
n2

i(n−i)
(n−1)

[
ΘE
[∥∥∇F (w

(t)
0 )
∥∥2]

+ σ2
]

+
3i2·η2t
n2 E

[
‖∇F (w

(t)
0 )‖2

]
.

Using the last estimate and the definition of ∆, we can derive that

E[∆] =
∑n−1

i=0 E
[
‖w(t)

i − w
(t)
0 ‖2

]
≤ 3L2η2t

n2 · E[∆]
(∑n−1

i=0 i
)

+
3η2t

n2(n−1)
·
[
ΘE
[
‖∇F (w

(t)
0 )‖2

]
+ σ2

]
·
[∑n−1

i=0 i(n− i)
]

+
3η2t
n2 · E

[
‖∇F (w

(t)
0 )‖2

](∑n−1
i=0 i

2
)

≤ 3L2η2t
2 · E[∆] + η2

t ·
[(

Θ + n
)
E
[
‖∇F (w

(t)
0 )‖2

]
+ σ2

]
,

where the second inequality follows since
∑n−1

i=0 i = n(n−1)
2 ≤ n2

2 ,
∑n−1

i=0 i
2 = n(n−1)(2n−1)

6 ≤
n3

3 , and
∑n−1

i=0 i(n − i) = (n−1)n(n+1)
6 ≤ n2(n−1)

3 . Now, since 0 < ηt ≤ 1√
3L

, we have

1− 3L2η2t
2 ≥ 1

2 . Rearranging the last inequality and using this fact, we finally get (36).

Let us improve Lemma 5 above by using a randomized reshuffling strategy, the convexity
of each f(·; i) for i ∈ [n], and the strong convexity of F .

Lemma 7 Suppose that Assumption 1(ii) holds and each f(·; i) is convex for i ∈ [n]. Let

{w(t)
i } be generated by Algorithm 1 and σ2

∗ be defined by (12). Let π(t) := (π(t)(1), · · · , π(t)(n))
be sampled uniformly at random without replacement from [n]. Then, if we choose ηt such

that 0 < ηt ≤
√

5−1
2L , then, for any t ≥ 1, we have

E
[
‖w̃t − w∗‖2

]
≤ E

[
‖w̃t−1 − w∗‖2

]
− 2ηt · [F (w̃t−1)− F (w∗)] +

2Lη3
t σ

2
∗

3n
. (39)
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Proof Using the first line of (30), with the same proof as of (34), we have

‖w(t)
i − w̃t−1‖2 ≤ 2η2t ·i

n2

∑i−1
j=0 ‖∇f(w

(t)
j ;π(t)(j + 1))−∇f(w∗;π

(t)(j + 1))‖2 +
2η2tB

∗
i

n2 ,

where B∗i := ‖
∑n−1

j=i ∇f(w∗;π
(t)(j + 1))‖2. Summing up this inequality from i := 0 to

i := n− 1, we can derive that

n−1∑
i=0

‖w(t)
i − w̃t−1‖2 ≤

2η2
t

n2

n−1∑
i=0

i ·
i−1∑
j=0

‖∇f(w
(t)
j ;π(t)(j + 1))−∇f(w∗;π

(t)(j + 1))‖2 +
2η2
t

n2

n−1∑
i=0

B∗i

≤ η2
t

n−1∑
j=0

‖∇f(w
(t)
j ;π(t)(j + 1))−∇f(w∗;π

(t)(j + 1))‖2 +
2η2
tB
∗

n2
. (40)

where B∗ :=
∑n−1

i=0 B
∗
i =

∑n−1
i=0 ‖

∑n−1
j=i ∇f(w∗;π

(t)(j + 1))‖2.
Next, using the second line of (30) and the Cauchy-Schwarz inequality, we have

‖w̃t − w∗‖2 = ‖w̃t−1 − w∗‖2 + 2ηt
n

∑n−1
j=0 〈∇f(w

(t)
j ;π(t)(j + 1)), w∗ − w̃t−1〉

+
η2t
n2 ‖

∑n−1
j=0 (∇f(w

(t)
j ;π(t)(j + 1))−∇f(w∗;π

(t)(j + 1)))‖2

≤ ‖w̃t−1 − w∗‖2 + 2ηt
n

∑n−1
j=0 〈∇f(w

(t)
j ;π(t)(j + 1)), w∗ − w̃t−1〉

+
η2t
n

∑n−1
j=0 ‖∇f(w

(t)
j ;π(t)(j + 1))−∇f(w∗;π

(t)(j + 1))‖2.

(41)

We can upper bound the second term on the right-hand side of (41) as follows:

T[1] :=
∑n−1

j=0 〈∇f(w
(t)
j ;π(t)(j + 1)), w∗ − w̃t−1〉

=
∑n−1

j=0 〈∇f(w
(t)
j ;π(t)(j + 1)), w∗ − w(t)

j 〉+
∑n−1

j=0 〈∇f(w
(t)
j ;π(t)(j + 1)), w

(t)
j − w̃t−1〉

(a)

≤
∑n−1

j=0 〈∇f(w
(t)
j ;π(t)(j + 1)), w∗ − w(t)

j 〉+ L
2

∑n−1
j=0 ‖w

(t)
j − w̃t−1‖2

+
∑n−1

j=0

[
f(w

(t)
j ;π(t)(j + 1))− f(w̃t−1;π(t)(j + 1))

]
= −

∑n−1
j=0

[
f(w∗;π

(t)(j + 1))− f(w
(t)
j ;π(t)(j + 1))− 〈∇f(w

(t)
j ;π(t)(j + 1)), w∗ − w(t)

j 〉
]

+ L
2

∑n−1
j=0 ‖w

(t)
j − w̃t−1‖2 +

∑n−1
j=0

[
f(w∗;π

(t)(j + 1))− f(w̃t−1;π(t)(j + 1))
]

(b)

≤ L
2

∑n−1
j=0 ‖w

(t)
j − w̃t−1‖2 − 1

2L

∑n−1
j=0 ‖∇f(w

(t)
j ;π(t)(j + 1))−∇f(w∗;π

(t)(j + 1))‖2

− n
[
F (w̃t−1)− F (w∗)

]
.

Here, we have used in (a) the following estimate

〈∇f(w
(t)
j ; ·), w(t)

j − w̃t−1〉 ≤ f(w
(t)
j ; ·)− f(w̃t−1; ·) +

L

2
‖w(t)

j − w̃t−1‖2

and in (b) the following two estimates:

f(w∗; ·)− f(w
(t)
j ; ·)− 〈∇f(w

(t)
j ; ·), w∗ − w(t)

j 〉 ≥
1

2L‖∇f(w
(t)
j ; ·)−∇f(w∗; ·)‖2,

and
∑n−1

j=0

[
f(w∗;π

(t)(j + 1))− f(w̃t−1;π(t)(j + 1))
]

= n [F (w∗)− F (w̃t−1)] .
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Substituting (40) into T[1], we can further upper bound it as

T[1] ≤
(
Lη2t

2 −
1

2L

)∑n−1
j=0 ‖∇f(w

(t)
j ;π(t)(j + 1)−∇f(w∗;π

(t)(j + 1)‖2

− n [F (w̃t−1)− F (w∗)] +
Lη2tB

∗

n2 .

Using this upper bound of T[1] into (41), we get

‖w̃t − w∗‖2 ≤ ‖w̃t−1 − w∗‖2 − 2ηt [F (w̃t−1)− F (w∗)] +
2Lη3tB

∗

n3

+
(
Lη3t
n −

ηt
Ln +

η2t
n

)∑n−1
j=0 ‖∇f(w

(t)
j ;π(t)(j + 1))−∇f(w∗;π

(t)(j + 1))‖2.

Let us choose ηt > 0 such that L2η3
t +Lη2

t − ηt ≤ 0 (or equivalently, 0 < ηt ≤
√

5−1
2L ). Then,

this estimate reduces to

‖w̃t − w∗‖2 ≤ ‖w̃t−1 − w∗‖2 − 2ηt [F (w̃t−1)− F (w∗)] +
2Lη3tB

∗

n3 . (42)

If π(t) := (π(t)(1), · · · , π(t)(n)) is uniformly sampled at random without replacement from

[n], then by Lemma 3, we have E
[

1
n−i

∑n−1
j=i ∇f(w∗;π

(t)(j + 1))
]

= ∇F (w∗) and

E[B∗] = E
[∑n−1

i=0

∥∥∑n−1
j=i ∇f(w∗;π

(t)(j + 1))
∥∥2
]

=
∑n−1

i=0 (n− i)2E
[∥∥ 1

n−i
∑n−1

j=i ∇f(w∗;π
(t)(j + 1))

∥∥2
]

=
∑n−1

i=0 (n− i)2E
[∥∥ 1

n−i
∑n−1

j=i ∇f(w∗;π
(t)(j + 1))−∇F (w∗)

∥∥2
]

=
∑n−1

i=0
(n−i)2i

(n−i)(n−1)
1
n

∑n−1
j=0

∥∥∇f(w∗;π
(t)(j + 1))

∥∥2

(12)
= σ2

∗
n−1

∑n−1
i=0 i(n− i)

= n(n+1)σ2
∗

6 .

Taking expectation both sides of (42) and using this upper bound of B∗, we obtain (39).

Finally, we will need the following bound on F in the sequel.

Lemma 8 Suppose that Assumption 1(ii) holds for (P). Let {w(t)
i } be generated by Algo-

rithm 1 with any shuffling strategy π(t) and a learning rate η
(t)
i := ηt

n > 0 for a given positive
sequence {ηt} such that 0 < ηt ≤ 1

L . Then, for any t ≥ 1, we have

F (w
(t+1)
0 ) ≤ F (w

(t)
0 )− ηt

2
‖∇F (w

(t)
0 )‖2 +

L2ηt
2n

n−1∑
i=0

‖w(t)
i − w

(t)
0 ‖

2. (43)
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Proof Since F is L-smooth by Assumption 1(ii), we can derive

F (w
(t+1)
0 )

(3)

≤ F (w
(t)
0 ) +∇F (w

(t)
0 )>(w

(t+1)
0 − w(t)

0 ) + L
2 ‖w

(t+1)
0 − w(t)

0 ‖2

(30)
= F (w

(t)
0 )− ηt∇F (w

(t)
0 )>

(
1
n

∑n−1
i=0 ∇f(w

(t)
i ;π(t)(i+ 1))

)
+

Lη2t
2

∥∥ 1
n

∑n−1
i=0 ∇f(w

(t)
i ;π(t)(i+ 1))

∥∥2

(a)
= F (w

(t)
0 )− ηt

2 ‖∇F (w
(t)
0 )‖2 + ηt

2

∥∥∇F (w
(t)
0 )− 1

n

∑n−1
i=0 ∇f(w

(t)
i ;π(t)(i+ 1))

∥∥2

− ηt
2 (1− Lηt)

∥∥ 1
n

∑n−1
i=0 ∇f(w

(t)
i ;π(t)(i+ 1))

∥∥2

(b)

≤ F (w
(t)
0 ) + ηt

2

∥∥ 1
n

∑n−1
i=0 ∇f(w

(t)
0 ;π(t)(i+ 1))− 1

n

∑n−1
i=0 ∇f(w

(t)
i ;π(t)(i+ 1))

∥∥2

− ηt
2 ‖∇F (w

(t)
0 )‖2

(c)

≤ F (w
(t)
0 ) + ηt

2n

∑n−1
i=0

∥∥∇f(w
(t)
0 ;π(t)(i+ 1))−∇f(w

(t)
i ;π(t)(i+ 1))

∥∥2

− ηt
2 ‖∇F (w

(t)
0 )‖2

(2)

≤ F (w
(t)
0 )− ηt

2 ‖∇F (w
(t)
0 )‖2 + L2ηt

2n

∑n−1
i=0 ‖w

(t)
i − w

(t)
0 ‖2,

where (a) follows from u>v = 1
2(‖u‖2 + ‖v‖2 − ‖u − v‖2), (b) follows from the fact that

ηt ≤ 1
L , and (c) is from the Cauchy-Schwarz inequality.

Appendix B. Convergence Analysis for Strongly Convex Case

In this section, we present the full proof of the results in the main text of Section 3.

B.1 Proofs of Theorem 1 and Theorem 2: The strongly convex case

Proof [The proof of Theorem 1] Using (33), we can further estimate (43) as follows:

F (w
(t+1)
0 ) ≤ F (w

(t)
0 )− ηt

2 ‖∇F (w
(t)
0 )‖2 + L2ηt

2
1
n

∑n−1
i=0 ‖w

(t)
i − w

(t)
0 ‖2

(33)

≤ F (w
(t)
0 )− ηt

2 ‖∇F (w
(t)
0 )‖2

+ L2ηt
2

(
η2
t · 8L2

3 ‖w
(t)
0 − w∗‖2 + η4

t ·
16L2σ2

∗
3 + η2

t · 2σ2
∗

)
(11)

≤ F (w
(t)
0 )− µηt

[
F (w

(t)
0 )− F (w∗)

]
+

8L4η3t
3µ

[
F (w

(t)
0 )− F (w∗)

]
+ 8L4σ2

∗
3 · η5

t + L2σ2
∗ · η3

t ,

Subtracting F (w∗) from both sides of the last inequality, we can further derive

F (w
(t+1)
0 )− F (w∗) ≤

[
1− ηt

(
µ− 8L4

3µ η
2
t

)] [
F (w

(t)
0 )− F (w∗)

]
+L2σ2

∗η
3
t

(
1 +

8L2η2t
3

)
. (44)
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Now, assume that 0 < ηt <
√

3
8
µ
L2 . Then, one can show that

µ− 4L4

3µ
η2
t ≥ µ−

2

3
µ =

µ

3
> 0 and

8L4σ2
∗

3
η2
t <

8L4σ2
∗

3
· 3

8

µ2

L4
= µ2σ2

∗.

Using these bounds into (44), we can further upper bound it as

F (w
(t+1)
0 )− F (w∗) ≤

(
1− µ

3
ηt

) [
F (w

(t)
0 )− F (w∗)

]
+ η3

t

(
µ2 + L2

)
σ2
∗. (45)

Note that we have imposed ηt ≤ min
{

1
2L ,
√

3
8
µ
L2

}
due to ηt ≤ 1

2L in Lemma 5.

Now, let us define Yt := F (w
(t)
0 ) − F (w∗) = F (w̃t−1) − F (w∗) ≥ 0, ρ := µ

3 , and D :=
(µ2 + L2)σ2

∗. The estimate (45) becomes

Yt+1 ≤ (1− ρ · ηt)Yt +Dη3
t .

Applying (7) of Lemma 1 with q = 2 and η := 2 log(T )
ρT = 6 log(T )

µT , we obtain

YT+1 ≤ (1− ρη)TY1 + Dη2[1−(1−ρη)T ]
ρ ≤ Y1 exp(−ρηT ) + Dη2

ρ

=
[
F (w̃0)− F∗

]
exp

(
− 2 log(T )

)
+ 54(µ2+L2)σ2

∗ log(T )2

µ3T 2 .

This estimate leads to F (w̃T )−F (w∗) ≤
[
F (w̃0)−F (w∗)

]
T 2 + 54(µ2+L2)σ2

∗ log(T )2

µ3T 2 , which is exactly

(13) after taking expectation. To guarantee ηt = 6 log(T )
µT ≤ min

{
1

2L ,
√

3
8
µ
L2

}
, we need to

choose T such that log(T )
T ≤ min

{
µ

12L ,
µ2

6L2

√
3
8

}
. This condition holds if T ≥ 12κ2 log(T ).

Next, under Assumption 2 and the randomized reshuffling strategy of π(t), using (36),
we can further estimate (43) as follows:

E
[
F (w

(t+1)
0 )

]
≤ E

[
F (w

(t)
0 )
]
− ηt

2 E
[
‖∇F (w

(t)
0 )‖2

]
+ L2ηt

2n

∑n−1
i=0 E

[
‖w(t)

i − w
(t)
0 ‖2

]
(36)

≤ E
[
F (w

(t)
0 )
]
− ηt

2 E
[
‖∇F (w

(t)
0 )‖2

]
+

L2η3t
n

[
(Θ + n)E

[
‖∇F (w

(t)
0 )‖2

]
+ σ2

]
(11)

≤ E
[
F (w

(t)
0 )
]
− µηtE

[
F (w

(t)
0 )− F (w∗)

]
+

2L2(Θ+n)η3t
nµ E

[
F (w

(t)
0 )− F (w∗)

]
+

L2σ2
∗η

3
t

n .

Subtracting F (w∗) from both sides of the last inequality, we can further derive

E
[
F (w

(t+1)
0 )− F (w∗)

]
≤
[
1− ηt

(
µ− 2L2(Θ+n)

nµ η2
t

)]
E
[
F (w

(t)
0 )− F (w∗)

]
+
L2σ2η3

t

n
. (46)

Now, assume that 0 < ηt ≤ µ

2L
√

Θ/n+1
= 1

2κ
√

1+Θ/n
. Then, one can show that µ −

2L2(Θ+n)
nµ η2

t ≥ µ − 1
2µ = µ

2 > 0. Using this bound into (46) and noticing that w̃t = w
(t+1)
0 ,

we can further upper bound it as

E
[
F (w̃t)− F (w∗)

]
≤
(

1− µ

2
ηt

)
E
[
F (w̃t−1)− F (w∗)

]
+
L2σ2

n
· η3
t . (47)
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Note that we have imposed ηt ≤ min

{
1√
3L
, 1

2κ
√

1+Θ/n

}
due to ηt ≤ 1√

3L
in Lemma 6.

Let Yt := E
[
F (w̃t−1) − F (w∗)

]
, ηt := η > 0 be fixed for all t ≥ 1, and ρ := µ

2 . Then,

from (47), we have Yt+1 ≤ (1 − ρη)Yt + L2σ2η3

n . Applying (7) of Lemma 1 with q = 2 and

η := 4 log(
√
nT )

µT , we obtain

YT+1 = E
[
F (w̃T )− F (w∗)

]
≤ (1− ρη)TY1 + 2L2σ2η2[1−(1−ρη)T ]

nµ ≤ Y1 exp(−µηT ) + 2L2σ2η2

nµ

= E
[
F (w̃0)− F (w∗)

]
exp

(
− 2 log(

√
nT )

)
+ 2L2σ2 log(

√
nT )2

µ3nT 2 ,

which is exactly (14). Note that to guarantee ρη = 2 log(
√
nT )

T ≤ 1 and η = 4 log(
√
nT )

µT ≤
1

2κ
√

1+Θ/n
, we need to choose T ≥ 8L

√
Θ/n+1

µ2
log(
√
nT ).

Finally, if π(t) is sampled at random without replacement and each f(·; i) is convex for
i ∈ [n], from (39) and F (w̃t−1)− F (w∗) ≥ µ

2‖w̃t−1 − w∗‖2, we have

E
[
‖w̃t − w∗‖2

]
≤ (1− µηt)E

[
‖w̃t−1 − w∗‖2

]
+

2Lη3
t σ

2
∗

3n
.

Let us denote Yt := E
[
‖w̃t−1 − w∗‖2

]
. Then, the last inequality can be written as Yt+1 ≤

(1− µη)Yt + 2Lη3σ2
∗

3n . Applying (7) of Lemma 1 with q = 2 and η := 2 log(
√
nT )

µT , we obtain

YT+1 = E
[
‖w̃T − w∗‖2

]
≤ (1− µη)TY1 + 2Lσ2

∗η
2[1−(1−ρη)T ]

3nµ ≤ Y1 exp(−µηT ) + 2Lσ2
∗η

2

3nµ

= E
[
‖w̃0 − w∗‖2

]
exp

(
− 2 log(

√
nT )

)
+ 8Lσ2

∗ log(
√
nT )2

3µ3nT 2 ,

which is exactly (15). Note that to guarantee µη = 2 log(
√
nT )

T ≤ 1 and η = 2 log(
√
nT )

µT ≤
√

5−1
2L ,

we need to choose T such that log(T
√
n)

T ≤ min
{

1
2 ,

(
√

5−1)µ
2L

}
.

Proof [The proof of Theorem 2] Similar to the proof of Theorem 1, we define Yt :=
E
[
F (w̃t−1) − F (w∗)

]
≥ 0, ρ := µ

3 , and D := (µ2 + L2)σ2
∗. The estimate (45) implies

Yt+1 ≤ (1− ρ · η)Yt +Dη3. Moreover, since ηt = 6
µ(t+β) = 2

ρ(t+β) for β ≥ 1, apply Lemma 1
with q = 2, we obtain

Yt+1 ≤
β(β − 1)

(t+ β − 1)(t+ β)
Y1 +

8D log(t+ β + 1)

ρ3(t+ β − 1)(t+ β)
,

which leads to (16) after substituting Yt+1 := E
[
F (w̃t) − F (w∗)

]
, Y1 := F (w̃0) − F (w∗),

D := (µ2 + L2)σ2
∗, and ρ := µ

3 into the last estimate. However, to guarantee ηt = 6
µ(t+β) ≤

min
{

1
2L ,
√

3
4
µ
L2

}
, we need to impose 6

β+1 ≤ min
{
µ

2L ,
√

3
4
µ2

L2

}
, which holds if β ≥ 12κ2− 1.

To prove (16), we use (39) from Lemma 7 and F (w̃t−1)−F (w∗) ≥ µ
2‖w̃t−1−w∗‖2 to get

E
[
‖w̃t − w∗‖2

]
≤
(
1− µηt

)
E
[
‖w̃t−1 − w∗‖2

]
+

2Lη3
t σ

2
∗

3n
.
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By letting ηt := 2
t+β , Yt+1 := E

[
‖w̃t − w∗‖2

]
, ρ := µ, and D := 2Lσ2

∗
3n for all t ≥ 1. The last

estimate becomes
Yt+1 ≤ (1− ρηt)Yt +Dη3

t , ∀t ≥ 1.

By applying Lemma 1 with q = 2 we have Yt+1 ≤ β(β−1)
(t+β−1)(t+β)Y1 + 8D

ρ3(t+β−1)(t+β)
. In order

to guarantee that ηt = 2
t+β ≤

√
5−1
2L for all t ≥ 1, we need to choose β ≥ 4L√

5−1
−1. However,

since L ≤
√

5−1
2 and β ≥ 1, this condition automatically holds.

Appendix C. Convergence Analysis for Nonconvex Case

In this appendix, we provide the full proofs of the results in Section 4.

C.1 Proofs of Theorem 3, Corollary 1, and Corollary 2

Proof [The proof of Theorem 3] First, using (35) into (43), we can derive that

F (w
(t+1)
0 )

(35)

≤ F (w
(t)
0 )− ηt

2 ‖∇F (w
(t)
0 )‖2 +

L2η3t
2

[
(3Θ + 2) ‖∇F (w

(t)
0 )‖2 + 3σ2

]
= F (w

(t)
0 )− ηt

2

(
1− L2η2

t (3Θ + 2)
)
‖∇F (w

(t)
0 )‖2 +

3L2σ2η3t
2

≤ F (w
(t)
0 )− ηt

4 ‖∇F (w
(t)
0 )‖2 +

3L2σ2η3t
2 .

where the last inequality follows since η2
t ≤ 1

2(3Θ+2)L2 . Note that w̃t = w
(t+1)
0 and w̃t−1 =

w
(t)
0 in Algorithm 1, the last estimate becomes

F (w̃t) ≤ F (w̃t−1)− ηt
4
‖∇F (w̃t−1)‖2 +

3L2σ2η3
t

2
. (48)

Using ηt := η into (48) and rearranging its result, then taking expectation we end up with

E
[
‖∇F (w̃t−1)‖2

]
≤ 4

η
E
[
F (w̃t−1)− F (w̃t)

]
+ 6L2σ2η2.

Taking average the last inequality from t := 1 to t := T and using the fact that E
[
F (w̃t)

]
≥

F∗ from Assumption 1(i), we finally obtain

1

T

T∑
t=1

E
[
‖∇F (w̃t−1)‖2

]
≤ 4

Tη

[
F (w̃0)− F∗

]
+ 6L2σ2η2,

which is exactly (18). Note that, since w̃0 is deterministic, we drop the expectation on the
right-hand side of this estimate (18).

If π(t) is sampled uniformly at random without replacement from [n], then taking ex-
pectation both sides of (43), and then using (36), we obtain

E
[
F (w

(t+1)
0 )

]
≤ E

[
F (w

(t)
0 )
]
− ηt

2 E
[
‖∇F (w

(t)
0 )‖2

]
+ L2ηt

2n E
[∑n−1

i=0 ‖w
(t)
i − w

(t)
0 ‖2

]
(36)

≤ E
[
F (w

(t)
0 )
]
− ηt

2 E
[
‖∇F (w

(t)
0 )‖2

]
+

L2η3t
n

[
(Θ + n)E

[
‖∇F (w

(t)
0 )‖2

]
+ σ2

]
≤ E

[
F (w

(t)
0 )
]
− ηt

4 E
[
‖∇F (w

(t)
0 )‖2

]
+

L2σ2η3t
n ,
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where the last inequality follows since η2
t ≤ n

2(Θ+n)L2 . Note that w̃t = w
(t+1)
0 and w̃t−1 = w

(t)
0

in Algorithm 1, the last estimate becomes

E
[
F (w̃t)− F∗

]
≤ E

[
F (w̃t−1)− F∗

]
− ηt

4
E
[
‖∇F (w̃t−1)‖2

]
+
L2σ2η3

t

n
. (49)

Using this estimate and with a similar proof as of (18), we obtain (19).

Proof [The proof of Corollary 1] Given 2σ2 ≥ ε for a given accuracy ε > 0, to guarantee
1
T

∑T
t=1 ‖∇F (w̃t−1)‖2 ≤ ε, by using (18) in Theorem 3, we impose

4

Tη

[
F (w̃0)− F∗

]
+ 6L2σ2η2 ≤ ε.

Using η =
√
ε

2Lσ
√

3Θ+2
≤ 1

L
√

2(3Θ+2)
into this inequation, we can easily get

8Lσ
√

3Θ + 2

T
√
ε

[
F (w̃0)−F∗

]
≤ ε

[
6Θ + 1

6Θ + 4)

]
⇒ T ≥

16Lσ(3Θ + 2)3/2
[
F (w̃0)− F∗

]
(6Θ + 1)

· 1

ε3/2

Rounding this expression we get T :=
⌊

16Lσ(3Θ+2)3/2[F (w̃0)−F∗]
(6Θ+1) · 1

ε3/2

⌋
. As a result, the total

number of gradient evaluations is T∇f := nT =
⌊

16Lσ(3Θ+2)3/2[F (w̃0)−F∗]
(6Θ+1) · n

ε3/2

⌋
.

Alternatively, let us choose η :=
√
nε

2Lσ
√

2(Θ/n+1)
, where 0 < ε ≤ 4σ2

n . Then, we have

0 < η ≤ 1

L
√

2(Θ/n+1)
. Similar to the above proof, but using (19), we have

4

Tη

[
F (w̃0)− F∗

]
+

4L2σ2η2

n
=

8Lσ
√

2(Θ/n+ 1)

T
√
nε

[
F (w̃0)− F∗

]
+

ε

2(Θ/n+ 1)
≤ ε.

This condition leads to T ≥ 8Lσ(2Θ/n+2)3/2[F (w̃0)−F∗]
(2Θ/n+1) · 1√

nε3/2
. Hence, the total number of

gradient evaluations is T∇f = nT =
⌊

8Lσ(2Θ/n+2)3/2[F (w̃0)−F∗]

(2Θ/n+1)ε3/2
·
√
n

ε3/2

⌋
.

Proof [The proof of Corollary 2] Substituting η = γ
T 1/3 ≤ 1

2L
√

3Θ+2
≤ 1

L into (18) of

Theorem 3, we obtain

1

T

T∑
t=1

E
[
‖∇F (w̃t−1)‖2

]
≤ 4

Tη

(
F (w̃0)−F∗

)
+6L2σ2η2 =

1

T 2/3

[
4(F (w̃0)− F∗)

γ
+ 6L2σ2γ2

]
,

which is exactly our desired estimate (20).

If, in addition, π(t) is sampled uniformly at random from [n], then by choosing η := γn1/3

T 1/3

such that ηt ≤ 1

L
√

2(Θ/n+1)
≤ 1

L , we obtain from (19) that

1
T

∑T
t=1 E

[
‖∇F (w̃t−1)‖2

]
≤ 4

Tη

[
F (w̃0)− F∗

]
+ 4L2σ2η2

n = 1
n1/3T 2/3

[
4[F (w̃0)−F∗]

γ + 4L2σ2γ2
]
.

This proves (21). Here, we need to choose T ≥ 1 such that γn1/3

T 1/3 ≤ 1

L
√

2(Θ/n+1)
.
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C.2 Proof of Theorem 4: Asymptotic convergence with diminishing stepsize

To establish Theorem 4, we will use the following lemma from (Bertsekas, 2015).

Lemma 9 ((Bertsekas, 2015)) Let {Yt}t≥0, {Zt}t≥0, and {Wt}t≥0 be three sequences of
random variables. Let {Ft}t≥0 be a filtration, i.e. a σ-algebras such that Ft ⊆ Ft+1 for all
t ≥ 0. Suppose that the following conditions hold:

(a) Yt, Zt, and Wt are nonnegative and Ft-measurable for all t ≥ 0;
(b) for each t ≥ 0, we have E [Yt+1 | Ft] ≤ Yt − Zt +Wt;
(c) with probability 1 (w.p.1), it holds that

∑∞
t=0Wt < +∞.

Then, w.p.1, we have

∞∑
t=0

Zt < +∞ and Yt → Y ≥ 0 as t→ +∞.

Using Lemma 9 we can now prove Theorem 4 in the main text as follows.
Proof [The proof of Theorem 4] First, following the same argument as in the proof of
(48) of Theorem 3, we have

F (w̃t+1) ≤ F (w̃t)−
ηt+1

4
‖∇F (w̃t)‖2 +

3L2σ2η3
t+1

2
.

Let us define Ft = σ(w̃0, · · · , w̃t) the σ-algebra generated by {w̃0, · · · , w̃t}. Then, for t ≥ 0,
the last inequality implies

E
[
F (w̃t+1)− F∗ | Ft

]
≤ [F (w̃t)− F∗]−

ηt+1

4
‖∇F (w̃t)‖2 +

3L2σ2η3t+1

2 .

Let us define Yt := [F (w̃t) − F∗] ≥ 0, Zt := ηt+1

4 ‖∇F (w̃t)‖2 ≥ 0 and Wt := 3
2L

2σ2η3
t+1.

Then, the first condition (a) of Lemma 9 holds. Moreover, the last inequality shows that
E [Yt+1 | Ft] ≤ Yt − Zt +Wt, which means that the condition (b) of Lemma 9 holds. Since∑∞

t=1 η
3
t < +∞, we have

∑∞
t=0Wt < +∞, which fulfills the condition (c) of Lemma 9.

Then, by applying Lemma 9, we obtain w.p.1 that

F (w̃t)− F∗ → Y ≥ 0 as t→ +∞, and
∞∑
t=0

ηt+1

4
‖∇F (w̃t)‖2 < +∞.

We prove lim inf
t→∞

‖∇F (w̃t−1)‖ = 0 w.p.1. by contradiction. Indeed, we assume that there

exist ε > 0 and t0 ≥ 0 such that ‖∇F (w̃t)‖2 ≥ ε for all t ≥ t0. In this case, since∑∞
t=0 ηt =∞, we have

∞ >
∞∑
t=t0

ηt+1

4
‖∇F (w̃t)‖2 ≥

ε

4

∞∑
t=t0

ηt+1 =∞.

This is a contradiction. As a result, w.p.1., we have lim inf
k→∞

‖∇F (w̃k)‖2 = 0, or equivalently,

it holds that lim inf
k→∞

‖∇F (w̃k)‖ = 0. The proof still holds if we use (49) of Theorem 3.
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C.3 Convergence analysis for different learning rates

This appendix provides convergence analysis for general choices of learning rate.
Proof [The proof of Theorem 5] By (48), we have

F (w̃t) ≤ F (w̃t−1)− ηt
4
‖∇F (w̃t−1)‖2 +

3L2σ2η3
t

2
≤ F (w̃t−1) +

3L2σ2η3
t

2
.

Alternatively, if a randomized reshuffling scheme is used, then by using (49), we have

E
[
F (w̃t)

]
≤ E

[
F (w̃t−1)

]
− ηt

4
E
[
‖∇F (w̃t−1)‖2

]
+
L2σ2η3

t

n
≤ E

[
F (w̃t−1)

]
+
L2σ2η3

t

n
.

Combining both cases, we can write them in a single inequality as

E
[
F (w̃t)

]
≤ E

[
F (w̃t−1)

]
− ηt

4
E
[
‖∇F (w̃t−1)‖2

]
+D · η3

t ≤ E
[
F (w̃t−1)

]
+D · η3

t , (50)

where D := 3
2L

2σ2 for the general shuffling strategy and D := L2σ2

n for the randomized
reshuffling strategy.

Since ηt = γ
(t+β)α , summing up the last inequality (50) from t = 1 to t = k ≥ 1, we have

F (w̃k) ≤ F (w̃0) +D ·
∑k

t=1 η
3
t = F (w̃0) +D ·

∑k
t=1

γ3

(t+β)3α

(27)

≤ F (w̃0) +D · γ3
∫ k
t=0

dt
(t+β)3α

= F (w̃0) +D · γ3

[
− (t+β)−(3α−1)

3α−1

∣∣∣k
t=0

]
≤ F (w̃0) + Dγ3

(3α−1)β3α−1 .

Here, we use the fact that 1
(t+β)3α

is nonnegative and monotonically decreasing on [0,+∞)

and 1
3 < α < 1. Subtracting F∗ from both sides of the last estimate, for t ≥ 1, we have

E
[
F (w̃t)− F∗

]
≤ E

[
F (w̃0)− F∗

]
+

Dγ3

(3α− 1)β3α−1
. (51)

On the other hand, subtracting F∗ from both sides of (50), we have

E
[
F (w̃t)− F∗

]
≤ E

[
F (w̃t−1)− F∗

]
− ηt

4
E
[
‖∇F (w̃t−1)‖2

]
+D · η3

t . (52)

Now, let us define Yt := E
[
F (w̃t−1) − F∗

]
≥ 0, Zt := E

[
‖∇F (w̃t−1)‖2

]
≥ 0, for t ≥ 1, and

ρ := 1
4 . The estimate (52) becomes

Yt+1 ≤ Yt − ρηtZt +Dη3
t .

Let us define C := [F (w̃0) − F∗] + Dγ3

(3α−1)β3α−1 > 0. By (51), we have Yt ≤ C (note that

H = 0 in Lemma 2), t ≥ 1. Applying Lemma 2 with q = 3 and m = 1, we conclude that
• If α = 1

2 , we have

1
T

∑T
t=1 E

[
‖∇F (w̃t−1)‖2

]
≤ 4(1+β)1/2[F (w̃0)−F∗]

γ · 1
T + 4C

γ ·
(T−1+β)1/2

T

+ 4Dγ2 · log(T+β)−log(β)
T .
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• If α 6= 1
2 , we have

1
T

∑T
t=1 E

[
‖∇F (w̃t−1)‖2

]
≤ 4(1+β)α[F (w̃0)−F∗]

γ · 1
T + 2C

αγ ·
(T−1+β)α

T

+ 4Dγ2

(1−2α) ·
(T+β)1−2α

T .

For the general shuffling strategy, since D := 3
2L

2σ2, we need to impose ηt = γ
(t+β)α ≤

1

L
√

2(3Θ+2)
for all t ≥ 1. This condition holds if γL

√
2(3Θ + 2) ≤ (β + 1)α. For the ran-

domized reshuffling strategy, since D := L2σ2

n , we need to impose ηt = γ
(t+β)α ≤

1

L
√

2(Θ/n+1)

for all t ≥ 1. This condition holds if γL
√

2(Θ/n+ 1) ≤ (β + 1)α.
Finally, if we replace γ by n1/3γ, then the last condition becomes γn1/3L

√
2(Θ/n+ 1) ≤

(β + 1)α. Substituting this new quantity n1/3γ into γ of the right-hand side of our bounds,
we obtain the remaining conclusions of this theorem.

Proof [The proof of Theorem 6] By (50), we have

E
[
F (w̃t)

]
≤ E

[
F (w̃t−1)

]
− ηt

4
E
[
‖∇F (w̃t−1)‖2

]
+D · η3

t ≤ E
[
F (w̃t−1)

]
+D · η3

t ,

where D := 3
2L

2σ2 for the general shuffling strategy, and D := L2σ2

n for the randomized
reshuffling strategy. Since ηt = γ

(t+β)1/3
, summing up this inequality from t = 1 to t = k ≥ 1,

we obtain

E
[
F (w̃k)

]
≤ F (w̃0) +D ·

∑k
t=1 η

3
t = F (w̃0) +D ·

∑k
t=1

γ3

(t+β)

(27)

≤ F (w̃0) + Dγ3

(1+β) +Dγ3
∫ k
t=1

dt
(t+β) ≤ F (w̃0) + Dγ3

(1+β) +Dγ3 log(k + β).

Here, we use the fact that 1
t+β is nonnegative and monotonically decreasing on [0,+∞).

Subtracting F∗ from both sides of the last estimate, for t ≥ 1, we have

E
[
F (w̃t)− F∗

]
≤ [F (w̃0)− F∗] +

Dγ3

(1 + β)
+Dγ3 log(t+ β). (53)

Define Yt := E
[
F (w̃t−1) − F∗

]
≥ 0 and Zt := E

[
‖∇F (w̃t−1)‖2

]
≥ 0 for t ≥ 1, and ρ := 1

4 .
Then, the estimate (53) becomes

Yt+1 ≤ Yt − ρηtZt +Dη3
t .

Let us define C := [F (w̃0) − F∗] + Dγ3

(1+β) > 0, H := Dγ3 > 0, and θ := 1 + β > 0. Clearly,

we have 1 + θ− β = 2 > 2
3e

1/2. By (53), we have Yt ≤ C +H log(t+ θ) for t ≥ 1. Applying
Lemma 2 with q = 3, m = 1, and α = 1

3 , we conclude that

1
T

∑T
t=1 E

[
‖∇F (w̃t−1)‖2

]
≤ 4(1+β)1/3[F (w̃0)−F∗]

γ · 1
T + 6C

γ ·
(T−1+β)1/3

T

+ 6Dγ2 · (T−1+β)1/3 log(T+β)
T + 12Dγ2 · (T+β)1/3

T ,

which is our main bound. The remaining conclusion is proved similarly as in Theorem 5.
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C.4 Proofs of Theorem 7: The gradient dominance case

Proof [The proof Theorem 7] Using (50) from the proof of Theorem 5 and Assumption 4,
we can derive that

E
[
F (w̃t)− F∗

]
≤ E

[
F (w̃t−1)− F∗

]
− ηt

4 E
[
‖∇F (w̃t−1)‖2

]
+D · η3

t

(22)

≤
(
1− ηt

4τ

)
E
[
F (w̃t−1)− F∗

]
+D · η3

t .

where D := 3
2L

2σ2 for the general shuffling strategy, and D := L2σ2

n for the randomized
reshuffling strategy. Let Yt := E

[
F (w̃t−1)−F∗

]
≥ 0, and ρ := 1

4τ . We now verify that these
quantities satisfy the conditions of Lemma 1 with q = 2, i.e. Yt+1 ≤ (1− ρηt)Yt−1 +D · η3

t .
Applying Lemma 1 with ηt := 2

t+β for some β ≥ 1, then we obtain

E
[
F (w̃t)− F∗

]
= Yt+1 ≤

1

(t+ β − 1)(t+ β)

[
β(β − 1)[F (w̃0)− F∗] +

8D log(t+ β)

ρ3

]
.

For the general shuffling scheme, we need to choose β ≥ 1 such that ηt = 2
t+β ≤

1

L
√

2(3Θ+2)

for all t ≥ 1. Hence, we can choose β ≥ 2L
√

2(3Θ + 2)−1, and in this case, we obtain (23).
For the randomized reshuffling strategy, if we choose ηt := 2

t+1+1/n , then to guarantee

ηt ≤ 1

L
√

2(Θ/n+1)
for all t ≥ 1, we require L

√
2(Θ/n+ 1) ≤ 1. In this case, by substituting

β := 1 + 1/n and D := L2σ2

n into the last estimate, we obtain (24).

Appendix D. New Convergence Analysis for Standard SGD

As a side result of our stand-alone technical lemma, Lemma 2, we show in this appendix
that we can apply the analysis framework of Lemma 2 to obtain convergence rate results
for the standard stochastic gradient algorithm, abbreviated by SGD.

To keep it more general, we consider the stochastic optimization problem with respect
to some distribution D as in (1), i.e.:

min
w∈Rd

{
F (w) := Eξ∼D

[
f(w; ξ)

]}
, (54)

where ∇f is an unbiased gradient estimator of the gradient ∇F of F , i.e.:

Eξ∼D
[
∇f(w; ξ)

]
= ∇F (w), ∀w ∈ dom (F ) .

The standard SGD method without mini-batch for solving (54) can be described as in
Algorithm 2.

To analyze convergence rate of Algorithm 2, we assume that problem (54) satisfies
Assumptions 1(i) and Assumptions 5 and 6 below.

Assumption 5 (One-side L-smoothness) The objective function F of (54) satisfies

F (w) ≤ F (w′) + 〈∇F (w′), w − w′〉+
L

2
‖w − w′‖2, ∀w,w′ ∈ dom (F ) . (55)
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Algorithm 2 Stochastic Gradient Descent (SGD) Method (without mini-batch)

1: Initialize: Choose an initial point w1 ∈ dom (F ).
2: for t = 1, 2, · · · do
3: Generate a realization of ξt and evaluate a stochastic gradient ∇f(wt; ξt);
4: Choose a step size (i.e. a learning rate) ηt > 0 (specified later);
5: Update wt+1 := wt − ηt∇f(wt; ξt);
6: end for

Assumption 6 (Bounded variance) For (54), there exists σ ∈ (0,+∞) such that

E
[
‖∇f(w; ξ)−∇F (w)‖2

]
≤ σ2, ∀w ∈ dom (F ) . (56)

We notice that we are able to derive the analysis based on the general bounded variance
assumption E

[
‖∇f(w; ξ) − ∇F (w)‖2

]
≤ Θ‖∇F (w)‖2 + σ2 for some Θ ≥ 0 and σ > 0

as in Assumption 2. For simplicity, we only consider the special case where Θ = 0 since
Assumption 6 is commonly used in the literature for the standard SGD method. We prove
our first result for Algorithm 2 to solve (54) in the following theorem.

Theorem 8 Assume that Assumptions 1(i), 5, and 6 hold for (54). Let {wt} be generated
by Algorithm 2 with 0 < ηt := γ

(t+β)α ≤
1
L for some γ > 0, β > 0, and 1

2 < α < 1, and

C := [F (w1)− F∗] + Lσ2γ2

2(2α−1)β2α−1 > 0. Then, the following bound holds:

1

T

T∑
t=1

E
[
‖∇F (wt)‖2

]
≤ 2(1 + β)α [F (w1)− F∗]

γ
· 1

T
+

C

αγ
· (T − 1 + β)α

T

+
Lσ2γ

(1− α)
· (T + β)1−α

T
.

(57)

Proof Let Ft = σ(w1, · · · , wt) be the σ-algebra generated by {w1, · · · , wt}. Then, from
the one-side L-smoothness of F in (55), we have

E[F (wt+1) | Ft] ≤ F (wt)− ηt‖∇F (wt)‖2 +
η2tL

2 E
[
‖∇f(wt; ξt)‖2 | Ft

]
= F (wt)− ηt

(
1− ηtL

2

)
‖∇F (wt)‖2 +

η2tL
2 E

[
‖∇f(wt; ξt)−∇F (wt)‖2 | Ft

]
(56)

≤ F (wt)− ηt
2 ‖∇F (wt)‖2 +

η2tL
2 σ2,

where the first equality follows since E
[
‖∇f(wt; ξt) − ∇F (wt)‖2 | Ft

]
= E

[
‖∇f(wt; ξt)‖2 |

Ft
]
−‖∇F (wt)‖2; and the last inequality follows since F has bounded variance in Assump-

tion 6. Note that ηt

(
1− ηtL

2

)
≥ ηt

2 since 0 < ηt ≤ 1
L . Subtracting F∗ from, and then taking

full expectation of both sides of the last estimate, we obtain

E [F (wt+1)− F∗] ≤ E [F (wt)− F∗]− ηt
2 E
[
‖∇F (wt)‖2

]
+

η2tLσ
2

2

≤ E [F (wt)− F∗] +
η2tLσ

2

2 .
(58)
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Summing up (58) from t := 1 to t := k ≥ 1, we get

E [F (wk+1)− F∗] ≤ E [F (w1)− F∗] + Lσ2

2

∑k
t=1 η

2
t =

[
F (w1)− F∗

]
+ Lσ2

2

∑k
t=1

γ2

(t+β)2α

(27)

≤
[
F (w1)− F∗

]
+ Lσ2γ2

2

∫ k
t=0

dt
(t+β)2α

.

(59)
If 1

2 < α < 1, then for k ≥ 1, we have

E [F (wk+1)− F∗] ≤
[
F (w1)− F∗

]
+

Lσ2γ2

2(2α− 1)β2α−1
. (60)

Now, let us define Yt := E [F (wt)− F∗] ≥ 0, Zt := E
[
‖∇F (wt)‖2

]
≥ 0 for t ≥ 1, ρ := 1

2 ,

and D := Lσ2

2 . Then, the estimate (58) becomes

Yt+1 ≤ Yt − ρηtZt +Dη2
t .

Let us define C :=
[
F (w1) − F∗

]
+ Lσ2γ2

2(2α−1)β2α−1 > 0. By (60), we have Yt ≤ C (note that

H = 0 in Lemma 2), t ≥ 1. Applying Lemma 2 with q = 2, m = 1, and 1
2 < α < 1, we

conclude that

1
T

∑T
t=1 E

[
‖∇F (wt)‖2

]
≤ 2(1+β)α

[
F (w1)−F∗

]
γ · 1

T + C
αγ ·

(T−1+β)α

T + Lσ2γ
(1−α) ·

(T+β)1−α

T ,

which proves (57).

Remark 5 In Theorem 8, if we choose α := 1
2 + δ for some 0 < δ < 1

2 , then we have

1
T

∑T
t=1 E

[
‖∇F (wt)‖2

]
≤ 2(1+β)

1
2+δ[F (w1)−F∗]

γ · 1
T + C

γ( 1
2

+δ)
· (T−1+β)

1
2+δ

T + Lσ2γ

( 1
2
−δ) ·

(T+β)
1
2−δ

T

= O
(

1

T
1
2−δ

)
,

where C :=
[
F (w1)− F∗

]
+ Lσ2γ2

4δβ4δ > 0. This rate converges to O
(

1√
T

)
as δ ↓ 0.

Finally, if we use α := 1/2 and diminishing step-size, then we have the following result.

Theorem 9 Assume that Assumptions 1(i), 5, and 6 hold for (54). Let {wt} be generated
by Algorithm 2 with the step-size 0 < ηt := γ

(t+β)1/2
≤ 1

L for some γ > 0 and β > 0, and

C :=
[
F (w1)− F∗

]
+ Lσ2γ2

2(1+β) > 0. Then, the following bound holds:

1
T

∑T
t=1 E

[
‖∇F (wt)‖2

]
≤ 2(1+β)1/2[F (w1)−F∗]

γ · 1
T + 2C

γ ·
(T−1+β)1/2

T

+ Lγσ2 · (T−1+β)1/2 log(T+1+β)
T + 2Lγσ2 · (T+β)1/2

T

= O
(

log(T )

T 1/2

)
.

(61)
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Proof If α := 1
2 , then, by (59), we can easily show that

E [F (wk+1)− F∗] ≤ E [F (w1)− F∗] + Lσ2

2

∑k
t=1 η

2
t =

[
F (w1)− F∗

]
+ Lσ2

2

∑k
t=1

γ2

(t+β)

(27)

≤
[
F (w1)− F∗

]
+ Lσ2γ2

2(1+β) + Lσ2γ2

2

∫ k
t=1

dt
(t+β)2α

.

Hence, for k ≥ 1, we have

E [F (wk+1)− F∗] ≤
[
F (w1)− F∗

]
+

Lσ2γ2

2(1 + β)
+

Lσ2γ2

2
· log(k + 2 + β). (62)

Define Yt := E [F (wt)− F∗] ≥ 0, Zt := E
[
‖∇F (wt)‖2

]
≥ 0 for t ≥ 1, ρ := 1

2 , and D := Lσ2

2 .
Then, the estimate (58) becomes

Yt+1 ≤ Yt − ρηtZt +Dη2
t .

Let us define C := [F (w1)−F∗] + Lσ2γ2

2(1+β) > 0, H := Lσ2γ2

2 > 0, and θ := 1 + β > 0. Clearly,

1 + θ − β = 2 > 1
2e. By (62), we have Yt ≤ C +H log(t+ θ) for t ≥ 1. Applying Lemma 2

with q = 2, m = 1, and α = 1
2 , we conclude that

1
T

∑T
t=1 E

[
‖∇F (wt)‖2

]
≤ 2(1+β)1/2[F (w1)−F∗]

γ · 1
T + 2C

γ ·
(T−1+β)1/2

T

+ Lγσ2 · (T−1+β)1/2 log(T+1+β)
T + 2Lγσ2 · (T+β)1/2

T

= O
(

log(T )

T 1/2

)
,

which proves (61).
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