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Abstract

Recent progress in reinforcement learning has led to remarkable performance in a range
of applications, but its deployment in high-stakes settings remains quite rare. One reason
is a limited understanding of the behavior of reinforcement algorithms, both in terms of
their regret and their ability to learn the underlying system dynamics—existing work is fo-
cused almost exclusively on characterizing rates, with little attention paid to the constants
multiplying those rates that can be critically important in practice. To start to address
this challenge, we study perhaps the simplest non-bandit reinforcement learning problem:
linear quadratic adaptive control (LQAC) . By carefully combining recent finite-sample per-
formance bounds for the LQAC problem with a particular (less-recent) martingale central
limit theorem, we are able to derive asymptotically-exact expressions for the regret, esti-
mation error, and prediction error of a rate-optimal stepwise-updating LQAC algorithm.
In simulations on both stable and unstable systems, we find that our asymptotic theory
also describes the algorithm’s finite-sample behavior remarkably well.

Keywords: reinforcement learning, adaptive control, linear dynamical system, system
identification, safety, uncertainty quantification, exact asymptotics

1. Introduction

Many dynamic systems such as robots, power grids, or living cells can be described at
any given time t by a system state xt that depends on both its previous state xt−1 and
some internal or external control ut−1 that is applied to direct the system to achieve its
desired function. Both adaptive control and reinforcement learning address the problem of
choosing the controls ut when the system dynamics, i.e., the relationship between xt+1 and
(xt, ut), are unknown. But the behavior of the algorithms developed in these fields has been
characterized only coarsely, even in the simplest systems, preventing their deployment in
high-stakes applications that require precise guarantees on safety and performance.

In this paper we will consider a canonical model for such systems, the discrete-time
linear dynamical system:

xt+1 = Axt +But + εt, (1)
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where xt ∈ Rn represents the state of the system at time t and starts at some initial state
x0, ut ∈ Rd represents the action or control applied at time t, εt

i.i.d.∼ N (0, σ2In) is the system
noise, and A ∈ Rn×n and B ∈ Rn×d are matrices determining the system’s linear dynamics;
the fact that they do not depend on t makes this a time-homogeneous dynamical model.
We assume the noise εt follows a Gaussian distribution, but our proof could be immediately
generalized to allow for sub-Gaussian noise distributions. The states xt and controls ut are
assumed to have been transformed so that xt closer to zero represents the system better-
performing its function, and ut closer to zero represents lower control cost/effort. The goal
is to find an algorithm U that, at each time t, outputs a control ut = U(Ht) that is computed
using the entire thus-far-observed history of the system Ht = {xt, ut−1, xt−1, . . . , u1, x1, u0}
to maximize the system’s function while minimizing control effort.

We formalize this tradeoff by augmenting the linear dynamics (1) with the popular
quadratic cost function, so that at every time t, the system incurs the cost x>t Qxt +u>t Rut,
for some known positive-definite matrices Q ∈ Rn×n and R ∈ Rd×d. In order to abstract
away finite-sample issues arising from different time horizons T , we will focus on the infinite-
horizon problem, which seeks to minimize the expected average limiting cost:

J (U) = lim
T→∞

EJ (U, T ), J (U, T ) =
1

T

T∑
t=1

(
x>t Qxt + u>t Rut

)
. (2)

When the system dynamics A and B are known, the cost-minimizing algorithm is known
and called the linear-quadratic regulator (LQR): U∗(Ht) = Kxt, where K ∈ Rd×n is the
efficiently-computable solution to a system of equations that only depend on A, B, Q,
and R; we will review the exact expressions for K in Section 1.3. Like the Gaussian
linear model in regression and supervised learning, the aforementioned linear-quadratic
problem is foundational to control theory because it is conceptually simple yet it provides
a remarkably good description for some real-world systems (e.g., biological systems (Priess
et al., 2014), aircraft flight control (Choi and Seo, 1999), or power supply (Shabaani and
Jalili-Kharaajoo, 2003)), and insights from its study often translate to innovations and
improved understanding in far-more-complex models.

In this paper we consider the case when the system dynamics A and B are unknown,
which we call linear-quadratic adaptive control (LQAC), to distinguish it from the LQR
setting when A and B are assumed known. Intuitively, one might hope that after enough
time observing a system controlled by almost any algorithm, one should be able to estimate
A and B (and hence K) fairly well and thus be able to apply an algorithm quite close to
U∗. Indeed the key challenge in LQAC, as in any reinforcement learning problem, is to
trade off exploration (actions that help estimate A and B) with exploitation (actions that
minimize cost). We will quantify the cost of an LQAC algorithm by its average regret :1

R(U, T ) = J (U, T )− J (U∗, T ).

A flurry of recent work has proposed new algorithms for LQAC and studied their regret
and estimation error; we review this literature in Section 1.2. These studies have produced

1. Not to be confused with the more-common cumulative regret, given by TR(U, T ). Since one is simply
T times the other, it makes no mathematical difference which one is considered, but we prefer a regret
formulation that does not diverge to infinity.
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finite-sample bounds (in terms of the problem parameters) on various performance metrics
which capture the rates at which those metrics depend on various values, especially time T .
These recent breakthroughs have advanced the field significantly, but two significant hur-
dles remain to using their insights to enable reliable, safe, high-performance reinforcement
learning.

• Many of the benefits of a theoretical characterization of the performance of an algo-
rithm (e.g., its regret or estimation error) involve quantifying differences, such as the
difference in performance between two algorithms applied to the same system or the
performance difference between applying the same algorithm to two different systems.
But a difference between two rigorous, but loose, bounds that have the same rate can
be misleading, since the difference in the looseness of the bounds can overwhelm the
difference in the true performance.

• When an expression characterizing an algorithm’s performance depends explicitly on
the system dynamics (in our case, A and B), it cannot actually be evaluated in
practice because the system dynamics are by assumption unknown. Thus in order to
enable certain critical aspects of reinforcement learning such as safety, non-stationarity
detection, and generalization to new systems, there is a pressing need to characterize
algorithmic behavior in terms only of observable quantities.

1.1 Our Contribution

This paper presents asymptotically-exact expressions for a number of quantities of interest
for a simple LQAC algorithm that achieves the optimal rate of regret. That is, we prove
that the performance of the algorithm converges exactly to the expressions we present.
We have two types of results: asymptotically-exact expressions in terms of non-random
system parameters, and asymptotically-exact expressions in terms of only observable random
variables.

Theory for a rate-optimal algorithm with stepwise-update estimates. The LQAC
algorithm we consider in all of the theory in this paper is very simple and intuitive, using
a least-squares estimate of the system dynamics at each time point to estimate the optimal
controller K and adding a vanishing exploration noise to that certainty-equivalent control
which can be tuned to achieve the optimal rate of regret. All our theory is for a single system
trajectory (no independent restarts), and in contrast to existing literature on LQAC we allow
our algorithm to update its estimate of the dynamics at every time step, although we show
our theoretical results can easily be extended to the more common setting of logarithmic
updating as well.

Asymptotically-exact expressions characterizing LQAC performance metrics.
For a number of different performance metrics of interest for the LQAC problem, we provide
asymptotically-exact expressions (a) purely in terms of the non-random, unknown system
parameters, and (b) purely in terms of the random, observable system history. In particular,
we provide both types (a) and (b) of asymptotically-exact expressions for

(i) the regret at any current or future time point,
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(ii) the distribution of the estimation error of the least-squares estimate of system dy-
namics A and B, and

(iii) the distribution of the prediction error of the least-squares estimate of a future state.

We further use (ii) to derive the estimation error of the least-squares estimate of the optimal
controller K, and to identify a function of the dynamics, A + BK, that can be estimated
at a much faster rate than just A or B (although to reiterate, our expressions characterize
not just the rates but the exact constants multiplying those rates as well). Our observable
expressions for (ii) and (iii) immediately give us asymptotically-exact online confidence
regions for the system dynamics (and optimal controller K) and prediction regions for a
future state, respectively. These prediction regions also allow us to perform online testing
of the modeling assumptions of, e.g., linearity and stationarity, see Section 3.2.3.

Numerical validation of our theory We apply our algorithm to both a stable and
an unstable simulated system to compare our asymptotic expressions to the performance
metrics they characterize, and we find quite good agreement, even at very early time steps.

1.2 Related Work

Our study of the asymptotics of the LQAC problem has connections with many works across
control theory, machine learning, and statistics, and we defer a more thorough exposition
of related work to Section 5, while here only focusing on the most relevant literature.

The LQAC algorithm we consider in this paper falls into the class of algorithms which
has been referred to as certainty equivalent controllers in the literature. The key idea is
to estimate the system dynamics and then apply a control that would be optimal if the
estimate were correct.

Following this strategy blindly is known to be inconsistent (Becker et al., 1985; Lai and
Robbins, 1982), but consistency can still be achieved with the addition of a persistently
exciting input (Åström and Wittenmark, 1973). Another type of fix is to add a vanishing
noise term to the input, which was shown by Dean et al. (2018) to achieve Õ(T−1/3)
average regret (their control is estimated by a robust optimization instead of directly from
system dynamics estimates) and later by Faradonbeh et al. (2018a,b); Mania et al. (2019) to
achieve Õ(T−1/2) average regret. The recent work of Simchowitz and Foster (2020) refined
the existing regret bounds and showed Õ(T−1/2) to be the optimal rate of average regret.
To our knowledge, all LQAC algorithms that have been proved to achieve the optimal
rate of regret update their estimate of the system dynamics logarithmically often,2 and
their bounds on regret and estimation error hold in finite samples but have conservative
constants multiplying the rate.

There is work on system identification and in particular on optimal experimental design
that relates to our characterization of the estimation error of the learned system dynamics.
These works focus mainly on minimizing estimation error with little or no consideration
for the regret, and hence only consider algorithms with average regret bounded away from
zero as this allows the optimal rate of estimation error of O(T−1/2). For such algorithms
(which essentially correspond to our Algorithm 1 with β = 1), these works do provide

2. The only exception is Abeille and Lazaric (2018), whose Thompson sampling algorithm updates its
estimates at every step, but their proof only holds for scalar systems (n = 1).
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asymptotically-exact expressions for the estimation error (Ljung, 1997; Bombois et al.,
2006; Gerencsér et al., 2009; Hjalmarsson, 2009; Wahlberg et al., 2010; Huang et al., 2012;
Stojanovic and Filipovic, 2014; Stojanovic et al., 2016; Gerencsér et al., 2017). More recent
work provides finite-sample bounds on the estimation error of such algorithms, but with
conservative constants multiplying the rate (Abbasi-Yadkori et al., 2011; Simchowitz et al.,
2018; Sarkar et al., 2019; Dean et al., 2019; Oymak and Ozay, 2019; Sarkar et al., 2019;
Khosravi and Smith, 2020; Sattar and Oymak, 2020; Foster et al., 2020; Zheng and Li, 2020;
Sun et al., 2020). At the intersection of these approaches, Tu and Recht (2019) showed that
a certainty equivalent estimate has an asymptotic sample complexity advantage over a
model-free algorithm based on policy gradient.

The main distinction between our paper and all these related works is that we consider
a stepwise-updating, regret-rate-optimal LQAC algorithm and provide characterizations of
the regret, estimation error, and prediction error that are asymptotically-exact. To achieve
these results, our proofs combine recent finite-sample bounds (Dean et al., 2018; Mania
et al., 2019) with martingale central limit theorems developed in the statistics literature
(Lai and Wei, 1982; Anderson and Kunitomo, 1992).

1.3 Preliminaries

We make the following mild assumption on A and B, without which no algorithm could
even achieve finite average regret.

Assumption 1 (Stability). Assume the system is stabilizable, i.e., there exists K0 such
that the spectral radius (maximum absolute eigenvalue) of A + BK0 is strictly less than 1.
We also assume that Q, R are both positive definite.

Under Assumption 1, there is a unique optimal controller (Arnold and Laub, 1984) that
can be computed from A and B, given by the linear feedback controller ut = Kxt, where

K = −(R+B>PB)−1B>PA. (3)

Here P is the unique positive definite solution to the discrete algebraic Riccati equation
(DARE):

P = A>PA−A>PB(R+B>PB)−1B>PA+Q (4)

2. Algorithm

The algorithm whose performance we characterize in Section 3 is given in Algorithm 1.
At the end of each step in line 5, we apply a plug-in version of the LQR controller, K̂txt,
plus added exploration noise that vanishes asymptotically with variance τ2t−(1−β) logα(t).
Larger β corresponds to more exploration noise, and we will see that β = 1/2 gives the
optimal rate of regret and is the only β value for which a nonzero α is needed in our
theory.3 K̂t is taken as the solution to the DARE (Eqs. 3 and 4) with inputs Ât−1, B̂t−1

3. β = 1 and α = 0 would make the added exploration noise non-vanishing and give the optimal rate of
system identification estimation error; see Appendix A.2 for the extension of our results to the case of
β = 1.
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computed in line 3. Line 4 then checks whether the state or controller is too large, and if
so, K̂t is set to K0, which by assumption stabilizes the system. The cutoffs for ‘too large’
are determined by inputs Cx and CK , with the latter assumed to be greater than ‖K‖. We
will prove (Proposition 17) the cutoffs are only breached, and hence K0 applied, finitely
often with probability 1, and none of K0, Cx, or CK appear in any of our expressions
characterizing the asymptotic performance of Algorithm 1.

To prevent the regret from exploding in early time steps (see Fig. I.5), our experiments
suggest it is important to keep the check on large states xt but not the check on large K̂t.
We note that K̂t is computed from Ât−1 and B̂t−1 as opposed to Ât and B̂t—we expect this
to have little impact on the performance but it is needed for the proof of the key Lemma 34.
In particular, in the lemma we need the K̂t+1 to only be dependent on the history stricly
before xt.

Since the algorithm asymptotically always just applies a noisy plug-in version of the
LQR controller, it is simple, intuitive, and computationally efficient.4 All our theory and
experimental results are exactly based on Algorithm 1 without any modification, and in par-
ticular, we always analyze a single trajectory (no independent restarts) and our estimates
of A and B are updated stepwise, i.e., at every time step. This last point is a significant de-
parture from existing literature which focuses on logarithmic updating. We show in Figs. 1c
and I.1c that updating stepwise reduces regret compared to updating logarithmically often,
but in fact our theory also applies to a logarithmically-updated version of Algorithm 1, as
made precise in the following remark.

Remark 2 (Logarithmically-updated estimates). All our theoretical results in Section 3
also hold when Ât and B̂t are only updated Θ(log(t)) times per t steps. More precisely,
assume {ti}∞i=1 are the times at which K̂t is updated. As long as there exists a constant C
such that lim sup

i→∞

ti+1

ti
≤ C, all results in Section 3 still hold.

3. Theoretical Results

Almost all of our asymptotic results are based on the following new result which shows that

the Gram matrix
∑t−1

i=0

[
xi
ui

] [
xi
ui

]>
∈ R(n+d)×(n+d) is asymptotically equal in a certain sense

to the deterministic matrix DtD
>
t , where

Dt := tβ/2 logα/2(t)

[
In 0
K Id

][
C

1/2
t 0

0
√

τ2

β Id

]
, (7)

and

Ct = t1−β log−α(t)
∞∑
p=0

(A+BK)p((A+BK)p)>σ2 +
τ2

β

∞∑
q=0

(A+BK)qBB>((A+BK)q)>.

4. The least squares estimator can be computed efficiently in a recursive manner (Engel et al., 2004).
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Algorithm 1 Stepwise Noisy Certainty Equivalent Control

Require: Initial state x0, stabilizing control matrix K0, scalars Cx > 0, CK > ‖K‖, τ2 > 0,
β ∈ [1/2, 1), and α > 3/2 when β = 1/2.

1: Let u0 = K0x0 + τw0 and u1 = K0x1 + τw1, with w0, w1
iid∼ N (0, Id).

2: for t = 2, 3, . . . do
3: Compute

(Ât−1, B̂t−1) ∈ arg min
(A′,B′)

t−2∑
k=0

∥∥xk+1 −A′xk −B′uk
∥∥2

2
(5)

and if stabilizable, plug them into the DARE (Eqs. 3 and 4) to compute K̂t, otherwise
set K̂t = K0.

4: If ‖xt‖ > Cx log(t) or ‖K̂t‖ > CK , reset K̂t = K0.
5: Let

ut = K̂txt + ηt, ηt = τ
√
t−(1−β) logα(t)wt, wt

iid∼ N (0, Id) (6)

6: end for

Theorem 3. Algorithm 1 applied to a system described by Eq. 1 under Assumption 1
satisfies

D−1
t

t−1∑
i=0

[
xi
ui

] [
xi
ui

]>
(D>t )−1 P−→ In+d. (8)

The proof of Theorem 3 can be found at Appendix B. The main idea was to first prove
Eq. 8 under the simplifying approximation that K̂t = K, and then to derive novel uniform
rate bounds on the estimation error K̂t − K by extending existing bounds (Mania et al.,
2019; Dean et al., 2018) to the setting of stepwise update. We require the logα(t) term
because in that case the exploration error terms will dominate the K̂t−K estimation error
terms, and we are only able to tightly control the former with our analysis. Theorem 3
is the key ingredient that will allow us to asymptotically exactly characterize many of the
important properties of Algorithm 1.

3.1 Parametric Expressions

We have three different types of asymptotically-exact expressions characterizing the system
performance in terms of only the non-random problem parameters (i.e., the algorithm,
system, and cost function parameters): the regret (Section 3.1.1), the distribution of the
estimation error [Ât−A, B̂t−B] (Section 3.1.2), and the distribution of the prediction error
(Âtxt + B̂tut)− (Axt +But) (Section 3.1.3).

3.1.1 Asymptotically exact expression for the regret (parametric)

Our first result in fact does not follow from Theorem 3 but requires instead a careful
decomposition of the regret paired with novel rate bounds.
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Theorem 4. The average regret of the controller U defined by Algorithm 1 applied through
time horizon T to a system described by Eq. 1 under Assumption 1 satisfies, as T →∞,

R(U, T )

τ2β−1 Tr(B>PB +R)T β−1 logα(T )

P−→ 1, (9)

with β = 1/2 therefore achieving the optimal rate (Simchowitz and Foster, 2020) of R(U, T ) =
Õp(T−1/2).

The proof can be found at Appendix C.
It is counterintuitive that the regret monotonically decreases as the exploration noise

level τ decreases, as we would expect insufficient exploration to harm the regret at some
point. The main intuition behind the theorem is that the regret is dominated by the rate
of the exploration noise term (regardless of the constant τ > 0 multiplying it). Hence,
asymptotically only the exploration cost stands out, and that cost indeed decreases when
τ decreases.

To our knowledge, this is the first time an LQAC algorithm’s regret has been charac-
terized asymptotically exactly, i.e., Eq. 9 not only captures the rate but also the constant
multiplying that rate. With an exact expression for the asymptotic regret, a user can under-
stand exactly how the regret of Algorithm 1 depends on the system parameters, and would
be able to compare this expression directly with exact expressions for other algorithms (if
they existed).

3.1.2 Asymptotic distribution of the estimation error (parametric)

Theorem 3 provides the key ingredient in a martingale central limit theorem (CLT) for
the estimators Ât, B̂t (Anderson and Kunitomo, 1992), which gives the exact asymptotic
distribution of the estimation error in terms of only the system parameters.

Theorem 5. Algorithm 1 applied to a system described by Eq. 1 under Assumption 1
satisfies, as t→∞,

vec
([
Ât −A, B̂t −B

]
Dt

) D−→ N (0, σ2In(n+d)). (10)

The proof of Theorem 5 can be found at Appendix D. Again, to our knowledge, this is
the first time an LQAC algorithm’s estimation error has been characterized asymptotically
exactly and, similarly, such a result can help a user understand exactly how the distribution
of the estimation error of Algorithm 1 depends on the system parameters.

Remark 6 (A convergence rate disparity). Plugging the definition of Dt Eq. 7 into Eq. 10
gives different convergence rates for two different parts of [Ât − A, B̂t − B]. In particular,
as t→∞,

vec
([
tβ/2 logα/2(t)C

1/2
t (Ât −A+ (B̂t −B)K),

√
τ2

β t
β/2 logα/2(t)(B̂t −B)

])
D−→ N (0, σ2In(n+d)).

(11)

Thus Ât − A+ (B̂t − B)K converges at the rate of
(
tβ/2 logα/2(t)C

1/2
t

)−1
= Op(t−1/2) for

any β, while B̂t −B converges at the slower β-dependent rate of Op(t−β/2 log−α/2(t)). The
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faster convergence rate of Ât − A + (B̂t − B)K implies strong dependency between Ât − A
and B̂t −B: Ât −A ≈ −(B̂t −B)K.

Remark 7 (Regret-estimation trade-off). Because of the asymptotic linear relationship
Ât − A ≈ −(B̂t − B)K, the estimation error [Ât − A, B̂t − B] can be characterized by the

asymptotic variance of vec[B̂t − B]: βσ2

τ2
t−β log−α(t)Ind. Combining this with Theorem 4

gives the following asymptotic identity that precisely characterizes a fundamental regret-
estimation trade-off for Algorithm 1 with any β: as t→∞,

tR(U, t) · Cov(vec(B̂t −B))
P−→ Tr(B>PB +R)σ2Ind.

Because K is a function of [A,B] (and asymptotically, K̂t is the same function of

[Ât−1, B̂t−1]), by the Delta method, we can use its matrix of derivatives dK
d[A,B] := d vec(K)

d vec([A,B]) ∈
Rnd×n(n+d) to translate the asymptotic distribution of [Ât −A, B̂t −B] from Theorem 5 to
the asymptotic distribution of K̂t −K.

Corollary 8. Assume A+BK is full rank. Then Algorithm 1 applied to a system described
by Eq. 1 under Assumption 1 satisfies, as t→∞,√

τ2

σ2β
tβ/2 logα/2(t)

((
dK

d[A,B]

)([
−K>
Id

]
⊗ In

))−1

vec
(
K̂t −K

)
D−→ N (0, Ind). (12)

The proof of Corollary 8 can be found at Appendix F.1. Eq. 12 quantifies the distance
from the current control matrix K̂t to the optimal control matrix K, and shows implicitly
but asymptotically exactly how the distribution of that distance depends on the system
dynamics.

3.1.3 Asymptotic distribution of the prediction error (parametric)

If we consider the entire history {xi, ui}ti=0 to be the input of the prediction rule whose
goal is to predict the next state xt+1, then the optimal (in terms of mean squared error)
prediction is given by E[xt+1 | {xi, ui}ti=0] = Axt+But, and a natural choice at time t would
be to use the least-squares prediction rule given by Âtxt+ B̂tut. By combining Theorem 5’s
asymptotic distribution for [Ât − A, B̂t − B] with a careful handling of the asymptotic
dependence between (xt, ut) and [Ât−A, B̂t−B], we can derive the asymptotic distribution
of the error Âtxt + B̂tut − (Axt +But) of the least-squares prediction rule.

Theorem 9. Algorithm 1 applied to a system described by Eq. 1 under Assumption 1
satisfies, as t→∞,x>t

 ∞∑
p=0

(A+BK)p ((A+BK)p)>

−1

xt + βσ2 ‖wt‖2
−1/2

t1/2
(

(Ât −A)xt + (B̂t −B)ut

)
D−→ N (0, In).

(13)

The proof of Theorem 9 can be found at Appendix E. This expression is parametric
in the sense that the first parenthetical only depends on the system parameters and the
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random variables xt and wt that are used by the algorithm in the time step immediately
before the prediction is made. Note that the convergence rate of Õp(t−1/2) does not depend
on β, as foreshadowed by Remark 6, but the constant in the convergence does depend on β.
Thus, Eq. 13 shows that the optimal asymptotic prediction error is attained at β = 1/2 (xt’s
asymptotic distribution does not depend on β, so asymptotically the only β dependence is
in the term βσ‖wt‖2), a conclusion we could not have reached had we only considered
the rate. Theorem 9 can easily be extended to characterize the full prediction error of
xt+1 − (Âtxt + B̂tut) by simply adding σ2 to the first parenthetical.

3.2 Observable Expressions

The previous subsection provides three asymptotically-exact expressions (regret, estimation
error, and prediction error) in terms of only the system parameters; in this subsection, we
provide three analogous asymptotically exact expressions in terms of only observable random
variables.

3.2.1 Asymptotically exact expression for the regret (observable)

Define P̂t as the plug-in estimator using Eq. 4:

P̂t = Â>t P̂tÂt − Â>t P̂tB̂t(R+ B̂>t P̂tB̂t)
−1B̂>t P̂tÂt +Q.

Then by consistency of Ât and B̂t (see Theorem 5), and therefore also P̂t, the plug-in version
of Eq. 9 is an immediate corollary of Theorem 4.

Corollary 10. The average regret of the controller U defined by Algorithm 1 applied through
time horizon T to a system described by Eq. 1 under Assumption 1 satisfies, as t→∞ and
T →∞,

R(U, T )

τ2β−1 Tr(B̂>t P̂tB̂t +R)T β−1 logα(T )

P−→ 1. (14)

The proof of Corollary 10 can be found at Appendix F.2. Notice when t ≤ T , Corol-
lary 10 tells us that we can consistently estimate the regret at a future time point. Fur-
thermore, the Delta method applied to Theorem 5 gives the asymptotic distribution of the
denominator in Eq. 14.

3.2.2 Asymptotic distribution of the estimation error (observable)

Combining the asymptotic equivalence of Gram matrix and DtD
>
t from Theorem 3, the

asymptotic distribution of the estimation error from Theorem 5, and Slutsky’s theorem
immediately produces the following very useful corollary.

Corollary 11. Algorithm 1 applied to a system described by Eq. 1 under Assumption 1
satisfies

Tr

([
Ât −A, B̂t −B

] t−1∑
i=0

[
xi
ui

] [
xi
ui

]> [
Ât −A, B̂t −B

]>) D−→ σ2χ2
n(n+d).
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The proof of Corollary 11 can be found at Appendix F.3. The reason it is useful is it
allows us to construct an asymptotically exact ellipsoidal confidence region for the system
dynamics A and B. In particular, the following confidence region has asymptotic coverage
exactly 1− α and is entirely and efficiently computable from data observable through time
t:

{
A,B : σ−2 Tr

([
Ât −A, B̂t −B

] t−1∑
i=0

[
xi
ui

] [
xi
ui

]> [
Ât −A, B̂t −B

]>) ≤ χ2
n(n+d),1−α

}
,

(15)
where χ2

n(n+d),1−α is the 1−α quantile of a χ2
n(n+d) random variable. To our knowledge, this

is the first asymptotically exact confidence region for the system dynamics in the LQAC
problem. Note the confidence region in Eq. 15 is identical to the confidence region one
would compute if the data points {xi, ui}t−1

i=0 were i.i.d., but the theory that led us to this
result is far more challenging than in the i.i.d. setting.

Analogously to Corollary 8, we can also use the Delta method to derive a confidence
region for K.

Corollary 12. Assume A+BK is full rank. Then Algorithm 1 applied to a system described
by Eq. 1 under Assumption 1 satisfies

vec(K̂t−K)>

( dK

d[A,B]

)
t

(
t−1∑
i=0

[
xi
ui

] [
xi
ui

]>
⊗ In

)−1(
dK

d[A,B]

)>
t

−1

vec(K̂t−K)
D−→ σ2χ2

nd,

where
(

dK
d[A,B]

)
t
∈ Rnd×n(n+d) is defined as dK

d[A,B] evaluated at Ât−1, B̂t−1.

The proof of Corollary 12 can be found at Appendix F.4. Corollary 12 gives the following
asymptotically exact ellipsoidal 1− α confidence region for K:{

K : σ−2vec(K̂t −K)>

( dK

d[A,B]

)
t

(
t−1∑
i=0

[
xi
ui

] [
xi
ui

]>
⊗ In

)−1(
dK

d[A,B]

)>
t

−1

·

vec(K̂t −K) ≤ χ2
nd,1−α

}
.

3.2.3 Asymptotic distribution of the prediction error (observable)

We can obtain an observable expression for the asymptotic distribution of the prediction
error as a direct corollary of Theorem 3 and 9.

Corollary 13. Algorithm 1 applied to a system described by Eq. 1 under Assumption 1
satisfies:σ2

[
xt
ut

]>( t−1∑
i=0

[
xi
ui

] [
xi
ui

]>)−1 [
xt
ut

]−1/2 (
(Ât −A)xt + (B̂t −B)ut

)
D−→ N (0, In).

11
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The proof can be found in Appendix F.5, and is a special case of a more general result
that allows the users to choose their own desired input by replacing ut = K̂txt + ηt with
ut = K̂txt + ξt for any ξt constant or independent of the data. Again, Corollary 13 can
easily be extended to characterize the full prediction error of xt+1− (Âtxt+ B̂tut) by simply
adding σ2 to the first parenthetical, leading to the following prediction region:xt+1 : σ−2

1 +

[
xt
ut

]>( t−1∑
i=0

[
xi
ui

] [
xi
ui

]>)−1 [
xt
ut

]−1

‖(Âtxt + B̂tut)− xt+1‖2 ≤ χ2
n,1−α

 .

(16)
Having at each time t a computable region with a high probability of containing the next
state xt+1 is a crucial ingredient in ensuring the safety of a learning system, as it both
provides a warning about where the system will be next and gives the system the opportunity
to change or cancel the control ut if the prediction region intersects an unsafe part of the
state space.

As an additional application of the prediction region Eq. 16, since xt+1 is observed at
the next time step, we can use the agreement between our prediction region and the true
xt+1 to test certain assumptions about our system. For instance, the hypothesis test which
rejects if xt+1 does not fall within the prediction region constructed at time t constitutes
a asymptotically valid level-α test of our stationary linear dynamics encoded in Eq. 1. For
instance, if we are confident about the linearity of our system but worried that it may
be non-stationary, we could use this test to detect whether the dynamics have changed
within the first t+ 1 time steps, and more generally, such tests could be strung together to
constitute a change detection algorithm (Grünwald et al., 2019; Wang and You, 2020).

Note that the naive prediction region{
xt+1 : σ−2‖(Âtxt + B̂tut)− xt+1‖2 ≤ χ2

n,1−α

}
. (17)

also has asymptotically exact coverage even though it ignores the estimation error in [Ât, B̂t].
However, our experiments show that our prediction region from Eq. 16 achieves much better
finite-sample coverage by accounting for the estimation error of [Ât, B̂t]; see Fig. 1e.

4. Experiments

We verify our algorithm’s performance in one stable and one unstable dynamical system.
We focus on comparing the finite sample performance of our algorithm to our theoretical
predictions, and defer comparison between our algorithm and other existing algorithms for
future work (see Dean et al. (2018) for a comparison between an algorithm similar to our
algorithm except it updates K̂t logarithmically often and other algorithms which we will
review in Appendix 5). In the main text, we will only display the figures with β = 1/2 and
α = 2 in the stable system; the remaining figures and details of the experimental setup can
be found in Appendix I. 5

5. Source code for reproducing our results can be found at https://github.com/Feicheng-Wang/LQAC_

code.
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4.1 A Representative Simulation

Fig. 1 summarizes the results of our experiment with β = 1/2 and α = 2 in a stable system
(for the analogous figure in an unstable system see Fig. I.1). The main takeaways are:

• Fig. 1a shows that Algorithm 1’s stepwise update leads to lower regret than update
logarithmically often, although the difference is small compared with the variability
of the regret. The difference is qualitatively similar but quantitatively larger in the
unstable system, and the difference can be quite large for poor choices of K0, but
pretty robust for choices of CK ; see Fig. I.1a, I.2 and I.6.

• Fig. 1b verifies that the ratio of the true observed regret with either of our regret
expressions in Theorem 4 and Corollary 10 is converging to 1. Note that the large
confidence band is due to the huge variance in the regret itself. The analogous plots
for β 6= 1/2 and the unstable system can be found at Fig. I.1b and I.3; larger β speeds
up the convergence speed.

• Fig. 1c verifies the convergence rate disparity in Remark 6 that Ât −A, B̂t −B, and
K̂t −K have a slow convergence rate Õ(t−β/2), while Ât −A+ (B̂t −B)K has a fast
convergence rate Õ(t−1/2) ; see Fig. I.1c.

• Fig. 1d shows that, the finite sample coverage of our confidence regions and predic-
tion region closely matches our asymptotic theory in Corollary 11, Corollary 12, and
Corollary 13. Also Fig. 1e shows that our prediction region Eq. 16 have better finite
sample coverage than the naive region Eq. 17. In this simulation, the observable ex-
pressions have slightly better coverage. Similar results hold for other choices of β and
the unstable systems (Fig. I.1d and I.5).

5. Detailed Review of Related Work

The LQAC problem lies at the intersection of adaptive control and reinforcement learning
and has drawn considerable attention in the past decade. This line of work differs from much
of the work in reinforcement learning that is based on games or other virtual simulators
that can be rerun infinitely many times (Vinyals et al. (2017), Silver et al. (2017)) because
it is run in one-shot. However, many real-world applications cannot be easily restarted over
and over again, and repeating experiments can be prohibitively expensive. Aside from the
CE approach taken in this paper and reviewed in Section 1.2, we classify LQAC algorithms
into two broad categories:

• Optimism in the Face of Uncertainty: This method uses non-convex optimization
to repeatedly select a near optimal control (in the regret sense) from a confidence set,
achieves the optimal rate of regret (Abbasi-Yadkori and Szepesvári, 2011; Ibrahimi
et al., 2012; Faradonbeh et al., 2017). Later Cohen et al. (2019) extended this work by
replacing non-convex optimization with semi-definite programming and still achieves
the optimal regret.
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[Ât − A, B̂t − B] slope: -0.2
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(d) Confidence Region Coverage
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(e) Prediction Region Coverage
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Figure 1: (See next page for caption)
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Figure 1: Summary of 1000 independent experiments applying Algorithm 1 with β = 1/2,
α = 2, Cx = 1, and CK = 5 on the stable system described in Appendix I.1.1. (a) Difference
between the regret of Algorithm 1 using stepwise and logarithmic updates. (b) The ratio
of the empirical regret and our parametric or observable expressions for the regret. (c)
The average Frobenius norm of various estimation errors considered in this paper, with
slopes fitted on a log-log scale so that the estimation error is Õ(tslope). The effect of α was
removed from the slopes of K̂t−K and [Ât−A, B̂t−B] by dividing the error by logα/2(t). (d)
Coverage of our 95% confidence regions for [A,B], K, and E[xt+1 | {xi, ui}ti=0] = Axt+But.
(e) Coverage of our 95% prediction region for xt+1 | {xi, ui}ti=0, along with coverage of the
naive prediction region given in Eq. 17.

• Thompson Sampling: Starting with a prior distribution for the system parameters,
one can use Bayes’ rule to update a posterior distribution online and can use samples
from that posterior to choose controls that balance exploration and exploitation. The
pioneering work (Abeille and Lazaric, 2017) applying this idea to LQAC demonstrated
a suboptimal Õ(T−1/3) average regret, which is later improved to the optimal rate
Õ(T−1/2) by Ouyang et al. (2017); Faradonbeh et al. (2018b). Abeille and Lazaric
(2018) is the only work which we know of that achieves the optimal rate with stepwise
updates, although their proofs only apply in scalar systems (i.e., n = 1).

Logarithmic Regret We pause here to clarify that any result achieving logarithmic
regret is in a different setting from ours (in our setting, a lower bound of Õ(T−1/2) was
proven in Simchowitz and Foster (2020)). For example, when the system parameters A
and B are known or partially known, a logarithmic rate of regret is achievable due to the
extra information in A and B which allows faster estimation of K (Foster and Simchowitz,
2020; Cassel et al., 2020). Or, when the states are only partially observed, although the
controller receives less information, the optimal controller also has less information, which
turns out to allow a logarithmic rate of regret (Lale et al., 2020; Tsiamis and Pappas,
2020). As a final example, when the cost is not an explicit function of the controls ut, a
logarithmic rate of regret is achievable using a controller called a self-tuning regulator, which
is similar to our certainty equivalent controller except that it targets a different optimal
controller U∗ (because the cost function is different) and applies constant size probing steps
logarithmically often (Lai and Wei, 1986; Lai, 1986; Guo and Chen, 1991; Guo, 1995).

Sequential Analysis and Time Series Establishing asymptotic normality is common
in sequential analysis (Lai, 2001) and time series or state space model analysis (Kohn and
Ansley, 1986; Pedroni, 2004), but the focus in these fields is on stationary and Markovian
time series (although we assume our system is stabilizable, the data generated by applying
our adaptive controller to that system is non-Markovian and non-stationary as the controller
depends on the whole history) and on simpler forms of dependence than we consider.

6. Discussion

This paper’s main contributions are asymptotically exact expressions for the regret and the
distributions of the estimation and prediction errors of a stepwise updating noisy certainty
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equivalent control algorithm in terms of either the system parameters or observable random
variables.

These results improve the field’s understanding of the LQAC problem and open up a
number of new research directions:

1. Theoretical improvements. Our simulations support our suspicion that all of
our results except for Theorem 4 and Corollary 10 hold under more general version of
Algorithm 1 that allows β = 1/2 and α = 0, the summation in Line 3 to go up to t−1,
and the removal of Line 4. We expect such extensions to require significantly stronger
theoretical machinery, and we hope that future work will prove these extensions and
analogues to Theorem 4 and Corollary 10 which account for an expected additional
term of order O(T−1/2).

2. Safe reinforcement learning. Existing work in safe reinforcement learning relies
heavily on prediction regions derived from Bayesian inference (Berkenkamp et al.,
2017; Koller et al., 2018). Our Corollary 13 provides a tight frequentist asymptotic
prediction region that, unlike Bayesian inference, does not assume a prior on the
system parameters, providing a potential starting point for new safe reinforcement
learning algorithms.

3. Non-asm:InitialStableCondition reinforcement learning. As mentioned in the
last paragraph of Section 3, our prediction region can be used for change point de-
tection in non-stationary systems. Many existing work designed for reinforcement
learning algorithms in the non-stationary environment relies on some form of change
point detection, although they focus on discrete state and action spaces (Da Silva
et al., 2006; Auer et al., 2009; Padakandla et al., 2019). Thus, our work may be useful
for designing new reinforcement learning algorithms in non-stationary settings with
continuous state and action spaces.
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Appendix A. Preliminaries

A.1 Notation

Let us first review the definition of O(·), and generalize the notation to contain relative
constants θ, as well as introducing a new notation representing constant functions that we
know exactly the order as well as the coefficient in front of the largest order term.

Definition 14. Let f and g both be real valued function, and suppose g(x) is strictly positive
for any x large enough. Then

1. f(x) = O(g(x)) if and only if ∃x0, |f(x)| ≤Mg(x) for any x ≥ x0.

2. f(x) = Õ(g(x)) if and only if ∃x0 and ∃k ∈ Z, |f(x)| ≤ Mg(x) logk(g(x)) for any
x ≥ x0.

3. f(x) = O(g(x)) is a fixed function with regard to x such that ∃C > 0, and limx→∞|f(x)/g(x)| =
C

4. f(x) = O(θ; g(x)) is a fixed function with regard to x such that ∃C(θ) > 0, and
limx→∞|f(x)/g(x)| = C(θ)

5. For a set of random variables Xn and a corresponding set of constants an, the notation

Xn = op(an).

means that the set of values Xn/an converges to zero in probability as n approaches
an appropriate limit. Equivalently, Xn = op(an) can be written as Xn/an = op(1),
where Xn = op(1) is defined as

Xn
P−→ 0.

6. For a set of random variables Xn and Yn, where Yn is almost surely non-zero, the
notation

Xn = o(Yn) a.s.

means that
Xn/Yn

a.s.−→ 0.

7. The notation
Xn = Op(an).

means that the set of values Xn/an is stochastically bounded. That is, for any ε > 0,
there exists a finite M > 0 and a finite N > 0 such that,

P(|Xn/an| > M) < ε,∀n > N.

8.
Xn = O(an) a.s.

if for almost every ω ∈ Ω, there exists a number C(ω) such that |Xn(ω)| ≤ C(ω)an.
In other words, Xn = O(an) a.s. if there exists a random variable C such that |Xn| ≤
Can a.s. Equivalently,

Xn = O(an) a.s. ⇐⇒ lim sup
n→∞

|Xn|
an

<∞ a.s.
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9. The notation

Xn = Õp(an).

means that the set of values Xn/an is stochastically bounded up to a constant order
of log(an). That is, for any ε > 0, there exists a finite M > 0 , a finite k ∈ Z, and a
finite N > 0 such that,

P(|Xn/ logk(an)an| > M) < ε,∀n > N.

All these definitions can be generalized to vectors or matrices with entry-
wise definition. Without extra specification, all norms ‖·‖ (for both vectors and matrices)
are meant to be L2 norm ‖·‖2, i.e., operator-2 norm for the matrix.

Some relationships between these notations are worth keeping in mind: (see Eq.(7) and
Eq.(8) in Janson (2011))

Xn = o(an) a.s. =⇒ Xn = op(an). (18)

Xn = O(an) a.s. =⇒ Xn = Op(an). (19)

To carefully track down the constant chosen manually, when we state order bounds like
O(θ; g(x)), θ should not contain variables such as δ which are set fixed when we prove high
probability bounds but could be varying later, but could contain global constants such as
A, B, K, P , Q, R, dimension d, n and Cx, Cu, τ , β that are fixed throughout the whole
algorithm.

In order to differentiate O(·) from fixed constants, we denote O(θ) as constant terms
which could be potentially varying and only related with θ. That means for the same O(θ)
symbol in two different places, they can be different constants. One special symbol is O(1)
which represents constant that does not rely on any parameters.

A.2 Extending results to β = 1

Although the main text only considered vanishing exploration noise (i.e., β < 1), for com-
pleteness (and because it is straightforward to do so) we will also consider the case of β = 1
and α ≤ 0 for all of our results.

A.3 Proof dependency tree

In order to make the proof more readable and easier to understand, we put the proof
outlines first and summarize most useful middle steps by lemmas. These lemmas’ proofs
often involve more technical details and is deferred to later parts in the appendix. While this
may help readers have better understanding in the high level ideas behind the long proof,
we realize that it may also cause loops in the proof structure. Thus, we provide a tree
(Fig. A.1) which describes the exact proof dependency structure to make sure that there
is no circular argument. In Fig. A.1, all conclusions lies in a perfect tree graph except for
the loop marked in red between Lemma 18 and Proposition 17. This is not a contradiction
because the proof of Proposition 17 only relies on a subset of conclusions in Lemma 18:
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Eqs. 24 and 25, which do not require Proposition 17 to hold. Some of the proofs relies on
Eq. 81, which is not included in the graph but still self-consistent (does not rely on other
results in the paper).

Appendix B. The proof of Theorem 3

Theorem. Algorithm 1 applied to a system described by Eq. 1 under Assumption 1 satisfies

D−1
t

t−1∑
i=0

[
xi
ui

] [
xi
ui

]>
(D>t )−1 P−→ In+d. (20)

B.1 Proof Outline

Proof Let us first examine the Gram matrix
∑t−1

i=0

[
xi
ui

] [
xi
ui

]>
. Denote

Mt :=
t−1∑
i=1

xix
>
i /t

β logα(t), (21)

and

∆t :=
t−1∑
i=1

uix
>
i /t

β logα(t)−KMt

=
t−1∑
i=1

((K̂t −K)xi + ηi)x
>
i /t

β logα(t).

(22)

We will show that

t−1∑
i=0

uiu
>
i /t

β logα(t) = KMtK
> + ∆tK

> +K∆>t +
τ2

β
Id + op(1),

and thus we can write our Gram matrix as

t−1∑
i=1

[
xi
ui

] [
xi
ui

]>
/tβ logα(t) =

[ ∑t−1
i=0 xix

>
i

∑t−1
i=1 xiu

>
i∑t−1

i=0 uix
>
i

∑t−1
i=1 uiu

>
i

]
/tβ logα(t)

=

[
Mt MtK

> + ∆>t
KMt + ∆t KMtK

> + ∆tK
> +K∆>t + τ2

β Id

]
+ op(1)

=

[
In 0
K Id

][
Mt ∆>t
∆t

τ2

β Id

][
In K>

0 Id

]
+ op(1).

Therefore, in order to satisfy

D−1
t

t−1∑
i=0

[
xi
ui

] [
xi
ui

]>
(D>t )−1 P−→ In+d,
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we can pick D−1
t :=

[
C
−1/2
t 0

0
√

β
τ2
Id

][
In 0
−K Id

]
/tβ/2 logα/2(t). Ct is a deterministic

matrix which satisfies C
−1/2
t M

1/2
t

P−→ In and C
−1/2
t ∆t = op(1) (we will give Ct’s exact

expression in Eq. 29). With this choice of D−1
t , we have

D−1
t

t−1∑
i=0

[
xi
ui

] [
xi
ui

]>
(D>t )−1

=

[
C
−1/2
t 0

0
√

β
τ2
Id

] [
In 0
−K Id

]( t−1∑
i=0

[
xi
ui

] [
xi
ui

]>
/tβ logα(t)

)[
In −K>
0 Id

][
C
−1/2
t 0

0
√

β
τ2
Id

]

=

[
C
−1/2
t 0

0
√

β
τ2
Id

] [
In 0
−K Id

]([
In 0
K Id

][
Mt ∆>t
∆t

τ2

β Id

] [
In K>

0 Id

]
+ op(1)

)

·
[
In −K>
0 Id

] [
C
−1/2
t 0

0
√

β
τ2
Id

]

=

[
C
−1/2
t 0

0
√

β
τ2
Id

] [
In 0
−K Id

] [
In 0
K Id

][
Mt ∆>t
∆t

τ2

β Id

][
In K>

0 Id

]

·
[
In −K>
0 Id

] [
C
−1/2
t 0

0
√

β
τ2
Id

]
+ op(1) (we can move op(1) outside because C

−1/2
t → 0)

=

[
C
−1/2
t 0

0
√

β
τ2
Id

][
Mt ∆>t
∆t

τ2

β Id

][
C
−1/2
t 0

0
√

β
τ2
Id

]
+ op(1)

=

 C
−1/2
t MtC

−1/2
t

√
β
τ2
C
−1/2
t ∆>t√

β
τ2

∆tC
−1/2
t Id

+ op(1)

=In+d + op(1).

Components needing further explanation In the final step of the above derivation
there are still several points that remains unclear, namely

•
∑t−1

i=0 uiu
>
i /t

β logα(t) = KMtK
> + ∆tK

> +K∆>t + τ2

β Id + op(1),

• C
−1/2
t M

1/2
t

P−→ In, and

• C
−1/2
t ∆t = op(1).

As we will see, the order of ∆t is decided by the convergence rate of K̂t −K. Because of
that, the first step in our proof is to identify the convergence rate of K̂t −K. Then we will
prove the three remaining points in The proof of Eq. 20. To summarize, our proof can be
mainly separated into two big steps:

1. Identify the convergence rate of K̂t −K. (see Appendix B.2)
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2. Prove Eq. 20 holds:

D−1
t

t−1∑
i=0

[
xi
ui

] [
xi
ui

]>
(D>t )−1 P−→ In+d.

• Summarize uniform high probability bound for some random variables, which
will serve as basic tools for later proof. (see Appendix B.3.1)

• Prove C
−1/2
t M

1/2
t

P−→ In. (see Appendix B.3.2)

• Prove C
−1/2
t ∆t = op(1). (see Appendix B.3.3)

• Prove
∑t−1

i=0 uiu
>
i /t

β = KMtK
> + ∆tK

> + K∆>t + τ2

β Id + op(1). (see Ap-
pendix B.3.4)

Now we will examine these steps in order.

B.2 Convergence rate of K̂t −K
As said in the previous part, the main purpose of this section is to derive the convergence
rate of K̂t − K, which is one crucial step in our proof. Denote the stabilizing controller
computed by Line 3 Algorithm 1 as K̃t+1, i.e.,

K̃t+1 =

{
Solve DARE Eqs. 3 and 4 with A = Ât, B = B̂t, for (Ât, B̂t) stabilizable

K0, for (Ât, B̂t) not stabilizable
.

By Line 4 Algorithm 1, K̂t+1 can be written as:

K̂t+1 =

{
K0, when ‖xt‖ > Cx log(t) or ‖K̂t‖ > CK

K̃t+1, otherwise
.

In particular, the proof can be separated into three parts:

1. Derive the convergence rate of Ât and B̂t.

2. Show that K̃t+1 enjoy the same convergence rate as Ât and B̂t.

3. Show that K̂t+1 is only different from K̃t+1 finitely often, and as a result, K̂t+1 also
enjoy the same convergence rate as Ât and B̂t.

Correspondingly we have the following three propositions:

Proposition 15 (Similar to Proposition C.1 in Dean et al. (2018)). Let x0 ∈ Rn be any
initial state. Assume Assumption 1 is satisfied. When applying Algorithm 1,

max
{
‖Ât −A‖, ‖B̂t −B‖

}
= O(t−

β
2 log

−α+1
2 (t)) a.s.

The proof of Proposition 15 can be found in Appendix G.1.
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Proposition 16. Let x0 ∈ Rn be any initial state. Assume Assumption 1 is satisfied. When
applying Algorithm 1,

max
{
‖Ât −A‖, ‖B̂t −B‖, ‖K̃t+1 −K‖

}
= O(t−

β
2 log

−α+1
2 (t)) a.s.

The proof of Proposition 16 can be found in Appendix G.2.

Proposition 17. Let x0 ∈ Rn be any initial state. Assume Assumption 1 is satisfied. When
applying Algorithm 1,

max
{
‖Ât −A‖, ‖B̂t −B‖, ‖K̂t+1 −K‖

}
= O(t−

β
2 log

−α+1
2 (t)) a.s. (23)

The proof of Proposition 17 can be found in Appendix G.3.

Propositions 15, 16, and 17 all hold additionally for a version of Algorithm 1 that
only updates logarithmically often; see Appendix G. The takeaway from this section is the
uniform bound for ‖K̂t+1 − K‖ Eq. 23, which is the only property of K̂t we need for the
rest of the proof.

B.3 Proving Eq. 20

B.3.1 Uniform Bounds

In this section we will show several basic uniform bounds that will be used frequently in
the later The proof of Theorem 3.

Lemma 18.

•
‖εt‖, ‖ηt‖ = O(log1/2(t)) a.s. (24)

•
‖Bηt + εt‖ = O(log1/2(t)) a.s. (25)

Assume Eq. 23, then:

•
‖δt‖ = ‖K̂t −K‖ = O(t−

β
2 log

−α+1
2 (t)) a.s. (26)

• For t > q,

‖(L+Bδt−1) · · · (L+Bδq)‖ = O(ρt−qL ) a.s. (27)

•
‖xt‖, ‖ut‖ = O(log1/2(t)) a.s. (28)

where δt := K̂t −K, L := A + BK, and ρL := 2+ρ(L)
3 . Additionally, when t = 0, 1 all

these terms are bounded by O(1) a.s.
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The proof can be found in Appendix H.1.1. Following Definition 14 Item 8, Lemma 18
presents uniform upper bounds for t ≥ 0. We will see that all states xt and actions ut can be
expressed in recursive summations, which can be bounded easily if we have uniform upper
bound for each of their components.

Let us briefly explain why these orders makes sense.

• The first two inequalities come from the tail bound for standard Gaussian random
variables, whose maximum scales as log1/2(t).

• The third inequality Eq. 26 directly follows from Eq. 23.

• The fourth inequality Eq. 27 holds with exponential decay because the L has spectual
radius < 1 and by Eq. 26, δt is shrinking to 0.

• The fifth inequality Eq. 28 holds because the system is stabilizable and the effect of
previous states and actions are exponentially decaying, leaving the main factor in the
norm to come from the recent system noises. By the first two inequalities ‖xt‖ is
uniformly bounded by log1/2(t) scale.

B.3.2 Showing C
−1/2
t M

1/2
t

P−→ In

We wish to show that Mt =
∑t−1

i=0 xix
>
i /t

β logα(t) = Ct(1 + op(1)), where

Ct = log−α(t)t1−β
∞∑
p=0

Lp(Lp)>σ2 +
τ2

β

∞∑
q=0

LqBB>(Lq)> (29)

Recall the system definition Eq. 1:

xt+1 = Axt +But + εt.

and the input Eq. 6

ut = K̂txt + ηt.

Recursively applying these two equations produces the following formula for xt in terms of
x0, {εp}t−1

p=0, and {ηp}t−1
p=0.

Lemma 19. For any t ≥ 1,

xt =
t−1∑
p=0

(A+BK̂t−1) · · · (A+BK̂p+1)(Bηp + εp) + (A+BK̂t−1) · · · (A+BK0)x0, (30)

and

ut =

t−1∑
p=0

K̂t(A+BK̂t−1) · · · (A+BK̂p+1)(Bηp + εp) + K̂t(A+BK̂t−1) · · · (A+BK0)x0 + ηt.

Here when p = t− 1, we define the product (A+BK̂t−1) · · · (A+BK̂p+1) := In.
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The proof can be found in Appendix H.1.2. As a result, we can rewrite
∑t−1

i=0 xix
>
i into

a summation in terms of {εi, ηi}t−1
i=0. First consider the terms without x0.

t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

[
(A+BK̂i−1) · · · (A+BK̂p+1)(Bηp + εp)

] [
(A+BK̂i−1) · · · (A+BK̂q+1)(Bηq + εq)

]>
.

This whole expression can be separated into four components with the following bounds:

Lemma 20. Assume Eq. 23, then:

1.

t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

[
(A+BK)i−p−1

]
(Bηp + εp)(Bηq + εq)

> [(A+BK)i−q−1
]>

= tβ logα(t)(Ct + op(1)).

2.

t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

[
(A+BK̂i−1) · · · (A+BK̂p+1)− (A+BK)i−p−1

]
·(Bηp + εp)(Bηq + εq)

> [(A+BK)i−q−1
]>

= O(t1−β/2 log
−α+3

2 (t)) a.s.

3.

t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

[
(A+BK)i−p−1

]
(Bηp + εp)(Bηq + εq)

>
[
(A+BK̂i−1) · · · (A+BK̂q+1)− (A+BK)i−q−1

]>
= O(t1−β/2 log

−α+3
2 (t)) a.s.

4.

t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

[
(A+BK̂i−1) · · · (A+BK̂p+1)− (A+BK)i−p−1

]
(Bηp + εp)(Bηq + εq)

>

·
[
(A+BK̂i−1) · · · (A+BK̂q+1)− (A+BK)i−q−1

]>
= O(t1−β/2 log

−α+3
2 (t)) a.s.

The proof can be found in Appendix H.1.3.
It remains to consider the remaining terms with x0, which is relatively straight-forward,

since the effect of the initial state is exponentially decaying when t→∞.

Lemma 21. Assume Eq. 23, then

1.
∑t−1

i=0

[
(A+BK̂i−1) · · · (A+BK0)x0

] [∑i−1
q=0(A+BK̂i−1) · · · (A+BK̂q+1)(Bηq + εq)

]T
=

Õ(1) a.s.
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2.
∑t−1

i=0

[
(A+BK̂i−1) · · · (A+BK0)x0

] [
(A+BK̂i−1) · · · (A+BK0)x0

]T
= O(1) a.s.

The proof can be found in Appendix H.1.4. As mentioned in Eq. 19, O a.s. notation is
stronger than Op notation. Summing up all the results in Lemma 20 and Lemma 21 we can
finally conclude that

t−1∑
i=0

xix
>
i = tβ logα(t)(Ct + op(1)) +Op(t1−β/2 log

−α+3
2 (t)).

Thus

Mt =
t−1∑
i=0

xix
>
i /t

β logα(t) = Ct + op(1) +Op(t1−3β/2 log
−3α+3

2 (t)), (31)

where Ct is defined in Eq. 29 This is already very close to our objective C
−1/2
t M

1/2
t

P−→ In,
but we still need to show that Ct is an invertible matrix. Ct is already a positive semi-
definite (PSD) matrix because it is a weighted summation of PSD matrices Lp(Lp)> and
LqBB>(Lq)>. The only thing we need to ensure is that Ct is a full rank matrix. And that
is indeed true because the p = 0 term is the identity matrix, and adding more PSD matrices
Lp(Lp)> and LqBB>(Lq)> will not change its positive definite nature. Following Eq. 29,
we have (because β < 1 or β = 1 and α ≤ 0)

Ct = log−α(t)t1−β
∞∑
p=0

Lp
(
σ2In + 1{β=1,α=0}τ

2BB>
)

(Lp)>(In + o(1)). (32)

Thus

C−1
t = tβ−1 logα(t)

 ∞∑
p=0

Lp
(
σ2In + 1{β=1,α=0}τ

2BB>
)

(Lp)>

−1

(In+o(1)) = O(tβ−1 logα(t)).

(33)
Noticing that

O(tβ−1 logα(t))Op(t1−3β/2 log
−3α+3

2 (t)) = Op(t−β/2 log
−α+3

2 (t)) = op(1),

we have from Eq. 31

C−1
t Mt

P−→ In. (34)

With the help of the following lemma we conclude that C
−1/2
t M

1/2
t

P−→ In.

Lemma 22. Assume we have two matrix sequences {At}∞t=1 and {Bt}∞t=1, where At and Bt
are p× p positive definite matrices, then

A2
tB

2
t

P−→ Ip.

iff

AtBt
P−→ Ip.

The proof can be found in Appendix H.1.5 (Thanks for the help from Haoyi Yang and
Yue Li in proving this lemma).

26



Exact Asymptotics for Linear Quadratic Adaptive Control

B.3.3 Proving C
−1/2
t ∆t = op(1)

Recall the definition of ∆t from Eq. 22:

∆t :=

(
t−1∑
i=0

(K̂i −K)xix
>
i +

t−1∑
i=0

ηix
>
i

)
/tβ logα(t).

The order of ∆t depends on the order of its two components:

Lemma 23. Assume Eq. 23, then

1.
∑t−1

i=0(K̂i −K)xix
>
i = O(t1−β/2 log

−α+3
2 (t)) a.s.

2.
∑t−1

i=0 ηix
>
i = o

(
tβ/2 log

α+3
2 (t)

)
a.s.

The proof can be found in Appendix H.1.6. The first term has larger order than the
second term when 1/2 ≤ β < 1 or β = 1 and α ≤ 0. As a result, we have

∆t = O(t1−3β/2 log
−3α+3

2 (t)) a.s. (when β ∈ [1/2, 1)) (35)

Observe from Eq. 33:
C−1
t = O(tβ−1 logα(t)).

Then when β > 1/2 or β = 1/2, α > 3/2

C
−1/2
t ∆t =O(t−1/2+β/2 logα/2(t)t1−3β/2 log

−3α+3
2 (t))

=O(t1/2−β log
−2α+3

2 (t))

=o(1) a.s.

B.3.4 Proving
∑t−1

i=0 uiu
>
i /t

β logα(t) = KMtK
> + ∆tK

> +K∆>t + τ2

β Id + op(1)

Finally we need to check

t−1∑
i=0

uiu
>
i =

t−1∑
i=0

((K + δi)xi + ηi)((K + δi)xi + ηi)
>,

where δi = K̂i −K. There are six different kinds of terms in the above equation, namely∑t−1
i=0 Kxix

T
i K
>,
∑t−1

i=0 Kxix
>
i δ
>
i and

∑t−1
i=0 δixix

T
i K
>,
∑t−1

i=0 Kxiη
>
i and

∑t−1
i=0 ηix

T
i K
>,∑t−1

i=0 δixix
>
i δ
>
i ,
∑t−1

i=0 δixiη
>
i and

∑t−1
i=0 ηix

>
i δ
>
i , and

∑t−1
i=0 ηiη

>
i . The first three terms can

be written as
t−1∑
i=0

Kxix
T
i K
>/tβ logα(t) = KMtK

>,

and(
t−1∑
i=0

Kxix
>
i δ
>
i +

t−1∑
i=0

δixix
T
i K
> +

t−1∑
i=0

Kxiη
>
i +

t−1∑
i=0

ηix
T
i K
>

)
/tβ logα(t) = K∆T

t + ∆tK
T .

The remaining terms can be summarized by

27



Wang and Janson

Lemma 24. Assume Eq. 23, then

1.
∑t−1

i=0 δixix
>
i δ
>
i = O(t1−β log−α+2(t)) a.s.

2.
∑t−1

i=0 δixiη
>
i = (

∑t−1
i=0 ηix

>
i δ
>
i )> = o

(
log2(t)

)
a.s.

3.
∑t−1

i=0 ηiη
>
i = tβ τ

2

β logα(t)(Id + op(1))

The proof of Lemma 24 can be found in Appendix H.1.7. Combining all parts in
Lemma 24 we have when β > 1/2 or β = 1/2, α > 1, the third item dominates the other
two. To sum up, we have

t−1∑
i=0

uiu
>
i /t

β logα(t) = KMtK
> + ∆tK

> +K∆>t +
τ2

β
Id + op(1). (36)

Summary Now we have completed all missing proof pieces in the proof of Eq. 20, which
finishes The proof of Theorem 3.

Appendix C. The proof of Theorem 4

Theorem. The average regret of the controller U defined by Algorithm 1 applied through
time horizon T to a system described by Eq. 1 under Assumption 1 satisfies, as T →∞,

R(U, T )

τ2β−1 Tr(B>PB +R)T β−1 logα(T )

P−→ 1,

with β = 1/2 therefore achieving the optimal rate (Simchowitz and Foster, 2020) of R(U, T ) =
Õp(T−1/2).

C.1 Proof Outline

Proof We are interested in the cost

T∑
t=1

x>t Qxt + u>t Rut with ut = K̂txt + ηt.

Recall the Eq. 30 from Lemma 19 that

xt =

t−1∑
p=0

(A+BK̂t−1) · · · (A+BK̂p+1)(Bηp + εp) + (A+BK̂t−1) · · · (A+BK0)x0.

Notice that the state xt has the same expression as if the system had noise ε̃t = Bηt+εt
and controller ũt = K̂txt. We wish to switch to the new system because there are some
existing tools with controls in the form of ũt = K̂txt.

We will first show in Appendix C.2 that the difference between the original cost and
transformed cost is

T∑
t=1

u>t Rut − ũ>t Rũt =
τ2

β
T β logα(T ) Tr(R)(1 + op(1)),
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and then prove in Appendix C.3 the new system cost is

T∑
t=1

x>t Qxt + ũ>t Rũt = Tσ2 Tr(P ) +
τ2

β
T β logα(T ) Tr(B>PB)(1 + op(1)).

Combining the above two equations, we conclude that

J (U, T ) =
1

T

[
T∑
t=1

x>t Qxt + u>t Rut

]
= σ2 Tr(P ) + τ2β−1 Tr(B>PB +R)T β−1 logα(T )(1 + op(1)).

Based on similar analysis we prove in Appendix C.4 that

J (U∗, T ) = σ2 Tr(P ) +Op(T−1/2 log(T )).

Recall that we choose β ∈ [1/2, 1], and α > 3/2 when β = 1/2, which means T β−1 logα(T )
is of larger order than T−1/2 log(T ). Finally we finish the proof with

R(U, T ) = J (U, T )− J (U∗, T )

= τ2β−1 Tr(B>PB +R)T β−1 logα(T )(1 + op(1)).

C.2 Cost difference induced by transformation

The difference is expressed as

T∑
t=1

u>t Rut − ũ>t Rũt =
T∑
t=1

(K̂txt + ηt)
>R(K̂txt + ηt)−

T∑
t=1

(K̂txt)
>R(K̂txt)

=2
T∑
t=1

(K̂txt)
>Rηt +

T∑
t=1

η>t Rηt.

We show in Eq. 83 that

T∑
t=1

(K̂txt)
>Rηt = o

(
T β/2 log

α+3
2 (T )

)
a.s.,

which is a direct corollary of Lemma 23.
Next we consider the order of

∑T
t=1 η

>
t Rηt. Since ηt ∼ N (0, τ2t−1+β logα(t)Id),

E
T∑
t=1

η>t Rηt =
T∑
t=1

Tr(Eηtη>t R)

=
T∑
t=1

τ2t−1+β logα(t) Tr(R)

(see the proof in Eq. 81)

= τ2T
β

β
logα(T ) Tr(R)(1 + o(1)).
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While the variance of
∑T

t=1 η
>
t Rηt is O(

∑T
t=1 t

−2+2β log2α(t)) = O(T−1+2β log2α(T )), which
means the standard error O(T−1/2+β logα(T )) is of lower order than the expectation. Thus

T∑
t=1

η>t Rηt = τ2T
β

β
logα(T ) Tr(R)(1 + op(1)).

As a conclusion, the error caused by this transformation is of order Õp(T β), and the

dominating term is
∑T

t=1 η
>
t Rηt.

T∑
t=1

u>t Rut − ũ>t Rũt = τ2T
β

β
logα(T ) Tr(R)(1 + op(1)). (37)

C.3 Cost of transformed system

Next we proceed as if our system was xt with system noise ε̃t = Bηt + εt and controller
ũt = K̂txt. The key idea of the following proof is from Appendix C of Fazel et al. (2018).

We are interested in the cost

T∑
t=1

x>t Qxt + ũ>t Rũt with ũt = K̂txt,

which can be written as

T∑
t=1

x>t Qxt + ũ>t Rũt =
T∑
t=1

x>t Qxt + (K̂txt)
>RK̂txt

=
T∑
t=1

x>t (Q+ K̂>t RK̂t)xt

=
T∑
t=1

[
x>t (Q+ K̂>t RK̂t)xt + x>t+1Pxt+1 − x>t Pxt

]
+ x>1 Px1 − x>T+1PxT+1

=
T∑
t=1

[
x>t (Q+ K̂>t RK̂t)xt + ((A+BK̂t)xt + ε̃t)

>P ((A+BK̂t)xt + ε̃t)− x>t Pxt
]

+ Õp(1) (by Lemma 18)

=

T∑
t=1

[
x>t (Q+ K̂>t RK̂t)xt + x>t (A+BK̂t)

>P (A+BK̂t)xt − x>t Pxt

+ 2ε̃>t P (A+BK̂t)xt + ε̃>t P ε̃t

]
+ Õp(1).

(38)

We constructed the specific form of the first term on purpose. The following lemma trans-
lates the first term into a quadratic term with respect to K̂t −K.

Lemma 25. For any K̂ with suitable dimension,

x>(Q+ K̂>RK̂)x+ x>(A+BK̂)>P (A+BK̂)x− x>Px
= x>(K̂ −K)>(R+B>PB)(K̂ −K)x.
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The proof can be found in Appendix H.2.1. As a result

T∑
t=1

x>t Qxt + ũ>t Rũt =
T∑
t=1

x>t (K̂t −K)>(R+B>PB)(K̂t −K)xt

+ 2ε̃>t P (A+BK̂t)xt + ε̃>t P ε̃t + Õp(1).

Now we have three terms, and we will examine them in order.

1. The first term we consider is
∑T

t=1 x
>
t (K̂t−K)>(R+B>PB)(K̂t−K)xt. Recall from

Lemma 18 that

‖xt‖, ‖ut‖ = O(log1/2(t)) a.s.

and

‖K̂t −K‖ = O(t−
β
2 log

−α+1
2 (t)) a.s.

As a result

T∑
t=1

x>t (K̂t −K)>(R+B>PB)(K̂t −K)xt

≤
T∑
t=1

‖xt‖2‖K̂t −K‖2‖R+B>PB‖

=

T∑
t=1

O(log(t))O(t−β log−α+1(t)) a.s.

=O(T 1−β log−α+2(T )) a.s. (by Eq. 81)

2. The second term we consider is
∑T

t=1 ε̃
>
t P (A+ BK̂t)xt. Similar as before, we notice

that ε̃t = εt +Bηt ⊥⊥ (A+BK̂t)xt. Then

E
T∑
t=1

ε̃>t P (A+BK̂t)xt = 0.
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Next consider

E(

T∑
t=1

ε̃>t P (A+BK̂t)xt)
2

=
T∑
t=1

E(ε̃>t P (A+BK̂t)xt)
2

≤
T∑
t=1

E‖ε̃t‖2‖P‖2‖(A+BK̂t)‖2‖xt‖2

(‖K̂t‖ ≤ CK based on Algorithm 1 design)

≤
T∑
t=1

‖P‖2(‖A‖+ ‖B‖CK)2E‖ε̃t‖2E‖xt‖2

=O(1)E
T∑
t=1

‖xt‖2

(because of Lemma 35 E
T∑
t=1

‖xt‖2 = O(T log2(T )))

=O(T log2(T )).

Thus
T∑
t=1

ε̃>t P (A+BK̂t)xt = Op(T 1/2 log(T )). (39)

3. The third term we consider is
∑T

t=1 ε̃
>
t P ε̃t. The expectation is

E
T∑
t=1

ε̃>t P ε̃t

=

T∑
t=1

Tr(PEε̃tε̃>t )

=

T∑
t=1

Tr(P (σ2In + τ2tβ−1 logα(t)BB>))

=Tσ2 Tr(P ) +
τ2

β
T β logα(T ) Tr(B>PB)(1 + o(1)) (By Eq. 81).

On the other hand, the variance is the sum of variances for each single summand with
total order O(T ). As a result, when β > 1/2 or β = 1/2, α > 0

T∑
t=1

ε̃>t P ε̃t = Tσ2 Tr(P ) +
τ2

β
T β logα(T ) Tr(B>PB)(1 + op(1)). (40)
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Summing up all three parts we have: when β > 1/2, or β = 1/2, α > 1,

T∑
t=1

x>t Qxt + ũ>t Rũt = Tσ2 Tr(P ) +
τ2

β
T β logα(T ) Tr(B>PB)(1 + op(1)). (41)

Taking the transformation part into consideration (Eq. 37):

T∑
t=1

u>t Rut − ũ>t Rũt = τ2T
β

β
logα(T ) Tr(R)(1 + op(1)).

Finally we have when β > 1/2, or β = 1/2, α > 1

J (U, T ) =
1

T

[
T∑
t=1

x>t Qxt + u>t Rut

]
= σ2 Tr(P ) + τ2β−1 Tr(B>PB +R)T β−1 logα(T )(1 + op(1)).

Finally we only need to prove that the optimal average cost can be expressed as:

J (U∗, T ) = σ2 Tr(P ) +Op(T−1/2 log(T )).

C.4 Optimal average cost

Denote the states and actions following policy U∗(Ht) = Kxt as x′t and u′t. Following Eq. 38
we know that

T∑
t=1

(x′t)
>Qx′t + (u′t)

>Ru′t

=

T∑
t=1

[
(x′t)

>(Q+K>RK)x′t + (x′t)
>(A+BK)>P (A+BK)x′t − (x′t)

>Px′t

+ 2ε>t P (A+BK̂t)xt + ε>t Pεt

]
+ Õp(1).

Following Lemma 25, since our K̂ is exactly K:

(x′t)
>(Q+K>RK)x′t + (x′t)

>(A+BK)>P (A+BK)x′t − (x′t)
>Px′t = 0

The remaining terms can be considered in exactly same way as Eq. 39 and Eq. 40, which
turn out to be:

T∑
t=1

ε̃>t P (A+BK̂t)xt = Op(T 1/2 log(T )),

and
T∑
t=1

ε>t Pεt = Tσ2 Tr(P ) +Op(T 1/2).
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Finally we arrive at the conclusion that

J (U∗, T ) =
1

T

(
T∑
t=1

(x′t)
>Qx′t + (u′t)

>Ru′t

)

=
1

T

(
Op(T 1/2 log(T )) + Tσ2 Tr(P ) +Op(T 1/2)

)
= σ2 Tr(P ) +Op(T−1/2 log(T )).

Appendix D. The proof of Theorem 5

Theorem. Algorithm 1 applied to a system described by Eq. 1 under Assumption 1 satisfies,
as t→∞,

vec
[[
Ât −A, B̂t −B

]
Dt

] D−→ N (0, σ2In(n+d)).

Proof One can find the definition of Dt in Eq. 7. The proof heavily relies on the following
theorems from Anderson and Kunitomo (1992). For better understanding, we directly state
those theorems with the same notation as our paper.

Theorem 26 (Theorems 1 and 3 in Anderson and Kunitomo (1992)). Let {xi, ui, εi},
i = 0, 1 · · · , be a sequence of random vectors described by Eq. 1 under Assumption 1, and
let {Fi} be an increasing sequence of σ-fields such that {xi, ui} is Fi−1 measureable and εi
is Fi measurable. Let the matrix Dt be a deterministic matrix such that

D−1
t

t−1∑
i=0

[
xi
ui

] [
xi
ui

]>
(D>t )−1 P−→ C, (42)

where C is a constant matrix, and

max
1≤i≤t

[
xi
ui

]>
(DtD

>
t )−1

[
xi
ui

]
P−→ 0. (43)

Suppose further that E(εi|Fi−1) = 0 a.s., E(εiε
>
i |Fi−1) = Σi a.s.,

t−1∑
i=0

[
Σi ⊗D−1

t

[
xi
ui

] [
xi
ui

]>
(D>t )−1

]
P−→ Σ⊗ C, (44)

where Σ is a constant positive semi-definite matrix and

sup
i≥1
E
[
ε>i εi1ε>i εi>a

|Fi−1

]
P−→ 0, (45)

as a→∞. Then
vec
[[
Ât −A, B̂t −B

]
Dt

] D−→ N (0, C−1 ⊗ Σ). (46)

As we have seen in Algorithm 1 the controller K̂t is fully determined by {xi, ui}t−1
i=0. Pick

Ft−1 = σ({xi, ui, ηi}ti=0, {εi}t−1
i=0).
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Now we verified the design vector

[
xt
ut

]
at stage t is Ft−1 measurable. Since εt

i.i.d.∼ N (0, σ2Id),

we know that εt ⊥⊥ Ft−1, and {εt} is a martingale difference sequence with respect to an
increasing sequence of σ-fields {Ft}. Eq. 44 holds by the fact that all variances Σi = σ2Id
and Eq. 42. For Eq. 45, notice that we can remove the sup since every term has the same
value, so the conclusion follows from a standard property of Gaussian distributions.

Actually, Eq. 42 is already shown in Theorem 3. Eq. 43 requires less effort to prove as
we defined Dt by

Dt := tβ/2 logα/2(t)

[
In 0
K Id

][
C

1/2
t 0

0
√

τ2

β Id

]
. (47)

As a result, Eq. 43 is not surprising since zt should be only of constant order.

D.1 The proof of Eq. 43

Since

DtD
>
t = tβ logα(t)

[
In 0
K Id

][
Ct 0

0 τ2

β Id

] [
In K>

0 Id

]
,

we have

(DtD
>
t )−1 =t−β log−α(t)

[
In −K>
0 Id

][
C−1
t 0

0 τ2

β Id

] [
In 0
−K Id

]
=O(t−β log−α(t)) (by Eq. 33).

(48)

Recall that Eq. 43 is

max
1≤i≤t

[
xi
ui

]>
(DtD

>
t )−1

[
xi
ui

]
P−→ 0.

It suffices to show

t−β/2 log−α/2(t) max
1≤i≤t

‖xi‖ P−→ 0 and t−β/2 log−α/2(t) max
1≤i≤t

‖ui‖ P−→ 0.

Actually we already shown in Lemma 18 that

‖xt‖, ‖ut‖ = O(log1/2(t)) a.s.

This is a uniform bound over t, thus a direct corollary is

max
1≤i≤t

‖xi‖, max
1≤i≤t

‖ui‖ = O(log1/2(t)) a.s.

That immediately implies

t−β/2 max
1≤i≤t

‖xi‖ a.s.−→ 0 and t−β/2 max
1≤i≤t

‖ui‖ a.s.−→ 0.
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Appendix E. The proof of Theorem 9

Here we state and prove a generalization of Theorem 9 that allows for the case when β = 1
and α ≤ 0.

Theorem. Algorithm 1 applied to a system described by Eq. 1 under Assumption 1 satisfies,
as t→∞,x>t

 ∞∑
p=0

(A+BK)p
(
In + 1{β=1,α=0}

τ2

σ2
BB>

)
((A+BK)p)>

−1

xt + βσ2 ‖wt‖2
−1/2

· t1/2
(

(Ât −A)xt + (B̂t −B)ut

)
D−→ N (0, In).

(49)

Proof We can generalize the input noise ηt to ξt which is any random vector independent
of the data before t: {εi, ηi}t−1

i=0. Hereafter, ut = K̂txt+ξt (but ui for i < t is still K̂ixi+ηi).

The proof will proceed by showing that (Ât, B̂t) acts as if it were independent of (xt, ut),
and then effectively conditioning on (xt, ut) and using (Ât, B̂t)’s asymptotic distribution
from Theorem 5.

Define ρL := 2+ρ(L)
3 as in Lemma 18. Define replacements of xt and ut which are

independent of Â
t−

⌊
− log(t)

log(ρL)

⌋ and B̂
t−

⌊
− log(t)

log(ρL)

⌋:

x̃t :=
t−1∑

p=t−
⌊
− log(t)

log(ρL)

⌋(A+BK)t−p−1(Bηp + εp), (50)

and

ũt := Kx̃t + ξt = K

t−1∑
p=t−

⌊
− log(t)

log(ρL)

⌋(A+BK)t−p−1(Bηp + εp) + ξt. (51)

We can show that the difference between x̃t, ũt and xt, ut is very small:

Lemma 27.

xt = x̃t +O(t−
β
2 log

−α+2
2 (t)) a.s.

ut = ũt +O(t−
β
2 log

−α+2
2 (t)) a.s.

The proof can be found in Appendix H.3.1. At the same time, the difference between
Â
t−

⌊
− log(t)

log(ρL)

⌋, B̂
t−

⌊
− log(t)

log(ρL)

⌋ and Ât, B̂t is also small:

Lemma 28.

Ât = Â
t−

⌊
− log(t)

log(ρL)

⌋ +Op(t−β log−α+3/2(t)).

B̂t = B̂
t−

⌊
− log(t)

log(ρL)

⌋ +Op(t−β log−α+3/2(t)).
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The proof can be found in Appendix H.3.2. These substitutions are very close to our
original concern, and they have the good independence property:(

Â
t−

⌊
− log(t)

log(ρL)

⌋ −A, B̂
t−

⌊
− log(t)

log(ρL)

⌋ −B
)
⊥⊥ (x̃t, ũt).

This is because Â
t−

⌊
− log(t)

log(ρL)

⌋ and B̂
t−

⌊
− log(t)

log(ρL)

⌋ are only functions of the system up to time

t −
⌊
− log(t)

log(ρL)

⌋
− 1, while x̃t and ũt are independent with event before time t −

⌊
− log(t)

log(ρL)

⌋
by definitions in Eq. 50 and 51. Our initial target is to identify the distribution of (Ât −
A)xt + (B̂t −B)ut. We will start from its substitution

(Â
t−

⌊
− log(t)

log(ρL)

⌋ −A)x̃t + (B̂
t−

⌊
− log(t)

log(ρL)

⌋ −B)ũt

=((Â
t−

⌊
− log(t)

log(ρL)

⌋ −A) +K(B̂
t−

⌊
− log(t)

log(ρL)

⌋ −B))x̃t + (B̂
t−

⌊
− log(t)

log(ρL)

⌋ −B)ξt.

Because of this independence after substitution, the first term is independent with the
second term, and their asymptotic distribution can be described by Eq. 11.

Lemma 29. For any ξt independent of the data before t: {εi, ηi}t−1
i=0:x̃>t

 ∞∑
p=0

Lp
(
In + 1{β=1,α=0}

τ2

σ2
BB>

)
(Lp)>

−1

x̃t +
βσ2

τ2
t1−β log−α(t) ‖ξt‖2

−1/2

· t1/2
[
(Â

t−
⌊
− log(t)

log(ρL)

⌋ −A)x̃t + (B̂
t−

⌊
− log(t)

log(ρL)

⌋ −B)(Kx̃t + ξt)

]
D−→ N (0, In).

The proof of Lemma 29 can be found in Appendix H.3.3. With the help of Lemma 27
and Lemma 28 , we can change all the replacements back to the original form:

Lemma 30. For any ξt independent of the data before t: {εi, ηi}t−1
i=0,x>t

 ∞∑
p=0

Lp
(
In + 1{β=1,α=0}

τ2

σ2
BB>

)
(Lp)>

−1

xt +
βσ2

τ2
t1−β log−α(t) ‖ξt‖2

−1/2

· t1/2
[
(Ât −A)xt + (B̂t −B)(K̂txt + ξt)

]
D−→ N (0, In).

The proof of Lemma 30 can be found in Appendix H.3.4. Since ηt is independent
with{εi, ηi}t−1

i=0, which satisfies the condition of ξt, we can restate the result with ηt replaced
by ξt:x>t

 ∞∑
p=0

Lp
(
In + 1{β=1,α=0}

τ2

σ2
BB>

)
(Lp)>

−1

xt +
βσ2

τ2
t1−β log−α(t) ‖ηt‖2

−1/2

· t1/2
[
(Ât −A)xt + (B̂t −B)(K̂txt + ηt)

]
D−→ N (0, In).
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Finally, we have the desired conclusion using ηt = τ
√
tβ−1 logα(t)wt:x>t

 ∞∑
p=0

Lp
(
In + 1{β=1,α=0}

τ2

σ2
BB>

)
(Lp)>

−1

xt + βσ2 ‖wt‖2
−1/2

· t1/2
(

(Ât −A)xt + (B̂t −B)ut

)
D−→ N (0, In).

Appendix F. The proof of Corollaries

F.1 The proof of Corollary 8

Corollary. Assume A + BK is full rank. Algorithm 1 applied to a system described by
Eq. 1 under Assumption 1 satisfies√

τ2

σ2β
tβ/2 logα/2(t)

((
dK

d[A,B]

)([
−K>
Id

]
⊗ In

))−1

vec
(
K̂t −K

)
D−→ N (0, Ind).

Proof Before we prove this result, we should first examine that the matrix
(

dK
d[A,B]

)([−K>
Id

]
⊗ In

)
is indeed invertible. Since

([
−K>
Id

]
⊗ In

)
has an identity matrix component Idn, it is suf-

ficient to show that dK
d[A,B] is full rank.

F.1.1 dK
d[A,B] is full rank

We can ignore the effect of K0 and consider K̂t to be the same as certainty equivalent
controller K̃t which is directly calculated by plugging Ât−1, B̂t−1 into DARE Eqs. 3 and 4.
This is because K̂t = K0 only happens finitely often and thus does not affect asymptotic
properties; see Appendix G.3.

Before we start, we need to define how we solve dK
d[A,B] ∈ Rnd×n(n+d) and then prove that

dK
d[A,B] is indeed a full rank matrix. Lemmas 3.1 and B.1 from Simchowitz and Foster (2020)
gives the relationship between the derivatives of K,P,A,B:

dK = −(R+B>PB)−1(dB>P (A+BK) +B>P (dA+ dBK) +B>dP (A+BK)), (52)

where dP can be solved from

(A+BK)>dP (A+BK)−dP + (dA+dBK)>P (A+BK) + (A+BK)>P (dA+dBK) = 0.
(53)

Now we can solve dK
d[A,B] by Eq. 52 and Eq. 53. Denote the kernel space of the derivative

matrix dK
d[A,B] as S. It suffices to show that S’s dimension is n(n + d) − nd = n2, which
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implies dK
d[A,B] is full rank with rank nd. The equivalent definition of kernel space S is the

small perturbation vec[dA, dB] such that K does not change (dK = 0):

dK =
dK

d[A,B]
vec(dA, dB) = 0.

Any vector in kernel space S can be considered as vec[dA, dB] which satisfies dK = 0 in
Eq. 52, and that means:

dB>P (A+BK) +B>P (dA+ dBK) +B>dP (A+BK) = 0. (54)

On the other hand, Eq. 53 describes a linear recursive relationship between dP and dA +
dBK, so that we can solve dP with the infinite summation:

dP =(A+BK)>dP (A+BK) + (dA+ dBK)>P (A+BK) + (A+BK)>P (dA+ dBK)

=((A+BK)>)2dP (A+BK)2

+ (A+BK)>
(

(dA+ dBK)>P (A+BK) + (A+BK)>P (dA+ dBK)
)

(A+BK)

+ (dA+ dBK)>P (A+BK) + (A+BK)>P (dA+ dBK)

(recursively plugging in the first equation)

=
∞∑
i=0

((A+BK)>)i
(

(dA+ dBK)>P (A+BK) + (A+BK)>P (dA+ dBK)
)

(A+BK)i.

Also recall that A + BK is assumed to be full rank matrix, and we can show that P is
also full rank; see Appendix G.2. Thus we can explicitly solve dB from Eq. 54 as a linear
equation with regard to dA+ dBK:

dB> = −(P (A+BK))−1(B>P (dA+ dBK) +B>dP (A+BK)).

This tells us the kernel space S is the image of a function of its linear subspace dA+dBK ∈
Rn2

, which means dim(S) ≤ n2. Notice by kernel space definition its dimension should
be at least dim(S) ≥ n(n + d) − nd = n2, where the equality is achieved when dK

d[A,B] has

full rank nd. Combining these two equations we have dim(S) = n2. Finally we arrived at
the desired conclusion that dimension of dK

d[A,B] ∈ Rnd×n(n+d)’s kernel space S is exactly n2,

which means dK
d[A,B] is full rank.

Next we describe the rest of the proof:

F.1.2 Proof by the Delta method

By Taylor expansion and the consistency of [Ât, B̂t] (see Proposition 15), we have

vec
(
K̂t −K

)
=

(
dK

d[A,B]

)
vec
[
Ât −A, B̂t −B

]
(1 + op(1)).

From Remark 6 we know

Ât −A = (B̂t −B)(−K)(1 + op(1)).
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Then

vec
(
K̂t −K

)
=

(
dK

d[A,B]

)
vec
(

(B̂t −B)
[
−K, Id

])
(1 + op(1)).

which can be written as

vec
(
K̂t −K

)
=

(
dK

d[A,B]

)([
−K>
Id

]
⊗ In

)
vec
(
B̂t −B

)
(1 + op(1)).

By Eq. 11, √
τ2

σ2β
tβ/2 logα/2(t)vec

(
B̂t −B

)
D−→ N (0, Ind).

Combining the above two equations, finally we have√
τ2

σ2β
tβ/2 logα/2(t)vec

(
K̂t −K

)
D−→
(

dK

d[A,B]

)([
−K>
Id

]
⊗ In

)
N (0, Ind).

From the fact that dK
d[A,B] is full rank and that

([
−K>
Id

]
⊗ In

)
has an identity matrix

component Idn, we can take matrix inverse and get√
τ2

σ2β
tβ/2 logα/2(t)

((
dK

d[A,B]

)([
−K>
Id

]
⊗ In

))−1

vec
(
K̂t −K

)
D−→ N (0, Ind).

F.2 The proof of Corollary 10

Corollary. The average regret of the controller U defined by Algorithm 1 applied through
time horizon T to a system described by Eq. 1 under Assumption 1 satisfies, as t→∞ and
T →∞,

R(U, T )

τ2β−1 Tr(B̂>t P̂tB̂t +R)T β−1 logα(T )

P−→ 1. (55)

Proof This is a direct corollary from Theorem 4, which states

R(U, T )

τ2β−1 Tr(B>PB +R)T β−1 logα(T )

P−→ 1,

and from Proposition 15 and Corollary 40 which implies the consistency of B̂t and P̂t. By
Slutsky’s theorem we can replace the parameters B and P in Eq. 55 with B̂t and P̂t.
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F.3 The proof of Corollary 11

Corollary. Algorithm 1 applied to a system described by Eq. 1 under Assumption 1 satisfies

Tr

([
Ât −A, B̂t −B

] t−1∑
i=0

[
xi
ui

] [
xi
ui

]> [
Ât −A, B̂t −B

]>) D−→ σ2χ2
n(n+d).

Proof For notational simplicity denote Θ̂t :=
[
Ât, B̂t

]
and Θ :=

[
A,B

]
. By Theorem 5

we know

vec
(

(Θ̂t −Θ)Dt

)
D−→ N (0, σ2In(n+d)). (56)

Potentially we can derive an ellipsoid ”confidence region” with the above formula by

Tr
(

(Θ̂t −Θ)
(
DtD

>
t

)
(Θ̂t −Θ)>

)
D−→ σ2χ2

n(n+d). (57)

However, since a true confidence region should not require any knowledge on oracle pa-
rameters, we need to replace DtD

>
t with some observable expression, which turns out to

be:

Tr

(
(Θ̂t −Θ)

(
t−1∑
i=0

[
xi
ui

] [
xi
ui

]>)
(Θ̂t −Θ)>

)
D−→ σ2χ2

n(n+d).

Next we will explain why it is valid to replace DtD
>
t by

∑t−1
i=0

[
xi
ui

] [
xi
ui

]>
. We know from

Eq. 57 that

Tr
(

(Θ̂t −Θ)
(
DtIn+dD

>
t

)
(Θ̂t −Θ)>

)
D−→ σ2χ2

n(n+d),

and we can replace In+d by D−1
t

∑t−1
i=0

[
xi
ui

] [
xi
ui

]>
(D>t )−1 + op(1) thanks to Theorem 3. As

a result,

Tr

(
(Θ̂t −Θ)Dt

(
D−1
t

t−1∑
i=0

[
xi
ui

] [
xi
ui

]>
(D>t )−1 + op(1)

)
D>t (Θ̂t −Θ)>

)
D−→ σ2χ2

n(n+d).

By Eq. 56, vec
(

(Θ̂t −Θ)Dt

)
is of constant order, and thus the op(1) can be ignored. Finally,

we have

Tr

(
(Θ̂t −Θ)

(
t−1∑
i=0

[
xi
ui

] [
xi
ui

]>)
(Θ̂t −Θ)>

)
D−→ σ2χ2

n(n+d).
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F.4 The proof of Corollary 12

Corollary. Algorithm 1 applied to a system described by Eq. 1 under Assumption 1 satisfies

vec(K̂t−K)>

( dK

d[A,B]

)
t

(
t−1∑
i=0

[
xi
ui

] [
xi
ui

]>
⊗ In

)−1(
dK

d[A,B]

)>
t

−1

vec(K̂t−K)
D−→ σ2χ2

nd,

(58)

where
(

dK
d[A,B]

)
t
∈ Rnd×n(n+d) is defined as dK

d[A,B] evaluated at Ât−1, B̂t−1.

Proof Again, let us denote Θ̂t :=
[
Ât, B̂t

]
and Θ :=

[
A,B

]
. Starting from Theorem 5

vec
(

(Θ̂t −Θ)Dt

)
D−→ N (0, σ2In(n+d)),

we need to transfer Dt to its observable version in terms of the Gram matrix. More specif-
ically, we need to find another matrix Et which is observable and satisfies:

• D−1
t Et

P−→ In+d because we want to use Slutsky’s theorem.

• EtE
>
t =

∑t−1
i=0

[
xi
ui

] [
xi
ui

]>
because D−1

t

∑t−1
i=0

[
xi
ui

] [
xi
ui

]>
(D>t )−1 P−→ In+d.

For now let us assume we have already found such matrix Et, and thus we can replace Dt

with Et:

vec
(

(Θ̂t −Θ)Et

)
D−→ N (0, σ2In(n+d)).

That is:
(E>t ⊗ In)vec

(
Θ̂t −Θ

)
D−→ N (0, σ2In(n+d)).

Further denote Ft := E>t ⊗ In, and then

Ftvec
(

Θ̂t −Θ
)

D−→ N (0, σ2In(n+d)). (59)

By Taylor expansion and the consistency of Θ̂t (see Proposition 15), we have

vec
(
K̂t −K

)
=

(
dK

dΘ

)
t

vec
(

Θ̂t −Θ
)

(1 + op(1)).

Since we will prove D−1
t Et

P−→ In+d in Appendix F.4.1, Et is asymptotically invertible,
which means we can take inverse of Ft = E>t ⊗ In in asymptotic equations:

vec
(
K̂t −K

)
=

(
dK

dΘ

)
t

(Ft)
−1Ftvec

(
Θ̂t −Θ

)
(1 + op(1)).

We have already shown in Appendix F.1 that dK
dΘ is full rank, in the same way we can prove

that
(
dK
dΘ

)
t

is almost surely full rank (the only difference is that we replaced A,B with

Ât−1, B̂t−1). Recall the QR decomposition, we can re-express
(
dK
dΘ

)
t
(Ft)

−1 as
(
dK
dΘ

)
t
(Ft)

−1 =
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QtUt, where Qt ∈ Rnd×nd is an invertible matrix, and Ut ∈ Rnd×n(n+d) satisfies UtU
>
t = Ind.

This implies that

vec
(
K̂t −K

)
= QtUtFtvec

(
Θ̂t −Θ

)
(1 + o(1)) a.s.

From this and Eq. 59 we know

Q−1
t vec

(
K̂t −K

)
= UtFtvec

(
Θ̂t −Θ

)
(1 + o(1))

D−→ N (0, σ2Ind).

That is,

vec
(
K̂t −K

)>
(Q>t )−1Q−1

t vec
(
K̂t −K

)
D−→ σ2χ2

nd.

vec
(
K̂t −K

)>
(QtUtU

>
t Q
>
t )−1vec

(
K̂t −K

)
D−→ σ2χ2

nd.

Recall that
(
dK
dΘ

)
t
(Ft)

−1 = QtUt, and thus

vec
(
K̂t −K

)>((dK
dΘ

)
t

(F>t Ft)
−1

(
dK

dΘ

)>
t

)−1

vec
(
K̂t −K

)
D−→ σ2χ2

nd.

By definition

F>t Ft =(E>t ⊗ In)>(E>t ⊗ In)

=(Et ⊗ In)(E>t ⊗ In)

=EtE
>
t ⊗ In

=

t−1∑
i=0

[
xi
ui

] [
xi
ui

]>
⊗ In.

Finally we can say

vec
[
K̂t −K

]>(dK
dΘ

)
t

(
t−1∑
i=0

[
xi
ui

] [
xi
ui

]>
⊗ In

)−1(
dK

dΘ

)>
t

−1

vec
[
K̂t −K

] D−→ σ2χ2
nd.

The only remaining task is to find a valid Et which satisfies D−1
t Et

P−→ In+d and EtE
>
t =∑t−1

i=0

[
xi
ui

] [
xi
ui

]>
. Although we already have Theorem 3, Et =

(∑t−1
i=0

[
xi
ui

] [
xi
ui

]>)1/2

is

still not necessarily a valid choice, because we can only show D−1
t

(∑t−1
i=0

[
xi
ui

] [
xi
ui

]>)1/2

is

asymptotically an orthogonal matrix, but not identity matrix.
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F.4.1 Finding a valid Et

Recall Eq. 36 that

t−1∑
i=0

uiu
>
i /t

β logα(t) = KMtK
> + ∆tK

> +K∆>t +
τ2

β
Id + op(1).

Now denote

∆u :=
t−1∑
i=0

uiu
>
i /t

β logα(t)−
(
KMtK

> + ∆tK
> +K∆>t

)
=
τ2

β
Id + op(1), (60)

which is asymptotically proportional to the identity matrix, and is also symmetric. Recall
that Dt is defined as

Dt := tβ/2 logα/2(t)

[
In 0
K Id

][
C

1/2
t 0

0
√

τ2

β Id

]
.

We will verify that the following construction of Et is a valid choice:

Et := tβ/2 logα/2(t)

[
In 0
K Id

][
(Mt −∆>t ∆−1

u ∆t)
1/2 ∆>t ∆

−1/2
u

0 ∆
1/2
u

]
.

We shall examine the two conditions D−1
t Et

P−→ In+d and EtE
>
t =

∑t−1
i=0

[
xi
ui

] [
xi
ui

]>
in

order.

Proving D−1
t Et

P−→ In+d It suffices to show:[
C
−1/2
t 0

0
√

β
τ2
Id

][
(Mt −∆>t ∆−1

u ∆t)
1/2 ∆>t ∆

−1/2
u

0 ∆
1/2
u

]
P−→ In+d.

Eqs. 33, 34, and Eqs. 35 and 60 states that

• C−1
t = O(tβ−1 logα(t))

• Mt = Ct(1 + op(1))

• ∆t = Op(t1−3β/2 log
−3α+3

2 (t))

• ∆u = τ2

β Id + op(1)

With these facts, C
−1/2
t ∆>t ∆

−1/2
u = Op(t1/2−β log

−2α+3
2 (t))

P−→ 0 and
√

τ2

β Id∆
1/2
u

P−→ Id

are immediate. It only remains to show that C
−1/2
t (Mt −∆>t ∆−1

u ∆t)
1/2 P−→ In. Notice

C
−1/2
t (Mt −∆>t ∆−1

u ∆t)
1/2 = (C−1

t Mt − C−1
t ∆>t ∆−1

u ∆t)
1/2,
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and Eq. 34 shows that C−1
t Mt

P−→ In. It only remains to show

C−1
t ∆>t ∆−1

u ∆t
P−→ 0,

which is true because when β > 1/2 or β = 1/2 and α > 3/2:

C−1
t ∆>t ∆−1

u ∆t

=O(tβ−1 logα(t))Op(t1−3β/2 log
−3α+3

2 (t))Op(1)Op(t1−3β/2 log
−3α+3

2 (t))

=Op(t−2β+1 log−2α+3(t))

=op(1).

Proving EtE
>
t =

∑t−1
i=0

[
xi
ui

] [
xi
ui

]>
.

EtE
>
t =tβ logα(t)

[
In 0
K Id

][
(Mt −∆>t ∆−1

u ∆t)
1/2 ∆>t ∆

−1/2
u

0 ∆
1/2
u

]

·
[

(Mt −∆>t ∆−1
u ∆t)

1/2 0

∆
−1/2
u ∆t ∆

1/2
u

] [
In K>

0 Id

]
=tβ logα(t)

[
In 0
K Id

] [
Mt ∆>t
∆t ∆u

] [
In K>

0 Id

]
=tβ logα(t)

[
Mt MtK

> + ∆>t
KMt + ∆t KMtK

> + ∆tK
> +K∆>t + ∆u

]
=

t−1∑
i=0

[
xi
ui

] [
xi
ui

]>
.

Last step is by definitions Eq. 21, 22, and 60. We will re-use the following equation later:

t−1∑
i=0

[
xi
ui

] [
xi
ui

]>
= tβ logα(t)

[
In 0
K Id

] [
Mt ∆>t
∆t ∆u

] [
In K>

0 Id

]
. (61)

F.5 The proof of Corollary 13

Corollary. Algorithm 1 applied to a system described by Eq. 1 under Assumption 1 satisfies:σ2

[
xt
ut

]>( t−1∑
i=0

[
xi
ui

] [
xi
ui

]>)−1 [
xt
ut

]−1/2 (
(Ât −A)xt + (B̂t −B)ut

)
D−→ N (0, In).

where ut = K̂txt + ξt for any ξt independent of the data before t: {εi, ηi}t−1
i=0.
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Proof
This one final lemma connects Lemma 30 to our desired conclusion by changing the

parametric expression to the observable one:

Lemma 31. For any ξt independent of the data before t: {εi, ηi}t−1
i=0,x>t

 ∞∑
p=0

Lp
(
In + 1{β=1,α=0}

τ2

σ2
BB>

)
(Lp)>

−1

xt +
βσ2

τ2
t1−β log−α(t) ‖ξt‖2

−1/2

· t1/2
σ2

[
xt
ut

]>( t−1∑
i=0

[
xi
ui

] [
xi
ui

]>)−1 [
xt
ut

]1/2

P−→ 1.

The proof of Lemma 31 can be found in Appendix H.3.5. Finally, we can sayσ2

[
xt
ut

]>( t−1∑
i=0

[
xi
ui

] [
xi
ui

]>)−1 [
xt
ut

]−1/2 (
(Ât −A)xt + (B̂t −B)ut

)
D−→ N (0, In).

Appendix G. The proof of Propositions

G.1 The proof of Proposition 15

Proposition (Similar to Proposition C.1 in Dean et al. (2018)). Let x0 ∈ Rn be any initial
state. Assume Assumption 1 is satisfied. When applying Algorithm 1,

max
{
‖Ât −A‖, ‖B̂t −B‖

}
= O(t−

β
2 log

−α+1
2 (t)) a.s.

G.1.1 Proof Outline

Proof We shall see that all the properties we derived in this section only require the safety
condition Algorithm 1 Line 4 without any other requirement on the controller K̂t, and thus
also apply to Algorithm 1 with logarithmic updates; see Remark 2.

According to Algorithm 1 Line 4, we keep our controller K̂t bounded ‖K̂t‖ ≤ CK ,
which means the next state can not be too far from the previous state. At the same time,
whenever the state is too large (‖xt‖ > Cx log(t)), it is tuned down by safe controller K0.
Overall speaking, the state xt is always controlled with at most log(t) growth. We will see
in Lemma 33 that when state growth is controlled, we have a decent bound on Ât, B̂t.

In other words, as long as we still run Algorithm 1 Line 4 at every time step, which is
enough to ”control” the system by itself, any Ât, B̂t generated with Line 3 satisfies

max
{
‖Ât −A‖, ‖B̂t −B‖

}
= O(t−

β
2 log

−α+1
2 (t)) a.s.

regardless of the estimation result before time t.
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Lemma 33 follows from a result by Simchowitz et al. (2018) on the estimation of linear
response time-series. We present that result in the context of our problem. Let Θ := [A,B],

and define zt :=

[
xt
ut

]
. Then, the OLS estimator Eq. 5 is

(ÂT , B̂T ) = Θ̂T ∈ arg min
Θ

T−1∑
t=0

1

2
‖xt+1 −Θzt‖22 . (62)

We know that the accuracy of the OLS estimator is related to the covariance structure
of the predictors, which are {zt}Tt=0 in our context. To capture such covariance structure,
we need the following definiton:

Definition 32 (BMSB condition). The {Ft}t≥0-adapted process {zt}Tt=0 is said to satisfy
the (k, ν, ξ)-block martingale small-ball (BMSB) condition if for any 0 ≤ j ≤ T − k and
v ∈ Sn+d−1 := {x ∈ Rn+d : ‖x‖ = 1}, one has that

1

k

k∑
i=1

P (|〈v, zj+i〉| ≥ ν|Fj) ≥ ξ a.s.

This condition is used for characterizing the size of the minimum eigenvalue of the
matrix

∑T−1
t=0 ztz

>
t . A larger ν guarantees a larger lower bound of the minimum eigenvalue.

In the context of our problem the result by Simchowitz et al. (2018) translates as follows.

Lemma 33 (A slightly different version of Theorem C.2 in Dean et al. (2018)). For δ ∈
(0, (n+d)ξ2

2 ], for every T , k, ν, and ξ such that {zt}Tt=0 satisfies the (k, ν, ξ)-BMSB and

T/k ≥ 10(n+ d)

ξ2
log

(
100(n+ d)

∑T−1
t=0 Tr(Eztz>t )

Tν2ξ2δ1+ 1
n+d

)
. (63)

the estimate Θ̂T defined in Eq. 62 satisfies the following statistical rate

P

∥∥∥Θ̂T −Θ
∥∥∥ > 90σ

ξν

√√√√n+ d

T

(
1 + log

(
10(n+ d)

∑T−1
t=0 Tr(Eztz>t )

Tδ1+ 1
n+d ν2ξ

)) ≤ 3δ. (64)

The proof of Lemma 33 can be found in Appendix H.4.1.
We will show that

∑T
t=1 Tr(Eztz>t ) grows linearly with T (ignoring logarithmic terms),

which means in Eq. 63 the LHS grows faster than the RHS, and is thus always satisfied if
T is large enough. Lemma 33 is saying that for any T larger than some constant, we can
control the L2 norm of the system parameter estimate Θ̂T , which implies we can control
the L2 norm of both ÂT and B̂T .

Still there is one more gap from our Proposition 15, which requires uniform control on
ÂT and B̂T . Fortunately, we have the blessing that this high-probability bound is in the log
scale w.r.t δ. Because of that, we can choose a series of decaying δT = 1/T 2 for each different
estimate Θ̂T , so that

∑∞
T=C 1/T 2 ≤ 1/C and we can achieve a uniform high probability
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bound on ÂT and B̂T for all T > C, which directly leads to the desired conclusion once we
plug in appropriate values for k, ν, and ξ:

max
{
‖Ât −A‖, ‖B̂t −B‖

}
= O(t−

β
2 log

−α+1
2 (t)) a.s.

To sum up, there are three main steps in our proof of Proposition 15:

• Verify {zt}Tt=0 satisfies the (k, ν, ξ)-BMSB condition in our setting.

• Replace Tr(Eztz>t ) in Lemma 33 by an explicit upper bound in terms of T .

• Prove a uniform high probability bound for ÂT and B̂T by choosing with δT = 1/T 2

with Lemma 33.

G.1.2 Verifying {zt}Tt=0 satisfies the (k, ν, ξ)-BMSB condition

In order to apply Lemma 33, we need to find k, ν, and ξ such that {zt}Tt=0 satisfies the
(k, ν, ξ)-BMSB condition.

Lemma 34 (Similar to Lemma C.3 in Dean et al. (2018)). If we assume Assumption 1,
then apply Algorithm 1, the process {zt}Tt≥0 satisfies the (k, ν, ξ)-BMSB condition for

(k, ν, ξ) =

(
1,

√
σ2
η,T min

(
1

2
,

σ2

2σ2C2
K + τ2

)
,

3

10

)
,

where σ2
η,T = τ2T β−1 logα(T ).

See Appendix H.4.2 for the proof of Lemma 34.

G.1.3 Upper bound of Tr(Eztz>t ) in terms of T

The benefit of a non-random upper bound of Tr(Eztz>t ) w.r.t T is two-fold.

• We can know exactly how large our T should be for Eq. 63 to hold.

• Furthermore, we can also substitute the upper bound in to Eq. 64.

Lemma 35 shows that we have an upper bound of Tr(Eztz>t ) that is Õ(T ).

Lemma 35 (Similar to Lemma C.4 in Dean et al. (2018)). If we assume Assumption 1,
then apply Algorithm 1, the process {zt}Tt≥0 satisfies

T−1∑
t=0

Tr
(
Eztz>t

)
= O(T log2(T )). (65)

See Appendix H.4.3 for the proof of Lemma 35.
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G.1.4 Uniform upper bound for max
{
‖Ât −A‖, ‖B̂t −B‖

}
With Lemma 34 and Lemma 35 in hand, we can translate Lemma 33 into our problem

setting. Fixing δ ∈ (0, (n+d)ξ2

2 ], we already proved by Lemma 34 that the process zt =

[
xt
ut

]
satisfies the

(k, ν, ξ) =

(
1,

√
σ2
η,T min

(
1

2
,

σ2

2σ2C2
K + τ2

)
,

3

10

)
BMSB condition. (66)

If we choose δ = 1
3T 2 and T such that Eq. 63 holds with (k, ν, ξ) in Eq. 66, we can apply

Lemma 33. By Eq. 65, we only need T to satisfy

T/k ≥10(n+ d)

ξ2
log

(
100(n+ d)Õ(T )

Tν2ξ2δ1+ 1
n+d

)

=O(1) log

 Õ(T )

Tσ2
η,T

σ2

2σ2C2
K+τ2

T−2(1+ 1
n+d

)

 (ξ =
3

10
is fixed constant)

=Õ(1) (Recall that σ2
η,T = T β−1 logα(T )).

Since T is growing faster than Õ(1), the above condition is essentially saying that
our T should be larger than some constant O(1). Suppose that is the case, then following
Lemma 33 and Lemma 35, the estimate Θ̂T defined in Eq. 62 satisfies the following statistical
rate

P

∥∥∥Θ̂T −Θ
∥∥∥ > 90σ

ξν

√√√√n+ d

T

(
1 + log

(
10(n+ d)Õ(T )

Tδ1+ 1
n+d ν2ξ

))
≤P

∥∥∥Θ̂T −Θ
∥∥∥ > 90σ

ξν

√√√√n+ d

T

(
1 + log

(
10(n+ d)

∑T
t=1 Tr(Eztz>t )

Tδ1+ 1
n+d ν2ξ

))
≤3δ.

Notice that Θ̂T = [ÂT , B̂T ], and we know that max
{
‖ÂT−A‖,
‖B̂T−B‖

}
≤
∥∥∥Θ̂T −Θ

∥∥∥
2
. That is

to say

P

max
{
‖ÂT−A‖,
‖B̂T−B‖

}
>

90σ

ξν

√√√√n+ d

T

(
1 + log

(
10(n+ d)Õ(1)

Tδ1+ 1
n+d ν2ξ

)) ≤ 3δ.

Next we substitute k = 1, ξ = 3
10 , ν =

√
σ2
η,T min

(
1
2 ,

σ2

2σ2C2
K+τ2

)
, and δ = 1

3T 2 into the

previous equation
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P

max
{
‖ÂT−A‖,
‖B̂T−B‖

}
>
O(1)√
σ2
η,T

√√√√√n+ d

T

1 + log

 Õ(T )

T (3T−2)1+ 1
n+dσ2

η,T


 ≤ 1

T 2
.

By merging all constant parameters in to the O style expression, and noticing that σ2
η,T =

τ2T β−1 logα(T ), where β ∈ [1/2, 1), we have for any T > O(1):

P

(
max

{
‖ÂT−A‖,
‖B̂T−B‖

}
> O(T

1−β
2 log−α/2(T ))

√
n+ d

T
O(log(T ))

)
≤ 1

T 2
,

which implies

P
(

max
{
‖ÂT−A‖,
‖B̂T−B‖

}
> O(T−

β
2 log

−α+1
2 (T ))

)
≤ 1

T 2
.

Notice that
∞∑

T=C+1

1

T 2
≤

∞∑
T=C+1

1

T (T − 1)
≤

∞∑
T=C+1

1

T − 1
− 1

T
=

1

C
.

Therefore we can derive a uniform confidence bound on the estimation error of parameters
Ât and B̂t: For any integer C > O(1):

P
(
∃t > C, s.t. max

{
‖Ât−A‖,
‖B̂t−B‖

}
> O(T−

β
2 log

−α+1
2 (T ))

)
≤

∞∑
t=C+1

P
(

max
{
‖Ât−A‖,
‖B̂t−B‖

}
> O(T−

β
2 log

−α+1
2 (T ))

)
≤ 1

C
.

Notice that this is a uniform upper bound for all t > C. Recall Definition 14 Item 8, where
we define Xn = O(an) a.s. as: for almost every ω ∈ Ω, there exists a number C(ω) such that
|Xn(ω)| ≤ C(ω)an, where Ω denotes the sample space of {Xn}n. The previous equation
is telling us the union of such event ω happens with at least probability 1 − 1/C, and by
taking C →∞ that is exactly the definition of O(an) a.s., and thus:

max
{
‖Ât −A‖, ‖B̂t −B‖

}
= O(t−

β
2 log

−α+1
2 (t)) a.s.

The same bound holds for logarithmic updates. The reason is that for time t, the closest
estimation update will always be within t/c time steps of t, which does not change the
order:

O((t/c)−
β
2 log

−α+1
2 (t/c)) = O(t−

β
2 log

−α+1
2 (t)).

G.2 The proof of Proposition 16

Proposition. Let x0 ∈ Rn be any initial state. Assume Assumption 1 is satisfied. When
applying Algorithm 1,

max
{
‖Ât −A‖, ‖B̂t −B‖, ‖K̃t+1 −K‖

}
= O(t−

β
2 log

−α+1
2 (t)) a.s.
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G.2.1 Proof Outline

Proof When the problem parameters (A,B,Q,R) are known the optimal policy is given
by linear feedback, ut = Kxt, where K = −(R + B>PB)−1B>PA and P is the (positive
definite) solution to the discrete Riccati equation

P = A>PA−A>PB(R+B>PB)−1B>PA+Q. (67)

In the following context any time we mention P̂t and K̃t+1, we are refering to the corre-
sponding certainty equivalent responses.

P̂t = Â>t P̂tÂt − Â>t P̂tB̂t(R+ B̂>t P̂tB̂t)
−1B̂>t P̂tÂt +Q.

K̃t+1 = −(R+ B̂>t P̂tB̂t)
−1B̂>t P̂tÂt.

Since we already controlled the estimation error of Ât−A and B̂t−B, one natural thing to
ask is that, if we have control over Ât −A and B̂t −B, do we have control over K̃t+1 −K?
This can be achieved by two steps:

1. Show that we can control K̃t+1 once Ât, B̂t, and P̂t are controlled.

2. Show that we can control P̂t once Ât and B̂t are controlled.

G.2.2 Show that we can control K̃t+1 once Ât, B̂t, and P̂t are controlled

This is already stated by Proposition 1 in Mania et al. (2019). Denote the quantity

Γ1 := 1 + max{‖A‖, ‖B‖, ‖P‖, ‖K‖}.
Proposition 36 (Proposition 1 in Mania et al. (2019)). Let ε > 0 such that ‖Â − A‖ ≤ ε
and ‖B̂ −B‖ ≤ ε. Also, let ‖P̂ − P‖ ≤ εP such that εP ≥ ε. Assume σ(R) ≥ 1 we have

‖K̂ −K‖ ≤ 7Γ3
1 εP .

The σ(R) represents the minimum eigenvalue of R. we can discard the constraint of
σ(R) ≥ 1 by the following observation. If we replace our Q and R by Q/σ(R) and R/σ(R),
then the corresponding solution P for Eq. 67 will be P/σ(R). Notice that changing Q
and R by the same proportion does not change the LQR problem. With that being said,
our LS estimator Ât, B̂t, and the nominal controller K̃t will remain the same. By this
transformation the minimum eigenvalue condition is satisfied, and we only need to control

‖P̂ − P‖/σ(R) ≤ εP
such that εP ≥ ε, and we will have ‖K̂ −K‖ ≤ 7Γ3

2 εP , where

Γ2 := 1 + max{‖A‖, ‖B‖, ‖P‖/σ(R), ‖K‖}.
Here we can replace this denominator σ(R) by any constant smaller than σ(R), and the
whole story would still work. Since later we will also require σ(P ) ≥ 1, we can choose the
shared denominator to be min{σ(R), σ(P )}. To sum up we have the following corollary of
Proposition 36.
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Corollary 37. Let ε > 0 such that ‖Â − A‖ ≤ ε and ‖B̂ − B‖ ≤ ε. Also, let ‖P̂ − P‖ ≤
min{σ(R), σ(P )}εP such that εP ≥ ε. Then we have

‖K̂ −K‖ ≤ 7Γ3
3 εP .

where Γ3 := 1 + max{‖A‖, ‖B‖, ‖P‖/min{σ(R), σ(P )}, ‖K‖}.

Now we only need to prove that ‖P̂ − P‖ = O(ε) given ‖Â−A‖ ≤ ε and ‖B̂ −B‖ ≤ ε.

G.2.3 Show that we can control P̂t once Ât and B̂t are controlled

Consider a general square matrix M . In order to quantify the decay rate of ‖Mk‖, we define

τ(M,ρ) := sup
{
‖Mk‖ρ−k : k ≥ 0

}
.

In other words, τ(M,ρ) is the smallest value such that ‖Mk‖ ≤ τ(M,ρ)ρk for all k ≥ 0. We
note that τ(M,ρ) might be infinite, depending on the value of ρ, and it is always greater
than or equal to one. If ρ is larger than ρ(M), we are guaranteed to have a finite τ(M,ρ)
(this is a consequence of Gelfand’s formula). In particular, if M is a stable matrix, we can
choose ρ < 1 such that τ(M,ρ) is finite. Also, we note that τ(M,ρ) is a decreasing function
of ρ; if ρ ≥ ‖M‖, we have τ(M,ρ) = 1.

Recall that L := A+BK. The following proposition that upper bounds ‖P̂ −P‖ holds
in a more general LQG setting where the matrix Q is unknown:

Proposition 38 (Proposition 2 in Mania et al. (2019)). Let γ ≥ ρ(L) and also let ε be such
that ‖Â− A‖, ‖B̂ − B‖, and ‖Q̂−Q‖ are at most ε. Let ‖·‖+ = ‖·‖+ 1. We assume that
R � 0, (A,B) is stabilizable, (Q1/2, A) observable, and σ(P ) ≥ 1.

‖P̂ − P‖ ≤ O(1) ε
τ(L, γ)2

1− γ2
‖A‖2+‖P‖2+‖B‖+‖R−1‖+,

as long as

ε ≤ O(1)
(1− γ2)2

τ(L, γ)4
‖A‖−2

+ ‖P‖−2
+ ‖B‖−3

+ ‖R−1‖−2
+ min

{
‖L‖−2

+ , ‖P‖−1
+

}
.

Here O(1) are pure constants without dependence of any other parameters. We already
assumed in Assumption 1 that (A,B) stabilizable, but we have not defined ‘observable’ yet.
An equivalent statement of observable can be found here.

Lemma 39 (Lemma 2.1 in (Payne and Silverman, 1973)). The pair (C,A) is observable if
and only if Ax = λx, Cx = 0 imply x = 0

Since we already assumed Q is positive definite, Qx = 0 imply x = 0, and thus (Q1/2, A)
is observable. In the LQAC setting we know Q exactly, so we can remove the estimation
bound condition on Q.

Now we can restate Proposition 38 in the LQAC setting:
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Corollary 40. Let ε such that ‖Ât −A‖, and ‖B̂t −B‖ are at most ε. Let ‖·‖+ = ‖·‖+ 1.
We assume that R � 0, (A,B) is stabilizable, and σ(P ) ≥ 1.

‖P̂t − P‖ ≤ O(1) ε
τ(L, ρ(L))2

1− ρ(L)2
‖A‖2+‖P‖2+‖B‖+‖R−1‖+ = O(ε).

as long as

ε ≤ O(1)
(1− ρ(L)2)2

τ(L, ρ(L))4
‖A‖−2

+ ‖P‖−2
+ ‖B‖−3

+ ‖R−1‖−2
+ min

{
‖L‖−2

+ , ‖P‖−1
+

}
= O(1).

Here, the upper bound condition on ε is to ensure that Ât, B̂t is stabilizable, so that
P̂t is well defined. Furthermore, following the paragraph after Proposition 2 in Mania
et al. (2019), the assumption σ(P ) ≥ 1 can be made without loss of generality when the
other assumptions are satisfied. The reason is that, when R � 0 and (Q1/2, A) observable,
the value function matrix P is guaranteed to be positive definite. Similar to how we got
Corollary 37, by replacing Q, R and P with Q/min{σ(R), σ(P )}, R/min{σ(R), σ(P )} and
P/min{σ(R), σ(P )}, we can remove the constraint σ(P ) ≥ 1.

Corollary 41. Suppose ‖Ât − A‖ ≤ ε and ‖B̂t − B‖ ≤ ε. Let ‖·‖+ = ‖·‖+ 1. We assume
that R � 0 and (A,B) is stabilizable.

‖P̂t − P‖ ≤min{σ(R), σ(P )}O(1) ε
τ(L, ρ(L))2

1− ρ(L)2
‖A‖2+∥∥∥∥ P

min{σ(R), σ(P )}

∥∥∥∥2

+

‖B‖+
∥∥∥∥∥
(

R

min{σ(R), σ(P )}

)−1
∥∥∥∥∥

+

=O(ε).

as long as

ε ≤O(1)
(1− ρ(L)2)2

τ(L, ρ(L))4
‖A‖−2

+

∥∥∥∥ P

min{σ(R), σ(P )}

∥∥∥∥−2

+

‖B‖−3
+

∥∥∥∥∥
(

R

min{σ(R), σ(P )}

)−1
∥∥∥∥∥
−2

+

min

{
‖L‖−2

+ ,

∥∥∥∥ P

min{σ(R), σ(P )}

∥∥∥∥−1

+

}
=O(1).

G.2.4 Combining the two results together

With Corollary 37 and Corollary 41 the following corollary is straightforward.

Corollary 42. Let ε > 0 such that ε ≤ O(1), ‖Ât − A‖ ≤ ε and ‖B̂t − B‖ ≤ ε. Then, we
have

‖K̃t+1 −K‖ ≤ 7Γ3 εP = O(ε).

Here Γ := 1 + max{‖A‖, ‖B‖, ‖P‖/min{σ(R), σ(P )}, ‖K‖}.
Proof With Corollary 41 we can find εP such that ‖P̂t − P‖ = O(ε). Thus, the condition
of Corollary 37 is satisfied.
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G.2.5 Concluding the proof of Proposition 16

Proof With Proposition 15 and Corollary 42, it is straightforward to give a new corollary
with uniform control on all ‖Ât − A‖, ‖B̂t − B‖, and ‖K̃t+1 −K‖. Recall that we already
proved the high probability bound in Proposition 15 that

max
{
‖Ât −A‖, ‖B̂t −B‖

}
= O(t−

β
2 log

−α+1
2 (t)) a.s.

Basically, to satisfy the constraint in Corollary 42, we only need our bound (named ε) in
Proposition 15 to satisfy

ε = O(t−
β
2 log

−α+1
2 (t)) ≤ O(1) a.s.

which is always true when t is large enough. (This also ensures Ât, B̂t to be stabilizable so
that K0 is only used finitely many times.) That means,

‖K̃t+1 −K‖ = O(ε) = O(t−
β
2 log

−α+1
2 (t)) a.s.

Finally, we can say

max
{
‖Ât −A‖, ‖B̂t −B‖, ‖K̃t+1 −K‖

}
= O(t−

β
2 log

−α+1
2 (t)) a.s.

G.3 The proof of Proposition 17

Proposition. Let x0 ∈ Rn be any initial state. Assume Assumption 1 is satisfied. When
applying Algorithm 1

max
{
‖Ât −A‖, ‖B̂t −B‖, ‖K̂t+1 −K‖

}
= O(t−

β
2 log

−α+1
2 (t)) a.s.

Proof Going thorough the whole Algorithm 1, there are two conditions that might cause
the difference between K̂t and K̃t:

1. ‖K̃t‖ > CK , and

2. ‖xt‖ > Cx,t = Cx log(t).

Our objective is to show that, with probability 1, K̂t 6= K̃t will happen only finitely often.

The first case ‖K̃t‖ > CK The first case is when ‖K̃t‖ > CK , this will not happen
infinitely often. The first case ‖K̃t‖ > CK can only happen when

‖K̃t −K‖ ≥ ‖K̃t‖ − ‖K‖ > CK − ‖K‖. (68)

By Proposition 16, we know that ‖K̃t −K‖ is exponentially decaying:

max
{
‖K̃t −K‖

}
= O(t−

β
2 log

−α+1
2 (t)) a.s.

As a result, Eq. 68 will hold only finitely many times, a.s.
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The second case ‖xt‖ > Cx,t = Cx log(t) To examine how often this would happen, we
need to dig into more details of the decomposition of ‖xt‖. Recall the previously derived
formula from Lemma 19:

xt =

t−1∑
p=0

(A+BK̂t−1) · · · (A+BK̂p+1)(Bηp + εp) + (A+BK̂t−1) · · · (A+BK̂0)x0.

We hope to get an upper bound for ‖xt‖. Apparently the main difficulty here is to
bound the norm of (A+BK̂t−1) · · · (A+BK̂p+1). The following lemma serves as a key.

Lemma 43. Suppose we have a constant square matrix M with spectral radius ρ(M) <
1, and a sequence of uniformly bounded random variables {δt}∞t=0, satisfying ‖δt‖ a.s.−→ 0.

Denote the constant ρM := 2+ρ(M)
3 < 1. Then we have, for any t, q ∈ N, t > q:

‖(M + δt−1) · · · (M + δq)‖ = O(ρt−qM ) a.s.

And as a direct corollary

‖M t−q‖ = O(ρt−qM ).

The proof can be found in Appendix H.5.1.

Notice that by our Algorithm 1, ‖K̂t‖ ≤ CK always holds, thus there exists a uni-
form upper bound on ‖Bδt‖ := ‖B(K̂t − K)‖ ≤ ‖B‖(CK + ‖K‖). Now we can sep-
arate the whole ‖(A + BK̂t−1) · · · (A + BK̂p+1)‖ into two parts. If we denote ρ0 :=

max(2+ρ(A+BK0)
3 , 2+ρ(A+BK)

3 ), then with Lemma 43, we can simultaneously bound both
parts.

1. The first part contains the A+BK̂k where K̂k = K0, this part of product is denoted
as I1. In this part, A + BK̂k = A + BK0. Suppose this part has p1 same items, by
Lemma 43 we know I1 ≤ O(ρp10 ) a.s.

2. The second part contains the (A + BK̂k) where K̂k = K̃k to be our true certainty
equivalent controller, this part of the product is denoted as I2. If we denote δk :=
(K̂k−K), then, in this part, (A+BK̂k) = (A+BK+Bδk). Remember our conclusion
in Proposition 16 that ‖K̃k −K‖ a.s.−→ 0, thus ‖δk‖ a.s.−→ 0, assuming this part has p2

items, then since ‖Bδk‖ ≤ ‖B‖(CK + ‖K‖), by Lemma 43

I2 ≤ O(ρp20 ) a.s.

We know p1 + p2 = t− p− 1. Combining these two parts we have

‖(A+BK̂t−1) · · · (A+BK̂p+1)‖ ≤ O(ρt−p0 ) a.s.

Finally we have the bound on xt:

‖xt‖ =

∥∥∥∥∥∥
t−1∑
p=0

(A+BK̂t−1) · · · (A+BK̂p+1)(Bηp + εp) + (A+BK̂t−1) · · · (A+BK0)x0

∥∥∥∥∥∥
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≤

 t−1∑
p=0

∥∥∥(A+BK̂t−1) · · · (A+BK̂p+1)
∥∥∥ ‖Bηp + εp‖+

∥∥∥(A+BK̂t−1) · · · (A+BK0)
∥∥∥ ‖x0‖


≤

t−1∑
p=0

O(ρt−p0 ) ‖Bηp + εp‖+O(ρt0) ‖x0‖ a.s.

Then

‖xt‖ = O

 t−1∑
p=0

ρt−p0 ‖Bηp + εp‖+ ρt0 ‖x0‖

 a.s.

By Gaussian tail bounds (see Lemma 18), we know that

‖Bηt + εt‖ = O(log1/2(t)) a.s.

Then

‖xt‖ = O

 t−1∑
p=0

ρt−p0 log1/2(t)

+ o(1) a.s.

Because ρt−p0 is geometric sequence,

‖xt‖ ≤ O(log1/2(t)) a.s.

Thus for almost any ω ∈ Ω, ‖xt‖ > Cx,t = Cx log(t) will happen only finitely many times.
Finally, because two conditions ‖K̃t‖ > CK and ‖xt‖ > Cx,t = Cx log(t) will happen

only finitely many times, K̂t and K̃t eventually are the same. Following Proposition 16,

max
{
‖Ât −A‖, ‖B̂t −B‖, ‖K̂t+1 −K‖

}
= O(t−

β
2 log

−α+1
2 (t)) a.s.

Appendix H. The proof of lemmas

H.1 Lemmas in Appendix B

H.1.1 The proof of Lemma 18

Lemma.

•
‖εt‖, ‖ηt‖ = O(log1/2(t)) a.s. (69)

•
‖Bηt + εt‖ = O(log1/2(t)) a.s. (70)

Assume Eq. 23, then:
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•
‖δt‖ = ‖K̂t −K‖ = O(t−

β
2 log

−α+1
2 (t)) a.s. (71)

•
‖(L+Bδt−1) · · · (L+Bδq)‖ = O(ρt−qL ) a.s. (72)

•
‖xt‖, ‖ut‖ = O(log1/2(t)) a.s. (73)

where δt := K̂t −K, L := A + BK, and ρL := 2+ρ(L)
3 . Additionally, when t = 0, 1 all

these terms are bounded by O(1) a.s.

Proof Outline:

The proof of Eq. 69 and Eq. 70 The following lemma give the proof that Eq. 69 and
Eq. 70 holds with probability at least 1− δ, which can be shown by the tail bound for i.i.d
Gaussian random variables.

Lemma 44. For the noise ηt
i.i.d.∼ N (0, τ2t1−β logα(t)) and εt

i.i.d.∼ N (0, σ2), we have that for
any δ ∈ (0, 1), with probability 1− δ, the following two equations holds for any t ≥ 1:

‖εt‖, ‖ηt‖, ‖Bηt + εt‖ ≤ O(1) log1/2(t2/δ).

We will prove Lemma 44 shortly. By Definition 14 Item 8, this implies

‖εt‖, ‖ηt‖ ≤ O(log1/2(t)) a.s.

and
‖Bηt + εt‖ ≤ O(log1/2(t)) a.s.

The proof of Eq. 71 and Eq. 72 Eq. 71 directly follows from Eq. 23. Eq. 72 follows
from Lemma 43 given that we have δt

a.s.−→ 0 from Proposition 17:

‖(L+Bδt−1) · · · (L+Bδq)‖ ≤ O(ρt−qL ) a.s.

The proof of Eq. 73 Finally we need to prove Eq. 73 that

‖xt‖, ‖ut‖ = O(log1/2(t)) a.s.

With the fact from Lemma 19 that

xt =

t−1∑
p=0

(A+BK̂t−1) · · · (A+BK̂p+1)(Bηp + εp) + (A+BK̂t−1) · · · (A+BK0)x0

=

t−1∑
p=0

(L+Bδt−1) · · · (L+Bδp+1)(Bηp + εp) + (L+Bδt−1) · · · (L+Bδ0)x0,
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combined with the conclusion of Eq. 72 and Eq. 70, we derive a norm bound on xt:

‖xt‖ ≤
t−1∑
p=0

‖(L+Bδt−1) · · · (L+Bδp+1)‖‖Bηp + εp‖+ ‖(L+Bδt−1) · · · (L+Bδ0)‖‖x0‖ a.s.

=

t−1∑
p=0

O(ρt−pL )‖Bηp + εp‖+O(ρtL)‖x0‖ a.s.

=
t−1∑
p=0

O(ρt−pL )O(log1/2(p)) + o(1) a.s.

≤
t−1∑
p=0

O(ρt−pL )O(log1/2(t)) + o(1) a.s.

=O(log1/2(t)) a.s.

Recall that we have already shown Eq. 69:

‖ηt‖ = O(log1/2(t)) a.s.

That means

‖ui‖
=‖(A+BK̂i)xi + ηi‖
≤(‖A‖+ ‖B‖CK)‖xi‖+ ‖ηi‖
=O(log1/2(t)) a.s.

The proof of Lemma 44 Proof For any Gaussian variable X ∼ N (0, σ2),

P(X > tσ) ≤ e−t2/2,

and

P(X2 > t2σ2) = 2P(X > tσ) ≤ 2e−t
2/2.

For any multivariate normal vector sequence Xt ∼ N (0, σ2In),

P(‖Xt‖2 > ntσ2) = P

(
n∑
i=1

X2
t,i > ntσ2

)
≤

n∑
i=1

P(X2
i > tσ2) ≤ 2ne−t/2.

That means for any constant c > 0,

P(‖Xt‖2 > n2 log(ct2/δ)σ2) ≤ 2ne−2 log(ct2/δ)/2 =
2nδ

ct2
.
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We can sum up all choices of t to get a uniform bound. A well known equation states that∑∞
t=1 1/t2 = π2

6 . Then

P(∃t ≥ 1 : ‖Xt‖2 > 2nσ2 log(ct2/δ)) ≤
∞∑
t=1

2nδ

ct2
.

We can choose c = 1
2n

∑∞
t=1 1/t2 = π2

6·2n , so that

P(∃t ≥ 1 : ‖Xt‖2 > 2nσ2 log(ct2/δ)) ≤ δ.

That is to say, with probability at least 1− δ, we have for any t ≥ 1,

‖Xt‖ ≤ O(1) log1/2(ct2/δ) = O(1)(log(t2/δ) + log(c))1/2.

Since log(c) can be dominated by log(t2/δ), the above equation can simply be written as

‖Xt‖ ≤ O(1) log1/2(t2/δ).

This bound holds for εt which has constant variance and is also true for ηt which has
shrinking variance. Thus, with probability at least 1− δ:

‖εt‖, ‖ηt‖ ≤ O(1) log1/2(t2/δ).

Consider the fact that ‖Bηt + εt‖ ≤ ‖B‖‖ηt‖ + ‖εt‖, which means ‖Bηt + εt‖ can still be
bounded by:

‖Bηt + εt‖ ≤ O(1) log1/2(t2/δ).

H.1.2 The proof of Lemma 19

Lemma.

xt =

t−1∑
p=0

(A+BK̂t−1) · · · (A+BK̂p+1)(Bηp + εp) + (A+BK̂t−1) · · · (A+BK0)x0.

ut =
t−1∑
p=0

K̂t(A+BK̂t−1) · · · (A+BK̂p+1)(Bηp + εp) + K̂t(A+BK̂t−1) · · · (A+BK0)x0 + ηt.

Here when p = t− 1, (A+BK̂t−1) · · · (A+BK̂p+1) := In.

Proof Consider the following relationship:

ut = K̂txt + ηt.

xt =Axt−1 +But−1 + εt−1
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=Axt−1 +B(K̂t−1xt−1 + ηt−1) + εt−1

=(A+BK̂t−1)xt−1 +Bηt−1 + εt−1.

Iteratively do this calculation to the end:

xt =
t−1∑
p=0

(A+BK̂t−1) · · · (A+BK̂p+1)(Bηp + εp) + (A+BK̂t−1) · · · (A+BK0)x0.

ut =

t−1∑
p=0

K̂t(A+BK̂t−1) · · · (A+BK̂p+1)(Bηp + εp) + K̂t(A+BK̂t−1) · · · (A+BK0)x0 + ηt.

H.1.3 The proof of Lemma 20

Lemma. Assume Eq. 23, then

1.

t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

[
(A+BK)i−p−1

]
(Bηp + εp)(Bηq + εq)

> [(A+BK)i−q−1
]>

= t
∞∑
p=0

Lp(Lp)>σ2 + tβ
τ2

β
logα(t)(1 + op(1))

∞∑
q=0

LqBB>[Lq]>

= tβ logα(t)(Ct + op(1)).

2.
t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

[
(A+BK̂i−1) · · · (A+BK̂p+1)− (A+BK)i−p−1

]
· (Bηp + εp)(Bηq + εq)

> [(A+BK)i−q−1
]>

= Op(t1−β/2 log
−α+3

2 (t)).

3.

t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

[
(A+BK)i−p−1

]
(Bηp + εp)(Bηq + εq)

>

·
[
(A+BK̂t−1) · · · (A+BK̂q+1)− (A+BK)i−q−1

]>
= Op(t1−β/2 log

−α+3
2 (t)).

4.

t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

[
(A+BK̂t−1) · · · (A+BK̂p+1)− (A+BK)i−p−1

]
· (Bηp + εp)(Bηq + εq)

>
[
(A+BK̂t−1) · · · (A+BK̂q+1)− (A+BK)i−q−1

]>
= Op(t1−β/2 log

−α+3
2 (t)).
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Proof The first step is to show the order of 2nd, 3rd and 4th part because they follow
by the same method, especially the second part is just a transpose of the third part. Then
we can focus on analyzing the first part, which is replacing all controllers K̂t by optimal
controller K.

Second Part With Lemma 18 in hand, now we are in good shape to start our proof with
the second part showing

t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

[
(A+BK̂i−1) · · · (A+BK̂p+1)− (A+BK)i−p−1

]
(Bηp + εp)(Bηq + εq)

> [(A+BK)i−q−1
]>

= Op(t1−β/2 log
−α+3

2 (t)).

Since we have already shown the uniform bound of (Bηp+εp)(Bηq +εq)
> in Lemma 18,

and that
[
(A+BK)i−q−1

]>
has an exponential decay rate, the main difficulty in bounding

the second part is to give a tight bound on
[
(A+BK̂i−1) · · · (A+BK̂p+1)− (A+BK)i−p−1

]
.

Recall the conclusion of Lemma 18:

‖(L+Bδi−1) · · · (L+Bδp+1)‖ = O(ρi−pL ) a.s. (74)

Thus

‖(A+BK̂i−1) · · · (A+BK̂p+1)− (A+BK)i−p−1‖
=‖(L+Bδi−1) · · · (L+Bδp+1)− Li−p−1‖
≤‖Bδi−1(L+Bδi−2) · · · (L+Bδp+1)‖+ ‖LBδi−2(L+Bδi−3) · · · (L+Bδp+1)‖+ · · · ‖Li−p−2Bδp+1‖

(For example, (L+Bδ3)(L+Bδ2)(L+Bδ1)− L3 = δ3(L+Bδ2)(L+Bδ1) + Lδ2(L+Bδ1) + L2Bδ1)

≤‖Bδi−1‖‖(L+Bδi−2) · · · (L+Bδp+1)‖+ ‖Bδi−2‖‖L(L+Bδi−3) · · · (L+Bδp+1)‖+ · · · ‖Bδp+1‖‖Li−p−2‖
≤O(ρi−pL )(‖δi−1‖+ · · ·+ ‖δp+1‖) a.s. (using Eq. 74)

(75)

Now the L2 norm of the second term can be bounded as
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∥∥∥∥∥
t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

[
(A+BK̂i−1) · · · (A+BK̂p+1)− (A+BK)i−p−1

]
· (Bηp + εp)(Bηq + εq)

> [(A+BK)i−q−1
]> ∥∥∥∥∥

≤
t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

∥∥∥[(A+BK̂i−1) · · · (A+BK̂p+1)− (A+BK)i−p−1
]∥∥∥

·
∥∥∥(Bηp + εp)(Bηq + εq)

>
∥∥∥∥∥∥[(A+BK)i−q−1

]>∥∥∥
≤

t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

O(ρi−pL )(‖δi−1‖+ · · ·+ ‖δp+1‖)O(ρi−qL )‖(Bηp + εp)(Bηq + εq)
>‖ a.s.

≤
t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

O(ρi−pL )(‖δi−1‖+ · · ·+ ‖δp+1‖)O(ρi−qL )(‖Bηp + εp‖2 + ‖Bηq + εq‖2) a.s.

(76)

At first glance it seems like there is no way this would generate the desired bound, because
the ‖δi−1‖ + · · · + ‖δp+1‖ term could diverge when i is large. However, thanks to the

exponentially decaying term O(ρi−pL ), we can avoid this by changing the order of summation:

i−1∑
p=0

O(ρi−pL )(‖δi−1‖+ · · ·+ ‖δp+1‖) =
i−1∑
p=0

O(ρi−pL )
i−1∑

j=p+1

‖δj‖

=
i−1∑
p=0

i−1∑
j=p+1

O(ρi−pL )‖δj‖

=
i−1∑
j=1

j−1∑
p=0

O(ρi−pL )‖δj‖ (exchange the order of summation)

=

i−1∑
j=1

‖δj‖
j−1∑
p=0

O(ρi−pL )

=

i−1∑
j=1

‖δj‖O(ρi−jL )

(77)

The final form is almost the same as the beginning, except that the summation of
δi disappears. Restart from Eq. 76, and remember to use Eq. 77 (Additionally, when
p = 0, 1, O(log(p)) is meant to be O(1) a.s.):∥∥∥∥∥
t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

[
(A+BK̂i−1) · · · (A+BK̂p+1)− (A+BK)i−p−1

]
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· (Bηp + εp)(Bηq + εq)
> [(A+BK)i−q−1

]> ∥∥∥∥∥
≤

t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

O(ρi−pL )(‖δi−1‖+ · · ·+ ‖δp+1‖)O(ρi−qL )(‖Bηp + εp‖2 + ‖Bηq + εq‖2) a.s. (by Lemma 18)

≤
t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

O(ρi−pL )(‖δi−1‖+ · · ·+ ‖δp+1‖)O(ρi−qL )(O(log(p)) +O(log(q))) a.s.

≤
t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

O(ρi−pL )(‖δi−1‖+ · · ·+ ‖δp+1‖)O(ρi−qL )O(log(t)) a.s.

= O(log(t))
t−1∑
i=1

i−1∑
p=0

O(ρi−pL )(‖δi−1‖+ · · ·+ ‖δp+1‖) a.s.

= O(log(t))

t−1∑
i=1

i−1∑
j=1

‖δj‖O(ρi−jL ) a.s.

= O(log(t))
t−1∑
j=1

‖δj‖
t−1∑
i=j+1

O(ρi−jL ) a.s. (by Eq. 77)

= O(log(t))

t−1∑
j=1

‖δj‖ a.s.

= O(log(t))

 t−1∑
j=1

O(j−
β
2 log

−α+1
2 (j))

 a.s. (by Eq. 81)

= O(log(t))O(t1−
β
2 log

−α+1
2 (t)) a.s.

= O(t1−β/2 log
−α+3

2 (t)) a.s. (78)

We know that for any matrix A, ‖A‖ ≤ ‖A‖F ≤
√
r‖A‖, where r is the rank of matrix

A. Thus Eq. 78 implies an upper bound on the Frobenius norm, and the Frobenius norm
implies entry-wise upper bound:

t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

[
(A+BK̂i−1) · · · (A+BK̂p+1)− (A+BK)i−p−1

]
· (Bηp + εp)(Bηq + εq)

> [(A+BK)i−q−1
]>

= O(t1−β/2 log
−α+3

2 (t)) a.s.

Third Part This part is the transpose of the second part, thus shares the same result
with the second part.

Fourth Part We wish to show that∥∥∥∥∥
t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

[
(A+BK̂i−1) · · · (A+BK̂p+1)− (A+BK)i−p−1

]
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· (Bηp + εp)(Bηq + εq)
>
[
(A+BK̂i−1) · · · (A+BK̂q+1)− (A+BK)i−q−1

]> ∥∥∥∥∥
= Op(t1−β/2 log

−α+3
2 (t)).

By Lemma 43 we have

‖(A+BK̂i−1) · · · (A+BK̂q+1)‖ = O(ρi−qL ) a.s.,

and
‖(A+BK)i−q−1‖ = O(ρi−qL ) a.s.

Thus,

(A+BK̂i−1) · · · (A+BK̂q+1)− (A+BK)i−q−1 = O(ρi−qL ) a.s.

Combining this with Eq. 75,

‖
t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

[
(A+BK̂i−1) · · · (A+BK̂p+1)− (A+BK)i−p−1

]
· (Bηp + εp)(Bηq + εq)

>
[
(A+BK̂i−1) · · · (A+BK̂q+1)− (A+BK)i−q−1

]>
‖

≤
t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

O(ρi−pL )(‖δi−1‖+ · · ·+ ‖δp+1‖)‖(Bηp + εp)(Bηq + εq)
>‖O(ρi−qL ) a.s.

≤
t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

O(ρi−pL )(‖δi−1‖+ · · ·+ ‖δp+1‖)O(ρi−qL )(‖Bηp + εp‖2 + ‖Bηq + εq‖2) a.s.,

which is exactly the same as the final line of Eq. 76. Then following the same proof procedure

as in the second part we can get the same order as in the second part: O(t1−β/2 log
−α+3

2 (t)) a.s.

Summarize second, third, and fourth parts To sum up, all three parts are bounded

by the same order O(t1−β/2 log
−α+3

2 (t)) a.s.

First Part It remains to show

t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

[
(A+BK)i−p−1

]
(Bηp + εp)(Bηq + εq)

> [(A+BK)i−q−1
]>

= t
∞∑
p=0

Lp(Lp)>σ2 + tβ
τ2

β
logα(t)

∞∑
q=0

LqBB>[Lq]>(In + op(1)).

Recall L = A+BK. We divide the left hand side into two separate parts:

• The part where p 6= q. We will show this part is dominated by the p = q part and is
only of order Op(t1/2).

Gt :=
t−1∑
i=1

i−1∑
p 6=q

Li−p−1(Bηp + εp)(Bηq + εq)
>[Li−q−1]> = Op(t1/2).
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• The part where p = q. We will show that

t−1∑
i=1

i−1∑
p=q=0

Li−p−1(Bηp + εp)(Bηq + εq)
>[Li−q−1]>

= t

∞∑
p=0

Lp(Lp)>σ2 + tβ
τ2

β
logα(t)

∞∑
q=0

LqBB>[Lq]>(In + op(1)).

Let us first consider the part where p 6= q. We will show the order of Gt by considering its
expectation and variance. Since Gt is a summation of cross terms and E(Bηp + εp) = 0,
E(Gt) = 0. Now it remains to consider the variance

E(‖Gt‖2F ) =E(Tr(G2
t ))

=E

(
Tr

(
t−1∑
p6=q

t−1∑
i=p∨q+1

t−1∑
j=p∨q+1

Li−p−1(Bηp + εp)(Bηq + εq)
>[Li−q−1]>

· Lj−p−1(Bηp + εp)(Bηq + εq)
>[Lj−q−1]>

))

+ E

(
Tr

(
t−1∑
p 6=q

t−1∑
i=p∨q+1

t−1∑
j=p∨q+1

Li−p−1(Bηp + εp)(Bηq + εq)
>[Li−q−1]>

· Lj−q−1(Bηq + εq)(Bηp + εp)
>[Lj−p−1]>

))
(terms with odd power go away in expectation) .

It is sufficient to consider the first term in the previous expression, and the other term can
be analyzed in exactly the same way. Notice the following relationship on any square matrix
A with dimension n

Tr2(A) ≤ n‖A‖2F ≤ n · n‖A‖2.
That is

Tr(A) ≤ n‖A‖.
Then

E

(
Tr

(
t−1∑
p 6=q

t−1∑
i=p∨q+1

t−1∑
j=p∨q+1

Li−p−1(Bηp + εp)(Bηq + εq)
>[Li−q−1]>

· Lj−p−1(Bηp + εp)(Bηq + εq)
>[Lj−q−1]>

))

≤ nE
∥∥∥∥∥
t−1∑
p 6=q

t−1∑
i=p∨q+1

t−1∑
j=p∨q+1

Li−p−1(Bηp + εp)(Bηq + εq)
>[Li−q−1]>

· Lj−p−1(Bηp + εp)(Bηq + εq)
>[Lj−q−1]>

∥∥∥∥∥
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≤ E
t−1∑
p 6=q

t−1∑
i=p∨q+1

t−1∑
j=p∨q+1

O(ρi−pL ρi−qL )‖Bηp + εp‖22‖Bηq + εq‖22O(ρj−pL ρj−qL ) (by Lemma 43)

= O

 t−1∑
p 6=q

t−1∑
i=p∨q+1

t−1∑
j=p∨q+1

ρ2i−p−q
L ρ2j−p−q

L


= O

(
t−1∑
p>q

ρ
2(p−q)
L

)
(WLOG consider the part where p > q)

= O

 t−1∑
q=0

1


= O(t).

Thus the entry-wise standard error of Gt is of order O(t1/2). Combining this with the fact
that EGt = 0, we have

Gt :=
t−1∑
i=1

i−1∑
p6=q

Li−p−1(Bηp + εp)(Bηq + εq)
>[Li−q−1]> = Op(t1/2). (79)

and it remains to consider

R :=
t−1∑
i=1

i−1∑
p=0

Li−p−1(Bηp + εp)(Bηp + εp)
>[Li−p−1]>.

Consider the expectation of R: E(R) = R0, where

R0 :=

t−1∑
i=0

i−1∑
p=0

Li−p−1(pβ−1 logα(p)BB>τ2 + Inσ
2)[Li−p−1]>.

Let us first show R−R0 = Op(t1/2), and after that we only need to consider R0, which
is the dominating term. We know that Bηp + εp has a finite fourth moment, so the sum of
the variances of each element of R−R0 can be written as

E‖R−R0‖2F =E(Tr((R−R0)2))

≤E(Tr(
t−1∑
p=0

t−1∑
i=p+1

t−1∑
j=p+1

Li−p−1[(Bηp + εp)(Bηp + εp)
> − (pβ−1 logα(p)BB>τ2 + Imσ

2)]

· [Li−p−1]>Lj−p−1[(Bηp + εp)(Bηp + εp)
> − (pβ−1 logα(p)BB>τ2 + Imσ

2)][Lj−p−1]>))

≤nE‖
t−1∑
p=0

t−1∑
i=p+1

t−1∑
j=p+1

Li−p−1[(Bηp + εp)(Bηp + εp)
> − (pβ−1 logα(p)BB>τ2 + Imσ

2)]

· [Li−p−1]>Lj−p−1[(Bηp + εp)(Bηp + εp)
> − (pβ−1 logα(p)BB>τ2 + Imσ

2)][Lj−p−1]>‖

≤O(E
t−1∑
p=0

t−1∑
i=p+1

t−1∑
j=p+1

ρ2i−2p
L ‖(Bηp + εp)(Bηp + εp)

> − (pβ−1 logα(p)BB>τ2 + Imσ
2)‖2ρ2j−2p

L )
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=O(
t−1∑
p=0

E‖(Bηp + εp)(Bηp + εp)
> − (pβ−1 logα(p)BB>τ2 + Imσ

2)‖2)

=O(t).

Thus R−R0 = Op(t1/2). Now we only need to focus on:

R0 =
t−1∑
i=1

i−1∑
p=0

Li−p−1(pβ−1 logα(p)BB>τ2 + Imσ
2)[Li−p−1]>.

Again, when p = 0, 1, pβ−1 logα(p) should be considered as 1. Let us start from the identity
matrix part

∑t−1
i=1

∑i−1
p=0 L

i−p−1Imσ
2[Li−p−1]>.

t−1∑
i=1

i−1∑
p=0

Li−p−1[Li−p−1]> =
t−1∑
i=1

i−1∑
q=0

Lq[Lq]>

=
t−1∑
i=1

(
∞∑
p=0

Lp(Lp)> −
∞∑
q=i

Lq[Lq]>)

=t

∞∑
p=0

Lp(Lp)> −
t−1∑
i=1

∞∑
q=i

Lq[Lq]>.

Notice

‖
t−1∑
i=1

∞∑
q=i

Lq[Lq]>‖ ≤
t−1∑
i=1

∞∑
q=i

O(ρ2q
L )

=

t−1∑
i=1

O(ρ2i
L )

=O(1).

Thus

t−1∑
i=1

i−1∑
p=0

Li−p−1[Li−p−1]> = t

∞∑
p=0

Lp(Lp)> +O(1).
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On the other hand (when p = 0, 1, pβ−1 logα(p) is meant to be 1),

t−1∑
i=1

i−1∑
p=0

Li−p−1pβ−1 logα(p)BB>[Li−p−1]>

=
t−2∑
p=0

t−1∑
i=p+1

Li−p−1pβ−1 logα(p)BB>[Li−p−1]>

=

t−2∑
p=0

pβ−1 logα(p)

t−p−2∑
q=0

LqBB>[Lq]>

=

t−2∑
p=0

pβ−1 logα(p)

 ∞∑
q=0

LqBB>[Lq]> −
∞∑

q=t−p−1

LqBB>[Lq]>


=

t−2∑
p=0

pβ−1 logα(p)

 ∞∑
q=0

LqBB>[Lq]> −O(ρ
2(t−p−1)
L )


=

t−2∑
p=0

pβ−1 logα(p)

∞∑
q=0

LqBB>[Lq]> +

t−2∑
p=0

pβ−1 logα(p)O
(
ρ

2(t−p−1)
L

)

≤
t−2∑
p=0

pβ−1 logα(p)

∞∑
q=0

LqBB>[Lq]> +
t−2∑
p=0

O(1)O
(
ρ

2(t−p−1)
L

)

=
t−2∑
p=0

pβ−1 logα(p)
∞∑
q=0

LqBB>[Lq]> +O(1).

(80)

Now it remains to calculate
∑t−2

p=0 p
β−1 logα(p). Let us consider a more general case

∑t
p=0 p

γ logα(p)
where γ > −1 and α is any real number. It is clear that this summation goes to infinity
when t→∞. Recall the Stolz–Cesàro theorem:

Theorem 45 (Stolz–Cesàro). Let {at}t≥1 and {bt}t≥1 be two sequences of real numbers.
Assume that {bt}t≥1 is a strictly monotone and divergent sequence and the following limit
exists:

lim
t→∞

at+1 − at
bt+1 − bt

= l

Then, the limit

lim
t→∞

at
bt

= l

In Theorem 45, we choose at and bt to be
∑t

p=0 p
γ logα(p) and tγ+1 logα(t), respectively.

lim
t→∞

at − at−1

bt − bt−1
= lim
t→∞

tγ logα(t)

tγ+1 logα(t)− (t− 1)γ+1 logα(t− 1)

= lim
t→∞

1

t− ( t−1
t )γ(t− 1)

(
log(t−1)

log(t)

)α
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= lim
t→∞

1/t

1− (1− 1
t )
γ+1

(
1 + log(t−1)−log(t)

log(t)

)α
= lim
t→∞

1/t

1− (1− γ+1
t + o(1

t ))
(

1 +
− 1
t
+o( 1

t
)

log(t)

)α
= lim
t→∞

1/t

1− (1− γ+1
t + o(1

t ))
(
1 + o(1

t )
)α

= lim
t→∞

1/t

1− (1− γ+1
t + o(1

t ))e
α log(1+o( 1

t
))

= lim
t→∞

1/t

1− (1− γ+1
t + o(1

t ))e
αo( 1

t
)

= lim
t→∞

1/t

1− (1− γ+1
t + o(1

t ))
(
1 + o(αt )

)
= lim
t→∞

1/t
γ+1
t + o(1

t )

=
1

γ + 1
.

By Theorem 45, we know

lim
t→∞

at
bt

= lim
t→∞

∑t
p=0 p

γ logα(p)

tγ+1 logα(t)
=

1

γ + 1

That is to say, for any γ > −1:

t∑
p=0

pγ logα(p) =
1

γ + 1
tγ+1 logα(t)(1 + o(1)). (81)

Following Eqs. 80 and 81,

t−1∑
i=1

i−1∑
p=0

Li−p−1pβ−1 logα(p)BB>[Li−p−1]>

=
t∑

p=0

pβ−1 logα(p)
∞∑
q=0

LqBB>[Lq]> +O(1)

=
tβ

β
logα(t)(1 + o(1))

∞∑
q=0

LqBB>[Lq]> +O(1)

=
tβ

β
logα(t)

∞∑
q=0

LqBB>[Lq]>(In + o(1)).

To sum up,

R0 = t
∞∑
p=0

Lp(Lp)>σ2 +
tβ

β
logα(t)

∞∑
q=0

LqBB>[Lq]>(In + o(1)).
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Recall that R−R0 = Op(t1/2), so

R =
t−1∑
i=1

i−1∑
p=0

Li−p−1(Bηp + εp)(Bηp + εp)
>[Li−p−1]>

= t
∞∑
p=0

Lp(Lp)>σ2 + tβ
τ2

β
logα(t)

∞∑
q=0

LqBB>[Lq]>(In + op(1)).

Recall Eq. 79:

t−1∑
i=1

i−1∑
p 6=q

Li−p−1(Bηp + εp)(Bηq + εq)
>[Li−q−1]> = Op(t1/2).

Finally we proved the order of the first part:

t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

[
(A+BK)i−p−1

]
(Bηp + εp)(Bηq + εq)

> [(A+BK)i−q−1
]>

=

t−1∑
i=1

i−1∑
p=0

i−1∑
q=0

Li−p−1(Bηp + εp)(Bηq + εq)
>[Li−q−1]>

= t

∞∑
p=0

Lp(Lp)>σ2 + tβ
τ2

β
logα(t)

∞∑
q=0

LqBB>[Lq]>(In + op(1))

= tβ logα(t)(Ct + op(1)) (by Ct definition Eq. 29).

H.1.4 The proof of Lemma 21

Lemma. Assume Eq. 23, then

1.
∑t−1

i=0

[
(A+BK̂i−1) · · · (A+BK0)x0

] [∑i−1
q=0(A+BK̂i−1) · · · (A+BK̂q+1)(Bηq + εq)

]T
=

Õ(1) a.s.

2.
∑t−1

i=0

[
(A+BK̂i−1) · · · (A+BK0)x0

] [
(A+BK̂i−1) · · · (A+BK0)x0

]T
= O(1) a.s.

Proof This can be proved using a similar technique as in Appendix H.1.3. Recall that
when q = 0, 1, logα(q) is taken to be 1.∥∥∥∥∥∥

t−1∑
i=1

i−1∑
q=0

(A+BK̂i−1) · · · (A+BK0)x0(Bηq + εq)
>
[
(A+BK̂i−1) · · · (A+BK̂q+1)

]>∥∥∥∥∥∥
≤

t−1∑
i=1

i−1∑
q=0

‖(L+Bδt−1) · · · (L+Bδ0)‖‖x0‖‖Bηq + εq‖‖(L+Bδt−1) · · · (L+Bδq+1)‖>
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≤
t−1∑
i=1

i−1∑
q=0

O(ρiL)‖x0‖‖Bηq + εq‖O(ρi−qL ) a.s. (by Lemma 18)

≤
t−1∑
i=1

i−1∑
q=0

O(ρ2i−q
L )O(1)O(log1/2(q)) a.s. (by Lemma 18)

≤
t−1∑
i=1

i−1∑
q=0

O(ρ2i−q
L )Õ(1) a.s.

=

t−1∑
i=1

O(ρiL)Õ(1) a.s.

≤ Õ(1) a.s.

Also, ∥∥∥∥∥
t−1∑
i=1

[
(A+BK̂i−1) · · · (A+BK0)x0

] [
(A+BK̂i−1) · · · (A+BK0)x0

]T∥∥∥∥∥
≤

t−1∑
i=1

O(ρiL)‖x0‖2O(ρiL) a.s. (by Lemma 18)

≤
t−1∑
i=1

O(ρ2i
L ) a.s.

≤ O(1) a.s.

H.1.5 The proof of Lemma 22

Lemma. Assume we have two matrix sequences {At}∞t=1 and {Bt}∞t=1, where At and Bt are
p× p positive definite matrices, and

A2
tB

2
t

P−→ Ip.

Then
AtBt

P−→ Ip.

Proof The basic idea is to utilize the equivalence of entry-wise convergence and F-norm
convergence and the fact that the F-norm is invariant under orthogonal transformation. We
know that positive definite matrices can be diagonalized by orthogonal transformation, and
these diagonal matrices are easier to deal with. Starting from our only equation

A2
tB

2
t

P−→ Ip.

Entry-wise convergence implies F-norm convergence:

‖A2
tB

2
t − Ip‖F

P−→ 0.
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By the positive definiteness of At and Bt, we can assume they have the diagnolization
At = UAtΛAtU

>
At and Bt = UBtΛBtU

>
Bt, where ΛAt and ΛBt are diagonal matrices with

diagonal values λAi,t and λBi,t (i = 1, 2, · · · , p), and UAt and UBt are orthogonal matrices.
With this transformation, we have

‖UAtΛ2
AtU

>
AtUBtΛ

2
BtU

>
Bt − Ip‖F

P−→ 0.

Since orthogonal transformation does not affect F-norm, on RHS inside the F-norm, we can
multiply U>At on the left and UBt and on the right and get

‖Λ2
AtU

>
AtUBtΛ

2
Bt − U>AtUBt‖F

P−→ 0.

Because F-norm convergence to zero is equivalent to entry-wise convergence to zero,

Λ2
AtU

>
AtUBtΛ

2
Bt − U>AtUBt

P−→ 0.

Denote Tt := U>AtUBt, then

Λ2
AtTtΛ

2
Bt − Tt

P−→ 0.

If we consider the ijth element of the above equation:

λ2
Ai,tTijλ

2
Bj,t − Tij

P−→ 0,

which is
(λAi,tλBj,t − 1)(λAi,tλBj,t + 1)Tij

P−→ 0.

Since by positive definiteness we have λAi,t, λBj,t > 0 , the above equation implies

(λAi,tλBj,t − 1)Tij
P−→ 0.

This holds for every i, j pair. If we write out this equation back to matrix form, we would
get

ΛAtTtΛBt − Tt P−→ 0.

By the same trick this is equivalent to the F-norm form

‖ΛAtTtΛBt − Tt‖F P−→ 0,

‖ΛAtU>AtUBtΛBt − U>AtUBt‖F
P−→ 0.

On RHS inside the F-norm, we can multiply UAt on the left and U>Bt and on the right and
get

‖UAtΛAtU>AtUBtΛBtUTBt − Ip‖F
P−→ 0.

Plug in our definition At = UAtΛAtU
>
At and Bt = UBtΛBtU

>
Bt:

‖AtBt − Ip‖F P−→ 0.

And this implies

AtBt
P−→ Ip.
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H.1.6 The proof of Lemma 23

Lemma. Assume Eq. 23, then

1.
∑t−1

i=0(K̂i −K)xix
>
i = O(t1−β/2 log

−α+3
2 (t)) a.s.

2.
∑t−1

i=0 ηix
>
i = o

(
tβ/2 log

α+3
2 (t)

)
a.s.

Proof

First part
∑t−1

i=0(K̂i −K)xix
>
i By Lemma 18 we have a uniform bound for δi = K̂i −K

and xi. We can derive the result in the first part by directly plugging in the bound for ‖δi‖
and ‖xi‖.

By Lemma 18

‖xi‖ ≤ O(log1/2(t)) a.s.

Thus∥∥∥∥∥
t−1∑
i=0

(K̂i −K)xix
>
i

∥∥∥∥∥ =
t−1∑
i=0

‖δi‖‖xix>i ‖

≤O(log(t))

t−1∑
i=0

‖δi‖ a.s. (by Lemma 18)

≤O(log(t))

t−1∑
i=0

O(i−β/2 log
−α+1

2 (i)) a.s. (by Lemma 18)

≤O(log(t)t1−β/2 log
−α+1

2 (t)) a.s. (by Eq. 81)

≤O(t1−β/2 log
−α+3

2 (t)) a.s.

which means (by bounding entry-wise terms by the operator norm)

t−1∑
i=0

(K̂i −K)xix
>
i = O(t1−β/2 log

−α+3
2 (t)) a.s.

Second Part
∑t−1

i=0 ηix
>
i Following Lemma 2 (iii) from Lai and Wei (1982):

Lemma 46. Let {εn} be a martingale difference sequence with respect to an increasing
sequence of σ-fields {Fn} such that supn E(ε2

n|Fn−1) <∞ a.s. Let vn be an Fn−1-measurable
random variable for every n. Then

n∑
i=1

viεi <∞ a.s. on {
∞∑
i=1

v2
i <∞}.

And for any η > 1/2

n∑
i=1

viεi = o

(
(
n∑
i=1

v2
i )

1/2 logη(
n∑
i=1

v2
i )

)
a.s. on {

∞∑
i=1

v2
i =∞}.
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As a result, with probability 1

n∑
i=1

viεi =o

(
(
n∑
i=1

v2
i )

1/2 log(
n∑
i=1

v2
i )

)
1∑∞

i=1 v
2
i=∞ +O(1)1∑∞

i=1 v
2
i<∞

a.s.

=o

(
(

n∑
i=1

v2
i )

1/2 log(

n∑
i=1

v2
i )

)
+O(1) a.s.

(82)

We can apply Lemma 46 to our context by noticing

t−1∑
i=0

ηix
>
i =

t−1∑
i=0

ηii
1−β
2 log−α/2(i)(i

β−1
2 logα/2(i)x>i ).

Here we normalized all ηi to have a fixed normal distribution ηii
1−β
2 log−α/2(i) ∼ N (0, τ2Id).

Apply Eq. 82 entry-wise, where vi corresponds to a fixed entry of i
β−1
2 logα/2(i)x>i and εi

corresponds to a fixed entry of ηii
1−β
2 log−α/2(i). vi is bounded by i

β−1
2 logα/2(i)‖xi‖. Thus

t−1∑
i=0

ηix
>
i = o

(
V

1/2
t log(Vt)

)
+O(1) a.s.,

where Vt :=
∑t−1

i=0(i
β−1
2 logα/2(i)‖xi‖)2. Applying the bounds in Lemma 18 (recall that

when i = 0, 1, iβ−1 logα(i) is taken to be 1):

Vt =
t−1∑
i=0

(i
β−1
2 logα/2(i)‖xi‖)2

=
t−1∑
i=0

i−1+β logα(i)O(log(t)) a.s. (by Lemma 18)

=O(tβ logα(t))O(log(t)) a.s. (by Eq. 81)

=O(tβ logα+1(t)) a.s.

Thus,

t−1∑
i=0

ηix
>
i =o

(
V

1/2
t log(Vt)

)
+O(1)

=o
(
O(tβ logα+1(t))1/2 log(O(tβ logα+1(t)))

)
+O(1)

=o
(
O(tβ/2 log

α+1
2 (t) log(t))

)
+O(1)

=o
(
tβ/2 log

α+3
2 (t)

)
a.s.
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In exactly the same way, we can show that

t∑
i=1

(K̂ixi)
>Rηi = o

(
tβ/2 log

α+3
2 (t)

)
a.s. (83)

We first standardize ηi

t∑
i=1

(K̂ixi)
>Rηi =

t−1∑
i=0

(i
β−1
2 logα/2(i)(K̂ixi)

>R)ηii
1−β
2 log−α/2(i),

and then vi is bounded by

i
β−1
2 logα/2(i)

∥∥∥(K̂ixi)
>R
∥∥∥

≤ iβ−1
2 logα/2(i)

∥∥∥K̂i

∥∥∥ ‖R‖‖xi‖
≤ iβ−1

2 logα/2(i)CK‖R‖‖xi‖ (by Algorithm 1’s design),

which is different from vi in
∑t−1

i=0 ηix
>
i by a constant factor CK‖R‖. The rest of the proof

is all the same.

H.1.7 The proof of Lemma 24

Lemma. Assume Eq. 23, then

1.
∑t−1

i=0 δixix
>
i δ
>
i = O(t1−β log−α+2(t)) a.s.

2.
∑t−1

i=0 δixiη
>
i = (

∑t−1
i=0 ηix

>
i δ
>
i )> = o

(
log2(t)

)
a.s.

3.
∑t−1

i=0 ηiη
>
i = tβ τ

2

β logα(t)(Id + op(1))

Proof

First part
∑t−1

i=0 δixix
>
i δ
>
i Recall the conclusion from Lemma 18: ‖xt‖ = O(log1/2(t)) a.s.

and ‖δt‖ = O(t−
β
2 log

−α+1
2 (t)) a.s.∥∥∥∥∥

t−1∑
i=1

δixix
>
i δ
>
i

∥∥∥∥∥ ≤
t−1∑
i=1

‖δi‖2‖xi‖2

≤O(log(t))
t−1∑
i=1

O(i−β log−α+1(i)) a.s. (by Lemma 18)

=O(t1−β log−α+2(t)) a.s. (by Eq. 81)

This implies (by bounding the entries by the operator norm, and including the i = 0 term
as O(1)):

t−1∑
i=0

δixix
>
i δ
>
i = O(t1−β log−α+2(t)) a.s.
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Second part
∑t−1

i=0 ηix
>
i δ
>
i The representative of the third term is

∑t−1
i=0 ηix

>
i δ
>
i . The

proof idea is similar to that in Lemma 23 when we prove the bound for
∑t−1

i=0 ηix
>
i . Here

we have an extra shrinking term δi which makes things easier.

Again, we can apply Lemma 46 to our context by noticing

t−1∑
i=0

ηix
>
i δ
>
i =

t−1∑
i=0

ηii
1−β
2 log−α/2(i)(i

β−1
2 logα/2(i)x>i δ

>
i ).

Here we normalized all ηi to have a fixed normal distribution. Apply Lemma 46 entry-wise,

where vi corresponds to a fixed entry of i
β−1
2 logα/2(i)x>i δ

>
i and εi corresponds to a fixed

entry of the normalized ηi. Our vi is bounded by i
β−1
2 logα/2(i)‖xi‖‖δi‖. Thus,

t−1∑
i=0

ηix
>
i δ
>
i = o

(
V

1/2
t log(Vt)

)
+O(1).

where Vt :=
∑t−1

i=0(i
β−1
2 logα/2(i)‖xi‖‖δi‖)2. Apply the high probability bound in Lemma 18

and we have

Vt =
t−1∑
i=1

(i
β−1
2 logα/2(i)‖xi‖‖δi‖)2

=
t−1∑
i=1

i−1+β logα(i)O(log(t))O(t−β log−α+1(t)) a.s. (by Lemma 18)

=O(tβ logα(t))O(log(t))O(t−β log−α+1(t)) a.s. (by Eq. 81)

=O(log2(t)) a.s.

That is to say, Vt = O(log2(t)) a.s. (adding the i = 0 term as O(1)). Thus,

t−1∑
i=0

ηix
>
i δ
>
i =o

(
V

1/2
t log(Vt)

)
+O(1) a.s.

=o
(
O(log2(t))1/2 log(O(log2(t)))

)
+O(1) a.s.

=o
(
o(log2(t))

)
+O(1) a.s.

=o
(
log2(t)

)
a.s.

Third part
∑t−1

i=0 ηiη
>
i By Eq. 81:

E(

t−1∑
i=0

ηiη
>
i ) =

t−1∑
i=0

τ2iβ−1 logα(i)Id = tβ
τ2

β
logα(t)(Id + o(1)).
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With a little abuse of notation we use Var(·) as entry-wise variance of a matrix. Again,
i = 0, 1 terms are meant to be O(1).

Var(
t−1∑
i=0

ηiη
>
i ) =

t−1∑
i=0

Var(ηiη
>
i )

=O
(
t−1∑
i=0

i2(β−1) log2α(i)

)

≤O
(
t−1∑
i=0

i2(β−1) log2 max{0,α}(i)

)

≤O
(
t−1∑
i=0

i2(β−1) log2 max{0,α}(t)

)

=Õ
(
t−1∑
i=0

i2(β−1)

)
=Õ(t2β−1).

When β > 1/2 the last equation follows by Eq. 81 and when β = 1/2 it is summation of
harmonic series which is Õ(1). Thus the standard error is only of order Õ(tβ−1/2), which
is smaller than E(

∑t−1
i=0 ηiη

>
i ). That is to say,

t−1∑
i=0

ηiη
>
i = tβ

τ2

β
logα(t)(Id + op(1)).

H.2 Lemmas in Appendix C

H.2.1 The proof of Lemma 25

Lemma. For any K̂ with suitable dimension,

x>(Q+ K̂>RK̂)x+ x>(A+BK̂)>P (A+BK̂)x− x>Px
= x>(K̂ −K)>(R+B>PB)(K̂ −K)x.

Recall P is the middle step described by the DARE. It should satisfy Eq. 3

K = −(R+B>PB)−1B>PA.

As a result,
(R+B>PB)K +B>PA = 0. (84)

Also it is well known that (Jamieson et al., 2018):

Q+K>RK + (A+BK)>P (A+BK) = P. (85)

77



Wang and Janson

Let K̂ be another controller, then we have the following useful equation stated by Lemma 25.

x>(Q+ K̂>RK̂)x+ x>(A+BK̂)>P (A+BK̂)x− x>Px
= x>(Q+ (K̂ −K +K)>R(K̂ −K +K))x

+ x>(A+B(K̂ −K) +BK)>P (A+B(K̂ −K) +BK)x

− x>Px
= x>(Q+K>RK + (A+BK)>P (A+BK))x

+ 2x>(K̂ −K)>(RK +B>P (A+BK))x

+ x>(K̂ −K)>(R+B>PB)(K̂ −K)x

− x>Px
= x>(Q+K>RK + (A+BK)>P (A+BK))x− x>Px

+ 2x>(K̂ −K)>((R+B>PB)K +B>PA)x

+ x>(K̂ −K)>(R+B>PB)(K̂ −K)x

= x>(K̂ −K)>(R+B>PB)(K̂ −K)x (by Eqs. 84 and 85).

H.3 Lemmas in Appendix E

H.3.1 The proof of Lemma 27

Lemma.
xt = x̃t +O(t−

β
2 log

−α+2
2 (t)) a.s.

ut = ũt +O(t−
β
2 log

−α+2
2 (t)) a.s.

where

x̃t :=

t−1∑
p=t−

⌊
− log(t)

log(ρL)

⌋(A+BK)t−p−1(Bηp + εp), (86)

and

ũt := Kx̃t + ξt = K

t−1∑
p=t−

⌊
− log(t)

log(ρL)

⌋(A+BK)t−p−1(Bηp + εp) + ξt.

Proof Recall Lemma 19 states that

xt =
t−1∑
p=0

(A+BK̂t−1) · · · (A+BK̂p+1)(Bηp + εp) + (A+BK̂t−1) · · · (A+BK0)x0.

Similarly, we can rewrite xt as if starting from time t−
⌊
− log(t)

log(ρL)

⌋
:

xt =

t−1∑
p=t−

⌊
− log(t)

log(ρL)

⌋(A+BK̂t−1) · · · (A+BK̂p+1)(Bηp + εp)+

(A+BK̂t−1) · · · (A+BK̂
t−

⌊
− log(t)

log(ρL)

⌋)x
t−

⌊
− log(t)

log(ρL)

⌋.
(87)
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By Lemma 18, we know

(A+BK̂t−1) · · · (A+BK̂
t−

⌊
− log(t)

log(ρL)

⌋) ≤O(ρ
− log(t)/ log(ρL)
L ) a.s.

=O(e− log(t)) a.s.

=O(t−1) a.s.

and
‖xt‖, ‖ut‖ ≤ O(log1/2(t)) a.s.

Thus

(A+BK̂t−1) · · · (A+BK̂
t−

⌊
− log(t)

log(ρL)

⌋)x
t−

⌊
− log(t)

log(ρL)

⌋ = O(t−1 log1/2(t)) a.s.

Next, comparing Eq. 86 with Eq. 87, we still need to bound the difference between (A +
BK̂t−1) · · · (A+BK̂p+1) and (A+BK)t−p−1. Again by Lemma 18,∥∥∥∥∥∥∥∥

t−1∑
p=t−

⌊
− log(t)

log(ρL)

⌋
[
(A+BK̂t−1) · · · (A+BK̂p+1)− (A+BK)t−p−1

]
(Bηp + εp)

∥∥∥∥∥∥∥∥
≤

t−1∑
p=t−

⌊
− log(t)

log(ρL)

⌋O(ρt−pL )(‖δt−1‖+ · · ·+ ‖δp+1‖)O(log1/2(t)) a.s. (by Eqs. 75 and 24)

=

t−1∑
p=t−

⌊
− log(t)

log(ρL)

⌋‖δp+1‖O(ρt−pL )O(log1/2(t)) a.s. (by Eq. 77)

≤ O((t/2)−
β
2 log

−α+1
2 (t/2))

t−1∑
p=t−

⌊
− log(t)

log(ρL)

⌋O(ρt−pL )O(log1/2(t)) a.s.

(by Eq. 26 and that asymptotically p > t/2)

= O(t−
β
2 log

−α+1
2 (t))O(log1/2(t)) a.s.

= O(t−
β
2 log

−α+2
2 (t)) a.s.

This is larger than O(t−1 log1/2(t)). To summarize,

xt = x̃t +O(t−
β
2 log

−α+2
2 (t)) a.s.

Since ut − ũt = K(xt − x̃t),

ut = ũt +O(t−
β
2 log

−α+2
2 (t)) a.s.
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H.3.2 The proof of Lemma 28

Lemma.

Ât = Â
t−

⌊
− log(t)

log(ρL)

⌋ +Op(t−β log−α+3/2(t)).

B̂t = B̂
t−

⌊
− log(t)

log(ρL)

⌋ +Op(t−β log−α+3/2(t)).

Proof We can bound the distance of neighboring estimators by the following recursive LS

formula. Denote Θ̂t := [Ât, B̂t], zi :=

[
xi
ui

]
, Ht := (

∑t−1
i=0 ziz

>
i )−1. Then the LS estimator

Eq. 5 is

Θ̂t =
t−1∑
i=0

zi+1z
>
i (

t−1∑
i=0

ziz
>
i )−1 =

t−1∑
i=0

zi+1z
>
i Ht.

For simplicity, denote at :=
⌊
− log(t)

log(ρL)

⌋
, then our objective is to bound the difference Θ̂t −

Θ̂t−at .

Θ̂t−at =

t−at−1∑
i=0

zi+1z
>
i Ht−at .

As a result,

Θ̂t = (Θ̂t−atH
−1
t−at +

t−1∑
i=t−at

zi+1z
>
i )Ht.

And

Θ̂t − Θ̂t−at =

(
Θ̂t−at(H

−1
t−at −H

−1
t ) +

t−1∑
i=t−at

zi+1z
>
i

)
Ht

=

(
−Θ̂t−at

(
t−1∑

i=t−at

ziz
>
i

)
+

t−1∑
i=t−at

zi+1z
>
i

)
Ht

=

(
−Θ̂t−at

(
t−1∑

i=t−at

ziz
>
i

)
+

t−1∑
i=t−at

(Θzi + εi)z
>
i

)
Ht

=(Θ− Θ̂t−at)

(
t−1∑

i=t−at

ziz
>
i

)
Ht +

t−1∑
i=t−at

εiz
>
i Ht.

(88)

Following Eqs. 8 and 48,

Ht = Op(t−β log−α(t)). (89)

Next will bound the first and second term separately.
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First term (Θ− Θ̂t−at)(
∑t−1

i=t−at ziz
>
i )Ht By Lemma 18,

zt = O(log1/2(t)) a.s.

Recall that from Eqs. 10 and 48, Θ− Θ̂t−at = Op(t−β/2 log−α/2(t)). As a result,

(Θ− Θ̂t−at)(
t−1∑

i=t−at

ziz
>
i )Ht =Op

(
t−β/2 log−α/2(t)

)
Op(at log(t)t−β log−α(t))

=Op(t−3β/2 log−3α/2+2(t)).

(90)

We will see that this order is smaller than the second term, so that the second term is
dominating.

Second term
∑t−1

i=t−at εiz
>
i Ht Consider the variance of the jk-th element of

∑t−1
i=t−at εiz

>
i ,

which is applicable to any choice of j and k. Fix j, k. Define Ft−1 as the filtration which
contains every variable except for εt−1,j . We know that εt−1,j ⊥⊥ Ft−1 and εt−1,j ∼ N (0, σ2).

Var

(
t−1∑

i=t−at

εij(zi)k

)

= Var

(
E

(
t−1∑

i=t−at

εij(zi)k

∣∣∣∣∣Ft−1

))
+ E

(
Var

(
t−1∑

i=t−at

εij(zi)k

∣∣∣∣∣Ft−1

))

= Var

(
t−2∑

i=t−at

εij(zi)k

)
+ E

(
(zt−1)2

kσ
2
)

= σ2
t−1∑

i=t−at

E
(
(zi)

2
k

)
(by recursively conditioning on Ft−2, · · · ,Ft−at)

≤ σ2
t−1∑

i=t−at

E‖zi‖2

≤ σ2atO(log2(t)) (by Eq. 104)

≤ σ2O(log3(t))

(
by at :=

⌊
− log(t)

log(ρL)

⌋)
Since E

(∑t−1
i=t−at εij(z

>
i )k

)
= 0, we have

∑t−1
i=t−at εij(z

>
i )k = Op(log3/2(t)), which implies

t−1∑
i=t−at

εiz
>
i = Op(log3/2(t)).

By Eq. 89,

t−1∑
i=t−at

εiz
>
i Ht = Op(log3/2(t))Op(t−β log−α(t)) = Op(t−β log−α+3/2(t)). (91)
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This is larger than the first term. Combining Eqs. 88, 90, and 91 we have

Θ̂t − Θ̂t−at = Op(t−β log−α+3/2(t)).

H.3.3 The proof of Lemma 29

Lemma. For any ξt independent of the data before t: {εi, ηi}t−1
i=0:

x̃>t
 ∞∑
p=0

Lp
(
In + 1{β=1,α=0}

τ2

σ2
BB>

)
(Lp)>

−1

x̃t +
βσ2

τ2
t1−β log−α(t) ‖ξt‖2

−1/2

· t1/2
(

(Â
t−

⌊
− log(t)

log(ρL)

⌋ −A)x̃t + (B̂
t−

⌊
− log(t)

log(ρL)

⌋ −B)(Kx̃t + ξt)

)
D−→ N (0, In).

Proof We will start from finding the conditional distribution of

(Â
t−

⌊
− log(t)

log(ρL)

⌋ −A)x̃t + (B̂
t−

⌊
− log(t)

log(ρL)

⌋ −B)ũt

∣∣∣∣x̃t = x, ũt = Kx+ ξ.

where x and ξ are constants. This should be easy because Â
t−

⌊
− log(t)

log(ρL)

⌋−A, B̂
t−

⌊
− log(t)

log(ρL)

⌋−
B ⊥⊥ x̃t, ũt, which means we can directly apply the asymptotic normality result from The-
orem 5. Recall Eq. 11 that

tβ/2 logα/2(t)vec

([
Ât −A+ (B̂t −B)K, B̂t −B

] [ C
1/2
t 0

0
√

τ2

β Id

])
D−→ N (0, σ2In(n+d)),

where Ct = t1−β log−α(t)
∑∞

p=0 L
p
(
σ2In + 1{β=1,α=0}τ

2BB>
)

(Lp)>(In+op(1)) (by Eq. 32).
Here there are two different convergence speeds and we need to consider them separately.
More precisely,

vec
([

(Ât −A+ (B̂t −B)K)tβ/2 logα/2(t)C
1/2
t σ−1 (B̂t −B)tβ/2 logα/2(t)

√
τ2

σ2β
Id

])
D−→ N (0, In+d ⊗ In).

That is to say, for any constant vector x and ξt independent of data before t, we have

vec

([
(Ât −A+ (B̂t −B)K)tβ/2 logα/2(t)C

1/2
t σ−1 (B̂t −B)tβ/2 logα/2(t)

√
τ2

σ2β
Id

]
·
[
t−β/2 log−α/2(t)C

−1/2
t σx

t(1−β)/2 log−α/2(t)
√

σ2β
τ2
ξt

]/∥∥∥∥∥
[
t−β/2 log−α/2(t)C

−1/2
t σx

t(1−β)/2 log−α/2(t)
√

σ2β
τ2
ξt

]∥∥∥∥∥
)

D−→ N (0, In).
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The above equation holds because we are multiplying independent unit vector to the left
hand side, so the result is still a normal distribution. Simplifying the equation:x>

 ∞∑
p=0

Lp
(
In + 1{β=1,α=0}

τ2

σ2
BB>

)
(Lp)>

−1

x+
βσ2

τ2
t1−β log−α(t)‖ξt‖2

−1/2

·t1/2
[
(Ât −A)x+ (B̂t −B)(Kx+ ξt)

]
D−→ N (0, In).

We can replace t with t−
⌊
− log(t)

log(ρL)

⌋
:

x>
 ∞∑
p=0

Lp
(
In + 1{β=1,α=0}

τ2

σ2
BB>

)
(Lp)>

−1

x+
βσ2

τ2

(
t−
⌊
− log(t)

log(ρL)

⌋)1−β
log−α

(
t−

⌊
− log(t)

log(ρL)

⌋)
‖ξt‖2

−1/2

·
(
t−
⌊
− log(t)

log(ρL)

⌋)1/2 [
(Â

t−
⌊
− log(t)

log(ρL)

⌋ −A)x+ (B̂
t−

⌊
− log(t)

log(ρL)

⌋ −B)(Kx+ ξt)

]
D−→ N (0, In).

Because
(
t−
⌊
− log(t)

log(ρL)

⌋)1/2
t−1/2 → 1, we can drop the first three instances of

⌊
− log(t)

log(ρL)

⌋
:

x>
 ∞∑
p=0

Lp
(
In + 1{β=1,α=0}

τ2

σ2
BB>

)
(Lp)>

−1

x+
βσ2

τ2
t1−β log−α(t) ‖ξt‖2

−1/2

· t1/2
[
(Â

t−
⌊
− log(t)

log(ρL)

⌋ −A)x+ (B̂
t−

⌊
− log(t)

log(ρL)

⌋ −B)(Kx+ ξt)

]
D−→ N (0, In).

Here we actually used the fact that for ct, at, bt > 0, when at/bt → 1, then (ct+at)/(ct+bt)→
1. This is because ∣∣∣∣ct + at

ct + bt
− at
bt

∣∣∣∣ =

∣∣∣∣(bt − at)ct(ct + bt)bt

∣∣∣∣ ≤ ∣∣∣∣bt − atbt

∣∣∣∣→ 0.

In our specific context ct is the constant x>
(∑∞

p=0 L
p
(
In + 1{β=1,α=0}

τ2

σ2BB
>
)

(Lp)>
)−1

x.

Since x̃t ⊥⊥ Ât−
⌊
− log(t)

log(ρL)

⌋−A, B̂
t−

⌊
− log(t)

log(ρL)

⌋−B, we can replace x with x̃t by conditioning

on x̃t = x, replace all x with x̃t, and finally remove the conditioning since they all converge
in distribution to standard normal and x̃t asymptotically have same distribution.

x̃>t
 ∞∑
p=0

Lp
(
In + 1{β=1,α=0}

τ2

σ2
BB>

)
(Lp)>

−1

x̃t +
βσ2

τ2
t1−β log−α(t) ‖ξt‖2

−1/2

· t1/2
(

(Â
t−

⌊
− log(t)

log(ρL)

⌋ −A)x̃t + (B̂
t−

⌊
− log(t)

log(ρL)

⌋ −B)(Kx̃t + ξt)

)
D−→ N (0, In).

(92)
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H.3.4 The proof of Lemma 30

Lemma. For any ξt independent of the data before t: {εi, ηi}t−1
i=0,x>t

 ∞∑
p=0

Lp
(
In + 1{β=1,α=0}

τ2

σ2
BB>

)
(Lp)>

−1

xt +
βσ2

τ2
t1−β log−α(t) ‖ξt‖2

−1/2

· t1/2
[
(Ât −A)xt + (B̂t −B)(K̂txt + ξt)

]
D−→ N (0, In).

Proof Since we already proved Lemma 29, the only thing we need to do is to replace x̃t
with xt, K with K̂t, and Â

t−
⌊
− log(t)

log(ρL)

⌋, B̂
t−

⌊
− log(t)

log(ρL)

⌋ with Ât, B̂t.

Replacing x̃t with xt First, we can replacex̃>t
 ∞∑
p=0

Lp
(
In + 1{β=1,α=0}

τ2

σ2
BB>

)
(Lp)>

−1

x̃t +
βσ2

τ2
t1−β log−α(t) ‖ξt‖2


with(

x>t

(∑∞
p=0 L

p
(
In + 1{β=1,α=0}

τ2

σ2BB
>
)

(Lp)>
)−1

xt + βσ2

τ2
t1−β log−α(t) ‖ξt‖2

)
in Eq. 92

because x̃t = xt + op(1) by Lemma 27.x>t
 ∞∑
p=0

Lp
(
In + 1{β=1,α=0}

τ2

σ2
BB>

)
(Lp)>

−1

xt +
βσ2

τ2
t1−β log−α(t) ‖ξt‖2

−1/2

· t1/2
(

(Â
t−

⌊
− log(t)

log(ρL)

⌋ −A)x̃t + (B̂
t−

⌊
− log(t)

log(ρL)

⌋ −B)(Kx̃t + ξt)

)
D−→ N (0, In).

Since x>t

(∑∞
p=0 L

p
(
In + 1{β=1,α=0}

τ2

σ2BB
>
)

(Lp)>
)−1

xt is bounded away from 0 with

high probability (xt has the component εt−1),x>t
 ∞∑
p=0

Lp
(
In + 1{β=1,α=0}

τ2

σ2
BB>

)
(Lp)>

−1

xt +
βσ2

τ2
t1−β log−α(t) ‖ξt‖2

−1/2

= Op(1).

By Lemma 27, x̃t = xt+Op(t
−β

2 log
−α+2

2 (t)). Recall Proposition 17 states that ‖Â
t−

⌊
− log(t)

log(ρL)

⌋−
A‖, ‖B̂

t−
⌊
− log(t)

log(ρL)

⌋ − B‖, ‖K̂t −K‖ = Op(t−β/2 log
−α+1

2 (t)). Thus, the error induced by re-

placing the remaining x̃t with xt in Eq. 92 is

Op(1)t1/2Op(t−
β
2 log

−α+2
2 (t))Op(t−

β
2 log

−α+1
2 (t)) = Op(t1/2−β log−α+3/2(t)).

Under our condition β > 1/2 or β = 1/2, α > 3/2, this error is of order op(1), which is
negligible. Now we can replace all x̃t with xt:x>t

 ∞∑
p=0

Lp
(
In + 1{β=1,α=0}

τ2

σ2
BB>

)
(Lp)>

−1

xt +
βσ2

τ2
t1−β log−α(t) ‖ξt‖2

−1/2
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· t1/2
[
(Â

t−
⌊
− log(t)

log(ρL)

⌋ −A)xt + (B̂
t−

⌊
− log(t)

log(ρL)

⌋ −B)(Kxt + ξt)

]
D−→ N (0, In).

Replacing K by K̂t Since ‖B̂
t−

⌊
− log(t)

log(ρL)

⌋ − B‖, ‖K̂t − K‖ = Op(t−β/2 log
−α+1

2 (t)) (see

Proposition 17), and xt = Op(log1/2(t)), the final difference is still of orderOp(t1/2−β log−α+3/2(t)) =
op(1). Thusx>t

 ∞∑
p=0

Lp
(
In + 1{β=1,α=0}

τ2

σ2
BB>

)
(Lp)>

−1

xt +
βσ2

τ2
t1−β log−α(t) ‖ξt‖2

−1/2

· t1/2
[
(Â

t−
⌊
− log(t)

log(ρL)

⌋ −A)xt + (B̂
t−

⌊
− log(t)

log(ρL)

⌋ −B)(K̂txt + ξt)

]
D−→ N (0, In).

Replacing Â
t−

⌊
− log(t)

log(ρL)

⌋, B̂
t−

⌊
− log(t)

log(ρL)

⌋ with Ât, B̂t By Lemma 28,

Ât − Ât−
⌊
− log(t)

log(ρL)

⌋, B̂t − B̂t−⌊− log(t)
log(ρL)

⌋ = Op(t−β log−α+3/2(t)).

Notice the xt and ξt are multiplied byx>t
 ∞∑
p=0

Lp
(
In + 1{β=1,α=0}

τ2

σ2
BB>

)
(Lp)>

−1

xt +
βσ2

τ2
t1−β log−α(t) ‖ξt‖2

−1/2

,

thus their order is onlyOp(1). The difference induced by replacing Â
t−

⌊
− log(t)

log(ρL)

⌋, B̂
t−

⌊
− log(t)

log(ρL)

⌋
with Ât, B̂t is of order Op(t1/2−β log−α+3/2(t)). When β > 1/2 or β = 1/2, α > 3/2, this
error is of order op(1). Finally, after replacement we havex>t

 ∞∑
p=0

Lp
(
In + 1{β=1,α=0}

τ2

σ2
BB>

)
(Lp)>

−1

xt +
βσ2

τ2
t1−β log−α(t) ‖ξt‖2

−1/2

· t1/2
[
(Ât −A)xt + (B̂t −B)(K̂txt + ξt)

]
D−→ N (0, In).

H.3.5 The proof of Lemma 31

Lemma. For any ξt independent of the data before t: {εi, ηi}t−1
i=0,x>t

 ∞∑
p=0

Lp
(
In + 1{β=1,α=0}

τ2

σ2
BB>

)
(Lp)>

−1

xt +
βσ2

τ2
t1−β log−α(t) ‖ξt‖2

−1/2
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·t1/2
σ2

[
xt
ut

]>( t−1∑
i=0

[
xi
ui

] [
xi
ui

]>)−1 [
xt
ut

]1/2

P−→ 1.

Proof By ut = K̂txt + ξt, it suffices to show

x>t
 ∞∑
p=0

Lp
(
In + 1{β=1,α=0}

τ2

σ2
BB>

)
(Lp)>

−1

xt +
βσ2

τ2
t1−β log−α(t) ‖ξt‖2

−1

· t1/2
σ2

[
xt

K̂txt + ξt

]>( t−1∑
i=0

[
xi
ui

] [
xi
ui

]>)−1 [
xt

K̂txt + ξt

] P−→ 1.

By Eq. 61:

t−1∑
i=0

[
xi
ui

] [
xi
ui

]>
/tβ logα(t) =

[
In 0
K Id

] [
Mt ∆>t
∆t ∆u

] [
In K>

0 Id

]
.

Thus

[
xt

K̂txt + ξt

]>( t−1∑
i=0

[
xi
ui

] [
xi
ui

]>)−1 [
xt

K̂txt + ξt

]
tβ logα(t)

=

[
xt

K̂txt + ξt

]> [
In K>

0 Id

]−1 [
Mt ∆>t
∆t ∆u

]−1 [
In 0
K Id

]−1 [
xt

K̂txt + ξt

]
=

[
xt

K̂txt + ξt

]> [
In −K>
0 Id

] [
(Mt −∆>t ∆−1

u ∆t)
−1 −(Mt −∆>t ∆−1

u ∆t)
−1∆>t ∆−1

u

−((Mt −∆>t ∆−1
u ∆t)

−1∆>t ∆−1
u )> (∆u −∆tM

−1
t ∆>t )−1

]
·
[

In 0
−K Id

] [
xt

K̂txt + ξt

]
(by block matrix inversion)

=

[
xt

K̂txt + ξt −Kxt

]> [
(Mt −∆>t ∆−1

u ∆t)
−1 −(Mt −∆>t ∆−1

u ∆t)
−1∆>t ∆−1

u

−((Mt −∆>t ∆−1
u ∆t)

−1∆>t ∆−1
u )> (∆u −∆tM

−1
t ∆>t )−1

]
·
[

xt
K̂txt + ξt −Kxt

]
= x>t (Mt −∆>t ∆−1

u ∆t)
−1xt − 2x>t (Mt −∆>t ∆−1

u ∆t)
−1∆>t ∆−1

u (K̂txt + ξt −Kxt)
+ (K̂txt + ξt −Kxt)>(∆u −∆tM

−1
t ∆>t )−1(K̂txt + ξt −Kxt).
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By Eq. 31, Eq. 35, Eq. 60:

Mt = log−α(t)t1−β

 ∞∑
p=0

Lp
(
σ2In + 1{β=1,α=0}τ

2BB>
)

(Lp)>

 (In + o(1))

M−1
t = logα(t)t−1+β

 ∞∑
p=0

Lp
(
σ2In + 1{β=1,α=0}τ

2BB>
)

(Lp)>

−1

(In + o(1))

∆t =Op(t1−3β/2 log
−3α+3

2 (t))

∆u =
τ2

β
(Id + op(1)).

(93)

As a result, when β > 1/2 or β = 1/2, α > 3/2

∆>t ∆−1
u ∆t =Op(t2−3β log−3α+3(t)) = op(t

1−β log−α(t))

(Mt −∆>t ∆−1
u ∆t)

−1 =M−1
t (In − op(1))−1 = M−1

t (In + op(1))

∆tM
−1
t ∆>t =Op(t1−3β/2 log

−3α+3
2 (t))Op(tβ−1 logα(t))Op(t1−3β/2 log

−3α+3
2 (t))

=Op(t1−2β log−2α+3(t)) = op(1)

(∆u −∆tM
−1
t ∆>t )−1 =∆−1

u (Id + op(1)).

Notice by Lemma 18, K̂t −K = Op(t−
β
2 log

−α+1
2 (t)). Then[

xt
K̂txt + ξt

]>( t−1∑
i=0

[
xi
ui

] [
xi
ui

]>)−1 [
xt

K̂txt + ξt

]
tβ logα(t)

= x>t (Mt −∆>t ∆−1
u ∆t)

−1xt + 2x>t (Mt −∆>t ∆−1
u ∆t)

−1∆>t ∆−1
u (K̂txt + ξt −Kxt)

+ (K̂txt + ξt −Kxt)>(∆u −∆tM
−1
t ∆>t )−1(K̂txt + ξt −Kxt)

= x>t M
−1
t (In + op(1))xt + 2x>t M

−1
t (In + op(1))Op(t1−3β/2 log

−3α+3
2 (t))∆−1

u (Op(t−
β
2 log

−α+1
2 (t))xt + ξt)

+ (Op(t−
β
2 log

−α+1
2 (t))xt + ξt)

>∆−1
u (Id + op(1))(Op(t−

β
2 log

−α+1
2 (t))xt + ξt).

Quadratic terms of xt Let us first consider all those quadratic terms of xt:

• x>t M
−1
t (In + op(1))xt.

•

2x>t M
−1
t (In + op(1))Op(t1−3β/2 log

−3α+3
2 (t))∆−1

u Op(t−
β
2 log

−α+1
2 (t))xt

= 2x>t M
−1
t (In + op(1))Op(t1−2β log

−4α+4
2 (t))xt

= x>t M
−1
t op(1)xt.

•

x>t Op
(
t−

β
2 log

−α+1
2 (t)

)
∆−1
u (Id + op(1))Op

(
t−

β
2 log

−α+1
2 (t)

)
xt
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= x>t Op
(
t−β log−α+1(t)

)
xt

= x>t M
−1
t t1−β log−α(t)Op

(
t−β log−α+1(t)

)
xt (by Eq. 93)

= x>t M
−1
t Op

(
t1−2β log−2α+1(t)

)
xt

= x>t M
−1
t op(1)xt.

Thus the later two items are dominated by the first term, and the quadratic terms of
xt can be summarized by x>t M

−1
t (In + op(1))xt = x>t M

−1
t xt(1 + op(1)).

Quadratic terms of ξt That is already in a simple single item form, so we just keep it
as ξ>t ∆−1

u (Id + op(1))ξt = ξ>t ∆−1
u ξt(1 + op(1)).

Cross terms between xt and ξt Finally consider the cross terms of xt and ξt:

2x>t M
−1
t (In + op(1))Op(t1−3β/2 log

−3α+3
2 (t))∆−1

u ξt + 2Op(t−
β
2 log

−α+1
2 (t))x>t ∆−1

u (Id + op(1))ξt

= 2x>t Op(t−
β
2 log

−α+3
2 (t))ξt + 2x>t Op(t−

β
2 log

−α+1
2 (t))ξt (by Eq. 93)

= x>t Op(t−
β
2 log

−α+3
2 (t))ξt

= x>t op(t
β−1
2 log

α
2 (t))ξt (because β > 1/2 or β = 1/2 and α > 3/2)

= x>t M
−1/2
t op(1)∆−1/2

u ξt (by Eq. 93)

≤ op(1)‖x>t M−1/2
t ‖‖∆−1/2

u ξt‖
≤ op(1)

(
x>t M

−1
t xt + ξ>t ∆−1

u ξt

)
,

which is dominated by the quadratic part. To sum up, we have[
xt

K̂txt + ξt

]> [∑t−1
i=0 xix

>
i

∑t−1
i=1 xiu

>
i∑t−1

i=0 uix
>
i

∑t−1
i=1 uiu

>
i

]−1 [
xt

K̂txt + ξt

]
tβ logα(t)

= (x>t M
−1
t xt + ξ>t ∆−1

u ξt)(1 + op(1))

=

x>t logα(t)t−1+β

 ∞∑
p=0

Lp
(
σ2In + 1{β=1,α=0}τ

2BB>
)

(Lp)>

−1

xt + ξ>t
β

τ2
ξt

 (1 + op(1)).

In other words

tσ2

[
xt

K̂txt + ξt

]> [∑t−1
i=0 xix

>
i

∑t−1
i=1 xiu

>
i∑t−1

i=0 uix
>
i

∑t−1
i=1 uiu

>
i

]−1 [
xt

K̂txt + ξt

]

=

x>t
 ∞∑
p=0

Lp
(
In + 1{β=1,α=0}

τ2

σ2
BB>

)
(Lp)>

−1

xt +
βσ2

τ2
t1−β log−α(t) ‖ξt‖2

 (1 + op(1)).
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H.4 Lemmas in Appendix G.1

H.4.1 The proof of Lemma 33

Lemma (A slightly different version of Theorem C.2 in Dean et al. (2018)). Fixing δ ∈
(0, (n+d)ξ2

2 ], for every T , k, ν, and ξ such that {zt}Tt=0 satisfies the (k, ν, ξ)-BMSB and

T/k ≥ 10(n+ d)

ξ2
log

(
100(n+ d)

∑T
t=1 Tr(Eztz>t )

Tν2ξ2δ1+ 1
n+d

)
.

the estimate Θ̂T defined in Eq. 62 satisfies the following statistical rate

P

∥∥∥Θ̂T −Θ
∥∥∥

2
>

90σ

ξν

√√√√n+ d

T

(
1 + log

(
10(n+ d)

∑T
t=1 Tr(Eztz>t )

Tδ1+ 1
n+d ν2ξ

)) ≤ 3δ.

First let us review the main theorem in (Simchowitz et al., 2018). Lemma 33 is actually
a corollary of that. To capture the excitation behavior observed in the case of linear systems
we introduce a general martingale small-ball condition which quantifies the growth of the
covariates Xt for vectors (notice that this is different from Definition 32).

Definition 47 (BMSB condition 2). Given an {Ft}t≥1-adapted random process {Xt}t≥1

taking values in Rd, we say that it satisfies the (k,Γsb, ξ)-matrix block martingale small-ball
(BMSB) condition for Γsb � 0 if, for any w ∈ Sd−1 and j ≥ 0, 1

k

∑k
i=1 P(|〈w,Xj+i〉| ≥√

w>Γsbw|Fj) ≥ ξ a.s.

Theorem 48 (Theorem 2.4 in Simchowitz et al. (2018)). Fix δ ∈ (0, 1), T ∈ N and
0 ≺ Γsb � Γ̄. Then if {zt, xt+1}t≥0 ∈ (Rd+n × Rn)T is a random sequence such that (a)
xt+1 = Θzt + εt, where εt|Ft is σ2-sub-Gaussian and mean zero, (b) z0, . . . , zT−1 satisfies
the (k,Γsb, ξ)-small ball condition, and (c) such that P[

∑T−1
t=0 ztz

>
t � T Γ̄] ≤ δ. Then if

T ≥ 10k

ξ2

(
log

(
1

δ

)
+ 2(d+ n) log(10/ξ) + log det(Γ̄Γ−1

sb )

)
,

we have Θ̂T defined in Eq. 62 satisfies the following statistical rate

P

∥∥∥Θ̂T −Θ
∥∥∥ > 90σ

ξ

√
n+ (n+ d) log 10

ξ + log det Γ̄Γ−1
sb + log

(
1
δ

)
Tσmin(Γsb)

 ≤ 3δ.

Now the main task is to translate this theorem to Lemma 33. First we need to derive
the (a), (b), (c) three conditions from the assumptions in Lemma 33. Let us check the
conditions one by one.

Condition (a) Theorem 48 states the model should be in the form of xt = Θzt + εt,
where εt|Ft is σ2-sub-Gaussian and mean zero. It is obvious that the system noise satisfy
the sub-Gaussian and mean zero condition.
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Condition (b) z1, . . . , zT satisfies the (k,Γsb, ξ)-small ball condition.

Based on Definition 47, if we pick Γsb = ν2In+d, then the condition becomes

1

k

k∑
i=1

P(|〈w, zj+i〉| ≥
√
w>Γsbw = ν|Fj) ≥ ξ a.s. (94)

Since we already assume {zt}Tt=0 satisfies the (k, ν, ξ)-BMSB (see Definition 32) in Lemma 33,
Eq. 94 holds by definition.

Condition (c) We need to show that P[
∑T−1

t=0 ztz
>
t � T Γ̄] ≤ δ for some choice Γ̄. Let us

take

Γ̄ =
(n+ d)E{∑T−1

t=0 ztz
>
t }

Tδ
� 0. (95)

First we need to show that Γ̄ =
(n+d)E{

∑T−1
t=0 ztz>t }

Tδ � Γsb, and we can prove this from
Eq. 94:

For any 0 ≤ j ≤ T − k,
1

k

k∑
i=1

P(|〈w, zj+i〉| ≥ ν|Fj) ≥ ξ.

From a high level perspective, this equation allows us to have a lower bound on the minimum
eigenvalue of E{∑T−1

t=0 ztz
>
t }, and then we can choose a δ small enough so that Γ̄ � Γsb =

ν2In+d. By Markov inequality, for any 0 ≤ j ≤ T − k,

1
k

∑k
i=1 E|〈w, zj+i〉|

ν
≥ ξ.

This is equivalent to (
1

k

k∑
i=1

E|〈w, zj+i〉|
)2

≥ ξ2ν2.

By Cauchy–Schwarz inequality:

1

k

k∑
i=1

E|〈w, zj+i〉|2 ≥
1

k

k∑
i=1

E2|〈w, zj+i〉| ≥
(

1

k

k∑
i=1

E|〈w, zj+i〉|
)2

≥ ξ2ν2.

Thus 1
k

∑k
i=1 E|〈w, zjk+i〉|2 ≥ ξ2ν2. By summing up this inequality with j = 0, 1, · · · , bT−1

k c−
1, we have

1

bT−1
k c

bT−1
k
c−1∑

j=0

1

k

(
k∑
i=1

E|〈w, zjk+i〉|2
)
≥ ξ2ν2.

We can clean up the summation by merging
∑

j and
∑

i into one summation:

1

kbT−1
k c

kbT−1
k
c∑

t=1

E|〈w, zt〉|2 ≥ ξ2ν2.
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Recall that w is any vector in Sd−1, so the above equation can be translated into

ξ2ν2 ≤ min
w∈Sd−1

1

kbT−1
k c

kbT−1
k
c∑

t=1

E|〈w, zt〉|2

= E

 1

kbT−1
k c

kbT−1
k
c∑

t=1

ztz
T
t

w

= min
w∈Sd−1

wTE

 1

kbT−1
k c

kbT−1
k
c∑

t=1

ztz
T
t

w

≤ σmin

(
E

(
T−1∑
t=0

ztz
>
t

)
/(kbT − 1

k
c)
)
.

This means

λmin

(
Γ̄
)

=λmin

(n+ d)E
(∑T−1

t=0 ztz
>
t

)
Tδ


=λmin

(n+ d)E
(∑T−1

t=0 ztz
>
t /(kbT−1

k c)
)

Tδ
(kbT − 1

k
c)


≥(n+ d)ξ2ν2

Tδ
kbT − 1

k
c

≥(n+ d)ξ2ν2

Tδ

T

2
(achieved when T is even and k = T/2)

=
(n+ d)ξ2ν2

2δ
.

We wish to have (n+d)ξ2ν2

2δ ≥ ν2 so that λmin

(
Γ̄
)
≥ ν2 and Γ̄ � Γsb = ν2In+d. One sufficient

condition is

δ ≤ (n+ d)ξ2

2
.

Next we need to show P[
∑T−1

t=0 ztz
>
t � T Γ̄] ≤ δ. For simplicity denote ZT =

∑T−1
t=0 ztz

>
t ,

which is a positive semi-definite matrix.

P[

T−1∑
t=0

ztz
>
t � T Γ̄] =P[ZT �

E{ZT }(n+ d)

δ
] (by Eq. 95)

=P[E−1/2 (ZT )ZTE−1/2 (ZT ) �
In+d(n+ d)

δ
]

=P[λmax{E−1/2 (ZT )ZTE−1/2 (ZT )} ≥ (n+ d)

δ
]

≤P[Tr{E−1/2 (ZT )ZTE−1/2 (ZT )} ≥ (n+ d)

δ
]
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≤E[Tr{E−1/2 (ZT )ZTE−1/2 (ZT )}]δ/(n+ d) (by Markov inequality)

= Tr[E{E−1/2 (ZT )ZTE−1/2 (ZT )}]δ/(n+ d)

= Tr[In+d]δ/(n+ d)

=δ.

Result Now that we verified all conditions of Theorem 48, we can now translate the
conclusion of Theorem 48 into our setting. Theorem 48 requires

T ≥10k

ξ2

(
log

(
1

δ

)
+ 2(d+ n) log(10/ξ) + log det(Γ̄Γ−1

sb )

)
.

First by our choice of Γsb and Γ̄ we have

log det(Γ̄Γ−1
sb ) = log det

(
(n+ d)E{∑T−1

t=0 ztz
>
t }

Tδ
ν−2

)

= log

((
(n+ d)

Tδν2

)n+d

det

(
E{

T−1∑
t=0

ztz
>
t }
))

≤ log

((n+ d)

Tδν2

)n+d
(
T−1∑
t=0

Tr(Eztz>t )

)n+d


=(n+ d) log

(
(n+ d)

Tδν2

T−1∑
t=0

Tr(Eztz>t )

)
.

(96)

With this in hand, we know that

10k

ξ2

(
log

(
1

δ

)
+ 2(d+ n) log(10/ξ) + log det(Γ̄Γ−1

sb )

)
≤ 10k

ξ2

(
log

(
1

δ

)
+ 2(d+ n) log(10/ξ) + (n+ d) log

(
(n+ d)

Tδν2

T−1∑
t=0

Tr(Eztz>t )

))

=
10(n+ d)k

ξ2

(
log
(
δ−

1
n+d

)
+ log(100/ξ2) + log

(
(n+ d)

Tδν2

T−1∑
t=0

Tr(Eztz>t )

))

=
10(n+ d)k

ξ2
log

(
100(n+ d)

∑T−1
t=0 Tr(Eztz>t )

Tν2ξ2δ1+ 1
n+d

)
.

Thus one sufficient condition for the requirement in Theorem 48 is

T/k ≥ 10(n+ d)

ξ2
log

(
100(n+ d)

∑T−1
t=0 Tr(Eztz>t )

Tν2ξ2δ1+ 1
n+d

)
.

Finally we need to translate the conclusion of Theorem 48:

P

∥∥∥Θ̂T −Θ
∥∥∥ > 90σ

ξ

√
n+ (n+ d) log 10

ξ + log det Γ̄Γ−1
sb + log

(
1
δ

)
Tσmin(Γsb)

 ≤ 3δ.
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By Eq. 96 and Γsb = ν2In+d we have

P

∥∥∥Θ̂T −Θ
∥∥∥ > 90σ

ξ

√√√√n+ (n+ d) log 10
ξ + (n+ d) log

(
(n+d)
Tδν2

∑T−1
t=0 Tr(Eztz>t )

)
+ log

(
1
δ

)
Tν2

 ≤ 3δ.

Notice that

n+ (n+ d) log
10

ξ
+ (n+ d) log

(
(n+ d)

Tδν2

T−1∑
t=0

Tr(Eztz>t )

)
+ log

(
1

δ

)

≤ (n+ d)

(
1 + log

10

ξ
+ log

(
(n+ d)

Tδν2

T−1∑
t=0

Tr(Eztz>t )

)
+ log δ−

1
n+d

)

= (n+ d)

(
1 + log

(
10(n+ d)

∑T−1
t=0 Tr(Eztz>t )

Tδ1+ 1
n+d ν2ξ

))
.

Combining this with the previous inequality we have

P

∥∥∥Θ̂T −Θ
∥∥∥ > 90σ

ξν

√√√√n+ d

T

(
1 + log

(
10(n+ d)

∑T−1
t=0 Tr(Eztz>t )

Tδ1+ 1
n+d ν2ξ

)) ≤ 3δ.

H.4.2 The proof of Lemma 34

Lemma (Similar to Lemma C.3 in Dean et al. (2018)). If we assume Assumption 1, then
apply Algorithm 1, the process {zt}Tt≥0 satisfies the (k, ν, ξ)-BMSB condition for

(k, ν, ξ) =

(
1,

√
σ2
η,T min

(
1

2
,

σ2

2σ2C2
K + τ2

)
,

3

10

)
,

where σ2
η,T = τ2T β−1 logα(T ).

Proof
By Definition 32 the statement means, for any v ∈ Sn+d and 0 ≤ t ≤ T − 1:

P

(
|〈v, zt+1〉| ≥

√
σ2
η,T min

(
1

2
,

σ2

2σ2C2
K + τ2

)∣∣∣∣∣Ft
)
≥ 3/10.

Recall that
xt+1 = Axt +But + εt.

ut+1 = K̂t+1xt+1 + ηt+1 = K̂t+1(Axt +But + εt) + ηt+1.

Denote the filtration Ft = σ(x0, η0, ε0 . . . , ηt−1, εt−1, ηt) = σ(x0, u0, x1, · · · , xt, ut). It is
clear that the process {zt}t≥0 is {Ft}t≥0-adapted.

Recall that K̂t+1 is decided by Ât, B̂t in Algorithm 1, where our estimator Ât, B̂t is
designed to be only dependent on x0, u0, x1, · · · , ut−1, xt, which means

K̂t+1 ∈ Ft = σ(x0, u0, x1, · · · , xt, ut).
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For all t ≥ 1, denote

ξt+1 := K̂t+1(Axt +But) ∈ Ft.

Now we are ready to prove Lemma 34. We have[
xt+1

ut+1

]
=

[
Axt +But

ξt+1

]
+

[
In 0

K̂t+1 Id

] [
εt
ηt+1

]
.

Given Ft,
[
xt+1

ut+1

]
only has randomness in

[
In 0

K̂t+1 Id

] [
εt
ηt+1

]
, where

[
In 0

K̂t+1 Id

]
is fixed

given Ft, and

[
εt
ηt+1

]
follows N

(
0,

[
σ2In 0

0 σ2
η,t+1Id

])
. That implies

[
xt+1

ut+1

] ∣∣∣∣∣Ft ∼N
([

Axt +But
ξt+1

]
,

[
σ2In σ2K̂>t+1

σ2K̂t+1 σ2K̂t+1K̂
>
t+1 + σ2

η,t+1Id

])
.

Denote µz,t+1 and Σz,t+1 as the mean and covariance of this multivariate normal dis-

tribution. Recall that we denoted zt+1 =

[
xt+1

ut+1

]
. Let v ∈ Sn+d and then 〈v, zt+1〉

∣∣∣∣∣Ft ∼
N (〈v, µz,t+1〉, v>Σz,t+1v). Therefore,

P

(
|〈v, zt+1〉| ≥

√
σmin(Σz,t+1)

∣∣∣∣∣Ft
)
≥ P

(
|〈v, zt+1〉| ≥

√
v>Σz,t+1v

∣∣∣∣∣Ft
)

≥ P
(
|〈v, zt+1 − µz,t+1〉| ≥

√
v>Σz,t+1v

∣∣∣∣∣Ft
)

≥ 3/10.

(97)

Here we used the fact that for any µ, σ2 ∈ R and ω ∼ N (0, σ2), we have:

P(|µ+ ω| ≥ σ) ≥ P(|ω| ≥ σ) ≥ 3/10.

Recall in Algorithm 1, we force all our controllers K̂t to have norm ‖K̂t‖ ≤ CK , where
CK is a constant. Then, by a simple argument based on a Schur complement (Lemma 49):

σmin(Σz,t+1) ≥σ2
η,t min

1

2
,

σ2

2
∥∥∥K̂t+1σ2K̂>t+1

∥∥∥
2

+ σ2
η,t


≥σ2

η,t min

(
1

2
,

σ2

2σ2C2
K + σ2

η,t

)

≥σ2
η,T min

(
1

2
,

σ2

2σ2C2
K + τ2

)
.
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The desired conclusion directly follows:

P

(
|〈v, zt+1〉| ≥

√
σ2
η,T min

(
1

2
,

σ2

2σ2C2
K + τ2

)∣∣∣∣∣Ft
)

≥ P
(
|〈v, zt+1〉| ≥

√
σmin(Σz,t+1)

∣∣∣∣∣Ft
)

≥ 3/10 by Eq. 97.

Schur complement

Lemma 49 (Lemma F.1 in Mania et al. (2019)). Let Σ be a n× n positive-definite matrix
and let K be a real d× n matrix. Then, for any σu ∈ R we have that

σmin

([
Σ ΣK>

KΣ KΣK> + σ2
uI

])
≥ σ2

u min

(
1

2
,

σmin(Σ)

2 ‖KΣK>‖2 + σ2
u

)
.

H.4.3 The proof of Lemma 35

Lemma (Similar to Lemma C.4 in Dean et al. (2018)). If we assume Assumption 1, then
apply Algorithm 1, the process {zt}Tt≥0 satisfies

T−1∑
t=0

Tr
(
Eztz>t

)
= O(T log2(T )).

Proof
Now, note that

Tr
(
Eztz>t

)
= E

(
Tr ztz

>
t

)
= E‖zt‖2 = E

(
‖xt‖2 + ‖ut‖2

)
.

Since ‖ut‖ = ‖K̂txt + ηt‖ ≤ ‖K̂t‖‖xt‖+ ‖ηt‖ ≤ CK‖xt‖+ ‖ηt‖, we will show that if we can
bound ‖xt‖, then we can also get a bound for ‖ut‖ in the same order. Next we will focus
on deriving the bound for ‖xt‖.

Define Cx,t := Cx log(t). Since ρ(A+BK0) < 1, there exists some integer m that ‖(A+

BK0)m‖ < (ρ(A+BK0)+1
2 )m. Let us denote ρ := ρ(A+BK0)+1

2 < 1 just for this Lemma 35.
For each t > m+ 1, one of the following two statement must be true:

• ‖xt−i‖ > Cx,t−i, (i = 2, · · · ,m+ 1).

• ∃i ∈ {2, · · · ,m+ 1}, which satisfies ‖xt−i‖ ≤ Cx,t−i.

We can derive an upper bound for ‖xt‖ in both cases, and thus have an upper bound for
every ‖xt‖ by adding up those two bounds in two different cases.
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1. If ‖xt−i‖ > Cx,t−i, (i = 2, · · · ,m + 1), recall that if ‖xt‖ > Cx,t, then we assert
our controller in the next step to be probing noise: ut+1 = K0xt+1 + ηt+1. By
assumption we already had ‖xk‖ > Cx,k, for k = t −m − 1, t −m, · · · , t − 2. That
means we have a consecutive m steps of probing noise with uk = K0xk + ηk, for
k = t−m, t− (m− 1), · · · , t− 1. Now we have

xk+1 = (A+BK0)xk +Bηk + εk, for k = t−m, t− (m− 1), · · · , t− 1.

That is

xt = (A+BK0)mxt−m +
m−1∑
k=0

(A+BK0)k(Bηt−1−k + εt−1−k).

which implies

‖xt‖ ≤ ‖(A+BK0)m‖‖xt−m‖+
m−1∑
k=0

‖(A+BK0)k‖‖(Bηt−1−k + εt−1−k)‖. (98)

2. If ∃i ∈ {2, · · · ,m+1}, which satisfies ‖xt−i‖ ≤ Cx,t−i, (i = 2, · · · ,m+1), then consider
the following relationship

xt = Axt−1 +But−1 + εt−1

= (A+BK̂t−1)xt−1 +Bηt−1 + εt−1.

Therefore by our algorithm design that ‖K̂t‖ ≤ CK for any t

‖xt‖ ≤ ‖A+BK̂t−1‖‖xt−1‖+ ‖Bηt−1 + εt−1‖
≤ (‖A‖+ ‖B‖‖K̂t−1‖)‖xt−1‖+ ‖Bηt−1 + εt−1‖
≤ (‖A‖+ ‖B‖CK)‖xt−1‖+ ‖Bηt−1 + εt−1‖

≤ (‖A‖+ ‖B‖CK)i‖xt−i‖+

i−1∑
k=0

(‖A‖+ ‖B‖CK)k‖Bηt−1−k + εt−1−k‖

≤ max{1, (‖A‖+ ‖B‖CK)m}Cx,t +
m−1∑
k=0

(‖A‖+ ‖B‖CK)k‖Bηt−1−k + εt−1−k‖.

(99)

By adding up Eqs. 98 and 99, we have a bound that is applicable to both cases. Notice our
previous assumption that ‖(A + BK0)m‖ ≤ ρm, where ρ < 1, further take ‖(A + BK0)k‖,
and (‖A‖+ ‖B‖CK)k to be all bounded by a constant M ≥ 1 for k = 0, 1, · · · ,m, which is
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of order M = O(1) (because m = O(1)). By Eqs. 98 and 99

‖xt‖ ≤ ‖(A+BK0)m‖‖xt−m‖+
m−1∑
k=0

‖(A+BK0)k‖‖Bηt−1−k + εt−1−k‖

+ max{1, (‖A‖+ ‖B‖CK)m}Cx,t−i +

m−1∑
k=0

(‖A‖+ ‖B‖CK)k‖Bηt−k−1 + εt−k−1‖

≤ ρm‖xt−m‖+M

(
Cx,t−i + 2

m−1∑
k=0

‖Bηt−k−1 + εt−k−1‖
)

≤ ρm‖xt−m‖+M

(
Cx,t + 2

m−1∑
k=0

‖Bηt−k−1 + εt−k−1‖
)
.

(100)
Eq. 100 is very promising because it has a shrinking weight on ‖xt−m‖. Let us use a
simplified notation for the remainder:

Jt := M

(
Cx,t + 2

m−1∑
k=0

‖Bηt−k−1 + εt−k−1‖
)
.

In E[J2
t ] there are three types of components:

• M = O(1)

• Cx,t = Cx log(t)

• E(
∑m−1

k=0 ‖Bηt−k−1 + εt−k−1‖)2 = O(1).

Since

E[J2
t ] ≤M2 · 2(C2

x,t + 4E(

m−1∑
k=0

‖Bηt−k−1 + εt−k−1‖)2) = O(log2(t)), (101)

we can control E‖xt‖2 by

E‖xt‖2 ≤ E (ρm‖xt−m‖+ Jt)
2

= ρ2mE‖xt−m‖2 + EJ2
t + 2ρmE‖xt−m‖|Jt|

≤ ρ2mE‖xt−m‖2 + EJ2
t +

1− ρ2m

2
E‖xt−m‖2 +

2ρ2m

1− ρ2m
EJ2

t

=
1 + ρ2m

2
E‖xt−m‖2 +

1 + ρ2m

1− ρ2m
EJ2

t

(because 2ab ≤ a2 + b2 with a2 =
1− ρ2m

2
‖xt−m‖2 and b2 =

2ρ2m

1− ρ2m
J2
t ).

(102)
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By Eqs. 101 and 102,

E‖xt‖2 ≤
1 + ρ2m

2
E‖xt−m‖2 +O(log2(t))

≤ (
1 + ρ2m

2
)2E‖xt−2m‖2 +

1 + ρ2m

2
O(log2(t)) +O(log2(t))

≤ (
1 + ρ2m

2
)b

t
m
cE‖xt−mb t

m
c‖2 +

b t
m
c−1∑

i=0

(
1 + ρ2m

2
)iO(log2(t))

≤ E‖xt−mb t
m
c‖2 +O(log2(t))

(Recall that ρ < 1, and thus
1 + ρ2m

2
< 1).

(103)

Now it only remains to show that E‖xt−mb t
m
c‖2 is bounded by some constant. Notice

that

E‖xt‖2 ≤E
(

(‖A‖+ ‖B‖‖K̂t‖)‖xt−1‖+ ‖B‖‖ηt‖+ ‖εt‖
)2

≤3
(
(‖A‖+ ‖B‖CK)2E‖xt−1‖2 + ‖B‖2E‖ηt‖2 + ‖εt‖2

)
≤3
(
(‖A‖+ ‖B‖CK)2E‖xt−1‖2 + ‖B‖2τ2 + σ2

)
.

By iteratively applying this inequality down to E‖x0‖2, we know that for t ≤ m:

E‖xt‖2 = O(1).

Thus following from Eq. 103 we have

E‖xt‖2 = O(log2(t)).

Since we already controlled the expectation of ‖xt‖2, it is straightforward to control the
expectation of ‖ut‖2:

ut = K̂txt + ηt.

E‖ut‖2 ≤ E‖K̂txt + ηt‖2

≤ 2E(‖K̂t‖2‖xt‖2 + ‖ηt‖2)

≤ 2E(C2
K‖xt‖2 + ‖ηt‖2)

≤ O(log2(t)).

Thus,
E‖zt‖2 = E‖xt‖2 + E‖ut‖2 ≤ O(log2(t)) (104)

Then we have

E
T−1∑
t=0

‖xt‖2,E
T−1∑
t=0

‖ut‖2,E
T−1∑
t=0

‖zt‖2 ≤ O(T log2(T )).
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H.5 Lemma in Appendix G.3

H.5.1 The proof of Lemma 43

Lemma. Suppose we have a constant square matrix M with spectral radius ρ(M) < 1, and
a sequence of uniformly bounded random variables {δt}∞t=0, satisfying ‖δt‖ a.s.−→ 0. Denote

the constant ρM := 2+ρ(M)
3 < 1. Then we have, for any t, q ∈ N, t > q:

‖(M + δt−1) · · · (M + δq)‖ = O(ρt−qM ) a.s.

And as a direct corollary
‖M t−q‖ = O(ρt−qM ).

Proof
Our assumption of stability only says ρ(M) < 1, but our analysis prefers similar expo-

nential decay with regard to spectral norm. First, we need a conversion between spectral
radius and spectral norm. Define

τ(M,ρ) := sup
{
‖Mk‖ρ−k : k ≥ 0

}
.

For simplicity, let us denote

τ(M) := τ

(
M,

1 + ρ(M)

2

)
.

and with Gelfand’s Formula

ρ(M) = lim
k→∞

∥∥∥Mk
∥∥∥ 1
k
.

Thus τ(M) is finite because 1+ρ(M)
2 > ρ(M). Since {δt}∞t=0 is uniformly bounded, we

can assume an upper bound Uδ for ‖M + δi‖. Let us now consider the spectral norm of
(M + δt−1) · · · (M + δq).

‖(M + δt−1) · · · (M + δq)‖ ≤
t−q∑
m=0

‖M t−q−m‖
∑

q≤k1<···<km≤t−1

m∏
j=1

‖δkj‖

≤
t−q∑
m=0

τ(M)

(
1 + ρ(M)

2

)t−q−m ∑
q≤k1<···<km≤t−1

m∏
j=1

‖δkj‖

=τ(M)

t−q∑
m=0

(
1 + ρ(M)

2

)t−q−m ∑
q≤k1<···<km≤t−1

m∏
j=1

‖δkj‖

=τ(M)

(
1 + ρ(M)

2
+ ‖δt−1‖

)
· · ·
(

1 + ρ(M)

2
+ ‖δq+1‖

)
.

Since ‖δt‖ → 0 a.s., for every ω in the sample space Ω, such that there exists some

T1(ω), whenever t > T1(ω), 1+ρ(M)
2 + ‖δt‖ < 2+ρ(M)

3 < 1, then

‖(M + δt−1) · · · (M + δq)‖ ≤τ(M)

(
1 + ρ(M)

2
+ ‖δt−1‖

)
· · ·
(

1 + ρ(M)

2
+ ‖δq+1‖

)
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≤τ(M)ρ
t−q−T1(ω)
M (

1 + ρ(M)

2
+ Uδ)

T1(ω).

Following Definition 14 Item 8:

‖(M + δt−1) · · · (M + δq)‖ = O(ρt−qM ) a.s.

Appendix I. Experiment Details

I.1 Experiment Setting

I.1.1 Experiment Setting on Stable System

We set A =

[
0.8 0.1
0 0.8

]
and B =

[
0
1

]
, with system noise σ = 1, injected noise baseline τ = 1,

Q = I2, R = 1 and initial state x0 = [0, 0]>. As for the algorithmic hyper-parameters, we
set the warning threshold for states xt at Cx = 1 (so that Cx,t = log(t)), the known stable
controller K0 = [0, 0], and the upper bound of the L2-norm for our controller K̂t at CK = 5.
Note that this is conservative by about a factor of 10, since the true optimal controller in
this system is K ≈

[
−0.10,−0.48

]
. Recall that the choice of these hyper-parameters does

not actually affect our theoretical coverage (as long as CK > ‖K‖) or regret guarantees,
but in practice their values prevent the system from incurring very large regret in the first
few time steps. Even for this, they are only needed because we do not assume we are given
an initial controller that is very close to K; in contrast, for instance, Dean et al. (2018)
started from a controller fitted with 100 samples of white noise actions. All stable system
results are based on 1,000 independent runs of Algorithm 1 for T = 10, 000 time steps.

I.1.2 Experiment Setting on Unstable System

The unstable system we simulate is highly unstable, and is largely the same as that in

Appendix H of Dean et al. (2018). We set A =

2 0 0
4 2 0
0 4 2

 and B = I3, with system noise

σ = 1, injected noise baseline τ = 1, Q = 10I3, R = I3 and initial state x0 = [0, 0, 0]>.
As for the hyper-parameters, we set the warning threshold for states xt at Cx = 1 (so that
Cx,t = log(t)), and we examined two different choices for the known stabilizing controller:

K0 = −

1.5 0 0
0 1.5 0
0 0 1.5

 and K0 = −

1.5 0 0
3.5 1.5 0
0 3.5 1.5

. The former choice incurs quite a

bit higher regret than the latter, and hence we refer to the former as the ‘bad’ stabilizing
controller and to the latter as the ‘good’ stabilizing controller. We set the upper bound of
the L2-norm for our controller K̂t at the level of CK = 1000. Our choice of K0 is different
from the starting point in Dean et al. (2018), where they started from a T = 250 burn in
period estimate, and did not report the regret in the first 250 steps. All unstable system
results are based on 1,000 independent runs of Algorithm 1 for T = 5, 000 time steps.
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I.2 Experiment on Unstable System

In contrast to the stable system simulation summarized in Section 4.1, in this section we
simulate the severely unstable system described in Appendix I.1.2. In this setting, the
specification of K0 is critical due to the costs incurred at the early time steps, an unavoidable
consequence of starting from limited information in a system that can rapidly spiral (nearly)
out of control.

I.2.1 Summary of results on unstable system

We begin with the analogue of Fig. 1 for the unstable system, given in Fig. I.1. The main
takeaways are the same as the discussion in Appendix 4.1.

I.2.2 Large Regret From Early Time Steps

For the ‘bad’ choice of stabilizing controller K0 = −

1.5 0 0
0 1.5 0
0 0 1.5

, we plot the log regret

in subplot (a) of Fig. I.2. We observe a rapidly increasing regret in the first roughly 200 time
steps, which dominates all the regret in the remaining steps. We offer a brief explanation
why the cost in the early time steps is very large despite assuming knowledge of a stabilizing

yet sub-optimal controller K0. Notice A + BK0 =

0.5 0 0
4 0.5 0
0 4 0.5

. Thus (A + BK0)2 =0.25 0 0
4 0.25 0
16 4 0.25

, (A + BK0)3 =

2−3 0 0
3 2−3 0
24 3 2−3

, (A + BK0)4 =

2−4 0 0
2 2−4 0
24 2 2−4

,

(A+BK0)5 =

2−5 0 0
1.25 2−5 0
20 1.25 2−5

, (A+BK0)6 =

2−6 0 0
0.75 2−6 0
15 0.75 2−6

. So although we have

a controlled system with maximum eigenvalue 0.5, the power of (A + BK0)k can still be
very large in the bottom left corner for k = 2, 3, 4, 5, 6. Because of this, the randomness in
the states is enlarged and propagated to several future steps. It turns out that, at the first
200 steps we used this high cost safety policy K0 a lot as we do not have a good estimate
of optimal controller K, and that is the real reason for this high burn-in period cost. As we
will see later, if we change the stabilizing controller K0 to be closer to the optimal K, the
regret will be much smaller.

I.2.3 Comparison with Thompson Sampling

For comparison, we implement a straightforward version of Thompson sampling as follows.
Denote Θ := [A,B]. We use a prior of

vec[Θprior] ∼ N (vec[Θ], In(n+d)).
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Figure I.1: Summary of 1000 independent experiments applying Algorithm 1 with β = 0.5,

α = 2, Cx = 1, CK = 5, and K0 = −

1.5 0 0
3.5 1.5 0
0 3.5 1.5

 to the unstable system described

in Appendix I.1.2. (a) Difference between the regret of Algorithm 1 using stepwise and
logarithmic updates. (b) The ratio of the empirical regret and our parametric or observable
expressions for the regret. (c) The average Frobenius norm of various estimation errors
considered in this paper, with slopes fitted on a log-log scale so that the estimation error
is Õ(tslope). The effect of α was removed from the slopes of K̂t −K and [Ât − A, B̂t − B]
by dividing the error by logα/2(t). (d) Coverage of our 95% confidence regions for [A,B],
K, and E[xt+1 | {xi, ui}ti=0] = Axt + But. (e) Coverage of our 95% prediction region for
xt+1 | {xi, ui}ti=0, along with coverage of the naive prediction region given in Eq. 17.

Using the Bayesian updating equations and denoting the least-squares estimate of Θ by
Θ̂t = [Ât, B̂t], the posterior at time t is given by

vec[ΘTS
t ] ∼ N

(
vec

(Θ + Θ̂t

t−1∑
i=0

[
xi
ui

] [
xi
ui

]>)(
In+d +

t−1∑
i=0

[
xi
ui

] [
xi
ui

]>)−1
 ,

(
In+d +

t−1∑
i=0

[
xi
ui

] [
xi
ui

]>)−1

⊗ In
)
.

At each step, we draw a sample ΘTS
t from this posterior and use it as the input to the

DARE for calculating K̂t. Since a system is stabilizable if rank([A − λI,B]) = n for any
eigenvalue λ of A (Hautus, 1970), the Gaussian posterior puts probability 1 on stabilizable
Θ = [A,B] and hence defines a unique solution to the DARE with probability 1 as well.

We report the Thompson sampling regret in subplot (b) of Fig. I.2, and see that it also
suffers from rapidly increasing regret at early time points.f

I.2.4 Improved Regret When Using ‘Good’ K0

When we switch from the ‘bad’ stabilizing controller to the ‘good’ one specified in Ap-

pendix I.1.2 as K0 = −

1.5 0 0
3.5 1.5 0
0 3.5 1.5

, we get that A + BK0 =

0.5 0 0
0.5 0.5 0
0 0.5 0.5

, which

is a much better starting point than the previous

0.5 0 0
4 0.5 0
0 4 0.5

, and the regret in this

setting is indeed much better (see subplot (c) of Fig. I.2) and resembles that of the stable
system described in Appendix I.1.1.
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Figure I.2: Regret on the log scale based on 1000 independent experiments on the unstable

system for β = 0.5 and α = 0. (a): Bad safety controller K0 = −

1.5 0 0
0 1.5 0
0 0 1.5

; (b):

Thompson Sampling; (c): Good safety controller K0 = −

1.5 0 0
3.5 1.5 0
0 3.5 1.5

.

I.3 Choices of β other than 0.5

Our simulations consider choices of β beyond 0.5 and even beyond those covered by our
theory. In particular, we consider β = 0.1, 0.3, 0.5, 0.7, 0.9 and observe promising evidence
that some of our asymptotic coverage results may generalize to the setting of β < 1/2.

I.3.1 Regret

According to Theorem 4 the dominating term for regret should be T β logα(T ) Tr((B>PB+

R) τ
2

β ) for any β ∈ [1/2, 1) and max{β, α − 1} > 1/2, and that indeed matches with our
experimental results (see Fig. I.3). The asymptotic regret expression from Theorem 4 is
represented as the black solid curve, which converges to the empirical regret for β > 0.5,
but not β < 0.5.

I.3.2 Confidence region coverage

Fig. I.4 shows that the finite sample coverage of our confidence regions and prediction region
closely matches the asymptotic theory from Corollary 11, Corollary 12 and Corollary 13 for
any choice among β = 0.1, 0.3, 0.5, 0.7, 0.9, with the exception of confidence regions for K,
which seem to only work for the β ≥ 0.5 covered by our theory.

I.4 Algorithm design

We now investigate how the details of Algorithm 1 (the stabilizing controller K0 and the
thresholds on xt and ‖K̂t‖) impact the regret.

The threshold Cx,t controls extreme tail behavior Although we only trigger the
threshold Cx,t rarely, without it we can see some extreme behavior with low probability. In
particular, when this threshold constraint is removed, we occasionally observe very large
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(a) Stable System
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(b) Unstable System
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Figure I.3: Regret on the log scale based on 1000 independent experiments for β =
0.1, 0.3, 0.5, 0.7, 0.9 and α = 0. (a): stable system; (b): unstable system.

regret in early time steps due to the poor estimate K̂t, which causes instability of the system
(see Fig. I.5 and compare it to the purple line and shaded region in Fig. I.6). The mean
value is even higher than the 0.95 quantile curve because of several extremely large regrets
induced by the unstable closed-loop system. And compared to when Cx,t is used in Fig. I.6,
the 0.95 quantile when Cx,t is not used is considerably higher, although its median is quite
similar to the mean when Cx,t is used.

Stepwise updating improves regret over logarithmic updating As our theory pro-
vides guarantees for Algorithm 1 with both stepwise and logarithmic updating, we run
experiments to compare the regret of these two choices. Figs. 1c and I.1c show the dif-
ference in regret between Algorithm 1 and the same algorithm but that only updates its
estimates of the system parameters logarithmically often, i.e., at times t = 1, 2, 4, 8, . . . On
average, we see a steady logarithmic increase in regret from switching from stepwise updates
to logarithmic frequency.

A stabilizing controller K0 closer to K improves performance Although K0 is a
stabilizing controller by assumption, bad choices of K0 can still make (A+BK0)k large for
some finite k (see Appendix I.2.2 for a concrete example). Thus, unsurprisingly, choosing K0

to be as near as possible to the optimal controller K produces smaller regret, as evidenced
by Fig. I.2.
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(a) Stable System
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(b) Unstable System
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Figure I.4: Coverage on the log scale based on 1000 independent experiments for β =
0.1, 0.3, 0.5, 0.7, 0.9 and α = 0. (a): stable system; (b): unstable system.
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Figure I.5: Regret on the log scale with no Cx,t threshold on ‖xt‖ based on 1000 independent
experiments on stable system for β = 0.1, 0.3, 0.5, 0.7, 0.9 with CK = 5 and α = 0.

Regret is robust to conservative choices of CK To check the sensitivity of the choice
of CK = 5 in the stable system, we also tried a looser bound CK = 1000. We found that the
norm of K̂t never surpassed the CK = 1000 bound. This larger CK made little difference
for settings covered by our theory (β ≥ 0.5), and surprisingly seems to actually improve the
regret for smaller β (see Fig. I.6).

106



Exact Asymptotics for Linear Quadratic Adaptive Control

101 103101

102

103

104 β = 0.1

101 103101

102

103

104 β = 0.3

101 103101

102

103

104 β = 0.5

CK = 5 mean

CK = 1000 mean

CK = 5 quantile (0.05 to 0.95)

CK = 1000 quantile (0.05 to 0.95)

101 103101

102

103

104 β = 0.7

101 103101

102

103

104 β = 0.9

Time

R
eg

re
t

(0
.9

5
qu

an
ti

le
)

Figure I.6: Regret on the log scale based on 1000 independent experiments on stable system
for β = 0.1, 0.3, 0.5, 0.7, 0.9 with α = 0 comparing CK = 5 and CK = 1000.
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