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Abstract

Bayesian neural networks attempt to combine the strong predictive performance of neural
networks with formal quantification of uncertainty associated with the predictive output
in the Bayesian framework. However, it remains unclear how to endow the parameters
of the network with a prior distribution that is meaningful when lifted into the output
space of the network. A possible solution is proposed that enables the user to posit an
appropriate Gaussian process covariance function for the task at hand. Our approach
constructs a prior distribution for the parameters of the network, called a ridgelet prior, that
approximates the posited Gaussian process in the output space of the network. In contrast
to existing work on the connection between neural networks and Gaussian processes, our
analysis is non-asymptotic, with finite sample-size error bounds provided. This establishes
the universality property that a Bayesian neural network can approximate any Gaussian
process whose covariance function is sufficiently regular. Our experimental assessment is
limited to a proof-of-concept, where we demonstrate that the ridgelet prior can out-perform
an unstructured prior on regression problems for which a suitable Gaussian process prior
can be provided.

Keywords: Bayesian neural networks, Gaussian processes, prior selection, ridgelet
transform, statistical learning theory

1. Introduction

Neural networks are beginning to be adopted in a range of sensitive application areas such
as healthcare (Topol, 2019), social care (Serrano and Bajo, 2019), and the justice system
(Tortora et al., 2020), where the accuracy and reliability of their predictive output demands
careful assessment. This problem lends itself naturally to the Bayesian paradigm and there
has been a resurgence in interest in Bayesian neural networks (BNNs), originally introduced

c©2021 Takuo Matsubara, Chris J. Oates and François-Xavier Briol.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/20-1300.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/20-1300.html


Matsubara, Oates, and Briol

and studied in (Buntine and Weigend, 1991; Mackay, 1992; Neal, 1995). BNNs use the
language of probability to express uncertainty regarding the “true” value of the parameters
in the neural network, initially by assigning a prior distribution over the space of possible
parameter configurations and then updating this distribution on the basis of a training
dataset. The resulting posterior distribution over the parameter space implies an associated
predictive distribution for the output of the neural network, assigning probabilities to each
of the possible values that could be taken by the output of the network. This predictive
distribution carries the formal semantics of the Bayesian framework and can be used to
describe epistemic uncertainty associated with the phenomena being modelled.

Attached to any probabilistic quantification of uncertainty are semantics, which describe
how probabilities should be interpreted (e.g. are these probabilities epistemic or aleatoric;
whose belief is being quantified; what assumptions are premised?). As for any Bayesian
model, the semantics of the posterior predictive distribution are largely inherited from the
semantics of the prior distribution, which is typically a representation of a user’s subjective
belief about the unknown “true” values of parameters in the model. This represents a
challenge for BNNs, as a user cannot easily specify their prior belief at the level of the
parameters of the network in general settings where the influence of each parameter on
the network’s output can be difficult to understand. Furthermore, the total number of
parameters can go from a few dozens to several million or more, rendering careful selection
of priors for each parameter impractical. This has lead some researchers to propose ad hoc
choices for the prior distribution, which will be reviewed in Section 2 (see also Nalisnick,
2018). Such ad hoc choices of prior appear to severely limit interpretability of the semantics
of the BNN. It has also been reported that such priors can have negative consequences for
the predictive performance of BNNs (Yao et al., 2019).

The development of interpretable prior distributions for BNNs is an active area of
research that, if adequately solved, has the potential to substantially advance methodology
for neural networks. Potential benefits include:

• Fewer Data Required: BNNs are “data hungry” models; their large number of
parameters means that a large number of data are required for the posterior to
concentrate on a suitable configuration of parameter values. The inclusion of domain
knowledge in the prior distribution could be helpful in reducing the effective degrees
of freedom in the parameter space, mitigating the requirement for a large training
dataset.

• Faster Computation: The use of an ad hoc prior distribution can lead to a posterior
distribution that is highly multi-modal (Pourzanjani et al., 2017), creating challenges
for computation (e.g. using variational inference or Markov chain Monte Carlo;
MCMC). The inclusion of domain knowledge could be expected to counteract (to some
extent) the multi-modality issue by breaking some of the symmetries present in the
parametrisation of the network.

• Lower Generalisation Error: An important issue with BNNs is that their out-of-
sample performance can be poor when an ad hoc prior is used. These issues have lead
several authors to question the usefulness of the BNNs; see Mitros and Namee (2019)
and Wenzel et al. (2020). Model predictions are strongly driven by the prior and we
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therefore expect inclusion of domain knowledge to be an important factor in improving
the generalisation performance of BNNs.

In this paper we do not claim to provide a solution to the problem of prior selection that
enjoys all the benefits just discussed. Such an endeavour would require very extensive (and
application-specific) empirical investigation, which is not our focus in this work. Rather, this
paper proposes and studies a novel approach to prior specification that operates at the level
of the output of the neural network and, in doing so, provides a route for expert knowledge
on the phenomenon being modelled to be probabilistically encoded. The construction that
we present is stylised to admit a detailed theoretical analysis and therefore the empirical
results in this paper are limited to a proof-of-concept. In subsequent work we will discuss
generalisations of the construction that may be more amenable to practical applications, for
example by reducing the number of hidden units that may be required.

Our analysis can be viewed in the context of a recent line of research which focuses on
the predictive distribution as a function of the prior distribution on network parameters
(Flam-Shepherd et al., 2017; Hafner et al., 2020; Pearce et al., 2020; Sun et al., 2019). These
papers propose to reduce the problem of prior selection for BNNs to the somewhat easier
problem of prior selection for Gaussian processes (GPs). The approach studied in these
papers, and also adopted in the present paper, can be summarised as follows: (i) Elicit a GP
model that encodes domain knowledge for the problem at hand, (ii) Select a prior for the
parameters of the BNN such that the output of the BNN in some sense “closely approximates”
the GP. This high-level approach is appealing since it provides a direct connection between
the established literature on covariance modelling for GPs (Duvenaud, 2014; Rasmussen
and Williams, 2006; Stein, 1999) and the literature on uncertainty quantification using a
BNN. For instance, existing covariance models can be used to encode a priori assumptions
of amplitude, smoothness, periodicity and so on as required. Moreover, the number of
parameters required to elicit a GP (i.e. the parameters of the mean and covariance functions)
is typically much smaller than the number of parameters in a BNN.

Existing work on this topic falls into two categories. In the first, the prior is selected
in order to minimise a variational objective between the BNN and the target GP (Flam-
Shepherd et al., 2017; Hafner et al., 2020; Sun et al., 2019). Although some of the more recent
approaches have demonstrated promising empirical results, all lack theoretical guarantees.
In addition, these approaches often constrain the user to use a particular algorithm for
posterior approximation (such as variational inference), or require the need to see some
of the training data in order to construct the prior model. The second approach consists
of carefully adapting the architecture of the BNN to ensure convergence to the GP via a
central limit theorem argument (Pearce et al., 2020). This approach is particularly efficient,
but requires deriving a new BNN architecture for every GP covariance function and in this
sense may be considered impractical.

In this paper we propose the ridgelet prior, a novel method to construct interpretable
prior distributions for BNNs. It follows the previous two-stage approach, but remedies
several issues with existing approaches:

• Universal Approximation: The ridgelet prior can be used for a BNN to approximate
any GP of interest (provided generic regularity conditions are satisfied) in the prior
predictive without the need to modify the architecture of the network.
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• Finite Sample-Size Error Bounds: Approximation error bounds are obtained
which are valid for a finite-dimensional parametrisation of the network, as opposed to
relying on asymptotic results such as a central limit theorem.

• Compatibility: The prior can be used within most existing algorithms for posterior
approximation, such as variational inference or MCMC.

• No Optimisation Required: The ridgelet prior does not require access to any part
of the dataset in its construction and is straight-forward to implement (e.g. it does
not require any numerical optimisation routine).

To construct the ridgelet prior, we build on existing analysis of the ridgelet transform
(Candès, 1998; Murata, 1996; Sonoda and Murata, 2017), which was used to study the
consistency of (non-Bayesian) neural networks. In particular, we derive a novel result for
numerical approximation using a finite-bandwidth version of the ridgelet transform, presented
in Theorem 1, that may be of independent interest. The ridgelet prior is defined for neural
networks with L ě 1 hidden layers but our theoretical analysis focuses on the “shallow” case
of L “ 1 hidden layer, which is nevertheless a sufficiently rich setting for our consistency
results to hold.

The remainder of the paper is structured as follows: Section 2 reviews common prior
choices for BNNs and known connections between BNNs and GPs. Section 3 presents the
ridgelet prior in full detail. Our theoretical guarantees for the ridgelet prior are outlined
in Section 4. A proof-of-concept empirical assessment is contained Section 6. Section 7
summarises the main conclusions of this work. Code to reproduce all results in this paper
can be downloaded from: https://github.com/takuomatsubara/BNN-RidgeletPrior.

2. Background

To begin we briefly introduce notation for GPs and BNNs, discussing the issue of prior
specification for these models.

2.1 Prior Specification and Covariance Functions

This paper focusses on the problem of approximating a deterministic function f : Rd Ñ R
using a BNN. This problem is fundamental and underpins algorithms for regression and
classification. The Bayesian approach is to model f as a stochastic process (also called
“random function”) f : Rd ˆΘ Ñ R, where Θ is a measurable parameter space on which
a prior probability distribution is elicited, denoted P. The set Θ may be either finite or
infinite-dimensional. In either case, θ ÞÑ fp¨, θq is a random variable taking values in the
vector space of real-valued functions on Rd. The combination of a dataset of size n and
Bayes’ rule are used to constrain, in a statistical sense, this distribution on Θ, to produce a
posterior Pn that is absolutely continuous with respect to P. If the model is well-specified,
then there exists an element θ: P Θ such that fp¨, θ:q “ fp¨q and, if the Bayesian procedure
is consistent, Pn will converge (in an appropriate sense) to a point mass on θ: in the nÑ8

limit.
In practice, Bayesian inference requires that a suitable prior distribution P is elicited.

Stochastic processes are intuitively described by their moments, and these can be used
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by a domain expert to elicit P. The first two moments are given by the mean function
m : Rd Ñ R and the covariance function k : Rd ˆ Rd Ñ R, given pointwise by

mpxq :“

ż

Θ
fpx, θqdPpθq, kpx,x1q :“

ż

Θ
pfpx, θq ´mpxqqpfpx1, θq ´mpx1qqdPpθq.

for all x,x1 P Rd. GPs and BNNs are examples of stochastic processes that can be used.
In the case of a GP, the first two moments completely characterise P. Indeed, under the
conditions of Mercer’s theorem (see e.g. Section 4.5 of Steinwart and Christmann, 2008),

fpx, θq “ mpxq `

dimpΘq
ÿ

i“1

θiϕipxq, θi
i.i.d.
„ N p0, 1q

where the functions ϕi : Rd Ñ R are obtained from the Mercer decomposition of the
covariance function kpx,x1q “

ř

i ϕipxqϕipx
1q and dimpΘq denotes the dimension of Θ. The

shorthand notation GPpm, kq is often used to denote this GP. The kernel trick enables
explicit computation with the θi and ϕi to be avoided, so that the user can specify the mean
and covariance functions and, in doing so, P is implicitly defined. There is a well-established
literature on covariance modelling (Duvenaud, 2014; Rasmussen and Williams, 2006; Stein,
1999) for GPs. For BNNs, however, there is no analogue of the kernel trick and it is unclear
how to construct a prior P for the parameters θ of the BNN that is in agreement with
moments that have been expert-elicited.

Fix a function φ : RÑ R, which we will call activation function. In this paper a BNN
with L ě 1 hidden layers is understood to be a stochastic process with functional form

fpx, θq “
NL
ÿ

j“1

wL1,jφpz
L
j pxqq, zlipxq :“ bl´1

i `

Nl´1
ÿ

j“1

wl´1
i,j φpz

l´1
j pxqq, l “ 2, . . . , L (1)

where Nl :“ dimpzlpxqq is the number of nodes in the lth layer and the edge case is the
input layer

z1
i pxq :“ b0i `

d
ÿ

j“1

w0
i,jxj ,

The parameters θ of the BNN consists of the weights wli,j P R and the biases bli P R of
each layer l “ 0, . . . , L, where the Lth layer’s bias is excluded in our definition. Common
examples of activation functions include the rectified linear unit (ReLU) φpxq “ maxp0, xq,
logistic φpxq “ 1{p1 ` expp´xqq, hyperbolic tangent φpxq “ tanhpxq and the Gaussian
φpxq “ expp´x2q. In all cases the complexity of the mapping θ ÞÑ fp¨, θq in (1) makes prior
specification challenging, since it is difficult to ensure that a distribution on the parameters
θ will be meaningful when lifted to the output space of the neural network.

2.2 The Covariance of Bayesian Neural Networks

Here we discuss existing choices for the prior P on θ in a BNN, which are motivated by the
covariance structure that they induce on the output space of the neural network. This is
a rapidly evolving field and a full review requires a paper in itself; we provide a succinct
summary and refer the reader to the survey in Nalisnick (2018).
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Figure 1: Lifting the parameter prior distribution of a Bayesian neural network (BNN)
to the output space of the network. Left: Realisations from a BNN, with the
ReLU activation function and independent standard Gaussian distributions on the
weights and bias parameters. Middle: The covariance function of a BNN, as the
activation function is varied over ReLU, linear, sigmoid, hyperbolic tangent and
Gaussian. Right: Realisations from a BNN endowed with a ridgelet prior, which is
constructed to approximate a GP with covariance kpx,yq “ σ2 expp´ 1

2l2
}x´y}22q

with σ “ 1.0, l “ 1.75. [In all cases one hidden layer was used.]

Several deep connections between BNNs and GPs have been exposed (Rasmussen and
Williams, 2006; Stein, 1999; Kristiadi et al., 2020; Khan et al., 2019; Adlam et al., 2021).
The first detailed connection between BNNs and GPs was made by Neal (1995). Let
rwl

isj :“ wli,j . In the case of a shallow BNN with L “ 1, assume that each of the weights

w1
1, w0

i and biases b0i are a priori independent, each with mean 0 and with finite second
moments σ2

w1 , σ
2
w0 , σ

2
b , respectively, where σ2

w1 “ σ2{N1 for some fixed σ ą 0. To improve
presentation, let fpxq :“ fpx, θq, so that θ is implicit, and let E denote expectation with
respect to θ „ P. A well-known result from Neal (1995) is that, according to the central
limit theorem, the BNN converges asymptotically (as N1 Ñ 8) to a zero-mean GP with
covariance function

k1px,x1q :“ Erfpxqfpx1qs “ σ2E
“

φ
`

w0
1 ¨ x` b

0
1

˘

φ
`

w0
1 ¨ x

1 ` b01
˘‰

` σ2
b , (2)

Analytical forms of the GP covariance were obtained for several activation functions φ, such
as the ReLU and Gaussian error functions in, Lee et al. (2018); Williams (1998); Yang and
Salman (2020). Furthermore, similar results were obtained more recently for neural networks
with multiple hidden layers in Lee et al. (2018); Matthews et al. (2018); Novak et al. (2019);
Garriga-Alonso et al. (2019). Placing independent priors with the same second moments
σ2{Nl´1 and σ2

b on the weights and biases of the lth layer, and taking N1 Ñ8, N2 Ñ8, . . .
in succession, it can be shown that the lth layer of this BNN convergences to a zero mean
GP with covariance:

klpx,x1q “ σ2Ezl´1
i „GPp0,kl´1q

rφpzl´1
i pxqqφpzl´1

i px1qqs ` σ2
b . (3)

Of course, the discussion of this section is informal only and we refer the reader to the
original references for full and precise detail.

The identification of limiting forms of covariance function allows us to investigate
whether such priors are suitable for performing uncertainty quantification in real-world
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tasks. Unfortunately, the answer is often “no”. One reason, which has been demonstrated
empirically by multiple authors (Hafner et al., 2020; Yang et al., 2019; Yao et al., 2019), is
that BNNs can have poor out-of-sample performance. Typically one would want a covariance
function to have a notion of locality, so that kpx,x1q decays sufficiently rapidly as x and x1

become distant from each other. This ensures that when predictions are made for a location
x that is far from the training dataset, the predictive variance is appropriately increased.
However, as exemplified in Figure 1, the covariance structure of a BNN need not be local.
Even the use of a light-tailed Gaussian activation function still has a possibility of leading to
a covariance model that is non-local. These existing studies (Hafner et al., 2020; Yang et al.,
2019; Yao et al., 2019) illustrate the difficulties of inducing a meaningful prior on the output
space of the neural network when operating at the level of the parameters θ of the network.

3. Methods

In this section the ridgelet approach to prior specification is presented. The approach relies
on the classical ridgelet transform, which is briefly introduced in Section 3.1. Then, in
Section 3.2, we describe how a ridgelet prior is constructed.

3.1 The Ridgelet Transform

The ridgelet transform (Candès, 1998; Murata, 1996; Sonoda and Murata, 2017) was
developed in the context of harmonic analysis in the 1990s (Barron, 1993; Jones, 1992;
Leshno et al., 1993; Murata, 1996; Kurková and Sanguineti, 2001) and has received recent
interest as a tool for the theoretical analysis of neural networks (Sonoda and Murata, 2017;
Bach, 2018; Sonoda et al., 2018; Ongie et al., 2020). In this section we provide a brief
and informal description of the ridgelet transform, deferring all mathematical details until
Section 4. To this end, let pf denote the Fourier transform of a function f , and let z̄ denote
the complex conjugate of z P C. Given an activation function φ : RÑ R, suppose we have a
corresponding function ψ : RÑ R such that the relationship

p2πq
d
2

ż

R
|ξ|´d pψpξqpφpξqdξ “ 1

is satisfied. Such a function ψ is available in closed form for many of the activation functions
φ that are commonly used in neural networks; examples can be found in Table 1 in Section 4.2.
Then, under regularity conditions detailed in Section 4, the ridgelet transform of a function
f : Rd Ñ R is defined as

Rrf spw, bq :“

ż

Rd
ψpw ¨ x` bqfpxqdx (4)

for w P Rd, and b P R, and the dual ridgelet transform of a function τ : Rd ˆ R Ñ R is
defined as

R˚rτ spxq :“

ż

Rd`1

φpw ¨ x` bqτpw, bqdwdb (5)

for x P Rd. There are two main properties of the ridgelet transform that we exploit in this
work. First, a discretisation of (5) using a cubature method gives rise to an expression
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closely related to one layer of a neural network; c.f. (1). Second, under regularity conditions,
the dual ridgelet transform works as the pseudo-inverse of the ridgelet transform, meaning
that pR˚Rqrf s “ f whenever the left hand side is defined. Next we explain how these two
properties of the ridgelet transform will be used.

3.2 The Ridgelet Prior

In this section our proposed ridgelet prior is presented. Our starting point is a Gaussian
stochastic process GPpm, kq and we aim to construct a probability distribution for the
parameters θ of a neural network fpx, θq in (1) such that the stochastic process θ ÞÑ fp¨, θq
closely approximates the GP, in a sense yet to be defined.

The construction proceeds in three elementary steps. The first step makes use of the
property that discretisation of R˚ in (5) using a cubature method (i.e. a linear combination
of function values) gives rise to a neural network. To see this, let us abstractly denote by R̃
and R̃˚ approximations of R and R˚ obtained using a cubature method with D nodes:

Rrf spw, bq « R̃rf spw, bq :“
D
ÿ

j“1

ujψpw ¨ xj ` bqfpxjq (6)

R˚rτ spxq « R̃˚rτ spxq :“
N1
ÿ

i“1

viφpw
0
i ¨ x` b

0
i qτpwi, biq (7)

where pxj , ujq
D
j“1 Ă Rd ˆ R and ppw0

i , b
0
i q, viq

N1
i“1 Ă Rd`1 ˆ R are the cubature nodes and

weights employed respectively in (6) and (7). The specification of suitable cubature nodes
and weights will be addressed in Section 4, but for now we assume that they have been
specified. It is clear that (7) closely resembles one layer of a neural network; c.f. (1).

The second step makes use of the fact that pR˚Rqrf s “ f , which suggests that we may
approximate a function f using the discretised ridgelet transform and its dual

pR̃˚R̃qrf spxq “
N1
ÿ

i“1

viφpw
0
i ¨ x` b

0
i q

«

D
ÿ

j“1

ujψpw
0
i ¨ xj ` b

0
i qfpxjq

ff

“

N1
ÿ

i“1

D
ÿ

j“1

“

viujψpw
0
i ¨ xj ` b

0
i qfpxjq

‰

looooooooooooooooooomooooooooooooooooooon

“:w1
1,i

φpw0
i ¨ x` b

0
i q (8)

where the coefficients w1
1 “ pw

1
1,1, . . . , w

1
1,N1

qJ depend explicitly on the function f being

approximated. Thus R̃˚R̃ is a linear operator that returns a neural network approximation
to each function f provided as input.

The third and final step is to compute the pushforward of GPpm, kq through the linear
operator R̃˚R̃, in order to obtain a probability distribution over the coefficients w1

1 of
the neural network in (8). Let rf si :“ fpxiq, rmsi :“ mpxiq, rKsi,j :“ kpxi,xjq and
rΨ0si,j :“ viujψpw

0
i ¨ xj ` b0i q so that f ,m P RD, K P RDˆD and Ψ0 P RN1ˆD. If
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Figure 2: Example of the covariance matrix Ψl´1KpΨl´1qJ of the ridgelet prior for l “ 1
and N1 “ 50. Left: The covariance matrix of independent standard Gaussian dis-
tribution prior on RN1 for comparison. Right: The covariance matrix Ψ0KpΨ0qJ

computed from 3 independent realisations of tw0
i , b

0
i u

50
i“1 and from K of a Gaussian

covariance function.

f „ GPpm, kq then it follows immediately that w1
1 “ Ψ0f is a Gaussian random vector with

Erw1
1s “ Ψ0m

Erpw1
1 ´ Erw1

1sqpw
1
1 ´ Erw1

1sq
Js “ Ψ0KpΨ0qJ.

To arrive at a prior for a general neural network of the form (1) we apply this construction
recursively, starting from the input layer and working up towards the output layer. The
dimension of the cubature rule ppwl´1

i , bl´1
i q, vl´1

i q
Nl
i“1 used at level l ´ 1 is required to equal

Nl so that our discretised ridgelet transform inherits the same network architecture as in
(1). Our notation is generalised to rΨl´1si,j :“ viujψpw

l´1
i ¨ φl´1pxjq ` bl´1

i q in order to
indicate that this cubature rule with Nl elements was used to construct the matrix Ψl´1,
where rφl´1pxjqsi :“ φpzl´1

i pxjqq and φ0pxjq “ xj . Let NL`1 be the output dimension of
the neural network in (1), that is NL`1 “ 1. Our ridgelet prior can now be formally defined:

Definition 1 (Ridgelet Prior). Consider the neural network in (1). Given a mean function
m : Rd Ñ R and a covariance function k : Rd ˆ Rd Ñ R, a prior distribution is called a
ridgelet prior if the weights wl

i at level l depend on the weights and biases at level l ´ 1
according to

wl
i|tpw

l´1
r , bl´1

r q : r “ 1, . . . , Nlu
i.i.d.
„ N pΨl´1m,Ψl´1KpΨl´1qJq

where i “ 1, . . . , Nl`1 and l “ 1, . . . , L. To complete the prior specification, the bias
parameters bl´1

i at all layers and the weights w0
i at the input layer are required to be

independent and distributed as bl´1
i „ N p0, σ2

b q and w0
i „ N p0, σ2

wIdˆdq.

Several initial remarks are in order:

Remark 1. The dependence of the distribution for the weights wl
i on the previous layer’s

weights wl´1
r and the biases bl´1

r , r “ 1, . . . , Nl, is an important feature of our construction
and seems essential if we aim to approximate a user-specified covariance model. This
dependence is illustrated in Figure 2.
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Remark 2. Let rφ0pxqsi :“ φpw0
i ¨x` b

0
i q. In the comparison with (2), the covariance of a

BNN with one hidden layer and endowed with our ridgelet prior takes the form

Erpfpxq ´mpxqqpfpx1q ´mpx1qqs “ E
“

φ0pxqJΨ0KpΨ0qJφ0px1q
‰

(9)

where the expectation on the right hand side is with respect to the random weights w0
i and

biases b0i . In Section 4 it is shown that, in an appropriate limit, the expression in (9)
converges to kpx,x1q, the covariance model that we aimed to approximate at the outset.

Remark 3. To limit scope we consider a standard feed-forward network architecture, but it is
possible in principle to extend the ridgelet prior to other types of network. For convolutional
neural networks (CNN), we note that convolutional layers can be seen as feed-forward layers
with a sparse weight matrix. In this case one could consider taking the ridgelet prior as a
starting point and then condition on specific weights being exactly zero, in order to produce
identical sparsity structure to a CNN (see for example Section 2.1 of Garriga-Alonso et al.,
2019). For residual neural networks (ResNets), the predictor vector φl can be augmented
to include any skip connections that may be present. However, our analysis in Section 4
focuses on the simple case of a single hidden layer, for which both CNNs and ResNets reduce
to a standard feed-forward neural network.

This completes our definition of the ridgelet prior. An illustration is provided in Figure 3,
the full details of which are reserved for Section 6.1. It can be seen that as N , the number
of hidden units in the BNN, is increased the samples from the BNN begin to resemble, in a
statistical sense, samples from the target GP. In the case of multiple hidden layers, a larger
number N of hidden units appear to be required to achieve a similar degree of approximation
to the GP. Next we present our theoretical analysis, which considers only the case of one
hidden layer, and is the principal contribution of the paper.

4. Theoretical Assessment

This section presents our theoretical analysis of the ridgelet prior in the setting of a single
hidden layer (L “ 1). The main result is Theorem 1, which establishes an explicit error
bound for approximation of a GP prior using the ridgelet prior in a BNN. The bound is
non-asymptotic and valid for networks with finite numbers of units, which is an important
point of distinction from earlier work (Neal, 1995; Williams, 1998). First, in Section 4.1, we
introduce definitions and notation required for the ridgelet transform to be rigorously studied.
In Section 4.2 we introduce a finite-bandwidth ridgelet transform, with the error between the
finite-bandwidth and original ridgelet transforms being analysed in Appendix A.1. Section 4.3
applies these finite-bandwidth results to perform a theoretical analysis of the ridgelet prior
for a BNN.

Notation: The following notation will be used. For an open set X Ď Rd and a Borel measure
µ on X , let LppX , µq denote the set of functions f : X Ñ R such that }f}LppX ,µq ă 8 where

}f}LppX ,µq :“

#

`ş

X |fpxq|
pdµpxq

˘1{p
1 ď p ă 8

ess supxPX |fpxq| p “ 8.

10
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(a) BNN (
L “ 1
N “ 100

) (b) BNN (
L “ 1
N “ 1, 000

) (c) BNN (
L “ 1
N “ 3, 000

)

(d) BNN (
L “ 3
N “ 5, 000

) (e) BNN (
L “ 3
N “ 10, 000

) (f) BNN (
L “ 3
N “ 50, 000

) (g) GP

Figure 3: Sample paths from a Bayesian neural network (BNN) equipped with a ridgelet
prior. Here we examine the effect of increasing the number N of hidden units in a
BNN with L “ 1 hidden layer from (a) 100, to (b) 1,000 and (c) 3,000, and in a
BNN with L “ 3 hidden layers from (d) 5,000, to (e) 10,000 and (f) 50,000. In (g)
sample paths are shown from the target Gaussian process (GP) prior. Full details
of this example are reserved for Section 6.1.

If µ is the Lebesgue measure on X , we use the shorthand LppX q for LppX , µq and furthermore
we let LplocpX q denote the set of function f : X Ñ R such that }f}LppKq exists and is finite
on all compact K Ď X . Let CpX q denote the set of all continuous functions f : X Ñ R and
let C1pX q denote the set of all functions f : X Ñ R whose first order partial derivatives
Bxifpxq exist and are continuous on X . Denote by C1ˆ1pX ˆ X q the set of all functions
h : X ˆX Ñ R whose mixed first order derivatives BxiByjhpx,yq exist and are continuous on
XˆX . For multinomials and higher-order derivatives, we employ multi-index notation xα :“
xα1

1 . . . xαdd , Bαhpxq :“ Bα1
x1 . . . B

αd
xd
hpxq and Bα,βhpx,yq :“ Bα1

x1 . . . B
αd
xd
B
β1
y1 . . . B

βd
yd hpx,yq. A

bivariate function k : X ˆ X Ñ R is called positive definite if
ř

i,j aiajkpxi,xjq ą 0 for all
0 ‰ pa1, . . . , anq P Rn and all distinct txiu

n
i“1 Ă X .

4.1 Regularity of the Activation Function

In this section we outline our regularity assumptions on the activation function φ. To do
this we first recall the classical Fourier transform and its generalisations, all for real-valued
functions on Rd.

Fourier transform on L1pRdq and L2pRdq: The Fourier transform of f P L1pRdq is

defined by pfpξq :“ p2πq´
d
2

ş

Rd fpxq expp´iξ ¨xqdx for each ξ P Rd. The Fourier transform of

f P L2pRdq is formally defined as a limit of a sequence pf̂nqnPN where the fn P L
1pRdqXL2pRdq

and fn Ñ f in L2pRdq (see e.g. Grafakos, 2000, p.113-114).

The image of the Fourier transform on L1pRdq is not contained in L1pRdq. However,
there exists a subset of L1pRdq on which the Fourier transform defines an automorphism. It

11
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is convenient to work on this subset, which consists of so-called Schwartz functions, defined
next.

Schwartz functions: An infinitely differentiable function f is called a Schwartz function if
for any pair of multi-indices α,β P Nd0 we have that Cα,β :“ supxPRd

ˇ

ˇxαBβfpxq
ˇ

ˇ ă 8. The
set of Schwartz functions is denoted by SpRdq (Grafakos, 2000, p.105). Note that the Fourier
transform on SpRdq is well-defined as SpRdq Ă L1pRdq. Moreover, the Fourier transform is
a homeomorphism from SpRdq onto itself (Grafakos, 2000, p.113).

The most commonly encountered activation functions φ are not elements of L1pRq and
we therefore also require the notion of a generalised Fourier transform:

Generalised Fourier transform: Let SmpRdq be the vector space of functions f P SpRdq
that satisfy fpxq “ Op}x}mq for x Ñ 0. For k P N0, let t : Rd Ñ R be any continuous
function of at most polynomial growth of order k, meaning that supxPRd |tpxq|{p1`}x}

kq ă 8.
A measurable function pt P L2

locpRdzt0uq is called a generalised Fourier transform of t if there

exists an integer m P N0 such that
ş

Rd
ptpwqfpwqdw “

ş

Rd tpxq
pfpxqdx for all f P S2mpRdq

(Wendland, 2005, p.103). The set of all continuous functions of at most polynomial growth
of order k that admit a generalized Fourier transform will be denoted C˚k pRdq.

The generalized Fourier transform can be computed for activation functions φ that are
typically used in a neural network, for which classical Fourier transforms are not well-defined:

Example 1 (Generalised Fourier transform of the ReLU function). Let φpxq :“ maxp0, xq,
then φ P C˚1 pRq. Although φ is not an element of L1pRdq, it has polynomial growth and

admits a generalised Fourier transform pφpwq “ ´p
?

2πw2q´1.

Example 2 (Generalised Fourier transform of the tanh function). Let φpxq :“ tanhpxq, then
φ P C˚0 pRq. Likewise, φ admits a generalised Fourier transform pφpwq “ ´i

a

π
2 csch

`

π
2w

˘

where csch is the hyperbolic cosecant.

In order to present our theoretical results, we will make the following assumptions on
the activation function φ that defines the ridgelet transform:

Assumption 1 (Activation function). The activation function φ : RÑ R satisfies

1. φ P C˚0 pRq,

and there exists a function ψ : RÑ R such that

2. ψ P SpRq, 3. p2πq
d
2

ż

R
|ξ|´d pψpξqpφpξqdξ “ 1, 4.

ż

R
|ξ|´d´2

ˇ

ˇ pψpξqpφpξq
ˇ

ˇdξ ă 8.

The boundedness assumption φ P C˚0 pRq rules out some commonly used activation
functions, such as ReLU, but enables stronger convergence results to be obtained. However,
our analysis is also able to handle φ P C˚1 pRq. For presentational purposes we present
results under the assumption φ P C˚0 pRq in the main text and, in Appendix A.3 we present
theoretical results for the unbounded setting φ P C˚1 pRq. Parts 2 and 3 of Assumption 1 are
the standard assumptions for the ridgelet transform (Candès, 1998; Murata, 1996); several
examples of pφ, ψq pairs are shown in Table 1.

Next we turn our attention to proving novel and general results about the ridgelet
transform, under Assumption 1.

12



The Ridgelet Prior

Activation φ Associated Function ψ

tanhpzq dd´r`2

dzd´r`2

”

exp
´

´ z2

2

¯

sin
`

πz
2

˘

ı

ˆ 2´
d`r
2 π´

d´r`2
2 exp

´

π2

8

¯

p1` expp´zqq´1 dd´r`2

dzd´r`2

”

exp
´

´ z2

2

¯

sin pπzq
ı

ˆ 2´
d`r
2 π´

d´r`2
2 exp

´

π2

2

¯

exp
´

´ z2

2

¯

dd`r

dzd`r exp
´

´ z2

2

¯

ˆ 2´
d´2r

2 π´
d`r
2

maxp0, zq dd`r`2

dzd`r`2 exp
´

´ z2

2

¯

ˆ

´

´2´
d
2 π´

d´2r`1
2

¯

Table 1: Examples of functions φ, ψ that satisfy the regularity assumptions used in this
work where r “ pd mod 2q.

4.2 A Finite-Bandwidth Ridgelet Transform

Our aim in this section is to approximate the dual ridgelet transform in (5) with a finite-
bandwidth transform, meaning that the Lebesgue measure λpw, bq is approximated using a
finite measure λσpw, bq. This will in turn enable cubature methods to be applied to discretise
(5). In anticipation of our analysis of the ridgelet prior in Definition 1, the finite measure we
consider is

λσpw, bq :“ Z ˆ
1

p2πσ2
wq

d
2

exp

ˆ

´
}w}2

2σ2
w

˙

ˆ
1

p2πσ2
b q

1
2

exp

ˆ

´
b2

2σ2
b

˙

.

where it will be convenient to set Z :“ p2πq
1
2σdwσb indicating the total measure assigned by

λσ to Rd`1. It is possible to generalise our analysis beyond this Gaussian case, and other
choices for λσ are analysed in Appendix A.1.

Definition 2 (Finite-bandwidth ridgelet transform). In the setting of Assumption 1, the
ridgelet transform R and the finite-bandwidth approximation R˚σ of its dual R˚ are defined
pointwise as

Rrf spw, bq :“

ż

Rd
fpxqψpw ¨ x` bqdx, (10)

R˚σrτ spxq :“

ż

Rd`1

τpw, bqφpw ¨ x` bqdλσpw, bq (11)

for all f P L1pRdq, τ P L1pRd`1, λσq, x P Rd, w P Rd, and b P R.

The integral transforms in (10) and (11) are indeed well-defined: For any f P L1pRdq, the
boundedness of ψ P SpRq guarantees Rrf s P L8pRd`1q. Similarly for any τ P L1pRd`1, λσq,
the boundedness of φ P C˚0 pRq guarantees R˚σrτ s P L

8pRdq. Recall that a discussion on
relaxation of the boundedness assumption φ P C˚0 pRq is reserved for Appendix A.3.

The classical ridgelet transform in the sense of Murata (1996) corresponds to the limit
σw, σb Ñ 8, where the measure λσ becomes flat and R˚σ coincides with R˚. An original
contribution of our work, which may be of more general interest, is to study approximation
properties of the reconstruction operator R˚σR when a finite measure λσ is used. Intuitively,
pR˚σRq ought to converge to an identity operator in the limit σw, σb Ñ 8; an important
contribution of this work is to provide an explicit, non-asymptotic approximation error bound
in Appendix A.1. This analysis, which connects existing theory of the ridgelet transform
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to practical applications, may therefore be useful in the aforementioned applications of
harmonic analysis, as well as in related areas, such as image analysis/denoising, where the
ridgelet transform is sometimes employed as an alternative to the wavelet transform (Do
and Vetterli, 2003; AlZu’bi et al., 2011).

4.3 Convergence of the Finite-Bandwidth Ridgelet Prior

In this section, we build on Theorem 2 to obtain theoretical guarantees for our BNN prior.
We present Theorem 1, which establishes an explicit error bound for approximation of a GP
prior using the ridgelet prior in a BNN.

Recall from Section 3 that the ridgelet prior was derived from discretisation of the
classical ridgelet transform in (4) and (5). The starting point of our analysis is to consider
how the finite-bandwidth ridgelet transform in (10) and (11) can be discretised. To this end,
we view the discretisation of R˚σR as an operator Iσ,D,N : CpRdq Ñ CpRdq by

Iσ,D,N rf spxq :“
N
ÿ

i“1

vi

˜

D
ÿ

j“1

ujfpxjqψpwi ¨ xj ` biq

¸

φpwi ¨ x` biq (12)

where txj , uju
D
j“1 and tpwi, biq, viu

N
i“1 are the cubature nodes and weights used, respectively,

to discretise the integrals (10) and (11). Informally, Iσ,D,N ought to converge in some sense
to the identity operator in an appropriate limit involving σ,D,N Ñ8; this will be made
precise in the sequel. The weights wi and biases bi can be identified with w0

i and b0i in
the ridgelet prior, as can N1 be identified with N . Conditional on twi, biu

N
i“1, a draw from

the BNN fpx, θq “
řN1
i“1w

1
1,iφpw

0
i ¨ x ` b0i q equipped with the ridgelet prior is equal in

distribution to Iσ,D,N rf s when f is drawn from GPpm, kq.
Our analysis exploits properties of the cubature methods defined in Assumption 2 and

Assumption 3 below. To rigorously introduce these cubature methods, let X be a bounded
subset of Rd; without loss of generality we assume X is contained in the interior of the hyper-
cube r´S, Ssd for some constant S ą 0. It follows that there exists an infinitely differentiable
function (a “mollifier”) 1p¨q with the properties that 1pxq P r0, 1s, 1pxq “ 1 if x P X and
1pxq “ 0 if x R r´S, Ssd. Indeed, letting a :“ 1´ inft}x´ y} : x P X ,y R r´S, Ssdu and

gptq :“

#

e´
1
t for t ą 0

0 for t ď 0
and hptq :“

gptq

gptq ` gp1´ tq

then the function

1pxq :“
d
ź

i“1

„

1´ h

ˆ

x2
i ´ a

2

1´ a2

˙

(13)

satisfies the desired properties with 1p¨q (Tu, 2010, p.141-143). The function 1p¨q is used in
our theoretical analysis to restrict, via multiplication, the support of function f from Rd
to r´S, Ssd without changing f on X and without global smoothness on Rd being lost; see
Figure 4.

Assumption 2 (Discretisation of R). The cubature nodes txju
D
j“1 are a regular grid on

r´S, Ssd, corresponding to a Cartesian product of left endpoint rules ((2.1.2) of Davis and
Rabinowitz, 1984), and the cubature weights are uj :“ p2Sqd1pxjq{D for all j “ 1, ..., D.
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(a) function before multiplying 1 (b) the mollifier 1 (c) function after multiplying 1

Figure 4: Illustrating the role of a mollifier: (a) A function fp¨q defined on R, to be mollified.
(b) Here 1 is mollifier that is equal to 1 on X “ p´5, 5q and equal to 0 outside
r´S, Ss with S “ 7.5. (c) The product f ¨1 is equal to f on X and has a compact
support on r´S, Ss.

The use of a Cartesian grid cubature method is not crucial to our analysis and other methods
could be considered. However, we found that the relatively weak assumptions required to
ensure convergence of a cubature method based on a Cartesian grid were convenient to
check. One could consider adapting the cubature method to exploit additional smoothness
that may be present in the integrand, but we did not pursue that in this work.

Assumption 3 (Discretisation of R˚σ). The cubature nodes twi, biu
N
i“1 are independently

sampled from N p0, σ2
wIdˆdq ˆN p0, σ2

b q and vi :“ Z{N for all i “ 1, . . . , N .

The use of a Monte Carlo cubature scheme in Assumption 3 ensures an exact identification
between the ridgelet prior, where the pwi, biq are a priori independent, and a cubature
method. From the approximation theoretic viewpoint, Iσ,D,N is now a random operator and
we must account for this randomness in our analysis; high probability bounds are used to
this effect in Theorem 1.

Now we present out main result, which is a finite-sample-size error bound for the ridgelet
prior as an approximation of a GP. The approximation error that we study is defined over
X Ă r´S, Ssd and to this end we introduce the notation

M˚
1 pmq :“ max

|α|ď1
sup

xPr´S,Ssd
|Bαmpxq|, M˚

1 pkq :“ max
|α|,|β|ď1

sup
x,yPr´S,Ssd

|Bαx B
β
ykpx,yq|.

In what follows we introduce a random variable f to represent the GP, and we assume that
f is independent of the random variables twi, biu

N
i“1; all random variables are understood to

be defined on a common underlying probability space whose expectation operator is denoted
E.

Theorem 1. Consider a stochastic process f „ GPpm, kq with mean function m P C1pRdq
and symmetric positive definite covariance function k P C1ˆ1pRd ˆ Rdq. Let Assumptions 1,
2 and 3 hold. Further, assume φ is Lφ-Lipschitz continuous. With probability at least 1´ δ,

sup
xPX

c

E
”

pfpxq ´ Iσ,D,Nfpxqq
2
|twi, biuNi“1

ı

ď C

ˆ

M˚
1 pmq `

b

M˚
1 pkq

˙

#

1

σw
`
σdwpσw ` 1q

σb
`
σbσ

d
wpσw ` 1q

D
1
d

`
σbσ

d
wpσw `

a

log δ´1q
?
N

+
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where C is a constant independent of m, k, σw, σb, D,N and δ.

Proof The proof is established in Appendix A.2.

Remark 4. Theorem 1 is analogous to universal approximation theorems for (non-Bayesian)
neural networks (Cybenko, 1989; Leshno et al., 1993), since it implies that shallow BNNs
are capable of approximating essentially any GP whose mean and covariance functions are
continuously differentiable.

This result establishes that the root-mean-square error between the GP and its approxi-
mating BNN will vanish uniformly over the bounded set X as the bandwidth parameters
σw, σb and the sizes N , D of the cubature rules are increased at appropriate relative rates,
which can be read off from the bound in Theorem 1. In particular, the bandwidths σw and
σb should be increased in such a manner that σdwpσw ` 1q{σb Ñ 0 and the numbers D and
N of cubature nodes should be increased in such a manner that the final two terms in the
bound of Theorem 1 asymptotically vanish. In such a limit, the ridgelet prior provides a
consistent approximation of the GP prior over the bounded set X . The result holds with
high probability (1 ´ δ) with respect to randomness in the sampling of the weights and
biases twi, biu

N
i“1. From this concentration inequality, and in an appropriate limit of σw,

σb, N and D, the almost sure convergence of the root-mean-square error also follows (from
Borel-Cantelli).

This finite-sample-size error bound can be contrasted with earlier work that provided
only asymptotic convergence results (Neal, 1995; Lee et al., 2018; Matthews et al., 2018).

Remark 5. The rates of convergence serve as a proof-of-concept and are the usual rates
that one would expect in the absence of anisotropy assumptions, with the curse of dimension
appearing in the term D´1{d. In other words, we are gated by the rate at which we fill
the volume r´S, Ssd with cubature nodes txju

D
j“1. However, it may be the case that real

applications posess additional regularity, such as a low “effective dimension”, that was not
part of the assumptions used to obtain our bound. We therefore defer further discussion of
the approximation error to the empirical assessment in Section 6.

Remark 6. Related result can also be obtained when the boundedness assumption on the
activation function is relaxed from φ P C˚0 pRq to φ P C˚1 pRq. Details are reserved for
Appendix A.3.

This completes our analysis of the ridgelet prior for BNNs and our attention turns, in
the next section, to the empirical performance of the ridgelet prior.

5. Implementation and Computation

In this section, practical aspects of the ridgelet prior are discussed. Since our main contribu-
tions are theoretical, this discussion is limited to a factual description of the complexity of
the ridgelet prior (Section 5.1), a description of how computation was performed for the
experiments reported in Section 6 (Section 5.2), and a brief discussion of the potential for
further computational improvement (Section 5.3).

16



The Ridgelet Prior

5.1 Complexity of the Ridgelet Prior

To evaluate the ridgelet prior density, consider the lth layer and its associated Gaussian
factor N p0,Σlq. To evaluate the prior density three computations are required: matrix
multiplication to compute Σl “ Ψl´1KpΨl´1qJ, inversion of Σl and computation of the
determinant of Σl. The total computational complexity is therefore OpN lD2 ` pN lq2D `
pN lq3q, which is cubic in N l. However, to sample from N p0,Σlq the computation complexity
can be reduced when D ! N l, since we can obtain a matrix square root of the form
pΣlq1{2 :“ Ψl´1L via a Cholesky decomposition K “ LLJ. The complexity is then
OpD3 `N lDq, which is linear in N l.

5.2 Posterior Computation

For the subsequent experiments reported in Section 6.2, the posterior distribution over the
parameters of the BNN is analytically intractable and must therefore be approximated.
In this paper, we exploited conditional linearity to obtain accurate approximations to the
posterior using a Monte Carlo method, which will now be described. All our experiments
concern regression models of the form

ypiq “ fpxpiq,θq ` εpiq, fpx,θq “
N
ÿ

i“1

w1
i φpw

0
i ¨ x` b

0
i q, εpiq „ N p0, σ2

ε q. (14)

Letting θ0 :“ ppw0
1, b

0
1q, . . . , pw

0
N , b

0
N qq and w1 :“ pw1

1, . . . , w
1
N q, the ridgelet prior takes the

form

w0
i „ N p0, σ2

wIdˆdq, b0i „ N p0, σ2
b q, w1 | θ0 „ N p0,Σq,

where Σ :“ Ψ0KΨJ
0 . To simplify this discussion, we assume the mean function m of the

target GP is mpxq “ 0; if not then one can replace the responses ypiq with ypiq ´mpxpiqq
in the sequel. Let rysi “ ypiq and rΦ0si,j :“ φpw0

j ¨ x
piq ` b0j q. Our main observation is

that, conditional on θ0, the model (14) is a linear regression whose coefficients w1 can be
analytically marginalised to obtain a Gaussian marginal (log-)likelihood

log ppy | θ0q “ C ´
1

2
log det Σ˚ ´

1

2
yJΣ´1

˚ y

where Σ˚ :“ Φ0ΣΦJ0 ` σ2
ε I and C is a constant with respect to θ0. This enables the

use of MCMC to sample directly from the marginal posterior distribution ppθ0 | yq, and
for this purpose we employed the elliptical slice sampler of Murray et al. (2010). If the
number of data y is M , the computational complexity for marginal likelihood evaluation is
OpND2 `N2D`NM2 `N2M `M3q, which is quadratic with respect to N . Furthermore,
we recognise that the posterior distribution of w1 conditional on θ0 are Gaussian, meaning
that given each sample of θ0 and data y we can simulate a corresponding sample:

w1 | θ0,y „ N pm˚˚,Σ˚˚q

where m˚˚ :“ σ´2
ε Σ˚˚Φ

J
0 y and Σ´1

˚˚ :“ Σ´1`σ´2
ε ΦJ0 Φ0. Standard techniques were applied

to regularise computation in cases where matrices were poorly conditioned; see Appendix A.4.
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This approach produces samples that are asymptotically drawn from the joint posterior
pθ0,w1q|y. The complexity of this conditional sampling step is OpN3`N2M `NMq, which
is cubic with respect to N . This two-stage procedure was observed to work effectively in the
experiments that we performed. However, this approach does not extend to deeper BNNs
and therefore more general-purpose MCMC or variational inference techniques are likely to
be required. The potential for variational techniques to be employed with the ridgelet prior
is discussed next.

5.3 Variational Inference

Although the algorithm in Section 5.2 was observed to perform well for the experiments
reported in Section 6, the limited applicability to shallow networks suggests that an alternative
approach to posterior approximation is needed. As we explain in this section, variational
inference may be well-suited to this task. In variational inference, a posterior distribution
ppθ | yq is approximated by a distribution q selected from a candidate set Q via maximisation
of an evidence lower bound (ELBO):

max
qPQ

Eθ„qrlog ppy | θqs ´KLpq}πq

where π is a prior and ppy | θq is the likelihood (Sun et al., 2019). Note that θ denotes the
set of all parameters of the form wl

i, b
l
i involved in the BNN. The term KLpq}πq will not

available in closed form in general because of the complicated a priori dependency among the
parameters in θ. However, closer inspection of the ridgelet prior reveals that each layer-wise
component of θ is conditionally Gaussian given the values of the remaining components; this
conditional Gaussian form can be used to circumvent intractability of the Kullback–Leibler
term in the ELBO. This suggests a natural approach to optimisation, which cycles through
layer-wise subsets of θ, maximising the ELBO with respect to each layer-wise component.
Although the design and assessment of a variational inference procedure is not a focus of
this paper, the possibility to pursue an alternating optimisation procedure demonstrates
that there may be room to pursue improved computational methodology for the ridgelet
prior if needed.

6. Empirical Assessment

In this section we briefly report empirical results that are intended as a proof-of-concept.
Our aims in this section are twofold: First, in Section 6.1 we seek to illustrate the theoretical
analysis of Section 4 and to explore how well a BNN with a ridgelet prior approximates its
intended GP target. Second, in Section 6.2 we aim to establish whether use of the ridgelet
prior for a BNN in a Bayesian inferential context confers some of the same characteristics as
when the target GP prior is used, in terms of the inferences that are obtained.

Throughout this section we focus on BNNs with a single hidden layer (L “ 1). The
settings for the ridgelet prior were identical to the hyperbolic tangent activation pair pφ, ψq
in Table 1 for all experiments reported in the main text; sensitivity to these choices examined
in Appendix A.4.3. Our principal interest is in how many hidden units, N , are required in
order for the ridgelet prior to provide an adequate approximation of the associated GP, since
the size of the network determines the computational complexity of performing inference
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with the ridgelet prior; see Section 5. To this end, we fix D, σw and σb and investigate the
influence of N . The fixed values of the bandwidths σw and σb were selected by analysing
the approximation quality, as described in Appendix A.4.3. For completeness, Table 2 in
Appendix A.4.1 reports the values of D, σw and σb that were used for each experiment.

6.1 Approximation Quality

The aim of this section is to explore how well a BNN with a ridgelet prior approximates
its intended GP target. For this experiment we consider dimension d “ 1 and the so-called
squared exponential covariance function kpx, x1q :“ l2 expp´ 1

2s2
|x ´ x1|2q, where l “ 1.0,

s “ 1.5 were chosen to ensure that samples from the GP demonstrate non-trivial behaviour
on our domain of interest X “ p´5, 5q.

Figure 3, introduced earlier in the paper, presents sample paths from a BNN equipped
with the ridgelet prior as the number N of hidden units is varied from 100 to 3000. In the
case N “ 3000 the sample paths are almost indistinguishable from those of the target GP.
On the other hand, N “ 3000 may be a rather large number of units to require, depending
on the applied context. Figure 5a explores the approximation quality of the discretised
ridgelet transform construction, reporting the maximum root-mean-square error (MRMSE)

sup
xPX

b

Erpfpxq ´ Iσ,D,Nfpxqq2 | twi, biuNi“1s.

It was observed that the approximation error between the BNN and the GP decays at a slow
rate, consistent with our theoretical error bound OpN´

1
2 q. To explore how well the second

moments of the GP are being approximated, in Figure 5b we compared the BNN covariance
function Erfpxqfp0qs as in (9) against the covariance function kpx, 0q of the target GP. As
N is varied we observe convergence of the BNN covariance function to the GP covariance
function. For accurate approximation, a large number of hidden units appears to be required.
Additional results, detailing the effect of varying D, σw, σb, activation function φ, and GP
covariance k are provided in Appendix A.4.3.

The MRMSE is a strong assessment that acknowledges the paired nature of f and
Iσ,D,Nf , in contrast to a more standard comparison of the distributions produced by the
BNN and the GP. However, as an alternative criteria to MRMSE, we also computed the
maximum mean discrepancy (MMD) between the BNN and the GP; these details and results
are reserved for Appendix A.4.2.

6.2 Inference and Prediction Using the Ridgelet Prior

In this section we compare the performance of the ridgelet prior to that of its target GP in
an inferential context. To this end, we identified tasks where non-trivial prior information
is available and can be encoded into a covariance model; the ridgelet prior is then used to
approximate this covariance model using a BNN. Three tasks were considered: (i) prediction
of atmospheric CO2 concentration using the well-known Mauna Loa dataset; (ii) prediction
of airline passenger numbers using a historical dataset; (iii) a simple in-painting task that is
closer in spirit to applications where BNNs may be used. These tasks are toy in their nature
and we do not attempt an empirical investigation into the practical value of the ridgelet
prior; this will be reserved for a sequel.
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(a) approximation error (b) BNN covariance

Figure 5: Approximation quality of the ridgelet prior: (a) MRMSE for the BNN approxima-
tion of the GP was estimated as the number N of hidden units was varied with
standard errors of 100 independent experiments displayed. (b) The covariance
associated to the BNN, as N is varied, together with the covariance of the GP
being approximated.

Prediction of Atmospheric CO2: In this first task we extracted 43 consecutive months
of atmospheric CO2 concentration data recorded at the Mauna Loa observatory in Hawaii
(Keeling and Whorf, 2004) and considered the task of predicting CO2 concentration up to
23 months ahead. The time period under discussion was re-scaled onto interval X “ p´5, 5q
and the response variable, representing CO2 concentration, was standardised. This task is
well-suited to regression models, such as GPs, that are able to account for non-trivial prior
information. In particular, one may seek to encode (1) a linear trend toward increasing
concentration of atmospheric CO2 and (2) a periodic seasonal trend. In the GP framework,
this can be achieved using a mean function m and covariance function k of the form

mpxq :“ ax, kpx, x1q :“ l2 exp

˜

´
2

s2
sin

ˆ

π

p2
|x´ x1|

˙2
¸

(15)

where a “ 0.06, l “ 1.0, s “ 0.75, p “ 1.8; see (Rasmussen and Williams, 2006, Section
5.4.3). The aim of this experiment is to explore whether the posterior predictive distribution
obtained using the ridgelet prior for a BNN is similar to that which would be obtained using
this GP prior. To this end, we employed a simple Gaussian likelihood

yi “ fpxi, θq ` εi, εi
i.i.d.
„ N p0, σ2

ε q

where yi is the standardised CO2 concentration in month i, xi is the standardised time
corresponding to month i, x ÞÑ fpx, θq is the regression model and σε “ 0.065 was fixed.
The posterior GP is available in closed form, while we used MCMC to sample from the
posterior distribution over the parameters θ when a neural network is used, as described in
Section 5.2.

Here we present results for BNN with N “ 500 hidden units. Our benchmark is the so-
called i.i.d. prior that takes all parameters to be a priori independent with w0

i,j „ N p0, σw0q,

b0i „ N p0, σb0q, and w1
1,i „ N p0, σw1q. Here σw0 “ 3, σb0 “ 12 and σw1 “ 0.1{

?
N . This

is to be contrasted with the ridgelet prior, with values of σw “ 3 and σb “ 12 chosen to
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(a) i.i.d. prior (b) the ridgelet prior (c) GP

Figure 6: Prediction of Atmospheric CO2: Posterior predictive distributions were obtained
using (a) a Bayesian neural network (BNN) with an i.i.d. prior, (b) a BNN with
the ridgelet prior, and (c) a Gaussian process (GP) prior. The ridgelet prior in
(b) was designed to approximate the GP prior used in (c). The solid blue curve is
the posterior mean and the shaded regions represent the pointwise 95% credible
interval.

ensure a fair comparison with the i.i.d. prior. Figure 6 displays the posterior predictive
distributions obtained using (a) the i.i.d. prior, (b) the ridgelet prior, and (c) the original
GP. It can be seen that (b) and (c) are more similar than (a) and (c). These results suggest
that the ridgelet prior is able to encode non-trivial information on the seasonality of CO2

concentration into the prior distribution for the parameters of the BNN.

Prediction of Airline Passenger Numbers: Next we considered a slightly more chal-
lenging example that involves a more intricate periodic trend. The dataset here is a subset
of the airline passenger dataset studied in Pearce et al. (2020). The response yi represents
the (standardised) monthly total number of international airline passengers in the United
States and the input xi represents the (standardised) time corresponding to month i. The
experimental set-up was identical to the CO2 experiment, but the prior in (15) was modified
to reflect the more intricate periodic trend by taking a “ 0.2, l “ 1.0, s “ 0.75, p “ 1.75
and the measurement noise was fixed to σε “ 0.145.

In a similar manner to the CO2 experiment, we implemented the i.i.d. prior and the
analogous ridgelet prior, in the latter case based on D “ 200 quadrature points. Results
in Figure 7 support the conclusion that the ridgelet prior is able to capture this more
complicated seasonal trend. In comparison with Pearce et al. (2020) we required more
hidden units to perform this regression task. However, we used a standard activation
function, where the method of Pearce et al. (2020) would need to develop a new activation
function for each covariance model of interest.

In-Painting Task: Our final example is a so-called in-painting task, where we are required
to infer a missing part of an image from the remaining part. Our aim is not to assess the
suitability of the ridgelet prior for such tasks – to do so would require extensive and
challenging empirical investigation, beyond the scope of the present paper – but rather to
validate the ridgelet prior as a proof-of-concept.

The image that we consider is shown in Figure 8a and we censor the central part,
described by the red square in Figure 8b. Each pixel corresponds to a real value yi and the
location of the pixel is denoted xi P p´5, 5q2. To the remaining part we add a small amount
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(a) i.i.d. prior (b) the ridgelet prior (c) GP

Figure 7: Prediction of Airline Passenger Numbers: Posterior predictive distributions were
obtained using (a) a Bayesian neural network (BNN) with an i.i.d. prior, (b) a
BNN with the ridgelet prior, and (c) a Gaussian process (GP) prior. The ridgelet
prior in (b) was designed to approximate the GP prior used in (c). The solid blue
curve is the posterior mean and the shaded regions represent the pointwise 95%
credible interval.

(a) original image (b) training dataset (c) i.i.d. prior (d) the ridgelet prior

Figure 8: In-Painting Task: The central part of the original image in (a) was censored to
produce (b) and the in-painting task is to infer the missing part of the image
using the remaining part as a training dataset. Posterior predictive distributions
were obtained using (c) a Bayesian neural network (BNN) with an i.i.d. prior,
and (d) a BNN with the ridgelet prior.

of i.i.d. noise, εi „ N p0, σ2
ε q to each pixel i, in Figure 8b (the addition of noise here ensures

conditions for ergodicity of MCMC are satisfied; otherwise the posterior is supported on a
submanifold of the parameter space and more sophisticated sampling procedures would be
required). The task is then to infer this missing central region using the remaining part of
the image as a training dataset.

For the statistical regression model we considered a GP whose mean function m is zero
and covariance function k is

kpx,x1q :“ l2 exp
´

´
}x´x1}22

2s2

¯

` (16)
´

cos
´

πx1
2

¯

` 1
¯´

cos
´

πx2
2

¯

` 1
¯´

cos
´

πx11
2

¯

` 1
¯´

cos
´

πx12
2

¯

` 1
¯

,

where l “ 0.1, s “ 0, 1. The periodic structure induced by cosine functions is deliberately
chosen to be commensurate with the separation between modes in the original dataset,
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meaning that considerable prior information is provided in the GP covariance model. Our
benchmark here was a BNN equipped with with N “ 2000 hidden units and an i.i.d. prior,
constructed in an analogous manner as before with parameters σw0 “ 2, σb0 “ 12 and
σw1 “ 0.1{

?
N . The ridgelet prior was based on a BNN of the same size, with σw “ 2 and

σb “ 12 to ensure a fair comparison with the i.i.d. prior.

Figure 8c and Figure 8d show posterior means estimates for the missing region in the
in-painting task, respectively for the i.i.d. prior and the ridgelet prior. It is interesting to
observe that the i.i.d. prior gives rise to a posterior mean that is approximately constant,
whereas the ridgelet prior gives rise to a posterior mean that somewhat resembles the original
image. This suggests that the specific structure of the covariance model in (16) has been
faithfully encoded into the ridgelet prior, leading to superior performance on this stylised
in-painting task.

6.3 Limitations of the Ridgelet Prior for Deep Networks

Finally, in this section we examine the performance of the ridgelet prior in a setting where the
depth of the network is increased. For this experiment, we fixed the hidden unit number Nl

of each hidden layer l to Nl “ 10, 000 and increased the number of hidden layers from L “ 1
to L “ 5. The approximation error between a BNN with the ridgelet prior and the target
GP was quantified using MMD, aforementioned in Section 6.1: see Appendix A.4.2 for detail.
Results are displayed in Figure 9. Interestingly, the lowest value of MMD was observed at
L “ 1, suggesting that the performance of the ridgelet prior deteriorates when the depth of
the network is increased. This makes intuitive sense, since with each additional layer in the
network an additional discretisation of the ridgelet transform is required. This discretisation
error then has an opportunity to accumulate and propagate through the network. It would
be interesting to explore strategies to mitigate this degradation of performance, but our focus
in this work was limited to providing theoretical analysis and an empirical proof-of-concept.

7. Conclusion

One of the main barriers to the wide-spread adoption of BNN is the identification of prior
distributions that are meaningful when lifted to the output space of the network. In this
paper it was shown that the ridgelet transform facilitates the consistent approximation of
a GP using a BNN. This has the potential to bring the powerful framework of covariance
modelling for GPs to bear on the task of prior specification for BNN. In contrast to earlier
work in this direction (Flam-Shepherd et al., 2017; Hafner et al., 2020; Pearce et al., 2020;
Sun et al., 2019), our construction is accompanied by theoretical analysis that establishes
the approximation is consistent. Moreover, we are able to provide a finite-sample-size error
bound that requires only weak assumptions on the GP covariance model (i.e. that the mean
and covariance function is continuous and differentiable).

This role of this paper was to establish the ridgelet prior as a theoretical proof-of-concept
only and there remain several open questions to be addressed:

• In real applications, is it necessary to have an accurate approximation of the intended
covariance model, in order to deliver improved performance of the BNN, or is a crude
approximation sufficient?
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(a) BNN (L “ 1) (b) BNN (L “ 2) (c) BNN (L “ 3)

(d) BNN (L “ 4) (e) BNN (L “ 5) (f) GP

(g) MMD2 (L “ 1, . . . , 5)

Figure 9: Sample paths from Bayesian neural networks (BNNs) equipped with the ridgelet
prior as the number of hidden layers L is increased. The number of hidden units
was fixed to Nl “ 10, 000 for each hidden layer l “ 1, . . . , L. In (f) sample paths
are shown from the target Gaussian process (GP) prior. In (g) the MMD2 between
the BNN and the GP are displayed. The standard error is calculated by 10
independent computations.

• What cubature rules txi, uiu
D
i“1 are most effective in applications - is a regular grid

needed, or do real-world applications exhibit an effective low dimension so that e.g. a
sparse grid could be used?

• In the case of multiple hidden layers, can the convergence of the ridgelet prior to a
deep GP (Damianou and Lawrence, 2013; Dunlop et al., 2018) be established?

These questions will likely require a substantial amount of work to address in full, but we
hope to pursue some of them in a sequel.
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Appendix A. Supplementary Material

This appendix is structured as follows:

A.1 Convergence of the Finite-Bandwidth Ridgelet Transform . . . . . . . . . . 25

A.1.1 Approximate Identity Operators . . . . . . . . . . . . . . . . . . . . 27

A.1.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

A.1.3 Auxiliary Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

A.2 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

A.2.1 Technical Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

A.2.2 An Intermediate Ridgelet Reconstruction Result . . . . . . . . . . . 37

A.2.3 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.3 An Analogous Result to Theorem 1 for Unbounded φ . . . . . . . . . . . . . 44

A.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.4.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.4.2 Alternative Error Measurement by MMD . . . . . . . . . . . . . . . 49

A.4.3 Comparison of Prior Predictive with Different Settings . . . . . . . . 49

Notation: Throughout this appendix we adopt identical notation to the main text, but for
brevity we denote }¨}L1pX q as }¨}L1 and }¨}L8pX q as }¨}L8 whenever X is the Euclidean space

Rd of any dimension d P N. We also introduce function classes of higher order differentiability.
Denote by CrpX q the set of all functions f : X Ñ R for which the derivatives Bαf exist
and are continuous on X for all α P Nd0 s.t. |α| ď r. Denote by CrˆrpX ˆ X q the set of all
functions h : X ˆX Ñ R for which the derivatives Bα,βh exist and are continuous on X ˆX
for all α,β P Nd0 s.t. |α|, |β| ď r.

A.1 Convergence of the Finite-Bandwidth Ridgelet Transform

In this section we derive a finite-sample-size error bound for the finite-bandwidth ridgelet
transform of Definition 2. Our analysis is more general than the Gaussian case presented in
the main text, and we consider more general probability measures on w and b to control
convergence of λσ toward the improper uniform limit.

Let pw and pb be probability densities, respectively, on Rd and R, satisfying regularity
requirements that will shortly be described. For 0 ă σw ă 8, 0 ă σb ă 8, define scaled
densities of pw and pb by pw,σpwq :“ σ´dw pwpσ

´1
w wq and pb,σpbq :“ σ´1

b pbpσ
´1
b bq. The

parameters σw and σb will be called bandwidths. To recover the case presented in the main
text, if pw and pb are standard Gaussians then pw,σpwq and pb,σpbq are Gaussians with
variances σ2

wI and σ2
b , i.e.

pw,σpwq “
1

p2πσ2
wq

d{2
exp

ˆ

´
}w}2

2σ2
w

˙

, pb,σpbq “
1

p2πσ2
b q

1{2
exp

ˆ

´
b2

2σ2
b

˙

.

Then let λσpw, bq be a measure whose density is Zpw,σpwqpb,σpbq, where for the analysis
that follows it will be convenient to set

Z :“
p2πq

1
2σdwσb

}xpw}L1pRdq}ppb}L1pRq
,
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indicating the total measure assigned by λσ to Rd`1. For the case of standard Gaussian
densities pw and pb presented in the main text, we have }xpw}L1pRdq “ }ppb}L1pRq “ 1.

Our analysis covers general pw and pb provided that certain regularity conditions are
satisfied. These will now be described. First, consider an arbitrary probability density
function p defined on Rm for some m P N and consider the following properties that p may
satisfy:

(i) (Symmetry at the origin) ppxq “ pp´xq, @x P Rm ,

(ii) (Boundedness) }p}L8pRmq ă 8,

(iii) (Finite second moment)
ş

Rm }x}
2ppxqdx ă 8 ,

(iv) (Positivity of the Fourier transform) pppxq ą 0 , @x P Rm ,

(v) (Integrable Fourier transform) }pp}L1pRmq ă 8.

Of these properties, only (iv) and (v) are not straight forward. If p̂ can be computed then
conditions (iv) and (v) can be directly verified. Otherwise, sufficient conditions on p for (iv)
can be found in Tuck (2006) and sufficient conditions on p for (v) can be found in Liflyand
(2016). The regularity that we require on pw and pb can now be specified:

Assumption 4 (Finite bandwidth). The probability density functions pw : Rd Ñ r0,8q and
pb : RÑ r0,8q satisfy properties (i) – (v) above and, in addition,

1.
ş

Rd }x}
2
xpwpxqdx ă 8,

2. }Bpb}L8pRq ă 8,

where we recall that Bpb denotes the first derivative of pb.

Now we present the convergence result of interest. LetM1pfq :“ max|α|ď1 supxPRd |B
αfpxq|

and B1pfq :“
ş

Rd |fpxq|p1` }x}2qdx.

Theorem 2. Let Assumption 1 and Assumption 4 hold, and let f P C1pRdq satisfy M1pfq ă
8 and B1pfq ă 8. Then

sup
xPRd

|fpxq ´ pR˚σRqrf spxq| ď C maxpM1pfq, B1pfqq

"

1

σw
`
σdwpσw ` 1q

σb

*

for some constant C that is independent of σw, σb and f , but may depend on φ, ψ, pw and
pb.

Our priority here was to provide a simple upper bound on the reconstruction error, that
separates the influence of f from the influence of the bandwidths σw and σb; the bound is not
claimed to be tight. The formulation of Theorem 2 enables us to conveniently conclude that
taking σw and σb to infinity in a manner such that σdwpσw`1q{σb Ñ 0 will lead to consistent
recovery of f , for any function f for which M1pfq, B1pfq ă 8 is satisfied. The term M1pfq
reflects the general difficulty of approximating f using a finite-bandwidth ridgelet transform,
while the term B1pfq serves to deal with the tails of f and the fact that a supremum is
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taken over the unbounded domain Rd. Theorem 5 in Appendix A.3 presents a variation
on Theorem 2 that relaxes the boundedness assumption on the activation function from
φ P C˚0 pRq to φ P C˚1 pRq at the expense of changing the tail condition from B1pfq ă 8 to
B2pfq :“

ş

Rd |fpxq|p1` }x}2q
2dx ă 8 and restricting the supremum to a bounded subset of

Rd.
The proof of Theorem 2 makes use of techniques from the theory of approximate identity

integral operators, which we recall next in Appendix A.1.1. The proof of Theorem 2 is then
presented in Appendix A.1.2. The proof relies on an auxiliary technical lemma regarding
the Fourier transform, whose statement and proof we defer to Appendix A.1.3.

A.1.1 Approximate Identity Operators

An approximate identity operator is an integral operator which converges to an identity
operator in an appropriate limit. The discussion in this section follows Ginè and Nickl (Gine
and Nickl, 2015, ch. 4.1.3, 4.3.6). For h ą 0, define an operator Kh by

Khrf spxq :“

ż

Rd
fpx1q

1

hd
K

ˆ

x

h
,
x1

h

˙

dx1 (17)

where K : Rd ˆ Rd Ñ R is a measurable function and f : Rd Ñ R is suitably regular for the
integral to exist and be well-defined. Proposition 1 provides sufficient conditions for the
approximate identity Khrf s to converge to an identity operator when hÑ 0.

Proposition 1. (Gine and Nickl, 2015, Propositions 4.3.31 and 4.3.33, p.368) Let Khrf s
be defined as in (17) with K a measurable function satisfying, for some N P N0,

1.

ż

Rd
sup
vPRd

|Kpv,v ´ uq| }u}N du ă 8,

2. for all v P Rd and all multi-indices α s.t. |α| P t1, . . . , N ´ 1u,

(a)

ż

Rd
Kpv,v ´ uqdu “ 1,

(b)

ż

Rd
Kpv,v ´ uquαdu “ 0.

Then for each m ď N there exists a constant C, depending only on m and K, such that

f P CmpRdq ùñ sup
xPRd

|Khrf spxq ´ fpxq| ď Chm max
|α|“m

sup
xPRd

|Bαfpxq|.

The sense in which Proposition 1 will be used in the proof of Theorem 2 is captured by
the following example:

Example 3. Consider a translation invariant kernel of the form Kpx,x1q “ ϕpx´ x1q for
some ϕ : Rd Ñ p0,8q. Further assume

ş

Rd ϕpuqdu “ 1 and
ş

Rd ϕpuq}u}
2du ă 8. Then K

satisfies the preconditions of Proposition 1 for N “ 2 and hence Khrf s is an approximate
identity operator.
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A.1.2 Proof of Theorem 2

For this section it is convenient to introduce a notational shorthand. Let εw :“ σ´1
w and

εb :“ σ´1
b , so that pwpσ

´1
w wq “ pwpεwwq and pbpσ

´1
b bq “ pbpεbbq. Further introduce the

shorthand pεwp¨q :“ pwpεw¨q and pεbp¨q :“ pbpεb¨q.
Now we turn to the proof of Theorem 2. Denote the topological dual space of SpRdq by

S 1pRdq. The elements of S 1pRdq are called tempered distributions and the generalized Fourier
transform can be considered as the Fourier transform on tempered distributions S 1pRdq
(Grafakos, 2000, p.123-131). Throughout the proof we exchange the order of integrals; we
do so only when the absolute value of the integrand is itself an integrable function, so that
from Fubini’s theorem the interchange can be justified.
Proof [Proof of Theorem 2] The goal is to bound reconstruction error when the Lebesgue
measure in the classical ridgelet transform is replaced by the finite measure

dλσpw, bq “ p2πq
1
2 }xpw}

´1
L1 }ppb}

´1
L1 pwpσ

´1
w wqpbpσ

´1
b bqdwdb.

The reconstruction pR˚σRqrf s of a function f on Rd is defined by the following integral:

pR˚σRqrf spxq

“

ż

Rd`1

ż

Rd
fpx1qψpw ¨ x1 ` bqdx1φpw ¨ x` bqdλσpw, bq

“

ż

Rd
fpx1q

"

p2πq
1
2 }xpw}

´1
L1 }ppb}

´1
L1

ż

R

ż

Rd
ψpw ¨ x1 ` bqφpw ¨ x` bqpεwpwqp

ε
bpbqdwdb

*

dx1.

It is thus clear that pR˚σRqrf s is in some sense a smoothed version of f , and in what follows
we will make use of the theory of approximate identity operators discussed in Appendix A.1.1.
We aim to deal separately with the reconstruction error due to the use of a finite measure
on w and the reconstruction error due to the use of a finite measure on b. To this end, it
will be convenient to (formally) define a new operator R˚σR

pwq by

´

R˚σR
pwq

¯

rf spxq :“

ż

Rd
fpx1q

ˆ

}xpw}
´1
L1

ż

R

ż

Rd
ψpw ¨ x1 ` bqφpw ¨ x` bqpεwpwqdwdb

˙

dx1

which replaces pεb by the Lebesgue measure on R. That is, pR˚σR
pwqqrf s can be intuitively

considered as an idealised version of pR˚σRqrf s where the reconstruction error due to the use
of a finite measure on b is removed. Our analysis will then proceed based on the following
triangle inequality:

sup
xPRd

|fpxq ´ pR˚σRqrf spxq|

ď sup
xPRd

|fpxq ´ pR˚σR
pwqqrf spxq|

loooooooooooooooooomoooooooooooooooooon

p˚q

` sup
xPRd

|pR˚σR
pwqqrf spxq ´ pR˚σRqrf spxq|

loooooooooooooooooooooooomoooooooooooooooooooooooon

p˚˚q

. (18)

Different strategies are required to bound p˚q and p˚˚q and we address them separately next.

Bounding p˚q: A bound on p˚q uses techniques from approximate identity operators
described in Appendix A.1.1. To this end, we show that R˚σR satisfies the preconditions of
Proposition 1 to obtain a bound.
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Define rk : Rd ˆ Rd Ñ R by

rk
`

x,x1
˘

:“ }xpw}
´1
L1

ż

R

ż

Rd
φpw ¨ x` bqψpw ¨ x1 ` bqpwpwqdwdb. (19)

From a change of variable b1 “ w ¨ x` b,

rk
`

x,x1
˘

“ }xpw}
´1
L1

ż

Rd

ż

R
φpb1qψpw ¨ px1 ´ xq ` b1qdb1pwpwqdw. (20)

Next we perform some Fourier analysis similar to that in (Sonoda and Murata, 2017,
Appendix C). From the discussion on generalised Fourier transform in Section 4.1, recall that
pt P L2

locpRdzt0uq is a generalised Fourier transform of function t if there exists an integer

m P N0 such that
ş

Rd
ptpwqhpwqdw “

ş

Rd tpxq
phpxqdx for all h P S2mpRdq. We set t “ φ and

ph “ ψ for our analysis. Part (3) of Assumption 1 implies that ψ P S2mpRdq for some m
depending on the generalised Fourier transform pφ. Let ψ´pbq :“ ψp´bq. From the definition
of the generalised Fourier transform,

ż

R
φpb1qψpw ¨ px1 ´ xq ` b1qdb1 “

ż

R
φpb1qψ´p´b

1 ´w ¨ px1 ´ xqqdb1

“

ż

R
pφpξ1q pψpξ1qe

iξ1w¨px´x1qdξ1, (21)

where we used the fact that xψ´ “ pψ for the real function ψ´pbq for the last equality (Grafakos,
2000, p.109,113).

Note that ξ1 ÞÑ pφpξ1q pψpξ1q belongs to L1pRq from part (3) of Assumption 1 and therefore
(21) exists. Also we have that

xpwpξ1x
1 ´ ξ1xq “ p2πq

´ d
2

ż

Rd
eiξ1w¨px´x

1qpwpwqdw. (22)

Substituting (21) and (22) into (20) gives that

rk
`

x,x1
˘

“ }xpw}
´1
L1

ż

Rd

ż

R
φpb1qψpw ¨ px1 ´ xq ` b1qdb1pwpwqdw

“ }xpw}
´1
L1

ż

R
pφpξ1q pψpξ1q

ż

Rd
eiξ1w¨px´x

1qpwpwqdwdξ1

“ p2πq
d
2 }xpw}

´1
L1

ż

R
pφpξ1q pψpξ1qxpwpξ1x

1 ´ ξ1xqdξ1.

Let kwpvq :“ }xpw}
´1
L1 xpwpvq, so that

rk
`

x,x1
˘

“ p2πq
d
2

ż

R
pφpξq pψpξqkwpξx´ ξx1qdξ. (23)

Recall that pεwpwq “ pwpεwq and let kwε pvq :“ }xpw}
´1
L1

xpεwpvq. Since the Fourier transform

of w ÞÑ pwpεwwq is to be v ÞÑ 1
εdw

xpw

´

v
εw

¯

by standard properties of the Fourier transform

(Grafakos, 2000, p.109,113), kwε pvq “
1
εdw
kw

´

v
εw

¯

. Define

rkε
`

x,x1
˘

:“ }xpw}
´1
L1

ż

R

ż

Rd
φpw ¨ x` bqψpw ¨ x1 ` bqpεwpwqdwdb. (24)
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Noting the similarity between (24) and (19), an analogous argument to that just presented
shows that we may re-express (24) as

rkε
`

x,x1
˘

“ p2πq
d
2

ż

R
pφpξq pψpξqkwε pξx´ ξx

1qdξ “
1

εdw
rk

ˆ

x

εw
,
x1

εw

˙

.

Then

R˚σR
pwqfpxq “

ż

Rd
fpx1qrkε

`

x,x1
˘

dx1 “

ż

Rd
fpx1q

1

εdw
rk

ˆ

x

εw
,
x1

εw

˙

dx1.

Now we will show that rk satisfies the pre-conditions of Proposition 1. That is, setting N “ 2,
we will show that: For all v P Rd and all multi-index α P Nd0 s.t. |α| “ 1,

ż

Rd
sup
vPRd

ˇ

ˇ

ˇ

rkpv,v ´ uq
ˇ

ˇ

ˇ
}u}2 du ă 8, (25)

ż

Rd
rkpv,v ´ uqdu “ 1, (26)

ż

Rd
rkpv,v ´ uquαdu “ 0. (27)

First we verify (25). From (23) we have that

ż

R
sup
vPRd

ˇ

ˇ

ˇ

rkpv,v ´ uq
ˇ

ˇ

ˇ
}u}2 du “ p2πq

d
2

ż

Rd

ˇ

ˇ

ˇ

ˇ

ż

R
pψpξqpφpξ1qk

wpξuqdξ

ˇ

ˇ

ˇ

ˇ

}u}2 du.

ď p2πq
d
2

ż

R

ż

Rd

ˇ

ˇ

ˇ

pψpξqpφpξq
ˇ

ˇ

ˇ
|kwpξuq| }u}2 dudξ.

By the change of variables u1 “ ξu,

ż

R
sup
vPRd

ˇ

ˇ

ˇ

rkpv,v ´ uq
ˇ

ˇ

ˇ
}u}2 du ď p2πq

d
2

ż

Rd

ż

R
| pψpξqpφpξq||kwpu1q|

›

›

›

›

u1

ξ

›

›

›

›

2 1

|ξ|d
du1dξ

ď p2πq
d
2

ż

R

ż

Rd

| pψpξqpφpξq|

|ξ|d`2
|kwpu1q|

›

›u1
›

›

2
du1dξ

ď p2πq
d
2

ż

R

ˇ

ˇ

ˇ

pψpξqpφpξq
ˇ

ˇ

ˇ

|ξ|d`2
dξ

ż

Rd
|kwpu1q|

›

›u1
›

›

2
du1

That this final bound is finite follows from the requirement that
ş

Rp|
pψpξqpφpξq|{|ξ|d`2qdξ ă 8

in Definition 2, together with the assumption that xpw has finite second moment, which
ensures the finiteness of

ş

Rd |k
wpu1q| }u1}2 du1. Next we verify (26). From (23) and the

change of variables u1 “ ξu,
ż

Rd
rkpv,v ´ uqdu “ p2πq

d
2

ż

Rd

ż

R
pψpξqpφpξ1qk

wpξuqdξdu

“ p2πq
d
2

ż

R

pψpξqpφpξq

|ξ|d
dξ

ż

Rd
kwpu1qdu1 “ 1,
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where the final inequality used the facts that
ş

Rd k
wpu1qdu1 “

ş

Rd |k
wpu1q|du1 “ 1 by

construction and p2πq
d
2

ş

R
pψpξqpφpξq
|ξ|d

dξ “ 1 from Definition 2. Finally we verify (25). From

(23) and the change of variables u1 “ ξu,

ż

Rd
rkpv,v ´ uquαdu “ p2πq

d
2

ż

Rd

ż

R
pψpξ1qpφpξ1qk

wpξuqdξuαdu

“ p2πq
d
2

ż

R

pψpξqpφpξq

|ξ|d
1

ξ|α|
dξ

looooooooooooooomooooooooooooooon

p1q

ż

Rd
kwpu1qu1

α
du1

loooooooooomoooooooooon

p2q

.

The term p1q is finite as a consequence of the assumption
ş

R

ˇ

ˇ

ˇ

pψpξqpφpξq
ˇ

ˇ

ˇ

|ξ|d`2 dξ ă 8 in Definition

2. For the term p2q, note that u ÞÑ uα is odd function whenever |α| “ 1. On the other
hand, kw is even function since kw is the Fourier transform of an even probability density
pw. Thus the function u ÞÑ kwpuquα, which is given by the product of even and odd
functions, is odd. For any integrable odd function h : Rd Ñ R,

ş

Rd hpuqdu “ 0 holds as
ş

Rd`
hpuqdu “ ´

ş

Rd´
hpuqdu where Rd` and Rd´ are positive and negative half Euclidean

space. The function u ÞÑ kwpuquα is integrable since kw has the finite second moment and
|α| “ 1. This implies

ş

Rd
rkpv,v ´ uquαdu “ 0.

Thus rk satisfies the condition in Proposition 1 and, with Khrf s “ R˚σR
pwqf , we obtain

for some C1 ą 0 depending on k̃ but not f ,

sup
xPRd

|fpxq ´R˚σR
pwqfpxq| ď C1M1pfqεw. (28)

Bounding p˚˚q: A bound on p˚˚q makes use of Auxiliary Lemma 1. Define kε : RdˆRd Ñ R
by

kεpx,x
1q :“ p2πq

1
2 }xpw}

´1
L1 }ppb}

´1
L1

ż

R

ż

Rd
ψpw ¨ x1 ` bqφpw ¨ x` bqpεwpwqp

ε
bpbqdwdb. (29)

so thatR˚σRfpxq “
ş

Rd fpx
1qkεpx,x

1qdx1 and recall thatR˚σR
pwqfpxq “

ş

Rd fpx
1qrkεpx,x

1qdx1

where rkε is defined by (24). The second error term is

sup
xPRd

|R˚σR
pwqfpxq ´R˚σRfpxq| “ sup

xPRd

ˇ

ˇ

ˇ

ˇ

ż

Rd
fpx1qrkεpx,x

1qdx1 ´

ż

Rd
fpx1qkεpx,x

1qdx1
ˇ

ˇ

ˇ

ˇ

“ sup
xPRd

ˇ

ˇ

ˇ

ˇ

ż

Rd
fpx1q

´

rkεpx,x
1q ´ kεpx,x

1q

¯

dx1
ˇ

ˇ

ˇ

ˇ

.

Let ∆kpx,x1q :“ rkεpx,x
1q ´ kεpx,x

1q for short-hand. By the definition of rkε and kε,

∆kpx,x1q “ }xpw}
´1
L1

ż

R

ż

Rd
ψpw ¨ x1 ` bqφpw ¨ x` bqpεwpwq

!

1´ p2πq
1
2 }ppb}

´1
L1 p

ε
bpbq

)

dwdb.
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Next we upper bound ∆kpx,x1q. Substituting the identity established in Lemma 1 yields

∆kpx,x1q “ εbp2πq
1
2 }xpw}

´1
L1 }ppb}

´1
L1

ż

R

ż

Rd
ψpw ¨ x1 ` bqφpw ¨ x` bqpεwpwq

ż 1

0
bBpbptεbbqdtdwdb

“ εbp2πq
1
2 }xpw}

´1
L1 }ppb}

´1
L1

ż 1

0

ż

Rd

ż

R
bφpw ¨ x` bqψpw ¨ x1 ` bqBpbptεbbqdb

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

p3q

pεwpwqdwdt.

By Assumption 4, pb has bounded first derivative. Thus:

|p3q| ď }Bpb}L8

ż

R
|bφpw ¨ x` bqψpw ¨ x1 ` bq|db1

By a change of variable b1 “ w ¨ x1 ` b,

|p3q| ď }Bpb}L8

ż

R
|b1 ´w ¨ x1||φpw ¨ px´ x1q ` b1qψpb1q|db1

ď }Bpb}L8

ż

R
p|b1| ` }w}2}x

1}2q|φpw ¨ px´ x
1q ` b1qψpb1q|db1

where the triangle inequality and Cauchy-Schwartz inequality have been applied. Then it is
easy to see

|p3q| ď }Bpb}L8p1` }x
1}2qp1` }w}2q

ż

R
p1` |b1|q|φpw ¨ px´ x1q ` b1qψpb1q|db1 (30)

By the assumption φ is bounded,

|p3q| ď }Bpb}L8}φ}L8p1` }x
1}2qp1` }w}2q

ż

R
p1` |b1|q|ψpb1q|db1 (31)

Since ψ is Schwartz function, the integral is finite. Let Cψ :“
ş

Rp1 ` |b|q|ψpbq|db to see
|p3q| ď }Bpb}L8}φ}L8CψCpwp1` }x

1}2qp1` }w}2q. From this upper bound of |p3q| we have

∆kpx,x1q “ εbp2πq
1
2 }xpw}

´1
L1 }ppb}

´1
L1

ż 1

0

ż

Rd
|p3q|pεwpwqdwdt

ď εbp2πq
1
2 }xpw}

´1
L1 }ppb}

´1
L1 }Bpb}L8}φ}L8CψCpwp1` }x

1}2q

ż

Rd
p1` }w}2qp

ε
wpwqdw

ż 1

0
dt

For the integral
ş

Rdp1` }w}2qp
ε
wpwqdw, by a change of variable w1 “ εww,

ż

Rd
p1` }w}2qp

ε
wpwqdw “

ż

Rd

ˆ

1

εdw
`
}w1}2

εd`1
w

˙

pwpw
1qdw1.

Recall that pw was assumed to have finite second moment. Let Cpw :“ max
`

1,
ş

Rd }w}2pwpwqdw
˘

to see
ż

Rd

ˆ

1

εdw
`
}w1}2

εd`1
w

˙

pwpw
1qdw1 ď Cpw

ˆ

1

εdw
`

1

εd`1
w

˙

“ Cpw
1

εdw

ˆ

1`
1

εw

˙

.
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Plugging this upper bound in ∆kpx,x1q,

∆kpx,x1q ď p2πq
1
2 }xpw}

´1
L1 }ppb}

´1
L1 }Bpb}L8}φ}L8CψCpwp1` }x

1}2q
1

εdw

ˆ

1`
1

εw

˙

εb.

The original error term is then bounded as

p˚˚q “ sup
xPRd

ˇ

ˇ

ˇ

ˇ

ż

Rd
fpx1q∆kpx,x1qdx1

ˇ

ˇ

ˇ

ˇ

ď p2πq
1
2 }xpw}

´1
L1 }ppb}

´1
L1 }Bpb}L8}φ}L8CψCpw

ż

Rd
p1` }x1}2q|fpx

1q|dx1
1

εdw

ˆ

1`
1

εw

˙

εb.

From the assumption of f in Theorem 2, B1pfq “
ş

Rdp1 ` }x}2q|fpxq|dx ă 8. Setting

C2 :“ p2πq
1
2 }xpw}

´1
L1 }ppb}

´1
L1 }Bpb}L8}φ}L8CψCpw gives

p˚˚q ď C2B1pfq
1

εdw

ˆ

1`
1

εw

˙

εb. (32)

Overall Bound: Substituting the results of (28) and (32) into (18), for some C ą 0,

sup
xPRd

|fpxq ´R˚σRfpxq| ď C maxpM1pfq, B1pfqq

"

εw `
1

εdw

ˆ

1`
1

εw

˙

εb

*

(33)

where C only depends on φ, ψ, pw, pb. Setting σw “ ε´1
w and σb “ ε´1

b , the main convergence
result is obtained.

A.1.3 Auxiliary Lemma 1

The following technical lemma was exploited in the proof of Theorem 2:

Lemma 1. For pb in the setting of Assumption 4, we have that

1´ p2πq
1
2 }ppb}

´1
L1 p

ε
bpbq “ εbp2πq

1
2 }ppb}

´1
L1

ż 1

0
bBpbptεbbqdt.

Proof The result will be established by proving (a) 1 “ p2πq
1
2 }ppb}

´1
L1 p

ε
bp0q and (b) pbp0q ´

pbpεbbq “ εb
ş1
0 bBpbptεbbqdt, which are algebraically seen to imply the stated result.

Part (a): Recall that the Fourier inversion gpxq “ p2πq´
d
2

ş

R pgpξqe
iξ¨xdξ holds for any

function g P L1pRdq s.t. pg P L1pRdq. We use the fact gp0q “ p2πq´
d
2 }pg}L1 for g P L1pRdq

s.t. pg P L1pRdq and pg is positive, which is obtained by substituting x “ 0 into the

Fourier inversion p2πq´
d
2

ş

Rd pgpwqe
iw¨0dw “ p2πq´

d
2

ş

Rd pgpwqdw. Recall that pεbpbq “ pbpεbbq.
From standard properties of the Fourier transform (Grafakos, 2000, p.109,113), the Fourier

transform of b ÞÑ pbpεbbq is given as ξ ÞÑ 1
εb
ppb

´

ξ
εb

¯

and ppb is positive by the assumption.

Hence, pεbp0q “ p2πq
´ 1

2 }ppεb}L1 “ p2πq´
1
2

›

›

›

1
εb
ppb

´

¨
εb

¯›

›

›

L1
. Since the L1pRq norm is invariant
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to the scaling of function i.e.
›

›

›

1
εb
ppb

´

¨
εb

¯›

›

›

L1
“ }ppb}L1 , we obtain pεbp0q “ p2πq

´ 1
2 }ppb}L1 as

required.

Part (b): We use the fact that the equation gpyq´ gpxq “
ş1
0py´xqBgpx´ tpy´xqqdt holds

for g P C1pRq (Gine and Nickl, 2015, p.302,304) to see that

pbp0q ´ pbpεbbq “

ż 1

0
p´εbbqBpbpp1´ t

1qεbbqdt
1 “ εb

ż 1

0
bBpbptεbbqdt

where change of variable t “ 1´ t1 is applied. This holds since pb P C
1pRq.

A.2 Proof of Theorem 1

This section is dedicated to the proof of Theorem 1. It is divided into three parts; in
Appendix A.2.1 we state technical lemmas that will be useful; in Appendix A.2.2 we state
and prove an intermediate result concerning the discretised ridgelet transform, then in
Appendix A.2.3 we present the proof of Theorem 1.

A.2.1 Technical Lemmas

The following technical lemmas will be useful for the proof of Theorem 1.

Lemma 2. Let X be a bounded subset of Rd. Let g : XˆRp Ñ R be such that gpx, ¨q : Rp Ñ R
are measurable for all x P X . Let θ,θ1, ...,θn be independent samples from a distribution P
on Rp. Assume that there exists a measurable function G : Rp Ñ R such that ErGpθq2s ă 8
and

|gpx,θq ´ gpx1,θq| ď Gpθq}x´ x1}2 for all x,x1 P X . (34)

Then

E

«

sup
xPX

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

gpx,θiq ´ Ergpx,θqs

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď
C
?
n

a

E rGpθq2s.

where C is a constant that depends only on X .

Proof Let gx :“ gpx, ¨q for shorthand and let G :“ tgx
ˇ

ˇx P X u. For any gx, gx1 P G, define

a (random) pseudo metric ρnpgx, gx1q :“
b

1
n

řn
i“1 pgxpθiq ´ gx1pθiqq

2 and the diameter

Dn :“ supx,x1PX ρnpgx, gx1q. Let NpG, ρn, εq denotes the covering number of the set G by
ε-ball under the metric ρn (Gine and Nickl, 2015, p.41). Then by (Gine and Nickl, 2015,
Theorem 3.5.1, Remark 3.5.2, p.185),

E

«

sup
xPX

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

gxpθiq ´ Ergxp¨qs

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď
8
?

2
?
n
E
„
ż Dn

0

a

log 2NpG, ρn, εqdε
looooooooooooooomooooooooooooooon

p˚q



Here we reduced the assumption 0 P G by the discussion in (Wainwright, 2019, p.135). Let

}G}ρn “
b

1
n

řn
i“1Gpθiq

2. By (Kosorok, 2008, Lemma 9.18, p.166) and (van der Vaart,
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1998, Example 19.7, p.271), the covering number is bounded as NpG, ρn, εq ď
´

K}G}ρn
ε

¯d

where K is a constant depending only on X . Hence p˚q ď
?
d
şDn
0

b

log
2K}G}ρn

ε dε. By
Cauchy-Schwartz inequality,

?
d

ż Dn

0

c

log
2K}G}ρn

ε
dε ď

a

dDn

d

ż Dn

0
log

2K}G}ρn
ε

dε.

By calculating the integral,

p˚q ď
a

dDn

d

Dn

ˆ

1` log
2K}G}ρn

Dn

˙

“
?
dDn

d

1` log
2K}G}ρn

Dn
.

By the preceding assumption (34),

Dn “ sup
x,x1PX

g

f

f

e

1

n

n
ÿ

i“1

pgxpθiq ´ gx1pθiqq
2
ď sup
x,x1PX

g

f

f

e

1

n

n
ÿ

i“1

Gpθiq2}x´ x1}22 “ R}G}ρn .

where R “ supx,x1PX }x ´ x
1}2. We can set K so that R ď 2K without loss of generality,

then we have
2K}G}ρn

Dn
ě 1 ô log

2K}G}ρn
Dn

ě 0 which implies

?
dDn

d

1` log
2K}G}ρn

Dn
ď
?
dDn

ˆ

1` log
2K}G}ρn

Dn

˙

.

By the inequality 1` log z ď z for all z ą 0, we have 1` log
2K}G}ρn

Dn
ď

2K}G}ρn
Dn

and

p˚q ď 2
?
dK}G}ρn .

Then by Jensen’ inequality,

Erp˚qs “ 2
?
dKE

»

–

g

f

f

e

1

n

n
ÿ

i“1

Gpθiq2

fi

fl ď 2
?
dK

g

f

f

eE

«

1

n

n
ÿ

i“1

Gpθiq2

ff

“ 2
?
dK

a

E rGpθq2s.

This completes the proof.

Lemma 3. For any b-uniformly bounded class of function F and any integer n ě 1, we
have, with probability at least 1´ δ,

sup
fPF

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

fpXiq ´ ErfpXqs

ˇ

ˇ

ˇ

ˇ

ˇ

ď E

«

sup
fPF

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

fpXiq ´ ErfpXqs

ˇ

ˇ

ˇ

ˇ

ˇ

ff

`
b
a

2 log δ´1

?
n

.

Proof From equation (4.16) in Wainwright (2019), with probability at least 1´exp
´

´nδ12

2b2

¯

sup
fPF

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

fpXiq ´ ErfpXqs

ˇ

ˇ

ˇ

ˇ

ˇ

ď E

«

sup
fPF

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

fpXiq ´ ErfpXqs

ˇ

ˇ

ˇ

ˇ

ˇ

ff

` δ1.
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Setting δ1 “
b
?

2 log δ´1
?
n

yields the result.

Lemma 4. Let S be a positive constant and h P C1pr´S, Ssdq. For grid points pxiq
D
i“1 on

r´S, Ssd corresponding to a Cartesian product of left endpoint rules, we have that

ˇ

ˇ

ˇ

ˇ

ˇ

ż

r´S,Ssd
hpxqdx´

p2Sqd

D

D
ÿ

i“1

hpxiq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C

D
1
d

max
|α|“1

sup
xPr´S,Ssd

|Bαhpxq|. (35)

where C is a constant independent of h.

Proof Let r :“ 2S{ d
?
D. For xi “ pxi,1, . . . , xi,dq, let Ri :“ rxi,1, xi,1`rsˆ¨ ¨ ¨ˆrxi,d, xi,d`rs

for i “ 1, . . . , D. Since pxiq
D
i“1 are grid points on r´S, Ssd corresponding to a Cartesian

product of left endpoint rules, the domain r´S, Ssd can be decomposed as r´S, Ssd “
Ri ‘ ¨ ¨ ¨ ‘RD, meaning

ż

r´S,Ssd
hpxqdx “

D
ÿ

i“1

ż

Ri

hpxqdx.

Denote the original error in (35) by p˚q. Then noting rd “
ş

Ri
dx,

p˚q “

ˇ

ˇ

ˇ

ˇ

ˇ

D
ÿ

i“1

ż

Ri

hpxqdx´ rd
D
ÿ

i“1

hpxiq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

D
ÿ

i“1

ż

Ri

phpxq ´ hpxiqqdx

ˇ

ˇ

ˇ

ˇ

ˇ

By the mean value theorem, there exists x˚i for i “ 1, . . . , D such that

p˚q “

ˇ

ˇ

ˇ

ˇ

ˇ

D
ÿ

i“1

ż

Ri

∇hpx˚i q ¨ px´ xiqdx

ˇ

ˇ

ˇ

ˇ

ˇ

.

where ∇h is the gradient vector of h. Calculating the integral and taking supremum of ∇h

p˚q ď

D
ÿ

i“1

d

2
rd`1 max

|α|“1
sup

xPr´S,Ssd
|Bαhpxq| “

d

2
Drd`1 max

|α|“1
sup

xPr´S,Ssd
|Bαhpxq|.

Substituting r “ 2S{ d
?
D and setting C :“ dp2Sqd`1{2 concludes the proof.

Lemma 5. For a non-negative random variable X such that ErXs ă 8, it holds with
probability at least 1´ δ that X ď ErXs{δ.

Proof From the Markov inequality we have that PrX ě ts ď ErXs
t . Taking a complement

of the probability and setting δ “ ErXs
t , we obtain the result.
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A.2.2 An Intermediate Ridgelet Reconstruction Result

The aim of this section is to establish an analogue of Theorem 2 that holds when the ridgelet
operator R˚σR is discretised using cubature rules, as in (12). The purpose of Theorem 3 is
to guarantee an accurate reconstruction with high probability. This will be central to the
proof of Theorem 1. We introduce the generalisation of Assumption 3.

Assumption 5. For densities pw on Rd and pb on R satisfying Assumption 4, define
scaled densities pw,σpwq :“ σ´dw pwpσ

´1
w wq and pb,σpbq :“ σ´1

b pbpσ
´1
b bq with scaling constants

0 ă σw ă 8 and 0 ă σb ă 8. The cubature nodes twi, biu
N
i“1 are independently sampled

from pw,σ ˆ pb,σ and vi :“ Z{N for all i “ 1, . . . , N , where Z :“ p2πq
1
2σdwσb}xpw}

´1
L1 }ppb}

´1
L1 .

Note that Assumption 3 is recovered by setting Gaussians with variances σ2
wIdˆd and

σ2
b to the scaled densities pw,σ and pb,σ. Recall M1pfq “ max|α|ď1 supxPRd |B

αfpxq| and
M˚

1 pfq “ max|α|ď1 supxPr´S,Ssd |B
αfpxq|.

Theorem 3. Let Iσ,D,N is given by (12) under Assumption 2 and 5. Further, assume φ
is Lφ-Lipschitz continuous. For any f P C1pRdq with M˚

1 pfq ă 8, with probability at least
1´ δ,

sup
xPX

|fpxq ´ Iσ,D,Nfpxq|

ď CM˚
1 pfq

#

1

σw
`
σdwpσw ` 1q

σb
`
σbσ

d
wpσw ` 1q

D
1
d

`
σbσ

d
wpσw `

a

log δ´1q
?
N

+

where C is a constant that may depend on X ,1, φ, ψ, pw, pb but does not depend on f ,
σw, σb, δ.

Proof Under Assumption 2, specifically uj “ p2Sq
dD´1

1pxjq and vi “ Z{N , we have that

Iσ,D,Nfpxq “
N
ÿ

i“1

Z

N

˜

p2Sqd

D

D
ÿ

j“1

1pxjqfpxjqψpwi ¨ xj ` biq

¸

φpwi ¨ x` biq.

and we formally define

Iσfpxq :“

ż

R

ż

Rd

ˆ
ż

Rd
1px1qfpx1qψpw ¨ x1 ` bqdx1

˙

φpw ¨ x` bqZpw,σpwqpb,σpbqdwdb,

Iσ,Dfpxq :“

ż

R

ż

Rd

˜

p2Sqd

D

D
ÿ

j“1

1px1jqfpx
1
jqψpw ¨ x

1
j ` bq

¸

φpw ¨ x` bqZpw,σpwqpb,σpbqdwdb.

The error will be decomposed by the triangle inequality,

sup
xPX

|fpxq ´ Iσ,D,Nfpxq|

ď sup
xPX

|fpxq ´ Iσfpxq|
looooooooooomooooooooooon

p˚q

` sup
xPX

|Iσfpxq ´ Iσ,Dfpxq|
loooooooooooooomoooooooooooooon

p˚˚q

` sup
xPX

|Iσ,Dfpxq ´ Iσ,D,Nfpxq|
looooooooooooooooomooooooooooooooooon

p˚˚˚q

. (36)
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Bounding p˚q: Let fclippxq :“ 1pxqfpxq. Since fclippxq “ fpxq for all x P X and our
construction ensures that Iσfpxq “ R˚σRfclippxq, we have that

p˚q “ sup
xPX

|fpxq ´ Iσfpxq| “ sup
xPX

|fclippxq ´R
˚
σRfclippxq| .

In order to apply Theorem 2 for p˚q, the two quantities M1pfclipq and Bpfclipq must be shown
to be finite. For the first quantity, we have

M1pfclipq ď sup
xPRd

|p1fqpxq| ` max
|α|“1

sup
xPRd

|Bαp1fqpxq|

“ sup
xPRd

|1pxqfpxq| ` max
|α|“1

sup
xPRd

|1pxqBαfpxq ` fpxqBα1pxq|

ď sup
xPRd

|1pxqfpxq| ` max
|α|“1

sup
xPRd

|1pxqBαfpxq| ` max
|α|“1

sup
xPRd

|fpxqBα1pxq| .

Recall that the infinitely differentiable function 1 has the property 1pxq “ 1 if x P X and
1pxq “ 0 if x R r´S, Ssd, meaning that 1pxq “ 0 and Bα1pxq “ 0 for all x R r´S, Ssd. By
the assumption f P C1pRdq, the all terms 1pxqfpxq, 1pxqBαfpxq, and fpxqBα1pxq vanish
outside of x P r´S, Ssd. Therefore the following inequality holds:

M1pfclipq ď sup
xPr´S,Ssd

|1pxqfpxq| ` max
|α|“1

sup
xPr´S,Ssd

|1pxqBαfpxq| ` max
|α|“1

sup
xPr´S,Ssd

|fpxqBα1pxq| .

ď sup
xPr´S,Ssd

|1pxq| ˆ sup
xPr´S,Ssd

|fpxq| `

sup
xPr´S,Ssd

|1pxq| ˆ max
|α|“1

sup
xPr´S,Ssd

|Bαfpxq| ` sup
xPr´S,Ssd

|fpxq| ˆ max
|α|“1

sup
xPr´S,Ssd

|Bα1pxq|

“ 3M˚
1 p1qM

˚
1 pfq ă 8. (37)

The quantity B1pfclipq is clearly bounded since fclippxq is compactly support on r´S, Ssd:

B1pfclipq “

ż

r´S,Ssd
fclippxqp1` }x}2qdx

ď

ż

r´S,Ssd
M1pfclipq ¨ p1` Sqdx “ p1` Sqp2Sq

dM1pfclipq ă 8. (38)

Thus we may apply Theorem 2 to obtain

p˚q ď C 11 maxpM1pfclipq, B1pfclipqq

ˆ

1

σw
`
σdwpσw ` 1q

σb

˙

for some constant C 11 ą 0 depending only on φ, ψ, pw, pb. Let C1 :“ p1` Sqp2SqdC 11, so that
from (38) we have

p˚q ď C1M1pfclipq

ˆ

1

σw
`
σdwpσw ` 1q

σb

˙

.

Bounding p˚˚q: Let

hw,bpxq :“ fclippxq
ψpw ¨ x` bq

1` }w}2
.
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Since fclip vanishes outside r´S, Ssd, so does hw,b and therefore

Iσfpxq ´ Iσ,Dfpxq “

ż

R

ż

Rd

"
ż

r´S,Ssd
hw,bpx

1qdx1 ´
2d

D

D
ÿ

j“1

hw,bpxjq

loooooooooooooooooooooooomoooooooooooooooooooooooon

(a)

*

ˆ

p1` }w}2qφpw ¨ x` bqZpw,σpwqpb,σpbqdwdb.

Our aim here to show that the collection of functions hw,b indexed by w and b has
derivatives that are uniformly bounded on r´S, Ssd, in order that Lemma 4 can be applied
to (a). Let α be a multi-index such that |α| “ 1. By the chain rule of differentiation,

Bαhw,bpxq “
´

Bαfclippxqψpw ¨ x` bq ` fclippxqB
αψpw ¨ x` bq

¯ 1

1` }w}2

“

´

Bαfclippxqψpw ¨ x` bq ` fclippxqw
αpBψqpw ¨ x` bq

¯ 1

1` }w}2

where we recall that wα “ wi for the non zero element index i of α and that Bψ is
the first derivative of ψ : R Ñ R. Since |α| “ 1, we have wα ď }w}2. In addition,
Bαfclippxq ďM1pfclipq and fclippxq ďM1pfclipq for all x P r´S, Ssd by definition. Therefore

Bαhw,bpxq ďM1pfclipq

ˆ

1

1` }w}2
ψpw ¨ x` bq `

}w}2
1` }w}2

pBψqpw ¨ x` bq

˙

.

Since ψ P SpRq, 1
1`}w}2

ď 1, and }w}2
1`}w}2

ď 1 for all w P Rd, we further have

Bαhw,bpxq ď 2M1pfclipqM1pψq,

which is a uniform bound, independent of x P r´S, Ssd, w P Rd, b P R, and α such that
|α| “ 1. Applying Lemma 4 for the term (a) with the grid points pxiq

D
i“1 on r´S, Ssd,

ˇ

ˇ

ˇ

ˇ

ˇ

ż

r´S,Ssd
hw,bpx

1qdx1 ´
2d

D

D
ÿ

j“1

hw,bpxjq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C 1Q

D
1
d

max
|α|“1

sup
x1Pr´S,Ssd

|Bαhw,bpx
1q|

ď
2C 1QM1pfclipqM1pψq

D
1
d

.

where C 1Q is a constant independent of hw,b. Therefore setting CQ “ 2C 1Q we have that

|Iσfpxq ´ Iσ,Dfpxq|

ď
CQM1pfclipqM1pψq

D
1
d

ż

R

ż

Rd

ˇ

ˇ

ˇ
p1` }w}2qφpw ¨ x` bqZpw,σpwqpb,σpbq

ˇ

ˇ

ˇ
dwdb

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

(b)

, (39)

where we move CQM1pψqM1pfclipq outside the integral as they are w and b-independent.
It remains to bound (b). By the assumption φ P C˚0 pRq,

(b) ď Z}φ}L8

ż

Rd
p1` }w}2qpw,σpwqdw

ż

R
pb,σpbqdb “ Z}φ}L8

ż

Rd
p1` }w}2qpw,σpwqdw,

39



Matsubara, Oates, and Briol

where
ş

R pb,σpbqdb “ 1 since pb.σ is probability density. Since pw,σpwq “
1
σdw
pw

´

w
σw

¯

, by a

change of variable w1 “ σ´1
w w,

(b) ď Z}φ}L8

ż

Rd
p1` σw}w

1}2qpwpw
1qdw1.

Since pw has the finite second moment, let Cpw :“ max
`

1,
ş

Rd }w}
2
2pwpwqdw

˘

to see

(b) ď Z}φ}L8Cpwp1` σwq.

Recalling Z “ p2πq
1
2 }xpw}

´1
L1 }ppb}

´1
L1 σ

d
wσb,

(b) ď p2πq
1
2 }xpw}

´1
L1 }ppb}

´1
L1 }φ}L8Cpwσbσ

d
wpσw ` 1q.

By plugging the upper bound of (b) in and setting C2 :“ p2πq
1
2 }xpw}

´1
L1 }ppb}

´1
L1 }φ}L8M1pψqCpwCQ,

we arrive at the overall bound

sup
xPX

|Iσfpxq ´ Iσ,Dfpxq| ď C2M1pfclipq
σbσ

d
wpσw ` 1q

D
1
d plogDq´1

.

Bounding p˚ ˚ ˚q: Define τφpx,w, bq :“
´

p2Sqd

D

řD
j“1 fclippx

1
jqψpw ¨ x

1
j ` bq

¯

φpw ¨ x ` bq.

Then the term p˚ ˚ ˚q can be written as

sup
xPX

|Iσ,Dfpxq ´ Iσ,D,Nfpxq| “ Z sup
xPX

ˇ

ˇ

ˇ

ˇ

ˇ

E
pw,bq

rτφpx,w, bqs ´
1

N

N
ÿ

i“1

τφpx,wi, biq

ˇ

ˇ

ˇ

ˇ

ˇ

.

We apply Lemma 2 and Lemma 3 to obtain the upper bound of p˚ ˚ ˚q. In order to apply
Lemma 2, it is to be verified that there exists G : Rd`1 Ñ R such that Epw,bqrGpw, bq2s ă 8
and |τφpx,w, bq ´ τφpx

1,w, bq| ď Gpw, bq}x´ x1}2.

Recalling that }fclip}L8 ďM1pfclipq and that φ was assumed to be Lipschitz with constant
denoted Lφ, the difference of τφ is given by

|τφpx,w, bq ´ τφpx
1,w, bq| “

ˇ

ˇ

ˇ

ˇ

ˇ

˜

p2Sqd

D

D
ÿ

j“1

fclippx
1
jqψpw ¨ x

1
j ` bq

¸

`

φpw ¨ x` bq ´ φpw ¨ x1 ` bq
˘

ˇ

ˇ

ˇ

ˇ

ˇ

ď p2SqdM1pfclipq}ψ}L8Lφ
ˇ

ˇw ¨ px´ x1q
ˇ

ˇ

ď p2SqdM1pfclipq}ψ}L8Lφ}w}2}x´ x
1}2

where the final inequality used Cauchy-Schwartz. Let Gpw, bq :“M1pfclipq}ψ}L8Lφ}w}2, so
that

E
pw,bq

rGpw, bq2s “ p2Sq2dM1pfclipq
2}ψ}2L8L

2
φ

ż

Rd
}w}22pw,σpwqdw

ż

R
pb,σpbqdb

“ p2Sq2dM1pfclipq
2}ψ}2L8L

2
φ

ż

Rd
}w}22pw,σpwqdw.
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Since pw,σpwq “
1
σdw
pw

´

w
σw

¯

, by a change of variablew1 “ σ´1
w w, we have

ş

Rd }w}
2
2pw,σpwqdw “

σ2
w

ş

Rd }w
1}22pwpw

1qdw1. By the assumption that pw has the finite second moment, let
V 2
pw :“

ş

Rd }w}
2
2pwpwqdw to see

E
pw,bq

rGpw, bq2s ď
!

p2SqdM1pfclipq}ψ}L8LφVpwσw

)2
.

By Lemma 2, for some constant CX only depending on X ,

E

«

sup
xPX

ˇ

ˇ

ˇ

ˇ

ˇ

E
pw,bq

rτφpx,w, bqs ´
1

N

N
ÿ

i“1

τφpx,wi, biq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď

CX

b

Epw,bqrGpw, bq2s
?
N

ď
CX p2Sq

dM1pfclipq}ψ}L8LφVpwσw?
N

.

(40)

By the upper bound
´

p2Sqd

D

řD
j“1 fclippx

1
jqψpw ¨ x

1
j ` bq

¯

ď p2SqdM1pfclipq}ψ}L8 and the

assumption φ P C˚0 pRq, we have τφpx,w, bq ď p2Sq
dM1pfclipq}ψ}L8}φ}L8 for all px,w, bq P

Rd ˆ Rd ˆ R. From Lemma 3, we have, with probability at least 1´ δ,

sup
xPX

|Iσ,Dfpxq ´ Iσ,D,Nfpxq| ď Zp2SqdM1pfclipq}ψ}L8

˜

CXLφVpwσw?
N

`

?
2}φ}L8

a

log δ´1

?
N

¸

.

Let C3 :“ p2πq
1
2 p2Sqd}xpw}

´1
L1 }ppb}

´1
L1 }ψ}L8 max

`

CXLφVpw ,
?

2}φ}L8
˘

where we recall that

Z “ p2πq
1
2 }xpw}

´1
L1 }ppb}

´1
L1 σ

d
wσb. Then we have

sup
xPX

|Iσ,Dfpxq ´ Iσ,D,Nfpxq| ď C3M1pfclipq

˜

σbσ
d
wpσw `

a

log δ´1q
?
N

¸

.

For all bounds of p˚q, p˚˚q and p˚ ˚ ˚q, recall that Mpfclipq ď 3M˚
1 p1qM

˚
1 pfq from (37).

Then combining p˚q, p˚˚q and p˚ ˚ ˚q and setting C :“ 3M˚
1 p1qpC1`C2`C3q completes the

proof.

A.2.3 Proof of Theorem 1

Proof For a bivariate function gpx,yq we let Ixσ,D,Ngpx,yq denote the action of Iσ,D,N on

the first argument of g and we let Iyσ,D,Ngpx,yq denote the action of Iσ,D,N on the second

argument of g. To reduce notation, in this proof we denote Ef |w,br¨s :“ Er¨ | twi, biu
N
i“1s.

For fixed x,y we let

paq :“ Ef |w,b rpfpxq ´ Iσ,D,Nfpxqq pfpyq ´ Iσ,D,Nfpyqqs
“ Ef |w,brfpxqfpyqs ´ Ef |w,brIσ,D,Nfpxqfpyqs ´ Ef |w,brfpxqIσ,D,Nfpyqs

`Ef |w,brIσ,D,NfpxqIσ,D,Nfpyqs.
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Recall that Ef |w,brfpxqfpyqs “ kpx,yq `mpxqmpyq for f „ GPpm, kq. Then

paq “ Ef |w,brfpxqfpyqs ´ Ixσ,D,NEf |w,brfpxqfpyqs ´ I
y
σ,D,NEf |w,brfpxqfpyqs

`Ixσ,D,NI
y
σ,D,NEf |w,brfpxqfpyqs

“ pkpx,yq `mpxqmpyqq ´ Ixσ,D,N pkpx,yq `mpxqmpyqq

´Iyσ,D,N pkpx,yq `mpxqmpyqq ` I
x
σ,D,NI

y
σ,D,N pkpx,yq `mpxqmpyqq

“ pmpxqmpyq ´ Iσ,D,Nmpxqmpyq ´mpxqIσ,D,Nmpyq ` Iσ,D,NmpxqIσ,D,Nmpyqq

`

´

kpx,yq ´ Ixσ,D,Nkpx,yq ´ I
y
σ,D,Nkpx,yq ` I

x
σ,D,NI

y
σ,D,Nkpx,yq

¯

Let hpx,yq :“ kpx,yq ´ Ixσ,D,Nkpx,yq in order to see

paq “ pmpxq ´ Iσ,D,Nmpxqqpmpyq ´ Iσ,D,Nmpyqq `
´

hpx,yq ´ Iyσ,D,Nhpx,yq
¯

.

Therefore the error is

sup
xPX

c

Ef |w,b
”

pfpxq ´ Iσ,D,Nfpxqq
2
ı

ď sup
xPr´S,Ssd

c

Ef |w,b
”

pfpxq ´ Iσ,D,Nfpxqq
2
ı

ď sup
xPr´S,Ssd

|mpxq ´ Iσ,D,Nmpxq|

looooooooooooooooooomooooooooooooooooooon

p˚q

` sup
xPr´S,Ssd

ˇ

ˇ

ˇ
hpx,xq ´ Iyσ,D,Nhpx,xq

ˇ

ˇ

ˇ

1
2

loooooooooooooooooooooomoooooooooooooooooooooon

p˚˚q

In the remainder we bound p˚q and p˚˚q.

Bounding p˚q: Applying Theorem 3, we immediately have, with probability at least 1´ δ
with respect to the random variables twi, biu

N
i“1,

p˚q ď C1M
˚
1 pmq

˜

1

σw
`
σdwpσw ` 1q

σb
`
σbσ

d
wpσw ` 1q

D
1
d

`
σbσ

d
wpσw `

a

log δ´1q
?
N

¸

for some constant C1 independent of δ, σx, σb, D,N and m.

Bounding p˚˚q: It is clear to see

p˚˚q “

#

sup
xPr´S,Ssd

ˇ

ˇ

ˇ
hpx,xq ´ Iyσ,D,Nhpx,xq

ˇ

ˇ

ˇ

+
1
2

ď

#

sup
xPr´S,Ssd

sup
yPr´S,Ssd

ˇ

ˇ

ˇ
hpx,yq ´ Iyσ,D,Nhpx,yq

ˇ

ˇ

ˇ

+
1
2

(41)

First, with respect to the supremum of y, from Theorem 3, with probability at least 1´ δ
with respect to the random variables twi, biu

N
i“1,

sup
yPr´S,Ssd

ˇ

ˇ

ˇ
hpx,yq ´ Iyσ,D,Nhpx,yq

ˇ

ˇ

ˇ

ď C 12M
˚
1 phpx, ¨qq

˜

1

σw
`
σdwpσw ` 1q

σb
`
σbσ

d
wpσw ` 1q

D
1
d

`
σbσ

d
wpσw `

a

log δ´1q
?
N

¸

(42)
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where M˚
1 phpx, ¨qq is given as

M˚
1 phpx, ¨qq “ max

|β|ď1
sup

yPr´S,Ssd
|B0,βhpx,yq|. (43)

Second, |M˚
1 phpx, ¨qq| is to be bounded. Recall hpx,yq “ kpx,yq ´ Ixσ,D,Nkpx,yq to

see B0,βhpx,yq “ B0,βkpx,yq ´ Ixσ,D,NB
0,βkpx,yq. For fixed y P r´S, Ssd and |β| ď 1,

B0,βhpx,yq is upper bounded for all x P r´S, Ssd from Theorem 3: with probability at least
1´ δ with respect to the random variables twi, biu

N
i“1,

B0,βhpx,yq ď sup
xPr´S,Ssd

ˇ

ˇ

ˇ
B0,βhpx,yq

ˇ

ˇ

ˇ

“ sup
xPr´S,Ssd

ˇ

ˇ

ˇ
B0,βkpx,yq ´ Ixσ,D,NB

0,βkpx,yq
ˇ

ˇ

ˇ

ď C22M
˚
1 pB

0,βkp¨,yqq

˜

1

σw
`
σdwpσw ` 1q

σb
`
σbσ

d
wpσw ` 1q

D
1
d

`
σbσ

d
wpσw `

a

log δ´1q
?
N

¸

.

where M˚
1 pB

0,βkp¨,yqq “ max|α|ď1 supxPr´S,Ssd |B
α,βkpx,yq|. Plugging this upper bound

into (43), with probability at least 1´ δ with respect to the random variables twi, biu
N
i“1,

M˚
1 phpx, ¨qq ď C22 max

|β|ď1
sup

yPr´S,Ssd

ˇ

ˇ

ˇ

ˇ

ˇ

max
|α|ď1

sup
xPr´S,Ssd

ˇ

ˇ

ˇ
Bα,βkpx,yq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˜

1

σw
`
σdwpσw ` 1q

σb
`
σbσ

d
wpσw ` 1q

D
1
d

`
σbσ

d
wpσw `

a

log δ´1q
?
N

¸

.

Recall M˚
1 pkq :“ max|α|ď1,|β|ď1 supx,yPr´S,Ssd |B

α,βkpx,yq| to see, for all x P r´S, Ssd, and

with probability at least 1´ δ with respect to the random variables twi, biu
N
i“1,

M˚
1 phpx, ¨qq ď C22M

˚
1 pkq

˜

1

σw
`
σdwpσw ` 1q

σb
`
σbσ

d
wpσw ` 1q

D
1
d

`
σbσ

d
wpσw `

a

log δ´1q
?
N

¸

.

Notice that M˚
1 pkq ă 8 by the assumption k P C1ˆ1pRdˆRdq. Combining this upper bound

with (42) and taking the supremum over x P r´S, Ssd, from (41) we have, with probability
at least 1´ δ with respect to the random variables twi, biu

N
i“1,

p˚˚q ď C2

b

M˚
1 pkq

˜

1

σw
`
σdwpσw ` 1q

σb
`
σbσ

d
wpσw ` 1q

D
1
d

`
σbσ

d
wpσw `

a

log δ´1q
?
N

¸

.

where C2 :“
a

C 12C
2
2 .

Combining these bounds on p˚q and p˚˚q completes the proof.
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A.3 An Analogous Result to Theorem 1 for Unbounded φ

In this section we state and prove an analogous result of Theorem 1 that holds under weaker
assumptions on the activation function φ, with a correspondingly stronger assumption on
the GP. This ensures that our theory is compatible with activation functions φ that may be
unbounded, including the ReLU activation function φpxq “ maxp0, xq. An example of the
associated pair function ψ is given in Table 1.

First of all, we recall that a positive semi-definite function k : Rd ˆ Rd Ñ R reproduces
a Hilbert space Hk whose elements are functions f : Rd Ñ R such that kp¨,xq P Hk for
all x P Rd and xf, kp¨,xqyHk “ fpxq for all x P Rd and all f P Hk. The Hilbert space
Hk is called a reproducing kernel Hilbert space (RKHS) . It is a well-known fact that GP
sample paths are not contained in the RKHS induced by the GP covariance kernel i.e.
f „ GPpm, kq ùñ Ppf P Hkq “ 0, unless Hk is finite dimensional (Hsing and Eubank, 2015,
Theorem 7.5.4). However, Ppf P HRq “ 1 holds whenever HR satisfies nuclear dominance
over Hk; see Lukić and Beder (2001). The additional assumption that we require on the
GP in this appendix is that the GP takes values in a RKHS HR where R is continuously
differentiable. Intuitively, this imposes an additional smoothness requirement on the GP
compared to Theorem 1. Our analogous result to Theorem 1 is as follows:

Theorem 4 (Analogue of Theorem 1 for Unbounded φ). In the same setting of Theorem 1,
replace the assumption φ P C˚0 pRq with φ P C˚1 pRq. In addition, assume that f „ GPpm, kq
is a random variable taking values in HR with the reproducing kernel R P C1ˆ1pRd ˆ Rdq.
Assume that m P HR and that the covariance operator K of f is trace class. Then, with
probability at least 1´ δ,

sup
xPX

c

E
”

pfpxq ´ Iσ,D,Nfpxqq
2
|twi, biuNi“1

ı

ď C
b

M˚
1 pRq

´

}m}HR `
a

trpKq
¯

"

1

σw
`
σdwpσw ` 1q2

σb
`
σbpσb ` 1qσdwpσw ` 1q2

D
1
d

`
σbσ

d`1
w

δ
?
N

*

.

where trpKq is the trace of the operator K and C is a constant independent of m, k, σw, σb, D,N, δ.

Proof To reduce notation, in this proof we denote Ef |w,br¨s :“ Er¨ | twi, biu
N
i“1s. By Jensen’s

inequality, we have

sup
xPX

c

Ef |w,b
”

pfpxq ´ Iσ,D,Nfpxqq
2
ı

ď

d

Ef |w,b
„ˆ

sup
xPX

ˇ

ˇ

ˇ
fpxq ´ Iσ,D,Nfpxq

ˇ

ˇ

ˇ

˙2

(44)

By Theorem 6 we have, with probability 1´δ with respect to the random variables twi, biu
N
i“1,

the right hand side of (44) can be bounded as

ď

g

f

f

f

eEf |w,b

»

–C2M˚
1 pfq

2

#

1

σw
`
σdwpσw ` 1q

σb
`
σbpσb ` 1qσdwpσw ` 1q2

D
1
d

`
σbσ

d`1
w

δ
?
N

+2
fi

fl

“ C
b

Ef |w,b rM˚
1 pfq

2s

"

1

σw
`
σdwpσw ` 1q

σb
`
σbpσb ` 1qσdwpσw ` 1q2

D
1
d

`
σbσ

d`1
w

δ
?
N

*

,
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where C is a constant independent on f , σw, σb, δ. Next we will upper-bound
b

Ef |w,b rM˚
1 pfq

2s.

Since f is a HR-valued random variable, by the reproducing property of HR

Ef |w,b
“

M˚
1 pfq

2
‰

“ Ef |w,b

»

–

˜

max
|α|ď1

sup
xPr´S,Ssd

Bαfpxq

¸2
fi

fl “ Ef |w,b

»

–

˜

max
|α|ď1

sup
xPr´S,Ssd

xf, Bα,0Rpx, ¨qyHR

¸2
fi

fl .

By the Cauchy-Schwartz inequality,

Ef |w,b

»

–

˜

max
|α|ď1

sup
xPr´S,Ssd

xf, Bα,0Rpx, ¨qyHR

¸2
fi

fl ď Ef |w,b

»

–

˜

max
|α|ď1

sup
xPr´S,Ssd

}f}HR}B
α,0Rpx, ¨q}HR

¸2
fi

fl

“ Ef |w,b

«

max
|α|ď1

sup
xPr´S,Ssd

}f}2HRB
α,αRpx,xq

ff

ďM˚
1 pRqEf |w,b

“

}f}2HR
‰

.

From (Prato, 2006, (1.13)), Ef |w,b
”

}f}2HR

ı

“ }m}2HR ` trpKq. Therefore, we have

b

Ef |w,b rM˚
1 pfq

2s ď

c

M˚
1 pRq

´

}m}2HR ` trpKq
¯

ď

b

M˚
1 pRq

´

}m}HR `
a

trpKq
¯

where the fact that
?
a` b ď

?
a`

?
b for a, b P R is applied for the last inequality. Plugging

in this upper bound concludes the proof.

In the remaining part of this section, we show Theorem 5 and Theorem 6 which are
analogous results to Theorem 2 and Theorem 3 for φ P C˚1 pRq. The assumption φ P C˚1 pRq
implies for some Cφ ă 8

φpw ¨ x` bq ď Cφp1` |w ¨ x` b|q

ď Cφp1` }w}2}x}2 ` |b|q

ď Cφp1` }x}2qp1` }w}2qp1` |b|q (45)

where Cauchy-Schwartz inequality is applied for the second inequality. The same discussions
in the proof of Theorem 2 and Theorem 3 holds by replacing all bounds involving φ with an
expression similar to (45). Let B2pfq :“

ş

Rd |fpxq|p1` }x}2q
2dx.

Theorem 5 (Analogue of Theorem 2 for Unbounded φ). Let X Ă Rd be bounded. Let
Assumption 1 and Assumption 4 hold, but with φ P C˚0 pRq replaced with φ P C˚1 pRq, and let
f P C1pRdq satisfy M1pfq ă 8 and B2pfq ă 8. Then

sup
xPX

|fpxq ´ pR˚σRqrf spxq| ď C maxpM1pfq, B2pfqq

"

1

σw
`
σdwpσw ` 1q2

σb

*

(46)

for some constant C that is independent of σw, σb and f , but may depend on φ, ψ, pw and
pb.
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Proof We use the same proof as Theorem 2, but consider the supremum error over a
bounded domain X Ă Rd i.e. supxPX |fpxq ´ pR

˚
σRqrf spxq|, instead of error over Rd. Recall

the overall structure of the proof is (18) and in particular there are two quantities, p˚q and
p˚˚q to be bounded. The argument used to bound p˚q remains valid, so our attention below
turns to the argument used to bound p˚˚q.

In order to establish a bound on p˚˚q, we replace the upper bound involving φ subsequent
to (30). From (30), we have

|p3q| ď }Bpb}L8p1` }x
1}2qp1` }w}2q

ż

R
p1` |b1|q|φpw ¨ px´ x1q ` b1qψpb1q|db1. (47)

From (45), for some Cφ ă 8,

φpw ¨ px´ x1q ` b1q ď Cφp1` }x´ x
1}2qp1` }w}2qp1` |b|q

ď Cφp1` }x}2qp1` }x
1}2qp1` }w}2qp1` |b|q.

Plugging this upper bound in (47),

|p3q| ď Cφ}Bpb}L8p1` }x}2qp1` }x
1}2q

2p1` }w}2q
2

ż

R
p1` |b1|q2|ψpb1q|db1. (48)

Let Cψ :“
ş

Rp1` |b|q
2|ψpbq|db and Cpw :“ max

`

1, 2
ş

Rd }w}2pwpwqdw,
ş

Rd }w}
2
2pwpwqdw

˘

.
By the same discussion in the proof of Theorem 2 subsequent to (30), considering the
difference between (31) and (48),

∆kpx,x1q ď p2πq
1
2 }xpw}

´1
L1 }ppb}

´1
L1 }Bpb}L8}φ}L8CψCpwp1` }x}2qp1` }x

1}2q
2 1

εdw

ˆ

1`
1

εw

˙2

εb.

Set C 12 :“ p2πq
1
2 }xpw}

´1
L1 }ppb}

´1
L1 }Bpb}L8}φ}L8CψCpw . The error term p˚˚q is then bounded as

p˚˚q “ sup
xPX

ˇ

ˇ

ˇ

ˇ

ż

Rd
fpx1q∆kpx,x1qdx1

ˇ

ˇ

ˇ

ˇ

ď C 12 sup
xPX

ˇ

ˇ1` }x}2
ˇ

ˇ

ż

Rd
p1` }x1}2q

2|fpx1q|dx1
1

εdw

ˆ

1`
1

εw

˙2

εb.

Setting C2 :“ C 12 supxPX
ˇ

ˇ1` }x}2
ˇ

ˇ, we have

p˚˚q ď C2B2pfq
1

εdw

ˆ

1`
1

εw

˙2

εb. (49)

Combining the bound for p˚q and p˚˚q and setting C :“ maxpC1, C2q,

sup
xPX

|fpxq ´R˚σRfpxq| ď C maxpM1pfq, B2pfqq

#

εw `
1

εdw

ˆ

1`
1

εw

˙2

εb

+

where C only depends on X , φ, ψ, pw, pb but not on f, εw, εb. Setting σw “ ε´1
w and σb “ ε´1

b

completes the proof.

46



The Ridgelet Prior

Theorem 6 (Analogue of Theorem 3 for Unbounded φ). In the same setting of Theorem 3,
but with the assumption φ P C˚0 pRq replaced with φ P C˚1 pRq, for any f P C1pRdq with
M˚

1 pfq ă 8, with probability at least 1´ δ,

sup
xPX

|fpxq ´ Iσ,D,Nfpxq| ď

CM˚
1 pfq

"

1

σw
`
σdwpσw ` 1q2

σb
`
σbpσb ` 1qσdwpσw ` 1q2

D
1
d

`
σbσ

d`1
w

δ
?
N

*

where C is a constant that may depend on X ,1, φ, ψ, pw, pb but does not depend on f ,
σw, σb, δ.

Proof This result follows from a modification of the proof of Theorem 3. Recall from (36)
there are three terms, p˚q, p˚˚q, and p˚ ˚ ˚q, to be bounded. In what follows we indicate how
the arguments used to establish Theorem 3 should be modified.

Bounding p˚q: Replace (38) in the proof of Theorem 3 with the following inequality

B2pfclipq “

ż

r´S,Ssd
fclippxqp1` }x}2q

2dx

ď

ż

r´S,Ssd
M1pfclipq ¨ p1` Sq

2dx “ p1` Sq2p2SqdM1pfclipq ă 8.

Now apply Theorem 5 in place of Theorem 2 to obtain

p˚q ď C 11 maxpM1pfclipq, B2pfclipqq

ˆ

1

σw
`
σdwpσw ` 1q2

σb

˙

for some constant C 11 ą 0 depending only on φ, ψ, pw, pb. Let C1 “ p1` Sq
2p2SqdC 1 to see

p˚q ď C1M1pfclipq

ˆ

1

σw
`
σdwpσw ` 1q2

σb

˙

.

Bounding p˚˚q: Here we replace the upper bound of (b) in the proof of Theorem 3. From
(45),

(b) “ Z

ż

R

ż

Rd

ˇ

ˇ

ˇ
p1` }w}2qφpw ¨ x` bqpw,σpwqpb,σpbq

ˇ

ˇ

ˇ
dwdb

ď ZCφp1` }x}2q

ż

Rd
p1` }w}2q

2pw,σpwqdw
loooooooooooooooomoooooooooooooooon

(c)

ż

R
p1` |b|qpb,σpbqdb

looooooooooomooooooooooon

(d)

.

Let Cpw :“ max
`

1, 2
ş

Rd }w}2pwpwqdw,
ş

Rd }w}
2
2pwpwqdw

˘

and Cpb :“ maxp1,
ş

R |b|pbpbqdbq.
By the same discussion on the upper bound of (b) in the proof of Theorem 3,

(c) ď Cpw p1` σwq
2 , (d) ď Cpbp1` σbq.

Recall Z “ p2πq
1
2 }xpw}

´1
L1 }ppb}

´1
L1 σ

d
wσb. By the upper bound of (c) and (d),

(b) ď p1` }x}2qp2πq
1
2 }xpw}

´1
L1 }ppb}

´1
L1CpwCpbCφσbp1` σbqσ

d
w p1` σwq

2 .
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Let C 12 :“ supxPr´S,Ssd |p1 ` }x}2q|p2πq
1
2 }xpw}

´1
L1 }ppb}

´1
L1CpwCpbCφ. By plugging the upper

bound of (b) in (39) and setting C2 :“ CQM1pψqC
1
2, we have

p˚˚q ď C2M1pfclipq
σbpσb ` 1qσdwpσw ` 1q2

D
1
d

.

Bounding p˚˚˚q: Finally we apply Lemma 5 in place of Lemma 3. From (40), Etwi,biuNi“1
rp˚ ˚ ˚qs

is upper bounded by

E
twi,biuNi“1

rp˚ ˚ ˚qs ď
CX p2Sq

dM1pfclipq}ψ}L8LφVpwσw?
N

Set C3 :“ CX p2Sq
d}ψ}L8LφVpwσw. By Lemma 5, with probability at least 1´ δ,

p˚ ˚ ˚q ď C3M1pfclipq
σbσ

d`1
w

δ
?
N

.

For all bounds of p˚q, p˚˚q and p˚ ˚ ˚q, recall that Mpfclipq ď 3M˚
1 p1qM

˚
1 pfq from (37).

Then combining p˚q, p˚˚q and p˚ ˚ ˚q and setting C :“ 3M˚
1 p1qpC1`C2`C3q completes the

proof.

A.4 Experiments

This section expands on the experiments that were reported in the main text. Appendix A.4.1
reports the cubature rules that were used. Appendix A.4.2 discusses how to measure the
similarity between BNNs and GPs by the maximum mean discrepancy (MMD) as an
alternative error criteria to the MRMSE and shows the MMD of the same experiment as
Section 6.1. Appendix A.4.3 explores the effect of using alternative settings in the ridgelet
prior, compared to those used to produce the figures in the main text.

In some instances of the experiments we report, poor numerical conditioning was en-
countered. The results that we present employed a crude form of numerical regularisation
in order that such issues – which arise from the posterior approximation approach used
and are not intrinsic to the ridgelet prior itself – were obviated. Specifically, we employed
the Moore–Penrose pseudo-inverse whenever the action of an inverse matrix was required,
and we employed Tikhonov regularisation (with the extent of the regularisation manually
selected) whenever a matrix square root was required.

A.4.1 Experimental Setting

Here, for completeness, we report the cubature rules tpui,xiqu
D
i“1 and the bandwidth

parameters σw, σb that were used in our experiments. The sensitivity of reported results to
these choices is investigated in Appendix A.4.3.

Recall that tpui,xiqu
D
i“1 is a cubature rule on r´S, Ssd and that, in all experiments, we

aim for accurate approximation on X “ p´5, 5qd. For S ą 5 a mollifier 1 is required and in
this case (13) we used. The settings that we used for the results in the main text were as
follows. As aforementioned in Section 6, the functions φ and ψ were set as Table 1 and the
densities pw and pb were set as standard Gaussians for all of the results in Table 2.
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Experiment Cubature points, weights, total number Bandwidth of pw, pb
Section 6.1 xj : grid point on r´6, 6s, uj “ 12D´1

1pxjq, D “ 200 σw “ 3, σb “ 12
Section 6.2 CO2 xj : grid point on r´5, 5s, uj “ 10D´1, D “ 200 σw “ 3, σb “ 12
Section 6.2 Airline xj : grid point on r´5, 5s, uj “ 10D´1, D “ 200 σw “ 3, σb “ 12
Section 6.2 In-painting xj : grid point on r´5, 5s2, uj “ 102D´1, D “ 302 σw “ 2, σb “ 12
Section 6.3 Deep BNN xj : grid point on r´6, 6s, uj “ 12D´1

1pxjq, D “ 50 σw “ 3, σb “ 12

Table 2: Cubature rules and bandwidth parameters used for each experiment reported in
the main text.

A.4.2 Alternative Error Measurement by MMD

In the main text we adopted the MRMSE to measure the similarity between a BNN and
the target GP. However, authors such as Matthews et al. (2018) considered instead a two
sample test based on MMD. The purpose of this appendix is to present complementary
results to those in the main text, based instead on MMD. The MMD is a distance between
two probability measures P and Q, defined as

MMD2pP,Qq :“ sup
}h}Hď1

ˇ

ˇEY„PrfpY qs ´ EY„QrfpY qs
ˇ

ˇ

where H is a reproducing kernel Hilbert space uniquely associated with a kernel K; see e.g.
Muandet et al. (2017). The MMD has the closed form

MMD2pP,Qq “ EY,Y 1„PrKpY, Y 1qs ´ 2EY„P,Y 1„QrKpY, Y 1qs ` EY,Y 1„QrKpY, Y 1qs,

which can be approximated using samples from P and Q. To this end, we consider the
BNN and GP’s prior predictives on fixed inputs txiu

M
i“1 that are M -dimensional probability

distributions P and Q and employ the squared exponential kernel

Kpy,y1q :“ exp

ˆ

´
1

α2
}y ´ y1}22

˙

, y,y1 P RM

with 1{α2 “ 0.001. For the experiment that we report here, we set M “ 50 where txiu
50
i“1

are a regular grid over p´5, 5q, and we use 1, 000 samples from P and Q to approximate
MMD2, where P and Q are the BNN and GP’s prior predictives on txiu

50
i“1.

The same experiment as in Section 6.1 was assessed using MMD, with results presented in
Figure 10. It can be observed that MMD decreases when N increases, likewise the MRMSE
in Figure 5. The rate of decrease appears somewhat slower than observed in Matthews et al.
(2018), but this is to be expected since we are attempting to approximate an arbitrary GP
whereas Matthews et al. (2018) consider approximation of the GP defined as the natural
infinite-width limit of the BNN.

A.4.3 Comparison of Prior Predictive with Different Settings

In this final section we investigate the effect of varying the settings of the ridgelet prior. The
default settings in Table 1 were taken as a starting point and were then systematically varied.
Initially we consider a squared exponential covariance model for the target GP. Specifically,
we considered:
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Figure 10: MMD computed from 1000 random samples of GP and BNN outputs at 50 inputs
txiu

50
i“1. The standard error is computed by 10 independent experiments.

1. Different choices of σw and σb: pσw, σbq “ p1, 2q, p2, 6q, p3, 12q, p4, 20q, p5, 30q

2. Dynamic setting of σw and σb: σw and σb varies depending on N

3. Different choices of activation function: Gaussian, Tanh, ReLU

4. Different choices of GP covariance model: squared exponential, rational quadratic,
periodic

The findings in each case are summarised next.

Different choices of σw and σb: Figure 11 displays the MRMSE and BNN covariance
function for each of the choices pσw, σbq “ p1, 2q, p2, 6q, p4, 20q, p5, 30q. Note the choice
pσw, σbq “ p3, 12q is displayed in Figure 5. It can be observed that the BNN covariance
function for larger pσw, σbq has a qualitatively correct shape but is larger overall compared
to the GP target when N is small. On the other hand, the BNN covariance function for
smaller pσw, σbq takes values that are closer to that of the GP, but is visually flatter than the
GP and the approximation does not improve as N is increased. These observation indicates
that it may be advantageous to change the values of pσw, σbq in a manner that increases
with N . This leads us to the next experiment.

(a) pσw, σbq “ p1, 2q (b) pσw, σbq “ p2, 6q (c) pσw, σbq “ p4, 20q (d) pσw, σbq “ p5, 30q

Figure 11: MRMSE and BNN covariance for pσw, σbq “ p1, 2q, p2, 6q, p4, 20q, p5, 30q.
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Dynamic setting of σw and σb: As observed in the previous experiment, it may be
advantageous to change pσw, σbq in a manner that increases with N . In this experiment,
the values of pσw, σb, Nq were varied as pσw, σb, Nq “ p1, 2, 300q, p2, 6, 1000q, p3, 12, 3000q,
p4, 20, 10000q, p5, 30, 30000q. Figure 12 shows BNN sample paths and Figure 13 shows
MRMSE and BNN covariance. This dynamic setting of pσw, σb, Nq appears to constitute a
promising compromise between the two extremes of behaviour observed in Figure 11.

(a) pσw, σb, Nq “ p1, 2, 300q (b) pσw, σb, Nq “ p2, 6, 1000q (c) pσw, σb, Nq “ p3, 12, 3000q

(d) pσw, σb, Nq “ p4, 20, 10000q (e) pσw, σb, Nq “ p5, 30, 30000q (f) Original GP

Figure 12: Sample paths of BNN for dynamic setting of pσw, σb, Nq.

Figure 13: MRMSE and BNN covariance for dynamic setting of pσw, σb, Nq.

Different choices of activation function: In this experiment, we fix pσw, σbq “ p3, 12q
and use 3 different activation functions: Gaussian, hyperbolic tangent, and ReLU. The
settings for the ridgelet prior corresponding to each activation function are given in Table 1.
Figure 14 and Figure 15 indicate that smooth and bounded activation functions, such as the
Gaussian activation function, allowed the ridgelet approximation to converge more rapidly
to the GP in this experiment.

Different choice of GP covariance model: For these experiments we fixed the activation
function to the hyperbolic tangent. Then we considered in turn each of the following
covariance models for the target GP: square exponential k1, rational quadratic k2, and
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(a) Gauss N “ 300 (b) Gauss N “ 3000 (c) Gauss N “ 30000

(d) Tanh N “ 300 (e) Tanh N “ 3000 (f) Tanh N “ 30000

(g) ReLU N “ 300 (h) ReLU N “ 3000 (i) ReLU N “ 30000 (j) Original GP

Figure 14: Sample paths of the BNN for different activation functions; Gaussian, hyperbolic
tangent, and ReLU.

(a) Gauss (b) Tanh (c) ReLU

Figure 15: MRMSE and BNN covariance for different activation functions; Gaussian, hyper-
bolic tangent, and ReLU.
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where l1 “ 1.0, s1 “ 1.5, l2 “ 1.0, α2 “ 1.0, s2 “ 0.75, l3 “ 1.0, p3 “ 2.0, s3 “ 0.75. For the
choice of pσw, σb, Nq, we used the five combination pσw, σb, Nq “ p1, 2, 300q, p2, 6, 1000q,
p3, 12, 3000q, p4, 20, 10000q, p5, 30, 30000q examined in the previous experiment. Such dynamic
choice of pσw, σbq is useful to achieve a better approximation quality when the covariance
model is complex. The sample paths from the BNN with the ridgelet prior are displayed in
Figure 16 as a function of N , and the associated BNN covariance functions are displayed in
Figure 17. It is perhaps not surprising that the periodic covariance model, being the most
complex, appears to be the most challenging to approximate with a BNN.

(a) SE N “ 300 (b) SE N “ 3000 (c) SE N “ 30000 (d) SE Original GP

(e) RQ N “ 300 (f) RQ N “ 3000 (g) RQ N “ 30000 (h) RQ Original GP

(i) Periodic N “ 300 (j) Periodic N “ 3000 (k) Periodic N “ 30000 (l) Periodic Original GP

Figure 16: Sample paths of the BNN for different GP covariance models; square exponential,
rational quadratic, and periodic.

53



Matsubara, Oates, and Briol

(a) SE (b) RQ (c) Periodic

Figure 17: MRMSE and BNN covariance for different GP covariance models; square expo-
nential, rational quadratic, and periodic.
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Vera Kurková and Marcello Sanguineti. Bounds on rates of variable-basis and neural-network
approximation. IEEE Transactions on Information Theory, 47(6):2659–2665, 2001.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and
Jascha Sohl-Dickstein. Deep neural networks as Gaussian processes. The 6th International
Conference on Learning Representations, 2018.

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward
networks with a nonpolynomial activation function can approximate any function. Neural
Networks, 6(6):861–867, 1993.

Elijah Liflyand. Integrability spaces for the Fourier transform of a function of bounded
variation. Journal of Mathematical Analysis and Applications, 436(2):1082–1101, 2016.
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